1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72 
73 namespace {
74   struct LValue;
75   class CallStackFrame;
76   class EvalInfo;
77 
78   using SourceLocExprScopeGuard =
79       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80 
81   static QualType getType(APValue::LValueBase B) {
82     return B.getType();
83   }
84 
85   /// Get an LValue path entry, which is known to not be an array index, as a
86   /// field declaration.
87   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89   }
90   /// Get an LValue path entry, which is known to not be an array index, as a
91   /// base class declaration.
92   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94   }
95   /// Determine whether this LValue path entry for a base class names a virtual
96   /// base class.
97   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98     return E.getAsBaseOrMember().getInt();
99   }
100 
101   /// Given an expression, determine the type used to store the result of
102   /// evaluating that expression.
103   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104     if (E->isPRValue())
105       return E->getType();
106     return Ctx.getLValueReferenceType(E->getType());
107   }
108 
109   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
110   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111     if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112       return DirectCallee->getAttr<AllocSizeAttr>();
113     if (const Decl *IndirectCallee = CE->getCalleeDecl())
114       return IndirectCallee->getAttr<AllocSizeAttr>();
115     return nullptr;
116   }
117 
118   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119   /// This will look through a single cast.
120   ///
121   /// Returns null if we couldn't unwrap a function with alloc_size.
122   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123     if (!E->getType()->isPointerType())
124       return nullptr;
125 
126     E = E->IgnoreParens();
127     // If we're doing a variable assignment from e.g. malloc(N), there will
128     // probably be a cast of some kind. In exotic cases, we might also see a
129     // top-level ExprWithCleanups. Ignore them either way.
130     if (const auto *FE = dyn_cast<FullExpr>(E))
131       E = FE->getSubExpr()->IgnoreParens();
132 
133     if (const auto *Cast = dyn_cast<CastExpr>(E))
134       E = Cast->getSubExpr()->IgnoreParens();
135 
136     if (const auto *CE = dyn_cast<CallExpr>(E))
137       return getAllocSizeAttr(CE) ? CE : nullptr;
138     return nullptr;
139   }
140 
141   /// Determines whether or not the given Base contains a call to a function
142   /// with the alloc_size attribute.
143   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144     const auto *E = Base.dyn_cast<const Expr *>();
145     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146   }
147 
148   /// Determines whether the given kind of constant expression is only ever
149   /// used for name mangling. If so, it's permitted to reference things that we
150   /// can't generate code for (in particular, dllimported functions).
151   static bool isForManglingOnly(ConstantExprKind Kind) {
152     switch (Kind) {
153     case ConstantExprKind::Normal:
154     case ConstantExprKind::ClassTemplateArgument:
155     case ConstantExprKind::ImmediateInvocation:
156       // Note that non-type template arguments of class type are emitted as
157       // template parameter objects.
158       return false;
159 
160     case ConstantExprKind::NonClassTemplateArgument:
161       return true;
162     }
163     llvm_unreachable("unknown ConstantExprKind");
164   }
165 
166   static bool isTemplateArgument(ConstantExprKind Kind) {
167     switch (Kind) {
168     case ConstantExprKind::Normal:
169     case ConstantExprKind::ImmediateInvocation:
170       return false;
171 
172     case ConstantExprKind::ClassTemplateArgument:
173     case ConstantExprKind::NonClassTemplateArgument:
174       return true;
175     }
176     llvm_unreachable("unknown ConstantExprKind");
177   }
178 
179   /// The bound to claim that an array of unknown bound has.
180   /// The value in MostDerivedArraySize is undefined in this case. So, set it
181   /// to an arbitrary value that's likely to loudly break things if it's used.
182   static const uint64_t AssumedSizeForUnsizedArray =
183       std::numeric_limits<uint64_t>::max() / 2;
184 
185   /// Determines if an LValue with the given LValueBase will have an unsized
186   /// array in its designator.
187   /// Find the path length and type of the most-derived subobject in the given
188   /// path, and find the size of the containing array, if any.
189   static unsigned
190   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191                            ArrayRef<APValue::LValuePathEntry> Path,
192                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
193                            bool &FirstEntryIsUnsizedArray) {
194     // This only accepts LValueBases from APValues, and APValues don't support
195     // arrays that lack size info.
196     assert(!isBaseAnAllocSizeCall(Base) &&
197            "Unsized arrays shouldn't appear here");
198     unsigned MostDerivedLength = 0;
199     Type = getType(Base);
200 
201     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202       if (Type->isArrayType()) {
203         const ArrayType *AT = Ctx.getAsArrayType(Type);
204         Type = AT->getElementType();
205         MostDerivedLength = I + 1;
206         IsArray = true;
207 
208         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209           ArraySize = CAT->getSize().getZExtValue();
210         } else {
211           assert(I == 0 && "unexpected unsized array designator");
212           FirstEntryIsUnsizedArray = true;
213           ArraySize = AssumedSizeForUnsizedArray;
214         }
215       } else if (Type->isAnyComplexType()) {
216         const ComplexType *CT = Type->castAs<ComplexType>();
217         Type = CT->getElementType();
218         ArraySize = 2;
219         MostDerivedLength = I + 1;
220         IsArray = true;
221       } else if (const FieldDecl *FD = getAsField(Path[I])) {
222         Type = FD->getType();
223         ArraySize = 0;
224         MostDerivedLength = I + 1;
225         IsArray = false;
226       } else {
227         // Path[I] describes a base class.
228         ArraySize = 0;
229         IsArray = false;
230       }
231     }
232     return MostDerivedLength;
233   }
234 
235   /// A path from a glvalue to a subobject of that glvalue.
236   struct SubobjectDesignator {
237     /// True if the subobject was named in a manner not supported by C++11. Such
238     /// lvalues can still be folded, but they are not core constant expressions
239     /// and we cannot perform lvalue-to-rvalue conversions on them.
240     unsigned Invalid : 1;
241 
242     /// Is this a pointer one past the end of an object?
243     unsigned IsOnePastTheEnd : 1;
244 
245     /// Indicator of whether the first entry is an unsized array.
246     unsigned FirstEntryIsAnUnsizedArray : 1;
247 
248     /// Indicator of whether the most-derived object is an array element.
249     unsigned MostDerivedIsArrayElement : 1;
250 
251     /// The length of the path to the most-derived object of which this is a
252     /// subobject.
253     unsigned MostDerivedPathLength : 28;
254 
255     /// The size of the array of which the most-derived object is an element.
256     /// This will always be 0 if the most-derived object is not an array
257     /// element. 0 is not an indicator of whether or not the most-derived object
258     /// is an array, however, because 0-length arrays are allowed.
259     ///
260     /// If the current array is an unsized array, the value of this is
261     /// undefined.
262     uint64_t MostDerivedArraySize;
263 
264     /// The type of the most derived object referred to by this address.
265     QualType MostDerivedType;
266 
267     typedef APValue::LValuePathEntry PathEntry;
268 
269     /// The entries on the path from the glvalue to the designated subobject.
270     SmallVector<PathEntry, 8> Entries;
271 
272     SubobjectDesignator() : Invalid(true) {}
273 
274     explicit SubobjectDesignator(QualType T)
275         : Invalid(false), IsOnePastTheEnd(false),
276           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277           MostDerivedPathLength(0), MostDerivedArraySize(0),
278           MostDerivedType(T) {}
279 
280     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283           MostDerivedPathLength(0), MostDerivedArraySize(0) {
284       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285       if (!Invalid) {
286         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287         ArrayRef<PathEntry> VEntries = V.getLValuePath();
288         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289         if (V.getLValueBase()) {
290           bool IsArray = false;
291           bool FirstIsUnsizedArray = false;
292           MostDerivedPathLength = findMostDerivedSubobject(
293               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294               MostDerivedType, IsArray, FirstIsUnsizedArray);
295           MostDerivedIsArrayElement = IsArray;
296           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297         }
298       }
299     }
300 
301     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302                   unsigned NewLength) {
303       if (Invalid)
304         return;
305 
306       assert(Base && "cannot truncate path for null pointer");
307       assert(NewLength <= Entries.size() && "not a truncation");
308 
309       if (NewLength == Entries.size())
310         return;
311       Entries.resize(NewLength);
312 
313       bool IsArray = false;
314       bool FirstIsUnsizedArray = false;
315       MostDerivedPathLength = findMostDerivedSubobject(
316           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317           FirstIsUnsizedArray);
318       MostDerivedIsArrayElement = IsArray;
319       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320     }
321 
322     void setInvalid() {
323       Invalid = true;
324       Entries.clear();
325     }
326 
327     /// Determine whether the most derived subobject is an array without a
328     /// known bound.
329     bool isMostDerivedAnUnsizedArray() const {
330       assert(!Invalid && "Calling this makes no sense on invalid designators");
331       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332     }
333 
334     /// Determine what the most derived array's size is. Results in an assertion
335     /// failure if the most derived array lacks a size.
336     uint64_t getMostDerivedArraySize() const {
337       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338       return MostDerivedArraySize;
339     }
340 
341     /// Determine whether this is a one-past-the-end pointer.
342     bool isOnePastTheEnd() const {
343       assert(!Invalid);
344       if (IsOnePastTheEnd)
345         return true;
346       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348               MostDerivedArraySize)
349         return true;
350       return false;
351     }
352 
353     /// Get the range of valid index adjustments in the form
354     ///   {maximum value that can be subtracted from this pointer,
355     ///    maximum value that can be added to this pointer}
356     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357       if (Invalid || isMostDerivedAnUnsizedArray())
358         return {0, 0};
359 
360       // [expr.add]p4: For the purposes of these operators, a pointer to a
361       // nonarray object behaves the same as a pointer to the first element of
362       // an array of length one with the type of the object as its element type.
363       bool IsArray = MostDerivedPathLength == Entries.size() &&
364                      MostDerivedIsArrayElement;
365       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366                                     : (uint64_t)IsOnePastTheEnd;
367       uint64_t ArraySize =
368           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369       return {ArrayIndex, ArraySize - ArrayIndex};
370     }
371 
372     /// Check that this refers to a valid subobject.
373     bool isValidSubobject() const {
374       if (Invalid)
375         return false;
376       return !isOnePastTheEnd();
377     }
378     /// Check that this refers to a valid subobject, and if not, produce a
379     /// relevant diagnostic and set the designator as invalid.
380     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381 
382     /// Get the type of the designated object.
383     QualType getType(ASTContext &Ctx) const {
384       assert(!Invalid && "invalid designator has no subobject type");
385       return MostDerivedPathLength == Entries.size()
386                  ? MostDerivedType
387                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388     }
389 
390     /// Update this designator to refer to the first element within this array.
391     void addArrayUnchecked(const ConstantArrayType *CAT) {
392       Entries.push_back(PathEntry::ArrayIndex(0));
393 
394       // This is a most-derived object.
395       MostDerivedType = CAT->getElementType();
396       MostDerivedIsArrayElement = true;
397       MostDerivedArraySize = CAT->getSize().getZExtValue();
398       MostDerivedPathLength = Entries.size();
399     }
400     /// Update this designator to refer to the first element within the array of
401     /// elements of type T. This is an array of unknown size.
402     void addUnsizedArrayUnchecked(QualType ElemTy) {
403       Entries.push_back(PathEntry::ArrayIndex(0));
404 
405       MostDerivedType = ElemTy;
406       MostDerivedIsArrayElement = true;
407       // The value in MostDerivedArraySize is undefined in this case. So, set it
408       // to an arbitrary value that's likely to loudly break things if it's
409       // used.
410       MostDerivedArraySize = AssumedSizeForUnsizedArray;
411       MostDerivedPathLength = Entries.size();
412     }
413     /// Update this designator to refer to the given base or member of this
414     /// object.
415     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417 
418       // If this isn't a base class, it's a new most-derived object.
419       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420         MostDerivedType = FD->getType();
421         MostDerivedIsArrayElement = false;
422         MostDerivedArraySize = 0;
423         MostDerivedPathLength = Entries.size();
424       }
425     }
426     /// Update this designator to refer to the given complex component.
427     void addComplexUnchecked(QualType EltTy, bool Imag) {
428       Entries.push_back(PathEntry::ArrayIndex(Imag));
429 
430       // This is technically a most-derived object, though in practice this
431       // is unlikely to matter.
432       MostDerivedType = EltTy;
433       MostDerivedIsArrayElement = true;
434       MostDerivedArraySize = 2;
435       MostDerivedPathLength = Entries.size();
436     }
437     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439                                    const APSInt &N);
440     /// Add N to the address of this subobject.
441     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442       if (Invalid || !N) return;
443       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444       if (isMostDerivedAnUnsizedArray()) {
445         diagnoseUnsizedArrayPointerArithmetic(Info, E);
446         // Can't verify -- trust that the user is doing the right thing (or if
447         // not, trust that the caller will catch the bad behavior).
448         // FIXME: Should we reject if this overflows, at least?
449         Entries.back() = PathEntry::ArrayIndex(
450             Entries.back().getAsArrayIndex() + TruncatedN);
451         return;
452       }
453 
454       // [expr.add]p4: For the purposes of these operators, a pointer to a
455       // nonarray object behaves the same as a pointer to the first element of
456       // an array of length one with the type of the object as its element type.
457       bool IsArray = MostDerivedPathLength == Entries.size() &&
458                      MostDerivedIsArrayElement;
459       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460                                     : (uint64_t)IsOnePastTheEnd;
461       uint64_t ArraySize =
462           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463 
464       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465         // Calculate the actual index in a wide enough type, so we can include
466         // it in the note.
467         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468         (llvm::APInt&)N += ArrayIndex;
469         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470         diagnosePointerArithmetic(Info, E, N);
471         setInvalid();
472         return;
473       }
474 
475       ArrayIndex += TruncatedN;
476       assert(ArrayIndex <= ArraySize &&
477              "bounds check succeeded for out-of-bounds index");
478 
479       if (IsArray)
480         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481       else
482         IsOnePastTheEnd = (ArrayIndex != 0);
483     }
484   };
485 
486   /// A scope at the end of which an object can need to be destroyed.
487   enum class ScopeKind {
488     Block,
489     FullExpression,
490     Call
491   };
492 
493   /// A reference to a particular call and its arguments.
494   struct CallRef {
495     CallRef() : OrigCallee(), CallIndex(0), Version() {}
496     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498 
499     explicit operator bool() const { return OrigCallee; }
500 
501     /// Get the parameter that the caller initialized, corresponding to the
502     /// given parameter in the callee.
503     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505                         : PVD;
506     }
507 
508     /// The callee at the point where the arguments were evaluated. This might
509     /// be different from the actual callee (a different redeclaration, or a
510     /// virtual override), but this function's parameters are the ones that
511     /// appear in the parameter map.
512     const FunctionDecl *OrigCallee;
513     /// The call index of the frame that holds the argument values.
514     unsigned CallIndex;
515     /// The version of the parameters corresponding to this call.
516     unsigned Version;
517   };
518 
519   /// A stack frame in the constexpr call stack.
520   class CallStackFrame : public interp::Frame {
521   public:
522     EvalInfo &Info;
523 
524     /// Parent - The caller of this stack frame.
525     CallStackFrame *Caller;
526 
527     /// Callee - The function which was called.
528     const FunctionDecl *Callee;
529 
530     /// This - The binding for the this pointer in this call, if any.
531     const LValue *This;
532 
533     /// Information on how to find the arguments to this call. Our arguments
534     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535     /// key and this value as the version.
536     CallRef Arguments;
537 
538     /// Source location information about the default argument or default
539     /// initializer expression we're evaluating, if any.
540     CurrentSourceLocExprScope CurSourceLocExprScope;
541 
542     // Note that we intentionally use std::map here so that references to
543     // values are stable.
544     typedef std::pair<const void *, unsigned> MapKeyTy;
545     typedef std::map<MapKeyTy, APValue> MapTy;
546     /// Temporaries - Temporary lvalues materialized within this stack frame.
547     MapTy Temporaries;
548 
549     /// CallLoc - The location of the call expression for this call.
550     SourceLocation CallLoc;
551 
552     /// Index - The call index of this call.
553     unsigned Index;
554 
555     /// The stack of integers for tracking version numbers for temporaries.
556     SmallVector<unsigned, 2> TempVersionStack = {1};
557     unsigned CurTempVersion = TempVersionStack.back();
558 
559     unsigned getTempVersion() const { return TempVersionStack.back(); }
560 
561     void pushTempVersion() {
562       TempVersionStack.push_back(++CurTempVersion);
563     }
564 
565     void popTempVersion() {
566       TempVersionStack.pop_back();
567     }
568 
569     CallRef createCall(const FunctionDecl *Callee) {
570       return {Callee, Index, ++CurTempVersion};
571     }
572 
573     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574     // on the overall stack usage of deeply-recursing constexpr evaluations.
575     // (We should cache this map rather than recomputing it repeatedly.)
576     // But let's try this and see how it goes; we can look into caching the map
577     // as a later change.
578 
579     /// LambdaCaptureFields - Mapping from captured variables/this to
580     /// corresponding data members in the closure class.
581     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582     FieldDecl *LambdaThisCaptureField;
583 
584     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585                    const FunctionDecl *Callee, const LValue *This,
586                    CallRef Arguments);
587     ~CallStackFrame();
588 
589     // Return the temporary for Key whose version number is Version.
590     APValue *getTemporary(const void *Key, unsigned Version) {
591       MapKeyTy KV(Key, Version);
592       auto LB = Temporaries.lower_bound(KV);
593       if (LB != Temporaries.end() && LB->first == KV)
594         return &LB->second;
595       // Pair (Key,Version) wasn't found in the map. Check that no elements
596       // in the map have 'Key' as their key.
597       assert((LB == Temporaries.end() || LB->first.first != Key) &&
598              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
599              "Element with key 'Key' found in map");
600       return nullptr;
601     }
602 
603     // Return the current temporary for Key in the map.
604     APValue *getCurrentTemporary(const void *Key) {
605       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607         return &std::prev(UB)->second;
608       return nullptr;
609     }
610 
611     // Return the version number of the current temporary for Key.
612     unsigned getCurrentTemporaryVersion(const void *Key) const {
613       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615         return std::prev(UB)->first.second;
616       return 0;
617     }
618 
619     /// Allocate storage for an object of type T in this stack frame.
620     /// Populates LV with a handle to the created object. Key identifies
621     /// the temporary within the stack frame, and must not be reused without
622     /// bumping the temporary version number.
623     template<typename KeyT>
624     APValue &createTemporary(const KeyT *Key, QualType T,
625                              ScopeKind Scope, LValue &LV);
626 
627     /// Allocate storage for a parameter of a function call made in this frame.
628     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629 
630     void describe(llvm::raw_ostream &OS) override;
631 
632     Frame *getCaller() const override { return Caller; }
633     SourceLocation getCallLocation() const override { return CallLoc; }
634     const FunctionDecl *getCallee() const override { return Callee; }
635 
636     bool isStdFunction() const {
637       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638         if (DC->isStdNamespace())
639           return true;
640       return false;
641     }
642 
643   private:
644     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645                          ScopeKind Scope);
646   };
647 
648   /// Temporarily override 'this'.
649   class ThisOverrideRAII {
650   public:
651     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652         : Frame(Frame), OldThis(Frame.This) {
653       if (Enable)
654         Frame.This = NewThis;
655     }
656     ~ThisOverrideRAII() {
657       Frame.This = OldThis;
658     }
659   private:
660     CallStackFrame &Frame;
661     const LValue *OldThis;
662   };
663 }
664 
665 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666                               const LValue &This, QualType ThisType);
667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668                               APValue::LValueBase LVBase, APValue &Value,
669                               QualType T);
670 
671 namespace {
672   /// A cleanup, and a flag indicating whether it is lifetime-extended.
673   class Cleanup {
674     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675     APValue::LValueBase Base;
676     QualType T;
677 
678   public:
679     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680             ScopeKind Scope)
681         : Value(Val, Scope), Base(Base), T(T) {}
682 
683     /// Determine whether this cleanup should be performed at the end of the
684     /// given kind of scope.
685     bool isDestroyedAtEndOf(ScopeKind K) const {
686       return (int)Value.getInt() >= (int)K;
687     }
688     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689       if (RunDestructors) {
690         SourceLocation Loc;
691         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692           Loc = VD->getLocation();
693         else if (const Expr *E = Base.dyn_cast<const Expr*>())
694           Loc = E->getExprLoc();
695         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696       }
697       *Value.getPointer() = APValue();
698       return true;
699     }
700 
701     bool hasSideEffect() {
702       return T.isDestructedType();
703     }
704   };
705 
706   /// A reference to an object whose construction we are currently evaluating.
707   struct ObjectUnderConstruction {
708     APValue::LValueBase Base;
709     ArrayRef<APValue::LValuePathEntry> Path;
710     friend bool operator==(const ObjectUnderConstruction &LHS,
711                            const ObjectUnderConstruction &RHS) {
712       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713     }
714     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715       return llvm::hash_combine(Obj.Base, Obj.Path);
716     }
717   };
718   enum class ConstructionPhase {
719     None,
720     Bases,
721     AfterBases,
722     AfterFields,
723     Destroying,
724     DestroyingBases
725   };
726 }
727 
728 namespace llvm {
729 template<> struct DenseMapInfo<ObjectUnderConstruction> {
730   using Base = DenseMapInfo<APValue::LValueBase>;
731   static ObjectUnderConstruction getEmptyKey() {
732     return {Base::getEmptyKey(), {}}; }
733   static ObjectUnderConstruction getTombstoneKey() {
734     return {Base::getTombstoneKey(), {}};
735   }
736   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737     return hash_value(Object);
738   }
739   static bool isEqual(const ObjectUnderConstruction &LHS,
740                       const ObjectUnderConstruction &RHS) {
741     return LHS == RHS;
742   }
743 };
744 }
745 
746 namespace {
747   /// A dynamically-allocated heap object.
748   struct DynAlloc {
749     /// The value of this heap-allocated object.
750     APValue Value;
751     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752     /// or a CallExpr (the latter is for direct calls to operator new inside
753     /// std::allocator<T>::allocate).
754     const Expr *AllocExpr = nullptr;
755 
756     enum Kind {
757       New,
758       ArrayNew,
759       StdAllocator
760     };
761 
762     /// Get the kind of the allocation. This must match between allocation
763     /// and deallocation.
