1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/DOTGraphTraits.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/SaveAndRestore.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <memory>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
63 
64 using namespace clang;
65 
66 static SourceLocation GetEndLoc(Decl *D) {
67   if (VarDecl *VD = dyn_cast<VarDecl>(D))
68     if (Expr *Ex = VD->getInit())
69       return Ex->getSourceRange().getEnd();
70   return D->getLocation();
71 }
72 
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
76   // Allow parentheses
77   E = E->IgnoreParens();
78 
79   // Allow conversions to different integer kind.
80   if (const auto *CE = dyn_cast<CastExpr>(E)) {
81     if (CE->getCastKind() != CK_IntegralCast)
82       return false;
83     E = CE->getSubExpr();
84   }
85 
86   // Allow negative numbers.
87   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
88     if (UO->getOpcode() != UO_Minus)
89       return false;
90     E = UO->getSubExpr();
91   }
92 
93   return isa<IntegerLiteral>(E);
94 }
95 
96 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
97 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
98 /// returns nullptr.
99 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
100   E = E->IgnoreParens();
101   if (IsIntegerLiteralConstantExpr(E))
102     return E;
103   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
104     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
105   return nullptr;
106 }
107 
108 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
109 /// NumExpr is an integer literal or an enum constant.
110 ///
111 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
112 /// null.
113 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
114 tryNormalizeBinaryOperator(const BinaryOperator *B) {
115   BinaryOperatorKind Op = B->getOpcode();
116 
117   const Expr *MaybeDecl = B->getLHS();
118   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
119   // Expr looked like `0 == Foo` instead of `Foo == 0`
120   if (Constant == nullptr) {
121     // Flip the operator
122     if (Op == BO_GT)
123       Op = BO_LT;
124     else if (Op == BO_GE)
125       Op = BO_LE;
126     else if (Op == BO_LT)
127       Op = BO_GT;
128     else if (Op == BO_LE)
129       Op = BO_GE;
130 
131     MaybeDecl = B->getRHS();
132     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
133   }
134 
135   return std::make_tuple(MaybeDecl, Op, Constant);
136 }
137 
138 /// For an expression `x == Foo && x == Bar`, this determines whether the
139 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
140 /// literals.
141 ///
142 /// It's an error to pass this arguments that are not either IntegerLiterals
143 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
144 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
145   // User intent isn't clear if they're mixing int literals with enum
146   // constants.
147   if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
148     return false;
149 
150   // Integer literal comparisons, regardless of literal type, are acceptable.
151   if (!isa<DeclRefExpr>(E1))
152     return true;
153 
154   // IntegerLiterals are handled above and only EnumConstantDecls are expected
155   // beyond this point
156   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
157   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
158   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
159 
160   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
161   const DeclContext *DC1 = Decl1->getDeclContext();
162   const DeclContext *DC2 = Decl2->getDeclContext();
163 
164   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
165   return DC1 == DC2;
166 }
167 
168 namespace {
169 
170 class CFGBuilder;
171 
172 /// The CFG builder uses a recursive algorithm to build the CFG.  When
173 ///  we process an expression, sometimes we know that we must add the
174 ///  subexpressions as block-level expressions.  For example:
175 ///
176 ///    exp1 || exp2
177 ///
178 ///  When processing the '||' expression, we know that exp1 and exp2
179 ///  need to be added as block-level expressions, even though they
180 ///  might not normally need to be.  AddStmtChoice records this
181 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
182 ///  the builder has an option not to add a subexpression as a
183 ///  block-level expression.
184 class AddStmtChoice {
185 public:
186   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
187 
188   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
189 
190   bool alwaysAdd(CFGBuilder &builder,
191                  const Stmt *stmt) const;
192 
193   /// Return a copy of this object, except with the 'always-add' bit
194   ///  set as specified.
195   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
196     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
197   }
198 
199 private:
200   Kind kind;
201 };
202 
203 /// LocalScope - Node in tree of local scopes created for C++ implicit
204 /// destructor calls generation. It contains list of automatic variables
205 /// declared in the scope and link to position in previous scope this scope
206 /// began in.
207 ///
208 /// The process of creating local scopes is as follows:
209 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
210 /// - Before processing statements in scope (e.g. CompoundStmt) create
211 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
212 ///   and set CFGBuilder::ScopePos to the end of new scope,
213 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
214 ///   at this VarDecl,
215 /// - For every normal (without jump) end of scope add to CFGBlock destructors
216 ///   for objects in the current scope,
217 /// - For every jump add to CFGBlock destructors for objects
218 ///   between CFGBuilder::ScopePos and local scope position saved for jump
219 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
220 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
221 ///   (adding any variable that doesn't need constructor to be called to
222 ///   LocalScope can break this assumption),
223 ///
224 class LocalScope {
225 public:
226   using AutomaticVarsTy = BumpVector<VarDecl *>;
227 
228   /// const_iterator - Iterates local scope backwards and jumps to previous
229   /// scope on reaching the beginning of currently iterated scope.
230   class const_iterator {
231     const LocalScope* Scope = nullptr;
232 
233     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
234     /// Invalid iterator (with null Scope) has VarIter equal to 0.
235     unsigned VarIter = 0;
236 
237   public:
238     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
239     /// Incrementing invalid iterator is allowed and will result in invalid
240     /// iterator.
241     const_iterator() = default;
242 
243     /// Create valid iterator. In case when S.Prev is an invalid iterator and
244     /// I is equal to 0, this will create invalid iterator.
245     const_iterator(const LocalScope& S, unsigned I)
246         : Scope(&S), VarIter(I) {
247       // Iterator to "end" of scope is not allowed. Handle it by going up
248       // in scopes tree possibly up to invalid iterator in the root.
249       if (VarIter == 0 && Scope)
250         *this = Scope->Prev;
251     }
252 
253     VarDecl *const* operator->() const {
254       assert(Scope && "Dereferencing invalid iterator is not allowed");
255       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
256       return &Scope->Vars[VarIter - 1];
257     }
258 
259     const VarDecl *getFirstVarInScope() const {
260       assert(Scope && "Dereferencing invalid iterator is not allowed");
261       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
262       return Scope->Vars[0];
263     }
264 
265     VarDecl *operator*() const {
266       return *this->operator->();
267     }
268 
269     const_iterator &operator++() {
270       if (!Scope)
271         return *this;
272 
273       assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
274       --VarIter;
275       if (VarIter == 0)
276         *this = Scope->Prev;
277       return *this;
278     }
279     const_iterator operator++(int) {
280       const_iterator P = *this;
281       ++*this;
282       return P;
283     }
284 
285     bool operator==(const const_iterator &rhs) const {
286       return Scope == rhs.Scope && VarIter == rhs.VarIter;
287     }
288     bool operator!=(const const_iterator &rhs) const {
289       return !(*this == rhs);
290     }
291 
292     explicit operator bool() const {
293       return *this != const_iterator();
294     }
295 
296     int distance(const_iterator L);
297     const_iterator shared_parent(const_iterator L);
298     bool pointsToFirstDeclaredVar() { return VarIter == 1; }
299   };
300 
301 private:
302   BumpVectorContext ctx;
303 
304   /// Automatic variables in order of declaration.
305   AutomaticVarsTy Vars;
306 
307   /// Iterator to variable in previous scope that was declared just before
308   /// begin of this scope.
309   const_iterator Prev;
310 
311 public:
312   /// Constructs empty scope linked to previous scope in specified place.
313   LocalScope(BumpVectorContext ctx, const_iterator P)
314       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
315 
316   /// Begin of scope in direction of CFG building (backwards).
317   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
318 
319   void addVar(VarDecl *VD) {
320     Vars.push_back(VD, ctx);
321   }
322 };
323 
324 } // namespace
325 
326 /// distance - Calculates distance from this to L. L must be reachable from this
327 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
328 /// number of scopes between this and L.
329 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
330   int D = 0;
331   const_iterator F = *this;
332   while (F.Scope != L.Scope) {
333     assert(F != const_iterator() &&
334            "L iterator is not reachable from F iterator.");
335     D += F.VarIter;
336     F = F.Scope->Prev;
337   }
338   D += F.VarIter - L.VarIter;
339   return D;
340 }
341 
342 /// Calculates the closest parent of this iterator
343 /// that is in a scope reachable through the parents of L.
344 /// I.e. when using 'goto' from this to L, the lifetime of all variables
345 /// between this and shared_parent(L) end.
346 LocalScope::const_iterator
347 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
348   llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
349   while (true) {
350     ScopesOfL.insert(L.Scope);
351     if (L == const_iterator())
352       break;
353     L = L.Scope->Prev;
354   }
355 
356   const_iterator F = *this;
357   while (true) {
358     if (ScopesOfL.count(F.Scope))
359       return F;
360     assert(F != const_iterator() &&
361            "L iterator is not reachable from F iterator.");
362     F = F.Scope->Prev;
363   }
364 }
365 
366 namespace {
367 
368 /// Structure for specifying position in CFG during its build process. It
369 /// consists of CFGBlock that specifies position in CFG and
370 /// LocalScope::const_iterator that specifies position in LocalScope graph.
371 struct BlockScopePosPair {
372   CFGBlock *block = nullptr;
373   LocalScope::const_iterator scopePosition;
374 
375   BlockScopePosPair() = default;
376   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
377       : block(b), scopePosition(scopePos) {}
378 };
379 
380 /// TryResult - a class representing a variant over the values
381 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
382 ///  and is used by the CFGBuilder to decide if a branch condition
383 ///  can be decided up front during CFG construction.
384 class TryResult {
385   int X = -1;
386 
387 public:
388   TryResult() = default;
389   TryResult(bool b) : X(b ? 1 : 0) {}
390 
391   bool isTrue() const { return X == 1; }
392   bool isFalse() const { return X == 0; }
393   bool isKnown() const { return X >= 0; }
394 
395   void negate() {
396     assert(isKnown());
397     X ^= 0x1;
398   }
399 };
400 
401 } // namespace
402 
403 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
404   if (!R1.isKnown() || !R2.isKnown())
405     return TryResult();
406   return TryResult(R1.isTrue() && R2.isTrue());
407 }
408 
409 namespace {
410 
411 class reverse_children {
412   llvm::SmallVector<Stmt *, 12> childrenBuf;
413   ArrayRef<Stmt *> children;
414 
415 public:
416   reverse_children(Stmt *S);
417 
418   using iterator = ArrayRef<Stmt *>::reverse_iterator;
419 
420   iterator begin() const { return children.rbegin(); }
421   iterator end() const { return children.rend(); }
422 };
423 
424 } // namespace
425 
426 reverse_children::reverse_children(Stmt *S) {
427   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
428     children = CE->getRawSubExprs();
429     return;
430   }
431   switch (S->getStmtClass()) {
432     // Note: Fill in this switch with more cases we want to optimize.
433     case Stmt::InitListExprClass: {
434       InitListExpr *IE = cast<InitListExpr>(S);
435       children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
436                                     IE->getNumInits());
437       return;
438     }
439     default:
440       break;
441   }
442 
443   // Default case for all other statements.
444   llvm::append_range(childrenBuf, S->children());
445 
446   // This needs to be done *after* childrenBuf has been populated.
447   children = childrenBuf;
448 }
449 
450 namespace {
451 
452 /// CFGBuilder - This class implements CFG construction from an AST.
453 ///   The builder is stateful: an instance of the builder should be used to only
454 ///   construct a single CFG.
455 ///
456 ///   Example usage:
457 ///
458 ///     CFGBuilder builder;
459 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
460 ///
461 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
462 ///  the AST in reverse order so that the successor of a basic block is
463 ///  constructed prior to its predecessor.  This allows us to nicely capture
464 ///  implicit fall-throughs without extra basic blocks.
465 class CFGBuilder {
466   using JumpTarget = BlockScopePosPair;
467   using JumpSource = BlockScopePosPair;
468 
469   ASTContext *Context;
470   std::unique_ptr<CFG> cfg;
471 
472   // Current block.
473   CFGBlock *Block = nullptr;
474 
475   // Block after the current block.
476   CFGBlock *Succ = nullptr;
477 
478   JumpTarget ContinueJumpTarget;
479   JumpTarget BreakJumpTarget;
480   JumpTarget SEHLeaveJumpTarget;
481   CFGBlock *SwitchTerminatedBlock = nullptr;
482   CFGBlock *DefaultCaseBlock = nullptr;
483 
484   // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
485   // try and @try can be mixed and generally work the same.
486   // The frontend forbids mixing SEH __try with either try or @try.
487   // So having one for all three is enough.
488   CFGBlock *TryTerminatedBlock = nullptr;
489 
490   // Current position in local scope.
491   LocalScope::const_iterator ScopePos;
492 
493   // LabelMap records the mapping from Label expressions to their jump targets.
494   using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
495   LabelMapTy LabelMap;
496 
497   // A list of blocks that end with a "goto" that must be backpatched to their
498   // resolved targets upon completion of CFG construction.
499   using BackpatchBlocksTy = std::vector<JumpSource>;
500   BackpatchBlocksTy BackpatchBlocks;
501 
502   // A list of labels whose address has been taken (for indirect gotos).
503   using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
504   LabelSetTy AddressTakenLabels;
505 
506   // Information about the currently visited C++ object construction site.
507   // This is set in the construction trigger and read when the constructor
508   // or a function that returns an object by value is being visited.
509   llvm::DenseMap<Expr *, const ConstructionContextLayer *>
510       ConstructionContextMap;
511 
512   using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
513   DeclsWithEndedScopeSetTy DeclsWithEndedScope;
514 
515   bool badCFG = false;
516   const CFG::BuildOptions &BuildOpts;
517 
518   // State to track for building switch statements.
519   bool switchExclusivelyCovered = false;
520   Expr::EvalResult *switchCond = nullptr;
521 
522   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
523   const Stmt *lastLookup = nullptr;
524 
525   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
526   // during construction of branches for chained logical operators.
527   using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
528   CachedBoolEvalsTy CachedBoolEvals;
529 
530 public:
531   explicit CFGBuilder(ASTContext *astContext,
532                       const CFG::BuildOptions &buildOpts)
533       : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
534 
535   // buildCFG - Used by external clients to construct the CFG.
536   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
537 
538   bool alwaysAdd(const Stmt *stmt);
539 
540 private:
541   // Visitors to walk an AST and construct the CFG.
542   CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
543   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
544   CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
545   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
546   CFGBlock *VisitBreakStmt(BreakStmt *B);
547   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
548   CFGBlock *VisitCaseStmt(CaseStmt *C);
549   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
550   CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
551   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
552                                      AddStmtChoice asc);
553   CFGBlock *VisitContinueStmt(ContinueStmt *C);
554   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
555                                       AddStmtChoice asc);
556   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
557   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
558   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
559   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
560   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
561   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
562                                        AddStmtChoice asc);
563   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
564                                         AddStmtChoice asc);
565   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
566   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
567   CFGBlock *VisitDeclStmt(DeclStmt *DS);
568   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
569   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
570   CFGBlock *VisitDoStmt(DoStmt *D);
571   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
572                                   AddStmtChoice asc, bool ExternallyDestructed);
573   CFGBlock *VisitForStmt(ForStmt *F);
574   CFGBlock *VisitGotoStmt(GotoStmt *G);
575   CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
576   CFGBlock *VisitIfStmt(IfStmt *I);
577   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
578   CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
579   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
580   CFGBlock *VisitLabelStmt(LabelStmt *L);
581   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
582   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
583   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
584   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
585                                                          Stmt *Term,
586                                                          CFGBlock *TrueBlock,
587                                                          CFGBlock *FalseBlock);
588   CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
589                                           AddStmtChoice asc);
590   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
591   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
592   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
593   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
594   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
595   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
596   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
597   CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
598   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
599   CFGBlock *VisitReturnStmt(Stmt *S);
600   CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S,
601                                       AddStmtChoice asc);
602   CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
603   CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
604   CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
605   CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
606   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
607   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
608   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
609                                           AddStmtChoice asc);
610   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
611   CFGBlock *VisitWhileStmt(WhileStmt *W);
612 
613   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
614                   bool ExternallyDestructed = false);
615   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
616   CFGBlock *VisitChildren(Stmt *S);
617   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
618   CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
619                                         AddStmtChoice asc);
620 
621   void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
622                                     const Stmt *S) {
623     if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
624       appendScopeBegin(B, VD, S);
625   }
626 
627   /// When creating the CFG for temporary destructors, we want to mirror the
628   /// branch structure of the corresponding constructor calls.
629   /// Thus, while visiting a statement for temporary destructors, we keep a
630   /// context to keep track of the following information:
631   /// - whether a subexpression is executed unconditionally
632   /// - if a subexpression is executed conditionally, the first
633   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
634   ///   corresponds to the last temporary destructor we have to call for this
635   ///   subexpression) and the CFG block at that point (which will become the
636   ///   successor block when inserting the decision point).
637   ///
638   /// That way, we can build the branch structure for temporary destructors as
639   /// follows:
640   /// 1. If a subexpression is executed unconditionally, we add the temporary
641   ///    destructor calls to the current block.
642   /// 2. If a subexpression is executed conditionally, when we encounter a
643   ///    CXXBindTemporaryExpr:
644   ///    a) If it is the first temporary destructor call in the subexpression,
645   ///       we remember the CXXBindTemporaryExpr and the current block in the
646   ///       TempDtorContext; we start a new block, and insert the temporary
647   ///       destructor call.
648   ///    b) Otherwise, add the temporary destructor call to the current block.
649   ///  3. When we finished visiting a conditionally executed subexpression,
650   ///     and we found at least one temporary constructor during the visitation
651   ///     (2.a has executed), we insert a decision block that uses the
652   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
653   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
654   ///     branches to the stored successor.
655   struct TempDtorContext {
656     TempDtorContext() = default;
657     TempDtorContext(TryResult KnownExecuted)
658         : IsConditional(true), KnownExecuted(KnownExecuted) {}
659 
660     /// Returns whether we need to start a new branch for a temporary destructor
661     /// call. This is the case when the temporary destructor is
662     /// conditionally executed, and it is the first one we encounter while
663     /// visiting a subexpression - other temporary destructors at the same level
664     /// will be added to the same block and are executed under the same
665     /// condition.
666     bool needsTempDtorBranch() const {
667       return IsConditional && !TerminatorExpr;
668     }
669 
670     /// Remember the successor S of a temporary destructor decision branch for
671     /// the corresponding CXXBindTemporaryExpr E.
672     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
673       Succ = S;
674       TerminatorExpr = E;
675     }
676 
677     const bool IsConditional = false;
678     const TryResult KnownExecuted = true;
679     CFGBlock *Succ = nullptr;
680     CXXBindTemporaryExpr *TerminatorExpr = nullptr;
681   };
682 
683   // Visitors to walk an AST and generate destructors of temporaries in
684   // full expression.
685   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
686                                    TempDtorContext &Context);
687   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
688                                            TempDtorContext &Context);
689   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
690                                                  bool ExternallyDestructed,
691                                                  TempDtorContext &Context);
692   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
693       CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
694   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
695       AbstractConditionalOperator *E, bool ExternallyDestructed,
696       TempDtorContext &Context);
697   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
698                                    CFGBlock *FalseSucc = nullptr);
699 
700   // NYS == Not Yet Supported
701   CFGBlock *NYS() {
702     badCFG = true;
703     return Block;
704   }
705 
706   // Remember to apply the construction context based on the current \p Layer
707   // when constructing the CFG element for \p CE.
708   void consumeConstructionContext(const ConstructionContextLayer *Layer,
709                                   Expr *E);
710 
711   // Scan \p Child statement to find constructors in it, while keeping in mind
712   // that its parent statement is providing a partial construction context
713   // described by \p Layer. If a constructor is found, it would be assigned
714   // the context based on the layer. If an additional construction context layer
715   // is found, the function recurses into that.
716   void findConstructionContexts(const ConstructionContextLayer *Layer,
717                                 Stmt *Child);
718 
719   // Scan all arguments of a call expression for a construction context.
720   // These sorts of call expressions don't have a common superclass,
721   // hence strict duck-typing.
722   template <typename CallLikeExpr,
723             typename = std::enable_if_t<
724                 std::is_base_of<CallExpr, CallLikeExpr>::value ||
725                 std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
726                 std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
727   void findConstructionContextsForArguments(CallLikeExpr *E) {
728     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
729       Expr *Arg = E->getArg(i);
730       if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
731         findConstructionContexts(
732             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
733                                              ConstructionContextItem(E, i)),
734             Arg);
735     }
736   }
737 
738   // Unset the construction context after consuming it. This is done immediately
739   // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
740   // there's no need to do this manually in every Visit... function.
741   void cleanupConstructionContext(Expr *E);
742 
743   void autoCreateBlock() { if (!Block) Block = createBlock(); }
744   CFGBlock *createBlock(bool add_successor = true);
745   CFGBlock *createNoReturnBlock();
746 
747   CFGBlock *addStmt(Stmt *S) {
748     return Visit(S, AddStmtChoice::AlwaysAdd);
749   }
750 
751   CFGBlock *addInitializer(CXXCtorInitializer *I);
752   void addLoopExit(const Stmt *LoopStmt);
753   void addAutomaticObjDtors(LocalScope::const_iterator B,
754                             LocalScope::const_iterator E, Stmt *S);
755   void addLifetimeEnds(LocalScope::const_iterator B,
756                        LocalScope::const_iterator E, Stmt *S);
757   void addAutomaticObjHandling(LocalScope::const_iterator B,
758                                LocalScope::const_iterator E, Stmt *S);
759   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
760   void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
761                     Stmt *S);
762 
763   void getDeclsWithEndedScope(LocalScope::const_iterator B,
764                               LocalScope::const_iterator E, Stmt *S);
765 
766   // Local scopes creation.
767   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
768 
769   void addLocalScopeForStmt(Stmt *S);
770   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
771                                        LocalScope* Scope = nullptr);
772   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
773 
774   void addLocalScopeAndDtors(Stmt *S);
775 
776   const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
777     if (!BuildOpts.AddRichCXXConstructors)
778       return nullptr;
779 
780     const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
781     if (!Layer)
782       return nullptr;
783 
784     cleanupConstructionContext(E);
785     return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
786                                                  Layer);
787   }
788 
789   // Interface to CFGBlock - adding CFGElements.
790 
791   void appendStmt(CFGBlock *B, const Stmt *S) {
792     if (alwaysAdd(S) && cachedEntry)
793       cachedEntry->second = B;
794 
795     // All block-level expressions should have already been IgnoreParens()ed.
796     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
797     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
798   }
799 
800   void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
801     if (const ConstructionContext *CC =
802             retrieveAndCleanupConstructionContext(CE)) {
803       B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
804       return;
805     }
806 
807     // No valid construction context found. Fall back to statement.
808     B->appendStmt(CE, cfg->getBumpVectorContext());
809   }
810 
811   void appendCall(CFGBlock *B, CallExpr *CE) {
812     if (alwaysAdd(CE) && cachedEntry)
813       cachedEntry->second = B;
814 
815     if (const ConstructionContext *CC =
816             retrieveAndCleanupConstructionContext(CE)) {
817       B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
818       return;
819     }
820 
821     // No valid construction context found. Fall back to statement.
