1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anon0138ef250111::ExternalLayout61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// Overall record size in bits.
64 uint64_t Size;
65
66 /// Overall record alignment in bits.
67 uint64_t Align;
68
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
getExternalFieldOffset__anon0138ef250111::ExternalLayout80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
84 }
85
getExternalNVBaseOffset__anon0138ef250111::ExternalLayout86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
getExternalVBaseOffset__anon0138ef250111::ExternalLayout94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
135
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
140 }
141
142 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
147
148 return Context.toCharUnitsFromBits(FieldOffset);
149 }
150
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
154
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
157
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
163
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
169
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
173 }
174
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
181
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186
ComputeEmptySubobjectSizes()187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
200 }
201
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
204 }
205
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211 // We only care about record types.
212 if (!RT)
213 continue;
214
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
224 }
225
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
228 }
229 }
230
231 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
237
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
241
242 const ClassVectorTy &Classes = I->second;
243 if (!llvm::is_contained(Classes, RD))
244 return true;
245
246 // There is already an empty class of the same type at this offset.
247 return false;
248 }
249
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
255
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
261
262 Classes.push_back(RD);
263
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
267 }
268
269 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
276
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
279
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
285
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
290 }
291
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
298 }
299 }
300
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
307
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
311 }
312
313 return true;
314 }
315
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
326 }
327
328 AddSubobjectAtOffset(Info->Class, Offset);
329
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
335
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338 }
339
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
346 }
347
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
354
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357 }
358 }
359
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
366
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
369
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
374 }
375
376 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
384
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
387
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
394
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
400 }
401
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
410 }
411 }
412
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
419
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
424 }
425
426 return true;
427 }
428
429 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
436
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
447
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
458
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
461
462 ElementOffset += Layout.getSize();
463 }
464 }
465
466 return true;
467 }
468
469 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
474
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
479 }
480
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset,bool PlacingOverlappingField)481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
489 //
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
496
497 AddSubobjectAtOffset(RD, Offset);
498
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
505
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
511 }
512
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
521 }
522 }
523
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
530
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534 }
535 }
536
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset,bool PlacingOverlappingField)537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
543 }
544
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
551
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
557
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
567
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
571 }
572 }
573 }
574
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577 class ItaniumRecordLayoutBuilder {
578 protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
581
582 const ASTContext &Context;
583
584 EmptySubobjectMap *EmptySubobjects;
585
586 /// Size - The current size of the record layout.
587 uint64_t Size;
588
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
591
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment;
594
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment;
597
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment;
600
601 SmallVector<uint64_t, 16> FieldOffsets;
602
603 /// Whether the external AST source has provided a layout for this
604 /// record.
605 unsigned UseExternalLayout : 1;
606
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment : 1;
610
611 /// Packed - Whether the record is packed or not.
612 unsigned Packed : 1;
613
614 unsigned IsUnion : 1;
615
616 unsigned IsMac68kAlign : 1;
617
618 unsigned IsNaturalAlign : 1;
619
620 unsigned IsMsStruct : 1;
621
622 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623 /// this contains the number of bits in the last unit that can be used for
624 /// an adjacent bitfield if necessary. The unit in question is usually
625 /// a byte, but larger units are used if IsMsStruct.
626 unsigned char UnfilledBitsInLastUnit;
627
628 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629 /// storage unit of the previous field if it was a bitfield.
630 unsigned char LastBitfieldStorageUnitSize;
631
632 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633 /// #pragma pack.
634 CharUnits MaxFieldAlignment;
635
636 /// DataSize - The data size of the record being laid out.
637 uint64_t DataSize;
638
639 CharUnits NonVirtualSize;
640 CharUnits NonVirtualAlignment;
641 CharUnits PreferredNVAlignment;
642
643 /// If we've laid out a field but not included its tail padding in Size yet,
644 /// this is the size up to the end of that field.
645 CharUnits PaddedFieldSize;
646
647 /// PrimaryBase - the primary base class (if one exists) of the class
648 /// we're laying out.
649 const CXXRecordDecl *PrimaryBase;
650
651 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652 /// out is virtual.
653 bool PrimaryBaseIsVirtual;
654
655 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656 /// pointer, as opposed to inheriting one from a primary base class.
657 bool HasOwnVFPtr;
658
659 /// the flag of field offset changing due to packed attribute.
660 bool HasPackedField;
661
662 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663 /// When there are OverlappingEmptyFields existing in the aggregate, the
664 /// flag shows if the following first non-empty or empty-but-non-overlapping
665 /// field has been handled, if any.
666 bool HandledFirstNonOverlappingEmptyField;
667
668 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669
670 /// Bases - base classes and their offsets in the record.
671 BaseOffsetsMapTy Bases;
672
673 // VBases - virtual base classes and their offsets in the record.
674 ASTRecordLayout::VBaseOffsetsMapTy VBases;
675
676 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677 /// primary base classes for some other direct or indirect base class.
678 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679
680 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681 /// inheritance graph order. Used for determining the primary base class.
682 const CXXRecordDecl *FirstNearlyEmptyVBase;
683
684 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685 /// avoid visiting virtual bases more than once.
686 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687
688 /// Valid if UseExternalLayout is true.
689 ExternalLayout External;
690
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)691 ItaniumRecordLayoutBuilder(const ASTContext &Context,
692 EmptySubobjectMap *EmptySubobjects)
693 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695 UnpackedAlignment(CharUnits::One()),
696 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697 InferAlignment(false), Packed(false), IsUnion(false),
698 IsMac68kAlign(false),
699 IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700 IsMsStruct(false), UnfilledBitsInLastUnit(0),
701 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702 DataSize(0), NonVirtualSize(CharUnits::Zero()),
703 NonVirtualAlignment(CharUnits::One()),
704 PreferredNVAlignment(CharUnits::One()),
705 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707 HandledFirstNonOverlappingEmptyField(false),
708 FirstNearlyEmptyVBase(nullptr) {}
709
710 void Layout(const RecordDecl *D);
711 void Layout(const CXXRecordDecl *D);
712 void Layout(const ObjCInterfaceDecl *D);
713
714 void LayoutFields(const RecordDecl *D);
715 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717 bool FieldPacked, const FieldDecl *D);
718 void LayoutBitField(const FieldDecl *D);
719
getCXXABI() const720 TargetCXXABI getCXXABI() const {
721 return Context.getTargetInfo().getCXXABI();
722 }
723
724 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726
727 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728 BaseSubobjectInfoMapTy;
729
730 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731 /// of the class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy VirtualBaseInfo;
733
734 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735 /// class we're laying out to their base subobject info.
736 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739 /// bases of the given class.
740 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741
742 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743 /// single class and all of its base classes.
744 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745 bool IsVirtual,
746 BaseSubobjectInfo *Derived);
747
748 /// DeterminePrimaryBase - Determine the primary base of the given class.
749 void DeterminePrimaryBase(const CXXRecordDecl *RD);
750
751 void SelectPrimaryVBase(const CXXRecordDecl *RD);
752
753 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754
755 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758
759 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761
762 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763 CharUnits Offset);
764
765 /// LayoutVirtualBases - Lays out all the virtual bases.
766 void LayoutVirtualBases(const CXXRecordDecl *RD,
767 const CXXRecordDecl *MostDerivedClass);
768
769 /// LayoutVirtualBase - Lays out a single virtual base.
770 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771
772 /// LayoutBase - Will lay out a base and return the offset where it was
773 /// placed, in chars.
774 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775
776 /// InitializeLayout - Initialize record layout for the given record decl.
777 void InitializeLayout(const Decl *D);
778
779 /// FinishLayout - Finalize record layout. Adjust record size based on the
780 /// alignment.
781 void FinishLayout(const NamedDecl *D);
782
783 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784 CharUnits PreferredAlignment);
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)785 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787 }
UpdateAlignment(CharUnits NewAlignment)788 void UpdateAlignment(CharUnits NewAlignment) {
789 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790 }
791
792 /// Retrieve the externally-supplied field offset for the given
793 /// field.
794 ///
795 /// \param Field The field whose offset is being queried.
796 /// \param ComputedOffset The offset that we've computed for this field.
797 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798 uint64_t ComputedOffset);
799
800 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801 uint64_t UnpackedOffset, unsigned UnpackedAlign,
802 bool isPacked, const FieldDecl *D);
803
804 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805
getSize() const806 CharUnits getSize() const {
807 assert(Size % Context.getCharWidth() == 0);
808 return Context.toCharUnitsFromBits(Size);
809 }
getSizeInBits() const810 uint64_t getSizeInBits() const { return Size; }
811
setSize(CharUnits NewSize)812 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)813 void setSize(uint64_t NewSize) { Size = NewSize; }
814
getAligment() const815 CharUnits getAligment() const { return Alignment; }
816
getDataSize() const817 CharUnits getDataSize() const {
818 assert(DataSize % Context.getCharWidth() == 0);
819 return Context.toCharUnitsFromBits(DataSize);
820 }
getDataSizeInBits() const821 uint64_t getDataSizeInBits() const { return DataSize; }
822
setDataSize(CharUnits NewSize)823 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)824 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825
826 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828 };
829 } // end anonymous namespace
830
SelectPrimaryVBase(const CXXRecordDecl * RD)831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832 for (const auto &I : RD->bases()) {
833 assert(!I.getType()->isDependentType() &&
834 "Cannot layout class with dependent bases.");
835
836 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837
838 // Check if this is a nearly empty virtual base.
839 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840 // If it's not an indirect primary base, then we've found our primary
841 // base.
842 if (!IndirectPrimaryBases.count(Base)) {
843 PrimaryBase = Base;
844 PrimaryBaseIsVirtual = true;
845 return;
846 }
847
848 // Is this the first nearly empty virtual base?
849 if (!FirstNearlyEmptyVBase)
850 FirstNearlyEmptyVBase = Base;
851 }
852
853 SelectPrimaryVBase(Base);
854 if (PrimaryBase)
855 return;
856 }
857 }
858
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861 // If the class isn't dynamic, it won't have a primary base.
862 if (!RD->isDynamicClass())
863 return;
864
865 // Compute all the primary virtual bases for all of our direct and
866 // indirect bases, and record all their primary virtual base classes.
867 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868
869 // If the record has a dynamic base class, attempt to choose a primary base
870 // class. It is the first (in direct base class order) non-virtual dynamic
871 // base class, if one exists.
872 for (const auto &I : RD->bases()) {
873 // Ignore virtual bases.
874 if (I.isVirtual())
875 continue;
876
877 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878
879 if (Base->isDynamicClass()) {
880 // We found it.
881 PrimaryBase = Base;
882 PrimaryBaseIsVirtual = false;
883 return;
884 }
885 }
886
887 // Under the Itanium ABI, if there is no non-virtual primary base class,
888 // try to compute the primary virtual base. The primary virtual base is
889 // the first nearly empty virtual base that is not an indirect primary
890 // virtual base class, if one exists.
891 if (RD->getNumVBases() != 0) {
892 SelectPrimaryVBase(RD);
893 if (PrimaryBase)
894 return;
895 }
896
897 // Otherwise, it is the first indirect primary base class, if one exists.
898 if (FirstNearlyEmptyVBase) {
899 PrimaryBase = FirstNearlyEmptyVBase;
900 PrimaryBaseIsVirtual = true;
901 return;
902 }
903
904 assert(!PrimaryBase && "Should not get here with a primary base!");
905 }
906
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909 BaseSubobjectInfo *Info;
910
911 if (IsVirtual) {
912 // Check if we already have info about this virtual base.
913 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914 if (InfoSlot) {
915 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916 return InfoSlot;
917 }
918
919 // We don't, create it.
920 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921 Info = InfoSlot;
922 } else {
923 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924 }
925
926 Info->Class = RD;
927 Info->IsVirtual = IsVirtual;
928 Info->Derived = nullptr;
929 Info->PrimaryVirtualBaseInfo = nullptr;
930
931 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933
934 // Check if this base has a primary virtual base.
935 if (RD->getNumVBases()) {
936 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937 if (Layout.isPrimaryBaseVirtual()) {
938 // This base does have a primary virtual base.
939 PrimaryVirtualBase = Layout.getPrimaryBase();
940 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941
942 // Now check if we have base subobject info about this primary base.
943 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944
945 if (PrimaryVirtualBaseInfo) {
946 if (PrimaryVirtualBaseInfo->Derived) {
947 // We did have info about this primary base, and it turns out that it
948 // has already been claimed as a primary virtual base for another
949 // base.
950 PrimaryVirtualBase = nullptr;
951 } else {
952 // We can claim this base as our primary base.
953 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954 PrimaryVirtualBaseInfo->Derived = Info;
955 }
956 }
957 }
958 }
959
960 // Now go through all direct bases.
961 for (const auto &I : RD->bases()) {
962 bool IsVirtual = I.isVirtual();
963
964 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965
966 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967 }
968
969 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970 // Traversing the bases must have created the base info for our primary
971 // virtual base.
972 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973 assert(PrimaryVirtualBaseInfo &&
974 "Did not create a primary virtual base!");
975
976 // Claim the primary virtual base as our primary virtual base.
977 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978 PrimaryVirtualBaseInfo->Derived = Info;
979 }
980
981 return Info;
982 }
983
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985 const CXXRecordDecl *RD) {
986 for (const auto &I : RD->bases()) {
987 bool IsVirtual = I.isVirtual();
988
989 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990
991 // Compute the base subobject info for this base.
