1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26
27 using namespace clang;
28
29 #define DUMP_OVERRIDERS 0
30
31 namespace {
32
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
38
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
43
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
49
BaseOffset__anon702cc0260111::BaseOffset50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anon702cc0260111::BaseOffset52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
56
isEmpty__anon702cc0260111::BaseOffset57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
68
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
72
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
75
OverriderInfo__anon702cc0260111::FinalOverriders::OverriderInfo76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
78 };
79
80 private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
84
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
89
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
94
95 ASTContext &Context;
96
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
99
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
106
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
110
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
116
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
126
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134 public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
138
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
145
146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147 }
148
149 /// dump - dump the final overriders.
dump()150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
154 }
155
156 };
157
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
175
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
183
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
192
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
217 }
218
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256 }
257
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376 }
377
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!VTableContextBase::hasVtableSlot(MD))
413 continue;
414 MD = MD->getCanonicalDecl();
415
416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424 BaseOffset Offset;
425 if (!Overrider.Method->isPure())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
433 }
434
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436 }
437
438 Out << "\n";
439 }
440 }
441
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
455
456 public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466 // empty - Return whether the offset map is empty or not.
empty__anon702cc0260111::VCallOffsetMap467 bool empty() const { return Offsets.empty(); }
468 };
469
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
479
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getMethodQuals() != RT->getMethodQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
486 }
487
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(LHS))
495 return isa<CXXDestructorDecl>(RHS);
496
497 // FIXME: We need to check more things here.
498
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
504
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
507 }
508
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514 return false;
515 }
516
517 // Add the offset.
518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
520 }
521
getVCallOffsetOffset(const CXXMethodDecl * MD)522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526 return OffsetPair.second;
527 }
528
529 llvm_unreachable("Should always find a vcall offset offset!");
530 }
531
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
537
538 private:
539 const ItaniumVTableContext &VTables;
540
541 /// MostDerivedClass - The most derived class for which we're building vcall
542 /// and vbase offsets.
543 const CXXRecordDecl *MostDerivedClass;
544
545 /// LayoutClass - The class we're using for layout information. Will be
546 /// different than the most derived class if we're building a construction
547 /// vtable.
548 const CXXRecordDecl *LayoutClass;
549
550 /// Context - The ASTContext which we will use for layout information.
551 ASTContext &Context;
552
553 /// Components - vcall and vbase offset components
554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555 VTableComponentVectorTy Components;
556
557 /// VisitedVirtualBases - Visited virtual bases.
558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559
560 /// VCallOffsets - Keeps track of vcall offsets.
561 VCallOffsetMap VCallOffsets;
562
563
564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565 /// relative to the address point.
566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567
568 /// FinalOverriders - The final overriders of the most derived class.
569 /// (Can be null when we're not building a vtable of the most derived class).
570 const FinalOverriders *Overriders;
571
572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573 /// given base subobject.
574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575 CharUnits RealBaseOffset);
576
577 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579
580 /// AddVBaseOffsets - Add vbase offsets for the given class.
581 void AddVBaseOffsets(const CXXRecordDecl *Base,
582 CharUnits OffsetInLayoutClass);
583
584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585 /// chars, relative to the vtable address point.
586 CharUnits getCurrentOffsetOffset() const;
587
588 public:
VCallAndVBaseOffsetBuilder(const ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590 const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : VTables(VTables), MostDerivedClass(MostDerivedClass),
596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597 Overriders(Overriders) {
598
599 // Add vcall and vbase offsets.
600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601 }
602
603 /// Methods for iterating over the components.
604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const605 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const606 const_iterator components_end() const { return Components.rend(); }
607
getVCallOffsets() const608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610 return VBaseOffsetOffsets;
611 }
612 };
613
614 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616 bool BaseIsVirtual,
617 CharUnits RealBaseOffset) {
618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619
620 // Itanium C++ ABI 2.5.2:
621 // ..in classes sharing a virtual table with a primary base class, the vcall
622 // and vbase offsets added by the derived class all come before the vcall
623 // and vbase offsets required by the base class, so that the latter may be
624 // laid out as required by the base class without regard to additions from
625 // the derived class(es).
626
627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628 // emit them for the primary base first).
629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631
632 CharUnits PrimaryBaseOffset;
633
634 // Get the base offset of the primary base.
635 if (PrimaryBaseIsVirtual) {
636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary vbase should have a zero offset!");
638
639 const ASTRecordLayout &MostDerivedClassLayout =
640 Context.getASTRecordLayout(MostDerivedClass);
641
642 PrimaryBaseOffset =
643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644 } else {
645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646 "Primary base should have a zero offset!");
647
648 PrimaryBaseOffset = Base.getBaseOffset();
649 }
650
651 AddVCallAndVBaseOffsets(
652 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653 PrimaryBaseIsVirtual, RealBaseOffset);
654 }
655
656 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657
658 // We only want to add vcall offsets for virtual bases.
659 if (BaseIsVirtual)
660 AddVCallOffsets(Base, RealBaseOffset);
661 }
662
getCurrentOffsetOffset() const663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664 // OffsetIndex is the index of this vcall or vbase offset, relative to the
665 // vtable address point. (We subtract 3 to account for the information just
666 // above the address point, the RTTI info, the offset to top, and the
667 // vcall offset itself).
668 int64_t OffsetIndex = -(int64_t)(3 + Components.size());
669
670 // Under the relative ABI, the offset widths are 32-bit ints instead of
671 // pointer widths.
672 CharUnits OffsetWidth = Context.toCharUnitsFromBits(
673 VTables.isRelativeLayout() ? 32
674 : Context.getTargetInfo().getPointerWidth(0));
675 CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
676
677 return OffsetOffset;
678 }
679
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)680 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
681 CharUnits VBaseOffset) {
682 const CXXRecordDecl *RD = Base.getBase();
683 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
684
685 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
686
687 // Handle the primary base first.
688 // We only want to add vcall offsets if the base is non-virtual; a virtual
689 // primary base will have its vcall and vbase offsets emitted already.
690 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
691 // Get the base offset of the primary base.
692 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
693 "Primary base should have a zero offset!");
694
695 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
696 VBaseOffset);
697 }
698
699 // Add the vcall offsets.
700 for (const auto *MD : RD->methods()) {
701 if (!VTableContextBase::hasVtableSlot(MD))
702 continue;
703 MD = MD->getCanonicalDecl();
704
705 CharUnits OffsetOffset = getCurrentOffsetOffset();
706
707 // Don't add a vcall offset if we already have one for this member function
708 // signature.
709 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
710 continue;
711
712 CharUnits Offset = CharUnits::Zero();
713
714 if (Overriders) {
715 // Get the final overrider.
716 FinalOverriders::OverriderInfo Overrider =
717 Overriders->getOverrider(MD, Base.getBaseOffset());
718
719 /// The vcall offset is the offset from the virtual base to the object
720 /// where the function was overridden.
721 Offset = Overrider.Offset - VBaseOffset;
722 }
723
724 Components.push_back(
725 VTableComponent::MakeVCallOffset(Offset));
726 }
727
728 // And iterate over all non-virtual bases (ignoring the primary base).
729 for (const auto &B : RD->bases()) {
730 if (B.isVirtual())
731 continue;
732
733 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
734 if (BaseDecl == PrimaryBase)
735 continue;
736
737 // Get the base offset of this base.
738 CharUnits BaseOffset = Base.getBaseOffset() +
739 Layout.getBaseClassOffset(BaseDecl);
740
741 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
742 VBaseOffset);
743 }
744 }
745
746 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)747 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
748 CharUnits OffsetInLayoutClass) {
749 const ASTRecordLayout &LayoutClassLayout =
750 Context.getASTRecordLayout(LayoutClass);
751
752 // Add vbase offsets.
753 for (const auto &B : RD->bases()) {
754 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
755
756 // Check if this is a virtual base that we haven't visited before.
757 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
758 CharUnits Offset =
759 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
760
761 // Add the vbase offset offset.
762 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
763 "vbase offset offset already exists!");
764
765 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
766 VBaseOffsetOffsets.insert(
767 std::make_pair(BaseDecl, VBaseOffsetOffset));
768
769 Components.push_back(
770 VTableComponent::MakeVBaseOffset(Offset));
771 }
772
773 // Check the base class looking for more vbase offsets.
774 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
775 }
776 }
777
778 /// ItaniumVTableBuilder - Class for building vtable layout information.
779 class ItaniumVTableBuilder {
780 public:
781 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
782 /// primary bases.
783 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
784 PrimaryBasesSetVectorTy;
785
786 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
787 VBaseOffsetOffsetsMapTy;
788
789 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
790
791 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
792
793 private:
794 /// VTables - Global vtable information.
795 ItaniumVTableContext &VTables;
796
797 /// MostDerivedClass - The most derived class for which we're building this
798 /// vtable.
799 const CXXRecordDecl *MostDerivedClass;
800
801 /// MostDerivedClassOffset - If we're building a construction vtable, this
802 /// holds the offset from the layout class to the most derived class.
803 const CharUnits MostDerivedClassOffset;
804
805 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
806 /// base. (This only makes sense when building a construction vtable).
807 bool MostDerivedClassIsVirtual;
808
809 /// LayoutClass - The class we're using for layout information. Will be
810 /// different than the most derived class if we're building a construction
811 /// vtable.
812 const CXXRecordDecl *LayoutClass;
813
814 /// Context - The ASTContext which we will use for layout information.
815 ASTContext &Context;
816
817 /// FinalOverriders - The final overriders of the most derived class.
818 const FinalOverriders Overriders;
819
820 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
821 /// bases in this vtable.
822 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
823
824 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
825 /// the most derived class.
826 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
827
828 /// Components - The components of the vtable being built.
829 SmallVector<VTableComponent, 64> Components;
830
831 /// AddressPoints - Address points for the vtable being built.
832 AddressPointsMapTy AddressPoints;
833
834 /// MethodInfo - Contains information about a method in a vtable.
835 /// (Used for computing 'this' pointer adjustment thunks.
836 struct MethodInfo {
837 /// BaseOffset - The base offset of this method.
838 const CharUnits BaseOffset;
839
840 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
841 /// method.
842 const CharUnits BaseOffsetInLayoutClass;
843
844 /// VTableIndex - The index in the vtable that this method has.
845 /// (For destructors, this is the index of the complete destructor).
846 const uint64_t VTableIndex;
847
MethodInfo__anon702cc0260111::ItaniumVTableBuilder::MethodInfo848 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
849 uint64_t VTableIndex)
850 : BaseOffset(BaseOffset),
851 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
852 VTableIndex(VTableIndex) { }
853
MethodInfo__anon702cc0260111::ItaniumVTableBuilder::MethodInfo854 MethodInfo()
855 : BaseOffset(CharUnits::Zero()),
856 BaseOffsetInLayoutClass(CharUnits::Zero()),
857 VTableIndex(0) { }
858
859 MethodInfo(MethodInfo const&) = default;
860 };
861
862 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
863
864 /// MethodInfoMap - The information for all methods in the vtable we're
865 /// currently building.
866 MethodInfoMapTy MethodInfoMap;
867
868 /// MethodVTableIndices - Contains the index (relative to the vtable address
869 /// point) where the function pointer for a virtual function is stored.
870 MethodVTableIndicesTy MethodVTableIndices;
871
872 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
873
874 /// VTableThunks - The thunks by vtable index in the vtable currently being
875 /// built.
876 VTableThunksMapTy VTableThunks;
877
878 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
879 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
880
881 /// Thunks - A map that contains all the thunks needed for all methods in the
882 /// most derived class for which the vtable is currently being built.
883 ThunksMapTy Thunks;
884
885 /// AddThunk - Add a thunk for the given method.
886 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
887
888 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
889 /// part of the vtable we're currently building.
890 void ComputeThisAdjustments();
891
892 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
893
894 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
895 /// some other base.
896 VisitedVirtualBasesSetTy PrimaryVirtualBases;
897
898 /// ComputeReturnAdjustment - Compute the return adjustment given a return
899 /// adjustment base offset.
900 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
901
902 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
903 /// the 'this' pointer from the base subobject to the derived subobject.
904 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
905 BaseSubobject Derived) const;
906
907 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
908 /// given virtual member function, its offset in the layout class and its
909 /// final overrider.
910 ThisAdjustment
911 ComputeThisAdjustment(const CXXMethodDecl *MD,
912 CharUnits BaseOffsetInLayoutClass,
913 FinalOverriders::OverriderInfo Overrider);
914
915 /// AddMethod - Add a single virtual member function to the vtable
916 /// components vector.
917 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
918
919 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
920 /// part of the vtable.
921 ///
922 /// Itanium C++ ABI 2.5.2:
923 ///
924 /// struct A { virtual void f(); };
925 /// struct B : virtual public A { int i; };
926 /// struct C : virtual public A { int j; };
927 /// struct D : public B, public C {};
928 ///
929 /// When B and C are declared, A is a primary base in each case, so although
930 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
931 /// adjustment is required and no thunk is generated. However, inside D
932 /// objects, A is no longer a primary base of C, so if we allowed calls to
933 /// C::f() to use the copy of A's vtable in the C subobject, we would need
934 /// to adjust this from C* to B::A*, which would require a third-party
935 /// thunk. Since we require that a call to C::f() first convert to A*,
936 /// C-in-D's copy of A's vtable is never referenced, so this is not
937 /// necessary.