822     B->appendStmt(CE, cfg->getBumpVectorContext());
823   }
824 
825   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
826     B->appendInitializer(I, cfg->getBumpVectorContext());
827   }
828 
829   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
830     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
831   }
832 
833   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
834     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
835   }
836 
837   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
838     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
839   }
840 
841   void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
842     if (alwaysAdd(ME) && cachedEntry)
843       cachedEntry->second = B;
844 
845     if (const ConstructionContext *CC =
846             retrieveAndCleanupConstructionContext(ME)) {
847       B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
848       return;
849     }
850 
851     B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
852                   cfg->getBumpVectorContext());
853   }
854 
855   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
856     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
857   }
858 
859   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
860     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
861   }
862 
863   void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
864     B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
865   }
866 
867   void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
868     B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
869   }
870 
871   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
872     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
873   }
874 
875   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
876       LocalScope::const_iterator B, LocalScope::const_iterator E);
877 
878   void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
879                                                  LocalScope::const_iterator B,
880                                                  LocalScope::const_iterator E);
881 
882   const VarDecl *
883   prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
884                                             LocalScope::const_iterator B,
885                                             LocalScope::const_iterator E);
886 
887   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
888     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
889                     cfg->getBumpVectorContext());
890   }
891 
892   /// Add a reachable successor to a block, with the alternate variant that is
893   /// unreachable.
894   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
895     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
896                     cfg->getBumpVectorContext());
897   }
898 
899   void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
900     if (BuildOpts.AddScopes)
901       B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
902   }
903 
904   void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
905     if (BuildOpts.AddScopes)
906       B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
907   }
908 
909   void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
910     if (BuildOpts.AddScopes)
911       B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
912   }
913 
914   void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
915     if (BuildOpts.AddScopes)
916       B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
917   }
918 
919   /// Find a relational comparison with an expression evaluating to a
920   /// boolean and a constant other than 0 and 1.
921   /// e.g. if ((x < y) == 10)
922   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
923     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
924     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
925 
926     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
927     const Expr *BoolExpr = RHSExpr;
928     bool IntFirst = true;
929     if (!IntLiteral) {
930       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
931       BoolExpr = LHSExpr;
932       IntFirst = false;
933     }
934 
935     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
936       return TryResult();
937 
938     llvm::APInt IntValue = IntLiteral->getValue();
939     if ((IntValue == 1) || (IntValue == 0))
940       return TryResult();
941 
942     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
943                      !IntValue.isNegative();
944 
945     BinaryOperatorKind Bok = B->getOpcode();
946     if (Bok == BO_GT || Bok == BO_GE) {
947       // Always true for 10 > bool and bool > -1
948       // Always false for -1 > bool and bool > 10
949       return TryResult(IntFirst == IntLarger);
950     } else {
951       // Always true for -1 < bool and bool < 10
952       // Always false for 10 < bool and bool < -1
953       return TryResult(IntFirst != IntLarger);
954     }
955   }
956 
957   /// Find an incorrect equality comparison. Either with an expression
958   /// evaluating to a boolean and a constant other than 0 and 1.
959   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
960   /// true/false e.q. (x & 8) == 4.
961   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
962     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
963     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
964 
965     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
966     const Expr *BoolExpr = RHSExpr;
967 
968     if (!IntLiteral) {
969       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
970       BoolExpr = LHSExpr;
971     }
972 
973     if (!IntLiteral)
974       return TryResult();
975 
976     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
977     if (BitOp && (BitOp->getOpcode() == BO_And ||
978                   BitOp->getOpcode() == BO_Or)) {
979       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
980       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
981 
982       const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
983 
984       if (!IntLiteral2)
985         IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
986 
987       if (!IntLiteral2)
988         return TryResult();
989 
990       llvm::APInt L1 = IntLiteral->getValue();
991       llvm::APInt L2 = IntLiteral2->getValue();
992       if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
993           (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
994         if (BuildOpts.Observer)
995           BuildOpts.Observer->compareBitwiseEquality(B,
996                                                      B->getOpcode() != BO_EQ);
997         TryResult(B->getOpcode() != BO_EQ);
998       }
999     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1000       llvm::APInt IntValue = IntLiteral->getValue();
1001       if ((IntValue == 1) || (IntValue == 0)) {
1002         return TryResult();
1003       }
1004       return TryResult(B->getOpcode() != BO_EQ);
1005     }
1006 
1007     return TryResult();
1008   }
1009 
1010   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1011                                           const llvm::APSInt &Value1,
1012                                           const llvm::APSInt &Value2) {
1013     assert(Value1.isSigned() == Value2.isSigned());
1014     switch (Relation) {
1015       default:
1016         return TryResult();
1017       case BO_EQ:
1018         return TryResult(Value1 == Value2);
1019       case BO_NE:
1020         return TryResult(Value1 != Value2);
1021       case BO_LT:
1022         return TryResult(Value1 <  Value2);
1023       case BO_LE:
1024         return TryResult(Value1 <= Value2);
1025       case BO_GT:
1026         return TryResult(Value1 >  Value2);
1027       case BO_GE:
1028         return TryResult(Value1 >= Value2);
1029     }
1030   }
1031 
1032   /// Find a pair of comparison expressions with or without parentheses
1033   /// with a shared variable and constants and a logical operator between them
1034   /// that always evaluates to either true or false.
1035   /// e.g. if (x != 3 || x != 4)
1036   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1037     assert(B->isLogicalOp());
1038     const BinaryOperator *LHS =
1039         dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
1040     const BinaryOperator *RHS =
1041         dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
1042     if (!LHS || !RHS)
1043       return {};
1044 
1045     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1046       return {};
1047 
1048     const Expr *DeclExpr1;
1049     const Expr *NumExpr1;
1050     BinaryOperatorKind BO1;
1051     std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1052 
1053     if (!DeclExpr1 || !NumExpr1)
1054       return {};
1055 
1056     const Expr *DeclExpr2;
1057     const Expr *NumExpr2;
1058     BinaryOperatorKind BO2;
1059     std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1060 
1061     if (!DeclExpr2 || !NumExpr2)
1062       return {};
1063 
1064     // Check that it is the same variable on both sides.
1065     if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1066       return {};
1067 
1068     // Make sure the user's intent is clear (e.g. they're comparing against two
1069     // int literals, or two things from the same enum)
1070     if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1071       return {};
1072 
1073     Expr::EvalResult L1Result, L2Result;
1074     if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1075         !NumExpr2->EvaluateAsInt(L2Result, *Context))
1076       return {};
1077 
1078     llvm::APSInt L1 = L1Result.Val.getInt();
1079     llvm::APSInt L2 = L2Result.Val.getInt();
1080 
1081     // Can't compare signed with unsigned or with different bit width.
1082     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1083       return {};
1084 
1085     // Values that will be used to determine if result of logical
1086     // operator is always true/false
1087     const llvm::APSInt Values[] = {
1088       // Value less than both Value1 and Value2
1089       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1090       // L1
1091       L1,
1092       // Value between Value1 and Value2
1093       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1094                               L1.isUnsigned()),
1095       // L2
1096       L2,
1097       // Value greater than both Value1 and Value2
1098       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1099     };
1100 
1101     // Check whether expression is always true/false by evaluating the following
1102     // * variable x is less than the smallest literal.
1103     // * variable x is equal to the smallest literal.
1104     // * Variable x is between smallest and largest literal.
1105     // * Variable x is equal to the largest literal.
1106     // * Variable x is greater than largest literal.
1107     bool AlwaysTrue = true, AlwaysFalse = true;
1108     // Track value of both subexpressions.  If either side is always
1109     // true/false, another warning should have already been emitted.
1110     bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1111     bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1112     for (const llvm::APSInt &Value : Values) {
1113       TryResult Res1, Res2;
1114       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1115       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1116 
1117       if (!Res1.isKnown() || !Res2.isKnown())
1118         return {};
1119 
1120       if (B->getOpcode() == BO_LAnd) {
1121         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1122         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1123       } else {
1124         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1125         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1126       }
1127 
1128       LHSAlwaysTrue &= Res1.isTrue();
1129       LHSAlwaysFalse &= Res1.isFalse();
1130       RHSAlwaysTrue &= Res2.isTrue();
1131       RHSAlwaysFalse &= Res2.isFalse();
1132     }
1133 
1134     if (AlwaysTrue || AlwaysFalse) {
1135       if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1136           !RHSAlwaysFalse && BuildOpts.Observer)
1137         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1138       return TryResult(AlwaysTrue);
1139     }
1140     return {};
1141   }
1142 
1143   /// A bitwise-or with a non-zero constant always evaluates to true.
1144   TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1145     const Expr *LHSConstant =
1146         tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1147     const Expr *RHSConstant =
1148         tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1149 
1150     if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1151       return {};
1152 
1153     const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1154 
1155     Expr::EvalResult Result;
1156     if (!Constant->EvaluateAsInt(Result, *Context))
1157       return {};
1158 
1159     if (Result.Val.getInt() == 0)
1160       return {};
1161 
1162     if (BuildOpts.Observer)
1163       BuildOpts.Observer->compareBitwiseOr(B);
1164 
1165     return TryResult(true);
1166   }
1167 
1168   /// Try and evaluate an expression to an integer constant.
1169   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1170     if (!BuildOpts.PruneTriviallyFalseEdges)
1171       return false;
1172     return !S->isTypeDependent() &&
1173            !S->isValueDependent() &&
1174            S->EvaluateAsRValue(outResult, *Context);
1175   }
1176 
1177   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1178   /// if we can evaluate to a known value, otherwise return -1.
1179   TryResult tryEvaluateBool(Expr *S) {
1180     if (!BuildOpts.PruneTriviallyFalseEdges ||
1181         S->isTypeDependent() || S->isValueDependent())
1182       return {};
1183 
1184     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1185       if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1186         // Check the cache first.
1187         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1188         if (I != CachedBoolEvals.end())
1189           return I->second; // already in map;
1190 
1191         // Retrieve result at first, or the map might be updated.
1192         TryResult Result = evaluateAsBooleanConditionNoCache(S);
1193         CachedBoolEvals[S] = Result; // update or insert
1194         return Result;
1195       }
1196       else {
1197         switch (Bop->getOpcode()) {
1198           default: break;
1199           // For 'x & 0' and 'x * 0', we can determine that
1200           // the value is always false.
1201           case BO_Mul:
1202           case BO_And: {
1203             // If either operand is zero, we know the value
1204             // must be false.
1205             Expr::EvalResult LHSResult;
1206             if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1207               llvm::APSInt IntVal = LHSResult.Val.getInt();
1208               if (!IntVal.getBoolValue()) {
1209                 return TryResult(false);
1210               }
1211             }
1212             Expr::EvalResult RHSResult;
1213             if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1214               llvm::APSInt IntVal = RHSResult.Val.getInt();
1215               if (!IntVal.getBoolValue()) {
1216                 return TryResult(false);
1217               }
1218             }
1219           }
1220           break;
1221         }
1222       }
1223     }
1224 
1225     return evaluateAsBooleanConditionNoCache(S);
1226   }
1227 
1228   /// Evaluate as boolean \param E without using the cache.
1229   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1230     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1231       if (Bop->isLogicalOp()) {
1232         TryResult LHS = tryEvaluateBool(Bop->getLHS());
1233         if (LHS.isKnown()) {
1234           // We were able to evaluate the LHS, see if we can get away with not
1235           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1236           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1237             return LHS.isTrue();
1238 
1239           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1240           if (RHS.isKnown()) {
1241             if (Bop->getOpcode() == BO_LOr)
1242               return LHS.isTrue() || RHS.isTrue();
1243             else
1244               return LHS.isTrue() && RHS.isTrue();
1245           }
1246         } else {
1247           TryResult RHS = tryEvaluateBool(Bop->getRHS());
1248           if (RHS.isKnown()) {
1249             // We can't evaluate the LHS; however, sometimes the result
1250             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1251             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1252               return RHS.isTrue();
1253           } else {
1254             TryResult BopRes = checkIncorrectLogicOperator(Bop);
1255             if (BopRes.isKnown())
1256               return BopRes.isTrue();
1257           }
1258         }
1259 
1260         return {};
1261       } else if (Bop->isEqualityOp()) {
1262           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1263           if (BopRes.isKnown())
1264             return BopRes.isTrue();
1265       } else if (Bop->isRelationalOp()) {
1266         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1267         if (BopRes.isKnown())
1268           return BopRes.isTrue();
1269       } else if (Bop->getOpcode() == BO_Or) {
1270         TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1271         if (BopRes.isKnown())
1272           return BopRes.isTrue();
1273       }
1274     }
1275 
1276     bool Result;
1277     if (E->EvaluateAsBooleanCondition(Result, *Context))
1278       return Result;
1279 
1280     return {};
1281   }
1282 
1283   bool hasTrivialDestructor(VarDecl *VD);
1284 };
1285 
1286 } // namespace
1287 
1288 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1289                                      const Stmt *stmt) const {
1290   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1291 }
1292 
1293 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1294   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1295 
1296   if (!BuildOpts.forcedBlkExprs)
1297     return shouldAdd;
1298 
1299   if (lastLookup == stmt) {
1300     if (cachedEntry) {
1301       assert(cachedEntry->first == stmt);
1302       return true;
1303     }
1304     return shouldAdd;
1305   }
1306 
1307   lastLookup = stmt;
1308 
1309   // Perform the lookup!
1310   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1311 
1312   if (!fb) {
1313     // No need to update 'cachedEntry', since it will always be null.
1314     assert(!cachedEntry);
1315     return shouldAdd;
1316   }
1317 
1318   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1319   if (itr == fb->end()) {
1320     cachedEntry = nullptr;
1321     return shouldAdd;
1322   }
1323 
1324   cachedEntry = &*itr;
1325   return true;
1326 }
1327 
1328 // FIXME: Add support for dependent-sized array types in C++?
1329 // Does it even make sense to build a CFG for an uninstantiated template?
1330 static const VariableArrayType *FindVA(const Type *t) {
1331   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1332     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1333       if (vat->getSizeExpr())
1334         return vat;
1335 
1336     t = vt->getElementType().getTypePtr();
1337   }
1338 
1339   return nullptr;
1340 }
1341 
1342 void CFGBuilder::consumeConstructionContext(
1343     const ConstructionContextLayer *Layer, Expr *E) {
1344   assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1345           isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1346   if (const ConstructionContextLayer *PreviouslyStoredLayer =
1347           ConstructionContextMap.lookup(E)) {
1348     (void)PreviouslyStoredLayer;
1349     // We might have visited this child when we were finding construction
1350     // contexts within its parents.
1351     assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1352            "Already within a different construction context!");
1353   } else {
1354     ConstructionContextMap[E] = Layer;
1355   }
1356 }
1357 
1358 void CFGBuilder::findConstructionContexts(
1359     const ConstructionContextLayer *Layer, Stmt *Child) {
1360   if (!BuildOpts.AddRichCXXConstructors)
1361     return;
1362 
1363   if (!Child)
1364     return;
1365 
1366   auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1367     return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1368                                             Layer);
1369   };
1370 
1371   switch(Child->getStmtClass()) {
1372   case Stmt::CXXConstructExprClass:
1373   case Stmt::CXXTemporaryObjectExprClass: {
1374     // Support pre-C++17 copy elision AST.
1375     auto *CE = cast<CXXConstructExpr>(Child);
1376     if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1377       findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1378     }
1379 
1380     consumeConstructionContext(Layer, CE);
1381     break;
1382   }
1383   // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1384   // FIXME: An isa<> would look much better but this whole switch is a
1385   // workaround for an internal compiler error in MSVC 2015 (see r326021).
1386   case Stmt::CallExprClass:
1387   case Stmt::CXXMemberCallExprClass:
1388   case Stmt::CXXOperatorCallExprClass:
1389   case Stmt::UserDefinedLiteralClass:
1390   case Stmt::ObjCMessageExprClass: {
1391     auto *E = cast<Expr>(Child);
1392     if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1393       consumeConstructionContext(Layer, E);
1394     break;
1395   }
1396   case Stmt::ExprWithCleanupsClass: {
1397     auto *Cleanups = cast<ExprWithCleanups>(Child);
1398     findConstructionContexts(Layer, Cleanups->getSubExpr());
1399     break;
1400   }
1401   case Stmt::CXXFunctionalCastExprClass: {
1402     auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1403     findConstructionContexts(Layer, Cast->getSubExpr());
1404     break;
1405   }
1406   case Stmt::ImplicitCastExprClass: {
1407     auto *Cast = cast<ImplicitCastExpr>(Child);
1408     // Should we support other implicit cast kinds?
1409     switch (Cast->getCastKind()) {
1410     case CK_NoOp:
1411     case CK_ConstructorConversion:
1412       findConstructionContexts(Layer, Cast->getSubExpr());
1413       break;
1414     default:
1415       break;
1416     }
1417     break;
1418   }
1419   case Stmt::CXXBindTemporaryExprClass: {
1420     auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1421     findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1422     break;
1423   }
1424   case Stmt::MaterializeTemporaryExprClass: {
1425     // Normally we don't want to search in MaterializeTemporaryExpr because
1426     // it indicates the beginning of a temporary object construction context,
1427     // so it shouldn't be found in the middle. However, if it is the beginning
1428     // of an elidable copy or move construction context, we need to include it.
1429     if (Layer->getItem().getKind() ==
1430         ConstructionContextItem::ElidableConstructorKind) {
1431       auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1432       findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1433     }
1434     break;
1435   }
1436   case Stmt::ConditionalOperatorClass: {
1437     auto *CO = cast<ConditionalOperator>(Child);
1438     if (Layer->getItem().getKind() !=
1439         ConstructionContextItem::MaterializationKind) {
1440       // If the object returned by the conditional operator is not going to be a
1441       // temporary object that needs to be immediately materialized, then
1442       // it must be C++17 with its mandatory copy elision. Do not yet promise
1443       // to support this case.
1444       assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1445              Context->getLangOpts().CPlusPlus17);
1446       break;
1447     }
1448     findConstructionContexts(Layer, CO->getLHS());
1449     findConstructionContexts(Layer, CO->getRHS());
1450     break;
1451   }
1452   case Stmt::InitListExprClass: {
1453     auto *ILE = cast<InitListExpr>(Child);
1454     if (ILE->isTransparent()) {
1455       findConstructionContexts(Layer, ILE->getInit(0));
1456       break;
1457     }
1458     // TODO: Handle other cases. For now, fail to find construction contexts.
1459     break;
1460   }
1461   case Stmt::ParenExprClass: {
1462     // If expression is placed into parenthesis we should propagate the parent
1463     // construction context to subexpressions.
1464     auto *PE = cast<ParenExpr>(Child);
1465     findConstructionContexts(Layer, PE->getSubExpr());
1466     break;
1467   }
1468   default:
1469     break;
1470   }
1471 }
1472 
1473 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1474   assert(BuildOpts.AddRichCXXConstructors &&
1475          "We should not be managing construction contexts!");
1476   assert(ConstructionContextMap.count(E) &&
1477          "Cannot exit construction context without the context!");
1478   ConstructionContextMap.erase(E);
1479 }
1480 
1481 
1482 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1483 ///  arbitrary statement.  Examples include a single expression or a function
1484 ///  body (compound statement).  The ownership of the returned CFG is
1485 ///  transferred to the caller.  If CFG construction fails, this method returns
1486 ///  NULL.
1487 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1488   assert(cfg.get());
1489   if (!Statement)
1490     return nullptr;
1491 
1492   // Create an empty block that will serve as the exit block for the CFG.  Since
1493   // this is the first block added to the CFG, it will be implicitly registered
1494   // as the exit block.
1495   Succ = createBlock();
1496   assert(Succ == &cfg->getExit());
1497   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1498 
1499   assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
1500          "AddImplicitDtors and AddLifetime cannot be used at the same time");
1501 
1502   if (BuildOpts.AddImplicitDtors)
1503     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1504       addImplicitDtorsForDestructor(DD);
1505 
1506   // Visit the statements and create the CFG.
1507   CFGBlock *B = addStmt(Statement);
1508 
1509   if (badCFG)
1510     return nullptr;
1511 
1512   // For C++ constructor add initializers to CFG. Constructors of virtual bases
1513   // are ignored unless the object is of the most derived class.
1514   //   class VBase { VBase() = default; VBase(int) {} };
1515   //   class A : virtual public VBase { A() : VBase(0) {} };
1516   //   class B : public A {};
1517   //   B b; // Constructor calls in order: VBase(), A(), B().
1518   //        // VBase(0) is ignored because A isn't the most derived class.
1519   // This may result in the virtual base(s) being already initialized at this
1520   // point, in which case we should jump right onto non-virtual bases and
1521   // fields. To handle this, make a CFG branch. We only need to add one such
1522   // branch per constructor, since the Standard states that all virtual bases
1523   // shall be initialized before non-virtual bases and direct data members.
1524   if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1525     CFGBlock *VBaseSucc = nullptr;
1526     for (auto *I : llvm::reverse(CD->inits())) {
1527       if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1528           I->isBaseInitializer() && I->isBaseVirtual()) {
1529         // We've reached the first virtual base init while iterating in reverse
1530         // order. Make a new block for virtual base initializers so that we
1531         // could skip them.
1532         VBaseSucc = Succ = B ? B : &cfg->getExit();
1533         Block = createBlock();
1534       }
1535       B = addInitializer(I);
1536       if (badCFG)
1537         return nullptr;
1538     }
1539     if (VBaseSucc) {
1540       // Make a branch block for potentially skipping virtual base initializers.
1541       Succ = VBaseSucc;
1542       B = createBlock();
1543       B->setTerminator(
1544           CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1545       addSuccessor(B, Block, true);
1546     }
1547   }
1548 
1549   if (B)
1550     Succ = B;
1551 
1552   // Backpatch the gotos whose label -> block mappings we didn't know when we
1553   // encountered them.
1554   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1555                                    E = BackpatchBlocks.end(); I != E; ++I ) {
1556 
1557     CFGBlock *B = I->block;
1558     if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1559       LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1560       // If there is no target for the goto, then we are looking at an
1561       // incomplete AST.  Handle this by not registering a successor.
1562       if (LI == LabelMap.end())
1563         continue;
1564       JumpTarget JT = LI->second;
1565       prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
1566                                                 JT.scopePosition);
1567       prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1568                                              JT.scopePosition);
1569       const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
1570           B, I->scopePosition, JT.scopePosition);
1571       appendScopeBegin(JT.block, VD, G);
1572       addSuccessor(B, JT.block);
1573     };
1574     if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1575       CFGBlock *Successor  = (I+1)->block;
1576       for (auto *L : G->labels()) {
1577         LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1578         // If there is no target for the goto, then we are looking at an
1579         // incomplete AST.  Handle this by not registering a successor.
1580         if (LI == LabelMap.end())
1581           continue;
1582         JumpTarget JT = LI->second;
1583         // Successor has been added, so skip it.
1584         if (JT.block == Successor)
1585           continue;
1586         addSuccessor(B, JT.block);
1587       }
1588       I++;
1589     }
1590   }
1591 
1592   // Add successors to the Indirect Goto Dispatch block (if we have one).
1593   if (CFGBlock *B = cfg->getIndirectGotoBlock())
1594     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1595                               E = AddressTakenLabels.end(); I != E; ++I ) {
1596       // Lookup the target block.
1597       LabelMapTy::iterator LI = LabelMap.find(*I);
1598 
1599       // If there is no target block that contains label, then we are looking
1600       // at an incomplete AST.  Handle this by not registering a successor.
1601       if (LI == LabelMap.end()) continue;
1602 
1603       addSuccessor(B, LI->second.block);
1604     }
1605 
1606   // Create an empty entry block that has no predecessors.
1607   cfg->setEntry(createBlock());
1608 
1609   if (BuildOpts.AddRichCXXConstructors)
1610     assert(ConstructionContextMap.empty() &&
1611            "Not all construction contexts were cleaned up!");
1612 
1613   return std::move(cfg);
1614 }
1615 
1616 /// createBlock - Used to lazily create blocks that are connected
1617 ///  to the current (global) succcessor.
1618 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1619   CFGBlock *B = cfg->createBlock();
1620   if (add_successor && Succ)
1621     addSuccessor(B, Succ);
1622   return B;
1623 }
1624 
1625 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1626 /// CFG. It is *not* connected to the current (global) successor, and instead
1627 /// directly tied to the exit block in order to be reachable.