992 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993 nullptr);
994
995 if (IsVirtual) {
996 // ComputeBaseInfo has already added this base for us.
997 assert(VirtualBaseInfo.count(BaseDecl) &&
998 "Did not add virtual base!");
999 } else {
1000 // Add the base info to the map of non-virtual bases.
1001 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002 "Non-virtual base already exists!");
1003 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004 }
1005 }
1006 }
1007
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009 CharUnits UnpackedBaseAlign) {
1010 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011
1012 // The maximum field alignment overrides base align.
1013 if (!MaxFieldAlignment.isZero()) {
1014 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016 }
1017
1018 // Round up the current record size to pointer alignment.
1019 setSize(getSize().alignTo(BaseAlign));
1020
1021 // Update the alignment.
1022 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023 }
1024
LayoutNonVirtualBases(const CXXRecordDecl * RD)1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026 const CXXRecordDecl *RD) {
1027 // Then, determine the primary base class.
1028 DeterminePrimaryBase(RD);
1029
1030 // Compute base subobject info.
1031 ComputeBaseSubobjectInfo(RD);
1032
1033 // If we have a primary base class, lay it out.
1034 if (PrimaryBase) {
1035 if (PrimaryBaseIsVirtual) {
1036 // If the primary virtual base was a primary virtual base of some other
1037 // base class we'll have to steal it.
1038 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039 PrimaryBaseInfo->Derived = nullptr;
1040
1041 // We have a virtual primary base, insert it as an indirect primary base.
1042 IndirectPrimaryBases.insert(PrimaryBase);
1043
1044 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045 "vbase already visited!");
1046 VisitedVirtualBases.insert(PrimaryBase);
1047
1048 LayoutVirtualBase(PrimaryBaseInfo);
1049 } else {
1050 BaseSubobjectInfo *PrimaryBaseInfo =
1051 NonVirtualBaseInfo.lookup(PrimaryBase);
1052 assert(PrimaryBaseInfo &&
1053 "Did not find base info for non-virtual primary base!");
1054
1055 LayoutNonVirtualBase(PrimaryBaseInfo);
1056 }
1057
1058 // If this class needs a vtable/vf-table and didn't get one from a
1059 // primary base, add it in now.
1060 } else if (RD->isDynamicClass()) {
1061 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062 CharUnits PtrWidth =
1063 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064 CharUnits PtrAlign =
1065 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066 EnsureVTablePointerAlignment(PtrAlign);
1067 HasOwnVFPtr = true;
1068
1069 assert(!IsUnion && "Unions cannot be dynamic classes.");
1070 HandledFirstNonOverlappingEmptyField = true;
1071
1072 setSize(getSize() + PtrWidth);
1073 setDataSize(getSize());
1074 }
1075
1076 // Now lay out the non-virtual bases.
1077 for (const auto &I : RD->bases()) {
1078
1079 // Ignore virtual bases.
1080 if (I.isVirtual())
1081 continue;
1082
1083 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084
1085 // Skip the primary base, because we've already laid it out. The
1086 // !PrimaryBaseIsVirtual check is required because we might have a
1087 // non-virtual base of the same type as a primary virtual base.
1088 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089 continue;
1090
1091 // Lay out the base.
1092 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093 assert(BaseInfo && "Did not find base info for non-virtual base!");
1094
1095 LayoutNonVirtualBase(BaseInfo);
1096 }
1097 }
1098
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100 const BaseSubobjectInfo *Base) {
1101 // Layout the base.
1102 CharUnits Offset = LayoutBase(Base);
1103
1104 // Add its base class offset.
1105 assert(!Bases.count(Base->Class) && "base offset already exists!");
1106 Bases.insert(std::make_pair(Base->Class, Offset));
1107
1108 AddPrimaryVirtualBaseOffsets(Base, Offset);
1109 }
1110
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112 const BaseSubobjectInfo *Info, CharUnits Offset) {
1113 // This base isn't interesting, it has no virtual bases.
1114 if (!Info->Class->getNumVBases())
1115 return;
1116
1117 // First, check if we have a virtual primary base to add offsets for.
1118 if (Info->PrimaryVirtualBaseInfo) {
1119 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120 "Primary virtual base is not virtual!");
1121 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122 // Add the offset.
1123 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124 "primary vbase offset already exists!");
1125 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126 ASTRecordLayout::VBaseInfo(Offset, false)));
1127
1128 // Traverse the primary virtual base.
1129 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130 }
1131 }
1132
1133 // Now go through all direct non-virtual bases.
1134 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135 for (const BaseSubobjectInfo *Base : Info->Bases) {
1136 if (Base->IsVirtual)
1137 continue;
1138
1139 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141 }
1142 }
1143
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146 const CXXRecordDecl *PrimaryBase;
1147 bool PrimaryBaseIsVirtual;
1148
1149 if (MostDerivedClass == RD) {
1150 PrimaryBase = this->PrimaryBase;
1151 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152 } else {
1153 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154 PrimaryBase = Layout.getPrimaryBase();
1155 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156 }
1157
1158 for (const CXXBaseSpecifier &Base : RD->bases()) {
1159 assert(!Base.getType()->isDependentType() &&
1160 "Cannot layout class with dependent bases.");
1161
1162 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163
1164 if (Base.isVirtual()) {
1165 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167
1168 // Only lay out the virtual base if it's not an indirect primary base.
1169 if (!IndirectPrimaryBase) {
1170 // Only visit virtual bases once.
1171 if (!VisitedVirtualBases.insert(BaseDecl).second)
1172 continue;
1173
1174 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175 assert(BaseInfo && "Did not find virtual base info!");
1176 LayoutVirtualBase(BaseInfo);
1177 }
1178 }
1179 }
1180
1181 if (!BaseDecl->getNumVBases()) {
1182 // This base isn't interesting since it doesn't have any virtual bases.
1183 continue;
1184 }
1185
1186 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187 }
1188 }
1189
LayoutVirtualBase(const BaseSubobjectInfo * Base)1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191 const BaseSubobjectInfo *Base) {
1192 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193
1194 // Layout the base.
1195 CharUnits Offset = LayoutBase(Base);
1196
1197 // Add its base class offset.
1198 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199 VBases.insert(std::make_pair(Base->Class,
1200 ASTRecordLayout::VBaseInfo(Offset, false)));
1201
1202 AddPrimaryVirtualBaseOffsets(Base, Offset);
1203 }
1204
1205 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207 assert(!IsUnion && "Unions cannot have base classes.");
1208
1209 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210 CharUnits Offset;
1211
1212 // Query the external layout to see if it provides an offset.
1213 bool HasExternalLayout = false;
1214 if (UseExternalLayout) {
1215 if (Base->IsVirtual)
1216 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217 else
1218 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219 }
1220
1221 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223 // Per GCC's documentation, it only applies to non-static data members.
1224 return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225 LangOptions::ClangABI::Ver6) ||
1226 Context.getTargetInfo().getTriple().isPS() ||
1227 Context.getTargetInfo().getTriple().isOSAIX()))
1228 ? CharUnits::One()
1229 : UnpackedAlign;
1230 };
1231
1232 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234 CharUnits BaseAlign =
1235 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236 CharUnits PreferredBaseAlign =
1237 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238
1239 const bool DefaultsToAIXPowerAlignment =
1240 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241 if (DefaultsToAIXPowerAlignment) {
1242 // AIX `power` alignment does not apply the preferred alignment for
1243 // non-union classes if the source of the alignment (the current base in
1244 // this context) follows introduction of the first subobject with
1245 // exclusively allocated space or zero-extent array.
1246 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247 // By handling a base class that is not empty, we're handling the
1248 // "first (inherited) member".
1249 HandledFirstNonOverlappingEmptyField = true;
1250 } else if (!IsNaturalAlign) {
1251 UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252 PreferredBaseAlign = BaseAlign;
1253 }
1254 }
1255
1256 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257 ? UnpackedBaseAlign
1258 : UnpackedPreferredBaseAlign;
1259 // If we have an empty base class, try to place it at offset 0.
1260 if (Base->Class->isEmpty() &&
1261 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263 setSize(std::max(getSize(), Layout.getSize()));
1264 // On PS4/PS5, don't update the alignment, to preserve compatibility.
1265 if (!Context.getTargetInfo().getTriple().isPS())
1266 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1267
1268 return CharUnits::Zero();
1269 }
1270
1271 // The maximum field alignment overrides the base align/(AIX-only) preferred
1272 // base align.
1273 if (!MaxFieldAlignment.isZero()) {
1274 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1275 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1276 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1277 }
1278
1279 CharUnits AlignTo =
1280 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1281 if (!HasExternalLayout) {
1282 // Round up the current record size to the base's alignment boundary.
1283 Offset = getDataSize().alignTo(AlignTo);
1284
1285 // Try to place the base.
1286 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1287 Offset += AlignTo;
1288 } else {
1289 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1290 (void)Allowed;
1291 assert(Allowed && "Base subobject externally placed at overlapping offset");
1292
1293 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1294 // The externally-supplied base offset is before the base offset we
1295 // computed. Assume that the structure is packed.
1296 Alignment = CharUnits::One();
1297 InferAlignment = false;
1298 }
1299 }
1300
1301 if (!Base->Class->isEmpty()) {
1302 // Update the data size.
1303 setDataSize(Offset + Layout.getNonVirtualSize());
1304
1305 setSize(std::max(getSize(), getDataSize()));
1306 } else
1307 setSize(std::max(getSize(), Offset + Layout.getSize()));
1308
1309 // Remember max struct/class alignment.
1310 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1311
1312 return Offset;
1313 }
1314
InitializeLayout(const Decl * D)1315 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1316 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1317 IsUnion = RD->isUnion();
1318 IsMsStruct = RD->isMsStruct(Context);
1319 }
1320
1321 Packed = D->hasAttr<PackedAttr>();
1322
1323 // Honor the default struct packing maximum alignment flag.
1324 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1325 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1326 }
1327
1328 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1329 // and forces all structures to have 2-byte alignment. The IBM docs on it
1330 // allude to additional (more complicated) semantics, especially with regard
1331 // to bit-fields, but gcc appears not to follow that.
1332 if (D->hasAttr<AlignMac68kAttr>()) {
1333 assert(
1334 !D->hasAttr<AlignNaturalAttr>() &&
1335 "Having both mac68k and natural alignment on a decl is not allowed.");
1336 IsMac68kAlign = true;
1337 MaxFieldAlignment = CharUnits::fromQuantity(2);
1338 Alignment = CharUnits::fromQuantity(2);
1339 PreferredAlignment = CharUnits::fromQuantity(2);
1340 } else {
1341 if (D->hasAttr<AlignNaturalAttr>())
1342 IsNaturalAlign = true;
1343
1344 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1345 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1346
1347 if (unsigned MaxAlign = D->getMaxAlignment())
1348 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1349 }
1350
1351 HandledFirstNonOverlappingEmptyField =
1352 !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1353
1354 // If there is an external AST source, ask it for the various offsets.
1355 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1356 if (ExternalASTSource *Source = Context.getExternalSource()) {
1357 UseExternalLayout = Source->layoutRecordType(
1358 RD, External.Size, External.Align, External.FieldOffsets,
1359 External.BaseOffsets, External.VirtualBaseOffsets);
1360
1361 // Update based on external alignment.
1362 if (UseExternalLayout) {
1363 if (External.Align > 0) {
1364 Alignment = Context.toCharUnitsFromBits(External.Align);
1365 PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1366 } else {
1367 // The external source didn't have alignment information; infer it.
1368 InferAlignment = true;
1369 }
1370 }
1371 }
1372 }
1373
Layout(const RecordDecl * D)1374 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1375 InitializeLayout(D);
1376 LayoutFields(D);
1377
1378 // Finally, round the size of the total struct up to the alignment of the
1379 // struct itself.
1380 FinishLayout(D);
1381 }
1382
Layout(const CXXRecordDecl * RD)1383 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1384 InitializeLayout(RD);
1385
1386 // Lay out the vtable and the non-virtual bases.
1387 LayoutNonVirtualBases(RD);
1388
1389 LayoutFields(RD);
1390
1391 NonVirtualSize = Context.toCharUnitsFromBits(
1392 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1393 NonVirtualAlignment = Alignment;
1394 PreferredNVAlignment = PreferredAlignment;
1395
1396 // Lay out the virtual bases and add the primary virtual base offsets.
1397 LayoutVirtualBases(RD, RD);
1398
1399 // Finally, round the size of the total struct up to the alignment
1400 // of the struct itself.
1401 FinishLayout(RD);
1402
1403 #ifndef NDEBUG
1404 // Check that we have base offsets for all bases.
1405 for (const CXXBaseSpecifier &Base : RD->bases()) {
1406 if (Base.isVirtual())
1407 continue;
1408
1409 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1410
1411 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1412 }
1413
1414 // And all virtual bases.
1415 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1416 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1417
1418 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1419 }
1420 #endif
1421 }
1422
Layout(const ObjCInterfaceDecl * D)1423 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1424 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1425 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1426
1427 UpdateAlignment(SL.getAlignment());
1428
1429 // We start laying out ivars not at the end of the superclass
1430 // structure, but at the next byte following the last field.