938 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
939 CharUnits BaseOffsetInLayoutClass,
940 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
941 CharUnits FirstBaseOffsetInLayoutClass) const;
942
943
944 /// AddMethods - Add the methods of this base subobject and all its
945 /// primary bases to the vtable components vector.
946 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
947 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
948 CharUnits FirstBaseOffsetInLayoutClass,
949 PrimaryBasesSetVectorTy &PrimaryBases);
950
951 // LayoutVTable - Layout the vtable for the given base class, including its
952 // secondary vtables and any vtables for virtual bases.
953 void LayoutVTable();
954
955 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
956 /// given base subobject, as well as all its secondary vtables.
957 ///
958 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
959 /// or a direct or indirect base of a virtual base.
960 ///
961 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
962 /// in the layout class.
963 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
964 bool BaseIsMorallyVirtual,
965 bool BaseIsVirtualInLayoutClass,
966 CharUnits OffsetInLayoutClass);
967
968 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
969 /// subobject.
970 ///
971 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
972 /// or a direct or indirect base of a virtual base.
973 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
974 CharUnits OffsetInLayoutClass);
975
976 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
977 /// class hierarchy.
978 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
979 CharUnits OffsetInLayoutClass,
980 VisitedVirtualBasesSetTy &VBases);
981
982 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
983 /// given base (excluding any primary bases).
984 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
985 VisitedVirtualBasesSetTy &VBases);
986
987 /// isBuildingConstructionVTable - Return whether this vtable builder is
988 /// building a construction vtable.
isBuildingConstructorVTable() const989 bool isBuildingConstructorVTable() const {
990 return MostDerivedClass != LayoutClass;
991 }
992
993 public:
994 /// Component indices of the first component of each of the vtables in the
995 /// vtable group.
996 SmallVector<size_t, 4> VTableIndices;
997
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)998 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
999 const CXXRecordDecl *MostDerivedClass,
1000 CharUnits MostDerivedClassOffset,
1001 bool MostDerivedClassIsVirtual,
1002 const CXXRecordDecl *LayoutClass)
1003 : VTables(VTables), MostDerivedClass(MostDerivedClass),
1004 MostDerivedClassOffset(MostDerivedClassOffset),
1005 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1006 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1007 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1008 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1009
1010 LayoutVTable();
1011
1012 if (Context.getLangOpts().DumpVTableLayouts)
1013 dumpLayout(llvm::outs());
1014 }
1015
getNumThunks() const1016 uint64_t getNumThunks() const {
1017 return Thunks.size();
1018 }
1019
thunks_begin() const1020 ThunksMapTy::const_iterator thunks_begin() const {
1021 return Thunks.begin();
1022 }
1023
thunks_end() const1024 ThunksMapTy::const_iterator thunks_end() const {
1025 return Thunks.end();
1026 }
1027
getVBaseOffsetOffsets() const1028 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1029 return VBaseOffsetOffsets;
1030 }
1031
getAddressPoints() const1032 const AddressPointsMapTy &getAddressPoints() const {
1033 return AddressPoints;
1034 }
1035
vtable_indices_begin() const1036 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1037 return MethodVTableIndices.begin();
1038 }
1039
vtable_indices_end() const1040 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1041 return MethodVTableIndices.end();
1042 }
1043
vtable_components() const1044 ArrayRef<VTableComponent> vtable_components() const { return Components; }
1045
address_points_begin() const1046 AddressPointsMapTy::const_iterator address_points_begin() const {
1047 return AddressPoints.begin();
1048 }
1049
address_points_end() const1050 AddressPointsMapTy::const_iterator address_points_end() const {
1051 return AddressPoints.end();
1052 }
1053
vtable_thunks_begin() const1054 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1055 return VTableThunks.begin();
1056 }
1057
vtable_thunks_end() const1058 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1059 return VTableThunks.end();
1060 }
1061
1062 /// dumpLayout - Dump the vtable layout.
1063 void dumpLayout(raw_ostream&);
1064 };
1065
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1066 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1067 const ThunkInfo &Thunk) {
1068 assert(!isBuildingConstructorVTable() &&
1069 "Can't add thunks for construction vtable");
1070
1071 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1072
1073 // Check if we have this thunk already.
1074 if (llvm::is_contained(ThunksVector, Thunk))
1075 return;
1076
1077 ThunksVector.push_back(Thunk);
1078 }
1079
1080 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1081
1082 /// Visit all the methods overridden by the given method recursively,
1083 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1084 /// indicating whether to continue the recursion for the given overridden
1085 /// method (i.e. returning false stops the iteration).
1086 template <class VisitorTy>
1087 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1088 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1089 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1090
1091 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1092 if (!Visitor(OverriddenMD))
1093 continue;
1094 visitAllOverriddenMethods(OverriddenMD, Visitor);
1095 }
1096 }
1097
1098 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1099 /// the overridden methods that the function decl overrides.
1100 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1101 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1102 OverriddenMethodsSetTy& OverriddenMethods) {
1103 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1104 // Don't recurse on this method if we've already collected it.
1105 return OverriddenMethods.insert(MD).second;
1106 };
1107 visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1108 }
1109
ComputeThisAdjustments()1110 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1111 // Now go through the method info map and see if any of the methods need
1112 // 'this' pointer adjustments.
1113 for (const auto &MI : MethodInfoMap) {
1114 const CXXMethodDecl *MD = MI.first;
1115 const MethodInfo &MethodInfo = MI.second;
1116
1117 // Ignore adjustments for unused function pointers.
1118 uint64_t VTableIndex = MethodInfo.VTableIndex;
1119 if (Components[VTableIndex].getKind() ==
1120 VTableComponent::CK_UnusedFunctionPointer)
1121 continue;
1122
1123 // Get the final overrider for this method.
1124 FinalOverriders::OverriderInfo Overrider =
1125 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1126
1127 // Check if we need an adjustment at all.
1128 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1129 // When a return thunk is needed by a derived class that overrides a
1130 // virtual base, gcc uses a virtual 'this' adjustment as well.
1131 // While the thunk itself might be needed by vtables in subclasses or
1132 // in construction vtables, there doesn't seem to be a reason for using
1133 // the thunk in this vtable. Still, we do so to match gcc.
1134 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1135 continue;
1136 }
1137
1138 ThisAdjustment ThisAdjustment =
1139 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1140
1141 if (ThisAdjustment.isEmpty())
1142 continue;
1143
1144 // Add it.
1145 VTableThunks[VTableIndex].This = ThisAdjustment;
1146
1147 if (isa<CXXDestructorDecl>(MD)) {
1148 // Add an adjustment for the deleting destructor as well.
1149 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1150 }
1151 }
1152
1153 /// Clear the method info map.
1154 MethodInfoMap.clear();
1155
1156 if (isBuildingConstructorVTable()) {
1157 // We don't need to store thunk information for construction vtables.
1158 return;
1159 }
1160
1161 for (const auto &TI : VTableThunks) {
1162 const VTableComponent &Component = Components[TI.first];
1163 const ThunkInfo &Thunk = TI.second;
1164 const CXXMethodDecl *MD;
1165
1166 switch (Component.getKind()) {
1167 default:
1168 llvm_unreachable("Unexpected vtable component kind!");
1169 case VTableComponent::CK_FunctionPointer:
1170 MD = Component.getFunctionDecl();
1171 break;
1172 case VTableComponent::CK_CompleteDtorPointer:
1173 MD = Component.getDestructorDecl();
1174 break;
1175 case VTableComponent::CK_DeletingDtorPointer:
1176 // We've already added the thunk when we saw the complete dtor pointer.
1177 continue;
1178 }
1179
1180 if (MD->getParent() == MostDerivedClass)
1181 AddThunk(MD, Thunk);
1182 }
1183 }
1184
1185 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1186 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1187 ReturnAdjustment Adjustment;
1188
1189 if (!Offset.isEmpty()) {
1190 if (Offset.VirtualBase) {
1191 // Get the virtual base offset offset.
1192 if (Offset.DerivedClass == MostDerivedClass) {
1193 // We can get the offset offset directly from our map.
1194 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1195 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1196 } else {
1197 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1198 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1199 Offset.VirtualBase).getQuantity();
1200 }
1201 }
1202
1203 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1204 }
1205
1206 return Adjustment;
1207 }
1208
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1209 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1210 BaseSubobject Base, BaseSubobject Derived) const {
1211 const CXXRecordDecl *BaseRD = Base.getBase();
1212 const CXXRecordDecl *DerivedRD = Derived.getBase();
1213
1214 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1215 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1216
1217 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1218 llvm_unreachable("Class must be derived from the passed in base class!");
1219
1220 // We have to go through all the paths, and see which one leads us to the
1221 // right base subobject.
1222 for (const CXXBasePath &Path : Paths) {
1223 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1224
1225 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1226
1227 if (Offset.VirtualBase) {
1228 // If we have a virtual base class, the non-virtual offset is relative
1229 // to the virtual base class offset.
1230 const ASTRecordLayout &LayoutClassLayout =
1231 Context.getASTRecordLayout(LayoutClass);
1232
1233 /// Get the virtual base offset, relative to the most derived class
1234 /// layout.
1235 OffsetToBaseSubobject +=
1236 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1237 } else {
1238 // Otherwise, the non-virtual offset is relative to the derived class
1239 // offset.
1240 OffsetToBaseSubobject += Derived.getBaseOffset();
1241 }
1242
1243 // Check if this path gives us the right base subobject.
1244 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1245 // Since we're going from the base class _to_ the derived class, we'll
1246 // invert the non-virtual offset here.
1247 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1248 return Offset;
1249 }
1250 }
1251
1252 return BaseOffset();
1253 }
1254
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1255 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1256 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1257 FinalOverriders::OverriderInfo Overrider) {
1258 // Ignore adjustments for pure virtual member functions.
1259 if (Overrider.Method->isPure())
1260 return ThisAdjustment();
1261
1262 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1263 BaseOffsetInLayoutClass);
1264
1265 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1266 Overrider.Offset);
1267
1268 // Compute the adjustment offset.
1269 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1270 OverriderBaseSubobject);
1271 if (Offset.isEmpty())
1272 return ThisAdjustment();
1273
1274 ThisAdjustment Adjustment;
1275
1276 if (Offset.VirtualBase) {
1277 // Get the vcall offset map for this virtual base.
1278 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1279
1280 if (VCallOffsets.empty()) {
1281 // We don't have vcall offsets for this virtual base, go ahead and
1282 // build them.
1283 VCallAndVBaseOffsetBuilder Builder(
1284 VTables, MostDerivedClass, MostDerivedClass,
1285 /*Overriders=*/nullptr,
1286 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1287 /*BaseIsVirtual=*/true,
1288 /*OffsetInLayoutClass=*/
1289 CharUnits::Zero());
1290
1291 VCallOffsets = Builder.getVCallOffsets();
1292 }
1293
1294 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1295 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1296 }
1297
1298 // Set the non-virtual part of the adjustment.
1299 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1300
1301 return Adjustment;
1302 }
1303
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1304 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1305 ReturnAdjustment ReturnAdjustment) {
1306 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1307 assert(ReturnAdjustment.isEmpty() &&
1308 "Destructor can't have return adjustment!");
1309
1310 // Add both the complete destructor and the deleting destructor.
1311 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1312 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1313 } else {
1314 // Add the return adjustment if necessary.
1315 if (!ReturnAdjustment.isEmpty())
1316 VTableThunks[Components.size()].Return = ReturnAdjustment;
1317
1318 // Add the function.
1319 Components.push_back(VTableComponent::MakeFunction(MD));
1320 }
1321 }
1322
1323 /// OverridesIndirectMethodInBase - Return whether the given member function
1324 /// overrides any methods in the set of given bases.
1325 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1326 /// For example, if we have:
1327 ///
1328 /// struct A { virtual void f(); }
1329 /// struct B : A { virtual void f(); }
1330 /// struct C : B { virtual void f(); }
1331 ///
1332 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1333 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1334 static bool OverridesIndirectMethodInBases(
1335 const CXXMethodDecl *MD,
1336 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1337 if (Bases.count(MD->getParent()))
1338 return true;
1339
1340 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1341 // Check "indirect overriders".
1342 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1343 return true;
1344 }
1345
1346 return false;
1347 }
1348
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1349 bool ItaniumVTableBuilder::IsOverriderUsed(
1350 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1351 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1352 CharUnits FirstBaseOffsetInLayoutClass) const {
1353 // If the base and the first base in the primary base chain have the same
1354 // offsets, then this overrider will be used.
1355 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1356 return true;
1357
1358 // We know now that Base (or a direct or indirect base of it) is a primary
1359 // base in part of the class hierarchy, but not a primary base in the most
1360 // derived class.
1361
1362 // If the overrider is the first base in the primary base chain, we know
1363 // that the overrider will be used.