1628 CFGBlock *CFGBuilder::createNoReturnBlock() {
1629   CFGBlock *B = createBlock(false);
1630   B->setHasNoReturnElement();
1631   addSuccessor(B, &cfg->getExit(), Succ);
1632   return B;
1633 }
1634 
1635 /// addInitializer - Add C++ base or member initializer element to CFG.
1636 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1637   if (!BuildOpts.AddInitializers)
1638     return Block;
1639 
1640   bool HasTemporaries = false;
1641 
1642   // Destructors of temporaries in initialization expression should be called
1643   // after initialization finishes.
1644   Expr *Init = I->getInit();
1645   if (Init) {
1646     HasTemporaries = isa<ExprWithCleanups>(Init);
1647 
1648     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1649       // Generate destructors for temporaries in initialization expression.
1650       TempDtorContext Context;
1651       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1652                              /*ExternallyDestructed=*/false, Context);
1653     }
1654   }
1655 
1656   autoCreateBlock();
1657   appendInitializer(Block, I);
1658 
1659   if (Init) {
1660     findConstructionContexts(
1661         ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1662         Init);
1663 
1664     if (HasTemporaries) {
1665       // For expression with temporaries go directly to subexpression to omit
1666       // generating destructors for the second time.
1667       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1668     }
1669     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1670       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1671         // In general, appending the expression wrapped by a CXXDefaultInitExpr
1672         // may cause the same Expr to appear more than once in the CFG. Doing it
1673         // here is safe because there's only one initializer per field.
1674         autoCreateBlock();
1675         appendStmt(Block, Default);
1676         if (Stmt *Child = Default->getExpr())
1677           if (CFGBlock *R = Visit(Child))
1678             Block = R;
1679         return Block;
1680       }
1681     }
1682     return Visit(Init);
1683   }
1684 
1685   return Block;
1686 }
1687 
1688 /// Retrieve the type of the temporary object whose lifetime was
1689 /// extended by a local reference with the given initializer.
1690 static QualType getReferenceInitTemporaryType(const Expr *Init,
1691                                               bool *FoundMTE = nullptr) {
1692   while (true) {
1693     // Skip parentheses.
1694     Init = Init->IgnoreParens();
1695 
1696     // Skip through cleanups.
1697     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1698       Init = EWC->getSubExpr();
1699       continue;
1700     }
1701 
1702     // Skip through the temporary-materialization expression.
1703     if (const MaterializeTemporaryExpr *MTE
1704           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1705       Init = MTE->getSubExpr();
1706       if (FoundMTE)
1707         *FoundMTE = true;
1708       continue;
1709     }
1710 
1711     // Skip sub-object accesses into rvalues.
1712     SmallVector<const Expr *, 2> CommaLHSs;
1713     SmallVector<SubobjectAdjustment, 2> Adjustments;
1714     const Expr *SkippedInit =
1715         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1716     if (SkippedInit != Init) {
1717       Init = SkippedInit;
1718       continue;
1719     }
1720 
1721     break;
1722   }
1723 
1724   return Init->getType();
1725 }
1726 
1727 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1728 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1729 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1730   if(!BuildOpts.AddLoopExit)
1731     return;
1732   autoCreateBlock();
1733   appendLoopExit(Block, LoopStmt);
1734 }
1735 
1736 void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
1737                                         LocalScope::const_iterator E, Stmt *S) {
1738   if (!BuildOpts.AddScopes)
1739     return;
1740 
1741   if (B == E)
1742     return;
1743 
1744   // To go from B to E, one first goes up the scopes from B to P
1745   // then sideways in one scope from P to P' and then down
1746   // the scopes from P' to E.
1747   // The lifetime of all objects between B and P end.
1748   LocalScope::const_iterator P = B.shared_parent(E);
1749   int Dist = B.distance(P);
1750   if (Dist <= 0)
1751     return;
1752 
1753   for (LocalScope::const_iterator I = B; I != P; ++I)
1754     if (I.pointsToFirstDeclaredVar())
1755       DeclsWithEndedScope.insert(*I);
1756 }
1757 
1758 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1759                                          LocalScope::const_iterator E,
1760                                          Stmt *S) {
1761   getDeclsWithEndedScope(B, E, S);
1762   if (BuildOpts.AddScopes)
1763     addScopesEnd(B, E, S);
1764   if (BuildOpts.AddImplicitDtors)
1765     addAutomaticObjDtors(B, E, S);
1766   if (BuildOpts.AddLifetime)
1767     addLifetimeEnds(B, E, S);
1768 }
1769 
1770 /// Add to current block automatic objects that leave the scope.
1771 void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
1772                                  LocalScope::const_iterator E, Stmt *S) {
1773   if (!BuildOpts.AddLifetime)
1774     return;
1775 
1776   if (B == E)
1777     return;
1778 
1779   // To go from B to E, one first goes up the scopes from B to P
1780   // then sideways in one scope from P to P' and then down
1781   // the scopes from P' to E.
1782   // The lifetime of all objects between B and P end.
1783   LocalScope::const_iterator P = B.shared_parent(E);
1784   int dist = B.distance(P);
1785   if (dist <= 0)
1786     return;
1787 
1788   // We need to perform the scope leaving in reverse order
1789   SmallVector<VarDecl *, 10> DeclsTrivial;
1790   SmallVector<VarDecl *, 10> DeclsNonTrivial;
1791   DeclsTrivial.reserve(dist);
1792   DeclsNonTrivial.reserve(dist);
1793 
1794   for (LocalScope::const_iterator I = B; I != P; ++I)
1795     if (hasTrivialDestructor(*I))
1796       DeclsTrivial.push_back(*I);
1797     else
1798       DeclsNonTrivial.push_back(*I);
1799 
1800   autoCreateBlock();
1801   // object with trivial destructor end their lifetime last (when storage
1802   // duration ends)
1803   for (VarDecl *VD : llvm::reverse(DeclsTrivial))
1804     appendLifetimeEnds(Block, VD, S);
1805 
1806   for (VarDecl *VD : llvm::reverse(DeclsNonTrivial))
1807     appendLifetimeEnds(Block, VD, S);
1808 }
1809 
1810 /// Add to current block markers for ending scopes.
1811 void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
1812                               LocalScope::const_iterator E, Stmt *S) {
1813   // If implicit destructors are enabled, we'll add scope ends in
1814   // addAutomaticObjDtors.
1815   if (BuildOpts.AddImplicitDtors)
1816     return;
1817 
1818   autoCreateBlock();
1819 
1820   for (VarDecl *VD : llvm::reverse(DeclsWithEndedScope))
1821     appendScopeEnd(Block, VD, S);
1822 }
1823 
1824 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1825 /// for objects in range of local scope positions. Use S as trigger statement
1826 /// for destructors.
1827 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1828                                       LocalScope::const_iterator E, Stmt *S) {
1829   if (!BuildOpts.AddImplicitDtors)
1830     return;
1831 
1832   if (B == E)
1833     return;
1834 
1835   // We need to append the destructors in reverse order, but any one of them
1836   // may be a no-return destructor which changes the CFG. As a result, buffer
1837   // this sequence up and replay them in reverse order when appending onto the
1838   // CFGBlock(s).
1839   SmallVector<VarDecl*, 10> Decls;
1840   Decls.reserve(B.distance(E));
1841   for (LocalScope::const_iterator I = B; I != E; ++I)
1842     Decls.push_back(*I);
1843 
1844   for (VarDecl *VD : llvm::reverse(Decls)) {
1845     if (hasTrivialDestructor(VD)) {
1846       // If AddScopes is enabled and *I is a first variable in a scope, add a
1847       // ScopeEnd marker in a Block.
1848       if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) {
1849         autoCreateBlock();
1850         appendScopeEnd(Block, VD, S);
1851       }
1852       continue;
1853     }
1854     // If this destructor is marked as a no-return destructor, we need to
1855     // create a new block for the destructor which does not have as a successor
1856     // anything built thus far: control won't flow out of this block.
1857     QualType Ty = VD->getType();
1858     if (Ty->isReferenceType()) {
1859       Ty = getReferenceInitTemporaryType(VD->getInit());
1860     }
1861     Ty = Context->getBaseElementType(Ty);
1862 
1863     if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1864       Block = createNoReturnBlock();
1865     else
1866       autoCreateBlock();
1867 
1868     // Add ScopeEnd just after automatic obj destructor.
1869     if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD))
1870       appendScopeEnd(Block, VD, S);
1871     appendAutomaticObjDtor(Block, VD, S);
1872   }
1873 }
1874 
1875 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1876 /// base and member objects in destructor.
1877 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1878   assert(BuildOpts.AddImplicitDtors &&
1879          "Can be called only when dtors should be added");
1880   const CXXRecordDecl *RD = DD->getParent();
1881 
1882   // At the end destroy virtual base objects.
1883   for (const auto &VI : RD->vbases()) {
1884     // TODO: Add a VirtualBaseBranch to see if the most derived class
1885     // (which is different from the current class) is responsible for
1886     // destroying them.
1887     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1888     if (!CD->hasTrivialDestructor()) {
1889       autoCreateBlock();
1890       appendBaseDtor(Block, &VI);
1891     }
1892   }
1893 
1894   // Before virtual bases destroy direct base objects.
1895   for (const auto &BI : RD->bases()) {
1896     if (!BI.isVirtual()) {
1897       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1898       if (!CD->hasTrivialDestructor()) {
1899         autoCreateBlock();
1900         appendBaseDtor(Block, &BI);
1901       }
1902     }
1903   }
1904 
1905   // First destroy member objects.
1906   for (auto *FI : RD->fields()) {
1907     // Check for constant size array. Set type to array element type.
1908     QualType QT = FI->getType();
1909     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1910       if (AT->getSize() == 0)
1911         continue;
1912       QT = AT->getElementType();
1913     }
1914 
1915     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1916       if (!CD->hasTrivialDestructor()) {
1917         autoCreateBlock();
1918         appendMemberDtor(Block, FI);
1919       }
1920   }
1921 }
1922 
1923 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1924 /// way return valid LocalScope object.
1925 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1926   if (Scope)
1927     return Scope;
1928   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1929   return new (alloc.Allocate<LocalScope>())
1930       LocalScope(BumpVectorContext(alloc), ScopePos);
1931 }
1932 
1933 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1934 /// that should create implicit scope (e.g. if/else substatements).
1935 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1936   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1937       !BuildOpts.AddScopes)
1938     return;
1939 
1940   LocalScope *Scope = nullptr;
1941 
1942   // For compound statement we will be creating explicit scope.
1943   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1944     for (auto *BI : CS->body()) {
1945       Stmt *SI = BI->stripLabelLikeStatements();
1946       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1947         Scope = addLocalScopeForDeclStmt(DS, Scope);
1948     }
1949     return;
1950   }
1951 
1952   // For any other statement scope will be implicit and as such will be
1953   // interesting only for DeclStmt.
1954   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1955     addLocalScopeForDeclStmt(DS);
1956 }
1957 
1958 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1959 /// reuse Scope if not NULL.
1960 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1961                                                  LocalScope* Scope) {
1962   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1963       !BuildOpts.AddScopes)
1964     return Scope;
1965 
1966   for (auto *DI : DS->decls())
1967     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1968       Scope = addLocalScopeForVarDecl(VD, Scope);
1969   return Scope;
1970 }
1971 
1972 bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
1973   // Check for const references bound to temporary. Set type to pointee.
1974   QualType QT = VD->getType();
1975   if (QT->isReferenceType()) {
1976     // Attempt to determine whether this declaration lifetime-extends a
1977     // temporary.
1978     //
1979     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1980     // temporaries, and a single declaration can extend multiple temporaries.
1981     // We should look at the storage duration on each nested
1982     // MaterializeTemporaryExpr instead.
1983 
1984     const Expr *Init = VD->getInit();
1985     if (!Init) {
1986       // Probably an exception catch-by-reference variable.
1987       // FIXME: It doesn't really mean that the object has a trivial destructor.
1988       // Also are there other cases?
1989       return true;
1990     }
1991 
1992     // Lifetime-extending a temporary?
1993     bool FoundMTE = false;
1994     QT = getReferenceInitTemporaryType(Init, &FoundMTE);
1995     if (!FoundMTE)
1996       return true;
1997   }
1998 
1999   // Check for constant size array. Set type to array element type.
2000   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2001     if (AT->getSize() == 0)
2002       return true;
2003     QT = AT->getElementType();
2004   }
2005 
2006   // Check if type is a C++ class with non-trivial destructor.
2007   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2008     return !CD->hasDefinition() || CD->hasTrivialDestructor();
2009   return true;
2010 }
2011 
2012 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2013 /// create add scope for automatic objects and temporary objects bound to
2014 /// const reference. Will reuse Scope if not NULL.
2015 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2016                                                 LocalScope* Scope) {
2017   assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
2018          "AddImplicitDtors and AddLifetime cannot be used at the same time");
2019   if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2020       !BuildOpts.AddScopes)
2021     return Scope;
2022 
2023   // Check if variable is local.
2024   if (!VD->hasLocalStorage())
2025     return Scope;
2026 
2027   if (BuildOpts.AddImplicitDtors) {
2028     if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
2029       // Add the variable to scope
2030       Scope = createOrReuseLocalScope(Scope);
2031       Scope->addVar(VD);
2032       ScopePos = Scope->begin();
2033     }
2034     return Scope;
2035   }
2036 
2037   assert(BuildOpts.AddLifetime);
2038   // Add the variable to scope
2039   Scope = createOrReuseLocalScope(Scope);
2040   Scope->addVar(VD);
2041   ScopePos = Scope->begin();
2042   return Scope;
2043 }
2044 
2045 /// addLocalScopeAndDtors - For given statement add local scope for it and
2046 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2047 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2048   LocalScope::const_iterator scopeBeginPos = ScopePos;
2049   addLocalScopeForStmt(S);
2050   addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2051 }
2052 
2053 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2054 /// variables with automatic storage duration to CFGBlock's elements vector.
2055 /// Elements will be prepended to physical beginning of the vector which
2056 /// happens to be logical end. Use blocks terminator as statement that specifies
2057 /// destructors call site.
2058 /// FIXME: This mechanism for adding automatic destructors doesn't handle
2059 /// no-return destructors properly.
2060 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
2061     LocalScope::const_iterator B, LocalScope::const_iterator E) {
2062   if (!BuildOpts.AddImplicitDtors)
2063     return;
2064   BumpVectorContext &C = cfg->getBumpVectorContext();
2065   CFGBlock::iterator InsertPos
2066     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
2067   for (LocalScope::const_iterator I = B; I != E; ++I)
2068     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
2069                                             Blk->getTerminatorStmt());
2070 }
2071 
2072 /// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2073 /// variables with automatic storage duration to CFGBlock's elements vector.
2074 /// Elements will be prepended to physical beginning of the vector which
2075 /// happens to be logical end. Use blocks terminator as statement that specifies
2076 /// where lifetime ends.
2077 void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2078     CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2079   if (!BuildOpts.AddLifetime)
2080     return;
2081   BumpVectorContext &C = cfg->getBumpVectorContext();
2082   CFGBlock::iterator InsertPos =
2083       Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
2084   for (LocalScope::const_iterator I = B; I != E; ++I) {
2085     InsertPos =
2086         Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
2087   }
2088 }
2089 
2090 /// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2091 /// variables with automatic storage duration to CFGBlock's elements vector.
2092 /// Elements will be prepended to physical beginning of the vector which
2093 /// happens to be logical end. Use blocks terminator as statement that specifies
2094 /// where scope ends.
2095 const VarDecl *
2096 CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2097     CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2098   if (!BuildOpts.AddScopes)
2099     return nullptr;
2100   BumpVectorContext &C = cfg->getBumpVectorContext();
2101   CFGBlock::iterator InsertPos =
2102       Blk->beginScopeEndInsert(Blk->end(), 1, C);
2103   LocalScope::const_iterator PlaceToInsert = B;
2104   for (LocalScope::const_iterator I = B; I != E; ++I)
2105     PlaceToInsert = I;
2106   Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
2107   return *PlaceToInsert;
2108 }
2109 
2110 /// Visit - Walk the subtree of a statement and add extra
2111 ///   blocks for ternary operators, &&, and ||.  We also process "," and
2112 ///   DeclStmts (which may contain nested control-flow).
2113 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2114                             bool ExternallyDestructed) {
2115   if (!S) {
2116     badCFG = true;
2117     return nullptr;
2118   }
2119 
2120   if (Expr *E = dyn_cast<Expr>(S))
2121     S = E->IgnoreParens();
2122 
2123   if (Context->getLangOpts().OpenMP)
2124     if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2125       return VisitOMPExecutableDirective(D, asc);
2126 
2127   switch (S->getStmtClass()) {
2128     default:
2129       return VisitStmt(S, asc);
2130 
2131     case Stmt::ImplicitValueInitExprClass:
2132       if (BuildOpts.OmitImplicitValueInitializers)
2133         return Block;
2134       return VisitStmt(S, asc);
2135 
2136     case Stmt::InitListExprClass:
2137       return VisitInitListExpr(cast<InitListExpr>(S), asc);
2138 
2139     case Stmt::AttributedStmtClass:
2140       return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
2141 
2142     case Stmt::AddrLabelExprClass:
2143       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2144 
2145     case Stmt::BinaryConditionalOperatorClass:
2146       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2147 
2148     case Stmt::BinaryOperatorClass:
2149       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2150 
2151     case Stmt::BlockExprClass:
2152       return VisitBlockExpr(cast<BlockExpr>(S), asc);
2153 
2154     case Stmt::BreakStmtClass:
2155       return VisitBreakStmt(cast<BreakStmt>(S));
2156 
2157     case Stmt::CallExprClass:
2158     case Stmt::CXXOperatorCallExprClass:
2159     case Stmt::CXXMemberCallExprClass:
2160     case Stmt::UserDefinedLiteralClass:
2161       return VisitCallExpr(cast<CallExpr>(S), asc);
2162 
2163     case Stmt::CaseStmtClass:
2164       return VisitCaseStmt(cast<CaseStmt>(S));
2165 
2166     case Stmt::ChooseExprClass:
2167       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2168 
2169     case Stmt::CompoundStmtClass:
2170       return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2171 
2172     case Stmt::ConditionalOperatorClass:
2173       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2174 
2175     case Stmt::ContinueStmtClass:
2176       return VisitContinueStmt(cast<ContinueStmt>(S));
2177 
2178     case Stmt::CXXCatchStmtClass:
2179       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2180 
2181     case Stmt::ExprWithCleanupsClass:
2182       return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2183                                    asc, ExternallyDestructed);
2184 
2185     case Stmt::CXXDefaultArgExprClass:
2186     case Stmt::CXXDefaultInitExprClass:
2187       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2188       // called function's declaration, not by the caller. If we simply add
2189       // this expression to the CFG, we could end up with the same Expr
2190       // appearing multiple times.
2191       // PR13385 / <rdar://problem/12156507>
2192       //
2193       // It's likewise possible for multiple CXXDefaultInitExprs for the same
2194       // expression to be used in the same function (through aggregate
2195       // initialization).
2196       return VisitStmt(S, asc);
2197 
2198     case Stmt::CXXBindTemporaryExprClass:
2199       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2200 
2201     case Stmt::CXXConstructExprClass:
2202       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2203 
2204     case Stmt::CXXNewExprClass:
2205       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2206 
2207     case Stmt::CXXDeleteExprClass:
2208       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2209 
2210     case Stmt::CXXFunctionalCastExprClass:
2211       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2212 
2213     case Stmt::CXXTemporaryObjectExprClass:
2214       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2215 
2216     case Stmt::CXXThrowExprClass:
2217       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2218 
2219     case Stmt::CXXTryStmtClass:
2220       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2221 
2222     case Stmt::CXXForRangeStmtClass:
2223       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2224 
2225     case Stmt::DeclStmtClass:
2226       return VisitDeclStmt(cast<DeclStmt>(S));
2227 
2228     case Stmt::DefaultStmtClass:
2229       return VisitDefaultStmt(cast<DefaultStmt>(S));
2230 
2231     case Stmt::DoStmtClass:
2232       return VisitDoStmt(cast<DoStmt>(S));
2233 
2234     case Stmt::ForStmtClass:
2235       return VisitForStmt(cast<ForStmt>(S));
2236 
2237     case Stmt::GotoStmtClass:
2238       return VisitGotoStmt(cast<GotoStmt>(S));
2239 
2240     case Stmt::GCCAsmStmtClass:
2241       return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2242 
2243     case Stmt::IfStmtClass:
2244       return VisitIfStmt(cast<IfStmt>(S));
2245 
2246     case Stmt::ImplicitCastExprClass:
2247       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2248 
2249     case Stmt::ConstantExprClass:
2250       return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2251 
2252     case Stmt::IndirectGotoStmtClass:
2253       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2254 
2255     case Stmt::LabelStmtClass:
2256       return VisitLabelStmt(cast<LabelStmt>(S));
2257 
2258     case Stmt::LambdaExprClass:
2259       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2260 
2261     case Stmt::MaterializeTemporaryExprClass:
2262       return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2263                                            asc);
2264 
2265     case Stmt::MemberExprClass:
2266       return VisitMemberExpr(cast<MemberExpr>(S), asc);
2267 
2268     case Stmt::NullStmtClass:
2269       return Block;
2270 
2271     case Stmt::ObjCAtCatchStmtClass:
2272       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2273 
2274     case Stmt::ObjCAutoreleasePoolStmtClass:
2275       return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2276 
2277     case Stmt::ObjCAtSynchronizedStmtClass:
2278       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2279 
2280     case Stmt::ObjCAtThrowStmtClass:
2281       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2282 
2283     case Stmt::ObjCAtTryStmtClass:
2284       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2285 
2286     case Stmt::ObjCForCollectionStmtClass:
2287       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2288 
2289     case Stmt::ObjCMessageExprClass:
2290       return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2291 
2292     case Stmt::OpaqueValueExprClass:
2293       return Block;
2294 
2295     case Stmt::PseudoObjectExprClass:
2296       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2297 
2298     case Stmt::ReturnStmtClass:
2299     case Stmt::CoreturnStmtClass:
2300       return VisitReturnStmt(S);
2301 
2302     case Stmt::CoyieldExprClass:
2303     case Stmt::CoawaitExprClass:
2304       return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc);
2305 
2306     case Stmt::SEHExceptStmtClass:
2307       return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2308 
2309     case Stmt::SEHFinallyStmtClass:
2310       return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2311 
2312     case Stmt::SEHLeaveStmtClass:
2313       return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2314 
2315     case Stmt::SEHTryStmtClass:
2316       return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2317 
2318     case Stmt::UnaryExprOrTypeTraitExprClass:
2319       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2320                                            asc);
2321 
2322     case Stmt::StmtExprClass:
2323       return VisitStmtExpr(cast<StmtExpr>(S), asc);
2324 
2325     case Stmt::SwitchStmtClass:
2326       return VisitSwitchStmt(cast<SwitchStmt>(S));
2327 
2328     case Stmt::UnaryOperatorClass:
2329       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2330 
2331     case Stmt::WhileStmtClass:
2332       return VisitWhileStmt(cast<WhileStmt>(S));
2333   }
2334 }
2335 
2336 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2337   if (asc.alwaysAdd(*this, S)) {
2338     autoCreateBlock();
2339     appendStmt(Block, S);
2340   }
2341 
2342   return VisitChildren(S);
2343 }
2344 
2345 /// VisitChildren - Visit the children of a Stmt.
2346 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2347   CFGBlock *B = Block;
2348 
2349   // Visit the children in their reverse order so that they appear in
2350   // left-to-right (natural) order in the CFG.