764     Kind getKind() const {
765       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766         return NE->isArray() ? ArrayNew : New;
767       assert(isa<CallExpr>(AllocExpr));
768       return StdAllocator;
769     }
770   };
771 
772   struct DynAllocOrder {
773     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774       return L.getIndex() < R.getIndex();
775     }
776   };
777 
778   /// EvalInfo - This is a private struct used by the evaluator to capture
779   /// information about a subexpression as it is folded.  It retains information
780   /// about the AST context, but also maintains information about the folded
781   /// expression.
782   ///
783   /// If an expression could be evaluated, it is still possible it is not a C
784   /// "integer constant expression" or constant expression.  If not, this struct
785   /// captures information about how and why not.
786   ///
787   /// One bit of information passed *into* the request for constant folding
788   /// indicates whether the subexpression is "evaluated" or not according to C
789   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
790   /// evaluate the expression regardless of what the RHS is, but C only allows
791   /// certain things in certain situations.
792   class EvalInfo : public interp::State {
793   public:
794     ASTContext &Ctx;
795 
796     /// EvalStatus - Contains information about the evaluation.
797     Expr::EvalStatus &EvalStatus;
798 
799     /// CurrentCall - The top of the constexpr call stack.
800     CallStackFrame *CurrentCall;
801 
802     /// CallStackDepth - The number of calls in the call stack right now.
803     unsigned CallStackDepth;
804 
805     /// NextCallIndex - The next call index to assign.
806     unsigned NextCallIndex;
807 
808     /// StepsLeft - The remaining number of evaluation steps we're permitted
809     /// to perform. This is essentially a limit for the number of statements
810     /// we will evaluate.
811     unsigned StepsLeft;
812 
813     /// Enable the experimental new constant interpreter. If an expression is
814     /// not supported by the interpreter, an error is triggered.
815     bool EnableNewConstInterp;
816 
817     /// BottomFrame - The frame in which evaluation started. This must be
818     /// initialized after CurrentCall and CallStackDepth.
819     CallStackFrame BottomFrame;
820 
821     /// A stack of values whose lifetimes end at the end of some surrounding
822     /// evaluation frame.
823     llvm::SmallVector<Cleanup, 16> CleanupStack;
824 
825     /// EvaluatingDecl - This is the declaration whose initializer is being
826     /// evaluated, if any.
827     APValue::LValueBase EvaluatingDecl;
828 
829     enum class EvaluatingDeclKind {
830       None,
831       /// We're evaluating the construction of EvaluatingDecl.
832       Ctor,
833       /// We're evaluating the destruction of EvaluatingDecl.
834       Dtor,
835     };
836     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837 
838     /// EvaluatingDeclValue - This is the value being constructed for the
839     /// declaration whose initializer is being evaluated, if any.
840     APValue *EvaluatingDeclValue;
841 
842     /// Set of objects that are currently being constructed.
843     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844         ObjectsUnderConstruction;
845 
846     /// Current heap allocations, along with the location where each was
847     /// allocated. We use std::map here because we need stable addresses
848     /// for the stored APValues.
849     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850 
851     /// The number of heap allocations performed so far in this evaluation.
852     unsigned NumHeapAllocs = 0;
853 
854     struct EvaluatingConstructorRAII {
855       EvalInfo &EI;
856       ObjectUnderConstruction Object;
857       bool DidInsert;
858       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859                                 bool HasBases)
860           : EI(EI), Object(Object) {
861         DidInsert =
862             EI.ObjectsUnderConstruction
863                 .insert({Object, HasBases ? ConstructionPhase::Bases
864                                           : ConstructionPhase::AfterBases})
865                 .second;
866       }
867       void finishedConstructingBases() {
868         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869       }
870       void finishedConstructingFields() {
871         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872       }
873       ~EvaluatingConstructorRAII() {
874         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875       }
876     };
877 
878     struct EvaluatingDestructorRAII {
879       EvalInfo &EI;
880       ObjectUnderConstruction Object;
881       bool DidInsert;
882       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883           : EI(EI), Object(Object) {
884         DidInsert = EI.ObjectsUnderConstruction
885                         .insert({Object, ConstructionPhase::Destroying})
886                         .second;
887       }
888       void startedDestroyingBases() {
889         EI.ObjectsUnderConstruction[Object] =
890             ConstructionPhase::DestroyingBases;
891       }
892       ~EvaluatingDestructorRAII() {
893         if (DidInsert)
894           EI.ObjectsUnderConstruction.erase(Object);
895       }
896     };
897 
898     ConstructionPhase
899     isEvaluatingCtorDtor(APValue::LValueBase Base,
900                          ArrayRef<APValue::LValuePathEntry> Path) {
901       return ObjectsUnderConstruction.lookup({Base, Path});
902     }
903 
904     /// If we're currently speculatively evaluating, the outermost call stack
905     /// depth at which we can mutate state, otherwise 0.
906     unsigned SpeculativeEvaluationDepth = 0;
907 
908     /// The current array initialization index, if we're performing array
909     /// initialization.
910     uint64_t ArrayInitIndex = -1;
911 
912     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913     /// notes attached to it will also be stored, otherwise they will not be.
914     bool HasActiveDiagnostic;
915 
916     /// Have we emitted a diagnostic explaining why we couldn't constant
917     /// fold (not just why it's not strictly a constant expression)?
918     bool HasFoldFailureDiagnostic;
919 
920     /// Whether or not we're in a context where the front end requires a
921     /// constant value.
922     bool InConstantContext;
923 
924     /// Whether we're checking that an expression is a potential constant
925     /// expression. If so, do not fail on constructs that could become constant
926     /// later on (such as a use of an undefined global).
927     bool CheckingPotentialConstantExpression = false;
928 
929     /// Whether we're checking for an expression that has undefined behavior.
930     /// If so, we will produce warnings if we encounter an operation that is
931     /// always undefined.
932     ///
933     /// Note that we still need to evaluate the expression normally when this
934     /// is set; this is used when evaluating ICEs in C.
935     bool CheckingForUndefinedBehavior = false;
936 
937     enum EvaluationMode {
938       /// Evaluate as a constant expression. Stop if we find that the expression
939       /// is not a constant expression.
940       EM_ConstantExpression,
941 
942       /// Evaluate as a constant expression. Stop if we find that the expression
943       /// is not a constant expression. Some expressions can be retried in the
944       /// optimizer if we don't constant fold them here, but in an unevaluated
945       /// context we try to fold them immediately since the optimizer never
946       /// gets a chance to look at it.
947       EM_ConstantExpressionUnevaluated,
948 
949       /// Fold the expression to a constant. Stop if we hit a side-effect that
950       /// we can't model.
951       EM_ConstantFold,
952 
953       /// Evaluate in any way we know how. Don't worry about side-effects that
954       /// can't be modeled.
955       EM_IgnoreSideEffects,
956     } EvalMode;
957 
958     /// Are we checking whether the expression is a potential constant
959     /// expression?
960     bool checkingPotentialConstantExpression() const override  {
961       return CheckingPotentialConstantExpression;
962     }
963 
964     /// Are we checking an expression for overflow?
965     // FIXME: We should check for any kind of undefined or suspicious behavior
966     // in such constructs, not just overflow.
967     bool checkingForUndefinedBehavior() const override {
968       return CheckingForUndefinedBehavior;
969     }
970 
971     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973           CallStackDepth(0), NextCallIndex(1),
974           StepsLeft(C.getLangOpts().ConstexprStepLimit),
975           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976           BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977           EvaluatingDecl((const ValueDecl *)nullptr),
978           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979           HasFoldFailureDiagnostic(false), InConstantContext(false),
980           EvalMode(Mode) {}
981 
982     ~EvalInfo() {
983       discardCleanups();
984     }
985 
986     ASTContext &getCtx() const override { return Ctx; }
987 
988     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
989                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
990       EvaluatingDecl = Base;
991       IsEvaluatingDecl = EDK;
992       EvaluatingDeclValue = &Value;
993     }
994 
995     bool CheckCallLimit(SourceLocation Loc) {
996       // Don't perform any constexpr calls (other than the call we're checking)
997       // when checking a potential constant expression.
998       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
999         return false;
1000       if (NextCallIndex == 0) {
1001         // NextCallIndex has wrapped around.
1002         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1003         return false;
1004       }
1005       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1006         return true;
1007       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1008         << getLangOpts().ConstexprCallDepth;
1009       return false;
1010     }
1011 
1012     std::pair<CallStackFrame *, unsigned>
1013     getCallFrameAndDepth(unsigned CallIndex) {
1014       assert(CallIndex && "no call index in getCallFrameAndDepth");
1015       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1016       // be null in this loop.
1017       unsigned Depth = CallStackDepth;
1018       CallStackFrame *Frame = CurrentCall;
1019       while (Frame->Index > CallIndex) {
1020         Frame = Frame->Caller;
1021         --Depth;
1022       }
1023       if (Frame->Index == CallIndex)
1024         return {Frame, Depth};
1025       return {nullptr, 0};
1026     }
1027 
1028     bool nextStep(const Stmt *S) {
1029       if (!StepsLeft) {
1030         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1031         return false;
1032       }
1033       --StepsLeft;
1034       return true;
1035     }
1036 
1037     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1038 
1039     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1040       Optional<DynAlloc*> Result;
1041       auto It = HeapAllocs.find(DA);
1042       if (It != HeapAllocs.end())
1043         Result = &It->second;
1044       return Result;
1045     }
1046 
1047     /// Get the allocated storage for the given parameter of the given call.
1048     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1049       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1050       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1051                    : nullptr;
1052     }
1053 
1054     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1055     struct StdAllocatorCaller {
1056       unsigned FrameIndex;
1057       QualType ElemType;
1058       explicit operator bool() const { return FrameIndex != 0; };
1059     };
1060 
1061     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1062       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1063            Call = Call->Caller) {
1064         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1065         if (!MD)
1066           continue;
1067         const IdentifierInfo *FnII = MD->getIdentifier();
1068         if (!FnII || !FnII->isStr(FnName))
1069           continue;
1070 
1071         const auto *CTSD =
1072             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1073         if (!CTSD)
1074           continue;
1075 
1076         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1077         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1078         if (CTSD->isInStdNamespace() && ClassII &&
1079             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1080             TAL[0].getKind() == TemplateArgument::Type)
1081           return {Call->Index, TAL[0].getAsType()};
1082       }
1083 
1084       return {};
1085     }
1086 
1087     void performLifetimeExtension() {
1088       // Disable the cleanups for lifetime-extended temporaries.
1089       llvm::erase_if(CleanupStack, [](Cleanup &C) {
1090         return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1091       });
1092     }
1093 
1094     /// Throw away any remaining cleanups at the end of evaluation. If any
1095     /// cleanups would have had a side-effect, note that as an unmodeled
1096     /// side-effect and return false. Otherwise, return true.
1097     bool discardCleanups() {
1098       for (Cleanup &C : CleanupStack) {
1099         if (C.hasSideEffect() && !noteSideEffect()) {
1100           CleanupStack.clear();
1101           return false;
1102         }
1103       }
1104       CleanupStack.clear();
1105       return true;
1106     }
1107 
1108   private:
1109     interp::Frame *getCurrentFrame() override { return CurrentCall; }
1110     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1111 
1112     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1113     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1114 
1115     void setFoldFailureDiagnostic(bool Flag) override {
1116       HasFoldFailureDiagnostic = Flag;
1117     }
1118 
1119     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1120 
1121     // If we have a prior diagnostic, it will be noting that the expression
1122     // isn't a constant expression. This diagnostic is more important,
1123     // unless we require this evaluation to produce a constant expression.
1124     //
1125     // FIXME: We might want to show both diagnostics to the user in
1126     // EM_ConstantFold mode.
1127     bool hasPriorDiagnostic() override {
1128       if (!EvalStatus.Diag->empty()) {
1129         switch (EvalMode) {
1130         case EM_ConstantFold:
1131         case EM_IgnoreSideEffects:
1132           if (!HasFoldFailureDiagnostic)
1133             break;
1134           // We've already failed to fold something. Keep that diagnostic.
1135           LLVM_FALLTHROUGH;
1136         case EM_ConstantExpression:
1137         case EM_ConstantExpressionUnevaluated:
1138           setActiveDiagnostic(false);
1139           return true;
1140         }
1141       }
1142       return false;
1143     }
1144 
1145     unsigned getCallStackDepth() override { return CallStackDepth; }
1146 
1147   public:
1148     /// Should we continue evaluation after encountering a side-effect that we
1149     /// couldn't model?
1150     bool keepEvaluatingAfterSideEffect() {
1151       switch (EvalMode) {
1152       case EM_IgnoreSideEffects:
1153         return true;
1154 
1155       case EM_ConstantExpression:
1156       case EM_ConstantExpressionUnevaluated:
1157       case EM_ConstantFold:
1158         // By default, assume any side effect might be valid in some other
1159         // evaluation of this expression from a different context.
1160         return checkingPotentialConstantExpression() ||
1161                checkingForUndefinedBehavior();
1162       }
1163       llvm_unreachable("Missed EvalMode case");
1164     }
1165 
1166     /// Note that we have had a side-effect, and determine whether we should
1167     /// keep evaluating.
1168     bool noteSideEffect() {
1169       EvalStatus.HasSideEffects = true;
1170       return keepEvaluatingAfterSideEffect();
1171     }
1172 
1173     /// Should we continue evaluation after encountering undefined behavior?
1174     bool keepEvaluatingAfterUndefinedBehavior() {
1175       switch (EvalMode) {
1176       case EM_IgnoreSideEffects:
1177       case EM_ConstantFold:
1178         return true;
1179 
1180       case EM_ConstantExpression:
1181       case EM_ConstantExpressionUnevaluated:
1182         return checkingForUndefinedBehavior();
1183       }
1184       llvm_unreachable("Missed EvalMode case");
1185     }
1186 
1187     /// Note that we hit something that was technically undefined behavior, but
1188     /// that we can evaluate past it (such as signed overflow or floating-point
1189     /// division by zero.)
1190     bool noteUndefinedBehavior() override {
1191       EvalStatus.HasUndefinedBehavior = true;
1192       return keepEvaluatingAfterUndefinedBehavior();
1193     }
1194 
1195     /// Should we continue evaluation as much as possible after encountering a
1196     /// construct which can't be reduced to a value?
1197     bool keepEvaluatingAfterFailure() const override {
1198       if (!StepsLeft)
1199         return false;
1200 
1201       switch (EvalMode) {
1202       case EM_ConstantExpression:
1203       case EM_ConstantExpressionUnevaluated:
1204       case EM_ConstantFold:
1205       case EM_IgnoreSideEffects:
1206         return checkingPotentialConstantExpression() ||
1207                checkingForUndefinedBehavior();
1208       }
1209       llvm_unreachable("Missed EvalMode case");
1210     }
1211 
1212     /// Notes that we failed to evaluate an expression that other expressions
1213     /// directly depend on, and determine if we should keep evaluating. This
1214     /// should only be called if we actually intend to keep evaluating.
1215     ///
1216     /// Call noteSideEffect() instead if we may be able to ignore the value that
1217     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1218     ///
1219     /// (Foo(), 1)      // use noteSideEffect
1220     /// (Foo() || true) // use noteSideEffect
1221     /// Foo() + 1       // use noteFailure
1222     LLVM_NODISCARD bool noteFailure() {
1223       // Failure when evaluating some expression often means there is some
1224       // subexpression whose evaluation was skipped. Therefore, (because we
1225       // don't track whether we skipped an expression when unwinding after an
1226       // evaluation failure) every evaluation failure that bubbles up from a
1227       // subexpression implies that a side-effect has potentially happened. We
1228       // skip setting the HasSideEffects flag to true until we decide to
1229       // continue evaluating after that point, which happens here.
1230       bool KeepGoing = keepEvaluatingAfterFailure();
1231       EvalStatus.HasSideEffects |= KeepGoing;
1232       return KeepGoing;
1233     }
1234 
1235     class ArrayInitLoopIndex {
1236       EvalInfo &Info;
1237       uint64_t OuterIndex;
1238 
1239     public:
1240       ArrayInitLoopIndex(EvalInfo &Info)
1241           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1242         Info.ArrayInitIndex = 0;
1243       }
1244       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1245 
1246       operator uint64_t&() { return Info.ArrayInitIndex; }
1247     };
1248   };
1249 
1250   /// Object used to treat all foldable expressions as constant expressions.
1251   struct FoldConstant {
1252     EvalInfo &Info;
1253     bool Enabled;
1254     bool HadNoPriorDiags;
1255     EvalInfo::EvaluationMode OldMode;
1256 
1257     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1258       : Info(Info),
1259         Enabled(Enabled),
1260         HadNoPriorDiags(Info.EvalStatus.Diag &&
1261                         Info.EvalStatus.Diag->empty() &&
1262                         !Info.EvalStatus.HasSideEffects),
1263         OldMode(Info.EvalMode) {
1264       if (Enabled)
1265         Info.EvalMode = EvalInfo::EM_ConstantFold;
1266     }
1267     void keepDiagnostics() { Enabled = false; }
1268     ~FoldConstant() {
1269       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1270           !Info.EvalStatus.HasSideEffects)
1271         Info.EvalStatus.Diag->clear();
1272       Info.EvalMode = OldMode;
1273     }
1274   };
1275 
1276   /// RAII object used to set the current evaluation mode to ignore
1277   /// side-effects.
1278   struct IgnoreSideEffectsRAII {
1279     EvalInfo &Info;
1280     EvalInfo::EvaluationMode OldMode;
1281     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1282         : Info(Info), OldMode(Info.EvalMode) {
1283       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1284     }
1285 
1286     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1287   };
1288 
1289   /// RAII object used to optionally suppress diagnostics and side-effects from
1290   /// a speculative evaluation.
1291   class SpeculativeEvaluationRAII {
1292     EvalInfo *Info = nullptr;
1293     Expr::EvalStatus OldStatus;
1294     unsigned OldSpeculativeEvaluationDepth;
1295 
1296     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1297       Info = Other.Info;
1298       OldStatus = Other.OldStatus;
1299       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1300       Other.Info = nullptr;
1301     }
1302 
1303     void maybeRestoreState() {
1304       if (!Info)
1305         return;
1306 
1307       Info->EvalStatus = OldStatus;
1308       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1309     }
1310 
1311   public:
1312     SpeculativeEvaluationRAII() = default;
1313 
1314     SpeculativeEvaluationRAII(
1315         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1316         : Info(&Info), OldStatus(Info.EvalStatus),
1317           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1318       Info.EvalStatus.Diag = NewDiag;
1319       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1320     }
1321 
1322     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1323     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1324       moveFromAndCancel(std::move(Other));
1325     }
1326 
1327     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1328       maybeRestoreState();
1329       moveFromAndCancel(std::move(Other));
1330       return *this;
1331     }
1332 
1333     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1334   };
1335 
1336   /// RAII object wrapping a full-expression or block scope, and handling
1337   /// the ending of the lifetime of temporaries created within it.
1338   template<ScopeKind Kind>
1339   class ScopeRAII {
1340     EvalInfo &Info;
1341     unsigned OldStackSize;
1342   public:
1343     ScopeRAII(EvalInfo &Info)
1344         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1345       // Push a new temporary version. This is needed to distinguish between
1346       // temporaries created in different iterations of a loop.
1347       Info.CurrentCall->pushTempVersion();
1348     }
1349     bool destroy(bool RunDestructors = true) {
1350       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1351       OldStackSize = -1U;
1352       return OK;
1353     }
1354     ~ScopeRAII() {
1355       if (OldStackSize != -1U)
1356         destroy(false);
1357       // Body moved to a static method to encourage the compiler to inline away
1358       // instances of this class.
1359       Info.CurrentCall->popTempVersion();
1360     }
1361   private:
1362     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1363                         unsigned OldStackSize) {
1364       assert(OldStackSize <= Info.CleanupStack.size() &&
1365              "running cleanups out of order?");
1366 
1367       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1368       // for a full-expression scope.
1369       bool Success = true;
1370       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1371         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1372           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1373             Success = false;
1374             break;
1375           }
1376         }
1377       }
1378 
1379       // Compact any retained cleanups.
1380       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1381       if (Kind != ScopeKind::Block)
1382         NewEnd =
1383             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1384               return C.isDestroyedAtEndOf(Kind);
1385             });
1386       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1387       return Success;
1388     }
1389   };
1390   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1391   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1392   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1393 }
1394 
1395 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1396                                          CheckSubobjectKind CSK) {
1397   if (Invalid)
1398     return false;
1399   if (isOnePastTheEnd()) {
1400     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1401       << CSK;
1402     setInvalid();
1403     return false;
1404   }
1405   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1406   // must actually be at least one array element; even a VLA cannot have a
1407   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1408   return true;
1409 }
1410 
1411 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1412                                                                 const Expr *E) {
1413   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1414   // Do not set the designator as invalid: we can represent this situation,
1415   // and correct handling of __builtin_object_size requires us to do so.
1416 }
1417 
1418 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1419                                                     const Expr *E,
1420                                                     const APSInt &N) {
1421   // If we're complaining, we must be able to statically determine the size of
1422   // the most derived array.
1423   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1424     Info.CCEDiag(E, diag::note_constexpr_array_index)
1425       << N << /*array*/ 0
1426       << static_cast<unsigned>(getMostDerivedArraySize());
1427   else
1428     Info.CCEDiag(E, diag::note_constexpr_array_index)
1429       << N << /*non-array*/ 1;
1430   setInvalid();
1431 }
1432 
1433 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1434                                const FunctionDecl *Callee, const LValue *This,
1435                                CallRef Call)
1436     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1437       Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1438   Info.CurrentCall = this;
1439   ++Info.CallStackDepth;
1440 }
1441 
1442 CallStackFrame::~CallStackFrame() {
1443   assert(Info.CurrentCall == this && "calls retired out of order");
1444   --Info.CallStackDepth;
1445   Info.CurrentCall = Caller;
1446 }
1447 
1448 static bool isRead(AccessKinds AK) {
1449   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1450 }
1451 
1452 static bool isModification(AccessKinds AK) {
1453   switch (AK) {
1454   case AK_Read:
1455   case AK_ReadObjectRepresentation:
1456   case AK_MemberCall:
1457   case AK_DynamicCast:
1458   case AK_TypeId:
1459     return false;
1460   case AK_Assign:
1461   case AK_Increment:
1462   case AK_Decrement:
1463   case AK_Construct:
1464   case AK_Destroy:
1465     return true;
1466   }
1467   llvm_unreachable("unknown access kind");
1468 }
1469 
1470 static bool isAnyAccess(AccessKinds AK) {
1471   return isRead(AK) || isModification(AK);
1472 }
1473 
1474 /// Is this an access per the C++ definition?