1431 setDataSize(SL.getDataSize());
1432 setSize(getDataSize());
1433 }
1434
1435 InitializeLayout(D);
1436 // Layout each ivar sequentially.
1437 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1438 IVD = IVD->getNextIvar())
1439 LayoutField(IVD, false);
1440
1441 // Finally, round the size of the total struct up to the alignment of the
1442 // struct itself.
1443 FinishLayout(D);
1444 }
1445
LayoutFields(const RecordDecl * D)1446 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1447 // Layout each field, for now, just sequentially, respecting alignment. In
1448 // the future, this will need to be tweakable by targets.
1449 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1450 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1451 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1452 auto Next(I);
1453 ++Next;
1454 LayoutField(*I,
1455 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1456 }
1457 }
1458
1459 // Rounds the specified size to have it a multiple of the char size.
1460 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1461 roundUpSizeToCharAlignment(uint64_t Size,
1462 const ASTContext &Context) {
1463 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1464 return llvm::alignTo(Size, CharAlignment);
1465 }
1466
LayoutWideBitField(uint64_t FieldSize,uint64_t StorageUnitSize,bool FieldPacked,const FieldDecl * D)1467 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1468 uint64_t StorageUnitSize,
1469 bool FieldPacked,
1470 const FieldDecl *D) {
1471 assert(Context.getLangOpts().CPlusPlus &&
1472 "Can only have wide bit-fields in C++!");
1473
1474 // Itanium C++ ABI 2.4:
1475 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1476 // sizeof(T')*8 <= n.
1477
1478 QualType IntegralPODTypes[] = {
1479 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1480 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1481 };
1482
1483 QualType Type;
1484 for (const QualType &QT : IntegralPODTypes) {
1485 uint64_t Size = Context.getTypeSize(QT);
1486
1487 if (Size > FieldSize)
1488 break;
1489
1490 Type = QT;
1491 }
1492 assert(!Type.isNull() && "Did not find a type!");
1493
1494 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1495
1496 // We're not going to use any of the unfilled bits in the last byte.
1497 UnfilledBitsInLastUnit = 0;
1498 LastBitfieldStorageUnitSize = 0;
1499
1500 uint64_t FieldOffset;
1501 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1502
1503 if (IsUnion) {
1504 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1505 Context);
1506 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1507 FieldOffset = 0;
1508 } else {
1509 // The bitfield is allocated starting at the next offset aligned
1510 // appropriately for T', with length n bits.
1511 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1512
1513 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1514
1515 setDataSize(
1516 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1517 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1518 }
1519
1520 // Place this field at the current location.
1521 FieldOffsets.push_back(FieldOffset);
1522
1523 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1524 Context.toBits(TypeAlign), FieldPacked, D);
1525
1526 // Update the size.
1527 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1528
1529 // Remember max struct/class alignment.
1530 UpdateAlignment(TypeAlign);
1531 }
1532
isAIXLayout(const ASTContext & Context)1533 static bool isAIXLayout(const ASTContext &Context) {
1534 return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1535 }
1536
LayoutBitField(const FieldDecl * D)1537 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1538 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1539 uint64_t FieldSize = D->getBitWidthValue(Context);
1540 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1541 uint64_t StorageUnitSize = FieldInfo.Width;
1542 unsigned FieldAlign = FieldInfo.Align;
1543 bool AlignIsRequired = FieldInfo.isAlignRequired();
1544
1545 // UnfilledBitsInLastUnit is the difference between the end of the
1546 // last allocated bitfield (i.e. the first bit offset available for
1547 // bitfields) and the end of the current data size in bits (i.e. the
1548 // first bit offset available for non-bitfields). The current data
1549 // size in bits is always a multiple of the char size; additionally,
1550 // for ms_struct records it's also a multiple of the
1551 // LastBitfieldStorageUnitSize (if set).
1552
1553 // The struct-layout algorithm is dictated by the platform ABI,
1554 // which in principle could use almost any rules it likes. In
1555 // practice, UNIXy targets tend to inherit the algorithm described
1556 // in the System V generic ABI. The basic bitfield layout rule in
1557 // System V is to place bitfields at the next available bit offset
1558 // where the entire bitfield would fit in an aligned storage unit of
1559 // the declared type; it's okay if an earlier or later non-bitfield
1560 // is allocated in the same storage unit. However, some targets
1561 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1562 // require this storage unit to be aligned, and therefore always put
1563 // the bitfield at the next available bit offset.
1564
1565 // ms_struct basically requests a complete replacement of the
1566 // platform ABI's struct-layout algorithm, with the high-level goal
1567 // of duplicating MSVC's layout. For non-bitfields, this follows
1568 // the standard algorithm. The basic bitfield layout rule is to
1569 // allocate an entire unit of the bitfield's declared type
1570 // (e.g. 'unsigned long'), then parcel it up among successive
1571 // bitfields whose declared types have the same size, making a new
1572 // unit as soon as the last can no longer store the whole value.
1573 // Since it completely replaces the platform ABI's algorithm,
1574 // settings like !useBitFieldTypeAlignment() do not apply.
1575
1576 // A zero-width bitfield forces the use of a new storage unit for
1577 // later bitfields. In general, this occurs by rounding up the
1578 // current size of the struct as if the algorithm were about to
1579 // place a non-bitfield of the field's formal type. Usually this
1580 // does not change the alignment of the struct itself, but it does
1581 // on some targets (those that useZeroLengthBitfieldAlignment(),
1582 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1583 // ignored unless they follow a non-zero-width bitfield.
1584
1585 // A field alignment restriction (e.g. from #pragma pack) or
1586 // specification (e.g. from __attribute__((aligned))) changes the
1587 // formal alignment of the field. For System V, this alters the
1588 // required alignment of the notional storage unit that must contain
1589 // the bitfield. For ms_struct, this only affects the placement of
1590 // new storage units. In both cases, the effect of #pragma pack is
1591 // ignored on zero-width bitfields.
1592
1593 // On System V, a packed field (e.g. from #pragma pack or
1594 // __attribute__((packed))) always uses the next available bit
1595 // offset.
1596
1597 // In an ms_struct struct, the alignment of a fundamental type is
1598 // always equal to its size. This is necessary in order to mimic
1599 // the i386 alignment rules on targets which might not fully align
1600 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1601
1602 // First, some simple bookkeeping to perform for ms_struct structs.
1603 if (IsMsStruct) {
1604 // The field alignment for integer types is always the size.
1605 FieldAlign = StorageUnitSize;
1606
1607 // If the previous field was not a bitfield, or was a bitfield
1608 // with a different storage unit size, or if this field doesn't fit into
1609 // the current storage unit, we're done with that storage unit.
1610 if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1611 UnfilledBitsInLastUnit < FieldSize) {
1612 // Also, ignore zero-length bitfields after non-bitfields.
1613 if (!LastBitfieldStorageUnitSize && !FieldSize)
1614 FieldAlign = 1;
1615
1616 UnfilledBitsInLastUnit = 0;
1617 LastBitfieldStorageUnitSize = 0;
1618 }
1619 }
1620
1621 if (isAIXLayout(Context)) {
1622 if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1623 // On AIX, [bool, char, short] bitfields have the same alignment
1624 // as [unsigned].
1625 StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1626 } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1627 Context.getTargetInfo().getTriple().isArch32Bit() &&
1628 FieldSize <= 32) {
1629 // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1630 // long long bitfield has length no greater than 32 bits.
1631 StorageUnitSize = 32;
1632
1633 if (!AlignIsRequired)
1634 FieldAlign = 32;
1635 }
1636
1637 if (FieldAlign < StorageUnitSize) {
1638 // The bitfield alignment should always be greater than or equal to
1639 // bitcontainer size.
1640 FieldAlign = StorageUnitSize;
1641 }
1642 }
1643
1644 // If the field is wider than its declared type, it follows
1645 // different rules in all cases, except on AIX.
1646 // On AIX, wide bitfield follows the same rules as normal bitfield.
1647 if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1648 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1649 return;
1650 }
1651
1652 // Compute the next available bit offset.
1653 uint64_t FieldOffset =
1654 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1655
1656 // Handle targets that don't honor bitfield type alignment.
1657 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1658 // Some such targets do honor it on zero-width bitfields.
1659 if (FieldSize == 0 &&
1660 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1661 // Some targets don't honor leading zero-width bitfield.
1662 if (!IsUnion && FieldOffset == 0 &&
1663 !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1664 FieldAlign = 1;
1665 else {
1666 // The alignment to round up to is the max of the field's natural
1667 // alignment and a target-specific fixed value (sometimes zero).
1668 unsigned ZeroLengthBitfieldBoundary =
1669 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1670 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1671 }
1672 // If that doesn't apply, just ignore the field alignment.
1673 } else {
1674 FieldAlign = 1;
1675 }
1676 }
1677
1678 // Remember the alignment we would have used if the field were not packed.
1679 unsigned UnpackedFieldAlign = FieldAlign;
1680
1681 // Ignore the field alignment if the field is packed unless it has zero-size.
1682 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1683 FieldAlign = 1;
1684
1685 // But, if there's an 'aligned' attribute on the field, honor that.
1686 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1687 if (ExplicitFieldAlign) {
1688 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1689 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1690 }
1691
1692 // But, if there's a #pragma pack in play, that takes precedent over
1693 // even the 'aligned' attribute, for non-zero-width bitfields.
1694 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1695 if (!MaxFieldAlignment.isZero() && FieldSize) {
1696 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1697 if (FieldPacked)
1698 FieldAlign = UnpackedFieldAlign;
1699 else
1700 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1701 }
1702
1703 // But, ms_struct just ignores all of that in unions, even explicit
1704 // alignment attributes.
1705 if (IsMsStruct && IsUnion) {
1706 FieldAlign = UnpackedFieldAlign = 1;
1707 }
1708
1709 // For purposes of diagnostics, we're going to simultaneously
1710 // compute the field offsets that we would have used if we weren't
1711 // adding any alignment padding or if the field weren't packed.
1712 uint64_t UnpaddedFieldOffset = FieldOffset;
1713 uint64_t UnpackedFieldOffset = FieldOffset;
1714
1715 // Check if we need to add padding to fit the bitfield within an
1716 // allocation unit with the right size and alignment. The rules are
1717 // somewhat different here for ms_struct structs.
1718 if (IsMsStruct) {
1719 // If it's not a zero-width bitfield, and we can fit the bitfield
1720 // into the active storage unit (and we haven't already decided to
1721 // start a new storage unit), just do so, regardless of any other
1722 // other consideration. Otherwise, round up to the right alignment.
1723 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1724 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1725 UnpackedFieldOffset =
1726 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1727 UnfilledBitsInLastUnit = 0;
1728 }
1729
1730 } else {
1731 // #pragma pack, with any value, suppresses the insertion of padding.
1732 bool AllowPadding = MaxFieldAlignment.isZero();
1733
1734 // Compute the real offset.
1735 if (FieldSize == 0 ||
1736 (AllowPadding &&
1737 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1738 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1739 } else if (ExplicitFieldAlign &&
1740 (MaxFieldAlignmentInBits == 0 ||
1741 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1742 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1743 // TODO: figure it out what needs to be done on targets that don't honor
1744 // bit-field type alignment like ARM APCS ABI.
1745 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1746 }
1747
1748 // Repeat the computation for diagnostic purposes.
1749 if (FieldSize == 0 ||
1750 (AllowPadding &&
1751 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1752 StorageUnitSize))
1753 UnpackedFieldOffset =
1754 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1755 else if (ExplicitFieldAlign &&
1756 (MaxFieldAlignmentInBits == 0 ||
1757 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1758 Context.getTargetInfo().useExplicitBitFieldAlignment())
1759 UnpackedFieldOffset =
1760 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1761 }
1762
1763 // If we're using external layout, give the external layout a chance
1764 // to override this information.
1765 if (UseExternalLayout)
1766 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1767
1768 // Okay, place the bitfield at the calculated offset.
1769 FieldOffsets.push_back(FieldOffset);
1770
1771 // Bookkeeping:
1772
1773 // Anonymous members don't affect the overall record alignment,
1774 // except on targets where they do.
1775 if (!IsMsStruct &&
1776 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1777 !D->getIdentifier())
1778 FieldAlign = UnpackedFieldAlign = 1;
1779
1780 // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1781 // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1782 // if packed.
1783 if (isAIXLayout(Context) && !FieldSize) {
1784 if (FieldPacked)
1785 FieldAlign = 1;
1786 if (!MaxFieldAlignment.isZero()) {
1787 UnpackedFieldAlign =
1788 std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1789 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1790 }
1791 }
1792
1793 // Diagnose differences in layout due to padding or packing.
1794 if (!UseExternalLayout)
1795 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1796 UnpackedFieldAlign, FieldPacked, D);
1797
1798 // Update DataSize to include the last byte containing (part of) the bitfield.
1799
1800 // For unions, this is just a max operation, as usual.
1801 if (IsUnion) {
1802 // For ms_struct, allocate the entire storage unit --- unless this
1803 // is a zero-width bitfield, in which case just use a size of 1.