1364 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1365 return true;
1366
1367 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1368
1369 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1370 PrimaryBases.insert(RD);
1371
1372 // Now traverse the base chain, starting with the first base, until we find
1373 // the base that is no longer a primary base.
1374 while (true) {
1375 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1376 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1377
1378 if (!PrimaryBase)
1379 break;
1380
1381 if (Layout.isPrimaryBaseVirtual()) {
1382 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1383 "Primary base should always be at offset 0!");
1384
1385 const ASTRecordLayout &LayoutClassLayout =
1386 Context.getASTRecordLayout(LayoutClass);
1387
1388 // Now check if this is the primary base that is not a primary base in the
1389 // most derived class.
1390 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1391 FirstBaseOffsetInLayoutClass) {
1392 // We found it, stop walking the chain.
1393 break;
1394 }
1395 } else {
1396 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1397 "Primary base should always be at offset 0!");
1398 }
1399
1400 if (!PrimaryBases.insert(PrimaryBase))
1401 llvm_unreachable("Found a duplicate primary base!");
1402
1403 RD = PrimaryBase;
1404 }
1405
1406 // If the final overrider is an override of one of the primary bases,
1407 // then we know that it will be used.
1408 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1409 }
1410
1411 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1412
1413 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1414 /// from the nearest base. Returns null if no method was found.
1415 /// The Bases are expected to be sorted in a base-to-derived order.
1416 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1417 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1418 BasesSetVectorTy &Bases) {
1419 OverriddenMethodsSetTy OverriddenMethods;
1420 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1421
1422 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1423 // Now check the overridden methods.
1424 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1425 // We found our overridden method.
1426 if (OverriddenMD->getParent() == PrimaryBase)
1427 return OverriddenMD;
1428 }
1429 }
1430
1431 return nullptr;
1432 }
1433
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1434 void ItaniumVTableBuilder::AddMethods(
1435 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1436 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1437 CharUnits FirstBaseOffsetInLayoutClass,
1438 PrimaryBasesSetVectorTy &PrimaryBases) {
1439 // Itanium C++ ABI 2.5.2:
1440 // The order of the virtual function pointers in a virtual table is the
1441 // order of declaration of the corresponding member functions in the class.
1442 //
1443 // There is an entry for any virtual function declared in a class,
1444 // whether it is a new function or overrides a base class function,
1445 // unless it overrides a function from the primary base, and conversion
1446 // between their return types does not require an adjustment.
1447
1448 const CXXRecordDecl *RD = Base.getBase();
1449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1450
1451 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1452 CharUnits PrimaryBaseOffset;
1453 CharUnits PrimaryBaseOffsetInLayoutClass;
1454 if (Layout.isPrimaryBaseVirtual()) {
1455 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1456 "Primary vbase should have a zero offset!");
1457
1458 const ASTRecordLayout &MostDerivedClassLayout =
1459 Context.getASTRecordLayout(MostDerivedClass);
1460
1461 PrimaryBaseOffset =
1462 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1463
1464 const ASTRecordLayout &LayoutClassLayout =
1465 Context.getASTRecordLayout(LayoutClass);
1466
1467 PrimaryBaseOffsetInLayoutClass =
1468 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1469 } else {
1470 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1471 "Primary base should have a zero offset!");
1472
1473 PrimaryBaseOffset = Base.getBaseOffset();
1474 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1475 }
1476
1477 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1478 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1479 FirstBaseOffsetInLayoutClass, PrimaryBases);
1480
1481 if (!PrimaryBases.insert(PrimaryBase))
1482 llvm_unreachable("Found a duplicate primary base!");
1483 }
1484
1485 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1486 NewVirtualFunctionsTy NewVirtualFunctions;
1487
1488 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1489
1490 // Now go through all virtual member functions and add them.
1491 for (const auto *MD : RD->methods()) {
1492 if (!ItaniumVTableContext::hasVtableSlot(MD))
1493 continue;
1494 MD = MD->getCanonicalDecl();
1495
1496 // Get the final overrider.
1497 FinalOverriders::OverriderInfo Overrider =
1498 Overriders.getOverrider(MD, Base.getBaseOffset());
1499
1500 // Check if this virtual member function overrides a method in a primary
1501 // base. If this is the case, and the return type doesn't require adjustment
1502 // then we can just use the member function from the primary base.
1503 if (const CXXMethodDecl *OverriddenMD =
1504 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1505 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1506 OverriddenMD).isEmpty()) {
1507 // Replace the method info of the overridden method with our own
1508 // method.
1509 assert(MethodInfoMap.count(OverriddenMD) &&
1510 "Did not find the overridden method!");
1511 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1512
1513 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1514 OverriddenMethodInfo.VTableIndex);
1515
1516 assert(!MethodInfoMap.count(MD) &&
1517 "Should not have method info for this method yet!");
1518
1519 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1520 MethodInfoMap.erase(OverriddenMD);
1521
1522 // If the overridden method exists in a virtual base class or a direct
1523 // or indirect base class of a virtual base class, we need to emit a
1524 // thunk if we ever have a class hierarchy where the base class is not
1525 // a primary base in the complete object.
1526 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1527 // Compute the this adjustment.
1528 ThisAdjustment ThisAdjustment =
1529 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1530 Overrider);
1531
1532 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1533 Overrider.Method->getParent() == MostDerivedClass) {
1534
1535 // There's no return adjustment from OverriddenMD and MD,
1536 // but that doesn't mean there isn't one between MD and
1537 // the final overrider.
1538 BaseOffset ReturnAdjustmentOffset =
1539 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1540 ReturnAdjustment ReturnAdjustment =
1541 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1542
1543 // This is a virtual thunk for the most derived class, add it.
1544 AddThunk(Overrider.Method,
1545 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1546 }
1547 }
1548
1549 continue;
1550 }
1551 }
1552
1553 if (MD->isImplicit())
1554 NewImplicitVirtualFunctions.push_back(MD);
1555 else
1556 NewVirtualFunctions.push_back(MD);
1557 }
1558
1559 std::stable_sort(
1560 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1561 [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1562 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1563 return A->isCopyAssignmentOperator();
1564 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1565 return A->isMoveAssignmentOperator();
1566 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1567 return isa<CXXDestructorDecl>(A);
1568 assert(A->getOverloadedOperator() == OO_EqualEqual &&
1569 B->getOverloadedOperator() == OO_EqualEqual &&
1570 "unexpected or duplicate implicit virtual function");
1571 // We rely on Sema to have declared the operator== members in the
1572 // same order as the corresponding operator<=> members.
1573 return false;
1574 });
1575 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1576 NewImplicitVirtualFunctions.end());
1577
1578 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1579 // Get the final overrider.
1580 FinalOverriders::OverriderInfo Overrider =
1581 Overriders.getOverrider(MD, Base.getBaseOffset());
1582
1583 // Insert the method info for this method.
1584 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1585 Components.size());
1586
1587 assert(!MethodInfoMap.count(MD) &&
1588 "Should not have method info for this method yet!");
1589 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1590
1591 // Check if this overrider is going to be used.
1592 const CXXMethodDecl *OverriderMD = Overrider.Method;
1593 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1594 FirstBaseInPrimaryBaseChain,
1595 FirstBaseOffsetInLayoutClass)) {
1596 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1597 continue;
1598 }
1599
1600 // Check if this overrider needs a return adjustment.
1601 // We don't want to do this for pure virtual member functions.
1602 BaseOffset ReturnAdjustmentOffset;
1603 if (!OverriderMD->isPure()) {
1604 ReturnAdjustmentOffset =
1605 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1606 }
1607
1608 ReturnAdjustment ReturnAdjustment =
1609 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1610
1611 AddMethod(Overrider.Method, ReturnAdjustment);
1612 }
1613 }
1614
LayoutVTable()1615 void ItaniumVTableBuilder::LayoutVTable() {
1616 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1617 CharUnits::Zero()),
1618 /*BaseIsMorallyVirtual=*/false,
1619 MostDerivedClassIsVirtual,
1620 MostDerivedClassOffset);
1621
1622 VisitedVirtualBasesSetTy VBases;
1623
1624 // Determine the primary virtual bases.
1625 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1626 VBases);
1627 VBases.clear();
1628
1629 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1630
1631 // -fapple-kext adds an extra entry at end of vtbl.
1632 bool IsAppleKext = Context.getLangOpts().AppleKext;
1633 if (IsAppleKext)
1634 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1635 }
1636
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1637 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1638 BaseSubobject Base, bool BaseIsMorallyVirtual,
1639 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1640 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1641
1642 unsigned VTableIndex = Components.size();
1643 VTableIndices.push_back(VTableIndex);
1644
1645 // Add vcall and vbase offsets for this vtable.
1646 VCallAndVBaseOffsetBuilder Builder(
1647 VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1648 BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1649 Components.append(Builder.components_begin(), Builder.components_end());
1650
1651 // Check if we need to add these vcall offsets.
1652 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1653 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1654
1655 if (VCallOffsets.empty())
1656 VCallOffsets = Builder.getVCallOffsets();
1657 }
1658
1659 // If we're laying out the most derived class we want to keep track of the
1660 // virtual base class offset offsets.
1661 if (Base.getBase() == MostDerivedClass)
1662 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1663
1664 // Add the offset to top.
1665 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1666 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1667
1668 // Next, add the RTTI.
1669 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1670
1671 uint64_t AddressPoint = Components.size();
1672
1673 // Now go through all virtual member functions and add them.
1674 PrimaryBasesSetVectorTy PrimaryBases;
1675 AddMethods(Base, OffsetInLayoutClass,
1676 Base.getBase(), OffsetInLayoutClass,
1677 PrimaryBases);
1678
1679 const CXXRecordDecl *RD = Base.getBase();
1680 if (RD == MostDerivedClass) {
1681 assert(MethodVTableIndices.empty());
1682 for (const auto &I : MethodInfoMap) {
1683 const CXXMethodDecl *MD = I.first;
1684 const MethodInfo &MI = I.second;
1685 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1686 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1687 = MI.VTableIndex - AddressPoint;
1688 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1689 = MI.VTableIndex + 1 - AddressPoint;
1690 } else {
1691 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1692 }
1693 }
1694 }
1695
1696 // Compute 'this' pointer adjustments.
1697 ComputeThisAdjustments();
1698
1699 // Add all address points.
1700 while (true) {
1701 AddressPoints.insert(
1702 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1703 VTableLayout::AddressPointLocation{
1704 unsigned(VTableIndices.size() - 1),
1705 unsigned(AddressPoint - VTableIndex)}));
1706
1707 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1708 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1709
1710 if (!PrimaryBase)
1711 break;
1712
1713 if (Layout.isPrimaryBaseVirtual()) {
1714 // Check if this virtual primary base is a primary base in the layout
1715 // class. If it's not, we don't want to add it.
1716 const ASTRecordLayout &LayoutClassLayout =
1717 Context.getASTRecordLayout(LayoutClass);
1718
1719 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1720 OffsetInLayoutClass) {
1721 // We don't want to add this class (or any of its primary bases).
1722 break;
1723 }
1724 }
1725
1726 RD = PrimaryBase;
1727 }
1728
1729 // Layout secondary vtables.
1730 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1731 }
1732
1733 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1734 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1735 bool BaseIsMorallyVirtual,
1736 CharUnits OffsetInLayoutClass) {
1737 // Itanium C++ ABI 2.5.2:
1738 // Following the primary virtual table of a derived class are secondary
1739 // virtual tables for each of its proper base classes, except any primary
1740 // base(s) with which it shares its primary virtual table.
1741
1742 const CXXRecordDecl *RD = Base.getBase();
1743 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1744 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1745
1746 for (const auto &B : RD->bases()) {
1747 // Ignore virtual bases, we'll emit them later.
1748 if (B.isVirtual())
1749 continue;
1750
1751 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1752
1753 // Ignore bases that don't have a vtable.
1754 if (!BaseDecl->isDynamicClass())
1755 continue;
1756
1757 if (isBuildingConstructorVTable()) {
1758 // Itanium C++ ABI 2.6.4:
1759 // Some of the base class subobjects may not need construction virtual
1760 // tables, which will therefore not be present in the construction
1761 // virtual table group, even though the subobject virtual tables are
1762 // present in the main virtual table group for the complete object.
1763 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1764 continue;
1765 }
1766
1767 // Get the base offset of this base.
1768 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1769 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1770
1771 CharUnits BaseOffsetInLayoutClass =
1772 OffsetInLayoutClass + RelativeBaseOffset;
1773
1774 // Don't emit a secondary vtable for a primary base. We might however want
1775 // to emit secondary vtables for other bases of this base.
1776 if (BaseDecl == PrimaryBase) {
1777 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1778 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1779 continue;
1780 }
1781
1782 // Layout the primary vtable (and any secondary vtables) for this base.
1783 LayoutPrimaryAndSecondaryVTables(
1784 BaseSubobject(BaseDecl, BaseOffset),
1785 BaseIsMorallyVirtual,
1786 /*BaseIsVirtualInLayoutClass=*/false,
1787 BaseOffsetInLayoutClass);
1788 }
1789 }
1790
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1791 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1792 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1793 VisitedVirtualBasesSetTy &VBases) {
1794 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1795
1796 // Check if this base has a primary base.