1475 static bool isFormalAccess(AccessKinds AK) {
1476   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1477 }
1478 
1479 /// Is this kind of axcess valid on an indeterminate object value?
1480 static bool isValidIndeterminateAccess(AccessKinds AK) {
1481   switch (AK) {
1482   case AK_Read:
1483   case AK_Increment:
1484   case AK_Decrement:
1485     // These need the object's value.
1486     return false;
1487 
1488   case AK_ReadObjectRepresentation:
1489   case AK_Assign:
1490   case AK_Construct:
1491   case AK_Destroy:
1492     // Construction and destruction don't need the value.
1493     return true;
1494 
1495   case AK_MemberCall:
1496   case AK_DynamicCast:
1497   case AK_TypeId:
1498     // These aren't really meaningful on scalars.
1499     return true;
1500   }
1501   llvm_unreachable("unknown access kind");
1502 }
1503 
1504 namespace {
1505   struct ComplexValue {
1506   private:
1507     bool IsInt;
1508 
1509   public:
1510     APSInt IntReal, IntImag;
1511     APFloat FloatReal, FloatImag;
1512 
1513     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1514 
1515     void makeComplexFloat() { IsInt = false; }
1516     bool isComplexFloat() const { return !IsInt; }
1517     APFloat &getComplexFloatReal() { return FloatReal; }
1518     APFloat &getComplexFloatImag() { return FloatImag; }
1519 
1520     void makeComplexInt() { IsInt = true; }
1521     bool isComplexInt() const { return IsInt; }
1522     APSInt &getComplexIntReal() { return IntReal; }
1523     APSInt &getComplexIntImag() { return IntImag; }
1524 
1525     void moveInto(APValue &v) const {
1526       if (isComplexFloat())
1527         v = APValue(FloatReal, FloatImag);
1528       else
1529         v = APValue(IntReal, IntImag);
1530     }
1531     void setFrom(const APValue &v) {
1532       assert(v.isComplexFloat() || v.isComplexInt());
1533       if (v.isComplexFloat()) {
1534         makeComplexFloat();
1535         FloatReal = v.getComplexFloatReal();
1536         FloatImag = v.getComplexFloatImag();
1537       } else {
1538         makeComplexInt();
1539         IntReal = v.getComplexIntReal();
1540         IntImag = v.getComplexIntImag();
1541       }
1542     }
1543   };
1544 
1545   struct LValue {
1546     APValue::LValueBase Base;
1547     CharUnits Offset;
1548     SubobjectDesignator Designator;
1549     bool IsNullPtr : 1;
1550     bool InvalidBase : 1;
1551 
1552     const APValue::LValueBase getLValueBase() const { return Base; }
1553     CharUnits &getLValueOffset() { return Offset; }
1554     const CharUnits &getLValueOffset() const { return Offset; }
1555     SubobjectDesignator &getLValueDesignator() { return Designator; }
1556     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1557     bool isNullPointer() const { return IsNullPtr;}
1558 
1559     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1560     unsigned getLValueVersion() const { return Base.getVersion(); }
1561 
1562     void moveInto(APValue &V) const {
1563       if (Designator.Invalid)
1564         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1565       else {
1566         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1567         V = APValue(Base, Offset, Designator.Entries,
1568                     Designator.IsOnePastTheEnd, IsNullPtr);
1569       }
1570     }
1571     void setFrom(ASTContext &Ctx, const APValue &V) {
1572       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1573       Base = V.getLValueBase();
1574       Offset = V.getLValueOffset();
1575       InvalidBase = false;
1576       Designator = SubobjectDesignator(Ctx, V);
1577       IsNullPtr = V.isNullPointer();
1578     }
1579 
1580     void set(APValue::LValueBase B, bool BInvalid = false) {
1581 #ifndef NDEBUG
1582       // We only allow a few types of invalid bases. Enforce that here.
1583       if (BInvalid) {
1584         const auto *E = B.get<const Expr *>();
1585         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1586                "Unexpected type of invalid base");
1587       }
1588 #endif
1589 
1590       Base = B;
1591       Offset = CharUnits::fromQuantity(0);
1592       InvalidBase = BInvalid;
1593       Designator = SubobjectDesignator(getType(B));
1594       IsNullPtr = false;
1595     }
1596 
1597     void setNull(ASTContext &Ctx, QualType PointerTy) {
1598       Base = (const ValueDecl *)nullptr;
1599       Offset =
1600           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1601       InvalidBase = false;
1602       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1603       IsNullPtr = true;
1604     }
1605 
1606     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1607       set(B, true);
1608     }
1609 
1610     std::string toString(ASTContext &Ctx, QualType T) const {
1611       APValue Printable;
1612       moveInto(Printable);
1613       return Printable.getAsString(Ctx, T);
1614     }
1615 
1616   private:
1617     // Check that this LValue is not based on a null pointer. If it is, produce
1618     // a diagnostic and mark the designator as invalid.
1619     template <typename GenDiagType>
1620     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1621       if (Designator.Invalid)
1622         return false;
1623       if (IsNullPtr) {
1624         GenDiag();
1625         Designator.setInvalid();
1626         return false;
1627       }
1628       return true;
1629     }
1630 
1631   public:
1632     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1633                           CheckSubobjectKind CSK) {
1634       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1635         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1636       });
1637     }
1638 
1639     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1640                                        AccessKinds AK) {
1641       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1642         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1643       });
1644     }
1645 
1646     // Check this LValue refers to an object. If not, set the designator to be
1647     // invalid and emit a diagnostic.
1648     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1649       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1650              Designator.checkSubobject(Info, E, CSK);
1651     }
1652 
1653     void addDecl(EvalInfo &Info, const Expr *E,
1654                  const Decl *D, bool Virtual = false) {
1655       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1656         Designator.addDeclUnchecked(D, Virtual);
1657     }
1658     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1659       if (!Designator.Entries.empty()) {
1660         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1661         Designator.setInvalid();
1662         return;
1663       }
1664       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1665         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1666         Designator.FirstEntryIsAnUnsizedArray = true;
1667         Designator.addUnsizedArrayUnchecked(ElemTy);
1668       }
1669     }
1670     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1671       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1672         Designator.addArrayUnchecked(CAT);
1673     }
1674     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1675       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1676         Designator.addComplexUnchecked(EltTy, Imag);
1677     }
1678     void clearIsNullPointer() {
1679       IsNullPtr = false;
1680     }
1681     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1682                               const APSInt &Index, CharUnits ElementSize) {
1683       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1684       // but we're not required to diagnose it and it's valid in C++.)
1685       if (!Index)
1686         return;
1687 
1688       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1689       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1690       // offsets.
1691       uint64_t Offset64 = Offset.getQuantity();
1692       uint64_t ElemSize64 = ElementSize.getQuantity();
1693       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1694       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1695 
1696       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1697         Designator.adjustIndex(Info, E, Index);
1698       clearIsNullPointer();
1699     }
1700     void adjustOffset(CharUnits N) {
1701       Offset += N;
1702       if (N.getQuantity())
1703         clearIsNullPointer();
1704     }
1705   };
1706 
1707   struct MemberPtr {
1708     MemberPtr() {}
1709     explicit MemberPtr(const ValueDecl *Decl)
1710         : DeclAndIsDerivedMember(Decl, false) {}
1711 
1712     /// The member or (direct or indirect) field referred to by this member
1713     /// pointer, or 0 if this is a null member pointer.
1714     const ValueDecl *getDecl() const {
1715       return DeclAndIsDerivedMember.getPointer();
1716     }
1717     /// Is this actually a member of some type derived from the relevant class?
1718     bool isDerivedMember() const {
1719       return DeclAndIsDerivedMember.getInt();
1720     }
1721     /// Get the class which the declaration actually lives in.
1722     const CXXRecordDecl *getContainingRecord() const {
1723       return cast<CXXRecordDecl>(
1724           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1725     }
1726 
1727     void moveInto(APValue &V) const {
1728       V = APValue(getDecl(), isDerivedMember(), Path);
1729     }
1730     void setFrom(const APValue &V) {
1731       assert(V.isMemberPointer());
1732       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1733       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1734       Path.clear();
1735       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1736       Path.insert(Path.end(), P.begin(), P.end());
1737     }
1738 
1739     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1740     /// whether the member is a member of some class derived from the class type
1741     /// of the member pointer.
1742     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1743     /// Path - The path of base/derived classes from the member declaration's
1744     /// class (exclusive) to the class type of the member pointer (inclusive).
1745     SmallVector<const CXXRecordDecl*, 4> Path;
1746 
1747     /// Perform a cast towards the class of the Decl (either up or down the
1748     /// hierarchy).
1749     bool castBack(const CXXRecordDecl *Class) {
1750       assert(!Path.empty());
1751       const CXXRecordDecl *Expected;
1752       if (Path.size() >= 2)
1753         Expected = Path[Path.size() - 2];
1754       else
1755         Expected = getContainingRecord();
1756       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1757         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1758         // if B does not contain the original member and is not a base or
1759         // derived class of the class containing the original member, the result
1760         // of the cast is undefined.
1761         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1762         // (D::*). We consider that to be a language defect.
1763         return false;
1764       }
1765       Path.pop_back();
1766       return true;
1767     }
1768     /// Perform a base-to-derived member pointer cast.
1769     bool castToDerived(const CXXRecordDecl *Derived) {
1770       if (!getDecl())
1771         return true;
1772       if (!isDerivedMember()) {
1773         Path.push_back(Derived);
1774         return true;
1775       }
1776       if (!castBack(Derived))
1777         return false;
1778       if (Path.empty())
1779         DeclAndIsDerivedMember.setInt(false);
1780       return true;
1781     }
1782     /// Perform a derived-to-base member pointer cast.
1783     bool castToBase(const CXXRecordDecl *Base) {
1784       if (!getDecl())
1785         return true;
1786       if (Path.empty())
1787         DeclAndIsDerivedMember.setInt(true);
1788       if (isDerivedMember()) {
1789         Path.push_back(Base);
1790         return true;
1791       }
1792       return castBack(Base);
1793     }
1794   };
1795 
1796   /// Compare two member pointers, which are assumed to be of the same type.
1797   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1798     if (!LHS.getDecl() || !RHS.getDecl())
1799       return !LHS.getDecl() && !RHS.getDecl();
1800     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1801       return false;
1802     return LHS.Path == RHS.Path;
1803   }
1804 }
1805 
1806 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1807 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1808                             const LValue &This, const Expr *E,
1809                             bool AllowNonLiteralTypes = false);
1810 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1811                            bool InvalidBaseOK = false);
1812 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1813                             bool InvalidBaseOK = false);
1814 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1815                                   EvalInfo &Info);
1816 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1817 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1818 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1819                                     EvalInfo &Info);
1820 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1821 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1822 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1823                            EvalInfo &Info);
1824 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1825 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1826                                   EvalInfo &Info);
1827 
1828 /// Evaluate an integer or fixed point expression into an APResult.
1829 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1830                                         EvalInfo &Info);
1831 
1832 /// Evaluate only a fixed point expression into an APResult.
1833 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1834                                EvalInfo &Info);
1835 
1836 //===----------------------------------------------------------------------===//
1837 // Misc utilities
1838 //===----------------------------------------------------------------------===//
1839 
1840 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1841 /// preserving its value (by extending by up to one bit as needed).
1842 static void negateAsSigned(APSInt &Int) {
1843   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1844     Int = Int.extend(Int.getBitWidth() + 1);
1845     Int.setIsSigned(true);
1846   }
1847   Int = -Int;
1848 }
1849 
1850 template<typename KeyT>
1851 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1852                                          ScopeKind Scope, LValue &LV) {
1853   unsigned Version = getTempVersion();
1854   APValue::LValueBase Base(Key, Index, Version);
1855   LV.set(Base);
1856   return createLocal(Base, Key, T, Scope);
1857 }
1858 
1859 /// Allocate storage for a parameter of a function call made in this frame.
1860 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1861                                      LValue &LV) {
1862   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1863   APValue::LValueBase Base(PVD, Index, Args.Version);
1864   LV.set(Base);
1865   // We always destroy parameters at the end of the call, even if we'd allow
1866   // them to live to the end of the full-expression at runtime, in order to
1867   // give portable results and match other compilers.
1868   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1869 }
1870 
1871 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1872                                      QualType T, ScopeKind Scope) {
1873   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1874   unsigned Version = Base.getVersion();
1875   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1876   assert(Result.isAbsent() && "local created multiple times");
1877 
1878   // If we're creating a local immediately in the operand of a speculative
1879   // evaluation, don't register a cleanup to be run outside the speculative
1880   // evaluation context, since we won't actually be able to initialize this
1881   // object.
1882   if (Index <= Info.SpeculativeEvaluationDepth) {
1883     if (T.isDestructedType())
1884       Info.noteSideEffect();
1885   } else {
1886     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1887   }
1888   return Result;
1889 }
1890 
1891 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1892   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1893     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1894     return nullptr;
1895   }
1896 
1897   DynamicAllocLValue DA(NumHeapAllocs++);
1898   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1899   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1900                                    std::forward_as_tuple(DA), std::tuple<>());
1901   assert(Result.second && "reused a heap alloc index?");
1902   Result.first->second.AllocExpr = E;
1903   return &Result.first->second.Value;
1904 }
1905 
1906 /// Produce a string describing the given constexpr call.
1907 void CallStackFrame::describe(raw_ostream &Out) {
1908   unsigned ArgIndex = 0;
1909   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1910                       !isa<CXXConstructorDecl>(Callee) &&
1911                       cast<CXXMethodDecl>(Callee)->isInstance();
1912 
1913   if (!IsMemberCall)
1914     Out << *Callee << '(';
1915 
1916   if (This && IsMemberCall) {
1917     APValue Val;
1918     This->moveInto(Val);
1919     Val.printPretty(Out, Info.Ctx,
1920                     This->Designator.MostDerivedType);
1921     // FIXME: Add parens around Val if needed.
1922     Out << "->" << *Callee << '(';
1923     IsMemberCall = false;
1924   }
1925 
1926   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1927        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1928     if (ArgIndex > (unsigned)IsMemberCall)
1929       Out << ", ";
1930 
1931     const ParmVarDecl *Param = *I;
1932     APValue *V = Info.getParamSlot(Arguments, Param);
1933     if (V)
1934       V->printPretty(Out, Info.Ctx, Param->getType());
1935     else
1936       Out << "<...>";
1937 
1938     if (ArgIndex == 0 && IsMemberCall)
1939       Out << "->" << *Callee << '(';
1940   }
1941 
1942   Out << ')';
1943 }
1944 
1945 /// Evaluate an expression to see if it had side-effects, and discard its
1946 /// result.
1947 /// \return \c true if the caller should keep evaluating.
1948 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1949   assert(!E->isValueDependent());
1950   APValue Scratch;
1951   if (!Evaluate(Scratch, Info, E))
1952     // We don't need the value, but we might have skipped a side effect here.
1953     return Info.noteSideEffect();
1954   return true;
1955 }
1956 
1957 /// Should this call expression be treated as a constant?
1958 static bool IsConstantCall(const CallExpr *E) {
1959   unsigned Builtin = E->getBuiltinCallee();
1960   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1961           Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1962           Builtin == Builtin::BI__builtin_function_start);
1963 }
1964 
1965 static bool IsGlobalLValue(APValue::LValueBase B) {
1966   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1967   // constant expression of pointer type that evaluates to...
1968 
1969   // ... a null pointer value, or a prvalue core constant expression of type
1970   // std::nullptr_t.
1971   if (!B) return true;
1972 
1973   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1974     // ... the address of an object with static storage duration,
1975     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1976       return VD->hasGlobalStorage();
1977     if (isa<TemplateParamObjectDecl>(D))
1978       return true;
1979     // ... the address of a function,
1980     // ... the address of a GUID [MS extension],
1981     // ... the address of an unnamed global constant
1982     return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
1983   }
1984 
1985   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1986     return true;
1987 
1988   const Expr *E = B.get<const Expr*>();
1989   switch (E->getStmtClass()) {
1990   default:
1991     return false;
1992   case Expr::CompoundLiteralExprClass: {
1993     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1994     return CLE->isFileScope() && CLE->isLValue();
1995   }
1996   case Expr::MaterializeTemporaryExprClass:
1997     // A materialized temporary might have been lifetime-extended to static
1998     // storage duration.
1999     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2000   // A string literal has static storage duration.
2001   case Expr::StringLiteralClass:
2002   case Expr::PredefinedExprClass:
2003   case Expr::ObjCStringLiteralClass:
2004   case Expr::ObjCEncodeExprClass:
2005     return true;
2006   case Expr::ObjCBoxedExprClass:
2007     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2008   case Expr::CallExprClass:
2009     return IsConstantCall(cast<CallExpr>(E));
2010   // For GCC compatibility, &&label has static storage duration.
2011   case Expr::AddrLabelExprClass:
2012     return true;
2013   // A Block literal expression may be used as the initialization value for
2014   // Block variables at global or local static scope.
2015   case Expr::BlockExprClass:
2016     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2017   // The APValue generated from a __builtin_source_location will be emitted as a
2018   // literal.
2019   case Expr::SourceLocExprClass:
2020     return true;
2021   case Expr::ImplicitValueInitExprClass:
2022     // FIXME:
2023     // We can never form an lvalue with an implicit value initialization as its
2024     // base through expression evaluation, so these only appear in one case: the
2025     // implicit variable declaration we invent when checking whether a constexpr
2026     // constructor can produce a constant expression. We must assume that such
2027     // an expression might be a global lvalue.
2028     return true;
2029   }
2030 }
2031 
2032 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2033   return LVal.Base.dyn_cast<const ValueDecl*>();
2034 }
2035 
2036 static bool IsLiteralLValue(const LValue &Value) {
2037   if (Value.getLValueCallIndex())
2038     return false;
2039   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2040   return E && !isa<MaterializeTemporaryExpr>(E);
2041 }
2042 
2043 static bool IsWeakLValue(const LValue &Value) {
2044   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2045   return Decl && Decl->isWeak();
2046 }
2047 
2048 static bool isZeroSized(const LValue &Value) {
2049   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2050   if (Decl && isa<VarDecl>(Decl)) {
2051     QualType Ty = Decl->getType();
2052     if (Ty->isArrayType())
2053       return Ty->isIncompleteType() ||
2054              Decl->getASTContext().getTypeSize(Ty) == 0;
2055   }
2056   return false;
2057 }
2058 
2059 static bool HasSameBase(const LValue &A, const LValue &B) {
2060   if (!A.getLValueBase())
2061     return !B.getLValueBase();
2062   if (!B.getLValueBase())
2063     return false;
2064 
2065   if (A.getLValueBase().getOpaqueValue() !=
2066       B.getLValueBase().getOpaqueValue())
2067     return false;
2068 
2069   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2070          A.getLValueVersion() == B.getLValueVersion();
2071 }
2072 
2073 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2074   assert(Base && "no location for a null lvalue");
2075   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2076 
2077   // For a parameter, find the corresponding call stack frame (if it still
2078   // exists), and point at the parameter of the function definition we actually
2079   // invoked.
2080   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2081     unsigned Idx = PVD->getFunctionScopeIndex();
2082     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2083       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2084           F->Arguments.Version == Base.getVersion() && F->Callee &&
2085           Idx < F->Callee->getNumParams()) {
2086         VD = F->Callee->getParamDecl(Idx);
2087         break;
2088       }
2089     }
2090   }
2091 
2092   if (VD)
2093     Info.Note(VD->getLocation(), diag::note_declared_at);
2094   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2095     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2096   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2097     // FIXME: Produce a note for dangling pointers too.
2098     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2099       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2100                 diag::note_constexpr_dynamic_alloc_here);
2101   }
2102   // We have no information to show for a typeid(T) object.
2103 }
2104 
2105 enum class CheckEvaluationResultKind {
2106   ConstantExpression,
2107   FullyInitialized,
2108 };
2109 
2110 /// Materialized temporaries that we've already checked to determine if they're
2111 /// initializsed by a constant expression.
2112 using CheckedTemporaries =
2113     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2114 
2115 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2116                                   EvalInfo &Info, SourceLocation DiagLoc,
2117                                   QualType Type, const APValue &Value,
2118                                   ConstantExprKind Kind,
2119                                   SourceLocation SubobjectLoc,
2120                                   CheckedTemporaries &CheckedTemps);
2121 
2122 /// Check that this reference or pointer core constant expression is a valid
2123 /// value for an address or reference constant expression. Return true if we
2124 /// can fold this expression, whether or not it's a constant expression.
2125 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2126                                           QualType Type, const LValue &LVal,
2127                                           ConstantExprKind Kind,
2128                                           CheckedTemporaries &CheckedTemps) {
2129   bool IsReferenceType = Type->isReferenceType();
2130 
2131   APValue::LValueBase Base = LVal.getLValueBase();
2132   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2133 
2134   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2135   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2136 
2137   // Additional restrictions apply in a template argument. We only enforce the
2138   // C++20 restrictions here; additional syntactic and semantic restrictions
2139   // are applied elsewhere.
2140   if (isTemplateArgument(Kind)) {
2141     int InvalidBaseKind = -1;
2142     StringRef Ident;
2143     if (Base.is<TypeInfoLValue>())
2144       InvalidBaseKind = 0;
2145     else if (isa_and_nonnull<StringLiteral>(BaseE))
2146       InvalidBaseKind = 1;
2147     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2148              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2149       InvalidBaseKind = 2;
2150     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2151       InvalidBaseKind = 3;
2152       Ident = PE->getIdentKindName();
2153     }
2154 
2155     if (InvalidBaseKind != -1) {
2156       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2157           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2158           << Ident;
2159       return false;
2160     }
2161   }
2162 
2163   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2164     if (FD->isConsteval()) {
2165       Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2166           << !Type->isAnyPointerType();
2167       Info.Note(FD->getLocation(), diag::note_declared_at);
2168       return false;
2169     }
2170   }
2171 
2172   // Check that the object is a global. Note that the fake 'this' object we
2173   // manufacture when checking potential constant expressions is conservatively
2174   // assumed to be global here.