2351   reverse_children RChildren(S);
2352   for (Stmt *Child : RChildren) {
2353     if (Child)
2354       if (CFGBlock *R = Visit(Child))
2355         B = R;
2356   }
2357   return B;
2358 }
2359 
2360 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2361   if (asc.alwaysAdd(*this, ILE)) {
2362     autoCreateBlock();
2363     appendStmt(Block, ILE);
2364   }
2365   CFGBlock *B = Block;
2366 
2367   reverse_children RChildren(ILE);
2368   for (Stmt *Child : RChildren) {
2369     if (!Child)
2370       continue;
2371     if (CFGBlock *R = Visit(Child))
2372       B = R;
2373     if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2374       if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2375         if (Stmt *Child = DIE->getExpr())
2376           if (CFGBlock *R = Visit(Child))
2377             B = R;
2378     }
2379   }
2380   return B;
2381 }
2382 
2383 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2384                                          AddStmtChoice asc) {
2385   AddressTakenLabels.insert(A->getLabel());
2386 
2387   if (asc.alwaysAdd(*this, A)) {
2388     autoCreateBlock();
2389     appendStmt(Block, A);
2390   }
2391 
2392   return Block;
2393 }
2394 
2395 static bool isFallthroughStatement(const AttributedStmt *A) {
2396   bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
2397   assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
2398          "expected fallthrough not to have children");
2399   return isFallthrough;
2400 }
2401 
2402 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
2403                                           AddStmtChoice asc) {
2404   // AttributedStmts for [[likely]] can have arbitrary statements as children,
2405   // and the current visitation order here would add the AttributedStmts
2406   // for [[likely]] after the child nodes, which is undesirable: For example,
2407   // if the child contains an unconditional return, the [[likely]] would be
2408   // considered unreachable.
2409   // So only add the AttributedStmt for FallThrough, which has CFG effects and
2410   // also no children, and omit the others. None of the other current StmtAttrs
2411   // have semantic meaning for the CFG.
2412   if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
2413     autoCreateBlock();
2414     appendStmt(Block, A);
2415   }
2416 
2417   return VisitChildren(A);
2418 }
2419 
2420 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
2421   if (asc.alwaysAdd(*this, U)) {
2422     autoCreateBlock();
2423     appendStmt(Block, U);
2424   }
2425 
2426   if (U->getOpcode() == UO_LNot)
2427     tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2428 
2429   return Visit(U->getSubExpr(), AddStmtChoice());
2430 }
2431 
2432 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2433   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2434   appendStmt(ConfluenceBlock, B);
2435 
2436   if (badCFG)
2437     return nullptr;
2438 
2439   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2440                               ConfluenceBlock).first;
2441 }
2442 
2443 std::pair<CFGBlock*, CFGBlock*>
2444 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2445                                  Stmt *Term,
2446                                  CFGBlock *TrueBlock,
2447                                  CFGBlock *FalseBlock) {
2448   // Introspect the RHS.  If it is a nested logical operation, we recursively
2449   // build the CFG using this function.  Otherwise, resort to default
2450   // CFG construction behavior.
2451   Expr *RHS = B->getRHS()->IgnoreParens();
2452   CFGBlock *RHSBlock, *ExitBlock;
2453 
2454   do {
2455     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2456       if (B_RHS->isLogicalOp()) {
2457         std::tie(RHSBlock, ExitBlock) =
2458           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2459         break;
2460       }
2461 
2462     // The RHS is not a nested logical operation.  Don't push the terminator
2463     // down further, but instead visit RHS and construct the respective
2464     // pieces of the CFG, and link up the RHSBlock with the terminator
2465     // we have been provided.
2466     ExitBlock = RHSBlock = createBlock(false);
2467 
2468     // Even though KnownVal is only used in the else branch of the next
2469     // conditional, tryEvaluateBool performs additional checking on the
2470     // Expr, so it should be called unconditionally.
2471     TryResult KnownVal = tryEvaluateBool(RHS);
2472     if (!KnownVal.isKnown())
2473       KnownVal = tryEvaluateBool(B);
2474 
2475     if (!Term) {
2476       assert(TrueBlock == FalseBlock);
2477       addSuccessor(RHSBlock, TrueBlock);
2478     }
2479     else {
2480       RHSBlock->setTerminator(Term);
2481       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2482       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2483     }
2484 
2485     Block = RHSBlock;
2486     RHSBlock = addStmt(RHS);
2487   }
2488   while (false);
2489 
2490   if (badCFG)
2491     return std::make_pair(nullptr, nullptr);
2492 
2493   // Generate the blocks for evaluating the LHS.
2494   Expr *LHS = B->getLHS()->IgnoreParens();
2495 
2496   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2497     if (B_LHS->isLogicalOp()) {
2498       if (B->getOpcode() == BO_LOr)
2499         FalseBlock = RHSBlock;
2500       else
2501         TrueBlock = RHSBlock;
2502 
2503       // For the LHS, treat 'B' as the terminator that we want to sink
2504       // into the nested branch.  The RHS always gets the top-most
2505       // terminator.
2506       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2507     }
2508 
2509   // Create the block evaluating the LHS.
2510   // This contains the '&&' or '||' as the terminator.
2511   CFGBlock *LHSBlock = createBlock(false);
2512   LHSBlock->setTerminator(B);
2513 
2514   Block = LHSBlock;
2515   CFGBlock *EntryLHSBlock = addStmt(LHS);
2516 
2517   if (badCFG)
2518     return std::make_pair(nullptr, nullptr);
2519 
2520   // See if this is a known constant.
2521   TryResult KnownVal = tryEvaluateBool(LHS);
2522 
2523   // Now link the LHSBlock with RHSBlock.
2524   if (B->getOpcode() == BO_LOr) {
2525     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2526     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2527   } else {
2528     assert(B->getOpcode() == BO_LAnd);
2529     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2530     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2531   }
2532 
2533   return std::make_pair(EntryLHSBlock, ExitBlock);
2534 }
2535 
2536 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2537                                           AddStmtChoice asc) {
2538    // && or ||
2539   if (B->isLogicalOp())
2540     return VisitLogicalOperator(B);
2541 
2542   if (B->getOpcode() == BO_Comma) { // ,
2543     autoCreateBlock();
2544     appendStmt(Block, B);
2545     addStmt(B->getRHS());
2546     return addStmt(B->getLHS());
2547   }
2548 
2549   if (B->isAssignmentOp()) {
2550     if (asc.alwaysAdd(*this, B)) {
2551       autoCreateBlock();
2552       appendStmt(Block, B);
2553     }
2554     Visit(B->getLHS());
2555     return Visit(B->getRHS());
2556   }
2557 
2558   if (asc.alwaysAdd(*this, B)) {
2559     autoCreateBlock();
2560     appendStmt(Block, B);
2561   }
2562 
2563   if (B->isEqualityOp() || B->isRelationalOp())
2564     tryEvaluateBool(B);
2565 
2566   CFGBlock *RBlock = Visit(B->getRHS());
2567   CFGBlock *LBlock = Visit(B->getLHS());
2568   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2569   // containing a DoStmt, and the LHS doesn't create a new block, then we should
2570   // return RBlock.  Otherwise we'll incorrectly return NULL.
2571   return (LBlock ? LBlock : RBlock);
2572 }
2573 
2574 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2575   if (asc.alwaysAdd(*this, E)) {
2576     autoCreateBlock();
2577     appendStmt(Block, E);
2578   }
2579   return Block;
2580 }
2581 
2582 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2583   // "break" is a control-flow statement.  Thus we stop processing the current
2584   // block.
2585   if (badCFG)
2586     return nullptr;
2587 
2588   // Now create a new block that ends with the break statement.
2589   Block = createBlock(false);
2590   Block->setTerminator(B);
2591 
2592   // If there is no target for the break, then we are looking at an incomplete
2593   // AST.  This means that the CFG cannot be constructed.
2594   if (BreakJumpTarget.block) {
2595     addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2596     addSuccessor(Block, BreakJumpTarget.block);
2597   } else
2598     badCFG = true;
2599 
2600   return Block;
2601 }
2602 
2603 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2604   QualType Ty = E->getType();
2605   if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2606     Ty = Ty->getPointeeType();
2607 
2608   const FunctionType *FT = Ty->getAs<FunctionType>();
2609   if (FT) {
2610     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2611       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2612           Proto->isNothrow())
2613         return false;
2614   }
2615   return true;
2616 }
2617 
2618 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2619   // Compute the callee type.
2620   QualType calleeType = C->getCallee()->getType();
2621   if (calleeType == Context->BoundMemberTy) {
2622     QualType boundType = Expr::findBoundMemberType(C->getCallee());
2623 
2624     // We should only get a null bound type if processing a dependent
2625     // CFG.  Recover by assuming nothing.
2626     if (!boundType.isNull()) calleeType = boundType;
2627   }
2628 
2629   // If this is a call to a no-return function, this stops the block here.
2630   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2631 
2632   bool AddEHEdge = false;
2633 
2634   // Languages without exceptions are assumed to not throw.
2635   if (Context->getLangOpts().Exceptions) {
2636     if (BuildOpts.AddEHEdges)
2637       AddEHEdge = true;
2638   }
2639 
2640   // If this is a call to a builtin function, it might not actually evaluate
2641   // its arguments. Don't add them to the CFG if this is the case.
2642   bool OmitArguments = false;
2643 
2644   if (FunctionDecl *FD = C->getDirectCallee()) {
2645     // TODO: Support construction contexts for variadic function arguments.
2646     // These are a bit problematic and not very useful because passing
2647     // C++ objects as C-style variadic arguments doesn't work in general
2648     // (see [expr.call]).
2649     if (!FD->isVariadic())
2650       findConstructionContextsForArguments(C);
2651 
2652     if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2653       NoReturn = true;
2654     if (FD->hasAttr<NoThrowAttr>())
2655       AddEHEdge = false;
2656     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2657         FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2658       OmitArguments = true;
2659   }
2660 
2661   if (!CanThrow(C->getCallee(), *Context))
2662     AddEHEdge = false;
2663 
2664   if (OmitArguments) {
2665     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2666     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2667     autoCreateBlock();
2668     appendStmt(Block, C);
2669     return Visit(C->getCallee());
2670   }
2671 
2672   if (!NoReturn && !AddEHEdge) {
2673     autoCreateBlock();
2674     appendCall(Block, C);
2675 
2676     return VisitChildren(C);
2677   }
2678 
2679   if (Block) {
2680     Succ = Block;
2681     if (badCFG)
2682       return nullptr;
2683   }
2684 
2685   if (NoReturn)
2686     Block = createNoReturnBlock();
2687   else
2688     Block = createBlock();
2689 
2690   appendCall(Block, C);
2691 
2692   if (AddEHEdge) {
2693     // Add exceptional edges.
2694     if (TryTerminatedBlock)
2695       addSuccessor(Block, TryTerminatedBlock);
2696     else
2697       addSuccessor(Block, &cfg->getExit());
2698   }
2699 
2700   return VisitChildren(C);
2701 }
2702 
2703 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2704                                       AddStmtChoice asc) {
2705   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2706   appendStmt(ConfluenceBlock, C);
2707   if (badCFG)
2708     return nullptr;
2709 
2710   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2711   Succ = ConfluenceBlock;
2712   Block = nullptr;
2713   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2714   if (badCFG)
2715     return nullptr;
2716 
2717   Succ = ConfluenceBlock;
2718   Block = nullptr;
2719   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2720   if (badCFG)
2721     return nullptr;
2722 
2723   Block = createBlock(false);
2724   // See if this is a known constant.
2725   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2726   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2727   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2728   Block->setTerminator(C);
2729   return addStmt(C->getCond());
2730 }
2731 
2732 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
2733                                         bool ExternallyDestructed) {
2734   LocalScope::const_iterator scopeBeginPos = ScopePos;
2735   addLocalScopeForStmt(C);
2736 
2737   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2738     // If the body ends with a ReturnStmt, the dtors will be added in
2739     // VisitReturnStmt.
2740     addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2741   }
2742 
2743   CFGBlock *LastBlock = Block;
2744 
2745   for (Stmt *S : llvm::reverse(C->body())) {
2746     // If we hit a segment of code just containing ';' (NullStmts), we can
2747     // get a null block back.  In such cases, just use the LastBlock
2748     CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
2749                                ExternallyDestructed);
2750 
2751     if (newBlock)
2752       LastBlock = newBlock;
2753 
2754     if (badCFG)
2755       return nullptr;
2756 
2757     ExternallyDestructed = false;
2758   }
2759 
2760   return LastBlock;
2761 }
2762 
2763 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2764                                                AddStmtChoice asc) {
2765   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2766   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2767 
2768   // Create the confluence block that will "merge" the results of the ternary
2769   // expression.
2770   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2771   appendStmt(ConfluenceBlock, C);
2772   if (badCFG)
2773     return nullptr;
2774 
2775   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2776 
2777   // Create a block for the LHS expression if there is an LHS expression.  A
2778   // GCC extension allows LHS to be NULL, causing the condition to be the
2779   // value that is returned instead.
2780   //  e.g: x ?: y is shorthand for: x ? x : y;
2781   Succ = ConfluenceBlock;
2782   Block = nullptr;
2783   CFGBlock *LHSBlock = nullptr;
2784   const Expr *trueExpr = C->getTrueExpr();
2785   if (trueExpr != opaqueValue) {
2786     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2787     if (badCFG)
2788       return nullptr;
2789     Block = nullptr;
2790   }
2791   else
2792     LHSBlock = ConfluenceBlock;
2793 
2794   // Create the block for the RHS expression.
2795   Succ = ConfluenceBlock;
2796   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2797   if (badCFG)
2798     return nullptr;
2799 
2800   // If the condition is a logical '&&' or '||', build a more accurate CFG.
2801   if (BinaryOperator *Cond =
2802         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2803     if (Cond->isLogicalOp())
2804       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2805 
2806   // Create the block that will contain the condition.
2807   Block = createBlock(false);
2808 
2809   // See if this is a known constant.
2810   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2811   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2812   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2813   Block->setTerminator(C);
2814   Expr *condExpr = C->getCond();
2815 
2816   if (opaqueValue) {
2817     // Run the condition expression if it's not trivially expressed in
2818     // terms of the opaque value (or if there is no opaque value).
2819     if (condExpr != opaqueValue)
2820       addStmt(condExpr);
2821 
2822     // Before that, run the common subexpression if there was one.
2823     // At least one of this or the above will be run.
2824     return addStmt(BCO->getCommon());
2825   }
2826 
2827   return addStmt(condExpr);
2828 }
2829 
2830 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2831   // Check if the Decl is for an __label__.  If so, elide it from the
2832   // CFG entirely.
2833   if (isa<LabelDecl>(*DS->decl_begin()))
2834     return Block;
2835 
2836   // This case also handles static_asserts.
2837   if (DS->isSingleDecl())
2838     return VisitDeclSubExpr(DS);
2839 
2840   CFGBlock *B = nullptr;
2841 
2842   // Build an individual DeclStmt for each decl.
2843   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2844                                        E = DS->decl_rend();
2845        I != E; ++I) {
2846 
2847     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2848     // automatically freed with the CFG.
2849     DeclGroupRef DG(*I);
2850     Decl *D = *I;
2851     DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2852     cfg->addSyntheticDeclStmt(DSNew, DS);
2853 
2854     // Append the fake DeclStmt to block.
2855     B = VisitDeclSubExpr(DSNew);
2856   }
2857 
2858   return B;
2859 }
2860 
2861 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2862 /// DeclStmts and initializers in them.
2863 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2864   assert(DS->isSingleDecl() && "Can handle single declarations only.");
2865 
2866   if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2867     // If we encounter a VLA, process its size expressions.
2868     const Type *T = TND->getUnderlyingType().getTypePtr();
2869     if (!T->isVariablyModifiedType())
2870       return Block;
2871 
2872     autoCreateBlock();
2873     appendStmt(Block, DS);
2874 
2875     CFGBlock *LastBlock = Block;
2876     for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2877          VA = FindVA(VA->getElementType().getTypePtr())) {
2878       if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2879         LastBlock = NewBlock;
2880     }
2881     return LastBlock;
2882   }
2883 
2884   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2885 
2886   if (!VD) {
2887     // Of everything that can be declared in a DeclStmt, only VarDecls and the
2888     // exceptions above impact runtime semantics.
2889     return Block;
2890   }
2891 
2892   bool HasTemporaries = false;
2893 
2894   // Guard static initializers under a branch.
2895   CFGBlock *blockAfterStaticInit = nullptr;
2896 
2897   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2898     // For static variables, we need to create a branch to track
2899     // whether or not they are initialized.
2900     if (Block) {
2901       Succ = Block;
2902       Block = nullptr;
2903       if (badCFG)
2904         return nullptr;
2905     }
2906     blockAfterStaticInit = Succ;
2907   }
2908 
2909   // Destructors of temporaries in initialization expression should be called
2910   // after initialization finishes.
2911   Expr *Init = VD->getInit();
2912   if (Init) {
2913     HasTemporaries = isa<ExprWithCleanups>(Init);
2914 
2915     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2916       // Generate destructors for temporaries in initialization expression.
2917       TempDtorContext Context;
2918       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2919                              /*ExternallyDestructed=*/true, Context);
2920     }
2921   }
2922 
2923   autoCreateBlock();
2924   appendStmt(Block, DS);
2925 
2926   findConstructionContexts(
2927       ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
2928       Init);
2929 
2930   // Keep track of the last non-null block, as 'Block' can be nulled out
2931   // if the initializer expression is something like a 'while' in a
2932   // statement-expression.
2933   CFGBlock *LastBlock = Block;
2934 
2935   if (Init) {
2936     if (HasTemporaries) {
2937       // For expression with temporaries go directly to subexpression to omit
2938       // generating destructors for the second time.
2939       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2940       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2941         LastBlock = newBlock;
2942     }
2943     else {
2944       if (CFGBlock *newBlock = Visit(Init))
2945         LastBlock = newBlock;
2946     }
2947   }
2948 
2949   // If the type of VD is a VLA, then we must process its size expressions.
2950   // FIXME: This does not find the VLA if it is embedded in other types,
2951   // like here: `int (*p_vla)[x];`
2952   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2953        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2954     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2955       LastBlock = newBlock;
2956   }
2957 
2958   maybeAddScopeBeginForVarDecl(Block, VD, DS);
2959 
2960   // Remove variable from local scope.
2961   if (ScopePos && VD == *ScopePos)
2962     ++ScopePos;
2963 
2964   CFGBlock *B = LastBlock;
2965   if (blockAfterStaticInit) {
2966     Succ = B;
2967     Block = createBlock(false);
2968     Block->setTerminator(DS);
2969     addSuccessor(Block, blockAfterStaticInit);
2970     addSuccessor(Block, B);
2971     B = Block;
2972   }
2973 
2974   return B;
2975 }
2976 
2977 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2978   // We may see an if statement in the middle of a basic block, or it may be the
2979   // first statement we are processing.  In either case, we create a new basic
2980   // block.  First, we create the blocks for the then...else statements, and
2981   // then we create the block containing the if statement.  If we were in the
2982   // middle of a block, we stop processing that block.  That block is then the
2983   // implicit successor for the "then" and "else" clauses.
2984 
2985   // Save local scope position because in case of condition variable ScopePos
2986   // won't be restored when traversing AST.
2987   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2988 
2989   // Create local scope for C++17 if init-stmt if one exists.
2990   if (Stmt *Init = I->getInit())
2991     addLocalScopeForStmt(Init);
2992 
2993   // Create local scope for possible condition variable.
2994   // Store scope position. Add implicit destructor.
2995   if (VarDecl *VD = I->getConditionVariable())
2996     addLocalScopeForVarDecl(VD);
2997 
2998   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
2999 
3000   // The block we were processing is now finished.  Make it the successor
3001   // block.
3002   if (Block) {
3003     Succ = Block;
3004     if (badCFG)
3005       return nullptr;
3006   }
3007 
3008   // Process the false branch.
3009   CFGBlock *ElseBlock = Succ;
3010 
3011   if (Stmt *Else = I->getElse()) {
3012     SaveAndRestore<CFGBlock*> sv(Succ);
3013 
3014     // NULL out Block so that the recursive call to Visit will
3015     // create a new basic block.
3016     Block = nullptr;
3017 
3018     // If branch is not a compound statement create implicit scope
3019     // and add destructors.
3020     if (!isa<CompoundStmt>(Else))
3021       addLocalScopeAndDtors(Else);
3022 
3023     ElseBlock = addStmt(Else);
3024 
3025     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3026       ElseBlock = sv.get();
3027     else if (Block) {
3028       if (badCFG)
3029         return nullptr;
3030     }
3031   }
3032 
3033   // Process the true branch.
3034   CFGBlock *ThenBlock;
3035   {
3036     Stmt *Then = I->getThen();
3037     assert(Then);
3038     SaveAndRestore<CFGBlock*> sv(Succ);
3039     Block = nullptr;
3040 
3041     // If branch is not a compound statement create implicit scope
3042     // and add destructors.
3043     if (!isa<CompoundStmt>(Then))
3044       addLocalScopeAndDtors(Then);
3045 
3046     ThenBlock = addStmt(Then);
3047 
3048     if (!ThenBlock) {
3049       // We can reach here if the "then" body has all NullStmts.
3050       // Create an empty block so we can distinguish between true and false
3051       // branches in path-sensitive analyses.
3052       ThenBlock = createBlock(false);
3053       addSuccessor(ThenBlock, sv.get());
3054     } else if (Block) {
3055       if (badCFG)
3056         return nullptr;
3057     }
3058   }
3059 
3060   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3061   // having these handle the actual control-flow jump.  Note that
3062   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3063   // we resort to the old control-flow behavior.  This special handling
3064   // removes infeasible paths from the control-flow graph by having the
3065   // control-flow transfer of '&&' or '||' go directly into the then/else
3066   // blocks directly.
3067   BinaryOperator *Cond =
3068       (I->isConsteval() || I->getConditionVariable())
3069           ? nullptr
3070           : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3071   CFGBlock *LastBlock;
3072   if (Cond && Cond->isLogicalOp())
3073     LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3074   else {
3075     // Now create a new block containing the if statement.
3076     Block = createBlock(false);
3077 
3078     // Set the terminator of the new block to the If statement.
3079     Block->setTerminator(I);
3080 
3081     // See if this is a known constant.
3082     TryResult KnownVal;
3083     if (!I->isConsteval())
3084       KnownVal = tryEvaluateBool(I->getCond());
3085 
3086     // Add the successors.  If we know that specific branches are
3087     // unreachable, inform addSuccessor() of that knowledge.
3088     addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3089     addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3090 
3091     // Add the condition as the last statement in the new block.  This may
3092     // create new blocks as the condition may contain control-flow.  Any newly
3093     // created blocks will be pointed to be "Block".
3094     LastBlock = addStmt(I->getCond());
3095 
3096     // If the IfStmt contains a condition variable, add it and its
3097     // initializer to the CFG.
3098     if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3099       autoCreateBlock();
3100       LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3101     }
3102   }
3103 
3104   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3105   if (Stmt *Init = I->getInit()) {
3106     autoCreateBlock();
3107     LastBlock = addStmt(Init);
3108   }
3109 
3110   return LastBlock;
3111 }
3112 
3113 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3114   // If we were in the middle of a block we stop processing that block.
3115   //
3116   // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3117   //       means that the code afterwards is DEAD (unreachable).  We still keep
3118   //       a basic block for that code; a simple "mark-and-sweep" from the entry
3119   //       block will be able to report such dead blocks.
3120   assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3121 
3122   // Create the new block.
3123   Block = createBlock(false);
3124 
3125   addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3126 
3127   if (auto *R = dyn_cast<ReturnStmt>(S))
3128     findConstructionContexts(
3129         ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3130         R->getRetValue());
3131 
3132   // If the one of the destructors does not return, we already have the Exit
3133   // block as a successor.