1797 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1798
1799 // Check if it's virtual.
1800 if (Layout.isPrimaryBaseVirtual()) {
1801 bool IsPrimaryVirtualBase = true;
1802
1803 if (isBuildingConstructorVTable()) {
1804 // Check if the base is actually a primary base in the class we use for
1805 // layout.
1806 const ASTRecordLayout &LayoutClassLayout =
1807 Context.getASTRecordLayout(LayoutClass);
1808
1809 CharUnits PrimaryBaseOffsetInLayoutClass =
1810 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1811
1812 // We know that the base is not a primary base in the layout class if
1813 // the base offsets are different.
1814 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1815 IsPrimaryVirtualBase = false;
1816 }
1817
1818 if (IsPrimaryVirtualBase)
1819 PrimaryVirtualBases.insert(PrimaryBase);
1820 }
1821 }
1822
1823 // Traverse bases, looking for more primary virtual bases.
1824 for (const auto &B : RD->bases()) {
1825 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1826
1827 CharUnits BaseOffsetInLayoutClass;
1828
1829 if (B.isVirtual()) {
1830 if (!VBases.insert(BaseDecl).second)
1831 continue;
1832
1833 const ASTRecordLayout &LayoutClassLayout =
1834 Context.getASTRecordLayout(LayoutClass);
1835
1836 BaseOffsetInLayoutClass =
1837 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1838 } else {
1839 BaseOffsetInLayoutClass =
1840 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1841 }
1842
1843 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1844 }
1845 }
1846
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1847 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1848 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1849 // Itanium C++ ABI 2.5.2:
1850 // Then come the virtual base virtual tables, also in inheritance graph
1851 // order, and again excluding primary bases (which share virtual tables with
1852 // the classes for which they are primary).
1853 for (const auto &B : RD->bases()) {
1854 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1855
1856 // Check if this base needs a vtable. (If it's virtual, not a primary base
1857 // of some other class, and we haven't visited it before).
1858 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1859 !PrimaryVirtualBases.count(BaseDecl) &&
1860 VBases.insert(BaseDecl).second) {
1861 const ASTRecordLayout &MostDerivedClassLayout =
1862 Context.getASTRecordLayout(MostDerivedClass);
1863 CharUnits BaseOffset =
1864 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1865
1866 const ASTRecordLayout &LayoutClassLayout =
1867 Context.getASTRecordLayout(LayoutClass);
1868 CharUnits BaseOffsetInLayoutClass =
1869 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1870
1871 LayoutPrimaryAndSecondaryVTables(
1872 BaseSubobject(BaseDecl, BaseOffset),
1873 /*BaseIsMorallyVirtual=*/true,
1874 /*BaseIsVirtualInLayoutClass=*/true,
1875 BaseOffsetInLayoutClass);
1876 }
1877
1878 // We only need to check the base for virtual base vtables if it actually
1879 // has virtual bases.
1880 if (BaseDecl->getNumVBases())
1881 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1882 }
1883 }
1884
1885 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1886 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1887 // FIXME: write more tests that actually use the dumpLayout output to prevent
1888 // ItaniumVTableBuilder regressions.
1889
1890 if (isBuildingConstructorVTable()) {
1891 Out << "Construction vtable for ('";
1892 MostDerivedClass->printQualifiedName(Out);
1893 Out << "', ";
1894 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1895 LayoutClass->printQualifiedName(Out);
1896 } else {
1897 Out << "Vtable for '";
1898 MostDerivedClass->printQualifiedName(Out);
1899 }
1900 Out << "' (" << Components.size() << " entries).\n";
1901
1902 // Iterate through the address points and insert them into a new map where
1903 // they are keyed by the index and not the base object.
1904 // Since an address point can be shared by multiple subobjects, we use an
1905 // STL multimap.
1906 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1907 for (const auto &AP : AddressPoints) {
1908 const BaseSubobject &Base = AP.first;
1909 uint64_t Index =
1910 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1911
1912 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1913 }
1914
1915 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1916 uint64_t Index = I;
1917
1918 Out << llvm::format("%4d | ", I);
1919
1920 const VTableComponent &Component = Components[I];
1921
1922 // Dump the component.
1923 switch (Component.getKind()) {
1924
1925 case VTableComponent::CK_VCallOffset:
1926 Out << "vcall_offset ("
1927 << Component.getVCallOffset().getQuantity()
1928 << ")";
1929 break;
1930
1931 case VTableComponent::CK_VBaseOffset:
1932 Out << "vbase_offset ("
1933 << Component.getVBaseOffset().getQuantity()
1934 << ")";
1935 break;
1936
1937 case VTableComponent::CK_OffsetToTop:
1938 Out << "offset_to_top ("
1939 << Component.getOffsetToTop().getQuantity()
1940 << ")";
1941 break;
1942
1943 case VTableComponent::CK_RTTI:
1944 Component.getRTTIDecl()->printQualifiedName(Out);
1945 Out << " RTTI";
1946 break;
1947
1948 case VTableComponent::CK_FunctionPointer: {
1949 const CXXMethodDecl *MD = Component.getFunctionDecl();
1950
1951 std::string Str =
1952 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1953 MD);
1954 Out << Str;
1955 if (MD->isPure())
1956 Out << " [pure]";
1957
1958 if (MD->isDeleted())
1959 Out << " [deleted]";
1960
1961 ThunkInfo Thunk = VTableThunks.lookup(I);
1962 if (!Thunk.isEmpty()) {
1963 // If this function pointer has a return adjustment, dump it.
1964 if (!Thunk.Return.isEmpty()) {
1965 Out << "\n [return adjustment: ";
1966 Out << Thunk.Return.NonVirtual << " non-virtual";
1967
1968 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1969 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1970 Out << " vbase offset offset";
1971 }
1972
1973 Out << ']';
1974 }
1975
1976 // If this function pointer has a 'this' pointer adjustment, dump it.
1977 if (!Thunk.This.isEmpty()) {
1978 Out << "\n [this adjustment: ";
1979 Out << Thunk.This.NonVirtual << " non-virtual";
1980
1981 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1982 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1983 Out << " vcall offset offset";
1984 }
1985
1986 Out << ']';
1987 }
1988 }
1989
1990 break;
1991 }
1992
1993 case VTableComponent::CK_CompleteDtorPointer:
1994 case VTableComponent::CK_DeletingDtorPointer: {
1995 bool IsComplete =
1996 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1997
1998 const CXXDestructorDecl *DD = Component.getDestructorDecl();
1999
2000 DD->printQualifiedName(Out);
2001 if (IsComplete)
2002 Out << "() [complete]";
2003 else
2004 Out << "() [deleting]";
2005
2006 if (DD->isPure())
2007 Out << " [pure]";
2008
2009 ThunkInfo Thunk = VTableThunks.lookup(I);
2010 if (!Thunk.isEmpty()) {
2011 // If this destructor has a 'this' pointer adjustment, dump it.
2012 if (!Thunk.This.isEmpty()) {
2013 Out << "\n [this adjustment: ";
2014 Out << Thunk.This.NonVirtual << " non-virtual";
2015
2016 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2017 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2018 Out << " vcall offset offset";
2019 }
2020
2021 Out << ']';
2022 }
2023 }
2024
2025 break;
2026 }
2027
2028 case VTableComponent::CK_UnusedFunctionPointer: {
2029 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2030
2031 std::string Str =
2032 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2033 MD);
2034 Out << "[unused] " << Str;
2035 if (MD->isPure())
2036 Out << " [pure]";
2037 }
2038
2039 }
2040
2041 Out << '\n';
2042
2043 // Dump the next address point.
2044 uint64_t NextIndex = Index + 1;
2045 if (AddressPointsByIndex.count(NextIndex)) {
2046 if (AddressPointsByIndex.count(NextIndex) == 1) {
2047 const BaseSubobject &Base =
2048 AddressPointsByIndex.find(NextIndex)->second;
2049
2050 Out << " -- (";
2051 Base.getBase()->printQualifiedName(Out);
2052 Out << ", " << Base.getBaseOffset().getQuantity();
2053 Out << ") vtable address --\n";
2054 } else {
2055 CharUnits BaseOffset =
2056 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2057
2058 // We store the class names in a set to get a stable order.
2059 std::set<std::string> ClassNames;
2060 for (const auto &I :
2061 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2062 assert(I.second.getBaseOffset() == BaseOffset &&
2063 "Invalid base offset!");
2064 const CXXRecordDecl *RD = I.second.getBase();
2065 ClassNames.insert(RD->getQualifiedNameAsString());
2066 }
2067
2068 for (const std::string &Name : ClassNames) {
2069 Out << " -- (" << Name;
2070 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2071 }
2072 }
2073 }
2074 }
2075
2076 Out << '\n';
2077
2078 if (isBuildingConstructorVTable())
2079 return;
2080
2081 if (MostDerivedClass->getNumVBases()) {
2082 // We store the virtual base class names and their offsets in a map to get
2083 // a stable order.
2084
2085 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2086 for (const auto &I : VBaseOffsetOffsets) {
2087 std::string ClassName = I.first->getQualifiedNameAsString();
2088 CharUnits OffsetOffset = I.second;
2089 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2090 }
2091
2092 Out << "Virtual base offset offsets for '";
2093 MostDerivedClass->printQualifiedName(Out);
2094 Out << "' (";
2095 Out << ClassNamesAndOffsets.size();
2096 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2097
2098 for (const auto &I : ClassNamesAndOffsets)
2099 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2100
2101 Out << "\n";
2102 }
2103
2104 if (!Thunks.empty()) {
2105 // We store the method names in a map to get a stable order.
2106 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2107
2108 for (const auto &I : Thunks) {
2109 const CXXMethodDecl *MD = I.first;
2110 std::string MethodName =
2111 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2112 MD);
2113
2114 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2115 }
2116
2117 for (const auto &I : MethodNamesAndDecls) {
2118 const std::string &MethodName = I.first;
2119 const CXXMethodDecl *MD = I.second;
2120
2121 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2122 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2123 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2124 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2125 });
2126
2127 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2128 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2129
2130 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2131 const ThunkInfo &Thunk = ThunksVector[I];
2132
2133 Out << llvm::format("%4d | ", I);
2134
2135 // If this function pointer has a return pointer adjustment, dump it.
2136 if (!Thunk.Return.isEmpty()) {
2137 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2138 Out << " non-virtual";
2139 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2140 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2141 Out << " vbase offset offset";
2142 }
2143
2144 if (!Thunk.This.isEmpty())
2145 Out << "\n ";
2146 }
2147
2148 // If this function pointer has a 'this' pointer adjustment, dump it.
2149 if (!Thunk.This.isEmpty()) {
2150 Out << "this adjustment: ";
2151 Out << Thunk.This.NonVirtual << " non-virtual";
2152
2153 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2154 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2155 Out << " vcall offset offset";
2156 }
2157 }
2158
2159 Out << '\n';
2160 }
2161
2162 Out << '\n';
2163 }
2164 }
2165
2166 // Compute the vtable indices for all the member functions.
2167 // Store them in a map keyed by the index so we'll get a sorted table.
2168 std::map<uint64_t, std::string> IndicesMap;
2169
2170 for (const auto *MD : MostDerivedClass->methods()) {
2171 // We only want virtual member functions.
2172 if (!ItaniumVTableContext::hasVtableSlot(MD))
2173 continue;
2174 MD = MD->getCanonicalDecl();
2175
2176 std::string MethodName =
2177 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2178 MD);
2179
2180 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2181 GlobalDecl GD(DD, Dtor_Complete);
2182 assert(MethodVTableIndices.count(GD));
2183 uint64_t VTableIndex = MethodVTableIndices[GD];
2184 IndicesMap[VTableIndex] = MethodName + " [complete]";
2185 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2186 } else {
2187 assert(MethodVTableIndices.count(MD));
2188 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2189 }
2190 }
2191
2192 // Print the vtable indices for all the member functions.
2193 if (!IndicesMap.empty()) {
2194 Out << "VTable indices for '";
2195 MostDerivedClass->printQualifiedName(Out);
2196 Out << "' (" << IndicesMap.size() << " entries).\n";
2197
2198 for (const auto &I : IndicesMap) {
2199 uint64_t VTableIndex = I.first;
2200 const std::string &MethodName = I.second;
2201
2202 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2203 << '\n';
2204 }
2205 }
2206
2207 Out << '\n';
2208 }
2209 }
2210
2211 static VTableLayout::AddressPointsIndexMapTy
MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy & addressPoints,unsigned numVTables)2212 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2213 unsigned numVTables) {
2214 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2215
2216 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2217 const auto &addressPointLoc = it->second;
2218 unsigned vtableIndex = addressPointLoc.VTableIndex;
2219 unsigned addressPoint = addressPointLoc.AddressPointIndex;
2220 if (indexMap[vtableIndex]) {
2221 // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2222 // every vtable index should have a unique address point.