2175   if (!IsGlobalLValue(Base)) {
2176     if (Info.getLangOpts().CPlusPlus11) {
2177       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2178       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2179         << IsReferenceType << !Designator.Entries.empty()
2180         << !!VD << VD;
2181 
2182       auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2183       if (VarD && VarD->isConstexpr()) {
2184         // Non-static local constexpr variables have unintuitive semantics:
2185         //   constexpr int a = 1;
2186         //   constexpr const int *p = &a;
2187         // ... is invalid because the address of 'a' is not constant. Suggest
2188         // adding a 'static' in this case.
2189         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2190             << VarD
2191             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2192       } else {
2193         NoteLValueLocation(Info, Base);
2194       }
2195     } else {
2196       Info.FFDiag(Loc);
2197     }
2198     // Don't allow references to temporaries to escape.
2199     return false;
2200   }
2201   assert((Info.checkingPotentialConstantExpression() ||
2202           LVal.getLValueCallIndex() == 0) &&
2203          "have call index for global lvalue");
2204 
2205   if (Base.is<DynamicAllocLValue>()) {
2206     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2207         << IsReferenceType << !Designator.Entries.empty();
2208     NoteLValueLocation(Info, Base);
2209     return false;
2210   }
2211 
2212   if (BaseVD) {
2213     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2214       // Check if this is a thread-local variable.
2215       if (Var->getTLSKind())
2216         // FIXME: Diagnostic!
2217         return false;
2218 
2219       // A dllimport variable never acts like a constant, unless we're
2220       // evaluating a value for use only in name mangling.
2221       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2222         // FIXME: Diagnostic!
2223         return false;
2224 
2225       // In CUDA/HIP device compilation, only device side variables have
2226       // constant addresses.
2227       if (Info.getCtx().getLangOpts().CUDA &&
2228           Info.getCtx().getLangOpts().CUDAIsDevice &&
2229           Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2230         if ((!Var->hasAttr<CUDADeviceAttr>() &&
2231              !Var->hasAttr<CUDAConstantAttr>() &&
2232              !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2233              !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2234             Var->hasAttr<HIPManagedAttr>())
2235           return false;
2236       }
2237     }
2238     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2239       // __declspec(dllimport) must be handled very carefully:
2240       // We must never initialize an expression with the thunk in C++.
2241       // Doing otherwise would allow the same id-expression to yield
2242       // different addresses for the same function in different translation
2243       // units.  However, this means that we must dynamically initialize the
2244       // expression with the contents of the import address table at runtime.
2245       //
2246       // The C language has no notion of ODR; furthermore, it has no notion of
2247       // dynamic initialization.  This means that we are permitted to
2248       // perform initialization with the address of the thunk.
2249       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2250           FD->hasAttr<DLLImportAttr>())
2251         // FIXME: Diagnostic!
2252         return false;
2253     }
2254   } else if (const auto *MTE =
2255                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2256     if (CheckedTemps.insert(MTE).second) {
2257       QualType TempType = getType(Base);
2258       if (TempType.isDestructedType()) {
2259         Info.FFDiag(MTE->getExprLoc(),
2260                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2261             << TempType;
2262         return false;
2263       }
2264 
2265       APValue *V = MTE->getOrCreateValue(false);
2266       assert(V && "evasluation result refers to uninitialised temporary");
2267       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2268                                  Info, MTE->getExprLoc(), TempType, *V,
2269                                  Kind, SourceLocation(), CheckedTemps))
2270         return false;
2271     }
2272   }
2273 
2274   // Allow address constant expressions to be past-the-end pointers. This is
2275   // an extension: the standard requires them to point to an object.
2276   if (!IsReferenceType)
2277     return true;
2278 
2279   // A reference constant expression must refer to an object.
2280   if (!Base) {
2281     // FIXME: diagnostic
2282     Info.CCEDiag(Loc);
2283     return true;
2284   }
2285 
2286   // Does this refer one past the end of some object?
2287   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2288     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2289       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2290     NoteLValueLocation(Info, Base);
2291   }
2292 
2293   return true;
2294 }
2295 
2296 /// Member pointers are constant expressions unless they point to a
2297 /// non-virtual dllimport member function.
2298 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2299                                                  SourceLocation Loc,
2300                                                  QualType Type,
2301                                                  const APValue &Value,
2302                                                  ConstantExprKind Kind) {
2303   const ValueDecl *Member = Value.getMemberPointerDecl();
2304   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2305   if (!FD)
2306     return true;
2307   if (FD->isConsteval()) {
2308     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2309     Info.Note(FD->getLocation(), diag::note_declared_at);
2310     return false;
2311   }
2312   return isForManglingOnly(Kind) || FD->isVirtual() ||
2313          !FD->hasAttr<DLLImportAttr>();
2314 }
2315 
2316 /// Check that this core constant expression is of literal type, and if not,
2317 /// produce an appropriate diagnostic.
2318 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2319                              const LValue *This = nullptr) {
2320   if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2321     return true;
2322 
2323   // C++1y: A constant initializer for an object o [...] may also invoke
2324   // constexpr constructors for o and its subobjects even if those objects
2325   // are of non-literal class types.
2326   //
2327   // C++11 missed this detail for aggregates, so classes like this:
2328   //   struct foo_t { union { int i; volatile int j; } u; };
2329   // are not (obviously) initializable like so:
2330   //   __attribute__((__require_constant_initialization__))
2331   //   static const foo_t x = {{0}};
2332   // because "i" is a subobject with non-literal initialization (due to the
2333   // volatile member of the union). See:
2334   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2335   // Therefore, we use the C++1y behavior.
2336   if (This && Info.EvaluatingDecl == This->getLValueBase())
2337     return true;
2338 
2339   // Prvalue constant expressions must be of literal types.
2340   if (Info.getLangOpts().CPlusPlus11)
2341     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2342       << E->getType();
2343   else
2344     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2345   return false;
2346 }
2347 
2348 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2349                                   EvalInfo &Info, SourceLocation DiagLoc,
2350                                   QualType Type, const APValue &Value,
2351                                   ConstantExprKind Kind,
2352                                   SourceLocation SubobjectLoc,
2353                                   CheckedTemporaries &CheckedTemps) {
2354   if (!Value.hasValue()) {
2355     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2356       << true << Type;
2357     if (SubobjectLoc.isValid())
2358       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2359     return false;
2360   }
2361 
2362   // We allow _Atomic(T) to be initialized from anything that T can be
2363   // initialized from.
2364   if (const AtomicType *AT = Type->getAs<AtomicType>())
2365     Type = AT->getValueType();
2366 
2367   // Core issue 1454: For a literal constant expression of array or class type,
2368   // each subobject of its value shall have been initialized by a constant
2369   // expression.
2370   if (Value.isArray()) {
2371     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2372     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2373       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2374                                  Value.getArrayInitializedElt(I), Kind,
2375                                  SubobjectLoc, CheckedTemps))
2376         return false;
2377     }
2378     if (!Value.hasArrayFiller())
2379       return true;
2380     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2381                                  Value.getArrayFiller(), Kind, SubobjectLoc,
2382                                  CheckedTemps);
2383   }
2384   if (Value.isUnion() && Value.getUnionField()) {
2385     return CheckEvaluationResult(
2386         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2387         Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2388         CheckedTemps);
2389   }
2390   if (Value.isStruct()) {
2391     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2392     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2393       unsigned BaseIndex = 0;
2394       for (const CXXBaseSpecifier &BS : CD->bases()) {
2395         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2396                                    Value.getStructBase(BaseIndex), Kind,
2397                                    BS.getBeginLoc(), CheckedTemps))
2398           return false;
2399         ++BaseIndex;
2400       }
2401     }
2402     for (const auto *I : RD->fields()) {
2403       if (I->isUnnamedBitfield())
2404         continue;
2405 
2406       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2407                                  Value.getStructField(I->getFieldIndex()),
2408                                  Kind, I->getLocation(), CheckedTemps))
2409         return false;
2410     }
2411   }
2412 
2413   if (Value.isLValue() &&
2414       CERK == CheckEvaluationResultKind::ConstantExpression) {
2415     LValue LVal;
2416     LVal.setFrom(Info.Ctx, Value);
2417     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2418                                          CheckedTemps);
2419   }
2420 
2421   if (Value.isMemberPointer() &&
2422       CERK == CheckEvaluationResultKind::ConstantExpression)
2423     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2424 
2425   // Everything else is fine.
2426   return true;
2427 }
2428 
2429 /// Check that this core constant expression value is a valid value for a
2430 /// constant expression. If not, report an appropriate diagnostic. Does not
2431 /// check that the expression is of literal type.
2432 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2433                                     QualType Type, const APValue &Value,
2434                                     ConstantExprKind Kind) {
2435   // Nothing to check for a constant expression of type 'cv void'.
2436   if (Type->isVoidType())
2437     return true;
2438 
2439   CheckedTemporaries CheckedTemps;
2440   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2441                                Info, DiagLoc, Type, Value, Kind,
2442                                SourceLocation(), CheckedTemps);
2443 }
2444 
2445 /// Check that this evaluated value is fully-initialized and can be loaded by
2446 /// an lvalue-to-rvalue conversion.
2447 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2448                                   QualType Type, const APValue &Value) {
2449   CheckedTemporaries CheckedTemps;
2450   return CheckEvaluationResult(
2451       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2452       ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2453 }
2454 
2455 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2456 /// "the allocated storage is deallocated within the evaluation".
2457 static bool CheckMemoryLeaks(EvalInfo &Info) {
2458   if (!Info.HeapAllocs.empty()) {
2459     // We can still fold to a constant despite a compile-time memory leak,
2460     // so long as the heap allocation isn't referenced in the result (we check
2461     // that in CheckConstantExpression).
2462     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2463                  diag::note_constexpr_memory_leak)
2464         << unsigned(Info.HeapAllocs.size() - 1);
2465   }
2466   return true;
2467 }
2468 
2469 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2470   // A null base expression indicates a null pointer.  These are always
2471   // evaluatable, and they are false unless the offset is zero.
2472   if (!Value.getLValueBase()) {
2473     Result = !Value.getLValueOffset().isZero();
2474     return true;
2475   }
2476 
2477   // We have a non-null base.  These are generally known to be true, but if it's
2478   // a weak declaration it can be null at runtime.
2479   Result = true;
2480   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2481   return !Decl || !Decl->isWeak();
2482 }
2483 
2484 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2485   switch (Val.getKind()) {
2486   case APValue::None:
2487   case APValue::Indeterminate:
2488     return false;
2489   case APValue::Int:
2490     Result = Val.getInt().getBoolValue();
2491     return true;
2492   case APValue::FixedPoint:
2493     Result = Val.getFixedPoint().getBoolValue();
2494     return true;
2495   case APValue::Float:
2496     Result = !Val.getFloat().isZero();
2497     return true;
2498   case APValue::ComplexInt:
2499     Result = Val.getComplexIntReal().getBoolValue() ||
2500              Val.getComplexIntImag().getBoolValue();
2501     return true;
2502   case APValue::ComplexFloat:
2503     Result = !Val.getComplexFloatReal().isZero() ||
2504              !Val.getComplexFloatImag().isZero();
2505     return true;
2506   case APValue::LValue:
2507     return EvalPointerValueAsBool(Val, Result);
2508   case APValue::MemberPointer:
2509     Result = Val.getMemberPointerDecl();
2510     return true;
2511   case APValue::Vector:
2512   case APValue::Array:
2513   case APValue::Struct:
2514   case APValue::Union:
2515   case APValue::AddrLabelDiff:
2516     return false;
2517   }
2518 
2519   llvm_unreachable("unknown APValue kind");
2520 }
2521 
2522 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2523                                        EvalInfo &Info) {
2524   assert(!E->isValueDependent());
2525   assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2526   APValue Val;
2527   if (!Evaluate(Val, Info, E))
2528     return false;
2529   return HandleConversionToBool(Val, Result);
2530 }
2531 
2532 template<typename T>
2533 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2534                            const T &SrcValue, QualType DestType) {
2535   Info.CCEDiag(E, diag::note_constexpr_overflow)
2536     << SrcValue << DestType;
2537   return Info.noteUndefinedBehavior();
2538 }
2539 
2540 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2541                                  QualType SrcType, const APFloat &Value,
2542                                  QualType DestType, APSInt &Result) {
2543   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2544   // Determine whether we are converting to unsigned or signed.
2545   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2546 
2547   Result = APSInt(DestWidth, !DestSigned);
2548   bool ignored;
2549   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2550       & APFloat::opInvalidOp)
2551     return HandleOverflow(Info, E, Value, DestType);
2552   return true;
2553 }
2554 
2555 /// Get rounding mode used for evaluation of the specified expression.
2556 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2557 ///                       dynamic.
2558 /// If rounding mode is unknown at compile time, still try to evaluate the
2559 /// expression. If the result is exact, it does not depend on rounding mode.
2560 /// So return "tonearest" mode instead of "dynamic".
2561 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2562                                                 bool &DynamicRM) {
2563   llvm::RoundingMode RM =
2564       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2565   DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2566   if (DynamicRM)
2567     RM = llvm::RoundingMode::NearestTiesToEven;
2568   return RM;
2569 }
2570 
2571 /// Check if the given evaluation result is allowed for constant evaluation.
2572 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2573                                      APFloat::opStatus St) {
2574   // In a constant context, assume that any dynamic rounding mode or FP
2575   // exception state matches the default floating-point environment.
2576   if (Info.InConstantContext)
2577     return true;
2578 
2579   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2580   if ((St & APFloat::opInexact) &&
2581       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2582     // Inexact result means that it depends on rounding mode. If the requested
2583     // mode is dynamic, the evaluation cannot be made in compile time.
2584     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2585     return false;
2586   }
2587 
2588   if ((St != APFloat::opOK) &&
2589       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2590        FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2591        FPO.getAllowFEnvAccess())) {
2592     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2593     return false;
2594   }
2595 
2596   if ((St & APFloat::opStatus::opInvalidOp) &&
2597       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2598     // There is no usefully definable result.
2599     Info.FFDiag(E);
2600     return false;
2601   }
2602 
2603   // FIXME: if:
2604   // - evaluation triggered other FP exception, and
2605   // - exception mode is not "ignore", and
2606   // - the expression being evaluated is not a part of global variable
2607   //   initializer,
2608   // the evaluation probably need to be rejected.
2609   return true;
2610 }
2611 
2612 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2613                                    QualType SrcType, QualType DestType,
2614                                    APFloat &Result) {
2615   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2616   bool DynamicRM;
2617   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2618   APFloat::opStatus St;
2619   APFloat Value = Result;
2620   bool ignored;
2621   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2622   return checkFloatingPointResult(Info, E, St);
2623 }
2624 
2625 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2626                                  QualType DestType, QualType SrcType,
2627                                  const APSInt &Value) {
2628   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2629   // Figure out if this is a truncate, extend or noop cast.
2630   // If the input is signed, do a sign extend, noop, or truncate.
2631   APSInt Result = Value.extOrTrunc(DestWidth);
2632   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2633   if (DestType->isBooleanType())
2634     Result = Value.getBoolValue();
2635   return Result;
2636 }
2637 
2638 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2639                                  const FPOptions FPO,
2640                                  QualType SrcType, const APSInt &Value,
2641                                  QualType DestType, APFloat &Result) {
2642   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2643   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2644        APFloat::rmNearestTiesToEven);
2645   if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2646       FPO.isFPConstrained()) {
2647     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2648     return false;
2649   }
2650   return true;
2651 }
2652 
2653 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2654                                   APValue &Value, const FieldDecl *FD) {
2655   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2656 
2657   if (!Value.isInt()) {
2658     // Trying to store a pointer-cast-to-integer into a bitfield.
2659     // FIXME: In this case, we should provide the diagnostic for casting
2660     // a pointer to an integer.
2661     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2662     Info.FFDiag(E);
2663     return false;
2664   }
2665 
2666   APSInt &Int = Value.getInt();
2667   unsigned OldBitWidth = Int.getBitWidth();
2668   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2669   if (NewBitWidth < OldBitWidth)
2670     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2671   return true;
2672 }
2673 
2674 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2675                                   llvm::APInt &Res) {
2676   APValue SVal;
2677   if (!Evaluate(SVal, Info, E))
2678     return false;
2679   if (SVal.isInt()) {
2680     Res = SVal.getInt();
2681     return true;
2682   }
2683   if (SVal.isFloat()) {
2684     Res = SVal.getFloat().bitcastToAPInt();
2685     return true;
2686   }
2687   if (SVal.isVector()) {
2688     QualType VecTy = E->getType();
2689     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2690     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2691     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2692     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2693     Res = llvm::APInt::getZero(VecSize);
2694     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2695       APValue &Elt = SVal.getVectorElt(i);
2696       llvm::APInt EltAsInt;
2697       if (Elt.isInt()) {
2698         EltAsInt = Elt.getInt();
2699       } else if (Elt.isFloat()) {
2700         EltAsInt = Elt.getFloat().bitcastToAPInt();
2701       } else {
2702         // Don't try to handle vectors of anything other than int or float
2703         // (not sure if it's possible to hit this case).
2704         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2705         return false;
2706       }
2707       unsigned BaseEltSize = EltAsInt.getBitWidth();
2708       if (BigEndian)
2709         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2710       else
2711         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2712     }
2713     return true;
2714   }
2715   // Give up if the input isn't an int, float, or vector.  For example, we
2716   // reject "(v4i16)(intptr_t)&a".
2717   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2718   return false;
2719 }
2720 
2721 /// Perform the given integer operation, which is known to need at most BitWidth
2722 /// bits, and check for overflow in the original type (if that type was not an
2723 /// unsigned type).
2724 template<typename Operation>
2725 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2726                                  const APSInt &LHS, const APSInt &RHS,
2727                                  unsigned BitWidth, Operation Op,
2728                                  APSInt &Result) {
2729   if (LHS.isUnsigned()) {
2730     Result = Op(LHS, RHS);
2731     return true;
2732   }
2733 
2734   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2735   Result = Value.trunc(LHS.getBitWidth());
2736   if (Result.extend(BitWidth) != Value) {
2737     if (Info.checkingForUndefinedBehavior())
2738       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2739                                        diag::warn_integer_constant_overflow)
2740           << toString(Result, 10) << E->getType();
2741     return HandleOverflow(Info, E, Value, E->getType());
2742   }
2743   return true;
2744 }
2745 
2746 /// Perform the given binary integer operation.
2747 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2748                               BinaryOperatorKind Opcode, APSInt RHS,
2749                               APSInt &Result) {
2750   switch (Opcode) {
2751   default:
2752     Info.FFDiag(E);
2753     return false;
2754   case BO_Mul:
2755     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2756                                 std::multiplies<APSInt>(), Result);
2757   case BO_Add:
2758     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2759                                 std::plus<APSInt>(), Result);
2760   case BO_Sub:
2761     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2762                                 std::minus<APSInt>(), Result);
2763   case BO_And: Result = LHS & RHS; return true;
2764   case BO_Xor: Result = LHS ^ RHS; return true;
2765   case BO_Or:  Result = LHS | RHS; return true;
2766   case BO_Div:
2767   case BO_Rem:
2768     if (RHS == 0) {
2769       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2770       return false;
2771     }
2772     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2773     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2774     // this operation and gives the two's complement result.
2775     if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2776         LHS.isMinSignedValue())
2777       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2778                             E->getType());
2779     return true;
2780   case BO_Shl: {
2781     if (Info.getLangOpts().OpenCL)
2782       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2783       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2784                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2785                     RHS.isUnsigned());
2786     else if (RHS.isSigned() && RHS.isNegative()) {
2787       // During constant-folding, a negative shift is an opposite shift. Such
2788       // a shift is not a constant expression.
2789       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2790       RHS = -RHS;
2791       goto shift_right;
2792     }
2793   shift_left:
2794     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2795     // the shifted type.
2796     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2797     if (SA != RHS) {
2798       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2799         << RHS << E->getType() << LHS.getBitWidth();
2800     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2801       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2802       // operand, and must not overflow the corresponding unsigned type.
2803       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2804       // E1 x 2^E2 module 2^N.
2805       if (LHS.isNegative())
2806         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2807       else if (LHS.countLeadingZeros() < SA)
2808         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2809     }
2810     Result = LHS << SA;
2811     return true;
2812   }
2813   case BO_Shr: {
2814     if (Info.getLangOpts().OpenCL)
2815       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2816       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2817                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2818                     RHS.isUnsigned());
2819     else if (RHS.isSigned() && RHS.isNegative()) {
2820       // During constant-folding, a negative shift is an opposite shift. Such a
2821       // shift is not a constant expression.
2822       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2823       RHS = -RHS;
2824       goto shift_left;
2825     }
2826   shift_right:
2827     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2828     // shifted type.
2829     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2830     if (SA != RHS)
2831       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2832         << RHS << E->getType() << LHS.getBitWidth();
2833     Result = LHS >> SA;
2834     return true;
2835   }
2836 
2837   case BO_LT: Result = LHS < RHS; return true;
2838   case BO_GT: Result = LHS > RHS; return true;
2839   case BO_LE: Result = LHS <= RHS; return true;
2840   case BO_GE: Result = LHS >= RHS; return true;
2841   case BO_EQ: Result = LHS == RHS; return true;
2842   case BO_NE: Result = LHS != RHS; return true;
2843   case BO_Cmp:
2844     llvm_unreachable("BO_Cmp should be handled elsewhere");
2845   }
2846 }
2847 
2848 /// Perform the given binary floating-point operation, in-place, on LHS.