3134   if (!Block->hasNoReturnElement())
3135     addSuccessor(Block, &cfg->getExit());
3136 
3137   // Add the return statement to the block.
3138   appendStmt(Block, S);
3139 
3140   // Visit children
3141   if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3142     if (Expr *O = RS->getRetValue())
3143       return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3144     return Block;
3145   }
3146 
3147   CoreturnStmt *CRS = cast<CoreturnStmt>(S);
3148   auto *B = Block;
3149   if (CFGBlock *R = Visit(CRS->getPromiseCall()))
3150     B = R;
3151 
3152   if (Expr *RV = CRS->getOperand())
3153     if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV))
3154       // A non-initlist void expression.
3155       if (CFGBlock *R = Visit(RV))
3156         B = R;
3157 
3158   return B;
3159 }
3160 
3161 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E,
3162                                                 AddStmtChoice asc) {
3163   // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3164   // active components of the co_await or co_yield. Note we do not model the
3165   // edge from the builtin_suspend to the exit node.
3166   if (asc.alwaysAdd(*this, E)) {
3167     autoCreateBlock();
3168     appendStmt(Block, E);
3169   }
3170   CFGBlock *B = Block;
3171   if (auto *R = Visit(E->getResumeExpr()))
3172     B = R;
3173   if (auto *R = Visit(E->getSuspendExpr()))
3174     B = R;
3175   if (auto *R = Visit(E->getReadyExpr()))
3176     B = R;
3177   if (auto *R = Visit(E->getCommonExpr()))
3178     B = R;
3179   return B;
3180 }
3181 
3182 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3183   // SEHExceptStmt are treated like labels, so they are the first statement in a
3184   // block.
3185 
3186   // Save local scope position because in case of exception variable ScopePos
3187   // won't be restored when traversing AST.
3188   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3189 
3190   addStmt(ES->getBlock());
3191   CFGBlock *SEHExceptBlock = Block;
3192   if (!SEHExceptBlock)
3193     SEHExceptBlock = createBlock();
3194 
3195   appendStmt(SEHExceptBlock, ES);
3196 
3197   // Also add the SEHExceptBlock as a label, like with regular labels.
3198   SEHExceptBlock->setLabel(ES);
3199 
3200   // Bail out if the CFG is bad.
3201   if (badCFG)
3202     return nullptr;
3203 
3204   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3205   Block = nullptr;
3206 
3207   return SEHExceptBlock;
3208 }
3209 
3210 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3211   return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3212 }
3213 
3214 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3215   // "__leave" is a control-flow statement.  Thus we stop processing the current
3216   // block.
3217   if (badCFG)
3218     return nullptr;
3219 
3220   // Now create a new block that ends with the __leave statement.
3221   Block = createBlock(false);
3222   Block->setTerminator(LS);
3223 
3224   // If there is no target for the __leave, then we are looking at an incomplete
3225   // AST.  This means that the CFG cannot be constructed.
3226   if (SEHLeaveJumpTarget.block) {
3227     addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3228     addSuccessor(Block, SEHLeaveJumpTarget.block);
3229   } else
3230     badCFG = true;
3231 
3232   return Block;
3233 }
3234 
3235 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3236   // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
3237   // processing the current block.
3238   CFGBlock *SEHTrySuccessor = nullptr;
3239 
3240   if (Block) {
3241     if (badCFG)
3242       return nullptr;
3243     SEHTrySuccessor = Block;
3244   } else SEHTrySuccessor = Succ;
3245 
3246   // FIXME: Implement __finally support.
3247   if (Terminator->getFinallyHandler())
3248     return NYS();
3249 
3250   CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3251 
3252   // Create a new block that will contain the __try statement.
3253   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3254 
3255   // Add the terminator in the __try block.
3256   NewTryTerminatedBlock->setTerminator(Terminator);
3257 
3258   if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3259     // The code after the try is the implicit successor if there's an __except.
3260     Succ = SEHTrySuccessor;
3261     Block = nullptr;
3262     CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3263     if (!ExceptBlock)
3264       return nullptr;
3265     // Add this block to the list of successors for the block with the try
3266     // statement.
3267     addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3268   }
3269   if (PrevSEHTryTerminatedBlock)
3270     addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3271   else
3272     addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3273 
3274   // The code after the try is the implicit successor.
3275   Succ = SEHTrySuccessor;
3276 
3277   // Save the current "__try" context.
3278   SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3279   cfg->addTryDispatchBlock(TryTerminatedBlock);
3280 
3281   // Save the current value for the __leave target.
3282   // All __leaves should go to the code following the __try
3283   // (FIXME: or if the __try has a __finally, to the __finally.)
3284   SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
3285   SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3286 
3287   assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3288   Block = nullptr;
3289   return addStmt(Terminator->getTryBlock());
3290 }
3291 
3292 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3293   // Get the block of the labeled statement.  Add it to our map.
3294   addStmt(L->getSubStmt());
3295   CFGBlock *LabelBlock = Block;
3296 
3297   if (!LabelBlock)              // This can happen when the body is empty, i.e.
3298     LabelBlock = createBlock(); // scopes that only contains NullStmts.
3299 
3300   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
3301          "label already in map");
3302   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3303 
3304   // Labels partition blocks, so this is the end of the basic block we were
3305   // processing (L is the block's label).  Because this is label (and we have
3306   // already processed the substatement) there is no extra control-flow to worry
3307   // about.
3308   LabelBlock->setLabel(L);
3309   if (badCFG)
3310     return nullptr;
3311 
3312   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3313   Block = nullptr;
3314 
3315   // This block is now the implicit successor of other blocks.
3316   Succ = LabelBlock;
3317 
3318   return LabelBlock;
3319 }
3320 
3321 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3322   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3323   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3324     if (Expr *CopyExpr = CI.getCopyExpr()) {
3325       CFGBlock *Tmp = Visit(CopyExpr);
3326       if (Tmp)
3327         LastBlock = Tmp;
3328     }
3329   }
3330   return LastBlock;
3331 }
3332 
3333 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3334   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3335   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3336        et = E->capture_init_end(); it != et; ++it) {
3337     if (Expr *Init = *it) {
3338       CFGBlock *Tmp = Visit(Init);
3339       if (Tmp)
3340         LastBlock = Tmp;
3341     }
3342   }
3343   return LastBlock;
3344 }
3345 
3346 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3347   // Goto is a control-flow statement.  Thus we stop processing the current
3348   // block and create a new one.
3349 
3350   Block = createBlock(false);
3351   Block->setTerminator(G);
3352 
3353   // If we already know the mapping to the label block add the successor now.
3354   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3355 
3356   if (I == LabelMap.end())
3357     // We will need to backpatch this block later.
3358     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3359   else {
3360     JumpTarget JT = I->second;
3361     addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
3362     addSuccessor(Block, JT.block);
3363   }
3364 
3365   return Block;
3366 }
3367 
3368 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3369   // Goto is a control-flow statement.  Thus we stop processing the current
3370   // block and create a new one.
3371 
3372   if (!G->isAsmGoto())
3373     return VisitStmt(G, asc);
3374 
3375   if (Block) {
3376     Succ = Block;
3377     if (badCFG)
3378       return nullptr;
3379   }
3380   Block = createBlock();
3381   Block->setTerminator(G);
3382   // We will backpatch this block later for all the labels.
3383   BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3384   // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3385   // used to avoid adding "Succ" again.
3386   BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3387   return VisitChildren(G);
3388 }
3389 
3390 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3391   CFGBlock *LoopSuccessor = nullptr;
3392 
3393   // Save local scope position because in case of condition variable ScopePos
3394   // won't be restored when traversing AST.
3395   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3396 
3397   // Create local scope for init statement and possible condition variable.
3398   // Add destructor for init statement and condition variable.
3399   // Store scope position for continue statement.
3400   if (Stmt *Init = F->getInit())
3401     addLocalScopeForStmt(Init);
3402   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3403 
3404   if (VarDecl *VD = F->getConditionVariable())
3405     addLocalScopeForVarDecl(VD);
3406   LocalScope::const_iterator ContinueScopePos = ScopePos;
3407 
3408   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3409 
3410   addLoopExit(F);
3411 
3412   // "for" is a control-flow statement.  Thus we stop processing the current
3413   // block.
3414   if (Block) {
3415     if (badCFG)
3416       return nullptr;
3417     LoopSuccessor = Block;
3418   } else
3419     LoopSuccessor = Succ;
3420 
3421   // Save the current value for the break targets.
3422   // All breaks should go to the code following the loop.
3423   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3424   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3425 
3426   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3427 
3428   // Now create the loop body.
3429   {
3430     assert(F->getBody());
3431 
3432     // Save the current values for Block, Succ, continue and break targets.
3433     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3434     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3435 
3436     // Create an empty block to represent the transition block for looping back
3437     // to the head of the loop.  If we have increment code, it will
3438     // go in this block as well.
3439     Block = Succ = TransitionBlock = createBlock(false);
3440     TransitionBlock->setLoopTarget(F);
3441 
3442     if (Stmt *I = F->getInc()) {
3443       // Generate increment code in its own basic block.  This is the target of
3444       // continue statements.
3445       Succ = addStmt(I);
3446     }
3447 
3448     // Finish up the increment (or empty) block if it hasn't been already.
3449     if (Block) {
3450       assert(Block == Succ);
3451       if (badCFG)
3452         return nullptr;
3453       Block = nullptr;
3454     }
3455 
3456    // The starting block for the loop increment is the block that should
3457    // represent the 'loop target' for looping back to the start of the loop.
3458    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3459    ContinueJumpTarget.block->setLoopTarget(F);
3460 
3461     // Loop body should end with destructor of Condition variable (if any).
3462    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3463 
3464     // If body is not a compound statement create implicit scope
3465     // and add destructors.
3466     if (!isa<CompoundStmt>(F->getBody()))
3467       addLocalScopeAndDtors(F->getBody());
3468 
3469     // Now populate the body block, and in the process create new blocks as we
3470     // walk the body of the loop.
3471     BodyBlock = addStmt(F->getBody());
3472 
3473     if (!BodyBlock) {
3474       // In the case of "for (...;...;...);" we can have a null BodyBlock.
3475       // Use the continue jump target as the proxy for the body.
3476       BodyBlock = ContinueJumpTarget.block;
3477     }
3478     else if (badCFG)
3479       return nullptr;
3480   }
3481 
3482   // Because of short-circuit evaluation, the condition of the loop can span
3483   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3484   // evaluate the condition.
3485   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3486 
3487   do {
3488     Expr *C = F->getCond();
3489     SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3490 
3491     // Specially handle logical operators, which have a slightly
3492     // more optimal CFG representation.
3493     if (BinaryOperator *Cond =
3494             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3495       if (Cond->isLogicalOp()) {
3496         std::tie(EntryConditionBlock, ExitConditionBlock) =
3497           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3498         break;
3499       }
3500 
3501     // The default case when not handling logical operators.
3502     EntryConditionBlock = ExitConditionBlock = createBlock(false);
3503     ExitConditionBlock->setTerminator(F);
3504 
3505     // See if this is a known constant.
3506     TryResult KnownVal(true);
3507 
3508     if (C) {
3509       // Now add the actual condition to the condition block.
3510       // Because the condition itself may contain control-flow, new blocks may
3511       // be created.  Thus we update "Succ" after adding the condition.
3512       Block = ExitConditionBlock;
3513       EntryConditionBlock = addStmt(C);
3514 
3515       // If this block contains a condition variable, add both the condition
3516       // variable and initializer to the CFG.
3517       if (VarDecl *VD = F->getConditionVariable()) {
3518         if (Expr *Init = VD->getInit()) {
3519           autoCreateBlock();
3520           const DeclStmt *DS = F->getConditionVariableDeclStmt();
3521           assert(DS->isSingleDecl());
3522           findConstructionContexts(
3523               ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3524               Init);
3525           appendStmt(Block, DS);
3526           EntryConditionBlock = addStmt(Init);
3527           assert(Block == EntryConditionBlock);
3528           maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3529         }
3530       }
3531 
3532       if (Block && badCFG)
3533         return nullptr;
3534 
3535       KnownVal = tryEvaluateBool(C);
3536     }
3537 
3538     // Add the loop body entry as a successor to the condition.
3539     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3540     // Link up the condition block with the code that follows the loop.  (the
3541     // false branch).
3542     addSuccessor(ExitConditionBlock,
3543                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3544   } while (false);
3545 
3546   // Link up the loop-back block to the entry condition block.
3547   addSuccessor(TransitionBlock, EntryConditionBlock);
3548 
3549   // The condition block is the implicit successor for any code above the loop.
3550   Succ = EntryConditionBlock;
3551 
3552   // If the loop contains initialization, create a new block for those
3553   // statements.  This block can also contain statements that precede the loop.
3554   if (Stmt *I = F->getInit()) {
3555     SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3556     ScopePos = LoopBeginScopePos;
3557     Block = createBlock();
3558     return addStmt(I);
3559   }
3560 
3561   // There is no loop initialization.  We are thus basically a while loop.
3562   // NULL out Block to force lazy block construction.
3563   Block = nullptr;
3564   Succ = EntryConditionBlock;
3565   return EntryConditionBlock;
3566 }
3567 
3568 CFGBlock *
3569 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3570                                           AddStmtChoice asc) {
3571   findConstructionContexts(
3572       ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3573       MTE->getSubExpr());
3574 
3575   return VisitStmt(MTE, asc);
3576 }
3577 
3578 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3579   if (asc.alwaysAdd(*this, M)) {
3580     autoCreateBlock();
3581     appendStmt(Block, M);
3582   }
3583   return Visit(M->getBase());
3584 }
3585 
3586 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3587   // Objective-C fast enumeration 'for' statements:
3588   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3589   //
3590   //  for ( Type newVariable in collection_expression ) { statements }
3591   //
3592   //  becomes:
3593   //
3594   //   prologue:
3595   //     1. collection_expression
3596   //     T. jump to loop_entry
3597   //   loop_entry:
3598   //     1. side-effects of element expression
3599   //     1. ObjCForCollectionStmt [performs binding to newVariable]
3600   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
3601   //   TB:
3602   //     statements
3603   //     T. jump to loop_entry
3604   //   FB:
3605   //     what comes after
3606   //
3607   //  and
3608   //
3609   //  Type existingItem;
3610   //  for ( existingItem in expression ) { statements }
3611   //
3612   //  becomes:
3613   //
3614   //   the same with newVariable replaced with existingItem; the binding works
3615   //   the same except that for one ObjCForCollectionStmt::getElement() returns
3616   //   a DeclStmt and the other returns a DeclRefExpr.
3617 
3618   CFGBlock *LoopSuccessor = nullptr;
3619 
3620   if (Block) {
3621     if (badCFG)
3622       return nullptr;
3623     LoopSuccessor = Block;
3624     Block = nullptr;
3625   } else
3626     LoopSuccessor = Succ;
3627 
3628   // Build the condition blocks.
3629   CFGBlock *ExitConditionBlock = createBlock(false);
3630 
3631   // Set the terminator for the "exit" condition block.
3632   ExitConditionBlock->setTerminator(S);
3633 
3634   // The last statement in the block should be the ObjCForCollectionStmt, which
3635   // performs the actual binding to 'element' and determines if there are any
3636   // more items in the collection.
3637   appendStmt(ExitConditionBlock, S);
3638   Block = ExitConditionBlock;
3639 
3640   // Walk the 'element' expression to see if there are any side-effects.  We
3641   // generate new blocks as necessary.  We DON'T add the statement by default to
3642   // the CFG unless it contains control-flow.
3643   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3644                                         AddStmtChoice::NotAlwaysAdd);
3645   if (Block) {
3646     if (badCFG)
3647       return nullptr;
3648     Block = nullptr;
3649   }
3650 
3651   // The condition block is the implicit successor for the loop body as well as
3652   // any code above the loop.
3653   Succ = EntryConditionBlock;
3654 
3655   // Now create the true branch.
3656   {
3657     // Save the current values for Succ, continue and break targets.
3658     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3659     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3660                                save_break(BreakJumpTarget);
3661 
3662     // Add an intermediate block between the BodyBlock and the
3663     // EntryConditionBlock to represent the "loop back" transition, for looping
3664     // back to the head of the loop.
3665     CFGBlock *LoopBackBlock = nullptr;
3666     Succ = LoopBackBlock = createBlock();
3667     LoopBackBlock->setLoopTarget(S);
3668 
3669     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3670     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3671 
3672     CFGBlock *BodyBlock = addStmt(S->getBody());
3673 
3674     if (!BodyBlock)
3675       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3676     else if (Block) {
3677       if (badCFG)
3678         return nullptr;
3679     }
3680 
3681     // This new body block is a successor to our "exit" condition block.
3682     addSuccessor(ExitConditionBlock, BodyBlock);
3683   }
3684 
3685   // Link up the condition block with the code that follows the loop.
3686   // (the false branch).
3687   addSuccessor(ExitConditionBlock, LoopSuccessor);
3688 
3689   // Now create a prologue block to contain the collection expression.
3690   Block = createBlock();
3691   return addStmt(S->getCollection());
3692 }
3693 
3694 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3695   // Inline the body.
3696   return addStmt(S->getSubStmt());
3697   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3698 }
3699 
3700 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3701   // FIXME: Add locking 'primitives' to CFG for @synchronized.
3702 
3703   // Inline the body.
3704   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3705 
3706   // The sync body starts its own basic block.  This makes it a little easier
3707   // for diagnostic clients.
3708   if (SyncBlock) {
3709     if (badCFG)
3710       return nullptr;
3711 
3712     Block = nullptr;
3713     Succ = SyncBlock;
3714   }
3715 
3716   // Add the @synchronized to the CFG.
3717   autoCreateBlock();
3718   appendStmt(Block, S);
3719 
3720   // Inline the sync expression.
3721   return addStmt(S->getSynchExpr());
3722 }
3723 
3724 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3725   autoCreateBlock();
3726 
3727   // Add the PseudoObject as the last thing.
3728   appendStmt(Block, E);
3729 
3730   CFGBlock *lastBlock = Block;
3731 
3732   // Before that, evaluate all of the semantics in order.  In
3733   // CFG-land, that means appending them in reverse order.
3734   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3735     Expr *Semantic = E->getSemanticExpr(--i);
3736 
3737     // If the semantic is an opaque value, we're being asked to bind
3738     // it to its source expression.
3739     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3740       Semantic = OVE->getSourceExpr();
3741 
3742     if (CFGBlock *B = Visit(Semantic))
3743       lastBlock = B;
3744   }
3745 
3746   return lastBlock;
3747 }
3748 
3749 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3750   CFGBlock *LoopSuccessor = nullptr;
3751 
3752   // Save local scope position because in case of condition variable ScopePos
3753   // won't be restored when traversing AST.
3754   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3755 
3756   // Create local scope for possible condition variable.
3757   // Store scope position for continue statement.
3758   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3759   if (VarDecl *VD = W->getConditionVariable()) {
3760     addLocalScopeForVarDecl(VD);
3761     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3762   }
3763   addLoopExit(W);
3764 
3765   // "while" is a control-flow statement.  Thus we stop processing the current
3766   // block.
3767   if (Block) {
3768     if (badCFG)
3769       return nullptr;
3770     LoopSuccessor = Block;
3771     Block = nullptr;
3772   } else {
3773     LoopSuccessor = Succ;
3774   }
3775 
3776   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3777 
3778   // Process the loop body.
3779   {
3780     assert(W->getBody());
3781 
3782     // Save the current values for Block, Succ, continue and break targets.
3783     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3784     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3785                                save_break(BreakJumpTarget);
3786 
3787     // Create an empty block to represent the transition block for looping back
3788     // to the head of the loop.
3789     Succ = TransitionBlock = createBlock(false);
3790     TransitionBlock->setLoopTarget(W);
3791     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3792 
3793     // All breaks should go to the code following the loop.
3794     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3795 
3796     // Loop body should end with destructor of Condition variable (if any).
3797     addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3798 
3799     // If body is not a compound statement create implicit scope
3800     // and add destructors.
3801     if (!isa<CompoundStmt>(W->getBody()))
3802       addLocalScopeAndDtors(W->getBody());
3803 
3804     // Create the body.  The returned block is the entry to the loop body.
3805     BodyBlock = addStmt(W->getBody());
3806 
3807     if (!BodyBlock)
3808       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3809     else if (Block && badCFG)
3810       return nullptr;
3811   }
3812 
3813   // Because of short-circuit evaluation, the condition of the loop can span
3814   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
3815   // evaluate the condition.
3816   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3817 
3818   do {
3819     Expr *C = W->getCond();
3820 
3821     // Specially handle logical operators, which have a slightly
3822     // more optimal CFG representation.
3823     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3824       if (Cond->isLogicalOp()) {
3825         std::tie(EntryConditionBlock, ExitConditionBlock) =
3826             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3827         break;
3828       }
3829 
3830     // The default case when not handling logical operators.
3831     ExitConditionBlock = createBlock(false);
3832     ExitConditionBlock->setTerminator(W);
3833 
3834     // Now add the actual condition to the condition block.
3835     // Because the condition itself may contain control-flow, new blocks may
3836     // be created.  Thus we update "Succ" after adding the condition.
3837     Block = ExitConditionBlock;
3838     Block = EntryConditionBlock = addStmt(C);
3839 
3840     // If this block contains a condition variable, add both the condition
3841     // variable and initializer to the CFG.
3842     if (VarDecl *VD = W->getConditionVariable()) {
3843       if (Expr *Init = VD->getInit()) {
3844         autoCreateBlock();
3845         const DeclStmt *DS = W->getConditionVariableDeclStmt();
3846         assert(DS->isSingleDecl());
3847         findConstructionContexts(
3848             ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3849                                              const_cast<DeclStmt *>(DS)),
3850             Init);
3851         appendStmt(Block, DS);
3852         EntryConditionBlock = addStmt(Init);
3853         assert(Block == EntryConditionBlock);
3854         maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3855       }
3856     }
3857 
3858     if (Block && badCFG)
3859       return nullptr;
3860 
3861     // See if this is a known constant.
3862     const TryResult& KnownVal = tryEvaluateBool(C);
3863 
3864     // Add the loop body entry as a successor to the condition.
3865     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3866     // Link up the condition block with the code that follows the loop.  (the
3867     // false branch).
3868     addSuccessor(ExitConditionBlock,
3869                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
3870   } while(false);
3871 
3872   // Link up the loop-back block to the entry condition block.
3873   addSuccessor(TransitionBlock, EntryConditionBlock);
3874 
3875   // There can be no more statements in the condition block since we loop back
3876   // to this block.  NULL out Block to force lazy creation of another block.
3877   Block = nullptr;
3878 
3879   // Return the condition block, which is the dominating block for the loop.
3880   Succ = EntryConditionBlock;
3881   return EntryConditionBlock;
3882 }
3883 
3884 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
3885   // ObjCAtCatchStmt are treated like labels, so they are the first statement
3886   // in a block.
3887 
3888   // Save local scope position because in case of exception variable ScopePos
3889   // won't be restored when traversing AST.
3890   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3891 
3892   if (CS->getCatchBody())
3893     addStmt(CS->getCatchBody());
3894 
3895   CFGBlock *CatchBlock = Block;
3896   if (!CatchBlock)
3897     CatchBlock = createBlock();
3898 
3899   appendStmt(CatchBlock, CS);
3900 
3901   // Also add the ObjCAtCatchStmt as a label, like with regular labels.
3902   CatchBlock->setLabel(CS);
3903 
3904   // Bail out if the CFG is bad.
3905   if (badCFG)
3906     return nullptr;
3907 
3908   // We set Block to NULL to allow lazy creation of a new block (if necessary).
3909   Block = nullptr;
3910 
3911   return CatchBlock;
3912 }
3913 
3914 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
3915   // If we were in the middle of a block we stop processing that block.