1804 uint64_t RoundedFieldSize;
1805 if (IsMsStruct) {
1806 RoundedFieldSize = (FieldSize ? StorageUnitSize
1807 : Context.getTargetInfo().getCharWidth());
1808
1809 // Otherwise, allocate just the number of bytes required to store
1810 // the bitfield.
1811 } else {
1812 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1813 }
1814 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1815
1816 // For non-zero-width bitfields in ms_struct structs, allocate a new
1817 // storage unit if necessary.
1818 } else if (IsMsStruct && FieldSize) {
1819 // We should have cleared UnfilledBitsInLastUnit in every case
1820 // where we changed storage units.
1821 if (!UnfilledBitsInLastUnit) {
1822 setDataSize(FieldOffset + StorageUnitSize);
1823 UnfilledBitsInLastUnit = StorageUnitSize;
1824 }
1825 UnfilledBitsInLastUnit -= FieldSize;
1826 LastBitfieldStorageUnitSize = StorageUnitSize;
1827
1828 // Otherwise, bump the data size up to include the bitfield,
1829 // including padding up to char alignment, and then remember how
1830 // bits we didn't use.
1831 } else {
1832 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1833 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1834 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1835 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1836
1837 // The only time we can get here for an ms_struct is if this is a
1838 // zero-width bitfield, which doesn't count as anything for the
1839 // purposes of unfilled bits.
1840 LastBitfieldStorageUnitSize = 0;
1841 }
1842
1843 // Update the size.
1844 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1845
1846 // Remember max struct/class alignment.
1847 UnadjustedAlignment =
1848 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1849 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1850 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1851 }
1852
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1853 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1854 bool InsertExtraPadding) {
1855 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1856 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1857 bool IsOverlappingEmptyField =
1858 PotentiallyOverlapping && FieldClass->isEmpty();
1859
1860 CharUnits FieldOffset =
1861 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1862
1863 const bool DefaultsToAIXPowerAlignment =
1864 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1865 bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1866 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1867 assert(FieldOffset == CharUnits::Zero() &&
1868 "The first non-overlapping empty field should have been handled.");
1869
1870 if (!IsOverlappingEmptyField) {
1871 FoundFirstNonOverlappingEmptyFieldForAIX = true;
1872
1873 // We're going to handle the "first member" based on
1874 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1875 // invocation of this function; record it as handled for future
1876 // invocations (except for unions, because the current field does not
1877 // represent all "firsts").
1878 HandledFirstNonOverlappingEmptyField = !IsUnion;
1879 }
1880 }
1881
1882 if (D->isBitField()) {
1883 LayoutBitField(D);
1884 return;
1885 }
1886
1887 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1888 // Reset the unfilled bits.
1889 UnfilledBitsInLastUnit = 0;
1890 LastBitfieldStorageUnitSize = 0;
1891
1892 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1893
1894 AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1895 CharUnits FieldSize;
1896 CharUnits FieldAlign;
1897 // The amount of this class's dsize occupied by the field.
1898 // This is equal to FieldSize unless we're permitted to pack
1899 // into the field's tail padding.
1900 CharUnits EffectiveFieldSize;
1901
1902 auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1903 auto TI = Context.getTypeInfoInChars(D->getType());
1904 FieldAlign = TI.Align;
1905 // Flexible array members don't have any size, but they have to be
1906 // aligned appropriately for their element type.
1907 EffectiveFieldSize = FieldSize =
1908 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1909 AlignRequirement = TI.AlignRequirement;
1910 };
1911
1912 if (D->getType()->isIncompleteArrayType()) {
1913 setDeclInfo(true /* IsIncompleteArrayType */);
1914 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1915 unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1916 EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1917 Context.getTargetInfo().getPointerWidth(AS));
1918 FieldAlign = Context.toCharUnitsFromBits(
1919 Context.getTargetInfo().getPointerAlign(AS));
1920 } else {
1921 setDeclInfo(false /* IsIncompleteArrayType */);
1922
1923 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1924 // is larger.
1925 if (PotentiallyOverlapping) {
1926 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1927 EffectiveFieldSize =
1928 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1929 }
1930
1931 if (IsMsStruct) {
1932 // If MS bitfield layout is required, figure out what type is being
1933 // laid out and align the field to the width of that type.
1934
1935 // Resolve all typedefs down to their base type and round up the field
1936 // alignment if necessary.
1937 QualType T = Context.getBaseElementType(D->getType());
1938 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1939 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1940
1941 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1942 assert(
1943 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1944 "Non PowerOf2 size in MSVC mode");
1945 // Base types with sizes that aren't a power of two don't work
1946 // with the layout rules for MS structs. This isn't an issue in
1947 // MSVC itself since there are no such base data types there.
1948 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1949 // Any structs involving that data type obviously can't be ABI
1950 // compatible with MSVC regardless of how it is laid out.
1951
1952 // Since ms_struct can be mass enabled (via a pragma or via the
1953 // -mms-bitfields command line parameter), this can trigger for
1954 // structs that don't actually need MSVC compatibility, so we
1955 // need to be able to sidestep the ms_struct layout for these types.
1956
1957 // Since the combination of -mms-bitfields together with structs
1958 // like max_align_t (which contains a long double) for mingw is
1959 // quite common (and GCC handles it silently), just handle it
1960 // silently there. For other targets that have ms_struct enabled
1961 // (most probably via a pragma or attribute), trigger a diagnostic
1962 // that defaults to an error.
1963 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1964 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1965 }
1966 if (TypeSize > FieldAlign &&
1967 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1968 FieldAlign = TypeSize;
1969 }
1970 }
1971 }
1972
1973 // When used as part of a typedef, or together with a 'packed' attribute, the
1974 // 'aligned' attribute can be used to decrease alignment. In that case, it
1975 // overrides any computed alignment we have, and there is no need to upgrade
1976 // the alignment.
1977 auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1978 // Enum alignment sources can be safely ignored here, because this only
1979 // helps decide whether we need the AIX alignment upgrade, which only
1980 // applies to floating-point types.
1981 return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1982 (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1983 FieldPacked);
1984 };
1985
1986 // The AIX `power` alignment rules apply the natural alignment of the
1987 // "first member" if it is of a floating-point data type (or is an aggregate
1988 // whose recursively "first" member or element is such a type). The alignment
1989 // associated with these types for subsequent members use an alignment value
1990 // where the floating-point data type is considered to have 4-byte alignment.
1991 //
1992 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1993 // and zero-width bit-fields count as prior members; members of empty class
1994 // types marked `no_unique_address` are not considered to be prior members.
1995 CharUnits PreferredAlign = FieldAlign;
1996 if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1997 (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1998 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1999 if (BTy->getKind() == BuiltinType::Double ||
2000 BTy->getKind() == BuiltinType::LongDouble) {
2001 assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2002 "No need to upgrade the alignment value.");
2003 PreferredAlign = CharUnits::fromQuantity(8);
2004 }
2005 };
2006
2007 const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2008 if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2009 performBuiltinTypeAlignmentUpgrade(
2010 CTy->getElementType()->castAs<BuiltinType>());
2011 } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2012 performBuiltinTypeAlignmentUpgrade(BTy);
2013 } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2014 const RecordDecl *RD = RT->getDecl();
2015 assert(RD && "Expected non-null RecordDecl.");
2016 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2017 PreferredAlign = FieldRecord.getPreferredAlignment();
2018 }
2019 }
2020
2021 // The align if the field is not packed. This is to check if the attribute
2022 // was unnecessary (-Wpacked).
2023 CharUnits UnpackedFieldAlign =
2024 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2025 CharUnits UnpackedFieldOffset = FieldOffset;
2026 CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2027
2028 if (FieldPacked) {
2029 FieldAlign = CharUnits::One();
2030 PreferredAlign = CharUnits::One();
2031 }
2032 CharUnits MaxAlignmentInChars =
2033 Context.toCharUnitsFromBits(D->getMaxAlignment());
2034 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2035 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2036 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2037
2038 // The maximum field alignment overrides the aligned attribute.
2039 if (!MaxFieldAlignment.isZero()) {
2040 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2041 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2042 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2043 }
2044
2045 CharUnits AlignTo =
2046 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2047 // Round up the current record size to the field's alignment boundary.
2048 FieldOffset = FieldOffset.alignTo(AlignTo);
2049 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2050
2051 if (UseExternalLayout) {
2052 FieldOffset = Context.toCharUnitsFromBits(
2053 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2054
2055 if (!IsUnion && EmptySubobjects) {
2056 // Record the fact that we're placing a field at this offset.
2057 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2058 (void)Allowed;
2059 assert(Allowed && "Externally-placed field cannot be placed here");
2060 }
2061 } else {
2062 if (!IsUnion && EmptySubobjects) {
2063 // Check if we can place the field at this offset.
2064 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2065 // We couldn't place the field at the offset. Try again at a new offset.
2066 // We try offset 0 (for an empty field) and then dsize(C) onwards.
2067 if (FieldOffset == CharUnits::Zero() &&
2068 getDataSize() != CharUnits::Zero())
2069 FieldOffset = getDataSize().alignTo(AlignTo);
2070 else
2071 FieldOffset += AlignTo;
2072 }
2073 }
2074 }
2075
2076 // Place this field at the current location.
2077 FieldOffsets.push_back(Context.toBits(FieldOffset));
2078
2079 if (!UseExternalLayout)
2080 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2081 Context.toBits(UnpackedFieldOffset),
2082 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2083
2084 if (InsertExtraPadding) {
2085 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2086 CharUnits ExtraSizeForAsan = ASanAlignment;
2087 if (FieldSize % ASanAlignment)
2088 ExtraSizeForAsan +=
2089 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2090 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2091 }
2092
2093 // Reserve space for this field.
2094 if (!IsOverlappingEmptyField) {
2095 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2096 if (IsUnion)
2097 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2098 else
2099 setDataSize(FieldOffset + EffectiveFieldSize);
2100
2101 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2102 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2103 } else {
2104 setSize(std::max(getSizeInBits(),
2105 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2106 }
2107
2108 // Remember max struct/class ABI-specified alignment.
2109 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2110 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2111
2112 // For checking the alignment of inner fields against
2113 // the alignment of its parent record.
2114 if (const RecordDecl *RD = D->getParent()) {
2115 // Check if packed attribute or pragma pack is present.
2116 if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2117 if (FieldAlign < OriginalFieldAlign)
2118 if (D->getType()->isRecordType()) {
2119 // If the offset is a multiple of the alignment of
2120 // the type, raise the warning.
2121 // TODO: Takes no account the alignment of the outer struct
2122 if (FieldOffset % OriginalFieldAlign != 0)
2123 Diag(D->getLocation(), diag::warn_unaligned_access)
2124 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2125 }
2126 }
2127 }
2128
FinishLayout(const NamedDecl * D)2129 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2130 // In C++, records cannot be of size 0.
2131 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2132 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2133 // Compatibility with gcc requires a class (pod or non-pod)
2134 // which is not empty but of size 0; such as having fields of
2135 // array of zero-length, remains of Size 0
2136 if (RD->isEmpty())
2137 setSize(CharUnits::One());
2138 }
2139 else
2140 setSize(CharUnits::One());
2141 }
2142
2143 // If we have any remaining field tail padding, include that in the overall
2144 // size.
2145 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2146
2147 // Finally, round the size of the record up to the alignment of the
2148 // record itself.
2149 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2150 uint64_t UnpackedSizeInBits =
2151 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2152
2153 uint64_t RoundedSize = llvm::alignTo(
2154 getSizeInBits(),
2155 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2156 ? Alignment
2157 : PreferredAlignment));
2158
2159 if (UseExternalLayout) {
2160 // If we're inferring alignment, and the external size is smaller than
2161 // our size after we've rounded up to alignment, conservatively set the
2162 // alignment to 1.
2163 if (InferAlignment && External.Size < RoundedSize) {
2164 Alignment = CharUnits::One();
2165 PreferredAlignment = CharUnits::One();
2166 InferAlignment = false;
2167 }
2168 setSize(External.Size);
2169 return;
2170 }
2171
2172 // Set the size to the final size.
2173 setSize(RoundedSize);
2174
2175 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2176 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2177 // Warn if padding was introduced to the struct/class/union.
2178 if (getSizeInBits() > UnpaddedSize) {
2179 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2180 bool InBits = true;
2181 if (PadSize % CharBitNum == 0) {
2182 PadSize = PadSize / CharBitNum;
2183 InBits = false;
2184 }
2185 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2186 << Context.getTypeDeclType(RD)
2187 << PadSize
2188 << (InBits ? 1 : 0); // (byte|bit)
2189 }
2190
2191 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2192 // greater than the one after packing, the size in bits doesn't change and
2193 // the offset of each field is identical.
2194 if (Packed && UnpackedAlignment <= Alignment &&
2195 UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2196 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2197 << Context.getTypeDeclType(RD);
2198 }
2199 }
2200
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment,CharUnits PreferredNewAlignment)2201 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2202 CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2203 CharUnits PreferredNewAlignment) {
2204 // The alignment is not modified when using 'mac68k' alignment or when
2205 // we have an externally-supplied layout that also provides overall alignment.