2849 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2850                                   APFloat &LHS, BinaryOperatorKind Opcode,
2851                                   const APFloat &RHS) {
2852   bool DynamicRM;
2853   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2854   APFloat::opStatus St;
2855   switch (Opcode) {
2856   default:
2857     Info.FFDiag(E);
2858     return false;
2859   case BO_Mul:
2860     St = LHS.multiply(RHS, RM);
2861     break;
2862   case BO_Add:
2863     St = LHS.add(RHS, RM);
2864     break;
2865   case BO_Sub:
2866     St = LHS.subtract(RHS, RM);
2867     break;
2868   case BO_Div:
2869     // [expr.mul]p4:
2870     //   If the second operand of / or % is zero the behavior is undefined.
2871     if (RHS.isZero())
2872       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2873     St = LHS.divide(RHS, RM);
2874     break;
2875   }
2876 
2877   // [expr.pre]p4:
2878   //   If during the evaluation of an expression, the result is not
2879   //   mathematically defined [...], the behavior is undefined.
2880   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2881   if (LHS.isNaN()) {
2882     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2883     return Info.noteUndefinedBehavior();
2884   }
2885 
2886   return checkFloatingPointResult(Info, E, St);
2887 }
2888 
2889 static bool handleLogicalOpForVector(const APInt &LHSValue,
2890                                      BinaryOperatorKind Opcode,
2891                                      const APInt &RHSValue, APInt &Result) {
2892   bool LHS = (LHSValue != 0);
2893   bool RHS = (RHSValue != 0);
2894 
2895   if (Opcode == BO_LAnd)
2896     Result = LHS && RHS;
2897   else
2898     Result = LHS || RHS;
2899   return true;
2900 }
2901 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2902                                      BinaryOperatorKind Opcode,
2903                                      const APFloat &RHSValue, APInt &Result) {
2904   bool LHS = !LHSValue.isZero();
2905   bool RHS = !RHSValue.isZero();
2906 
2907   if (Opcode == BO_LAnd)
2908     Result = LHS && RHS;
2909   else
2910     Result = LHS || RHS;
2911   return true;
2912 }
2913 
2914 static bool handleLogicalOpForVector(const APValue &LHSValue,
2915                                      BinaryOperatorKind Opcode,
2916                                      const APValue &RHSValue, APInt &Result) {
2917   // The result is always an int type, however operands match the first.
2918   if (LHSValue.getKind() == APValue::Int)
2919     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2920                                     RHSValue.getInt(), Result);
2921   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2922   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2923                                   RHSValue.getFloat(), Result);
2924 }
2925 
2926 template <typename APTy>
2927 static bool
2928 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2929                                const APTy &RHSValue, APInt &Result) {
2930   switch (Opcode) {
2931   default:
2932     llvm_unreachable("unsupported binary operator");
2933   case BO_EQ:
2934     Result = (LHSValue == RHSValue);
2935     break;
2936   case BO_NE:
2937     Result = (LHSValue != RHSValue);
2938     break;
2939   case BO_LT:
2940     Result = (LHSValue < RHSValue);
2941     break;
2942   case BO_GT:
2943     Result = (LHSValue > RHSValue);
2944     break;
2945   case BO_LE:
2946     Result = (LHSValue <= RHSValue);
2947     break;
2948   case BO_GE:
2949     Result = (LHSValue >= RHSValue);
2950     break;
2951   }
2952 
2953   // The boolean operations on these vector types use an instruction that
2954   // results in a mask of '-1' for the 'truth' value.  Ensure that we negate 1
2955   // to -1 to make sure that we produce the correct value.
2956   Result.negate();
2957 
2958   return true;
2959 }
2960 
2961 static bool handleCompareOpForVector(const APValue &LHSValue,
2962                                      BinaryOperatorKind Opcode,
2963                                      const APValue &RHSValue, APInt &Result) {
2964   // The result is always an int type, however operands match the first.
2965   if (LHSValue.getKind() == APValue::Int)
2966     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2967                                           RHSValue.getInt(), Result);
2968   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2969   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2970                                         RHSValue.getFloat(), Result);
2971 }
2972 
2973 // Perform binary operations for vector types, in place on the LHS.
2974 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2975                                     BinaryOperatorKind Opcode,
2976                                     APValue &LHSValue,
2977                                     const APValue &RHSValue) {
2978   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2979          "Operation not supported on vector types");
2980 
2981   const auto *VT = E->getType()->castAs<VectorType>();
2982   unsigned NumElements = VT->getNumElements();
2983   QualType EltTy = VT->getElementType();
2984 
2985   // In the cases (typically C as I've observed) where we aren't evaluating
2986   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2987   // just give up.
2988   if (!LHSValue.isVector()) {
2989     assert(LHSValue.isLValue() &&
2990            "A vector result that isn't a vector OR uncalculated LValue");
2991     Info.FFDiag(E);
2992     return false;
2993   }
2994 
2995   assert(LHSValue.getVectorLength() == NumElements &&
2996          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2997 
2998   SmallVector<APValue, 4> ResultElements;
2999 
3000   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
3001     APValue LHSElt = LHSValue.getVectorElt(EltNum);
3002     APValue RHSElt = RHSValue.getVectorElt(EltNum);
3003 
3004     if (EltTy->isIntegerType()) {
3005       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3006                        EltTy->isUnsignedIntegerType()};
3007       bool Success = true;
3008 
3009       if (BinaryOperator::isLogicalOp(Opcode))
3010         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3011       else if (BinaryOperator::isComparisonOp(Opcode))
3012         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3013       else
3014         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3015                                     RHSElt.getInt(), EltResult);
3016 
3017       if (!Success) {
3018         Info.FFDiag(E);
3019         return false;
3020       }
3021       ResultElements.emplace_back(EltResult);
3022 
3023     } else if (EltTy->isFloatingType()) {
3024       assert(LHSElt.getKind() == APValue::Float &&
3025              RHSElt.getKind() == APValue::Float &&
3026              "Mismatched LHS/RHS/Result Type");
3027       APFloat LHSFloat = LHSElt.getFloat();
3028 
3029       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3030                                  RHSElt.getFloat())) {
3031         Info.FFDiag(E);
3032         return false;
3033       }
3034 
3035       ResultElements.emplace_back(LHSFloat);
3036     }
3037   }
3038 
3039   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3040   return true;
3041 }
3042 
3043 /// Cast an lvalue referring to a base subobject to a derived class, by
3044 /// truncating the lvalue's path to the given length.
3045 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3046                                const RecordDecl *TruncatedType,
3047                                unsigned TruncatedElements) {
3048   SubobjectDesignator &D = Result.Designator;
3049 
3050   // Check we actually point to a derived class object.
3051   if (TruncatedElements == D.Entries.size())
3052     return true;
3053   assert(TruncatedElements >= D.MostDerivedPathLength &&
3054          "not casting to a derived class");
3055   if (!Result.checkSubobject(Info, E, CSK_Derived))
3056     return false;
3057 
3058   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3059   const RecordDecl *RD = TruncatedType;
3060   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3061     if (RD->isInvalidDecl()) return false;
3062     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3063     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3064     if (isVirtualBaseClass(D.Entries[I]))
3065       Result.Offset -= Layout.getVBaseClassOffset(Base);
3066     else
3067       Result.Offset -= Layout.getBaseClassOffset(Base);
3068     RD = Base;
3069   }
3070   D.Entries.resize(TruncatedElements);
3071   return true;
3072 }
3073 
3074 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3075                                    const CXXRecordDecl *Derived,
3076                                    const CXXRecordDecl *Base,
3077                                    const ASTRecordLayout *RL = nullptr) {
3078   if (!RL) {
3079     if (Derived->isInvalidDecl()) return false;
3080     RL = &Info.Ctx.getASTRecordLayout(Derived);
3081   }
3082 
3083   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3084   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3085   return true;
3086 }
3087 
3088 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3089                              const CXXRecordDecl *DerivedDecl,
3090                              const CXXBaseSpecifier *Base) {
3091   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3092 
3093   if (!Base->isVirtual())
3094     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3095 
3096   SubobjectDesignator &D = Obj.Designator;
3097   if (D.Invalid)
3098     return false;
3099 
3100   // Extract most-derived object and corresponding type.
3101   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3102   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3103     return false;
3104 
3105   // Find the virtual base class.
3106   if (DerivedDecl->isInvalidDecl()) return false;
3107   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3108   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3109   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3110   return true;
3111 }
3112 
3113 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3114                                  QualType Type, LValue &Result) {
3115   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3116                                      PathE = E->path_end();
3117        PathI != PathE; ++PathI) {
3118     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3119                           *PathI))
3120       return false;
3121     Type = (*PathI)->getType();
3122   }
3123   return true;
3124 }
3125 
3126 /// Cast an lvalue referring to a derived class to a known base subobject.
3127 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3128                             const CXXRecordDecl *DerivedRD,
3129                             const CXXRecordDecl *BaseRD) {
3130   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3131                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3132   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3133     llvm_unreachable("Class must be derived from the passed in base class!");
3134 
3135   for (CXXBasePathElement &Elem : Paths.front())
3136     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3137       return false;
3138   return true;
3139 }
3140 
3141 /// Update LVal to refer to the given field, which must be a member of the type
3142 /// currently described by LVal.
3143 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3144                                const FieldDecl *FD,
3145                                const ASTRecordLayout *RL = nullptr) {
3146   if (!RL) {
3147     if (FD->getParent()->isInvalidDecl()) return false;
3148     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3149   }
3150 
3151   unsigned I = FD->getFieldIndex();
3152   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3153   LVal.addDecl(Info, E, FD);
3154   return true;
3155 }
3156 
3157 /// Update LVal to refer to the given indirect field.
3158 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3159                                        LValue &LVal,
3160                                        const IndirectFieldDecl *IFD) {
3161   for (const auto *C : IFD->chain())
3162     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3163       return false;
3164   return true;
3165 }
3166 
3167 /// Get the size of the given type in char units.
3168 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3169                          QualType Type, CharUnits &Size) {
3170   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3171   // extension.
3172   if (Type->isVoidType() || Type->isFunctionType()) {
3173     Size = CharUnits::One();
3174     return true;
3175   }
3176 
3177   if (Type->isDependentType()) {
3178     Info.FFDiag(Loc);
3179     return false;
3180   }
3181 
3182   if (!Type->isConstantSizeType()) {
3183     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3184     // FIXME: Better diagnostic.
3185     Info.FFDiag(Loc);
3186     return false;
3187   }
3188 
3189   Size = Info.Ctx.getTypeSizeInChars(Type);
3190   return true;
3191 }
3192 
3193 /// Update a pointer value to model pointer arithmetic.
3194 /// \param Info - Information about the ongoing evaluation.
3195 /// \param E - The expression being evaluated, for diagnostic purposes.
3196 /// \param LVal - The pointer value to be updated.
3197 /// \param EltTy - The pointee type represented by LVal.
3198 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3199 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3200                                         LValue &LVal, QualType EltTy,
3201                                         APSInt Adjustment) {
3202   CharUnits SizeOfPointee;
3203   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3204     return false;
3205 
3206   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3207   return true;
3208 }
3209 
3210 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3211                                         LValue &LVal, QualType EltTy,
3212                                         int64_t Adjustment) {
3213   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3214                                      APSInt::get(Adjustment));
3215 }
3216 
3217 /// Update an lvalue to refer to a component of a complex number.
3218 /// \param Info - Information about the ongoing evaluation.
3219 /// \param LVal - The lvalue to be updated.
3220 /// \param EltTy - The complex number's component type.
3221 /// \param Imag - False for the real component, true for the imaginary.
3222 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3223                                        LValue &LVal, QualType EltTy,
3224                                        bool Imag) {
3225   if (Imag) {
3226     CharUnits SizeOfComponent;
3227     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3228       return false;
3229     LVal.Offset += SizeOfComponent;
3230   }
3231   LVal.addComplex(Info, E, EltTy, Imag);
3232   return true;
3233 }
3234 
3235 /// Try to evaluate the initializer for a variable declaration.
3236 ///
3237 /// \param Info   Information about the ongoing evaluation.
3238 /// \param E      An expression to be used when printing diagnostics.
3239 /// \param VD     The variable whose initializer should be obtained.
3240 /// \param Version The version of the variable within the frame.
3241 /// \param Frame  The frame in which the variable was created. Must be null
3242 ///               if this variable is not local to the evaluation.
3243 /// \param Result Filled in with a pointer to the value of the variable.
3244 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3245                                 const VarDecl *VD, CallStackFrame *Frame,
3246                                 unsigned Version, APValue *&Result) {
3247   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3248 
3249   // If this is a local variable, dig out its value.
3250   if (Frame) {
3251     Result = Frame->getTemporary(VD, Version);
3252     if (Result)
3253       return true;
3254 
3255     if (!isa<ParmVarDecl>(VD)) {
3256       // Assume variables referenced within a lambda's call operator that were
3257       // not declared within the call operator are captures and during checking
3258       // of a potential constant expression, assume they are unknown constant
3259       // expressions.
3260       assert(isLambdaCallOperator(Frame->Callee) &&
3261              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3262              "missing value for local variable");
3263       if (Info.checkingPotentialConstantExpression())
3264         return false;
3265       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3266       // still reachable at all?
3267       Info.FFDiag(E->getBeginLoc(),
3268                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3269           << "captures not currently allowed";
3270       return false;
3271     }
3272   }
3273 
3274   // If we're currently evaluating the initializer of this declaration, use that
3275   // in-flight value.
3276   if (Info.EvaluatingDecl == Base) {
3277     Result = Info.EvaluatingDeclValue;
3278     return true;
3279   }
3280 
3281   if (isa<ParmVarDecl>(VD)) {
3282     // Assume parameters of a potential constant expression are usable in
3283     // constant expressions.
3284     if (!Info.checkingPotentialConstantExpression() ||
3285         !Info.CurrentCall->Callee ||
3286         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3287       if (Info.getLangOpts().CPlusPlus11) {
3288         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3289             << VD;
3290         NoteLValueLocation(Info, Base);
3291       } else {
3292         Info.FFDiag(E);
3293       }
3294     }
3295     return false;
3296   }
3297 
3298   // Dig out the initializer, and use the declaration which it's attached to.
3299   // FIXME: We should eventually check whether the variable has a reachable
3300   // initializing declaration.
3301   const Expr *Init = VD->getAnyInitializer(VD);
3302   if (!Init) {
3303     // Don't diagnose during potential constant expression checking; an
3304     // initializer might be added later.
3305     if (!Info.checkingPotentialConstantExpression()) {
3306       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3307         << VD;
3308       NoteLValueLocation(Info, Base);
3309     }
3310     return false;
3311   }
3312 
3313   if (Init->isValueDependent()) {
3314     // The DeclRefExpr is not value-dependent, but the variable it refers to
3315     // has a value-dependent initializer. This should only happen in
3316     // constant-folding cases, where the variable is not actually of a suitable
3317     // type for use in a constant expression (otherwise the DeclRefExpr would
3318     // have been value-dependent too), so diagnose that.
3319     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3320     if (!Info.checkingPotentialConstantExpression()) {
3321       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3322                          ? diag::note_constexpr_ltor_non_constexpr
3323                          : diag::note_constexpr_ltor_non_integral, 1)
3324           << VD << VD->getType();
3325       NoteLValueLocation(Info, Base);
3326     }
3327     return false;
3328   }
3329 
3330   // Check that we can fold the initializer. In C++, we will have already done
3331   // this in the cases where it matters for conformance.
3332   if (!VD->evaluateValue()) {
3333     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3334     NoteLValueLocation(Info, Base);
3335     return false;
3336   }
3337 
3338   // Check that the variable is actually usable in constant expressions. For a
3339   // const integral variable or a reference, we might have a non-constant
3340   // initializer that we can nonetheless evaluate the initializer for. Such
3341   // variables are not usable in constant expressions. In C++98, the
3342   // initializer also syntactically needs to be an ICE.
3343   //
3344   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3345   // expressions here; doing so would regress diagnostics for things like
3346   // reading from a volatile constexpr variable.
3347   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3348        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3349       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3350        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3351     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3352     NoteLValueLocation(Info, Base);
3353   }
3354 
3355   // Never use the initializer of a weak variable, not even for constant
3356   // folding. We can't be sure that this is the definition that will be used.
3357   if (VD->isWeak()) {
3358     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3359     NoteLValueLocation(Info, Base);
3360     return false;
3361   }
3362 
3363   Result = VD->getEvaluatedValue();
3364   return true;
3365 }
3366 
3367 /// Get the base index of the given base class within an APValue representing
3368 /// the given derived class.
3369 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3370                              const CXXRecordDecl *Base) {
3371   Base = Base->getCanonicalDecl();
3372   unsigned Index = 0;
3373   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3374          E = Derived->bases_end(); I != E; ++I, ++Index) {
3375     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3376       return Index;
3377   }
3378 
3379   llvm_unreachable("base class missing from derived class's bases list");
3380 }
3381 
3382 /// Extract the value of a character from a string literal.
3383 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3384                                             uint64_t Index) {
3385   assert(!isa<SourceLocExpr>(Lit) &&
3386          "SourceLocExpr should have already been converted to a StringLiteral");
3387 
3388   // FIXME: Support MakeStringConstant
3389   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3390     std::string Str;
3391     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3392     assert(Index <= Str.size() && "Index too large");
3393     return APSInt::getUnsigned(Str.c_str()[Index]);
3394   }
3395 
3396   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3397     Lit = PE->getFunctionName();
3398   const StringLiteral *S = cast<StringLiteral>(Lit);
3399   const ConstantArrayType *CAT =
3400       Info.Ctx.getAsConstantArrayType(S->getType());
3401   assert(CAT && "string literal isn't an array");
3402   QualType CharType = CAT->getElementType();
3403   assert(CharType->isIntegerType() && "unexpected character type");
3404 
3405   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3406                CharType->isUnsignedIntegerType());
3407   if (Index < S->getLength())
3408     Value = S->getCodeUnit(Index);
3409   return Value;
3410 }
3411 
3412 // Expand a string literal into an array of characters.
3413 //
3414 // FIXME: This is inefficient; we should probably introduce something similar
3415 // to the LLVM ConstantDataArray to make this cheaper.
3416 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3417                                 APValue &Result,
3418                                 QualType AllocType = QualType()) {
3419   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3420       AllocType.isNull() ? S->getType() : AllocType);
3421   assert(CAT && "string literal isn't an array");
3422   QualType CharType = CAT->getElementType();
3423   assert(CharType->isIntegerType() && "unexpected character type");
3424 
3425   unsigned Elts = CAT->getSize().getZExtValue();
3426   Result = APValue(APValue::UninitArray(),
3427                    std::min(S->getLength(), Elts), Elts);
3428   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3429                CharType->isUnsignedIntegerType());
3430   if (Result.hasArrayFiller())
3431     Result.getArrayFiller() = APValue(Value);
3432   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3433     Value = S->getCodeUnit(I);
3434     Result.getArrayInitializedElt(I) = APValue(Value);
3435   }
3436 }
3437 
3438 // Expand an array so that it has more than Index filled elements.
3439 static void expandArray(APValue &Array, unsigned Index) {
3440   unsigned Size = Array.getArraySize();
3441   assert(Index < Size);
3442 
3443   // Always at least double the number of elements for which we store a value.
3444   unsigned OldElts = Array.getArrayInitializedElts();
3445   unsigned NewElts = std::max(Index+1, OldElts * 2);
3446   NewElts = std::min(Size, std::max(NewElts, 8u));
3447 
3448   // Copy the data across.
3449   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3450   for (unsigned I = 0; I != OldElts; ++I)
3451     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3452   for (unsigned I = OldElts; I != NewElts; ++I)
3453     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3454   if (NewValue.hasArrayFiller())
3455     NewValue.getArrayFiller() = Array.getArrayFiller();
3456   Array.swap(NewValue);
3457 }
3458 
3459 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3460 /// conversion. If it's of class type, we may assume that the copy operation
3461 /// is trivial. Note that this is never true for a union type with fields
3462 /// (because the copy always "reads" the active member) and always true for
3463 /// a non-class type.
3464 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3465 static bool isReadByLvalueToRvalueConversion(QualType T) {
3466   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3467   return !RD || isReadByLvalueToRvalueConversion(RD);
3468 }
3469 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3470   // FIXME: A trivial copy of a union copies the object representation, even if
3471   // the union is empty.
3472   if (RD->isUnion())
3473     return !RD->field_empty();
3474   if (RD->isEmpty())
3475     return false;
3476 
3477   for (auto *Field : RD->fields())
3478     if (!Field->isUnnamedBitfield() &&
3479         isReadByLvalueToRvalueConversion(Field->getType()))
3480       return true;
3481 
3482   for (auto &BaseSpec : RD->bases())
3483     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3484       return true;
3485 
3486   return false;
3487 }
3488 
3489 /// Diagnose an attempt to read from any unreadable field within the specified
3490 /// type, which might be a class type.
3491 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3492                                   QualType T) {
3493   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3494   if (!RD)
3495     return false;
3496 
3497   if (!RD->hasMutableFields())
3498     return false;
3499 
3500   for (auto *Field : RD->fields()) {
3501     // If we're actually going to read this field in some way, then it can't
3502     // be mutable. If we're in a union, then assigning to a mutable field
3503     // (even an empty one) can change the active member, so that's not OK.
3504     // FIXME: Add core issue number for the union case.
3505     if (Field->isMutable() &&
3506         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3507       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3508       Info.Note(Field->getLocation(), diag::note_declared_at);
3509       return true;
3510     }
3511 
3512     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3513       return true;
3514   }
3515 
3516   for (auto &BaseSpec : RD->bases())
3517     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3518       return true;
3519 
3520   // All mutable fields were empty, and thus not actually read.
3521   return false;
3522 }
3523 
3524 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3525                                         APValue::LValueBase Base,
3526                                         bool MutableSubobject = false) {
3527   // A temporary or transient heap allocation we created.
3528   if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3529     return true;
3530 
3531   switch (Info.IsEvaluatingDecl) {
3532   case EvalInfo::EvaluatingDeclKind::None:
3533     return false;
3534 
3535   case EvalInfo::EvaluatingDeclKind::Ctor:
3536     // The variable whose initializer we're evaluating.
3537     if (Info.EvaluatingDecl == Base)
3538       return true;
3539 
3540     // A temporary lifetime-extended by the variable whose initializer we're
3541     // evaluating.