2223 assert(indexMap[vtableIndex] == addressPoint &&
2224 "Every vtable index should have a unique address point. Found a "
2225 "vtable that has two different address points.");
2226 } else {
2227 indexMap[vtableIndex] = addressPoint;
2228 }
2229 }
2230
2231 // Note that by this point, not all the address may be initialized if the
2232 // AddressPoints map is empty. This is ok if the map isn't needed. See
2233 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2234 // emprt map.
2235 return indexMap;
2236 }
2237
VTableLayout(ArrayRef<size_t> VTableIndices,ArrayRef<VTableComponent> VTableComponents,ArrayRef<VTableThunkTy> VTableThunks,const AddressPointsMapTy & AddressPoints)2238 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2239 ArrayRef<VTableComponent> VTableComponents,
2240 ArrayRef<VTableThunkTy> VTableThunks,
2241 const AddressPointsMapTy &AddressPoints)
2242 : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2243 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2244 AddressPoints, VTableIndices.size())) {
2245 if (VTableIndices.size() <= 1)
2246 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2247 else
2248 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2249
2250 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2251 const VTableLayout::VTableThunkTy &RHS) {
2252 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2253 "Different thunks should have unique indices!");
2254 return LHS.first < RHS.first;
2255 });
2256 }
2257
~VTableLayout()2258 VTableLayout::~VTableLayout() { }
2259
hasVtableSlot(const CXXMethodDecl * MD)2260 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2261 return MD->isVirtual() && !MD->isConsteval();
2262 }
2263
ItaniumVTableContext(ASTContext & Context,VTableComponentLayout ComponentLayout)2264 ItaniumVTableContext::ItaniumVTableContext(
2265 ASTContext &Context, VTableComponentLayout ComponentLayout)
2266 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2267
~ItaniumVTableContext()2268 ItaniumVTableContext::~ItaniumVTableContext() {}
2269
getMethodVTableIndex(GlobalDecl GD)2270 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2271 GD = GD.getCanonicalDecl();
2272 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2273 if (I != MethodVTableIndices.end())
2274 return I->second;
2275
2276 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2277
2278 computeVTableRelatedInformation(RD);
2279
2280 I = MethodVTableIndices.find(GD);
2281 assert(I != MethodVTableIndices.end() && "Did not find index!");
2282 return I->second;
2283 }
2284
2285 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2286 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2287 const CXXRecordDecl *VBase) {
2288 ClassPairTy ClassPair(RD, VBase);
2289
2290 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2291 VirtualBaseClassOffsetOffsets.find(ClassPair);
2292 if (I != VirtualBaseClassOffsetOffsets.end())
2293 return I->second;
2294
2295 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2296 BaseSubobject(RD, CharUnits::Zero()),
2297 /*BaseIsVirtual=*/false,
2298 /*OffsetInLayoutClass=*/CharUnits::Zero());
2299
2300 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2301 // Insert all types.
2302 ClassPairTy ClassPair(RD, I.first);
2303
2304 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2305 }
2306
2307 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2308 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2309
2310 return I->second;
2311 }
2312
2313 static std::unique_ptr<VTableLayout>
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2314 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2315 SmallVector<VTableLayout::VTableThunkTy, 1>
2316 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2317
2318 return std::make_unique<VTableLayout>(
2319 Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2320 Builder.getAddressPoints());
2321 }
2322
2323 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2324 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2325 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2326
2327 // Check if we've computed this information before.
2328 if (Entry)
2329 return;
2330
2331 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2332 /*MostDerivedClassIsVirtual=*/false, RD);
2333 Entry = CreateVTableLayout(Builder);
2334
2335 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2336 Builder.vtable_indices_end());
2337
2338 // Add the known thunks.
2339 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2340
2341 // If we don't have the vbase information for this class, insert it.
2342 // getVirtualBaseOffsetOffset will compute it separately without computing
2343 // the rest of the vtable related information.
2344 if (!RD->getNumVBases())
2345 return;
2346
2347 const CXXRecordDecl *VBase =
2348 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2349
2350 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2351 return;
2352
2353 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2354 // Insert all types.
2355 ClassPairTy ClassPair(RD, I.first);
2356
2357 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2358 }
2359 }
2360
2361 std::unique_ptr<VTableLayout>
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2362 ItaniumVTableContext::createConstructionVTableLayout(
2363 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2364 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2365 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2366 MostDerivedClassIsVirtual, LayoutClass);
2367 return CreateVTableLayout(Builder);
2368 }
2369
2370 namespace {
2371
2372 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2373 //
2374 // The main differences are:
2375 // 1. Separate vftable and vbtable.
2376 //
2377 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2378 // point in a single vtable shared between all the subobjects.
2379 // Each vftable is represented by a separate section and virtual calls
2380 // must be done using the vftable which has a slot for the function to be
2381 // called.
2382 //
2383 // 3. Virtual method definitions expect their 'this' parameter to point to the
2384 // first vfptr whose table provides a compatible overridden method. In many
2385 // cases, this permits the original vf-table entry to directly call
2386 // the method instead of passing through a thunk.
2387 // See example before VFTableBuilder::ComputeThisOffset below.
2388 //
2389 // A compatible overridden method is one which does not have a non-trivial
2390 // covariant-return adjustment.
2391 //
2392 // The first vfptr is the one with the lowest offset in the complete-object
2393 // layout of the defining class, and the method definition will subtract
2394 // that constant offset from the parameter value to get the real 'this'
2395 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2396 // function defined in a virtual base is overridden in a more derived
2397 // virtual base and these bases have a reverse order in the complete
2398 // object), the vf-table may require a this-adjustment thunk.
2399 //
2400 // 4. vftables do not contain new entries for overrides that merely require
2401 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2402 // eliminates the need for this-adjustment thunks in many cases, at the cost
2403 // of often requiring redundant work to adjust the "this" pointer.
2404 //
2405 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2406 // Vtordisps are emitted into the class layout if a class has
2407 // a) a user-defined ctor/dtor
2408 // and
2409 // b) a method overriding a method in a virtual base.
2410 //
2411 // To get a better understanding of this code,
2412 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2413
2414 class VFTableBuilder {
2415 public:
2416 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2417 MethodVFTableLocationsTy;
2418
2419 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2420 method_locations_range;
2421
2422 private:
2423 /// VTables - Global vtable information.
2424 MicrosoftVTableContext &VTables;
2425
2426 /// Context - The ASTContext which we will use for layout information.
2427 ASTContext &Context;
2428
2429 /// MostDerivedClass - The most derived class for which we're building this
2430 /// vtable.
2431 const CXXRecordDecl *MostDerivedClass;
2432
2433 const ASTRecordLayout &MostDerivedClassLayout;
2434
2435 const VPtrInfo &WhichVFPtr;
2436
2437 /// FinalOverriders - The final overriders of the most derived class.
2438 const FinalOverriders Overriders;
2439
2440 /// Components - The components of the vftable being built.
2441 SmallVector<VTableComponent, 64> Components;
2442
2443 MethodVFTableLocationsTy MethodVFTableLocations;
2444
2445 /// Does this class have an RTTI component?
2446 bool HasRTTIComponent = false;
2447
2448 /// MethodInfo - Contains information about a method in a vtable.
2449 /// (Used for computing 'this' pointer adjustment thunks.
2450 struct MethodInfo {
2451 /// VBTableIndex - The nonzero index in the vbtable that
2452 /// this method's base has, or zero.
2453 const uint64_t VBTableIndex;
2454
2455 /// VFTableIndex - The index in the vftable that this method has.
2456 const uint64_t VFTableIndex;
2457
2458 /// Shadowed - Indicates if this vftable slot is shadowed by
2459 /// a slot for a covariant-return override. If so, it shouldn't be printed
2460 /// or used for vcalls in the most derived class.
2461 bool Shadowed;
2462
2463 /// UsesExtraSlot - Indicates if this vftable slot was created because
2464 /// any of the overridden slots required a return adjusting thunk.
2465 bool UsesExtraSlot;
2466
MethodInfo__anon702cc0260611::VFTableBuilder::MethodInfo2467 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2468 bool UsesExtraSlot = false)
2469 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2470 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2471
MethodInfo__anon702cc0260611::VFTableBuilder::MethodInfo2472 MethodInfo()
2473 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2474 UsesExtraSlot(false) {}
2475 };
2476
2477 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2478
2479 /// MethodInfoMap - The information for all methods in the vftable we're
2480 /// currently building.
2481 MethodInfoMapTy MethodInfoMap;
2482
2483 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2484
2485 /// VTableThunks - The thunks by vftable index in the vftable currently being
2486 /// built.
2487 VTableThunksMapTy VTableThunks;
2488
2489 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2490 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2491
2492 /// Thunks - A map that contains all the thunks needed for all methods in the
2493 /// most derived class for which the vftable is currently being built.
2494 ThunksMapTy Thunks;
2495
2496 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2497 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2498 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2499
2500 // Check if we have this thunk already.
2501 if (llvm::is_contained(ThunksVector, Thunk))
2502 return;
2503
2504 ThunksVector.push_back(Thunk);
2505 }
2506
2507 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2508 /// method, relative to the beginning of the MostDerivedClass.
2509 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2510
2511 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2512 CharUnits ThisOffset, ThisAdjustment &TA);
2513
2514 /// AddMethod - Add a single virtual member function to the vftable
2515 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2516 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2517 if (!TI.isEmpty()) {
2518 VTableThunks[Components.size()] = TI;
2519 AddThunk(MD, TI);
2520 }
2521 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2522 assert(TI.Return.isEmpty() &&
2523 "Destructor can't have return adjustment!");
2524 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2525 } else {
2526 Components.push_back(VTableComponent::MakeFunction(MD));
2527 }
2528 }
2529
2530 /// AddMethods - Add the methods of this base subobject and the relevant
2531 /// subbases to the vftable we're currently laying out.
2532 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2533 const CXXRecordDecl *LastVBase,
2534 BasesSetVectorTy &VisitedBases);
2535
LayoutVFTable()2536 void LayoutVFTable() {
2537 // RTTI data goes before all other entries.
2538 if (HasRTTIComponent)
2539 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2540
2541 BasesSetVectorTy VisitedBases;
2542 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2543 VisitedBases);
2544 // Note that it is possible for the vftable to contain only an RTTI
2545 // pointer, if all virtual functions are constewval.
2546 assert(!Components.empty() && "vftable can't be empty");
2547
2548 assert(MethodVFTableLocations.empty());
2549 for (const auto &I : MethodInfoMap) {
2550 const CXXMethodDecl *MD = I.first;
2551 const MethodInfo &MI = I.second;
2552 assert(MD == MD->getCanonicalDecl());
2553
2554 // Skip the methods that the MostDerivedClass didn't override
2555 // and the entries shadowed by return adjusting thunks.
2556 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2557 continue;
2558 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2559 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2560 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2561 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2562 } else {
2563 MethodVFTableLocations[MD] = Loc;
2564 }
2565 }
2566 }
2567
2568 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo & Which)2569 VFTableBuilder(MicrosoftVTableContext &VTables,
2570 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2571 : VTables(VTables),
2572 Context(MostDerivedClass->getASTContext()),
2573 MostDerivedClass(MostDerivedClass),
2574 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2575 WhichVFPtr(Which),
2576 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2577 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2578 // be available externally, we should not provide the RTTI componenent. It
2579 // is currently impossible to get available externally vftables with either
2580 // dllimport or extern template instantiations, but eventually we may add a
2581 // flag to support additional devirtualization that needs this.
2582 if (Context.getLangOpts().RTTIData)
2583 HasRTTIComponent = true;
2584
2585 LayoutVFTable();
2586
2587 if (Context.getLangOpts().DumpVTableLayouts)
2588 dumpLayout(llvm::outs());
2589 }
2590
getNumThunks() const2591 uint64_t getNumThunks() const { return Thunks.size(); }
2592
thunks_begin() const2593 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2594
thunks_end() const2595 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2596
vtable_locations() const2597 method_locations_range vtable_locations() const {
2598 return method_locations_range(MethodVFTableLocations.begin(),
2599 MethodVFTableLocations.end());
2600 }
2601
vtable_components() const2602 ArrayRef<VTableComponent> vtable_components() const { return Components; }
2603
vtable_thunks_begin() const2604 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2605 return VTableThunks.begin();
2606 }
2607
vtable_thunks_end() const2608 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2609 return VTableThunks.end();
2610 }
2611
2612 void dumpLayout(raw_ostream &);
2613 };
2614
2615 } // end namespace
2616
2617 // Let's study one class hierarchy as an example:
2618 // struct A {
2619 // virtual void f();
2620 // int x;
2621 // };
2622 //
2623 // struct B : virtual A {
2624 // virtual void f();
2625 // };
2626 //
2627 // Record layouts:
2628 // struct A:
2629 // 0 | (A vftable pointer)
2630 // 4 | int x
2631 //
2632 // struct B:
2633 // 0 | (B vbtable pointer)
2634 // 4 | struct A (virtual base)
2635 // 4 | (A vftable pointer)
2636 // 8 | int x
2637 //
2638 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2639 // B b;
2640 // A *a = (A*)&b;
2641 // a->f();
2642 //
2643 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2644 // "this" parameter to point at the A subobject, which is B+4.