3916   if (badCFG)
3917     return nullptr;
3918 
3919   // Create the new block.
3920   Block = createBlock(false);
3921 
3922   if (TryTerminatedBlock)
3923     // The current try statement is the only successor.
3924     addSuccessor(Block, TryTerminatedBlock);
3925   else
3926     // otherwise the Exit block is the only successor.
3927     addSuccessor(Block, &cfg->getExit());
3928 
3929   // Add the statement to the block.  This may create new blocks if S contains
3930   // control-flow (short-circuit operations).
3931   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
3932 }
3933 
3934 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
3935   // "@try"/"@catch" is a control-flow statement.  Thus we stop processing the
3936   // current block.
3937   CFGBlock *TrySuccessor = nullptr;
3938 
3939   if (Block) {
3940     if (badCFG)
3941       return nullptr;
3942     TrySuccessor = Block;
3943   } else
3944     TrySuccessor = Succ;
3945 
3946   // FIXME: Implement @finally support.
3947   if (Terminator->getFinallyStmt())
3948     return NYS();
3949 
3950   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
3951 
3952   // Create a new block that will contain the try statement.
3953   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3954   // Add the terminator in the try block.
3955   NewTryTerminatedBlock->setTerminator(Terminator);
3956 
3957   bool HasCatchAll = false;
3958   for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
3959     // The code after the try is the implicit successor.
3960     Succ = TrySuccessor;
3961     if (CS->hasEllipsis()) {
3962       HasCatchAll = true;
3963     }
3964     Block = nullptr;
3965     CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
3966     if (!CatchBlock)
3967       return nullptr;
3968     // Add this block to the list of successors for the block with the try
3969     // statement.
3970     addSuccessor(NewTryTerminatedBlock, CatchBlock);
3971   }
3972 
3973   // FIXME: This needs updating when @finally support is added.
3974   if (!HasCatchAll) {
3975     if (PrevTryTerminatedBlock)
3976       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
3977     else
3978       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3979   }
3980 
3981   // The code after the try is the implicit successor.
3982   Succ = TrySuccessor;
3983 
3984   // Save the current "try" context.
3985   SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3986   cfg->addTryDispatchBlock(TryTerminatedBlock);
3987 
3988   assert(Terminator->getTryBody() && "try must contain a non-NULL body");
3989   Block = nullptr;
3990   return addStmt(Terminator->getTryBody());
3991 }
3992 
3993 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
3994                                            AddStmtChoice asc) {
3995   findConstructionContextsForArguments(ME);
3996 
3997   autoCreateBlock();
3998   appendObjCMessage(Block, ME);
3999 
4000   return VisitChildren(ME);
4001 }
4002 
4003 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
4004   // If we were in the middle of a block we stop processing that block.
4005   if (badCFG)
4006     return nullptr;
4007 
4008   // Create the new block.
4009   Block = createBlock(false);
4010 
4011   if (TryTerminatedBlock)
4012     // The current try statement is the only successor.
4013     addSuccessor(Block, TryTerminatedBlock);
4014   else
4015     // otherwise the Exit block is the only successor.
4016     addSuccessor(Block, &cfg->getExit());
4017 
4018   // Add the statement to the block.  This may create new blocks if S contains
4019   // control-flow (short-circuit operations).
4020   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
4021 }
4022 
4023 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
4024   CFGBlock *LoopSuccessor = nullptr;
4025 
4026   addLoopExit(D);
4027 
4028   // "do...while" is a control-flow statement.  Thus we stop processing the
4029   // current block.
4030   if (Block) {
4031     if (badCFG)
4032       return nullptr;
4033     LoopSuccessor = Block;
4034   } else
4035     LoopSuccessor = Succ;
4036 
4037   // Because of short-circuit evaluation, the condition of the loop can span
4038   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
4039   // evaluate the condition.
4040   CFGBlock *ExitConditionBlock = createBlock(false);
4041   CFGBlock *EntryConditionBlock = ExitConditionBlock;
4042 
4043   // Set the terminator for the "exit" condition block.
4044   ExitConditionBlock->setTerminator(D);
4045 
4046   // Now add the actual condition to the condition block.  Because the condition
4047   // itself may contain control-flow, new blocks may be created.
4048   if (Stmt *C = D->getCond()) {
4049     Block = ExitConditionBlock;
4050     EntryConditionBlock = addStmt(C);
4051     if (Block) {
4052       if (badCFG)
4053         return nullptr;
4054     }
4055   }
4056 
4057   // The condition block is the implicit successor for the loop body.
4058   Succ = EntryConditionBlock;
4059 
4060   // See if this is a known constant.
4061   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
4062 
4063   // Process the loop body.
4064   CFGBlock *BodyBlock = nullptr;
4065   {
4066     assert(D->getBody());
4067 
4068     // Save the current values for Block, Succ, and continue and break targets
4069     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4070     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
4071         save_break(BreakJumpTarget);
4072 
4073     // All continues within this loop should go to the condition block
4074     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
4075 
4076     // All breaks should go to the code following the loop.
4077     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4078 
4079     // NULL out Block to force lazy instantiation of blocks for the body.
4080     Block = nullptr;
4081 
4082     // If body is not a compound statement create implicit scope
4083     // and add destructors.
4084     if (!isa<CompoundStmt>(D->getBody()))
4085       addLocalScopeAndDtors(D->getBody());
4086 
4087     // Create the body.  The returned block is the entry to the loop body.
4088     BodyBlock = addStmt(D->getBody());
4089 
4090     if (!BodyBlock)
4091       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
4092     else if (Block) {
4093       if (badCFG)
4094         return nullptr;
4095     }
4096 
4097     // Add an intermediate block between the BodyBlock and the
4098     // ExitConditionBlock to represent the "loop back" transition.  Create an
4099     // empty block to represent the transition block for looping back to the
4100     // head of the loop.
4101     // FIXME: Can we do this more efficiently without adding another block?
4102     Block = nullptr;
4103     Succ = BodyBlock;
4104     CFGBlock *LoopBackBlock = createBlock();
4105     LoopBackBlock->setLoopTarget(D);
4106 
4107     if (!KnownVal.isFalse())
4108       // Add the loop body entry as a successor to the condition.
4109       addSuccessor(ExitConditionBlock, LoopBackBlock);
4110     else
4111       addSuccessor(ExitConditionBlock, nullptr);
4112   }
4113 
4114   // Link up the condition block with the code that follows the loop.
4115   // (the false branch).
4116   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4117 
4118   // There can be no more statements in the body block(s) since we loop back to
4119   // the body.  NULL out Block to force lazy creation of another block.
4120   Block = nullptr;
4121 
4122   // Return the loop body, which is the dominating block for the loop.
4123   Succ = BodyBlock;
4124   return BodyBlock;
4125 }
4126 
4127 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
4128   // "continue" is a control-flow statement.  Thus we stop processing the
4129   // current block.
4130   if (badCFG)
4131     return nullptr;
4132 
4133   // Now create a new block that ends with the continue statement.
4134   Block = createBlock(false);
4135   Block->setTerminator(C);
4136 
4137   // If there is no target for the continue, then we are looking at an
4138   // incomplete AST.  This means the CFG cannot be constructed.
4139   if (ContinueJumpTarget.block) {
4140     addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4141     addSuccessor(Block, ContinueJumpTarget.block);
4142   } else
4143     badCFG = true;
4144 
4145   return Block;
4146 }
4147 
4148 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4149                                                     AddStmtChoice asc) {
4150   if (asc.alwaysAdd(*this, E)) {
4151     autoCreateBlock();
4152     appendStmt(Block, E);
4153   }
4154 
4155   // VLA types have expressions that must be evaluated.
4156   // Evaluation is done only for `sizeof`.
4157 
4158   if (E->getKind() != UETT_SizeOf)
4159     return Block;
4160 
4161   CFGBlock *lastBlock = Block;
4162 
4163   if (E->isArgumentType()) {
4164     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4165          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4166       lastBlock = addStmt(VA->getSizeExpr());
4167   }
4168   return lastBlock;
4169 }
4170 
4171 /// VisitStmtExpr - Utility method to handle (nested) statement
4172 ///  expressions (a GCC extension).
4173 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4174   if (asc.alwaysAdd(*this, SE)) {
4175     autoCreateBlock();
4176     appendStmt(Block, SE);
4177   }
4178   return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4179 }
4180 
4181 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4182   // "switch" is a control-flow statement.  Thus we stop processing the current
4183   // block.
4184   CFGBlock *SwitchSuccessor = nullptr;
4185 
4186   // Save local scope position because in case of condition variable ScopePos
4187   // won't be restored when traversing AST.
4188   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4189 
4190   // Create local scope for C++17 switch init-stmt if one exists.
4191   if (Stmt *Init = Terminator->getInit())
4192     addLocalScopeForStmt(Init);
4193 
4194   // Create local scope for possible condition variable.
4195   // Store scope position. Add implicit destructor.
4196   if (VarDecl *VD = Terminator->getConditionVariable())
4197     addLocalScopeForVarDecl(VD);
4198 
4199   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4200 
4201   if (Block) {
4202     if (badCFG)
4203       return nullptr;
4204     SwitchSuccessor = Block;
4205   } else SwitchSuccessor = Succ;
4206 
4207   // Save the current "switch" context.
4208   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
4209                             save_default(DefaultCaseBlock);
4210   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4211 
4212   // Set the "default" case to be the block after the switch statement.  If the
4213   // switch statement contains a "default:", this value will be overwritten with
4214   // the block for that code.
4215   DefaultCaseBlock = SwitchSuccessor;
4216 
4217   // Create a new block that will contain the switch statement.
4218   SwitchTerminatedBlock = createBlock(false);
4219 
4220   // Now process the switch body.  The code after the switch is the implicit
4221   // successor.
4222   Succ = SwitchSuccessor;
4223   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4224 
4225   // When visiting the body, the case statements should automatically get linked
4226   // up to the switch.  We also don't keep a pointer to the body, since all
4227   // control-flow from the switch goes to case/default statements.
4228   assert(Terminator->getBody() && "switch must contain a non-NULL body");
4229   Block = nullptr;
4230 
4231   // For pruning unreachable case statements, save the current state
4232   // for tracking the condition value.
4233   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
4234                                                      false);
4235 
4236   // Determine if the switch condition can be explicitly evaluated.
4237   assert(Terminator->getCond() && "switch condition must be non-NULL");
4238   Expr::EvalResult result;
4239   bool b = tryEvaluate(Terminator->getCond(), result);
4240   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
4241                                                     b ? &result : nullptr);
4242 
4243   // If body is not a compound statement create implicit scope
4244   // and add destructors.
4245   if (!isa<CompoundStmt>(Terminator->getBody()))
4246     addLocalScopeAndDtors(Terminator->getBody());
4247 
4248   addStmt(Terminator->getBody());
4249   if (Block) {
4250     if (badCFG)
4251       return nullptr;
4252   }
4253 
4254   // If we have no "default:" case, the default transition is to the code
4255   // following the switch body.  Moreover, take into account if all the
4256   // cases of a switch are covered (e.g., switching on an enum value).
4257   //
4258   // Note: We add a successor to a switch that is considered covered yet has no
4259   //       case statements if the enumeration has no enumerators.
4260   bool SwitchAlwaysHasSuccessor = false;
4261   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4262   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4263                               Terminator->getSwitchCaseList();
4264   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4265                !SwitchAlwaysHasSuccessor);
4266 
4267   // Add the terminator and condition in the switch block.
4268   SwitchTerminatedBlock->setTerminator(Terminator);
4269   Block = SwitchTerminatedBlock;
4270   CFGBlock *LastBlock = addStmt(Terminator->getCond());
4271 
4272   // If the SwitchStmt contains a condition variable, add both the
4273   // SwitchStmt and the condition variable initialization to the CFG.
4274   if (VarDecl *VD = Terminator->getConditionVariable()) {
4275     if (Expr *Init = VD->getInit()) {
4276       autoCreateBlock();
4277       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4278       LastBlock = addStmt(Init);
4279       maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4280     }
4281   }
4282 
4283   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4284   if (Stmt *Init = Terminator->getInit()) {
4285     autoCreateBlock();
4286     LastBlock = addStmt(Init);
4287   }
4288 
4289   return LastBlock;
4290 }
4291 
4292 static bool shouldAddCase(bool &switchExclusivelyCovered,
4293                           const Expr::EvalResult *switchCond,
4294                           const CaseStmt *CS,
4295                           ASTContext &Ctx) {
4296   if (!switchCond)
4297     return true;
4298 
4299   bool addCase = false;
4300 
4301   if (!switchExclusivelyCovered) {
4302     if (switchCond->Val.isInt()) {
4303       // Evaluate the LHS of the case value.
4304       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4305       const llvm::APSInt &condInt = switchCond->Val.getInt();
4306 
4307       if (condInt == lhsInt) {
4308         addCase = true;
4309         switchExclusivelyCovered = true;
4310       }
4311       else if (condInt > lhsInt) {
4312         if (const Expr *RHS = CS->getRHS()) {
4313           // Evaluate the RHS of the case value.
4314           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4315           if (V2 >= condInt) {
4316             addCase = true;
4317             switchExclusivelyCovered = true;
4318           }
4319         }
4320       }
4321     }
4322     else
4323       addCase = true;
4324   }
4325   return addCase;
4326 }
4327 
4328 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4329   // CaseStmts are essentially labels, so they are the first statement in a
4330   // block.
4331   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4332 
4333   if (Stmt *Sub = CS->getSubStmt()) {
4334     // For deeply nested chains of CaseStmts, instead of doing a recursion
4335     // (which can blow out the stack), manually unroll and create blocks
4336     // along the way.
4337     while (isa<CaseStmt>(Sub)) {
4338       CFGBlock *currentBlock = createBlock(false);
4339       currentBlock->setLabel(CS);
4340 
4341       if (TopBlock)
4342         addSuccessor(LastBlock, currentBlock);
4343       else
4344         TopBlock = currentBlock;
4345 
4346       addSuccessor(SwitchTerminatedBlock,
4347                    shouldAddCase(switchExclusivelyCovered, switchCond,
4348                                  CS, *Context)
4349                    ? currentBlock : nullptr);
4350 
4351       LastBlock = currentBlock;
4352       CS = cast<CaseStmt>(Sub);
4353       Sub = CS->getSubStmt();
4354     }
4355 
4356     addStmt(Sub);
4357   }
4358 
4359   CFGBlock *CaseBlock = Block;
4360   if (!CaseBlock)
4361     CaseBlock = createBlock();
4362 
4363   // Cases statements partition blocks, so this is the top of the basic block we
4364   // were processing (the "case XXX:" is the label).
4365   CaseBlock->setLabel(CS);
4366 
4367   if (badCFG)
4368     return nullptr;
4369 
4370   // Add this block to the list of successors for the block with the switch
4371   // statement.
4372   assert(SwitchTerminatedBlock);
4373   addSuccessor(SwitchTerminatedBlock, CaseBlock,
4374                shouldAddCase(switchExclusivelyCovered, switchCond,
4375                              CS, *Context));
4376 
4377   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4378   Block = nullptr;
4379 
4380   if (TopBlock) {
4381     addSuccessor(LastBlock, CaseBlock);
4382     Succ = TopBlock;
4383   } else {
4384     // This block is now the implicit successor of other blocks.
4385     Succ = CaseBlock;
4386   }
4387 
4388   return Succ;
4389 }
4390 
4391 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4392   if (Terminator->getSubStmt())
4393     addStmt(Terminator->getSubStmt());
4394 
4395   DefaultCaseBlock = Block;
4396 
4397   if (!DefaultCaseBlock)
4398     DefaultCaseBlock = createBlock();
4399 
4400   // Default statements partition blocks, so this is the top of the basic block
4401   // we were processing (the "default:" is the label).
4402   DefaultCaseBlock->setLabel(Terminator);
4403 
4404   if (badCFG)
4405     return nullptr;
4406 
4407   // Unlike case statements, we don't add the default block to the successors
4408   // for the switch statement immediately.  This is done when we finish
4409   // processing the switch statement.  This allows for the default case
4410   // (including a fall-through to the code after the switch statement) to always
4411   // be the last successor of a switch-terminated block.
4412 
4413   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4414   Block = nullptr;
4415 
4416   // This block is now the implicit successor of other blocks.
4417   Succ = DefaultCaseBlock;
4418 
4419   return DefaultCaseBlock;
4420 }
4421 
4422 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4423   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
4424   // current block.
4425   CFGBlock *TrySuccessor = nullptr;
4426 
4427   if (Block) {
4428     if (badCFG)
4429       return nullptr;
4430     TrySuccessor = Block;
4431   } else
4432     TrySuccessor = Succ;
4433 
4434   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4435 
4436   // Create a new block that will contain the try statement.
4437   CFGBlock *NewTryTerminatedBlock = createBlock(false);
4438   // Add the terminator in the try block.
4439   NewTryTerminatedBlock->setTerminator(Terminator);
4440 
4441   bool HasCatchAll = false;
4442   for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
4443     // The code after the try is the implicit successor.
4444     Succ = TrySuccessor;
4445     CXXCatchStmt *CS = Terminator->getHandler(I);
4446     if (CS->getExceptionDecl() == nullptr) {
4447       HasCatchAll = true;
4448     }
4449     Block = nullptr;
4450     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4451     if (!CatchBlock)
4452       return nullptr;
4453     // Add this block to the list of successors for the block with the try
4454     // statement.
4455     addSuccessor(NewTryTerminatedBlock, CatchBlock);
4456   }
4457   if (!HasCatchAll) {
4458     if (PrevTryTerminatedBlock)
4459       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4460     else
4461       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4462   }
4463 
4464   // The code after the try is the implicit successor.
4465   Succ = TrySuccessor;
4466 
4467   // Save the current "try" context.
4468   SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4469   cfg->addTryDispatchBlock(TryTerminatedBlock);
4470 
4471   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4472   Block = nullptr;
4473   return addStmt(Terminator->getTryBlock());
4474 }
4475 
4476 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4477   // CXXCatchStmt are treated like labels, so they are the first statement in a
4478   // block.
4479 
4480   // Save local scope position because in case of exception variable ScopePos
4481   // won't be restored when traversing AST.
4482   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4483 
4484   // Create local scope for possible exception variable.
4485   // Store scope position. Add implicit destructor.
4486   if (VarDecl *VD = CS->getExceptionDecl()) {
4487     LocalScope::const_iterator BeginScopePos = ScopePos;
4488     addLocalScopeForVarDecl(VD);
4489     addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4490   }
4491 
4492   if (CS->getHandlerBlock())
4493     addStmt(CS->getHandlerBlock());
4494 
4495   CFGBlock *CatchBlock = Block;
4496   if (!CatchBlock)
4497     CatchBlock = createBlock();
4498 
4499   // CXXCatchStmt is more than just a label.  They have semantic meaning
4500   // as well, as they implicitly "initialize" the catch variable.  Add
4501   // it to the CFG as a CFGElement so that the control-flow of these
4502   // semantics gets captured.
4503   appendStmt(CatchBlock, CS);
4504 
4505   // Also add the CXXCatchStmt as a label, to mirror handling of regular
4506   // labels.
4507   CatchBlock->setLabel(CS);
4508 
4509   // Bail out if the CFG is bad.
4510   if (badCFG)
4511     return nullptr;
4512 
4513   // We set Block to NULL to allow lazy creation of a new block (if necessary).
4514   Block = nullptr;
4515 
4516   return CatchBlock;
4517 }
4518 
4519 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4520   // C++0x for-range statements are specified as [stmt.ranged]:
4521   //
4522   // {
4523   //   auto && __range = range-init;
4524   //   for ( auto __begin = begin-expr,
4525   //         __end = end-expr;
4526   //         __begin != __end;
4527   //         ++__begin ) {
4528   //     for-range-declaration = *__begin;
4529   //     statement
4530   //   }
4531   // }
4532 
4533   // Save local scope position before the addition of the implicit variables.
4534   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4535 
4536   // Create local scopes and destructors for range, begin and end variables.
4537   if (Stmt *Range = S->getRangeStmt())
4538     addLocalScopeForStmt(Range);
4539   if (Stmt *Begin = S->getBeginStmt())
4540     addLocalScopeForStmt(Begin);
4541   if (Stmt *End = S->getEndStmt())
4542     addLocalScopeForStmt(End);
4543   addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4544 
4545   LocalScope::const_iterator ContinueScopePos = ScopePos;
4546 
4547   // "for" is a control-flow statement.  Thus we stop processing the current
4548   // block.
4549   CFGBlock *LoopSuccessor = nullptr;
4550   if (Block) {
4551     if (badCFG)
4552       return nullptr;
4553     LoopSuccessor = Block;
4554   } else
4555     LoopSuccessor = Succ;
4556 
4557   // Save the current value for the break targets.
4558   // All breaks should go to the code following the loop.
4559   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4560   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4561 
4562   // The block for the __begin != __end expression.
4563   CFGBlock *ConditionBlock = createBlock(false);
4564   ConditionBlock->setTerminator(S);
4565 
4566   // Now add the actual condition to the condition block.
4567   if (Expr *C = S->getCond()) {
4568     Block = ConditionBlock;
4569     CFGBlock *BeginConditionBlock = addStmt(C);
4570     if (badCFG)
4571       return nullptr;
4572     assert(BeginConditionBlock == ConditionBlock &&
4573            "condition block in for-range was unexpectedly complex");
4574     (void)BeginConditionBlock;
4575   }
4576 
4577   // The condition block is the implicit successor for the loop body as well as
4578   // any code above the loop.
4579   Succ = ConditionBlock;
4580 
4581   // See if this is a known constant.
4582   TryResult KnownVal(true);
4583 
4584   if (S->getCond())
4585     KnownVal = tryEvaluateBool(S->getCond());
4586 
4587   // Now create the loop body.
4588   {
4589     assert(S->getBody());
4590 
4591     // Save the current values for Block, Succ, and continue targets.
4592     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4593     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
4594 
4595     // Generate increment code in its own basic block.  This is the target of
4596     // continue statements.
4597     Block = nullptr;
4598     Succ = addStmt(S->getInc());
4599     if (badCFG)
4600       return nullptr;
4601     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4602 
4603     // The starting block for the loop increment is the block that should
4604     // represent the 'loop target' for looping back to the start of the loop.
4605     ContinueJumpTarget.block->setLoopTarget(S);
4606 
4607     // Finish up the increment block and prepare to start the loop body.
4608     assert(Block);
4609     if (badCFG)
4610       return nullptr;
4611     Block = nullptr;
4612 
4613     // Add implicit scope and dtors for loop variable.
4614     addLocalScopeAndDtors(S->getLoopVarStmt());
4615 
4616     // If body is not a compound statement create implicit scope
4617     // and add destructors.
4618     if (!isa<CompoundStmt>(S->getBody()))
4619       addLocalScopeAndDtors(S->getBody());
4620 
4621     // Populate a new block to contain the loop body and loop variable.
4622     addStmt(S->getBody());
4623 
4624     if (badCFG)
4625       return nullptr;
4626     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4627     if (badCFG)
4628       return nullptr;
4629 
4630     // This new body block is a successor to our condition block.
4631     addSuccessor(ConditionBlock,
4632                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4633   }
4634 
4635   // Link up the condition block with the code that follows the loop (the
4636   // false branch).
4637   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4638 
4639   // Add the initialization statements.
4640   Block = createBlock();
4641   addStmt(S->getBeginStmt());
4642   addStmt(S->getEndStmt());
4643   CFGBlock *Head = addStmt(S->getRangeStmt());
4644   if (S->getInit())
4645     Head = addStmt(S->getInit());
4646   return Head;
4647 }
4648 
4649 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4650     AddStmtChoice asc, bool ExternallyDestructed) {
4651   if (BuildOpts.AddTemporaryDtors) {
4652     // If adding implicit destructors visit the full expression for adding
4653     // destructors of temporaries.