3542     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3543       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3544         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3545     return false;
3546 
3547   case EvalInfo::EvaluatingDeclKind::Dtor:
3548     // C++2a [expr.const]p6:
3549     //   [during constant destruction] the lifetime of a and its non-mutable
3550     //   subobjects (but not its mutable subobjects) [are] considered to start
3551     //   within e.
3552     if (MutableSubobject || Base != Info.EvaluatingDecl)
3553       return false;
3554     // FIXME: We can meaningfully extend this to cover non-const objects, but
3555     // we will need special handling: we should be able to access only
3556     // subobjects of such objects that are themselves declared const.
3557     QualType T = getType(Base);
3558     return T.isConstQualified() || T->isReferenceType();
3559   }
3560 
3561   llvm_unreachable("unknown evaluating decl kind");
3562 }
3563 
3564 namespace {
3565 /// A handle to a complete object (an object that is not a subobject of
3566 /// another object).
3567 struct CompleteObject {
3568   /// The identity of the object.
3569   APValue::LValueBase Base;
3570   /// The value of the complete object.
3571   APValue *Value;
3572   /// The type of the complete object.
3573   QualType Type;
3574 
3575   CompleteObject() : Value(nullptr) {}
3576   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3577       : Base(Base), Value(Value), Type(Type) {}
3578 
3579   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3580     // If this isn't a "real" access (eg, if it's just accessing the type
3581     // info), allow it. We assume the type doesn't change dynamically for
3582     // subobjects of constexpr objects (even though we'd hit UB here if it
3583     // did). FIXME: Is this right?
3584     if (!isAnyAccess(AK))
3585       return true;
3586 
3587     // In C++14 onwards, it is permitted to read a mutable member whose
3588     // lifetime began within the evaluation.
3589     // FIXME: Should we also allow this in C++11?
3590     if (!Info.getLangOpts().CPlusPlus14)
3591       return false;
3592     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3593   }
3594 
3595   explicit operator bool() const { return !Type.isNull(); }
3596 };
3597 } // end anonymous namespace
3598 
3599 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3600                                  bool IsMutable = false) {
3601   // C++ [basic.type.qualifier]p1:
3602   // - A const object is an object of type const T or a non-mutable subobject
3603   //   of a const object.
3604   if (ObjType.isConstQualified() && !IsMutable)
3605     SubobjType.addConst();
3606   // - A volatile object is an object of type const T or a subobject of a
3607   //   volatile object.
3608   if (ObjType.isVolatileQualified())
3609     SubobjType.addVolatile();
3610   return SubobjType;
3611 }
3612 
3613 /// Find the designated sub-object of an rvalue.
3614 template<typename SubobjectHandler>
3615 typename SubobjectHandler::result_type
3616 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3617               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3618   if (Sub.Invalid)
3619     // A diagnostic will have already been produced.
3620     return handler.failed();
3621   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3622     if (Info.getLangOpts().CPlusPlus11)
3623       Info.FFDiag(E, Sub.isOnePastTheEnd()
3624                          ? diag::note_constexpr_access_past_end
3625                          : diag::note_constexpr_access_unsized_array)
3626           << handler.AccessKind;
3627     else
3628       Info.FFDiag(E);
3629     return handler.failed();
3630   }
3631 
3632   APValue *O = Obj.Value;
3633   QualType ObjType = Obj.Type;
3634   const FieldDecl *LastField = nullptr;
3635   const FieldDecl *VolatileField = nullptr;
3636 
3637   // Walk the designator's path to find the subobject.
3638   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3639     // Reading an indeterminate value is undefined, but assigning over one is OK.
3640     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3641         (O->isIndeterminate() &&
3642          !isValidIndeterminateAccess(handler.AccessKind))) {
3643       if (!Info.checkingPotentialConstantExpression())
3644         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3645             << handler.AccessKind << O->isIndeterminate();
3646       return handler.failed();
3647     }
3648 
3649     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3650     //    const and volatile semantics are not applied on an object under
3651     //    {con,de}struction.
3652     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3653         ObjType->isRecordType() &&
3654         Info.isEvaluatingCtorDtor(
3655             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3656                                          Sub.Entries.begin() + I)) !=
3657                           ConstructionPhase::None) {
3658       ObjType = Info.Ctx.getCanonicalType(ObjType);
3659       ObjType.removeLocalConst();
3660       ObjType.removeLocalVolatile();
3661     }
3662 
3663     // If this is our last pass, check that the final object type is OK.
3664     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3665       // Accesses to volatile objects are prohibited.
3666       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3667         if (Info.getLangOpts().CPlusPlus) {
3668           int DiagKind;
3669           SourceLocation Loc;
3670           const NamedDecl *Decl = nullptr;
3671           if (VolatileField) {
3672             DiagKind = 2;
3673             Loc = VolatileField->getLocation();
3674             Decl = VolatileField;
3675           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3676             DiagKind = 1;
3677             Loc = VD->getLocation();
3678             Decl = VD;
3679           } else {
3680             DiagKind = 0;
3681             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3682               Loc = E->getExprLoc();
3683           }
3684           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3685               << handler.AccessKind << DiagKind << Decl;
3686           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3687         } else {
3688           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3689         }
3690         return handler.failed();
3691       }
3692 
3693       // If we are reading an object of class type, there may still be more
3694       // things we need to check: if there are any mutable subobjects, we
3695       // cannot perform this read. (This only happens when performing a trivial
3696       // copy or assignment.)
3697       if (ObjType->isRecordType() &&
3698           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3699           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3700         return handler.failed();
3701     }
3702 
3703     if (I == N) {
3704       if (!handler.found(*O, ObjType))
3705         return false;
3706 
3707       // If we modified a bit-field, truncate it to the right width.
3708       if (isModification(handler.AccessKind) &&
3709           LastField && LastField->isBitField() &&
3710           !truncateBitfieldValue(Info, E, *O, LastField))
3711         return false;
3712 
3713       return true;
3714     }
3715 
3716     LastField = nullptr;
3717     if (ObjType->isArrayType()) {
3718       // Next subobject is an array element.
3719       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3720       assert(CAT && "vla in literal type?");
3721       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3722       if (CAT->getSize().ule(Index)) {
3723         // Note, it should not be possible to form a pointer with a valid
3724         // designator which points more than one past the end of the array.
3725         if (Info.getLangOpts().CPlusPlus11)
3726           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3727             << handler.AccessKind;
3728         else
3729           Info.FFDiag(E);
3730         return handler.failed();
3731       }
3732 
3733       ObjType = CAT->getElementType();
3734 
3735       if (O->getArrayInitializedElts() > Index)
3736         O = &O->getArrayInitializedElt(Index);
3737       else if (!isRead(handler.AccessKind)) {
3738         expandArray(*O, Index);
3739         O = &O->getArrayInitializedElt(Index);
3740       } else
3741         O = &O->getArrayFiller();
3742     } else if (ObjType->isAnyComplexType()) {
3743       // Next subobject is a complex number.
3744       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3745       if (Index > 1) {
3746         if (Info.getLangOpts().CPlusPlus11)
3747           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3748             << handler.AccessKind;
3749         else
3750           Info.FFDiag(E);
3751         return handler.failed();
3752       }
3753 
3754       ObjType = getSubobjectType(
3755           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3756 
3757       assert(I == N - 1 && "extracting subobject of scalar?");
3758       if (O->isComplexInt()) {
3759         return handler.found(Index ? O->getComplexIntImag()
3760                                    : O->getComplexIntReal(), ObjType);
3761       } else {
3762         assert(O->isComplexFloat());
3763         return handler.found(Index ? O->getComplexFloatImag()
3764                                    : O->getComplexFloatReal(), ObjType);
3765       }
3766     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3767       if (Field->isMutable() &&
3768           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3769         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3770           << handler.AccessKind << Field;
3771         Info.Note(Field->getLocation(), diag::note_declared_at);
3772         return handler.failed();
3773       }
3774 
3775       // Next subobject is a class, struct or union field.
3776       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3777       if (RD->isUnion()) {
3778         const FieldDecl *UnionField = O->getUnionField();
3779         if (!UnionField ||
3780             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3781           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3782             // Placement new onto an inactive union member makes it active.
3783             O->setUnion(Field, APValue());
3784           } else {
3785             // FIXME: If O->getUnionValue() is absent, report that there's no
3786             // active union member rather than reporting the prior active union
3787             // member. We'll need to fix nullptr_t to not use APValue() as its
3788             // representation first.
3789             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3790                 << handler.AccessKind << Field << !UnionField << UnionField;
3791             return handler.failed();
3792           }
3793         }
3794         O = &O->getUnionValue();
3795       } else
3796         O = &O->getStructField(Field->getFieldIndex());
3797 
3798       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3799       LastField = Field;
3800       if (Field->getType().isVolatileQualified())
3801         VolatileField = Field;
3802     } else {
3803       // Next subobject is a base class.
3804       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3805       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3806       O = &O->getStructBase(getBaseIndex(Derived, Base));
3807 
3808       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3809     }
3810   }
3811 }
3812 
3813 namespace {
3814 struct ExtractSubobjectHandler {
3815   EvalInfo &Info;
3816   const Expr *E;
3817   APValue &Result;
3818   const AccessKinds AccessKind;
3819 
3820   typedef bool result_type;
3821   bool failed() { return false; }
3822   bool found(APValue &Subobj, QualType SubobjType) {
3823     Result = Subobj;
3824     if (AccessKind == AK_ReadObjectRepresentation)
3825       return true;
3826     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3827   }
3828   bool found(APSInt &Value, QualType SubobjType) {
3829     Result = APValue(Value);
3830     return true;
3831   }
3832   bool found(APFloat &Value, QualType SubobjType) {
3833     Result = APValue(Value);
3834     return true;
3835   }
3836 };
3837 } // end anonymous namespace
3838 
3839 /// Extract the designated sub-object of an rvalue.
3840 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3841                              const CompleteObject &Obj,
3842                              const SubobjectDesignator &Sub, APValue &Result,
3843                              AccessKinds AK = AK_Read) {
3844   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3845   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3846   return findSubobject(Info, E, Obj, Sub, Handler);
3847 }
3848 
3849 namespace {
3850 struct ModifySubobjectHandler {
3851   EvalInfo &Info;
3852   APValue &NewVal;
3853   const Expr *E;
3854 
3855   typedef bool result_type;
3856   static const AccessKinds AccessKind = AK_Assign;
3857 
3858   bool checkConst(QualType QT) {
3859     // Assigning to a const object has undefined behavior.
3860     if (QT.isConstQualified()) {
3861       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3862       return false;
3863     }
3864     return true;
3865   }
3866 
3867   bool failed() { return false; }
3868   bool found(APValue &Subobj, QualType SubobjType) {
3869     if (!checkConst(SubobjType))
3870       return false;
3871     // We've been given ownership of NewVal, so just swap it in.
3872     Subobj.swap(NewVal);
3873     return true;
3874   }
3875   bool found(APSInt &Value, QualType SubobjType) {
3876     if (!checkConst(SubobjType))
3877       return false;
3878     if (!NewVal.isInt()) {
3879       // Maybe trying to write a cast pointer value into a complex?
3880       Info.FFDiag(E);
3881       return false;
3882     }
3883     Value = NewVal.getInt();
3884     return true;
3885   }
3886   bool found(APFloat &Value, QualType SubobjType) {
3887     if (!checkConst(SubobjType))
3888       return false;
3889     Value = NewVal.getFloat();
3890     return true;
3891   }
3892 };
3893 } // end anonymous namespace
3894 
3895 const AccessKinds ModifySubobjectHandler::AccessKind;
3896 
3897 /// Update the designated sub-object of an rvalue to the given value.
3898 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3899                             const CompleteObject &Obj,
3900                             const SubobjectDesignator &Sub,
3901                             APValue &NewVal) {
3902   ModifySubobjectHandler Handler = { Info, NewVal, E };
3903   return findSubobject(Info, E, Obj, Sub, Handler);
3904 }
3905 
3906 /// Find the position where two subobject designators diverge, or equivalently
3907 /// the length of the common initial subsequence.
3908 static unsigned FindDesignatorMismatch(QualType ObjType,
3909                                        const SubobjectDesignator &A,
3910                                        const SubobjectDesignator &B,
3911                                        bool &WasArrayIndex) {
3912   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3913   for (/**/; I != N; ++I) {
3914     if (!ObjType.isNull() &&
3915         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3916       // Next subobject is an array element.
3917       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3918         WasArrayIndex = true;
3919         return I;
3920       }
3921       if (ObjType->isAnyComplexType())
3922         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3923       else
3924         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3925     } else {
3926       if (A.Entries[I].getAsBaseOrMember() !=
3927           B.Entries[I].getAsBaseOrMember()) {
3928         WasArrayIndex = false;
3929         return I;
3930       }
3931       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3932         // Next subobject is a field.
3933         ObjType = FD->getType();
3934       else
3935         // Next subobject is a base class.
3936         ObjType = QualType();
3937     }
3938   }
3939   WasArrayIndex = false;
3940   return I;
3941 }
3942 
3943 /// Determine whether the given subobject designators refer to elements of the
3944 /// same array object.
3945 static bool AreElementsOfSameArray(QualType ObjType,
3946                                    const SubobjectDesignator &A,
3947                                    const SubobjectDesignator &B) {
3948   if (A.Entries.size() != B.Entries.size())
3949     return false;
3950 
3951   bool IsArray = A.MostDerivedIsArrayElement;
3952   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3953     // A is a subobject of the array element.
3954     return false;
3955 
3956   // If A (and B) designates an array element, the last entry will be the array
3957   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3958   // of length 1' case, and the entire path must match.
3959   bool WasArrayIndex;
3960   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3961   return CommonLength >= A.Entries.size() - IsArray;
3962 }
3963 
3964 /// Find the complete object to which an LValue refers.
3965 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3966                                          AccessKinds AK, const LValue &LVal,
3967                                          QualType LValType) {
3968   if (LVal.InvalidBase) {
3969     Info.FFDiag(E);
3970     return CompleteObject();
3971   }
3972 
3973   if (!LVal.Base) {
3974     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3975     return CompleteObject();
3976   }
3977 
3978   CallStackFrame *Frame = nullptr;
3979   unsigned Depth = 0;
3980   if (LVal.getLValueCallIndex()) {
3981     std::tie(Frame, Depth) =
3982         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3983     if (!Frame) {
3984       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3985         << AK << LVal.Base.is<const ValueDecl*>();
3986       NoteLValueLocation(Info, LVal.Base);
3987       return CompleteObject();
3988     }
3989   }
3990 
3991   bool IsAccess = isAnyAccess(AK);
3992 
3993   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3994   // is not a constant expression (even if the object is non-volatile). We also
3995   // apply this rule to C++98, in order to conform to the expected 'volatile'
3996   // semantics.
3997   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3998     if (Info.getLangOpts().CPlusPlus)
3999       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
4000         << AK << LValType;
4001     else
4002       Info.FFDiag(E);
4003     return CompleteObject();
4004   }
4005 
4006   // Compute value storage location and type of base object.
4007   APValue *BaseVal = nullptr;
4008   QualType BaseType = getType(LVal.Base);
4009 
4010   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4011       lifetimeStartedInEvaluation(Info, LVal.Base)) {
4012     // This is the object whose initializer we're evaluating, so its lifetime
4013     // started in the current evaluation.
4014     BaseVal = Info.EvaluatingDeclValue;
4015   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4016     // Allow reading from a GUID declaration.
4017     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4018       if (isModification(AK)) {
4019         // All the remaining cases do not permit modification of the object.
4020         Info.FFDiag(E, diag::note_constexpr_modify_global);
4021         return CompleteObject();
4022       }
4023       APValue &V = GD->getAsAPValue();
4024       if (V.isAbsent()) {
4025         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4026             << GD->getType();
4027         return CompleteObject();
4028       }
4029       return CompleteObject(LVal.Base, &V, GD->getType());
4030     }
4031 
4032     // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4033     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4034       if (isModification(AK)) {
4035         Info.FFDiag(E, diag::note_constexpr_modify_global);
4036         return CompleteObject();
4037       }
4038       return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4039                             GCD->getType());
4040     }
4041 
4042     // Allow reading from template parameter objects.
4043     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4044       if (isModification(AK)) {
4045         Info.FFDiag(E, diag::note_constexpr_modify_global);
4046         return CompleteObject();
4047       }
4048       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4049                             TPO->getType());
4050     }
4051 
4052     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4053     // In C++11, constexpr, non-volatile variables initialized with constant
4054     // expressions are constant expressions too. Inside constexpr functions,
4055     // parameters are constant expressions even if they're non-const.
4056     // In C++1y, objects local to a constant expression (those with a Frame) are
4057     // both readable and writable inside constant expressions.
4058     // In C, such things can also be folded, although they are not ICEs.
4059     const VarDecl *VD = dyn_cast<VarDecl>(D);
4060     if (VD) {
4061       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4062         VD = VDef;
4063     }
4064     if (!VD || VD->isInvalidDecl()) {
4065       Info.FFDiag(E);
4066       return CompleteObject();
4067     }
4068 
4069     bool IsConstant = BaseType.isConstant(Info.Ctx);
4070 
4071     // Unless we're looking at a local variable or argument in a constexpr call,
4072     // the variable we're reading must be const.
4073     if (!Frame) {
4074       if (IsAccess && isa<ParmVarDecl>(VD)) {
4075         // Access of a parameter that's not associated with a frame isn't going
4076         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4077         // suitable diagnostic.
4078       } else if (Info.getLangOpts().CPlusPlus14 &&
4079                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4080         // OK, we can read and modify an object if we're in the process of
4081         // evaluating its initializer, because its lifetime began in this
4082         // evaluation.
4083       } else if (isModification(AK)) {
4084         // All the remaining cases do not permit modification of the object.
4085         Info.FFDiag(E, diag::note_constexpr_modify_global);
4086         return CompleteObject();
4087       } else if (VD->isConstexpr()) {
4088         // OK, we can read this variable.
4089       } else if (BaseType->isIntegralOrEnumerationType()) {
4090         if (!IsConstant) {
4091           if (!IsAccess)
4092             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4093           if (Info.getLangOpts().CPlusPlus) {
4094             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4095             Info.Note(VD->getLocation(), diag::note_declared_at);
4096           } else {
4097             Info.FFDiag(E);
4098           }
4099           return CompleteObject();
4100         }
4101       } else if (!IsAccess) {
4102         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4103       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4104                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4105         // This variable might end up being constexpr. Don't diagnose it yet.
4106       } else if (IsConstant) {
4107         // Keep evaluating to see what we can do. In particular, we support
4108         // folding of const floating-point types, in order to make static const
4109         // data members of such types (supported as an extension) more useful.
4110         if (Info.getLangOpts().CPlusPlus) {
4111           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4112                               ? diag::note_constexpr_ltor_non_constexpr
4113                               : diag::note_constexpr_ltor_non_integral, 1)
4114               << VD << BaseType;
4115           Info.Note(VD->getLocation(), diag::note_declared_at);
4116         } else {
4117           Info.CCEDiag(E);
4118         }
4119       } else {
4120         // Never allow reading a non-const value.
4121         if (Info.getLangOpts().CPlusPlus) {
4122           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4123                              ? diag::note_constexpr_ltor_non_constexpr
4124                              : diag::note_constexpr_ltor_non_integral, 1)
4125               << VD << BaseType;
4126           Info.Note(VD->getLocation(), diag::note_declared_at);
4127         } else {
4128           Info.FFDiag(E);
4129         }
4130         return CompleteObject();
4131       }
4132     }
4133 
4134     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4135       return CompleteObject();
4136   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4137     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4138     if (!Alloc) {
4139       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4140       return CompleteObject();
4141     }
4142     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4143                           LVal.Base.getDynamicAllocType());
4144   } else {
4145     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4146 
4147     if (!Frame) {
4148       if (const MaterializeTemporaryExpr *MTE =
4149               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4150         assert(MTE->getStorageDuration() == SD_Static &&
4151                "should have a frame for a non-global materialized temporary");
4152 
4153         // C++20 [expr.const]p4: [DR2126]
4154         //   An object or reference is usable in constant expressions if it is
4155         //   - a temporary object of non-volatile const-qualified literal type
4156         //     whose lifetime is extended to that of a variable that is usable
4157         //     in constant expressions
4158         //
4159         // C++20 [expr.const]p5:
4160         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4161         //   - a non-volatile glvalue that refers to an object that is usable
4162         //     in constant expressions, or
4163         //   - a non-volatile glvalue of literal type that refers to a
4164         //     non-volatile object whose lifetime began within the evaluation
4165         //     of E;
4166         //
4167         // C++11 misses the 'began within the evaluation of e' check and
4168         // instead allows all temporaries, including things like:
4169         //   int &&r = 1;
4170         //   int x = ++r;
4171         //   constexpr int k = r;
4172         // Therefore we use the C++14-onwards rules in C++11 too.
4173         //
4174         // Note that temporaries whose lifetimes began while evaluating a
4175         // variable's constructor are not usable while evaluating the
4176         // corresponding destructor, not even if they're of const-qualified
4177         // types.
4178         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4179             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4180           if (!IsAccess)
4181             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4182           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4183           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4184           return CompleteObject();
4185         }
4186 
4187         BaseVal = MTE->getOrCreateValue(false);
4188         assert(BaseVal && "got reference to unevaluated temporary");
4189       } else {
4190         if (!IsAccess)
4191           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4192         APValue Val;
4193         LVal.moveInto(Val);
4194         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4195             << AK
4196             << Val.getAsString(Info.Ctx,
4197                                Info.Ctx.getLValueReferenceType(LValType));
4198         NoteLValueLocation(Info, LVal.Base);
4199         return CompleteObject();
4200       }
4201     } else {
4202       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4203       assert(BaseVal && "missing value for temporary");
4204     }
4205   }
4206 
4207   // In C++14, we can't safely access any mutable state when we might be
4208   // evaluating after an unmodeled side effect. Parameters are modeled as state
4209   // in the caller, but aren't visible once the call returns, so they can be
4210   // modified in a speculatively-evaluated call.
4211   //
4212   // FIXME: Not all local state is mutable. Allow local constant subobjects
4213   // to be read here (but take care with 'mutable' fields).