2645 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2646 // performed as a *static* adjustment.
2647 //
2648 // Interesting thing happens when we alter the relative placement of A and B
2649 // subobjects in a class:
2650 // struct C : virtual B { };
2651 //
2652 // C c;
2653 // A *a = (A*)&c;
2654 // a->f();
2655 //
2656 // Respective record layout is:
2657 // 0 | (C vbtable pointer)
2658 // 4 | struct A (virtual base)
2659 // 4 | (A vftable pointer)
2660 // 8 | int x
2661 // 12 | struct B (virtual base)
2662 // 12 | (B vbtable pointer)
2663 //
2664 // The final overrider of f() in class C is still B::f(), so B+4 should be
2665 // passed as "this" to that code. However, "a" points at B-8, so the respective
2666 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2667 // performing a tail call to B::f().
2668 //
2669 // With this example in mind, we can now calculate the 'this' argument offset
2670 // for the given method, relative to the beginning of the MostDerivedClass.
2671 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2672 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2673 BasesSetVectorTy Bases;
2674
2675 {
2676 // Find the set of least derived bases that define the given method.
2677 OverriddenMethodsSetTy VisitedOverriddenMethods;
2678 auto InitialOverriddenDefinitionCollector = [&](
2679 const CXXMethodDecl *OverriddenMD) {
2680 if (OverriddenMD->size_overridden_methods() == 0)
2681 Bases.insert(OverriddenMD->getParent());
2682 // Don't recurse on this method if we've already collected it.
2683 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2684 };
2685 visitAllOverriddenMethods(Overrider.Method,
2686 InitialOverriddenDefinitionCollector);
2687 }
2688
2689 // If there are no overrides then 'this' is located
2690 // in the base that defines the method.
2691 if (Bases.size() == 0)
2692 return Overrider.Offset;
2693
2694 CXXBasePaths Paths;
2695 Overrider.Method->getParent()->lookupInBases(
2696 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2697 return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2698 },
2699 Paths);
2700
2701 // This will hold the smallest this offset among overridees of MD.
2702 // This implies that an offset of a non-virtual base will dominate an offset
2703 // of a virtual base to potentially reduce the number of thunks required
2704 // in the derived classes that inherit this method.
2705 CharUnits Ret;
2706 bool First = true;
2707
2708 const ASTRecordLayout &OverriderRDLayout =
2709 Context.getASTRecordLayout(Overrider.Method->getParent());
2710 for (const CXXBasePath &Path : Paths) {
2711 CharUnits ThisOffset = Overrider.Offset;
2712 CharUnits LastVBaseOffset;
2713
2714 // For each path from the overrider to the parents of the overridden
2715 // methods, traverse the path, calculating the this offset in the most
2716 // derived class.
2717 for (const CXXBasePathElement &Element : Path) {
2718 QualType CurTy = Element.Base->getType();
2719 const CXXRecordDecl *PrevRD = Element.Class,
2720 *CurRD = CurTy->getAsCXXRecordDecl();
2721 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2722
2723 if (Element.Base->isVirtual()) {
2724 // The interesting things begin when you have virtual inheritance.
2725 // The final overrider will use a static adjustment equal to the offset
2726 // of the vbase in the final overrider class.
2727 // For example, if the final overrider is in a vbase B of the most
2728 // derived class and it overrides a method of the B's own vbase A,
2729 // it uses A* as "this". In its prologue, it can cast A* to B* with
2730 // a static offset. This offset is used regardless of the actual
2731 // offset of A from B in the most derived class, requiring an
2732 // this-adjusting thunk in the vftable if A and B are laid out
2733 // differently in the most derived class.
2734 LastVBaseOffset = ThisOffset =
2735 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2736 } else {
2737 ThisOffset += Layout.getBaseClassOffset(CurRD);
2738 }
2739 }
2740
2741 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2742 if (LastVBaseOffset.isZero()) {
2743 // If a "Base" class has at least one non-virtual base with a virtual
2744 // destructor, the "Base" virtual destructor will take the address
2745 // of the "Base" subobject as the "this" argument.
2746 ThisOffset = Overrider.Offset;
2747 } else {
2748 // A virtual destructor of a virtual base takes the address of the
2749 // virtual base subobject as the "this" argument.
2750 ThisOffset = LastVBaseOffset;
2751 }
2752 }
2753
2754 if (Ret > ThisOffset || First) {
2755 First = false;
2756 Ret = ThisOffset;
2757 }
2758 }
2759
2760 assert(!First && "Method not found in the given subobject?");
2761 return Ret;
2762 }
2763
2764 // Things are getting even more complex when the "this" adjustment has to
2765 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2766 // This is sometimes required when a virtual call happens in the middle of
2767 // a non-most-derived class construction or destruction.
2768 //
2769 // Let's take a look at the following example:
2770 // struct A {
2771 // virtual void f();
2772 // };
2773 //
2774 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2775 //
2776 // struct B : virtual A {
2777 // virtual void f();
2778 // B() {
2779 // foo(this);
2780 // }
2781 // };
2782 //
2783 // struct C : virtual B {
2784 // virtual void f();
2785 // };
2786 //
2787 // Record layouts for these classes are:
2788 // struct A
2789 // 0 | (A vftable pointer)
2790 //
2791 // struct B
2792 // 0 | (B vbtable pointer)
2793 // 4 | (vtordisp for vbase A)
2794 // 8 | struct A (virtual base)
2795 // 8 | (A vftable pointer)
2796 //
2797 // struct C
2798 // 0 | (C vbtable pointer)
2799 // 4 | (vtordisp for vbase A)
2800 // 8 | struct A (virtual base) // A precedes B!
2801 // 8 | (A vftable pointer)
2802 // 12 | struct B (virtual base)
2803 // 12 | (B vbtable pointer)
2804 //
2805 // When one creates an object of type C, the C constructor:
2806 // - initializes all the vbptrs, then
2807 // - calls the A subobject constructor
2808 // (initializes A's vfptr with an address of A vftable), then
2809 // - calls the B subobject constructor
2810 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2811 // that in turn calls foo(), then
2812 // - initializes A's vfptr with an address of C vftable and zeroes out the
2813 // vtordisp
2814 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2815 // without vtordisp thunks?
2816 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2817 //
2818 // When foo() is called, an object with a layout of class C has a vftable
2819 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2820 // incorrect, unless an extra adjustment is done. This adjustment is called
2821 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2822 // actual location of a vbase in the layout class and the location assumed by
2823 // the vftable of the class being constructed/destructed. Vtordisp is only
2824 // needed if "this" escapes a
2825 // structor (or we can't prove otherwise).
2826 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2827 // estimation of a dynamic adjustment]
2828 //
2829 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2830 // so it just passes that pointer as "this" in a virtual call.
2831 // If there was no vtordisp, that would just dispatch to B::f().
2832 // However, B::f() assumes B+8 is passed as "this",
2833 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2834 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2835 // This vtordisp thunk subtracts the value of vtordisp
2836 // from the "this" argument (-12) before making a tailcall to B::f().
2837 //
2838 // Let's consider an even more complex example:
2839 // struct D : virtual B, virtual C {
2840 // D() {
2841 // foo(this);
2842 // }
2843 // };
2844 //
2845 // struct D
2846 // 0 | (D vbtable pointer)
2847 // 4 | (vtordisp for vbase A)
2848 // 8 | struct A (virtual base) // A precedes both B and C!
2849 // 8 | (A vftable pointer)
2850 // 12 | struct B (virtual base) // B precedes C!
2851 // 12 | (B vbtable pointer)
2852 // 16 | struct C (virtual base)
2853 // 16 | (C vbtable pointer)
2854 //
2855 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2856 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2857 // passes along A, which is C-8. The A vtordisp holds
2858 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2859 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2860 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2861 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2862 void VFTableBuilder::CalculateVtordispAdjustment(
2863 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2864 ThisAdjustment &TA) {
2865 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2866 MostDerivedClassLayout.getVBaseOffsetsMap();
2867 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2868 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2869 assert(VBaseMapEntry != VBaseMap.end());
2870
2871 // If there's no vtordisp or the final overrider is defined in the same vbase
2872 // as the initial declaration, we don't need any vtordisp adjustment.
2873 if (!VBaseMapEntry->second.hasVtorDisp() ||
2874 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2875 return;
2876
2877 // OK, now we know we need to use a vtordisp thunk.
2878 // The implicit vtordisp field is located right before the vbase.
2879 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2880 TA.Virtual.Microsoft.VtordispOffset =
2881 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2882
2883 // A simple vtordisp thunk will suffice if the final overrider is defined
2884 // in either the most derived class or its non-virtual base.
2885 if (Overrider.Method->getParent() == MostDerivedClass ||
2886 !Overrider.VirtualBase)
2887 return;
2888
2889 // Otherwise, we need to do use the dynamic offset of the final overrider
2890 // in order to get "this" adjustment right.
2891 TA.Virtual.Microsoft.VBPtrOffset =
2892 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2893 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2894 TA.Virtual.Microsoft.VBOffsetOffset =
2895 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2896 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2897
2898 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2899 }
2900
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2901 static void GroupNewVirtualOverloads(
2902 const CXXRecordDecl *RD,
2903 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2904 // Put the virtual methods into VirtualMethods in the proper order:
2905 // 1) Group overloads by declaration name. New groups are added to the
2906 // vftable in the order of their first declarations in this class
2907 // (including overrides, non-virtual methods and any other named decl that
2908 // might be nested within the class).
2909 // 2) In each group, new overloads appear in the reverse order of declaration.
2910 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2911 SmallVector<MethodGroup, 10> Groups;
2912 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2913 VisitedGroupIndicesTy VisitedGroupIndices;
2914 for (const auto *D : RD->decls()) {
2915 const auto *ND = dyn_cast<NamedDecl>(D);
2916 if (!ND)
2917 continue;
2918 VisitedGroupIndicesTy::iterator J;
2919 bool Inserted;
2920 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2921 std::make_pair(ND->getDeclName(), Groups.size()));
2922 if (Inserted)
2923 Groups.push_back(MethodGroup());
2924 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2925 if (MicrosoftVTableContext::hasVtableSlot(MD))
2926 Groups[J->second].push_back(MD->getCanonicalDecl());
2927 }
2928
2929 for (const MethodGroup &Group : Groups)
2930 VirtualMethods.append(Group.rbegin(), Group.rend());
2931 }
2932
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)2933 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2934 for (const auto &B : RD->bases()) {
2935 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2936 return true;
2937 }
2938 return false;
2939 }
2940
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2941 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2942 const CXXRecordDecl *LastVBase,
2943 BasesSetVectorTy &VisitedBases) {
2944 const CXXRecordDecl *RD = Base.getBase();
2945 if (!RD->isPolymorphic())
2946 return;
2947
2948 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2949
2950 // See if this class expands a vftable of the base we look at, which is either
2951 // the one defined by the vfptr base path or the primary base of the current
2952 // class.
2953 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2954 CharUnits NextBaseOffset;
2955 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2956 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2957 if (isDirectVBase(NextBase, RD)) {
2958 NextLastVBase = NextBase;
2959 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2960 } else {
2961 NextBaseOffset =
2962 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2963 }
2964 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2965 assert(!Layout.isPrimaryBaseVirtual() &&
2966 "No primary virtual bases in this ABI");
2967 NextBase = PrimaryBase;
2968 NextBaseOffset = Base.getBaseOffset();
2969 }
2970
2971 if (NextBase) {
2972 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2973 NextLastVBase, VisitedBases);
2974 if (!VisitedBases.insert(NextBase))
2975 llvm_unreachable("Found a duplicate primary base!");
2976 }
2977
2978 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2979 // Put virtual methods in the proper order.
2980 GroupNewVirtualOverloads(RD, VirtualMethods);
2981
2982 // Now go through all virtual member functions and add them to the current
2983 // vftable. This is done by
2984 // - replacing overridden methods in their existing slots, as long as they
2985 // don't require return adjustment; calculating This adjustment if needed.
2986 // - adding new slots for methods of the current base not present in any
2987 // sub-bases;
2988 // - adding new slots for methods that require Return adjustment.
2989 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2990 for (const CXXMethodDecl *MD : VirtualMethods) {
2991 FinalOverriders::OverriderInfo FinalOverrider =
2992 Overriders.getOverrider(MD, Base.getBaseOffset());
2993 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2994 const CXXMethodDecl *OverriddenMD =
2995 FindNearestOverriddenMethod(MD, VisitedBases);
2996
2997 ThisAdjustment ThisAdjustmentOffset;
2998 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2999 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3000 ThisAdjustmentOffset.NonVirtual =
3001 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3002 if ((OverriddenMD || FinalOverriderMD != MD) &&
3003 WhichVFPtr.getVBaseWithVPtr())
3004 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3005 ThisAdjustmentOffset);
3006
3007 unsigned VBIndex =
3008 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3009
3010 if (OverriddenMD) {
3011 // If MD overrides anything in this vftable, we need to update the
3012 // entries.