2206 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2207 return;
2208
2209 if (NewAlignment > Alignment) {
2210 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2211 "Alignment not a power of 2");
2212 Alignment = NewAlignment;
2213 }
2214
2215 if (UnpackedNewAlignment > UnpackedAlignment) {
2216 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2217 "Alignment not a power of 2");
2218 UnpackedAlignment = UnpackedNewAlignment;
2219 }
2220
2221 if (PreferredNewAlignment > PreferredAlignment) {
2222 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2223 "Alignment not a power of 2");
2224 PreferredAlignment = PreferredNewAlignment;
2225 }
2226 }
2227
2228 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2229 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2230 uint64_t ComputedOffset) {
2231 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2232
2233 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2234 // The externally-supplied field offset is before the field offset we
2235 // computed. Assume that the structure is packed.
2236 Alignment = CharUnits::One();
2237 PreferredAlignment = CharUnits::One();
2238 InferAlignment = false;
2239 }
2240
2241 // Use the externally-supplied field offset.
2242 return ExternalFieldOffset;
2243 }
2244
2245 /// Get diagnostic %select index for tag kind for
2246 /// field padding diagnostic message.
2247 /// WARNING: Indexes apply to particular diagnostics only!
2248 ///
2249 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)2250 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2251 switch (Tag) {
2252 case TTK_Struct: return 0;
2253 case TTK_Interface: return 1;
2254 case TTK_Class: return 2;
2255 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2256 }
2257 }
2258
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2259 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2260 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2261 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2262 // We let objc ivars without warning, objc interfaces generally are not used
2263 // for padding tricks.
2264 if (isa<ObjCIvarDecl>(D))
2265 return;
2266
2267 // Don't warn about structs created without a SourceLocation. This can
2268 // be done by clients of the AST, such as codegen.
2269 if (D->getLocation().isInvalid())
2270 return;
2271
2272 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2273
2274 // Warn if padding was introduced to the struct/class.
2275 if (!IsUnion && Offset > UnpaddedOffset) {
2276 unsigned PadSize = Offset - UnpaddedOffset;
2277 bool InBits = true;
2278 if (PadSize % CharBitNum == 0) {
2279 PadSize = PadSize / CharBitNum;
2280 InBits = false;
2281 }
2282 if (D->getIdentifier())
2283 Diag(D->getLocation(), diag::warn_padded_struct_field)
2284 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2285 << Context.getTypeDeclType(D->getParent())
2286 << PadSize
2287 << (InBits ? 1 : 0) // (byte|bit)
2288 << D->getIdentifier();
2289 else
2290 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2291 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2292 << Context.getTypeDeclType(D->getParent())
2293 << PadSize
2294 << (InBits ? 1 : 0); // (byte|bit)
2295 }
2296 if (isPacked && Offset != UnpackedOffset) {
2297 HasPackedField = true;
2298 }
2299 }
2300
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)2301 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2302 const CXXRecordDecl *RD) {
2303 // If a class isn't polymorphic it doesn't have a key function.
2304 if (!RD->isPolymorphic())
2305 return nullptr;
2306
2307 // A class that is not externally visible doesn't have a key function. (Or
2308 // at least, there's no point to assigning a key function to such a class;
2309 // this doesn't affect the ABI.)
2310 if (!RD->isExternallyVisible())
2311 return nullptr;
2312
2313 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2314 // Same behavior as GCC.
2315 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2316 if (TSK == TSK_ImplicitInstantiation ||
2317 TSK == TSK_ExplicitInstantiationDeclaration ||
2318 TSK == TSK_ExplicitInstantiationDefinition)
2319 return nullptr;
2320
2321 bool allowInlineFunctions =
2322 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2323
2324 for (const CXXMethodDecl *MD : RD->methods()) {
2325 if (!MD->isVirtual())
2326 continue;
2327
2328 if (MD->isPure())
2329 continue;
2330
2331 // Ignore implicit member functions, they are always marked as inline, but
2332 // they don't have a body until they're defined.
2333 if (MD->isImplicit())
2334 continue;
2335
2336 if (MD->isInlineSpecified() || MD->isConstexpr())
2337 continue;
2338
2339 if (MD->hasInlineBody())
2340 continue;
2341
2342 // Ignore inline deleted or defaulted functions.
2343 if (!MD->isUserProvided())
2344 continue;
2345
2346 // In certain ABIs, ignore functions with out-of-line inline definitions.
2347 if (!allowInlineFunctions) {
2348 const FunctionDecl *Def;
2349 if (MD->hasBody(Def) && Def->isInlineSpecified())
2350 continue;
2351 }
2352
2353 if (Context.getLangOpts().CUDA) {
2354 // While compiler may see key method in this TU, during CUDA
2355 // compilation we should ignore methods that are not accessible
2356 // on this side of compilation.
2357 if (Context.getLangOpts().CUDAIsDevice) {
2358 // In device mode ignore methods without __device__ attribute.
2359 if (!MD->hasAttr<CUDADeviceAttr>())
2360 continue;
2361 } else {
2362 // In host mode ignore __device__-only methods.
2363 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2364 continue;
2365 }
2366 }
2367
2368 // If the key function is dllimport but the class isn't, then the class has
2369 // no key function. The DLL that exports the key function won't export the
2370 // vtable in this case.
2371 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2372 !Context.getTargetInfo().hasPS4DLLImportExport())
2373 return nullptr;
2374
2375 // We found it.
2376 return MD;
2377 }
2378
2379 return nullptr;
2380 }
2381
Diag(SourceLocation Loc,unsigned DiagID)2382 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2383 unsigned DiagID) {
2384 return Context.getDiagnostics().Report(Loc, DiagID);
2385 }
2386
2387 /// Does the target C++ ABI require us to skip over the tail-padding
2388 /// of the given class (considering it as a base class) when allocating
2389 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2390 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2391 switch (ABI.getTailPaddingUseRules()) {
2392 case TargetCXXABI::AlwaysUseTailPadding:
2393 return false;
2394
2395 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2396 // FIXME: To the extent that this is meant to cover the Itanium ABI
2397 // rules, we should implement the restrictions about over-sized
2398 // bitfields:
2399 //
2400 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2401 // In general, a type is considered a POD for the purposes of
2402 // layout if it is a POD type (in the sense of ISO C++
2403 // [basic.types]). However, a POD-struct or POD-union (in the
2404 // sense of ISO C++ [class]) with a bitfield member whose
2405 // declared width is wider than the declared type of the
2406 // bitfield is not a POD for the purpose of layout. Similarly,
2407 // an array type is not a POD for the purpose of layout if the
2408 // element type of the array is not a POD for the purpose of
2409 // layout.
2410 //
2411 // Where references to the ISO C++ are made in this paragraph,
2412 // the Technical Corrigendum 1 version of the standard is
2413 // intended.
2414 return RD->isPOD();
2415
2416 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2417 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2418 // but with a lot of abstraction penalty stripped off. This does
2419 // assume that these properties are set correctly even in C++98
2420 // mode; fortunately, that is true because we want to assign
2421 // consistently semantics to the type-traits intrinsics (or at
2422 // least as many of them as possible).
2423 return RD->isTrivial() && RD->isCXX11StandardLayout();
2424 }
2425
2426 llvm_unreachable("bad tail-padding use kind");
2427 }
2428
isMsLayout(const ASTContext & Context)2429 static bool isMsLayout(const ASTContext &Context) {
2430 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2431 }
2432
2433 // This section contains an implementation of struct layout that is, up to the
2434 // included tests, compatible with cl.exe (2013). The layout produced is
2435 // significantly different than those produced by the Itanium ABI. Here we note
2436 // the most important differences.
2437 //
2438 // * The alignment of bitfields in unions is ignored when computing the
2439 // alignment of the union.
2440 // * The existence of zero-width bitfield that occurs after anything other than
2441 // a non-zero length bitfield is ignored.
2442 // * There is no explicit primary base for the purposes of layout. All bases
2443 // with vfptrs are laid out first, followed by all bases without vfptrs.
2444 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2445 // function pointer) and a vbptr (virtual base pointer). They can each be
2446 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2447 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2448 // placed after the lexicographically last non-virtual base. This placement
2449 // is always before fields but can be in the middle of the non-virtual bases
2450 // due to the two-pass layout scheme for non-virtual-bases.
2451 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2452 // the virtual base and is used in conjunction with virtual overrides during
2453 // construction and destruction. This is always a 4 byte value and is used as
2454 // an alternative to constructor vtables.
2455 // * vtordisps are allocated in a block of memory with size and alignment equal
2456 // to the alignment of the completed structure (before applying __declspec(
2457 // align())). The vtordisp always occur at the end of the allocation block,
2458 // immediately prior to the virtual base.
2459 // * vfptrs are injected after all bases and fields have been laid out. In
2460 // order to guarantee proper alignment of all fields, the vfptr injection
2461 // pushes all bases and fields back by the alignment imposed by those bases
2462 // and fields. This can potentially add a significant amount of padding.
2463 // vfptrs are always injected at offset 0.
2464 // * vbptrs are injected after all bases and fields have been laid out. In
2465 // order to guarantee proper alignment of all fields, the vfptr injection
2466 // pushes all bases and fields back by the alignment imposed by those bases
2467 // and fields. This can potentially add a significant amount of padding.
2468 // vbptrs are injected immediately after the last non-virtual base as
2469 // lexicographically ordered in the code. If this site isn't pointer aligned
2470 // the vbptr is placed at the next properly aligned location. Enough padding
2471 // is added to guarantee a fit.
2472 // * The last zero sized non-virtual base can be placed at the end of the
2473 // struct (potentially aliasing another object), or may alias with the first
2474 // field, even if they are of the same type.
2475 // * The last zero size virtual base may be placed at the end of the struct
2476 // potentially aliasing another object.
2477 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2478 // between bases or vbases with specific properties. The criteria for
2479 // additional padding between two bases is that the first base is zero sized
2480 // or ends with a zero sized subobject and the second base is zero sized or
2481 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2482 // layout of the so the leading base is not always the first one declared).
2483 // This rule does take into account fields that are not records, so padding
2484 // will occur even if the last field is, e.g. an int. The padding added for
2485 // bases is 1 byte. The padding added between vbases depends on the alignment
2486 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2487 // * There is no concept of non-virtual alignment, non-virtual alignment and
2488 // alignment are always identical.
2489 // * There is a distinction between alignment and required alignment.
2490 // __declspec(align) changes the required alignment of a struct. This
2491 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2492 // record inherits required alignment from all of its fields and bases.
2493 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2494 // alignment instead of its required alignment. This is the only known way
2495 // to make the alignment of a struct bigger than 8. Interestingly enough
2496 // this alignment is also immune to the effects of #pragma pack and can be
2497 // used to create structures with large alignment under #pragma pack.
2498 // However, because it does not impact required alignment, such a structure,
2499 // when used as a field or base, will not be aligned if #pragma pack is
2500 // still active at the time of use.
2501 //
2502 // Known incompatibilities:
2503 // * all: #pragma pack between fields in a record
2504 // * 2010 and back: If the last field in a record is a bitfield, every object
2505 // laid out after the record will have extra padding inserted before it. The
2506 // extra padding will have size equal to the size of the storage class of the
2507 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2508 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2509 // sized bitfield.
2510 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2511 // greater due to __declspec(align()) then a second layout phase occurs after
2512 // The locations of the vf and vb pointers are known. This layout phase
2513 // suffers from the "last field is a bitfield" bug in 2010 and results in
2514 // _every_ field getting padding put in front of it, potentially including the
2515 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2516 // anything tries to read the vftbl. The second layout phase also treats
2517 // bitfields as separate entities and gives them each storage rather than
2518 // packing them. Additionally, because this phase appears to perform a
2519 // (an unstable) sort on the members before laying them out and because merged
2520 // bitfields have the same address, the bitfields end up in whatever order
2521 // the sort left them in, a behavior we could never hope to replicate.
2522
2523 namespace {
2524 struct MicrosoftRecordLayoutBuilder {
2525 struct ElementInfo {
2526 CharUnits Size;
2527 CharUnits Alignment;
2528 };
2529 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anon0138ef250611::MicrosoftRecordLayoutBuilder2530 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2531 private:
2532 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2533 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2534 public:
2535 void layout(const RecordDecl *RD);
2536 void cxxLayout(const CXXRecordDecl *RD);
2537 /// Initializes size and alignment and honors some flags.
2538 void initializeLayout(const RecordDecl *RD);
2539 /// Initialized C++ layout, compute alignment and virtual alignment and
2540 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2541 /// laid out.
2542 void initializeCXXLayout(const CXXRecordDecl *RD);
2543 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2544 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2545 const CXXRecordDecl *BaseDecl,
2546 const ASTRecordLayout &BaseLayout,
2547 const ASTRecordLayout *&PreviousBaseLayout);
2548 void injectVFPtr(const CXXRecordDecl *RD);
2549 void injectVBPtr(const CXXRecordDecl *RD);
2550 /// Lays out the fields of the record. Also rounds size up to
2551 /// alignment.
2552 void layoutFields(const RecordDecl *RD);
2553 void layoutField(const FieldDecl *FD);
2554 void layoutBitField(const FieldDecl *FD);
2555 /// Lays out a single zero-width bit-field in the record and handles
2556 /// special cases associated with zero-width bit-fields.
2557 void layoutZeroWidthBitField(const FieldDecl *FD);
2558 void layoutVirtualBases(const CXXRecordDecl *RD);
2559 void finalizeLayout(const RecordDecl *RD);
2560 /// Gets the size and alignment of a base taking pragma pack and
2561 /// __declspec(align) into account.