4214   unsigned VisibleDepth = Depth;
4215   if (llvm::isa_and_nonnull<ParmVarDecl>(
4216           LVal.Base.dyn_cast<const ValueDecl *>()))
4217     ++VisibleDepth;
4218   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4219        Info.EvalStatus.HasSideEffects) ||
4220       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4221     return CompleteObject();
4222 
4223   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4224 }
4225 
4226 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4227 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4228 /// glvalue referred to by an entity of reference type.
4229 ///
4230 /// \param Info - Information about the ongoing evaluation.
4231 /// \param Conv - The expression for which we are performing the conversion.
4232 ///               Used for diagnostics.
4233 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4234 ///               case of a non-class type).
4235 /// \param LVal - The glvalue on which we are attempting to perform this action.
4236 /// \param RVal - The produced value will be placed here.
4237 /// \param WantObjectRepresentation - If true, we're looking for the object
4238 ///               representation rather than the value, and in particular,
4239 ///               there is no requirement that the result be fully initialized.
4240 static bool
4241 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4242                                const LValue &LVal, APValue &RVal,
4243                                bool WantObjectRepresentation = false) {
4244   if (LVal.Designator.Invalid)
4245     return false;
4246 
4247   // Check for special cases where there is no existing APValue to look at.
4248   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4249 
4250   AccessKinds AK =
4251       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4252 
4253   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4254     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4255       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4256       // initializer until now for such expressions. Such an expression can't be
4257       // an ICE in C, so this only matters for fold.
4258       if (Type.isVolatileQualified()) {
4259         Info.FFDiag(Conv);
4260         return false;
4261       }
4262 
4263       APValue Lit;
4264       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4265         return false;
4266 
4267       // According to GCC info page:
4268       //
4269       // 6.28 Compound Literals
4270       //
4271       // As an optimization, G++ sometimes gives array compound literals longer
4272       // lifetimes: when the array either appears outside a function or has a
4273       // const-qualified type. If foo and its initializer had elements of type
4274       // char *const rather than char *, or if foo were a global variable, the
4275       // array would have static storage duration. But it is probably safest
4276       // just to avoid the use of array compound literals in C++ code.
4277       //
4278       // Obey that rule by checking constness for converted array types.
4279 
4280       QualType CLETy = CLE->getType();
4281       if (CLETy->isArrayType() && !Type->isArrayType()) {
4282         if (!CLETy.isConstant(Info.Ctx)) {
4283           Info.FFDiag(Conv);
4284           Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4285           return false;
4286         }
4287       }
4288 
4289       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4290       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4291     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4292       // Special-case character extraction so we don't have to construct an
4293       // APValue for the whole string.
4294       assert(LVal.Designator.Entries.size() <= 1 &&
4295              "Can only read characters from string literals");
4296       if (LVal.Designator.Entries.empty()) {
4297         // Fail for now for LValue to RValue conversion of an array.
4298         // (This shouldn't show up in C/C++, but it could be triggered by a
4299         // weird EvaluateAsRValue call from a tool.)
4300         Info.FFDiag(Conv);
4301         return false;
4302       }
4303       if (LVal.Designator.isOnePastTheEnd()) {
4304         if (Info.getLangOpts().CPlusPlus11)
4305           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4306         else
4307           Info.FFDiag(Conv);
4308         return false;
4309       }
4310       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4311       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4312       return true;
4313     }
4314   }
4315 
4316   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4317   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4318 }
4319 
4320 /// Perform an assignment of Val to LVal. Takes ownership of Val.
4321 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4322                              QualType LValType, APValue &Val) {
4323   if (LVal.Designator.Invalid)
4324     return false;
4325 
4326   if (!Info.getLangOpts().CPlusPlus14) {
4327     Info.FFDiag(E);
4328     return false;
4329   }
4330 
4331   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4332   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4333 }
4334 
4335 namespace {
4336 struct CompoundAssignSubobjectHandler {
4337   EvalInfo &Info;
4338   const CompoundAssignOperator *E;
4339   QualType PromotedLHSType;
4340   BinaryOperatorKind Opcode;
4341   const APValue &RHS;
4342 
4343   static const AccessKinds AccessKind = AK_Assign;
4344 
4345   typedef bool result_type;
4346 
4347   bool checkConst(QualType QT) {
4348     // Assigning to a const object has undefined behavior.
4349     if (QT.isConstQualified()) {
4350       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4351       return false;
4352     }
4353     return true;
4354   }
4355 
4356   bool failed() { return false; }
4357   bool found(APValue &Subobj, QualType SubobjType) {
4358     switch (Subobj.getKind()) {
4359     case APValue::Int:
4360       return found(Subobj.getInt(), SubobjType);
4361     case APValue::Float:
4362       return found(Subobj.getFloat(), SubobjType);
4363     case APValue::ComplexInt:
4364     case APValue::ComplexFloat:
4365       // FIXME: Implement complex compound assignment.
4366       Info.FFDiag(E);
4367       return false;
4368     case APValue::LValue:
4369       return foundPointer(Subobj, SubobjType);
4370     case APValue::Vector:
4371       return foundVector(Subobj, SubobjType);
4372     default:
4373       // FIXME: can this happen?
4374       Info.FFDiag(E);
4375       return false;
4376     }
4377   }
4378 
4379   bool foundVector(APValue &Value, QualType SubobjType) {
4380     if (!checkConst(SubobjType))
4381       return false;
4382 
4383     if (!SubobjType->isVectorType()) {
4384       Info.FFDiag(E);
4385       return false;
4386     }
4387     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4388   }
4389 
4390   bool found(APSInt &Value, QualType SubobjType) {
4391     if (!checkConst(SubobjType))
4392       return false;
4393 
4394     if (!SubobjType->isIntegerType()) {
4395       // We don't support compound assignment on integer-cast-to-pointer
4396       // values.
4397       Info.FFDiag(E);
4398       return false;
4399     }
4400 
4401     if (RHS.isInt()) {
4402       APSInt LHS =
4403           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4404       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4405         return false;
4406       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4407       return true;
4408     } else if (RHS.isFloat()) {
4409       const FPOptions FPO = E->getFPFeaturesInEffect(
4410                                     Info.Ctx.getLangOpts());
4411       APFloat FValue(0.0);
4412       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4413                                   PromotedLHSType, FValue) &&
4414              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4415              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4416                                   Value);
4417     }
4418 
4419     Info.FFDiag(E);
4420     return false;
4421   }
4422   bool found(APFloat &Value, QualType SubobjType) {
4423     return checkConst(SubobjType) &&
4424            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4425                                   Value) &&
4426            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4427            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4428   }
4429   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4430     if (!checkConst(SubobjType))
4431       return false;
4432 
4433     QualType PointeeType;
4434     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4435       PointeeType = PT->getPointeeType();
4436 
4437     if (PointeeType.isNull() || !RHS.isInt() ||
4438         (Opcode != BO_Add && Opcode != BO_Sub)) {
4439       Info.FFDiag(E);
4440       return false;
4441     }
4442 
4443     APSInt Offset = RHS.getInt();
4444     if (Opcode == BO_Sub)
4445       negateAsSigned(Offset);
4446 
4447     LValue LVal;
4448     LVal.setFrom(Info.Ctx, Subobj);
4449     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4450       return false;
4451     LVal.moveInto(Subobj);
4452     return true;
4453   }
4454 };
4455 } // end anonymous namespace
4456 
4457 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4458 
4459 /// Perform a compound assignment of LVal <op>= RVal.
4460 static bool handleCompoundAssignment(EvalInfo &Info,
4461                                      const CompoundAssignOperator *E,
4462                                      const LValue &LVal, QualType LValType,
4463                                      QualType PromotedLValType,
4464                                      BinaryOperatorKind Opcode,
4465                                      const APValue &RVal) {
4466   if (LVal.Designator.Invalid)
4467     return false;
4468 
4469   if (!Info.getLangOpts().CPlusPlus14) {
4470     Info.FFDiag(E);
4471     return false;
4472   }
4473 
4474   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4475   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4476                                              RVal };
4477   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4478 }
4479 
4480 namespace {
4481 struct IncDecSubobjectHandler {
4482   EvalInfo &Info;
4483   const UnaryOperator *E;
4484   AccessKinds AccessKind;
4485   APValue *Old;
4486 
4487   typedef bool result_type;
4488 
4489   bool checkConst(QualType QT) {
4490     // Assigning to a const object has undefined behavior.
4491     if (QT.isConstQualified()) {
4492       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4493       return false;
4494     }
4495     return true;
4496   }
4497 
4498   bool failed() { return false; }
4499   bool found(APValue &Subobj, QualType SubobjType) {
4500     // Stash the old value. Also clear Old, so we don't clobber it later
4501     // if we're post-incrementing a complex.
4502     if (Old) {
4503       *Old = Subobj;
4504       Old = nullptr;
4505     }
4506 
4507     switch (Subobj.getKind()) {
4508     case APValue::Int:
4509       return found(Subobj.getInt(), SubobjType);
4510     case APValue::Float:
4511       return found(Subobj.getFloat(), SubobjType);
4512     case APValue::ComplexInt:
4513       return found(Subobj.getComplexIntReal(),
4514                    SubobjType->castAs<ComplexType>()->getElementType()
4515                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4516     case APValue::ComplexFloat:
4517       return found(Subobj.getComplexFloatReal(),
4518                    SubobjType->castAs<ComplexType>()->getElementType()
4519                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4520     case APValue::LValue:
4521       return foundPointer(Subobj, SubobjType);
4522     default:
4523       // FIXME: can this happen?
4524       Info.FFDiag(E);
4525       return false;
4526     }
4527   }
4528   bool found(APSInt &Value, QualType SubobjType) {
4529     if (!checkConst(SubobjType))
4530       return false;
4531 
4532     if (!SubobjType->isIntegerType()) {
4533       // We don't support increment / decrement on integer-cast-to-pointer
4534       // values.
4535       Info.FFDiag(E);
4536       return false;
4537     }
4538 
4539     if (Old) *Old = APValue(Value);
4540 
4541     // bool arithmetic promotes to int, and the conversion back to bool
4542     // doesn't reduce mod 2^n, so special-case it.
4543     if (SubobjType->isBooleanType()) {
4544       if (AccessKind == AK_Increment)
4545         Value = 1;
4546       else
4547         Value = !Value;
4548       return true;
4549     }
4550 
4551     bool WasNegative = Value.isNegative();
4552     if (AccessKind == AK_Increment) {
4553       ++Value;
4554 
4555       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4556         APSInt ActualValue(Value, /*IsUnsigned*/true);
4557         return HandleOverflow(Info, E, ActualValue, SubobjType);
4558       }
4559     } else {
4560       --Value;
4561 
4562       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4563         unsigned BitWidth = Value.getBitWidth();
4564         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4565         ActualValue.setBit(BitWidth);
4566         return HandleOverflow(Info, E, ActualValue, SubobjType);
4567       }
4568     }
4569     return true;
4570   }
4571   bool found(APFloat &Value, QualType SubobjType) {
4572     if (!checkConst(SubobjType))
4573       return false;
4574 
4575     if (Old) *Old = APValue(Value);
4576 
4577     APFloat One(Value.getSemantics(), 1);
4578     if (AccessKind == AK_Increment)
4579       Value.add(One, APFloat::rmNearestTiesToEven);
4580     else
4581       Value.subtract(One, APFloat::rmNearestTiesToEven);
4582     return true;
4583   }
4584   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4585     if (!checkConst(SubobjType))
4586       return false;
4587 
4588     QualType PointeeType;
4589     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4590       PointeeType = PT->getPointeeType();
4591     else {
4592       Info.FFDiag(E);
4593       return false;
4594     }
4595 
4596     LValue LVal;
4597     LVal.setFrom(Info.Ctx, Subobj);
4598     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4599                                      AccessKind == AK_Increment ? 1 : -1))
4600       return false;
4601     LVal.moveInto(Subobj);
4602     return true;
4603   }
4604 };
4605 } // end anonymous namespace
4606 
4607 /// Perform an increment or decrement on LVal.
4608 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4609                          QualType LValType, bool IsIncrement, APValue *Old) {
4610   if (LVal.Designator.Invalid)
4611     return false;
4612 
4613   if (!Info.getLangOpts().CPlusPlus14) {
4614     Info.FFDiag(E);
4615     return false;
4616   }
4617 
4618   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4619   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4620   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4621   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4622 }
4623 
4624 /// Build an lvalue for the object argument of a member function call.
4625 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4626                                    LValue &This) {
4627   if (Object->getType()->isPointerType() && Object->isPRValue())
4628     return EvaluatePointer(Object, This, Info);
4629 
4630   if (Object->isGLValue())
4631     return EvaluateLValue(Object, This, Info);
4632 
4633   if (Object->getType()->isLiteralType(Info.Ctx))
4634     return EvaluateTemporary(Object, This, Info);
4635 
4636   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4637   return false;
4638 }
4639 
4640 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4641 /// lvalue referring to the result.
4642 ///
4643 /// \param Info - Information about the ongoing evaluation.
4644 /// \param LV - An lvalue referring to the base of the member pointer.
4645 /// \param RHS - The member pointer expression.
4646 /// \param IncludeMember - Specifies whether the member itself is included in
4647 ///        the resulting LValue subobject designator. This is not possible when
4648 ///        creating a bound member function.
4649 /// \return The field or method declaration to which the member pointer refers,
4650 ///         or 0 if evaluation fails.
4651 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4652                                                   QualType LVType,
4653                                                   LValue &LV,
4654                                                   const Expr *RHS,
4655                                                   bool IncludeMember = true) {
4656   MemberPtr MemPtr;
4657   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4658     return nullptr;
4659 
4660   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4661   // member value, the behavior is undefined.
4662   if (!MemPtr.getDecl()) {
4663     // FIXME: Specific diagnostic.
4664     Info.FFDiag(RHS);
4665     return nullptr;
4666   }
4667 
4668   if (MemPtr.isDerivedMember()) {
4669     // This is a member of some derived class. Truncate LV appropriately.
4670     // The end of the derived-to-base path for the base object must match the
4671     // derived-to-base path for the member pointer.
4672     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4673         LV.Designator.Entries.size()) {
4674       Info.FFDiag(RHS);
4675       return nullptr;
4676     }
4677     unsigned PathLengthToMember =
4678         LV.Designator.Entries.size() - MemPtr.Path.size();
4679     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4680       const CXXRecordDecl *LVDecl = getAsBaseClass(
4681           LV.Designator.Entries[PathLengthToMember + I]);
4682       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4683       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4684         Info.FFDiag(RHS);
4685         return nullptr;
4686       }
4687     }
4688 
4689     // Truncate the lvalue to the appropriate derived class.
4690     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4691                             PathLengthToMember))
4692       return nullptr;
4693   } else if (!MemPtr.Path.empty()) {
4694     // Extend the LValue path with the member pointer's path.
4695     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4696                                   MemPtr.Path.size() + IncludeMember);
4697 
4698     // Walk down to the appropriate base class.
4699     if (const PointerType *PT = LVType->getAs<PointerType>())
4700       LVType = PT->getPointeeType();
4701     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4702     assert(RD && "member pointer access on non-class-type expression");
4703     // The first class in the path is that of the lvalue.
4704     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4705       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4706       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4707         return nullptr;
4708       RD = Base;
4709     }
4710     // Finally cast to the class containing the member.
4711     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4712                                 MemPtr.getContainingRecord()))
4713       return nullptr;
4714   }
4715 
4716   // Add the member. Note that we cannot build bound member functions here.
4717   if (IncludeMember) {
4718     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4719       if (!HandleLValueMember(Info, RHS, LV, FD))
4720         return nullptr;
4721     } else if (const IndirectFieldDecl *IFD =
4722                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4723       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4724         return nullptr;
4725     } else {
4726       llvm_unreachable("can't construct reference to bound member function");
4727     }
4728   }
4729 
4730   return MemPtr.getDecl();
4731 }
4732 
4733 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4734                                                   const BinaryOperator *BO,
4735                                                   LValue &LV,
4736                                                   bool IncludeMember = true) {
4737   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4738 
4739   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4740     if (Info.noteFailure()) {
4741       MemberPtr MemPtr;
4742       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4743     }
4744     return nullptr;
4745   }
4746 
4747   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4748                                    BO->getRHS(), IncludeMember);
4749 }
4750 
4751 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4752 /// the provided lvalue, which currently refers to the base object.
4753 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4754                                     LValue &Result) {
4755   SubobjectDesignator &D = Result.Designator;
4756   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4757     return false;
4758 
4759   QualType TargetQT = E->getType();
4760   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4761     TargetQT = PT->getPointeeType();
4762 
4763   // Check this cast lands within the final derived-to-base subobject path.
4764   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4765     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4766       << D.MostDerivedType << TargetQT;
4767     return false;
4768   }
4769 
4770   // Check the type of the final cast. We don't need to check the path,
4771   // since a cast can only be formed if the path is unique.
4772   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4773   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4774   const CXXRecordDecl *FinalType;
4775   if (NewEntriesSize == D.MostDerivedPathLength)
4776     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4777   else
4778     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4779   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4780     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4781       << D.MostDerivedType << TargetQT;
4782     return false;
4783   }
4784 
4785   // Truncate the lvalue to the appropriate derived class.
4786   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4787 }
4788 
4789 /// Get the value to use for a default-initialized object of type T.
4790 /// Return false if it encounters something invalid.
4791 static bool getDefaultInitValue(QualType T, APValue &Result) {
4792   bool Success = true;
4793   if (auto *RD = T->getAsCXXRecordDecl()) {
4794     if (RD->isInvalidDecl()) {
4795       Result = APValue();
4796       return false;
4797     }
4798     if (RD->isUnion()) {
4799       Result = APValue((const FieldDecl *)nullptr);
4800       return true;
4801     }
4802     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4803                      std::distance(RD->field_begin(), RD->field_end()));
4804 
4805     unsigned Index = 0;
4806     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4807                                                   End = RD->bases_end();
4808          I != End; ++I, ++Index)
4809       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4810 
4811     for (const auto *I : RD->fields()) {
4812       if (I->isUnnamedBitfield())
4813         continue;
4814       Success &= getDefaultInitValue(I->getType(),
4815                                      Result.getStructField(I->getFieldIndex()));
4816     }
4817     return Success;
4818   }
4819 
4820   if (auto *AT =
4821           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4822     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4823     if (Result.hasArrayFiller())
4824       Success &=
4825           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4826 
4827     return Success;
4828   }
4829 
4830   Result = APValue::IndeterminateValue();
4831   return true;
4832 }
4833 
4834 namespace {
4835 enum EvalStmtResult {
4836   /// Evaluation failed.
4837   ESR_Failed,
4838   /// Hit a 'return' statement.
4839   ESR_Returned,
4840   /// Evaluation succeeded.
4841   ESR_Succeeded,
4842   /// Hit a 'continue' statement.
4843   ESR_Continue,
4844   /// Hit a 'break' statement.
4845   ESR_Break,
4846   /// Still scanning for 'case' or 'default' statement.
4847   ESR_CaseNotFound
4848 };
4849 }
4850 
4851 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4852   // We don't need to evaluate the initializer for a static local.
4853   if (!VD->hasLocalStorage())
4854     return true;
4855 
4856   LValue Result;
4857   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4858                                                    ScopeKind::Block, Result);
4859 
4860   const Expr *InitE = VD->getInit();
4861   if (!InitE) {
4862     if (VD->getType()->isDependentType())
4863       return Info.noteSideEffect();
4864     return getDefaultInitValue(VD->getType(), Val);
4865   }
4866   if (InitE->isValueDependent())
4867     return false;
4868 
4869   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4870     // Wipe out any partially-computed value, to allow tracking that this
4871     // evaluation failed.
4872     Val = APValue();
4873     return false;
4874   }
4875 
4876   return true;
4877 }
4878 
4879 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4880   bool OK = true;
4881 
4882   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4883     OK &= EvaluateVarDecl(Info, VD);
4884 
4885   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4886     for (auto *BD : DD->bindings())
4887       if (auto *VD = BD->getHoldingVar())
4888         OK &= EvaluateDecl(Info, VD);
4889 
4890   return OK;
4891 }
4892 
4893 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4894   assert(E->isValueDependent());
4895   if (Info.noteSideEffect())
4896     return true;
4897   assert(E->containsErrors() && "valid value-dependent expression should never "
4898                                 "reach invalid code path.");
4899   return false;
4900 }
4901 
4902 /// Evaluate a condition (either a variable declaration or an expression).
4903 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4904                          const Expr *Cond, bool &Result) {
4905   if (Cond->isValueDependent())
4906     return false;
4907   FullExpressionRAII Scope(Info);
4908   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4909     return false;
4910   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4911     return false;
4912   return Scope.destroy();
4913 }
4914 
4915 namespace {
4916 /// A location where the result (returned value) of evaluating a
4917 /// statement should be stored.
4918 struct StmtResult {
4919   /// The APValue that should be filled in with the returned value.
4920   APValue &Value;
4921   /// The location containing the result, if any (used to support RVO).
4922   const LValue *Slot;
4923 };
4924 
4925 struct TempVersionRAII {
4926   CallStackFrame &Frame;
4927 
4928   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4929     Frame.pushTempVersion();
4930   }
4931 
4932   ~TempVersionRAII() {
4933     Frame.popTempVersion();
4934   }
4935 };
4936 
4937 }
4938 
4939 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4940                                    const Stmt *S,
4941                                    const SwitchCase *SC = nullptr);
4942 
4943 /// Evaluate the body of a loop, and translate the result as appropriate.
4944 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4945                                        const Stmt *Body,
4946                                        const SwitchCase *Case = nullptr) {
4947   BlockScopeRAII Scope(Info);
4948 
4949   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4950   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4951     ESR = ESR_Failed;
4952 
4953   switch (ESR) {
4954   case ESR_Break:
4955     return ESR_Succeeded;
4956   case ESR_Succeeded:
4957   case ESR_Continue:
4958     return ESR_Continue;
4959   case ESR_Failed:
4960   case ESR_Returned:
4961   case ESR_CaseNotFound:
4962     return ESR;
4963   }
4964   llvm_unreachable("Invalid EvalStmtResult!");
4965 }
4966 
4967 /// Evaluate a switch statement.
4968 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4969                                      const SwitchStmt *SS) {
4970   BlockScopeRAII Scope(Info);
4971 
4972   // Evaluate the switch condition.