3013 MethodInfoMapTy::iterator OverriddenMDIterator =
3014 MethodInfoMap.find(OverriddenMD);
3015
3016 // If the overridden method went to a different vftable, skip it.
3017 if (OverriddenMDIterator == MethodInfoMap.end())
3018 continue;
3019
3020 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3021
3022 VBIndex = OverriddenMethodInfo.VBTableIndex;
3023
3024 // Let's check if the overrider requires any return adjustments.
3025 // We must create a new slot if the MD's return type is not trivially
3026 // convertible to the OverriddenMD's one.
3027 // Once a chain of method overrides adds a return adjusting vftable slot,
3028 // all subsequent overrides will also use an extra method slot.
3029 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3030 Context, MD, OverriddenMD).isEmpty() ||
3031 OverriddenMethodInfo.UsesExtraSlot;
3032
3033 if (!ReturnAdjustingThunk) {
3034 // No return adjustment needed - just replace the overridden method info
3035 // with the current info.
3036 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3037 MethodInfoMap.erase(OverriddenMDIterator);
3038
3039 assert(!MethodInfoMap.count(MD) &&
3040 "Should not have method info for this method yet!");
3041 MethodInfoMap.insert(std::make_pair(MD, MI));
3042 continue;
3043 }
3044
3045 // In case we need a return adjustment, we'll add a new slot for
3046 // the overrider. Mark the overridden method as shadowed by the new slot.
3047 OverriddenMethodInfo.Shadowed = true;
3048
3049 // Force a special name mangling for a return-adjusting thunk
3050 // unless the method is the final overrider without this adjustment.
3051 ForceReturnAdjustmentMangling =
3052 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3053 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3054 MD->size_overridden_methods()) {
3055 // Skip methods that don't belong to the vftable of the current class,
3056 // e.g. each method that wasn't seen in any of the visited sub-bases
3057 // but overrides multiple methods of other sub-bases.
3058 continue;
3059 }
3060
3061 // If we got here, MD is a method not seen in any of the sub-bases or
3062 // it requires return adjustment. Insert the method info for this method.
3063 MethodInfo MI(VBIndex,
3064 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3065 ReturnAdjustingThunk);
3066
3067 assert(!MethodInfoMap.count(MD) &&
3068 "Should not have method info for this method yet!");
3069 MethodInfoMap.insert(std::make_pair(MD, MI));
3070
3071 // Check if this overrider needs a return adjustment.
3072 // We don't want to do this for pure virtual member functions.
3073 BaseOffset ReturnAdjustmentOffset;
3074 ReturnAdjustment ReturnAdjustment;
3075 if (!FinalOverriderMD->isPure()) {
3076 ReturnAdjustmentOffset =
3077 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3078 }
3079 if (!ReturnAdjustmentOffset.isEmpty()) {
3080 ForceReturnAdjustmentMangling = true;
3081 ReturnAdjustment.NonVirtual =
3082 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3083 if (ReturnAdjustmentOffset.VirtualBase) {
3084 const ASTRecordLayout &DerivedLayout =
3085 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3086 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3087 DerivedLayout.getVBPtrOffset().getQuantity();
3088 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3089 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3090 ReturnAdjustmentOffset.VirtualBase);
3091 }
3092 }
3093
3094 AddMethod(FinalOverriderMD,
3095 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3096 ForceReturnAdjustmentMangling ? MD : nullptr));
3097 }
3098 }
3099
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3100 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3101 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3102 Out << "'";
3103 Elem->printQualifiedName(Out);
3104 Out << "' in ";
3105 }
3106 }
3107
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3108 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3109 bool ContinueFirstLine) {
3110 const ReturnAdjustment &R = TI.Return;
3111 bool Multiline = false;
3112 const char *LinePrefix = "\n ";
3113 if (!R.isEmpty() || TI.Method) {
3114 if (!ContinueFirstLine)
3115 Out << LinePrefix;
3116 Out << "[return adjustment (to type '"
3117 << TI.Method->getReturnType().getCanonicalType() << "'): ";
3118 if (R.Virtual.Microsoft.VBPtrOffset)
3119 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3120 if (R.Virtual.Microsoft.VBIndex)
3121 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3122 Out << R.NonVirtual << " non-virtual]";
3123 Multiline = true;
3124 }
3125
3126 const ThisAdjustment &T = TI.This;
3127 if (!T.isEmpty()) {
3128 if (Multiline || !ContinueFirstLine)
3129 Out << LinePrefix;
3130 Out << "[this adjustment: ";
3131 if (!TI.This.Virtual.isEmpty()) {
3132 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3133 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3134 if (T.Virtual.Microsoft.VBPtrOffset) {
3135 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3136 << " to the left,";
3137 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3138 Out << LinePrefix << " vboffset at "
3139 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3140 }
3141 }
3142 Out << T.NonVirtual << " non-virtual]";
3143 }
3144 }
3145
dumpLayout(raw_ostream & Out)3146 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3147 Out << "VFTable for ";
3148 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3149 Out << "'";
3150 MostDerivedClass->printQualifiedName(Out);
3151 Out << "' (" << Components.size()
3152 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3153
3154 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3155 Out << llvm::format("%4d | ", I);
3156
3157 const VTableComponent &Component = Components[I];
3158
3159 // Dump the component.
3160 switch (Component.getKind()) {
3161 case VTableComponent::CK_RTTI:
3162 Component.getRTTIDecl()->printQualifiedName(Out);
3163 Out << " RTTI";
3164 break;
3165
3166 case VTableComponent::CK_FunctionPointer: {
3167 const CXXMethodDecl *MD = Component.getFunctionDecl();
3168
3169 // FIXME: Figure out how to print the real thunk type, since they can
3170 // differ in the return type.
3171 std::string Str = PredefinedExpr::ComputeName(
3172 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3173 Out << Str;
3174 if (MD->isPure())
3175 Out << " [pure]";
3176
3177 if (MD->isDeleted())
3178 Out << " [deleted]";
3179
3180 ThunkInfo Thunk = VTableThunks.lookup(I);
3181 if (!Thunk.isEmpty())
3182 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3183
3184 break;
3185 }
3186
3187 case VTableComponent::CK_DeletingDtorPointer: {
3188 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3189
3190 DD->printQualifiedName(Out);
3191 Out << "() [scalar deleting]";
3192
3193 if (DD->isPure())
3194 Out << " [pure]";
3195
3196 ThunkInfo Thunk = VTableThunks.lookup(I);
3197 if (!Thunk.isEmpty()) {
3198 assert(Thunk.Return.isEmpty() &&
3199 "No return adjustment needed for destructors!");
3200 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3201 }
3202
3203 break;
3204 }
3205
3206 default:
3207 DiagnosticsEngine &Diags = Context.getDiagnostics();
3208 unsigned DiagID = Diags.getCustomDiagID(
3209 DiagnosticsEngine::Error,
3210 "Unexpected vftable component type %0 for component number %1");
3211 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3212 << I << Component.getKind();
3213 }
3214
3215 Out << '\n';
3216 }
3217
3218 Out << '\n';
3219
3220 if (!Thunks.empty()) {
3221 // We store the method names in a map to get a stable order.
3222 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3223
3224 for (const auto &I : Thunks) {
3225 const CXXMethodDecl *MD = I.first;
3226 std::string MethodName = PredefinedExpr::ComputeName(
3227 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3228
3229 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3230 }
3231
3232 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3233 const std::string &MethodName = MethodNameAndDecl.first;
3234 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3235
3236 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3237 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3238 const ThunkInfo &RHS) {
3239 // Keep different thunks with the same adjustments in the order they
3240 // were put into the vector.
3241 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3242 });
3243
3244 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3245 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3246
3247 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3248 const ThunkInfo &Thunk = ThunksVector[I];
3249
3250 Out << llvm::format("%4d | ", I);
3251 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3252 Out << '\n';
3253 }
3254
3255 Out << '\n';
3256 }
3257 }
3258
3259 Out.flush();
3260 }
3261
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3262 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3263 ArrayRef<const CXXRecordDecl *> B) {
3264 for (const CXXRecordDecl *Decl : B) {
3265 if (A.count(Decl))
3266 return true;
3267 }
3268 return false;
3269 }
3270
3271 static bool rebucketPaths(VPtrInfoVector &Paths);
3272
3273 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3274 /// algorithm match those produced by MSVC 2012 and newer, which is different
3275 /// from MSVC 2010.
3276 ///
3277 /// MSVC 2012 appears to minimize the vbtable names using the following
3278 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3279 /// left to right, to find all of the subobjects which contain a vbptr field.
3280 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3281 /// record with a vbptr creates an initially empty path.
3282 ///
3283 /// To combine paths from child nodes, the paths are compared to check for
3284 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3285 /// components in the same order. Each group of ambiguous paths is extended by
3286 /// appending the class of the base from which it came. If the current class
3287 /// node produced an ambiguous path, its path is extended with the current class.
3288 /// After extending paths, MSVC again checks for ambiguity, and extends any
3289 /// ambiguous path which wasn't already extended. Because each node yields an
3290 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3291 /// to produce an unambiguous set of paths.
3292 ///
3293 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3294 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3295 const CXXRecordDecl *RD,
3296 VPtrInfoVector &Paths) {
3297 assert(Paths.empty());
3298 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3299
3300 // Base case: this subobject has its own vptr.
3301 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3302 Paths.push_back(std::make_unique<VPtrInfo>(RD));
3303
3304 // Recursive case: get all the vbtables from our bases and remove anything
3305 // that shares a virtual base.
3306 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3307 for (const auto &B : RD->bases()) {
3308 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3309 if (B.isVirtual() && VBasesSeen.count(Base))
3310 continue;
3311
3312 if (!Base->isDynamicClass())
3313 continue;
3314
3315 const VPtrInfoVector &BasePaths =
3316 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3317
3318 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3319 // Don't include the path if it goes through a virtual base that we've
3320 // already included.
3321 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3322 continue;
3323
3324 // Copy the path and adjust it as necessary.
3325 auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3326
3327 // We mangle Base into the path if the path would've been ambiguous and it
3328 // wasn't already extended with Base.
3329 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3330 P->NextBaseToMangle = Base;
3331
3332 // Keep track of which vtable the derived class is going to extend with
3333 // new methods or bases. We append to either the vftable of our primary
3334 // base, or the first non-virtual base that has a vbtable.
3335 if (P->ObjectWithVPtr == Base &&
3336 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3337 : Layout.getPrimaryBase()))
3338 P->ObjectWithVPtr = RD;
3339
3340 // Keep track of the full adjustment from the MDC to this vtable. The
3341 // adjustment is captured by an optional vbase and a non-virtual offset.
3342 if (B.isVirtual())
3343 P->ContainingVBases.push_back(Base);
3344 else if (P->ContainingVBases.empty())
3345 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3346
3347 // Update the full offset in the MDC.
3348 P->FullOffsetInMDC = P->NonVirtualOffset;
3349 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3350 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3351
3352 Paths.push_back(std::move(P));
3353 }
3354
3355 if (B.isVirtual())
3356 VBasesSeen.insert(Base);
3357
3358 // After visiting any direct base, we've transitively visited all of its
3359 // morally virtual bases.
3360 for (const auto &VB : Base->vbases())
3361 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3362 }
3363
3364 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3365 // paths in ambiguous buckets.
3366 bool Changed = true;
3367 while (Changed)
3368 Changed = rebucketPaths(Paths);
3369 }
3370
extendPath(VPtrInfo & P)3371 static bool extendPath(VPtrInfo &P) {
3372 if (P.NextBaseToMangle) {
3373 P.MangledPath.push_back(P.NextBaseToMangle);
3374 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3375 return true;
3376 }
3377 return false;
3378 }
3379
rebucketPaths(VPtrInfoVector & Paths)3380 static bool rebucketPaths(VPtrInfoVector &Paths) {
3381 // What we're essentially doing here is bucketing together ambiguous paths.
3382 // Any bucket with more than one path in it gets extended by NextBase, which
3383 // is usually the direct base of the inherited the vbptr. This code uses a
3384 // sorted vector to implement a multiset to form the buckets. Note that the
3385 // ordering is based on pointers, but it doesn't change our output order. The
3386 // current algorithm is designed to match MSVC 2012's names.
3387 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3388 llvm::make_pointee_range(Paths));
3389 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3390 return LHS.MangledPath < RHS.MangledPath;
3391 });
3392 bool Changed = false;
3393 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3394 // Scan forward to find the end of the bucket.
3395 size_t BucketStart = I;
3396 do {
3397 ++I;
3398 } while (I != E &&
3399 PathsSorted[BucketStart].get().MangledPath ==
3400 PathsSorted[I].get().MangledPath);
3401
3402 // If this bucket has multiple paths, extend them all.