2562 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2563 /// Gets the size and alignment of a field taking pragma pack and
2564 /// __declspec(align) into account. It also updates RequiredAlignment as a
2565 /// side effect because it is most convenient to do so here.
2566 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2567 /// Places a field at an offset in CharUnits.
placeFieldAtOffset__anon0138ef250611::MicrosoftRecordLayoutBuilder2568 void placeFieldAtOffset(CharUnits FieldOffset) {
2569 FieldOffsets.push_back(Context.toBits(FieldOffset));
2570 }
2571 /// Places a bitfield at a bit offset.
placeFieldAtBitOffset__anon0138ef250611::MicrosoftRecordLayoutBuilder2572 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2573 FieldOffsets.push_back(FieldOffset);
2574 }
2575 /// Compute the set of virtual bases for which vtordisps are required.
2576 void computeVtorDispSet(
2577 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2578 const CXXRecordDecl *RD) const;
2579 const ASTContext &Context;
2580 /// The size of the record being laid out.
2581 CharUnits Size;
2582 /// The non-virtual size of the record layout.
2583 CharUnits NonVirtualSize;
2584 /// The data size of the record layout.
2585 CharUnits DataSize;
2586 /// The current alignment of the record layout.
2587 CharUnits Alignment;
2588 /// The maximum allowed field alignment. This is set by #pragma pack.
2589 CharUnits MaxFieldAlignment;
2590 /// The alignment that this record must obey. This is imposed by
2591 /// __declspec(align()) on the record itself or one of its fields or bases.
2592 CharUnits RequiredAlignment;
2593 /// The size of the allocation of the currently active bitfield.
2594 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2595 /// is true.
2596 CharUnits CurrentBitfieldSize;
2597 /// Offset to the virtual base table pointer (if one exists).
2598 CharUnits VBPtrOffset;
2599 /// Minimum record size possible.
2600 CharUnits MinEmptyStructSize;
2601 /// The size and alignment info of a pointer.
2602 ElementInfo PointerInfo;
2603 /// The primary base class (if one exists).
2604 const CXXRecordDecl *PrimaryBase;
2605 /// The class we share our vb-pointer with.
2606 const CXXRecordDecl *SharedVBPtrBase;
2607 /// The collection of field offsets.
2608 SmallVector<uint64_t, 16> FieldOffsets;
2609 /// Base classes and their offsets in the record.
2610 BaseOffsetsMapTy Bases;
2611 /// virtual base classes and their offsets in the record.
2612 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2613 /// The number of remaining bits in our last bitfield allocation.
2614 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2615 /// true.
2616 unsigned RemainingBitsInField;
2617 bool IsUnion : 1;
2618 /// True if the last field laid out was a bitfield and was not 0
2619 /// width.
2620 bool LastFieldIsNonZeroWidthBitfield : 1;
2621 /// True if the class has its own vftable pointer.
2622 bool HasOwnVFPtr : 1;
2623 /// True if the class has a vbtable pointer.
2624 bool HasVBPtr : 1;
2625 /// True if the last sub-object within the type is zero sized or the
2626 /// object itself is zero sized. This *does not* count members that are not
2627 /// records. Only used for MS-ABI.
2628 bool EndsWithZeroSizedObject : 1;
2629 /// True if this class is zero sized or first base is zero sized or
2630 /// has this property. Only used for MS-ABI.
2631 bool LeadsWithZeroSizedBase : 1;
2632
2633 /// True if the external AST source provided a layout for this record.
2634 bool UseExternalLayout : 1;
2635
2636 /// The layout provided by the external AST source. Only active if
2637 /// UseExternalLayout is true.
2638 ExternalLayout External;
2639 };
2640 } // namespace
2641
2642 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2643 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2644 const ASTRecordLayout &Layout) {
2645 ElementInfo Info;
2646 Info.Alignment = Layout.getAlignment();
2647 // Respect pragma pack.
2648 if (!MaxFieldAlignment.isZero())
2649 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2650 // Track zero-sized subobjects here where it's already available.
2651 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2652 // Respect required alignment, this is necessary because we may have adjusted
2653 // the alignment in the case of pragma pack. Note that the required alignment
2654 // doesn't actually apply to the struct alignment at this point.
2655 Alignment = std::max(Alignment, Info.Alignment);
2656 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2657 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2658 Info.Size = Layout.getNonVirtualSize();
2659 return Info;
2660 }
2661
2662 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2663 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2664 const FieldDecl *FD) {
2665 // Get the alignment of the field type's natural alignment, ignore any
2666 // alignment attributes.
2667 auto TInfo =
2668 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2669 ElementInfo Info{TInfo.Width, TInfo.Align};
2670 // Respect align attributes on the field.
2671 CharUnits FieldRequiredAlignment =
2672 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2673 // Respect align attributes on the type.
2674 if (Context.isAlignmentRequired(FD->getType()))
2675 FieldRequiredAlignment = std::max(
2676 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2677 // Respect attributes applied to subobjects of the field.
2678 if (FD->isBitField())
2679 // For some reason __declspec align impacts alignment rather than required
2680 // alignment when it is applied to bitfields.
2681 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2682 else {
2683 if (auto RT =
2684 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2685 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2686 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2687 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2688 Layout.getRequiredAlignment());
2689 }
2690 // Capture required alignment as a side-effect.
2691 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2692 }
2693 // Respect pragma pack, attribute pack and declspec align
2694 if (!MaxFieldAlignment.isZero())
2695 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2696 if (FD->hasAttr<PackedAttr>())
2697 Info.Alignment = CharUnits::One();
2698 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2699 return Info;
2700 }
2701
layout(const RecordDecl * RD)2702 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2703 // For C record layout, zero-sized records always have size 4.
2704 MinEmptyStructSize = CharUnits::fromQuantity(4);
2705 initializeLayout(RD);
2706 layoutFields(RD);
2707 DataSize = Size = Size.alignTo(Alignment);
2708 RequiredAlignment = std::max(
2709 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2710 finalizeLayout(RD);
2711 }
2712
cxxLayout(const CXXRecordDecl * RD)2713 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2714 // The C++ standard says that empty structs have size 1.
2715 MinEmptyStructSize = CharUnits::One();
2716 initializeLayout(RD);
2717 initializeCXXLayout(RD);
2718 layoutNonVirtualBases(RD);
2719 layoutFields(RD);
2720 injectVBPtr(RD);
2721 injectVFPtr(RD);
2722 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2723 Alignment = std::max(Alignment, PointerInfo.Alignment);
2724 auto RoundingAlignment = Alignment;
2725 if (!MaxFieldAlignment.isZero())
2726 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2727 if (!UseExternalLayout)
2728 Size = Size.alignTo(RoundingAlignment);
2729 NonVirtualSize = Size;
2730 RequiredAlignment = std::max(
2731 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2732 layoutVirtualBases(RD);
2733 finalizeLayout(RD);
2734 }
2735
initializeLayout(const RecordDecl * RD)2736 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2737 IsUnion = RD->isUnion();
2738 Size = CharUnits::Zero();
2739 Alignment = CharUnits::One();
2740 // In 64-bit mode we always perform an alignment step after laying out vbases.
2741 // In 32-bit mode we do not. The check to see if we need to perform alignment
2742 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2743 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2744 ? CharUnits::One()
2745 : CharUnits::Zero();
2746 // Compute the maximum field alignment.
2747 MaxFieldAlignment = CharUnits::Zero();
2748 // Honor the default struct packing maximum alignment flag.
2749 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2750 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2751 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2752 // than the pointer size.
2753 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2754 unsigned PackedAlignment = MFAA->getAlignment();
2755 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2756 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2757 }
2758 // Packed attribute forces max field alignment to be 1.
2759 if (RD->hasAttr<PackedAttr>())
2760 MaxFieldAlignment = CharUnits::One();
2761
2762 // Try to respect the external layout if present.
2763 UseExternalLayout = false;
2764 if (ExternalASTSource *Source = Context.getExternalSource())
2765 UseExternalLayout = Source->layoutRecordType(
2766 RD, External.Size, External.Align, External.FieldOffsets,
2767 External.BaseOffsets, External.VirtualBaseOffsets);
2768 }
2769
2770 void
initializeCXXLayout(const CXXRecordDecl * RD)2771 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2772 EndsWithZeroSizedObject = false;
2773 LeadsWithZeroSizedBase = false;
2774 HasOwnVFPtr = false;
2775 HasVBPtr = false;
2776 PrimaryBase = nullptr;
2777 SharedVBPtrBase = nullptr;
2778 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2779 // injection.
2780 PointerInfo.Size =
2781 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2782 PointerInfo.Alignment =
2783 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2784 // Respect pragma pack.
2785 if (!MaxFieldAlignment.isZero())
2786 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2787 }
2788
2789 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2790 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2791 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2792 // out any bases that do not contain vfptrs. We implement this as two passes
2793 // over the bases. This approach guarantees that the primary base is laid out
2794 // first. We use these passes to calculate some additional aggregated
2795 // information about the bases, such as required alignment and the presence of
2796 // zero sized members.
2797 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2798 bool HasPolymorphicBaseClass = false;
2799 // Iterate through the bases and lay out the non-virtual ones.
2800 for (const CXXBaseSpecifier &Base : RD->bases()) {
2801 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2802 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2803 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2804 // Mark and skip virtual bases.
2805 if (Base.isVirtual()) {
2806 HasVBPtr = true;
2807 continue;
2808 }
2809 // Check for a base to share a VBPtr with.
2810 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2811 SharedVBPtrBase = BaseDecl;
2812 HasVBPtr = true;
2813 }
2814 // Only lay out bases with extendable VFPtrs on the first pass.
2815 if (!BaseLayout.hasExtendableVFPtr())
2816 continue;
2817 // If we don't have a primary base, this one qualifies.
2818 if (!PrimaryBase) {
2819 PrimaryBase = BaseDecl;
2820 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2821 }
2822 // Lay out the base.
2823 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2824 }
2825 // Figure out if we need a fresh VFPtr for this class.
2826 if (RD->isPolymorphic()) {
2827 if (!HasPolymorphicBaseClass)
2828 // This class introduces polymorphism, so we need a vftable to store the
2829 // RTTI information.
2830 HasOwnVFPtr = true;
2831 else if (!PrimaryBase) {
2832 // We have a polymorphic base class but can't extend its vftable. Add a
2833 // new vfptr if we would use any vftable slots.
2834 for (CXXMethodDecl *M : RD->methods()) {
2835 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2836 M->size_overridden_methods() == 0) {
2837 HasOwnVFPtr = true;
2838 break;
2839 }
2840 }
2841 }
2842 }
2843 // If we don't have a primary base then we have a leading object that could
2844 // itself lead with a zero-sized object, something we track.
2845 bool CheckLeadingLayout = !PrimaryBase;
2846 // Iterate through the bases and lay out the non-virtual ones.
2847 for (const CXXBaseSpecifier &Base : RD->bases()) {
2848 if (Base.isVirtual())
2849 continue;
2850 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2851 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2852 // Only lay out bases without extendable VFPtrs on the second pass.
2853 if (BaseLayout.hasExtendableVFPtr()) {
2854 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2855 continue;
2856 }
2857 // If this is the first layout, check to see if it leads with a zero sized
2858 // object. If it does, so do we.
2859 if (CheckLeadingLayout) {
2860 CheckLeadingLayout = false;
2861 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2862 }
2863 // Lay out the base.
2864 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2865 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2866 }
2867 // Set our VBPtroffset if we know it at this point.
2868 if (!HasVBPtr)
2869 VBPtrOffset = CharUnits::fromQuantity(-1);
2870 else if (SharedVBPtrBase) {
2871 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2872 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2873 }
2874 }
2875
recordUsesEBO(const RecordDecl * RD)2876 static bool recordUsesEBO(const RecordDecl *RD) {
2877 if (!isa<CXXRecordDecl>(RD))
2878 return false;
2879 if (RD->hasAttr<EmptyBasesAttr>())
2880 return true;
2881 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2882 // TODO: Double check with the next version of MSVC.
2883 if (LVA->getVersion() <= LangOptions::MSVC2015)
2884 return false;
2885 // TODO: Some later version of MSVC will change the default behavior of the
2886 // compiler to enable EBO by default. When this happens, we will need an
2887 // additional isCompatibleWithMSVC check.
2888 return false;
2889 }
2890
layoutNonVirtualBase(const CXXRecordDecl * RD,const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2891 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2892 const CXXRecordDecl *RD,
2893 const CXXRecordDecl *BaseDecl,
2894 const ASTRecordLayout &BaseLayout,
2895 const ASTRecordLayout *&PreviousBaseLayout) {
2896 // Insert padding between two bases if the left first one is zero sized or
2897 // contains a zero sized subobject and the right is zero sized or one leads
2898 // with a zero sized base.
2899 bool MDCUsesEBO = recordUsesEBO(RD);
2900 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2901 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2902 Size++;
2903 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2904 CharUnits BaseOffset;
2905
2906 // Respect the external AST source base offset, if present.