4654     TempDtorContext Context;
4655     VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4656 
4657     // Full expression has to be added as CFGStmt so it will be sequenced
4658     // before destructors of it's temporaries.
4659     asc = asc.withAlwaysAdd(true);
4660   }
4661   return Visit(E->getSubExpr(), asc);
4662 }
4663 
4664 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4665                                                 AddStmtChoice asc) {
4666   if (asc.alwaysAdd(*this, E)) {
4667     autoCreateBlock();
4668     appendStmt(Block, E);
4669 
4670     findConstructionContexts(
4671         ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4672         E->getSubExpr());
4673 
4674     // We do not want to propagate the AlwaysAdd property.
4675     asc = asc.withAlwaysAdd(false);
4676   }
4677   return Visit(E->getSubExpr(), asc);
4678 }
4679 
4680 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4681                                             AddStmtChoice asc) {
4682   // If the constructor takes objects as arguments by value, we need to properly
4683   // construct these objects. Construction contexts we find here aren't for the
4684   // constructor C, they're for its arguments only.
4685   findConstructionContextsForArguments(C);
4686 
4687   autoCreateBlock();
4688   appendConstructor(Block, C);
4689 
4690   return VisitChildren(C);
4691 }
4692 
4693 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4694                                       AddStmtChoice asc) {
4695   autoCreateBlock();
4696   appendStmt(Block, NE);
4697 
4698   findConstructionContexts(
4699       ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4700       const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4701 
4702   if (NE->getInitializer())
4703     Block = Visit(NE->getInitializer());
4704 
4705   if (BuildOpts.AddCXXNewAllocator)
4706     appendNewAllocator(Block, NE);
4707 
4708   if (NE->isArray() && *NE->getArraySize())
4709     Block = Visit(*NE->getArraySize());
4710 
4711   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4712        E = NE->placement_arg_end(); I != E; ++I)
4713     Block = Visit(*I);
4714 
4715   return Block;
4716 }
4717 
4718 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4719                                          AddStmtChoice asc) {
4720   autoCreateBlock();
4721   appendStmt(Block, DE);
4722   QualType DTy = DE->getDestroyedType();
4723   if (!DTy.isNull()) {
4724     DTy = DTy.getNonReferenceType();
4725     CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4726     if (RD) {
4727       if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4728         appendDeleteDtor(Block, RD, DE);
4729     }
4730   }
4731 
4732   return VisitChildren(DE);
4733 }
4734 
4735 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4736                                                  AddStmtChoice asc) {
4737   if (asc.alwaysAdd(*this, E)) {
4738     autoCreateBlock();
4739     appendStmt(Block, E);
4740     // We do not want to propagate the AlwaysAdd property.
4741     asc = asc.withAlwaysAdd(false);
4742   }
4743   return Visit(E->getSubExpr(), asc);
4744 }
4745 
4746 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4747                                                   AddStmtChoice asc) {
4748   // If the constructor takes objects as arguments by value, we need to properly
4749   // construct these objects. Construction contexts we find here aren't for the
4750   // constructor C, they're for its arguments only.
4751   findConstructionContextsForArguments(C);
4752 
4753   autoCreateBlock();
4754   appendConstructor(Block, C);
4755   return VisitChildren(C);
4756 }
4757 
4758 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4759                                             AddStmtChoice asc) {
4760   if (asc.alwaysAdd(*this, E)) {
4761     autoCreateBlock();
4762     appendStmt(Block, E);
4763   }
4764 
4765   if (E->getCastKind() == CK_IntegralToBoolean)
4766     tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4767 
4768   return Visit(E->getSubExpr(), AddStmtChoice());
4769 }
4770 
4771 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4772   return Visit(E->getSubExpr(), AddStmtChoice());
4773 }
4774 
4775 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4776   // Lazily create the indirect-goto dispatch block if there isn't one already.
4777   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4778 
4779   if (!IBlock) {
4780     IBlock = createBlock(false);
4781     cfg->setIndirectGotoBlock(IBlock);
4782   }
4783 
4784   // IndirectGoto is a control-flow statement.  Thus we stop processing the
4785   // current block and create a new one.
4786   if (badCFG)
4787     return nullptr;
4788 
4789   Block = createBlock(false);
4790   Block->setTerminator(I);
4791   addSuccessor(Block, IBlock);
4792   return addStmt(I->getTarget());
4793 }
4794 
4795 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4796                                              TempDtorContext &Context) {
4797   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4798 
4799 tryAgain:
4800   if (!E) {
4801     badCFG = true;
4802     return nullptr;
4803   }
4804   switch (E->getStmtClass()) {
4805     default:
4806       return VisitChildrenForTemporaryDtors(E, false, Context);
4807 
4808     case Stmt::InitListExprClass:
4809       return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4810 
4811     case Stmt::BinaryOperatorClass:
4812       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4813                                                   ExternallyDestructed,
4814                                                   Context);
4815 
4816     case Stmt::CXXBindTemporaryExprClass:
4817       return VisitCXXBindTemporaryExprForTemporaryDtors(
4818           cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4819 
4820     case Stmt::BinaryConditionalOperatorClass:
4821     case Stmt::ConditionalOperatorClass:
4822       return VisitConditionalOperatorForTemporaryDtors(
4823           cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4824 
4825     case Stmt::ImplicitCastExprClass:
4826       // For implicit cast we want ExternallyDestructed to be passed further.
4827       E = cast<CastExpr>(E)->getSubExpr();
4828       goto tryAgain;
4829 
4830     case Stmt::CXXFunctionalCastExprClass:
4831       // For functional cast we want ExternallyDestructed to be passed further.
4832       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4833       goto tryAgain;
4834 
4835     case Stmt::ConstantExprClass:
4836       E = cast<ConstantExpr>(E)->getSubExpr();
4837       goto tryAgain;
4838 
4839     case Stmt::ParenExprClass:
4840       E = cast<ParenExpr>(E)->getSubExpr();
4841       goto tryAgain;
4842 
4843     case Stmt::MaterializeTemporaryExprClass: {
4844       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4845       ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4846       SmallVector<const Expr *, 2> CommaLHSs;
4847       SmallVector<SubobjectAdjustment, 2> Adjustments;
4848       // Find the expression whose lifetime needs to be extended.
4849       E = const_cast<Expr *>(
4850           cast<MaterializeTemporaryExpr>(E)
4851               ->getSubExpr()
4852               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4853       // Visit the skipped comma operator left-hand sides for other temporaries.
4854       for (const Expr *CommaLHS : CommaLHSs) {
4855         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
4856                                /*ExternallyDestructed=*/false, Context);
4857       }
4858       goto tryAgain;
4859     }
4860 
4861     case Stmt::BlockExprClass:
4862       // Don't recurse into blocks; their subexpressions don't get evaluated
4863       // here.
4864       return Block;
4865 
4866     case Stmt::LambdaExprClass: {
4867       // For lambda expressions, only recurse into the capture initializers,
4868       // and not the body.
4869       auto *LE = cast<LambdaExpr>(E);
4870       CFGBlock *B = Block;
4871       for (Expr *Init : LE->capture_inits()) {
4872         if (Init) {
4873           if (CFGBlock *R = VisitForTemporaryDtors(
4874                   Init, /*ExternallyDestructed=*/true, Context))
4875             B = R;
4876         }
4877       }
4878       return B;
4879     }
4880 
4881     case Stmt::StmtExprClass:
4882       // Don't recurse into statement expressions; any cleanups inside them
4883       // will be wrapped in their own ExprWithCleanups.
4884       return Block;
4885 
4886     case Stmt::CXXDefaultArgExprClass:
4887       E = cast<CXXDefaultArgExpr>(E)->getExpr();
4888       goto tryAgain;
4889 
4890     case Stmt::CXXDefaultInitExprClass:
4891       E = cast<CXXDefaultInitExpr>(E)->getExpr();
4892       goto tryAgain;
4893   }
4894 }
4895 
4896 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
4897                                                      bool ExternallyDestructed,
4898                                                      TempDtorContext &Context) {
4899   if (isa<LambdaExpr>(E)) {
4900     // Do not visit the children of lambdas; they have their own CFGs.
4901     return Block;
4902   }
4903 
4904   // When visiting children for destructors we want to visit them in reverse
4905   // order that they will appear in the CFG.  Because the CFG is built
4906   // bottom-up, this means we visit them in their natural order, which
4907   // reverses them in the CFG.
4908   CFGBlock *B = Block;
4909   for (Stmt *Child : E->children())
4910     if (Child)
4911       if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
4912         B = R;
4913 
4914   return B;
4915 }
4916 
4917 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
4918     BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
4919   if (E->isCommaOp()) {
4920     // For the comma operator, the LHS expression is evaluated before the RHS
4921     // expression, so prepend temporary destructors for the LHS first.
4922     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4923     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
4924     return RHSBlock ? RHSBlock : LHSBlock;
4925   }
4926 
4927   if (E->isLogicalOp()) {
4928     VisitForTemporaryDtors(E->getLHS(), false, Context);
4929     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
4930     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
4931       RHSExecuted.negate();
4932 
4933     // We do not know at CFG-construction time whether the right-hand-side was
4934     // executed, thus we add a branch node that depends on the temporary
4935     // constructor call.
4936     TempDtorContext RHSContext(
4937         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
4938     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
4939     InsertTempDtorDecisionBlock(RHSContext);
4940 
4941     return Block;
4942   }
4943 
4944   if (E->isAssignmentOp()) {
4945     // For assignment operators, the RHS expression is evaluated before the LHS
4946     // expression, so prepend temporary destructors for the RHS first.
4947     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
4948     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
4949     return LHSBlock ? LHSBlock : RHSBlock;
4950   }
4951 
4952   // Any other operator is visited normally.
4953   return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4954 }
4955 
4956 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
4957     CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
4958   // First add destructors for temporaries in subexpression.
4959   // Because VisitCXXBindTemporaryExpr calls setDestructed:
4960   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
4961   if (!ExternallyDestructed) {
4962     // If lifetime of temporary is not prolonged (by assigning to constant
4963     // reference) add destructor for it.
4964 
4965     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
4966 
4967     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
4968       // If the destructor is marked as a no-return destructor, we need to
4969       // create a new block for the destructor which does not have as a
4970       // successor anything built thus far. Control won't flow out of this
4971       // block.
4972       if (B) Succ = B;
4973       Block = createNoReturnBlock();
4974     } else if (Context.needsTempDtorBranch()) {
4975       // If we need to introduce a branch, we add a new block that we will hook
4976       // up to a decision block later.
4977       if (B) Succ = B;
4978       Block = createBlock();
4979     } else {
4980       autoCreateBlock();
4981     }
4982     if (Context.needsTempDtorBranch()) {
4983       Context.setDecisionPoint(Succ, E);
4984     }
4985     appendTemporaryDtor(Block, E);
4986 
4987     B = Block;
4988   }
4989   return B;
4990 }
4991 
4992 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
4993                                              CFGBlock *FalseSucc) {
4994   if (!Context.TerminatorExpr) {
4995     // If no temporary was found, we do not need to insert a decision point.
4996     return;
4997   }
4998   assert(Context.TerminatorExpr);
4999   CFGBlock *Decision = createBlock(false);
5000   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
5001                                         CFGTerminator::TemporaryDtorsBranch));
5002   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
5003   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
5004                !Context.KnownExecuted.isTrue());
5005   Block = Decision;
5006 }
5007 
5008 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5009     AbstractConditionalOperator *E, bool ExternallyDestructed,
5010     TempDtorContext &Context) {
5011   VisitForTemporaryDtors(E->getCond(), false, Context);
5012   CFGBlock *ConditionBlock = Block;
5013   CFGBlock *ConditionSucc = Succ;
5014   TryResult ConditionVal = tryEvaluateBool(E->getCond());
5015   TryResult NegatedVal = ConditionVal;
5016   if (NegatedVal.isKnown()) NegatedVal.negate();
5017 
5018   TempDtorContext TrueContext(
5019       bothKnownTrue(Context.KnownExecuted, ConditionVal));
5020   VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
5021   CFGBlock *TrueBlock = Block;
5022 
5023   Block = ConditionBlock;
5024   Succ = ConditionSucc;
5025   TempDtorContext FalseContext(
5026       bothKnownTrue(Context.KnownExecuted, NegatedVal));
5027   VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
5028 
5029   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
5030     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
5031   } else if (TrueContext.TerminatorExpr) {
5032     Block = TrueBlock;
5033     InsertTempDtorDecisionBlock(TrueContext);
5034   } else {
5035     InsertTempDtorDecisionBlock(FalseContext);
5036   }
5037   return Block;
5038 }
5039 
5040 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
5041                                                   AddStmtChoice asc) {
5042   if (asc.alwaysAdd(*this, D)) {
5043     autoCreateBlock();
5044     appendStmt(Block, D);
5045   }
5046 
5047   // Iterate over all used expression in clauses.
5048   CFGBlock *B = Block;
5049 
5050   // Reverse the elements to process them in natural order. Iterators are not
5051   // bidirectional, so we need to create temp vector.
5052   SmallVector<Stmt *, 8> Used(
5053       OMPExecutableDirective::used_clauses_children(D->clauses()));
5054   for (Stmt *S : llvm::reverse(Used)) {
5055     assert(S && "Expected non-null used-in-clause child.");
5056     if (CFGBlock *R = Visit(S))
5057       B = R;
5058   }
5059   // Visit associated structured block if any.
5060   if (!D->isStandaloneDirective()) {
5061     Stmt *S = D->getRawStmt();
5062     if (!isa<CompoundStmt>(S))
5063       addLocalScopeAndDtors(S);
5064     if (CFGBlock *R = addStmt(S))
5065       B = R;
5066   }
5067 
5068   return B;
5069 }
5070 
5071 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
5072 ///  no successors or predecessors.  If this is the first block created in the
5073 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
5074 CFGBlock *CFG::createBlock() {
5075   bool first_block = begin() == end();
5076 
5077   // Create the block.
5078   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
5079   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
5080   Blocks.push_back(Mem, BlkBVC);
5081 
5082   // If this is the first block, set it as the Entry and Exit.
5083   if (first_block)
5084     Entry = Exit = &back();
5085 
5086   // Return the block.
5087   return &back();
5088 }
5089 
5090 /// buildCFG - Constructs a CFG from an AST.
5091 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
5092                                    ASTContext *C, const BuildOptions &BO) {
5093   CFGBuilder Builder(C, BO);
5094   return Builder.buildCFG(D, Statement);
5095 }
5096 
5097 bool CFG::isLinear() const {
5098   // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5099   // in between, then we have no room for control flow.
5100   if (size() <= 3)
5101     return true;
5102 
5103   // Traverse the CFG until we find a branch.
5104   // TODO: While this should still be very fast,
5105   // maybe we should cache the answer.
5106   llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
5107   const CFGBlock *B = Entry;
5108   while (B != Exit) {
5109     auto IteratorAndFlag = Visited.insert(B);
5110     if (!IteratorAndFlag.second) {
5111       // We looped back to a block that we've already visited. Not linear.
5112       return false;
5113     }
5114 
5115     // Iterate over reachable successors.
5116     const CFGBlock *FirstReachableB = nullptr;
5117     for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
5118       if (!AB.isReachable())
5119         continue;
5120 
5121       if (FirstReachableB == nullptr) {
5122         FirstReachableB = &*AB;
5123       } else {
5124         // We've encountered a branch. It's not a linear CFG.
5125         return false;
5126       }
5127     }
5128 
5129     if (!FirstReachableB) {
5130       // We reached a dead end. EXIT is unreachable. This is linear enough.
5131       return true;
5132     }
5133 
5134     // There's only one way to move forward. Proceed.
5135     B = FirstReachableB;
5136   }
5137 
5138   // We reached EXIT and found no branches.
5139   return true;
5140 }
5141 
5142 const CXXDestructorDecl *
5143 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5144   switch (getKind()) {
5145     case CFGElement::Initializer:
5146     case CFGElement::NewAllocator:
5147     case CFGElement::LoopExit:
5148     case CFGElement::LifetimeEnds:
5149     case CFGElement::Statement:
5150     case CFGElement::Constructor:
5151     case CFGElement::CXXRecordTypedCall:
5152     case CFGElement::ScopeBegin:
5153     case CFGElement::ScopeEnd:
5154       llvm_unreachable("getDestructorDecl should only be used with "
5155                        "ImplicitDtors");
5156     case CFGElement::AutomaticObjectDtor: {
5157       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5158       QualType ty = var->getType();
5159 
5160       // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5161       //
5162       // Lifetime-extending constructs are handled here. This works for a single
5163       // temporary in an initializer expression.
5164       if (ty->isReferenceType()) {
5165         if (const Expr *Init = var->getInit()) {
5166           ty = getReferenceInitTemporaryType(Init);
5167         }
5168       }
5169 
5170       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5171         ty = arrayType->getElementType();
5172       }
5173 
5174       // The situation when the type of the lifetime-extending reference
5175       // does not correspond to the type of the object is supposed
5176       // to be handled by now. In particular, 'ty' is now the unwrapped
5177       // record type.
5178       const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5179       assert(classDecl);
5180       return classDecl->getDestructor();
5181     }
5182     case CFGElement::DeleteDtor: {
5183       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5184       QualType DTy = DE->getDestroyedType();
5185       DTy = DTy.getNonReferenceType();
5186       const CXXRecordDecl *classDecl =
5187           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5188       return classDecl->getDestructor();
5189     }
5190     case CFGElement::TemporaryDtor: {
5191       const CXXBindTemporaryExpr *bindExpr =
5192         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5193       const CXXTemporary *temp = bindExpr->getTemporary();
5194       return temp->getDestructor();
5195     }
5196     case CFGElement::BaseDtor:
5197     case CFGElement::MemberDtor:
5198       // Not yet supported.
5199       return nullptr;
5200   }
5201   llvm_unreachable("getKind() returned bogus value");
5202 }
5203 
5204 //===----------------------------------------------------------------------===//
5205 // CFGBlock operations.
5206 //===----------------------------------------------------------------------===//
5207 
5208 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5209     : ReachableBlock(IsReachable ? B : nullptr),
5210       UnreachableBlock(!IsReachable ? B : nullptr,
5211                        B && IsReachable ? AB_Normal : AB_Unreachable) {}
5212 
5213 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5214     : ReachableBlock(B),
5215       UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5216                        B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5217 
5218 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5219                             BumpVectorContext &C) {
5220   if (CFGBlock *B = Succ.getReachableBlock())
5221     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5222 
5223   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5224     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5225 
5226   Succs.push_back(Succ, C);
5227 }
5228 
5229 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5230         const CFGBlock *From, const CFGBlock *To) {
5231   if (F.IgnoreNullPredecessors && !From)
5232     return true;
5233 
5234   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5235     // If the 'To' has no label or is labeled but the label isn't a
5236     // CaseStmt then filter this edge.
5237     if (const SwitchStmt *S =
5238         dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5239       if (S->isAllEnumCasesCovered()) {
5240         const Stmt *L = To->getLabel();
5241         if (!L || !isa<CaseStmt>(L))
5242           return true;
5243       }
5244     }
5245   }
5246 
5247   return false;
5248 }
5249 
5250 //===----------------------------------------------------------------------===//
5251 // CFG pretty printing
5252 //===----------------------------------------------------------------------===//
5253 
5254 namespace {
5255 
5256 class StmtPrinterHelper : public PrinterHelper  {
5257   using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5258   using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5259 
5260   StmtMapTy StmtMap;
5261   DeclMapTy DeclMap;
5262   signed currentBlock = 0;
5263   unsigned currStmt = 0;
5264   const LangOptions &LangOpts;
5265 
5266 public:
5267   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5268       : LangOpts(LO) {
5269     if (!cfg)
5270       return;
5271     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5272       unsigned j = 1;
5273       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5274            BI != BEnd; ++BI, ++j ) {
5275         if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5276           const Stmt *stmt= SE->getStmt();
5277           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5278           StmtMap[stmt] = P;
5279 
5280           switch (stmt->getStmtClass()) {
5281             case Stmt::DeclStmtClass:
5282               DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5283               break;
5284             case Stmt::IfStmtClass: {
5285               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5286               if (var)
5287                 DeclMap[var] = P;
5288               break;
5289             }
5290             case Stmt::ForStmtClass: {
5291               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5292               if (var)
5293                 DeclMap[var] = P;
5294               break;
5295             }
5296             case Stmt::WhileStmtClass: {
5297               const VarDecl *var =
5298                 cast<WhileStmt>(stmt)->getConditionVariable();
5299               if (var)
5300                 DeclMap[var] = P;
5301               break;
5302             }
5303             case Stmt::SwitchStmtClass: {
5304               const VarDecl *var =
5305                 cast<SwitchStmt>(stmt)->getConditionVariable();
5306               if (var)
5307                 DeclMap[var] = P;
5308               break;
5309             }
5310             case Stmt::CXXCatchStmtClass: {
5311               const VarDecl *var =
5312                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5313               if (var)
5314                 DeclMap[var] = P;
5315               break;
5316             }
5317             default:
5318               break;
5319           }
5320         }
5321       }
5322     }
5323   }
5324 
5325   ~StmtPrinterHelper() override = default;
5326 
5327   const LangOptions &getLangOpts() const { return LangOpts; }
5328   void setBlockID(signed i) { currentBlock = i; }
5329   void setStmtID(unsigned i) { currStmt = i; }
5330 
5331   bool handledStmt(Stmt *S, raw_ostream &OS) override {
5332     StmtMapTy::iterator I = StmtMap.find(S);
5333 
5334     if (I == StmtMap.end())
5335       return false;
5336 
5337     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5338                           && I->second.second == currStmt) {
5339       return false;
5340     }
5341 
5342     OS << "[B" << I->second.first << "." << I->second.second << "]";
5343     return true;
5344   }
5345 
5346   bool handleDecl(const Decl *D, raw_ostream &OS) {
5347     DeclMapTy::iterator I = DeclMap.find(D);
5348 
5349     if (I == DeclMap.end())
5350       return false;
5351 
5352     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5353                           && I->second.second == currStmt) {
5354       return false;
5355     }
5356 
5357     OS << "[B" << I->second.first << "." << I->second.second << "]";
5358     return true;
5359   }
5360 };
5361 
5362 class CFGBlockTerminatorPrint
5363     : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5364   raw_ostream &OS;
5365   StmtPrinterHelper* Helper;
5366   PrintingPolicy Policy;
5367 
5368 public:
5369   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5370                           const PrintingPolicy &Policy)
5371       : OS(os), Helper(helper), Policy(Policy) {
5372     this->Policy.IncludeNewlines = false;
5373   }
5374 
5375   void VisitIfStmt(IfStmt *I) {
5376     OS << "if ";
5377     if (Stmt *C = I->getCond())
5378       C->printPretty(OS, Helper, Policy);
5379   }
5380 
5381   // Default case.