3403 if (I - BucketStart > 1) {
3404 for (size_t II = BucketStart; II != I; ++II)
3405 Changed |= extendPath(PathsSorted[II]);
3406 assert(Changed && "no paths were extended to fix ambiguity");
3407 }
3408 }
3409 return Changed;
3410 }
3411
~MicrosoftVTableContext()3412 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3413
3414 namespace {
3415 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3416 llvm::DenseSet<BaseSubobject>> FullPathTy;
3417 }
3418
3419 // This recursive function finds all paths from a subobject centered at
3420 // (RD, Offset) to the subobject located at IntroducingObject.
findPathsToSubobject(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,BaseSubobject IntroducingObject,FullPathTy & FullPath,std::list<FullPathTy> & Paths)3421 static void findPathsToSubobject(ASTContext &Context,
3422 const ASTRecordLayout &MostDerivedLayout,
3423 const CXXRecordDecl *RD, CharUnits Offset,
3424 BaseSubobject IntroducingObject,
3425 FullPathTy &FullPath,
3426 std::list<FullPathTy> &Paths) {
3427 if (BaseSubobject(RD, Offset) == IntroducingObject) {
3428 Paths.push_back(FullPath);
3429 return;
3430 }
3431
3432 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3433
3434 for (const CXXBaseSpecifier &BS : RD->bases()) {
3435 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3436 CharUnits NewOffset = BS.isVirtual()
3437 ? MostDerivedLayout.getVBaseClassOffset(Base)
3438 : Offset + Layout.getBaseClassOffset(Base);
3439 FullPath.insert(BaseSubobject(Base, NewOffset));
3440 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3441 IntroducingObject, FullPath, Paths);
3442 FullPath.pop_back();
3443 }
3444 }
3445
3446 // Return the paths which are not subsets of other paths.
removeRedundantPaths(std::list<FullPathTy> & FullPaths)3447 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3448 FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3449 for (const FullPathTy &OtherPath : FullPaths) {
3450 if (&SpecificPath == &OtherPath)
3451 continue;
3452 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3453 return OtherPath.contains(BSO);
3454 })) {
3455 return true;
3456 }
3457 }
3458 return false;
3459 });
3460 }
3461
getOffsetOfFullPath(ASTContext & Context,const CXXRecordDecl * RD,const FullPathTy & FullPath)3462 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3463 const CXXRecordDecl *RD,
3464 const FullPathTy &FullPath) {
3465 const ASTRecordLayout &MostDerivedLayout =
3466 Context.getASTRecordLayout(RD);
3467 CharUnits Offset = CharUnits::fromQuantity(-1);
3468 for (const BaseSubobject &BSO : FullPath) {
3469 const CXXRecordDecl *Base = BSO.getBase();
3470 // The first entry in the path is always the most derived record, skip it.
3471 if (Base == RD) {
3472 assert(Offset.getQuantity() == -1);
3473 Offset = CharUnits::Zero();
3474 continue;
3475 }
3476 assert(Offset.getQuantity() != -1);
3477 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3478 // While we know which base has to be traversed, we don't know if that base
3479 // was a virtual base.
3480 const CXXBaseSpecifier *BaseBS = std::find_if(
3481 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3482 return BS.getType()->getAsCXXRecordDecl() == Base;
3483 });
3484 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3485 : Offset + Layout.getBaseClassOffset(Base);
3486 RD = Base;
3487 }
3488 return Offset;
3489 }
3490
3491 // We want to select the path which introduces the most covariant overrides. If
3492 // two paths introduce overrides which the other path doesn't contain, issue a
3493 // diagnostic.
selectBestPath(ASTContext & Context,const CXXRecordDecl * RD,const VPtrInfo & Info,std::list<FullPathTy> & FullPaths)3494 static const FullPathTy *selectBestPath(ASTContext &Context,
3495 const CXXRecordDecl *RD,
3496 const VPtrInfo &Info,
3497 std::list<FullPathTy> &FullPaths) {
3498 // Handle some easy cases first.
3499 if (FullPaths.empty())
3500 return nullptr;
3501 if (FullPaths.size() == 1)
3502 return &FullPaths.front();
3503
3504 const FullPathTy *BestPath = nullptr;
3505 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3506 OverriderSetTy LastOverrides;
3507 for (const FullPathTy &SpecificPath : FullPaths) {
3508 assert(!SpecificPath.empty());
3509 OverriderSetTy CurrentOverrides;
3510 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3511 // Find the distance from the start of the path to the subobject with the
3512 // VPtr.
3513 CharUnits BaseOffset =
3514 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3515 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3516 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3517 if (!MicrosoftVTableContext::hasVtableSlot(MD))
3518 continue;
3519 FinalOverriders::OverriderInfo OI =
3520 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3521 const CXXMethodDecl *OverridingMethod = OI.Method;
3522 // Only overriders which have a return adjustment introduce problematic
3523 // thunks.
3524 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3525 .isEmpty())
3526 continue;
3527 // It's possible that the overrider isn't in this path. If so, skip it
3528 // because this path didn't introduce it.
3529 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3530 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3531 return BSO.getBase() == OverridingParent;
3532 }))
3533 continue;
3534 CurrentOverrides.insert(OverridingMethod);
3535 }
3536 OverriderSetTy NewOverrides =
3537 llvm::set_difference(CurrentOverrides, LastOverrides);
3538 if (NewOverrides.empty())
3539 continue;
3540 OverriderSetTy MissingOverrides =
3541 llvm::set_difference(LastOverrides, CurrentOverrides);
3542 if (MissingOverrides.empty()) {
3543 // This path is a strict improvement over the last path, let's use it.
3544 BestPath = &SpecificPath;
3545 std::swap(CurrentOverrides, LastOverrides);
3546 } else {
3547 // This path introduces an overrider with a conflicting covariant thunk.
3548 DiagnosticsEngine &Diags = Context.getDiagnostics();
3549 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3550 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3551 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3552 << RD;
3553 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3554 << CovariantMD;
3555 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3556 << ConflictMD;
3557 }
3558 }
3559 // Go with the path that introduced the most covariant overrides. If there is
3560 // no such path, pick the first path.
3561 return BestPath ? BestPath : &FullPaths.front();
3562 }
3563
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3564 static void computeFullPathsForVFTables(ASTContext &Context,
3565 const CXXRecordDecl *RD,
3566 VPtrInfoVector &Paths) {
3567 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3568 FullPathTy FullPath;
3569 std::list<FullPathTy> FullPaths;
3570 for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3571 findPathsToSubobject(
3572 Context, MostDerivedLayout, RD, CharUnits::Zero(),
3573 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3574 FullPaths);
3575 FullPath.clear();
3576 removeRedundantPaths(FullPaths);
3577 Info->PathToIntroducingObject.clear();
3578 if (const FullPathTy *BestPath =
3579 selectBestPath(Context, RD, *Info, FullPaths))
3580 for (const BaseSubobject &BSO : *BestPath)
3581 Info->PathToIntroducingObject.push_back(BSO.getBase());
3582 FullPaths.clear();
3583 }
3584 }
3585
vfptrIsEarlierInMDC(const ASTRecordLayout & Layout,const MethodVFTableLocation & LHS,const MethodVFTableLocation & RHS)3586 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3587 const MethodVFTableLocation &LHS,
3588 const MethodVFTableLocation &RHS) {
3589 CharUnits L = LHS.VFPtrOffset;
3590 CharUnits R = RHS.VFPtrOffset;
3591 if (LHS.VBase)
3592 L += Layout.getVBaseClassOffset(LHS.VBase);
3593 if (RHS.VBase)
3594 R += Layout.getVBaseClassOffset(RHS.VBase);
3595 return L < R;
3596 }
3597
computeVTableRelatedInformation(const CXXRecordDecl * RD)3598 void MicrosoftVTableContext::computeVTableRelatedInformation(
3599 const CXXRecordDecl *RD) {
3600 assert(RD->isDynamicClass());
3601
3602 // Check if we've computed this information before.
3603 if (VFPtrLocations.count(RD))
3604 return;
3605
3606 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3607
3608 {
3609 auto VFPtrs = std::make_unique<VPtrInfoVector>();
3610 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3611 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3612 VFPtrLocations[RD] = std::move(VFPtrs);
3613 }
3614
3615 MethodVFTableLocationsTy NewMethodLocations;
3616 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3617 VFTableBuilder Builder(*this, RD, *VFPtr);
3618
3619 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3620 assert(VFTableLayouts.count(id) == 0);
3621 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3622 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3623 VFTableLayouts[id] = std::make_unique<VTableLayout>(
3624 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3625 EmptyAddressPointsMap);
3626 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3627
3628 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3629 for (const auto &Loc : Builder.vtable_locations()) {
3630 auto Insert = NewMethodLocations.insert(Loc);
3631 if (!Insert.second) {
3632 const MethodVFTableLocation &NewLoc = Loc.second;
3633 MethodVFTableLocation &OldLoc = Insert.first->second;
3634 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3635 OldLoc = NewLoc;
3636 }
3637 }
3638 }
3639
3640 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3641 NewMethodLocations.end());
3642 if (Context.getLangOpts().DumpVTableLayouts)
3643 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3644 }
3645
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3646 void MicrosoftVTableContext::dumpMethodLocations(
3647 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3648 raw_ostream &Out) {
3649 // Compute the vtable indices for all the member functions.
3650 // Store them in a map keyed by the location so we'll get a sorted table.
3651 std::map<MethodVFTableLocation, std::string> IndicesMap;
3652 bool HasNonzeroOffset = false;
3653
3654 for (const auto &I : NewMethods) {
3655 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3656 assert(hasVtableSlot(MD));
3657
3658 std::string MethodName = PredefinedExpr::ComputeName(
3659 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3660
3661 if (isa<CXXDestructorDecl>(MD)) {
3662 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3663 } else {
3664 IndicesMap[I.second] = MethodName;
3665 }
3666
3667 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3668 HasNonzeroOffset = true;
3669 }
3670
3671 // Print the vtable indices for all the member functions.
3672 if (!IndicesMap.empty()) {
3673 Out << "VFTable indices for ";
3674 Out << "'";
3675 RD->printQualifiedName(Out);
3676 Out << "' (" << IndicesMap.size()
3677 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3678
3679 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3680 uint64_t LastVBIndex = 0;
3681 for (const auto &I : IndicesMap) {
3682 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3683 uint64_t VBIndex = I.first.VBTableIndex;
3684 if (HasNonzeroOffset &&
3685 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3686 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3687 Out << " -- accessible via ";
3688 if (VBIndex)
3689 Out << "vbtable index " << VBIndex << ", ";
3690 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3691 LastVFPtrOffset = VFPtrOffset;
3692 LastVBIndex = VBIndex;
3693 }
3694
3695 uint64_t VTableIndex = I.first.Index;
3696 const std::string &MethodName = I.second;
3697 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3698 }
3699 Out << '\n';
3700 }
3701
3702 Out.flush();
3703 }
3704
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3705 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3706 const CXXRecordDecl *RD) {
3707 VirtualBaseInfo *VBI;
3708
3709 {
3710 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3711 // as it may be modified and rehashed under us.
3712 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3713 if (Entry)
3714 return *Entry;
3715 Entry = std::make_unique<VirtualBaseInfo>();
3716 VBI = Entry.get();
3717 }
3718
3719 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3720
3721 // First, see if the Derived class shared the vbptr with a non-virtual base.
3722 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3723 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3724 // If the Derived class shares the vbptr with a non-virtual base, the shared
3725 // virtual bases come first so that the layout is the same.
3726 const VirtualBaseInfo &BaseInfo =
3727 computeVBTableRelatedInformation(VBPtrBase);
3728 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3729 BaseInfo.VBTableIndices.end());
3730 }
3731
3732 // New vbases are added to the end of the vbtable.
3733 // Skip the self entry and vbases visited in the non-virtual base, if any.
3734 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3735 for (const auto &VB : RD->vbases()) {
3736 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3737 if (!VBI->VBTableIndices.count(CurVBase))
3738 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3739 }
3740
3741 return *VBI;
3742 }
3743
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3744 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3745 const CXXRecordDecl *VBase) {
3746 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3747 assert(VBInfo.VBTableIndices.count(VBase));
3748 return VBInfo.VBTableIndices.find(VBase)->second;
3749 }
3750
3751 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3752 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3753 return computeVBTableRelatedInformation(RD).VBPtrPaths;
3754 }
3755
3756 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3757 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3758 computeVTableRelatedInformation(RD);
3759
3760 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3761 return *VFPtrLocations[RD];
3762 }
3763
3764 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3765 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3766 CharUnits VFPtrOffset) {
3767 computeVTableRelatedInformation(RD);
3768
3769 VFTableIdTy id(RD, VFPtrOffset);
3770 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3771 return *VFTableLayouts[id];
3772 }
3773
3774 MethodVFTableLocation
getMethodVFTableLocation(GlobalDecl GD)3775 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3776 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3777 "Only use this method for virtual methods or dtors");
3778 if (isa<CXXDestructorDecl>(GD.getDecl()))
3779 assert(GD.getDtorType() == Dtor_Deleting);
3780
3781 GD = GD.getCanonicalDecl();
3782
3783 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3784 if (I != MethodVFTableLocations.end())
3785 return I->second;
3786
3787 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3788
3789 computeVTableRelatedInformation(RD);
3790
3791 I = MethodVFTableLocations.find(GD);
3792 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3793 return I->second;
3794 }
3795