2907 bool FoundBase = false;
2908 if (UseExternalLayout) {
2909 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2910 if (FoundBase) {
2911 assert(BaseOffset >= Size && "base offset already allocated");
2912 Size = BaseOffset;
2913 }
2914 }
2915
2916 if (!FoundBase) {
2917 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2918 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2919 BaseOffset = CharUnits::Zero();
2920 } else {
2921 // Otherwise, lay the base out at the end of the MDC.
2922 BaseOffset = Size = Size.alignTo(Info.Alignment);
2923 }
2924 }
2925 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2926 Size += BaseLayout.getNonVirtualSize();
2927 PreviousBaseLayout = &BaseLayout;
2928 }
2929
layoutFields(const RecordDecl * RD)2930 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2931 LastFieldIsNonZeroWidthBitfield = false;
2932 for (const FieldDecl *Field : RD->fields())
2933 layoutField(Field);
2934 }
2935
layoutField(const FieldDecl * FD)2936 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2937 if (FD->isBitField()) {
2938 layoutBitField(FD);
2939 return;
2940 }
2941 LastFieldIsNonZeroWidthBitfield = false;
2942 ElementInfo Info = getAdjustedElementInfo(FD);
2943 Alignment = std::max(Alignment, Info.Alignment);
2944 CharUnits FieldOffset;
2945 if (UseExternalLayout)
2946 FieldOffset =
2947 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2948 else if (IsUnion)
2949 FieldOffset = CharUnits::Zero();
2950 else
2951 FieldOffset = Size.alignTo(Info.Alignment);
2952 placeFieldAtOffset(FieldOffset);
2953 Size = std::max(Size, FieldOffset + Info.Size);
2954 }
2955
layoutBitField(const FieldDecl * FD)2956 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2957 unsigned Width = FD->getBitWidthValue(Context);
2958 if (Width == 0) {
2959 layoutZeroWidthBitField(FD);
2960 return;
2961 }
2962 ElementInfo Info = getAdjustedElementInfo(FD);
2963 // Clamp the bitfield to a containable size for the sake of being able
2964 // to lay them out. Sema will throw an error.
2965 if (Width > Context.toBits(Info.Size))
2966 Width = Context.toBits(Info.Size);
2967 // Check to see if this bitfield fits into an existing allocation. Note:
2968 // MSVC refuses to pack bitfields of formal types with different sizes
2969 // into the same allocation.
2970 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2971 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2972 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2973 RemainingBitsInField -= Width;
2974 return;
2975 }
2976 LastFieldIsNonZeroWidthBitfield = true;
2977 CurrentBitfieldSize = Info.Size;
2978 if (UseExternalLayout) {
2979 auto FieldBitOffset = External.getExternalFieldOffset(FD);
2980 placeFieldAtBitOffset(FieldBitOffset);
2981 auto NewSize = Context.toCharUnitsFromBits(
2982 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2983 Context.toBits(Info.Size));
2984 Size = std::max(Size, NewSize);
2985 Alignment = std::max(Alignment, Info.Alignment);
2986 } else if (IsUnion) {
2987 placeFieldAtOffset(CharUnits::Zero());
2988 Size = std::max(Size, Info.Size);
2989 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2990 } else {
2991 // Allocate a new block of memory and place the bitfield in it.
2992 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2993 placeFieldAtOffset(FieldOffset);
2994 Size = FieldOffset + Info.Size;
2995 Alignment = std::max(Alignment, Info.Alignment);
2996 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2997 }
2998 }
2999
3000 void
layoutZeroWidthBitField(const FieldDecl * FD)3001 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3002 // Zero-width bitfields are ignored unless they follow a non-zero-width
3003 // bitfield.
3004 if (!LastFieldIsNonZeroWidthBitfield) {
3005 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3006 // TODO: Add a Sema warning that MS ignores alignment for zero
3007 // sized bitfields that occur after zero-size bitfields or non-bitfields.
3008 return;
3009 }
3010 LastFieldIsNonZeroWidthBitfield = false;
3011 ElementInfo Info = getAdjustedElementInfo(FD);
3012 if (IsUnion) {
3013 placeFieldAtOffset(CharUnits::Zero());
3014 Size = std::max(Size, Info.Size);
3015 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3016 } else {
3017 // Round up the current record size to the field's alignment boundary.
3018 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3019 placeFieldAtOffset(FieldOffset);
3020 Size = FieldOffset;
3021 Alignment = std::max(Alignment, Info.Alignment);
3022 }
3023 }
3024
injectVBPtr(const CXXRecordDecl * RD)3025 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3026 if (!HasVBPtr || SharedVBPtrBase)
3027 return;
3028 // Inject the VBPointer at the injection site.
3029 CharUnits InjectionSite = VBPtrOffset;
3030 // But before we do, make sure it's properly aligned.
3031 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3032 // Determine where the first field should be laid out after the vbptr.
3033 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3034 // Shift everything after the vbptr down, unless we're using an external
3035 // layout.
3036 if (UseExternalLayout) {
3037 // It is possible that there were no fields or bases located after vbptr,
3038 // so the size was not adjusted before.
3039 if (Size < FieldStart)
3040 Size = FieldStart;
3041 return;
3042 }
3043 // Make sure that the amount we push the fields back by is a multiple of the
3044 // alignment.
3045 CharUnits Offset = (FieldStart - InjectionSite)
3046 .alignTo(std::max(RequiredAlignment, Alignment));
3047 Size += Offset;
3048 for (uint64_t &FieldOffset : FieldOffsets)
3049 FieldOffset += Context.toBits(Offset);
3050 for (BaseOffsetsMapTy::value_type &Base : Bases)
3051 if (Base.second >= InjectionSite)
3052 Base.second += Offset;
3053 }
3054
injectVFPtr(const CXXRecordDecl * RD)3055 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3056 if (!HasOwnVFPtr)
3057 return;
3058 // Make sure that the amount we push the struct back by is a multiple of the
3059 // alignment.
3060 CharUnits Offset =
3061 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3062 // Push back the vbptr, but increase the size of the object and push back
3063 // regular fields by the offset only if not using external record layout.
3064 if (HasVBPtr)
3065 VBPtrOffset += Offset;
3066
3067 if (UseExternalLayout) {
3068 // The class may have no bases or fields, but still have a vfptr
3069 // (e.g. it's an interface class). The size was not correctly set before
3070 // in this case.
3071 if (FieldOffsets.empty() && Bases.empty())
3072 Size += Offset;
3073 return;
3074 }
3075
3076 Size += Offset;
3077
3078 // If we're using an external layout, the fields offsets have already
3079 // accounted for this adjustment.
3080 for (uint64_t &FieldOffset : FieldOffsets)
3081 FieldOffset += Context.toBits(Offset);
3082 for (BaseOffsetsMapTy::value_type &Base : Bases)
3083 Base.second += Offset;
3084 }
3085
layoutVirtualBases(const CXXRecordDecl * RD)3086 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3087 if (!HasVBPtr)
3088 return;
3089 // Vtordisps are always 4 bytes (even in 64-bit mode)
3090 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3091 CharUnits VtorDispAlignment = VtorDispSize;
3092 // vtordisps respect pragma pack.
3093 if (!MaxFieldAlignment.isZero())
3094 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3095 // The alignment of the vtordisp is at least the required alignment of the
3096 // entire record. This requirement may be present to support vtordisp
3097 // injection.
3098 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3099 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3100 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3101 RequiredAlignment =
3102 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3103 }
3104 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3105 // Compute the vtordisp set.
3106 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3107 computeVtorDispSet(HasVtorDispSet, RD);
3108 // Iterate through the virtual bases and lay them out.
3109 const ASTRecordLayout *PreviousBaseLayout = nullptr;
3110 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3111 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3112 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3113 bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3114 // Insert padding between two bases if the left first one is zero sized or
3115 // contains a zero sized subobject and the right is zero sized or one leads
3116 // with a zero sized base. The padding between virtual bases is 4
3117 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3118 // the required alignment, we don't know why.
3119 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3120 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3121 HasVtordisp) {
3122 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3123 Alignment = std::max(VtorDispAlignment, Alignment);
3124 }
3125 // Insert the virtual base.
3126 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3127 CharUnits BaseOffset;
3128
3129 // Respect the external AST source base offset, if present.
3130 if (UseExternalLayout) {
3131 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3132 BaseOffset = Size;
3133 } else
3134 BaseOffset = Size.alignTo(Info.Alignment);
3135
3136 assert(BaseOffset >= Size && "base offset already allocated");
3137
3138 VBases.insert(std::make_pair(BaseDecl,
3139 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3140 Size = BaseOffset + BaseLayout.getNonVirtualSize();
3141 PreviousBaseLayout = &BaseLayout;
3142 }
3143 }
3144
finalizeLayout(const RecordDecl * RD)3145 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3146 // Respect required alignment. Note that in 32-bit mode Required alignment
3147 // may be 0 and cause size not to be updated.
3148 DataSize = Size;
3149 if (!RequiredAlignment.isZero()) {
3150 Alignment = std::max(Alignment, RequiredAlignment);
3151 auto RoundingAlignment = Alignment;
3152 if (!MaxFieldAlignment.isZero())
3153 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3154 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3155 Size = Size.alignTo(RoundingAlignment);
3156 }
3157 if (Size.isZero()) {
3158 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3159 EndsWithZeroSizedObject = true;
3160 LeadsWithZeroSizedBase = true;
3161 }
3162 // Zero-sized structures have size equal to their alignment if a
3163 // __declspec(align) came into play.
3164 if (RequiredAlignment >= MinEmptyStructSize)
3165 Size = Alignment;
3166 else
3167 Size = MinEmptyStructSize;
3168 }
3169
3170 if (UseExternalLayout) {
3171 Size = Context.toCharUnitsFromBits(External.Size);
3172 if (External.Align)
3173 Alignment = Context.toCharUnitsFromBits(External.Align);
3174 }
3175 }
3176
3177 // Recursively walks the non-virtual bases of a class and determines if any of
3178 // them are in the bases with overridden methods set.
3179 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)3180 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3181 BasesWithOverriddenMethods,
3182 const CXXRecordDecl *RD) {
3183 if (BasesWithOverriddenMethods.count(RD))
3184 return true;
3185 // If any of a virtual bases non-virtual bases (recursively) requires a
3186 // vtordisp than so does this virtual base.
3187 for (const CXXBaseSpecifier &Base : RD->bases())
3188 if (!Base.isVirtual() &&
3189 RequiresVtordisp(BasesWithOverriddenMethods,
3190 Base.getType()->getAsCXXRecordDecl()))
3191 return true;
3192 return false;
3193 }
3194
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const3195 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3196 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3197 const CXXRecordDecl *RD) const {
3198 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3199 // vftables.
3200 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3201 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3202 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3203 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3204 if (Layout.hasExtendableVFPtr())
3205 HasVtordispSet.insert(BaseDecl);
3206 }
3207 return;
3208 }
3209
3210 // If any of our bases need a vtordisp for this type, so do we. Check our
3211 // direct bases for vtordisp requirements.
3212 for (const CXXBaseSpecifier &Base : RD->bases()) {
3213 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3214 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3215 for (const auto &bi : Layout.getVBaseOffsetsMap())
3216 if (bi.second.hasVtorDisp())
3217 HasVtordispSet.insert(bi.first);
3218 }
3219 // We don't introduce any additional vtordisps if either:
3220 // * A user declared constructor or destructor aren't declared.
3221 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3222 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3223 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3224 return;
3225 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3226 // possible for a partially constructed object with virtual base overrides to
3227 // escape a non-trivial constructor.
3228 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3229 // Compute a set of base classes which define methods we override. A virtual
3230 // base in this set will require a vtordisp. A virtual base that transitively
3231 // contains one of these bases as a non-virtual base will also require a
3232 // vtordisp.
3233 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3234 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3235 // Seed the working set with our non-destructor, non-pure virtual methods.
3236 for (const CXXMethodDecl *MD : RD->methods())
3237 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3238 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3239 Work.insert(MD);
3240 while (!Work.empty()) {
3241 const CXXMethodDecl *MD = *Work.begin();
3242 auto MethodRange = MD->overridden_methods();
3243 // If a virtual method has no-overrides it lives in its parent's vtable.
3244 if (MethodRange.begin() == MethodRange.end())
3245 BasesWithOverriddenMethods.insert(MD->getParent());
3246 else
3247 Work.insert(MethodRange.begin(), MethodRange.end());
3248 // We've finished processing this element, remove it from the working set.
3249 Work.erase(MD);
3250 }
3251 // For each of our virtual bases, check if it is in the set of overridden
3252 // bases or if it transitively contains a non-virtual base that is.
3253 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3254 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3255 if (!HasVtordispSet.count(BaseDecl) &&
3256 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3257 HasVtordispSet.insert(BaseDecl);
3258 }
3259 }
3260
3261 /// getASTRecordLayout - Get or compute information about the layout of the
3262 /// specified record (struct/union/class), which indicates its size and field
3263 /// position information.
3264 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const3265 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3266 // These asserts test different things. A record has a definition
3267 // as soon as we begin to parse the definition. That definition is
3268 // not a complete definition (which is what isDefinition() tests)
3269 // until we *finish* parsing the definition.
3270
3271 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3272 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3273
3274 D = D->getDefinition();
3275 assert(D && "Cannot get layout of forward declarations!");
3276 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3277 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3278
3279 // Look up this layout, if already laid out, return what we have.