5382   void VisitStmt(Stmt *Terminator) {
5383     Terminator->printPretty(OS, Helper, Policy);
5384   }
5385 
5386   void VisitDeclStmt(DeclStmt *DS) {
5387     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5388     OS << "static init " << VD->getName();
5389   }
5390 
5391   void VisitForStmt(ForStmt *F) {
5392     OS << "for (" ;
5393     if (F->getInit())
5394       OS << "...";
5395     OS << "; ";
5396     if (Stmt *C = F->getCond())
5397       C->printPretty(OS, Helper, Policy);
5398     OS << "; ";
5399     if (F->getInc())
5400       OS << "...";
5401     OS << ")";
5402   }
5403 
5404   void VisitWhileStmt(WhileStmt *W) {
5405     OS << "while " ;
5406     if (Stmt *C = W->getCond())
5407       C->printPretty(OS, Helper, Policy);
5408   }
5409 
5410   void VisitDoStmt(DoStmt *D) {
5411     OS << "do ... while ";
5412     if (Stmt *C = D->getCond())
5413       C->printPretty(OS, Helper, Policy);
5414   }
5415 
5416   void VisitSwitchStmt(SwitchStmt *Terminator) {
5417     OS << "switch ";
5418     Terminator->getCond()->printPretty(OS, Helper, Policy);
5419   }
5420 
5421   void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
5422 
5423   void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
5424 
5425   void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
5426 
5427   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5428     if (Stmt *Cond = C->getCond())
5429       Cond->printPretty(OS, Helper, Policy);
5430     OS << " ? ... : ...";
5431   }
5432 
5433   void VisitChooseExpr(ChooseExpr *C) {
5434     OS << "__builtin_choose_expr( ";
5435     if (Stmt *Cond = C->getCond())
5436       Cond->printPretty(OS, Helper, Policy);
5437     OS << " )";
5438   }
5439 
5440   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5441     OS << "goto *";
5442     if (Stmt *T = I->getTarget())
5443       T->printPretty(OS, Helper, Policy);
5444   }
5445 
5446   void VisitBinaryOperator(BinaryOperator* B) {
5447     if (!B->isLogicalOp()) {
5448       VisitExpr(B);
5449       return;
5450     }
5451 
5452     if (B->getLHS())
5453       B->getLHS()->printPretty(OS, Helper, Policy);
5454 
5455     switch (B->getOpcode()) {
5456       case BO_LOr:
5457         OS << " || ...";
5458         return;
5459       case BO_LAnd:
5460         OS << " && ...";
5461         return;
5462       default:
5463         llvm_unreachable("Invalid logical operator.");
5464     }
5465   }
5466 
5467   void VisitExpr(Expr *E) {
5468     E->printPretty(OS, Helper, Policy);
5469   }
5470 
5471 public:
5472   void print(CFGTerminator T) {
5473     switch (T.getKind()) {
5474     case CFGTerminator::StmtBranch:
5475       Visit(T.getStmt());
5476       break;
5477     case CFGTerminator::TemporaryDtorsBranch:
5478       OS << "(Temp Dtor) ";
5479       Visit(T.getStmt());
5480       break;
5481     case CFGTerminator::VirtualBaseBranch:
5482       OS << "(See if most derived ctor has already initialized vbases)";
5483       break;
5484     }
5485   }
5486 };
5487 
5488 } // namespace
5489 
5490 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5491                               const CXXCtorInitializer *I) {
5492   if (I->isBaseInitializer())
5493     OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5494   else if (I->isDelegatingInitializer())
5495     OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5496   else
5497     OS << I->getAnyMember()->getName();
5498   OS << "(";
5499   if (Expr *IE = I->getInit())
5500     IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5501   OS << ")";
5502 
5503   if (I->isBaseInitializer())
5504     OS << " (Base initializer)";
5505   else if (I->isDelegatingInitializer())
5506     OS << " (Delegating initializer)";
5507   else
5508     OS << " (Member initializer)";
5509 }
5510 
5511 static void print_construction_context(raw_ostream &OS,
5512                                        StmtPrinterHelper &Helper,
5513                                        const ConstructionContext *CC) {
5514   SmallVector<const Stmt *, 3> Stmts;
5515   switch (CC->getKind()) {
5516   case ConstructionContext::SimpleConstructorInitializerKind: {
5517     OS << ", ";
5518     const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5519     print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5520     return;
5521   }
5522   case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5523     OS << ", ";
5524     const auto *CICC =
5525         cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5526     print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5527     Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5528     break;
5529   }
5530   case ConstructionContext::SimpleVariableKind: {
5531     const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5532     Stmts.push_back(SDSCC->getDeclStmt());
5533     break;
5534   }
5535   case ConstructionContext::CXX17ElidedCopyVariableKind: {
5536     const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5537     Stmts.push_back(CDSCC->getDeclStmt());
5538     Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5539     break;
5540   }
5541   case ConstructionContext::NewAllocatedObjectKind: {
5542     const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5543     Stmts.push_back(NECC->getCXXNewExpr());
5544     break;
5545   }
5546   case ConstructionContext::SimpleReturnedValueKind: {
5547     const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5548     Stmts.push_back(RSCC->getReturnStmt());
5549     break;
5550   }
5551   case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5552     const auto *RSCC =
5553         cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5554     Stmts.push_back(RSCC->getReturnStmt());
5555     Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5556     break;
5557   }
5558   case ConstructionContext::SimpleTemporaryObjectKind: {
5559     const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5560     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5561     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5562     break;
5563   }
5564   case ConstructionContext::ElidedTemporaryObjectKind: {
5565     const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5566     Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5567     Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5568     Stmts.push_back(TOCC->getConstructorAfterElision());
5569     break;
5570   }
5571   case ConstructionContext::ArgumentKind: {
5572     const auto *ACC = cast<ArgumentConstructionContext>(CC);
5573     if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5574       OS << ", ";
5575       Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5576     }
5577     OS << ", ";
5578     Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5579     OS << "+" << ACC->getIndex();
5580     return;
5581   }
5582   }
5583   for (auto I: Stmts)
5584     if (I) {
5585       OS << ", ";
5586       Helper.handledStmt(const_cast<Stmt *>(I), OS);
5587     }
5588 }
5589 
5590 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5591                        const CFGElement &E);
5592 
5593 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5594   StmtPrinterHelper Helper(nullptr, {});
5595   print_elem(OS, Helper, *this);
5596 }
5597 
5598 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5599                        const CFGElement &E) {
5600   switch (E.getKind()) {
5601   case CFGElement::Kind::Statement:
5602   case CFGElement::Kind::CXXRecordTypedCall:
5603   case CFGElement::Kind::Constructor: {
5604     CFGStmt CS = E.castAs<CFGStmt>();
5605     const Stmt *S = CS.getStmt();
5606     assert(S != nullptr && "Expecting non-null Stmt");
5607 
5608     // special printing for statement-expressions.
5609     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5610       const CompoundStmt *Sub = SE->getSubStmt();
5611 
5612       auto Children = Sub->children();
5613       if (Children.begin() != Children.end()) {
5614         OS << "({ ... ; ";
5615         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5616         OS << " })\n";
5617         return;
5618       }
5619     }
5620     // special printing for comma expressions.
5621     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5622       if (B->getOpcode() == BO_Comma) {
5623         OS << "... , ";
5624         Helper.handledStmt(B->getRHS(),OS);
5625         OS << '\n';
5626         return;
5627       }
5628     }
5629     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5630 
5631     if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5632       if (isa<CXXOperatorCallExpr>(S))
5633         OS << " (OperatorCall)";
5634       OS << " (CXXRecordTypedCall";
5635       print_construction_context(OS, Helper, VTC->getConstructionContext());
5636       OS << ")";
5637     } else if (isa<CXXOperatorCallExpr>(S)) {
5638       OS << " (OperatorCall)";
5639     } else if (isa<CXXBindTemporaryExpr>(S)) {
5640       OS << " (BindTemporary)";
5641     } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5642       OS << " (CXXConstructExpr";
5643       if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5644         print_construction_context(OS, Helper, CE->getConstructionContext());
5645       }
5646       OS << ", " << CCE->getType() << ")";
5647     } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5648       OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName()
5649          << ", " << CE->getType() << ")";
5650     }
5651 
5652     // Expressions need a newline.
5653     if (isa<Expr>(S))
5654       OS << '\n';
5655 
5656     break;
5657   }
5658 
5659   case CFGElement::Kind::Initializer:
5660     print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5661     OS << '\n';
5662     break;
5663 
5664   case CFGElement::Kind::AutomaticObjectDtor: {
5665     CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5666     const VarDecl *VD = DE.getVarDecl();
5667     Helper.handleDecl(VD, OS);
5668 
5669     QualType T = VD->getType();
5670     if (T->isReferenceType())
5671       T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5672 
5673     OS << ".~";
5674     T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5675     OS << "() (Implicit destructor)\n";
5676     break;
5677   }
5678 
5679   case CFGElement::Kind::LifetimeEnds:
5680     Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5681     OS << " (Lifetime ends)\n";
5682     break;
5683 
5684   case CFGElement::Kind::LoopExit:
5685     OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5686     break;
5687 
5688   case CFGElement::Kind::ScopeBegin:
5689     OS << "CFGScopeBegin(";
5690     if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5691       OS << VD->getQualifiedNameAsString();
5692     OS << ")\n";
5693     break;
5694 
5695   case CFGElement::Kind::ScopeEnd:
5696     OS << "CFGScopeEnd(";
5697     if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5698       OS << VD->getQualifiedNameAsString();
5699     OS << ")\n";
5700     break;
5701 
5702   case CFGElement::Kind::NewAllocator:
5703     OS << "CFGNewAllocator(";
5704     if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5705       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5706     OS << ")\n";
5707     break;
5708 
5709   case CFGElement::Kind::DeleteDtor: {
5710     CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5711     const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5712     if (!RD)
5713       return;
5714     CXXDeleteExpr *DelExpr =
5715         const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5716     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5717     OS << "->~" << RD->getName().str() << "()";
5718     OS << " (Implicit destructor)\n";
5719     break;
5720   }
5721 
5722   case CFGElement::Kind::BaseDtor: {
5723     const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5724     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5725     OS << " (Base object destructor)\n";
5726     break;
5727   }
5728 
5729   case CFGElement::Kind::MemberDtor: {
5730     const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5731     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5732     OS << "this->" << FD->getName();
5733     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5734     OS << " (Member object destructor)\n";
5735     break;
5736   }
5737 
5738   case CFGElement::Kind::TemporaryDtor: {
5739     const CXXBindTemporaryExpr *BT =
5740         E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5741     OS << "~";
5742     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5743     OS << "() (Temporary object destructor)\n";
5744     break;
5745   }
5746   }
5747 }
5748 
5749 static void print_block(raw_ostream &OS, const CFG* cfg,
5750                         const CFGBlock &B,
5751                         StmtPrinterHelper &Helper, bool print_edges,
5752                         bool ShowColors) {
5753   Helper.setBlockID(B.getBlockID());
5754 
5755   // Print the header.
5756   if (ShowColors)
5757     OS.changeColor(raw_ostream::YELLOW, true);
5758 
5759   OS << "\n [B" << B.getBlockID();
5760 
5761   if (&B == &cfg->getEntry())
5762     OS << " (ENTRY)]\n";
5763   else if (&B == &cfg->getExit())
5764     OS << " (EXIT)]\n";
5765   else if (&B == cfg->getIndirectGotoBlock())
5766     OS << " (INDIRECT GOTO DISPATCH)]\n";
5767   else if (B.hasNoReturnElement())
5768     OS << " (NORETURN)]\n";
5769   else
5770     OS << "]\n";
5771 
5772   if (ShowColors)
5773     OS.resetColor();
5774 
5775   // Print the label of this block.
5776   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5777     if (print_edges)
5778       OS << "  ";
5779 
5780     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5781       OS << L->getName();
5782     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5783       OS << "case ";
5784       if (const Expr *LHS = C->getLHS())
5785         LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5786       if (const Expr *RHS = C->getRHS()) {
5787         OS << " ... ";
5788         RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5789       }
5790     } else if (isa<DefaultStmt>(Label))
5791       OS << "default";
5792     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5793       OS << "catch (";
5794       if (const VarDecl *ED = CS->getExceptionDecl())
5795         ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5796       else
5797         OS << "...";
5798       OS << ")";
5799     } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
5800       OS << "@catch (";
5801       if (const VarDecl *PD = CS->getCatchParamDecl())
5802         PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5803       else
5804         OS << "...";
5805       OS << ")";
5806     } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5807       OS << "__except (";
5808       ES->getFilterExpr()->printPretty(OS, &Helper,
5809                                        PrintingPolicy(Helper.getLangOpts()), 0);
5810       OS << ")";
5811     } else
5812       llvm_unreachable("Invalid label statement in CFGBlock.");
5813 
5814     OS << ":\n";
5815   }
5816 
5817   // Iterate through the statements in the block and print them.
5818   unsigned j = 1;
5819 
5820   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5821        I != E ; ++I, ++j ) {
5822     // Print the statement # in the basic block and the statement itself.
5823     if (print_edges)
5824       OS << " ";
5825 
5826     OS << llvm::format("%3d", j) << ": ";
5827 
5828     Helper.setStmtID(j);
5829 
5830     print_elem(OS, Helper, *I);
5831   }
5832 
5833   // Print the terminator of this block.
5834   if (B.getTerminator().isValid()) {
5835     if (ShowColors)
5836       OS.changeColor(raw_ostream::GREEN);
5837 
5838     OS << "   T: ";
5839 
5840     Helper.setBlockID(-1);
5841 
5842     PrintingPolicy PP(Helper.getLangOpts());
5843     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
5844     TPrinter.print(B.getTerminator());
5845     OS << '\n';
5846 
5847     if (ShowColors)
5848       OS.resetColor();
5849   }
5850 
5851   if (print_edges) {
5852     // Print the predecessors of this block.
5853     if (!B.pred_empty()) {
5854       const raw_ostream::Colors Color = raw_ostream::BLUE;
5855       if (ShowColors)
5856         OS.changeColor(Color);
5857       OS << "   Preds " ;
5858       if (ShowColors)
5859         OS.resetColor();
5860       OS << '(' << B.pred_size() << "):";
5861       unsigned i = 0;
5862 
5863       if (ShowColors)
5864         OS.changeColor(Color);
5865 
5866       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
5867            I != E; ++I, ++i) {
5868         if (i % 10 == 8)
5869           OS << "\n     ";
5870 
5871         CFGBlock *B = *I;
5872         bool Reachable = true;
5873         if (!B) {
5874           Reachable = false;
5875           B = I->getPossiblyUnreachableBlock();
5876         }
5877 
5878         OS << " B" << B->getBlockID();
5879         if (!Reachable)
5880           OS << "(Unreachable)";
5881       }
5882 
5883       if (ShowColors)
5884         OS.resetColor();
5885 
5886       OS << '\n';
5887     }
5888 
5889     // Print the successors of this block.
5890     if (!B.succ_empty()) {
5891       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
5892       if (ShowColors)
5893         OS.changeColor(Color);
5894       OS << "   Succs ";
5895       if (ShowColors)
5896         OS.resetColor();
5897       OS << '(' << B.succ_size() << "):";
5898       unsigned i = 0;
5899 
5900       if (ShowColors)
5901         OS.changeColor(Color);
5902 
5903       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
5904            I != E; ++I, ++i) {
5905         if (i % 10 == 8)
5906           OS << "\n    ";
5907 
5908         CFGBlock *B = *I;
5909 
5910         bool Reachable = true;
5911         if (!B) {
5912           Reachable = false;
5913           B = I->getPossiblyUnreachableBlock();
5914         }
5915 
5916         if (B) {
5917           OS << " B" << B->getBlockID();
5918           if (!Reachable)
5919             OS << "(Unreachable)";
5920         }
5921         else {
5922           OS << " NULL";
5923         }
5924       }
5925 
5926       if (ShowColors)
5927         OS.resetColor();
5928       OS << '\n';
5929     }
5930   }
5931 }
5932 
5933 /// dump - A simple pretty printer of a CFG that outputs to stderr.
5934 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
5935   print(llvm::errs(), LO, ShowColors);
5936 }
5937 
5938 /// print - A simple pretty printer of a CFG that outputs to an ostream.
5939 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
5940   StmtPrinterHelper Helper(this, LO);
5941 
5942   // Print the entry block.
5943   print_block(OS, this, getEntry(), Helper, true, ShowColors);
5944 
5945   // Iterate through the CFGBlocks and print them one by one.
5946   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
5947     // Skip the entry block, because we already printed it.
5948     if (&(**I) == &getEntry() || &(**I) == &getExit())
5949       continue;
5950 
5951     print_block(OS, this, **I, Helper, true, ShowColors);
5952   }
5953 
5954   // Print the exit block.
5955   print_block(OS, this, getExit(), Helper, true, ShowColors);
5956   OS << '\n';
5957   OS.flush();
5958 }
5959 
5960 size_t CFGBlock::getIndexInCFG() const {
5961   return llvm::find(*getParent(), this) - getParent()->begin();
5962 }
5963 
5964 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
5965 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
5966                     bool ShowColors) const {
5967   print(llvm::errs(), cfg, LO, ShowColors);
5968 }
5969 
5970 LLVM_DUMP_METHOD void CFGBlock::dump() const {
5971   dump(getParent(), LangOptions(), false);
5972 }
5973 
5974 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
5975 ///   Generally this will only be called from CFG::print.
5976 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
5977                      const LangOptions &LO, bool ShowColors) const {
5978   StmtPrinterHelper Helper(cfg, LO);
5979   print_block(OS, cfg, *this, Helper, true, ShowColors);
5980   OS << '\n';
5981 }
5982 
5983 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
5984 void CFGBlock::printTerminator(raw_ostream &OS,
5985                                const LangOptions &LO) const {
5986   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
5987   TPrinter.print(getTerminator());
5988 }
5989 
5990 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
5991 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
5992                                    bool AddQuotes) const {
5993   std::string Buf;
5994   llvm::raw_string_ostream TempOut(Buf);
5995 
5996   printTerminator(TempOut, LO);
5997 
5998   Out << JsonFormat(TempOut.str(), AddQuotes);
5999 }
6000 
6001 // Returns true if by simply looking at the block, we can be sure that it
6002 // results in a sink during analysis. This is useful to know when the analysis
6003 // was interrupted, and we try to figure out if it would sink eventually.
6004 // There may be many more reasons why a sink would appear during analysis
6005 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6006 // sinks that would be obvious by looking at the CFG.
6007 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
6008   if (Blk->hasNoReturnElement())
6009     return true;
6010 
6011   // FIXME: Throw-expressions are currently generating sinks during analysis:
6012   // they're not supported yet, and also often used for actually terminating
6013   // the program. So we should treat them as sinks in this analysis as well,
6014   // at least for now, but once we have better support for exceptions,
6015   // we'd need to carefully handle the case when the throw is being
6016   // immediately caught.
6017   if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
6018         if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
6019           if (isa<CXXThrowExpr>(StmtElm->getStmt()))
6020             return true;
6021         return false;
6022       }))
6023     return true;
6024 
6025   return false;
6026 }
6027 
6028 bool CFGBlock::isInevitablySinking() const {
6029   const CFG &Cfg = *getParent();
6030 
6031   const CFGBlock *StartBlk = this;
6032   if (isImmediateSinkBlock(StartBlk))
6033     return true;
6034 
6035   llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
6036   llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
6037 
6038   DFSWorkList.push_back(StartBlk);
6039   while (!DFSWorkList.empty()) {
6040     const CFGBlock *Blk = DFSWorkList.back();
6041     DFSWorkList.pop_back();
6042     Visited.insert(Blk);
6043 
6044     // If at least one path reaches the CFG exit, it means that control is
6045     // returned to the caller. For now, say that we are not sure what
6046     // happens next. If necessary, this can be improved to analyze
6047     // the parent StackFrameContext's call site in a similar manner.
6048     if (Blk == &Cfg.getExit())
6049       return false;
6050 
6051     for (const auto &Succ : Blk->succs()) {
6052       if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
6053         if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
6054           // If the block has reachable child blocks that aren't no-return,
6055           // add them to the worklist.
6056           DFSWorkList.push_back(SuccBlk);
6057         }
6058       }
6059     }
6060   }
6061 
6062   // Nothing reached the exit. It can only mean one thing: there's no return.
6063   return true;
6064 }
6065 
6066 const Expr *CFGBlock::getLastCondition() const {
6067   // If the terminator is a temporary dtor or a virtual base, etc, we can't
6068   // retrieve a meaningful condition, bail out.
6069   if (Terminator.getKind() != CFGTerminator::StmtBranch)
6070     return nullptr;
6071 
6072   // Also, if this method was called on a block that doesn't have 2 successors,
6073   // this block doesn't have retrievable condition.
6074   if (succ_size() < 2)
6075     return nullptr;
6076 
6077   // FIXME: Is there a better condition expression we can return in this case?
6078   if (size() == 0)
6079     return nullptr;
6080 
6081   auto StmtElem = rbegin()->getAs<CFGStmt>();
6082   if (!StmtElem)
6083     return nullptr;
6084 
6085   const Stmt *Cond = StmtElem->getStmt();
6086   if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
6087     return nullptr;
6088 
6089   // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6090   // the cast<>.
6091   return cast<Expr>(Cond)->IgnoreParens();
6092 }
6093 
6094 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
6095   Stmt *Terminator = getTerminatorStmt();
6096   if (!Terminator)
6097     return nullptr;
6098 
6099   Expr *E = nullptr;
6100 
6101   switch (Terminator->getStmtClass()) {
6102     default:
6103       break;
6104 
6105     case Stmt::CXXForRangeStmtClass:
6106       E = cast<CXXForRangeStmt>(Terminator)->getCond();
6107       break;
6108 
6109     case Stmt::ForStmtClass:
6110       E = cast<ForStmt>(Terminator)->getCond();
6111       break;
6112 
6113     case Stmt::WhileStmtClass:
6114       E = cast<WhileStmt>(Terminator)->getCond();
6115       break;
6116 
6117     case Stmt::DoStmtClass:
6118       E = cast<DoStmt>(Terminator)->getCond();
6119       break;
6120 
6121     case Stmt::IfStmtClass:
6122       E = cast<IfStmt>(Terminator)->getCond();
6123       break;
6124 
6125     case Stmt::ChooseExprClass:
6126       E = cast<ChooseExpr>(Terminator)->getCond();
6127       break;
6128 
6129     case Stmt::IndirectGotoStmtClass:
6130       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
6131       break;
6132 
6133     case Stmt::SwitchStmtClass:
6134       E = cast<SwitchStmt>(Terminator)->getCond();
6135       break;
6136 
6137     case Stmt::BinaryConditionalOperatorClass:
6138       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6139       break;
6140 
6141     case Stmt::ConditionalOperatorClass:
6142       E = cast<ConditionalOperator>(Terminator)->getCond();
6143       break;
6144 
6145     case Stmt::BinaryOperatorClass: // '&&' and '||'
6146       E = cast<BinaryOperator>(Terminator)->getLHS();
6147       break;
6148 
6149     case Stmt::ObjCForCollectionStmtClass:
6150       return Terminator;
6151   }
6152 
6153   if (!StripParens)
6154     return E;
6155 
6156   return E ? E->IgnoreParens() : nullptr;
6157 }
6158 
6159 //===----------------------------------------------------------------------===//
6160 // CFG Graphviz Visualization
6161 //===----------------------------------------------------------------------===//
6162 
6163 static StmtPrinterHelper *GraphHelper;
6164 
6165 void CFG::viewCFG(const LangOptions &LO) const {
6166   StmtPrinterHelper H(this, LO);
6167   GraphHelper = &H;
6168   llvm::ViewGraph(this,"CFG");
6169   GraphHelper = nullptr;
6170 }
6171 
6172 namespace llvm {
6173 
6174 template<>
6175 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6176   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6177 
6178   static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) {
6179     std::string OutSStr;
6180     llvm::raw_string_ostream Out(OutSStr);
6181     print_block(Out,Graph, *Node, *GraphHelper, false, false);
6182     std::string& OutStr = Out.str();
6183 
6184     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6185 
6186     // Process string output to make it nicer...
6187     for (unsigned i = 0; i != OutStr.length(); ++i)
6188       if (OutStr[i] == '\n') {                            // Left justify
6189         OutStr[i] = '\\';
6190         OutStr.insert(OutStr.begin()+i+1, 'l');
6191       }
6192 
6193     return OutStr;
6194   }
6195 };
6196 
6197 } // namespace llvm
6198