3280 // Note that we can't save a reference to the entry because this function
3281 // is recursive.
3282 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3283 if (Entry) return *Entry;
3284
3285 const ASTRecordLayout *NewEntry = nullptr;
3286
3287 if (isMsLayout(*this)) {
3288 MicrosoftRecordLayoutBuilder Builder(*this);
3289 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3290 Builder.cxxLayout(RD);
3291 NewEntry = new (*this) ASTRecordLayout(
3292 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3293 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3294 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3295 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3296 Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3297 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3298 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3299 Builder.Bases, Builder.VBases);
3300 } else {
3301 Builder.layout(D);
3302 NewEntry = new (*this) ASTRecordLayout(
3303 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3304 Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3305 Builder.FieldOffsets);
3306 }
3307 } else {
3308 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3309 EmptySubobjectMap EmptySubobjects(*this, RD);
3310 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3311 Builder.Layout(RD);
3312
3313 // In certain situations, we are allowed to lay out objects in the
3314 // tail-padding of base classes. This is ABI-dependent.
3315 // FIXME: this should be stored in the record layout.
3316 bool skipTailPadding =
3317 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3318
3319 // FIXME: This should be done in FinalizeLayout.
3320 CharUnits DataSize =
3321 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3322 CharUnits NonVirtualSize =
3323 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3324 NewEntry = new (*this) ASTRecordLayout(
3325 *this, Builder.getSize(), Builder.Alignment,
3326 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3327 /*RequiredAlignment : used by MS-ABI)*/
3328 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3329 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3330 NonVirtualSize, Builder.NonVirtualAlignment,
3331 Builder.PreferredNVAlignment,
3332 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3333 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3334 Builder.VBases);
3335 } else {
3336 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3337 Builder.Layout(D);
3338
3339 NewEntry = new (*this) ASTRecordLayout(
3340 *this, Builder.getSize(), Builder.Alignment,
3341 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3342 /*RequiredAlignment : used by MS-ABI)*/
3343 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3344 }
3345 }
3346
3347 ASTRecordLayouts[D] = NewEntry;
3348
3349 if (getLangOpts().DumpRecordLayouts) {
3350 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3351 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3352 }
3353
3354 return *NewEntry;
3355 }
3356
getCurrentKeyFunction(const CXXRecordDecl * RD)3357 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3358 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3359 return nullptr;
3360
3361 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3362 RD = RD->getDefinition();
3363
3364 // Beware:
3365 // 1) computing the key function might trigger deserialization, which might
3366 // invalidate iterators into KeyFunctions
3367 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3368 // invalidate the LazyDeclPtr within the map itself
3369 LazyDeclPtr Entry = KeyFunctions[RD];
3370 const Decl *Result =
3371 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3372
3373 // Store it back if it changed.
3374 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3375 KeyFunctions[RD] = const_cast<Decl*>(Result);
3376
3377 return cast_or_null<CXXMethodDecl>(Result);
3378 }
3379
setNonKeyFunction(const CXXMethodDecl * Method)3380 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3381 assert(Method == Method->getFirstDecl() &&
3382 "not working with method declaration from class definition");
3383
3384 // Look up the cache entry. Since we're working with the first
3385 // declaration, its parent must be the class definition, which is
3386 // the correct key for the KeyFunctions hash.
3387 const auto &Map = KeyFunctions;
3388 auto I = Map.find(Method->getParent());
3389
3390 // If it's not cached, there's nothing to do.
3391 if (I == Map.end()) return;
3392
3393 // If it is cached, check whether it's the target method, and if so,
3394 // remove it from the cache. Note, the call to 'get' might invalidate
3395 // the iterator and the LazyDeclPtr object within the map.
3396 LazyDeclPtr Ptr = I->second;
3397 if (Ptr.get(getExternalSource()) == Method) {
3398 // FIXME: remember that we did this for module / chained PCH state?
3399 KeyFunctions.erase(Method->getParent());
3400 }
3401 }
3402
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3403 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3404 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3405 return Layout.getFieldOffset(FD->getFieldIndex());
3406 }
3407
getFieldOffset(const ValueDecl * VD) const3408 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3409 uint64_t OffsetInBits;
3410 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3411 OffsetInBits = ::getFieldOffset(*this, FD);
3412 } else {
3413 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3414
3415 OffsetInBits = 0;
3416 for (const NamedDecl *ND : IFD->chain())
3417 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3418 }
3419
3420 return OffsetInBits;
3421 }
3422
lookupFieldBitOffset(const ObjCInterfaceDecl * OID,const ObjCImplementationDecl * ID,const ObjCIvarDecl * Ivar) const3423 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3424 const ObjCImplementationDecl *ID,
3425 const ObjCIvarDecl *Ivar) const {
3426 Ivar = Ivar->getCanonicalDecl();
3427 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3428
3429 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3430 // in here; it should never be necessary because that should be the lexical
3431 // decl context for the ivar.
3432
3433 // If we know have an implementation (and the ivar is in it) then
3434 // look up in the implementation layout.
3435 const ASTRecordLayout *RL;
3436 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3437 RL = &getASTObjCImplementationLayout(ID);
3438 else
3439 RL = &getASTObjCInterfaceLayout(Container);
3440
3441 // Compute field index.
3442 //
3443 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3444 // implemented. This should be fixed to get the information from the layout
3445 // directly.
3446 unsigned Index = 0;
3447
3448 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3449 IVD; IVD = IVD->getNextIvar()) {
3450 if (Ivar == IVD)
3451 break;
3452 ++Index;
3453 }
3454 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3455
3456 return RL->getFieldOffset(Index);
3457 }
3458
3459 /// getObjCLayout - Get or compute information about the layout of the
3460 /// given interface.
3461 ///
3462 /// \param Impl - If given, also include the layout of the interface's
3463 /// implementation. This may differ by including synthesized ivars.
3464 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3465 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3466 const ObjCImplementationDecl *Impl) const {
3467 // Retrieve the definition
3468 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3469 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3470 D = D->getDefinition();
3471 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3472 "Invalid interface decl!");
3473
3474 // Look up this layout, if already laid out, return what we have.
3475 const ObjCContainerDecl *Key =
3476 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3477 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3478 return *Entry;
3479
3480 // Add in synthesized ivar count if laying out an implementation.
3481 if (Impl) {
3482 unsigned SynthCount = CountNonClassIvars(D);
3483 // If there aren't any synthesized ivars then reuse the interface
3484 // entry. Note we can't cache this because we simply free all
3485 // entries later; however we shouldn't look up implementations
3486 // frequently.
3487 if (SynthCount == 0)
3488 return getObjCLayout(D, nullptr);
3489 }
3490
3491 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3492 Builder.Layout(D);
3493
3494 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3495 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3496 Builder.UnadjustedAlignment,
3497 /*RequiredAlignment : used by MS-ABI)*/
3498 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3499
3500 ObjCLayouts[Key] = NewEntry;
3501
3502 return *NewEntry;
3503 }
3504
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3505 static void PrintOffset(raw_ostream &OS,
3506 CharUnits Offset, unsigned IndentLevel) {
3507 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3508 OS.indent(IndentLevel * 2);
3509 }
3510
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3511 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3512 unsigned Begin, unsigned Width,
3513 unsigned IndentLevel) {
3514 llvm::SmallString<10> Buffer;
3515 {
3516 llvm::raw_svector_ostream BufferOS(Buffer);
3517 BufferOS << Offset.getQuantity() << ':';
3518 if (Width == 0) {
3519 BufferOS << '-';
3520 } else {
3521 BufferOS << Begin << '-' << (Begin + Width - 1);
3522 }
3523 }
3524
3525 OS << llvm::right_justify(Buffer, 10) << " | ";
3526 OS.indent(IndentLevel * 2);
3527 }
3528
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3529 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3530 OS << " | ";
3531 OS.indent(IndentLevel * 2);
3532 }
3533
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3534 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3535 const ASTContext &C,
3536 CharUnits Offset,
3537 unsigned IndentLevel,
3538 const char* Description,
3539 bool PrintSizeInfo,
3540 bool IncludeVirtualBases) {
3541 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3542 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3543
3544 PrintOffset(OS, Offset, IndentLevel);
3545 OS << C.getTypeDeclType(const_cast<RecordDecl *>(RD));
3546 if (Description)
3547 OS << ' ' << Description;
3548 if (CXXRD && CXXRD->isEmpty())
3549 OS << " (empty)";
3550 OS << '\n';
3551
3552 IndentLevel++;
3553
3554 // Dump bases.
3555 if (CXXRD) {
3556 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3557 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3558 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3559
3560 // Vtable pointer.
3561 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3562 PrintOffset(OS, Offset, IndentLevel);
3563 OS << '(' << *RD << " vtable pointer)\n";
3564 } else if (HasOwnVFPtr) {
3565 PrintOffset(OS, Offset, IndentLevel);
3566 // vfptr (for Microsoft C++ ABI)
3567 OS << '(' << *RD << " vftable pointer)\n";
3568 }
3569
3570 // Collect nvbases.
3571 SmallVector<const CXXRecordDecl *, 4> Bases;
3572 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3573 assert(!Base.getType()->isDependentType() &&
3574 "Cannot layout class with dependent bases.");
3575 if (!Base.isVirtual())
3576 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3577 }
3578
3579 // Sort nvbases by offset.
3580 llvm::stable_sort(
3581 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3582 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3583 });
3584
3585 // Dump (non-virtual) bases
3586 for (const CXXRecordDecl *Base : Bases) {
3587 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3588 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3589 Base == PrimaryBase ? "(primary base)" : "(base)",
3590 /*PrintSizeInfo=*/false,
3591 /*IncludeVirtualBases=*/false);
3592 }
3593
3594 // vbptr (for Microsoft C++ ABI)
3595 if (HasOwnVBPtr) {
3596 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3597 OS << '(' << *RD << " vbtable pointer)\n";
3598 }
3599 }
3600
3601 // Dump fields.
3602 uint64_t FieldNo = 0;
3603 for (RecordDecl::field_iterator I = RD->field_begin(),
3604 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3605 const FieldDecl &Field = **I;
3606 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3607 CharUnits FieldOffset =
3608 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3609
3610 // Recursively dump fields of record type.
3611 if (auto RT = Field.getType()->getAs<RecordType>()) {
3612 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3613 Field.getName().data(),
3614 /*PrintSizeInfo=*/false,
3615 /*IncludeVirtualBases=*/true);
3616 continue;
3617 }
3618
3619 if (Field.isBitField()) {
3620 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3621 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3622 unsigned Width = Field.getBitWidthValue(C);
3623 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3624 } else {
3625 PrintOffset(OS, FieldOffset, IndentLevel);
3626 }
3627 const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3628 ? Field.getType().getCanonicalType()
3629 : Field.getType();
3630 OS << FieldType << ' ' << Field << '\n';
3631 }
3632
3633 // Dump virtual bases.
3634 if (CXXRD && IncludeVirtualBases) {
3635 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3636 Layout.getVBaseOffsetsMap();
3637
3638 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3639 assert(Base.isVirtual() && "Found non-virtual class!");
3640 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3641
3642 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3643
3644 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3645 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3646 OS << "(vtordisp for vbase " << *VBase << ")\n";
3647 }
3648
3649 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3650 VBase == Layout.getPrimaryBase() ?
3651 "(primary virtual base)" : "(virtual base)",
3652 /*PrintSizeInfo=*/false,
3653 /*IncludeVirtualBases=*/false);
3654 }
3655 }
3656
3657 if (!PrintSizeInfo) return;
3658
3659 PrintIndentNoOffset(OS, IndentLevel - 1);
3660 OS << "[sizeof=" << Layout.getSize().getQuantity();
3661 if (CXXRD && !isMsLayout(C))
3662 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3663 OS << ", align=" << Layout.getAlignment().getQuantity();
3664 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3665 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3666
3667 if (CXXRD) {
3668 OS << ",\n";
3669 PrintIndentNoOffset(OS, IndentLevel - 1);
3670 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3671 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3672 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3673 OS << ", preferrednvalign="
3674 << Layout.getPreferredNVAlignment().getQuantity();
3675 }
3676 OS << "]\n";
3677 }
3678
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3679 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3680 bool Simple) const {
3681 if (!Simple) {
3682 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3683 /*PrintSizeInfo*/ true,
3684 /*IncludeVirtualBases=*/true);
3685 return;
3686 }
3687
3688 // The "simple" format is designed to be parsed by the
3689 // layout-override testing code. There shouldn't be any external
3690 // uses of this format --- when LLDB overrides a layout, it sets up
3691 // the data structures directly --- so feel free to adjust this as
3692 // you like as long as you also update the rudimentary parser for it
3693 // in libFrontend.
3694
3695 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3696 OS << "Type: " << getTypeDeclType(RD) << "\n";
3697 OS << "\nLayout: ";
3698 OS << "<ASTRecordLayout\n";
3699 OS << " Size:" << toBits(Info.getSize()) << "\n";
3700 if (!isMsLayout(*this))
3701 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3702 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3703 if (Target->defaultsToAIXPowerAlignment())
3704 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3705 << "\n";
3706 OS << " FieldOffsets: [";
3707 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3708 if (i)
3709 OS << ", ";
3710 OS << Info.getFieldOffset(i);
3711 }
3712 OS << "]>\n";
3713 }
3714