4973   APSInt Value;
4974   {
4975     if (const Stmt *Init = SS->getInit()) {
4976       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4977       if (ESR != ESR_Succeeded) {
4978         if (ESR != ESR_Failed && !Scope.destroy())
4979           ESR = ESR_Failed;
4980         return ESR;
4981       }
4982     }
4983 
4984     FullExpressionRAII CondScope(Info);
4985     if (SS->getConditionVariable() &&
4986         !EvaluateDecl(Info, SS->getConditionVariable()))
4987       return ESR_Failed;
4988     if (SS->getCond()->isValueDependent()) {
4989       if (!EvaluateDependentExpr(SS->getCond(), Info))
4990         return ESR_Failed;
4991     } else {
4992       if (!EvaluateInteger(SS->getCond(), Value, Info))
4993         return ESR_Failed;
4994     }
4995     if (!CondScope.destroy())
4996       return ESR_Failed;
4997   }
4998 
4999   // Find the switch case corresponding to the value of the condition.
5000   // FIXME: Cache this lookup.
5001   const SwitchCase *Found = nullptr;
5002   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5003        SC = SC->getNextSwitchCase()) {
5004     if (isa<DefaultStmt>(SC)) {
5005       Found = SC;
5006       continue;
5007     }
5008 
5009     const CaseStmt *CS = cast<CaseStmt>(SC);
5010     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5011     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5012                               : LHS;
5013     if (LHS <= Value && Value <= RHS) {
5014       Found = SC;
5015       break;
5016     }
5017   }
5018 
5019   if (!Found)
5020     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5021 
5022   // Search the switch body for the switch case and evaluate it from there.
5023   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5024   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5025     return ESR_Failed;
5026 
5027   switch (ESR) {
5028   case ESR_Break:
5029     return ESR_Succeeded;
5030   case ESR_Succeeded:
5031   case ESR_Continue:
5032   case ESR_Failed:
5033   case ESR_Returned:
5034     return ESR;
5035   case ESR_CaseNotFound:
5036     // This can only happen if the switch case is nested within a statement
5037     // expression. We have no intention of supporting that.
5038     Info.FFDiag(Found->getBeginLoc(),
5039                 diag::note_constexpr_stmt_expr_unsupported);
5040     return ESR_Failed;
5041   }
5042   llvm_unreachable("Invalid EvalStmtResult!");
5043 }
5044 
5045 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5046   // An expression E is a core constant expression unless the evaluation of E
5047   // would evaluate one of the following: [C++2b] - a control flow that passes
5048   // through a declaration of a variable with static or thread storage duration.
5049   if (VD->isLocalVarDecl() && VD->isStaticLocal()) {
5050     Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5051         << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5052     return false;
5053   }
5054   return true;
5055 }
5056 
5057 // Evaluate a statement.
5058 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5059                                    const Stmt *S, const SwitchCase *Case) {
5060   if (!Info.nextStep(S))
5061     return ESR_Failed;
5062 
5063   // If we're hunting down a 'case' or 'default' label, recurse through
5064   // substatements until we hit the label.
5065   if (Case) {
5066     switch (S->getStmtClass()) {
5067     case Stmt::CompoundStmtClass:
5068       // FIXME: Precompute which substatement of a compound statement we
5069       // would jump to, and go straight there rather than performing a
5070       // linear scan each time.
5071     case Stmt::LabelStmtClass:
5072     case Stmt::AttributedStmtClass:
5073     case Stmt::DoStmtClass:
5074       break;
5075 
5076     case Stmt::CaseStmtClass:
5077     case Stmt::DefaultStmtClass:
5078       if (Case == S)
5079         Case = nullptr;
5080       break;
5081 
5082     case Stmt::IfStmtClass: {
5083       // FIXME: Precompute which side of an 'if' we would jump to, and go
5084       // straight there rather than scanning both sides.
5085       const IfStmt *IS = cast<IfStmt>(S);
5086 
5087       // Wrap the evaluation in a block scope, in case it's a DeclStmt
5088       // preceded by our switch label.
5089       BlockScopeRAII Scope(Info);
5090 
5091       // Step into the init statement in case it brings an (uninitialized)
5092       // variable into scope.
5093       if (const Stmt *Init = IS->getInit()) {
5094         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5095         if (ESR != ESR_CaseNotFound) {
5096           assert(ESR != ESR_Succeeded);
5097           return ESR;
5098         }
5099       }
5100 
5101       // Condition variable must be initialized if it exists.
5102       // FIXME: We can skip evaluating the body if there's a condition
5103       // variable, as there can't be any case labels within it.
5104       // (The same is true for 'for' statements.)
5105 
5106       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5107       if (ESR == ESR_Failed)
5108         return ESR;
5109       if (ESR != ESR_CaseNotFound)
5110         return Scope.destroy() ? ESR : ESR_Failed;
5111       if (!IS->getElse())
5112         return ESR_CaseNotFound;
5113 
5114       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5115       if (ESR == ESR_Failed)
5116         return ESR;
5117       if (ESR != ESR_CaseNotFound)
5118         return Scope.destroy() ? ESR : ESR_Failed;
5119       return ESR_CaseNotFound;
5120     }
5121 
5122     case Stmt::WhileStmtClass: {
5123       EvalStmtResult ESR =
5124           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5125       if (ESR != ESR_Continue)
5126         return ESR;
5127       break;
5128     }
5129 
5130     case Stmt::ForStmtClass: {
5131       const ForStmt *FS = cast<ForStmt>(S);
5132       BlockScopeRAII Scope(Info);
5133 
5134       // Step into the init statement in case it brings an (uninitialized)
5135       // variable into scope.
5136       if (const Stmt *Init = FS->getInit()) {
5137         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5138         if (ESR != ESR_CaseNotFound) {
5139           assert(ESR != ESR_Succeeded);
5140           return ESR;
5141         }
5142       }
5143 
5144       EvalStmtResult ESR =
5145           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5146       if (ESR != ESR_Continue)
5147         return ESR;
5148       if (const auto *Inc = FS->getInc()) {
5149         if (Inc->isValueDependent()) {
5150           if (!EvaluateDependentExpr(Inc, Info))
5151             return ESR_Failed;
5152         } else {
5153           FullExpressionRAII IncScope(Info);
5154           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5155             return ESR_Failed;
5156         }
5157       }
5158       break;
5159     }
5160 
5161     case Stmt::DeclStmtClass: {
5162       // Start the lifetime of any uninitialized variables we encounter. They
5163       // might be used by the selected branch of the switch.
5164       const DeclStmt *DS = cast<DeclStmt>(S);
5165       for (const auto *D : DS->decls()) {
5166         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5167           if (!CheckLocalVariableDeclaration(Info, VD))
5168             return ESR_Failed;
5169           if (VD->hasLocalStorage() && !VD->getInit())
5170             if (!EvaluateVarDecl(Info, VD))
5171               return ESR_Failed;
5172           // FIXME: If the variable has initialization that can't be jumped
5173           // over, bail out of any immediately-surrounding compound-statement
5174           // too. There can't be any case labels here.
5175         }
5176       }
5177       return ESR_CaseNotFound;
5178     }
5179 
5180     default:
5181       return ESR_CaseNotFound;
5182     }
5183   }
5184 
5185   switch (S->getStmtClass()) {
5186   default:
5187     if (const Expr *E = dyn_cast<Expr>(S)) {
5188       if (E->isValueDependent()) {
5189         if (!EvaluateDependentExpr(E, Info))
5190           return ESR_Failed;
5191       } else {
5192         // Don't bother evaluating beyond an expression-statement which couldn't
5193         // be evaluated.
5194         // FIXME: Do we need the FullExpressionRAII object here?
5195         // VisitExprWithCleanups should create one when necessary.
5196         FullExpressionRAII Scope(Info);
5197         if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5198           return ESR_Failed;
5199       }
5200       return ESR_Succeeded;
5201     }
5202 
5203     Info.FFDiag(S->getBeginLoc());
5204     return ESR_Failed;
5205 
5206   case Stmt::NullStmtClass:
5207     return ESR_Succeeded;
5208 
5209   case Stmt::DeclStmtClass: {
5210     const DeclStmt *DS = cast<DeclStmt>(S);
5211     for (const auto *D : DS->decls()) {
5212       const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5213       if (VD && !CheckLocalVariableDeclaration(Info, VD))
5214         return ESR_Failed;
5215       // Each declaration initialization is its own full-expression.
5216       FullExpressionRAII Scope(Info);
5217       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5218         return ESR_Failed;
5219       if (!Scope.destroy())
5220         return ESR_Failed;
5221     }
5222     return ESR_Succeeded;
5223   }
5224 
5225   case Stmt::ReturnStmtClass: {
5226     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5227     FullExpressionRAII Scope(Info);
5228     if (RetExpr && RetExpr->isValueDependent()) {
5229       EvaluateDependentExpr(RetExpr, Info);
5230       // We know we returned, but we don't know what the value is.
5231       return ESR_Failed;
5232     }
5233     if (RetExpr &&
5234         !(Result.Slot
5235               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5236               : Evaluate(Result.Value, Info, RetExpr)))
5237       return ESR_Failed;
5238     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5239   }
5240 
5241   case Stmt::CompoundStmtClass: {
5242     BlockScopeRAII Scope(Info);
5243 
5244     const CompoundStmt *CS = cast<CompoundStmt>(S);
5245     for (const auto *BI : CS->body()) {
5246       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5247       if (ESR == ESR_Succeeded)
5248         Case = nullptr;
5249       else if (ESR != ESR_CaseNotFound) {
5250         if (ESR != ESR_Failed && !Scope.destroy())
5251           return ESR_Failed;
5252         return ESR;
5253       }
5254     }
5255     if (Case)
5256       return ESR_CaseNotFound;
5257     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5258   }
5259 
5260   case Stmt::IfStmtClass: {
5261     const IfStmt *IS = cast<IfStmt>(S);
5262 
5263     // Evaluate the condition, as either a var decl or as an expression.
5264     BlockScopeRAII Scope(Info);
5265     if (const Stmt *Init = IS->getInit()) {
5266       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5267       if (ESR != ESR_Succeeded) {
5268         if (ESR != ESR_Failed && !Scope.destroy())
5269           return ESR_Failed;
5270         return ESR;
5271       }
5272     }
5273     bool Cond;
5274     if (IS->isConsteval())
5275       Cond = IS->isNonNegatedConsteval();
5276     else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5277                            Cond))
5278       return ESR_Failed;
5279 
5280     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5281       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5282       if (ESR != ESR_Succeeded) {
5283         if (ESR != ESR_Failed && !Scope.destroy())
5284           return ESR_Failed;
5285         return ESR;
5286       }
5287     }
5288     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5289   }
5290 
5291   case Stmt::WhileStmtClass: {
5292     const WhileStmt *WS = cast<WhileStmt>(S);
5293     while (true) {
5294       BlockScopeRAII Scope(Info);
5295       bool Continue;
5296       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5297                         Continue))
5298         return ESR_Failed;
5299       if (!Continue)
5300         break;
5301 
5302       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5303       if (ESR != ESR_Continue) {
5304         if (ESR != ESR_Failed && !Scope.destroy())
5305           return ESR_Failed;
5306         return ESR;
5307       }
5308       if (!Scope.destroy())
5309         return ESR_Failed;
5310     }
5311     return ESR_Succeeded;
5312   }
5313 
5314   case Stmt::DoStmtClass: {
5315     const DoStmt *DS = cast<DoStmt>(S);
5316     bool Continue;
5317     do {
5318       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5319       if (ESR != ESR_Continue)
5320         return ESR;
5321       Case = nullptr;
5322 
5323       if (DS->getCond()->isValueDependent()) {
5324         EvaluateDependentExpr(DS->getCond(), Info);
5325         // Bailout as we don't know whether to keep going or terminate the loop.
5326         return ESR_Failed;
5327       }
5328       FullExpressionRAII CondScope(Info);
5329       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5330           !CondScope.destroy())
5331         return ESR_Failed;
5332     } while (Continue);
5333     return ESR_Succeeded;
5334   }
5335 
5336   case Stmt::ForStmtClass: {
5337     const ForStmt *FS = cast<ForStmt>(S);
5338     BlockScopeRAII ForScope(Info);
5339     if (FS->getInit()) {
5340       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5341       if (ESR != ESR_Succeeded) {
5342         if (ESR != ESR_Failed && !ForScope.destroy())
5343           return ESR_Failed;
5344         return ESR;
5345       }
5346     }
5347     while (true) {
5348       BlockScopeRAII IterScope(Info);
5349       bool Continue = true;
5350       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5351                                          FS->getCond(), Continue))
5352         return ESR_Failed;
5353       if (!Continue)
5354         break;
5355 
5356       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5357       if (ESR != ESR_Continue) {
5358         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5359           return ESR_Failed;
5360         return ESR;
5361       }
5362 
5363       if (const auto *Inc = FS->getInc()) {
5364         if (Inc->isValueDependent()) {
5365           if (!EvaluateDependentExpr(Inc, Info))
5366             return ESR_Failed;
5367         } else {
5368           FullExpressionRAII IncScope(Info);
5369           if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5370             return ESR_Failed;
5371         }
5372       }
5373 
5374       if (!IterScope.destroy())
5375         return ESR_Failed;
5376     }
5377     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5378   }
5379 
5380   case Stmt::CXXForRangeStmtClass: {
5381     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5382     BlockScopeRAII Scope(Info);
5383 
5384     // Evaluate the init-statement if present.
5385     if (FS->getInit()) {
5386       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5387       if (ESR != ESR_Succeeded) {
5388         if (ESR != ESR_Failed && !Scope.destroy())
5389           return ESR_Failed;
5390         return ESR;
5391       }
5392     }
5393 
5394     // Initialize the __range variable.
5395     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5396     if (ESR != ESR_Succeeded) {
5397       if (ESR != ESR_Failed && !Scope.destroy())
5398         return ESR_Failed;
5399       return ESR;
5400     }
5401 
5402     // In error-recovery cases it's possible to get here even if we failed to
5403     // synthesize the __begin and __end variables.
5404     if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5405       return ESR_Failed;
5406 
5407     // Create the __begin and __end iterators.
5408     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5409     if (ESR != ESR_Succeeded) {
5410       if (ESR != ESR_Failed && !Scope.destroy())
5411         return ESR_Failed;
5412       return ESR;
5413     }
5414     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5415     if (ESR != ESR_Succeeded) {
5416       if (ESR != ESR_Failed && !Scope.destroy())
5417         return ESR_Failed;
5418       return ESR;
5419     }
5420 
5421     while (true) {
5422       // Condition: __begin != __end.
5423       {
5424         if (FS->getCond()->isValueDependent()) {
5425           EvaluateDependentExpr(FS->getCond(), Info);
5426           // We don't know whether to keep going or terminate the loop.
5427           return ESR_Failed;
5428         }
5429         bool Continue = true;
5430         FullExpressionRAII CondExpr(Info);
5431         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5432           return ESR_Failed;
5433         if (!Continue)
5434           break;
5435       }
5436 
5437       // User's variable declaration, initialized by *__begin.
5438       BlockScopeRAII InnerScope(Info);
5439       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5440       if (ESR != ESR_Succeeded) {
5441         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5442           return ESR_Failed;
5443         return ESR;
5444       }
5445 
5446       // Loop body.
5447       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5448       if (ESR != ESR_Continue) {
5449         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5450           return ESR_Failed;
5451         return ESR;
5452       }
5453       if (FS->getInc()->isValueDependent()) {
5454         if (!EvaluateDependentExpr(FS->getInc(), Info))
5455           return ESR_Failed;
5456       } else {
5457         // Increment: ++__begin
5458         if (!EvaluateIgnoredValue(Info, FS->getInc()))
5459           return ESR_Failed;
5460       }
5461 
5462       if (!InnerScope.destroy())
5463         return ESR_Failed;
5464     }
5465 
5466     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5467   }
5468 
5469   case Stmt::SwitchStmtClass:
5470     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5471 
5472   case Stmt::ContinueStmtClass:
5473     return ESR_Continue;
5474 
5475   case Stmt::BreakStmtClass:
5476     return ESR_Break;
5477 
5478   case Stmt::LabelStmtClass:
5479     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5480 
5481   case Stmt::AttributedStmtClass:
5482     // As a general principle, C++11 attributes can be ignored without
5483     // any semantic impact.
5484     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5485                         Case);
5486 
5487   case Stmt::CaseStmtClass:
5488   case Stmt::DefaultStmtClass:
5489     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5490   case Stmt::CXXTryStmtClass:
5491     // Evaluate try blocks by evaluating all sub statements.
5492     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5493   }
5494 }
5495 
5496 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5497 /// default constructor. If so, we'll fold it whether or not it's marked as
5498 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5499 /// so we need special handling.
5500 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5501                                            const CXXConstructorDecl *CD,
5502                                            bool IsValueInitialization) {
5503   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5504     return false;
5505 
5506   // Value-initialization does not call a trivial default constructor, so such a
5507   // call is a core constant expression whether or not the constructor is
5508   // constexpr.
5509   if (!CD->isConstexpr() && !IsValueInitialization) {
5510     if (Info.getLangOpts().CPlusPlus11) {
5511       // FIXME: If DiagDecl is an implicitly-declared special member function,
5512       // we should be much more explicit about why it's not constexpr.
5513       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5514         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5515       Info.Note(CD->getLocation(), diag::note_declared_at);
5516     } else {
5517       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5518     }
5519   }
5520   return true;
5521 }
5522 
5523 /// CheckConstexprFunction - Check that a function can be called in a constant
5524 /// expression.
5525 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5526                                    const FunctionDecl *Declaration,
5527                                    const FunctionDecl *Definition,
5528                                    const Stmt *Body) {
5529   // Potential constant expressions can contain calls to declared, but not yet
5530   // defined, constexpr functions.
5531   if (Info.checkingPotentialConstantExpression() && !Definition &&
5532       Declaration->isConstexpr())
5533     return false;
5534 
5535   // Bail out if the function declaration itself is invalid.  We will
5536   // have produced a relevant diagnostic while parsing it, so just
5537   // note the problematic sub-expression.
5538   if (Declaration->isInvalidDecl()) {
5539     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5540     return false;
5541   }
5542 
5543   // DR1872: An instantiated virtual constexpr function can't be called in a
5544   // constant expression (prior to C++20). We can still constant-fold such a
5545   // call.
5546   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5547       cast<CXXMethodDecl>(Declaration)->isVirtual())
5548     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5549 
5550   if (Definition && Definition->isInvalidDecl()) {
5551     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5552     return false;
5553   }
5554 
5555   // Can we evaluate this function call?
5556   if (Definition && Definition->isConstexpr() && Body)
5557     return true;
5558 
5559   if (Info.getLangOpts().CPlusPlus11) {
5560     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5561 
5562     // If this function is not constexpr because it is an inherited
5563     // non-constexpr constructor, diagnose that directly.
5564     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5565     if (CD && CD->isInheritingConstructor()) {
5566       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5567       if (!Inherited->isConstexpr())
5568         DiagDecl = CD = Inherited;
5569     }
5570 
5571     // FIXME: If DiagDecl is an implicitly-declared special member function
5572     // or an inheriting constructor, we should be much more explicit about why
5573     // it's not constexpr.
5574     if (CD && CD->isInheritingConstructor())
5575       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5576         << CD->getInheritedConstructor().getConstructor()->getParent();
5577     else
5578       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5579         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5580     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5581   } else {
5582     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5583   }
5584   return false;
5585 }
5586 
5587 namespace {
5588 struct CheckDynamicTypeHandler {
5589   AccessKinds AccessKind;
5590   typedef bool result_type;
5591   bool failed() { return false; }
5592   bool found(APValue &Subobj, QualType SubobjType) { return true; }
5593   bool found(APSInt &Value, QualType SubobjType) { return true; }
5594   bool found(APFloat &Value, QualType SubobjType) { return true; }
5595 };
5596 } // end anonymous namespace
5597 
5598 /// Check that we can access the notional vptr of an object / determine its
5599 /// dynamic type.
5600 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5601                              AccessKinds AK, bool Polymorphic) {
5602   if (This.Designator.Invalid)
5603     return false;
5604 
5605   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5606 
5607   if (!Obj)
5608     return false;
5609 
5610   if (!Obj.Value) {
5611     // The object is not usable in constant expressions, so we can't inspect
5612     // its value to see if it's in-lifetime or what the active union members
5613     // are. We can still check for a one-past-the-end lvalue.
5614     if (This.Designator.isOnePastTheEnd() ||
5615         This.Designator.isMostDerivedAnUnsizedArray()) {
5616       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5617                          ? diag::note_constexpr_access_past_end
5618                          : diag::note_constexpr_access_unsized_array)
5619           << AK;
5620       return false;
5621     } else if (Polymorphic) {
5622       // Conservatively refuse to perform a polymorphic operation if we would
5623       // not be able to read a notional 'vptr' value.
5624       APValue Val;
5625       This.moveInto(Val);
5626       QualType StarThisType =
5627           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5628       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5629           << AK << Val.getAsString(Info.Ctx, StarThisType);
5630       return false;
5631     }
5632     return true;
5633   }
5634 
5635   CheckDynamicTypeHandler Handler{AK};
5636   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5637 }
5638 
5639 /// Check that the pointee of the 'this' pointer in a member function call is
5640 /// either within its lifetime or in its period of construction or destruction.
5641 static bool
5642 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5643                                      const LValue &This,
5644                                      const CXXMethodDecl *NamedMember) {
5645   return checkDynamicType(
5646       Info, E, This,
5647       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5648 }
5649 
5650 struct DynamicType {
5651   /// The dynamic class type of the object.
5652   const CXXRecordDecl *Type;
5653   /// The corresponding path length in the lvalue.
5654   unsigned PathLength;
5655 };
5656 
5657 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5658                                              unsigned PathLength) {
5659   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5660       Designator.Entries.size() && "invalid path length");
5661   return (PathLength == Designator.MostDerivedPathLength)
5662              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5663              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5664 }
5665 
5666 /// Determine the dynamic type of an object.
5667 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5668                                                 LValue &This, AccessKinds AK) {
5669   // If we don't have an lvalue denoting an object of class type, there is no
5670   // meaningful dynamic type. (We consider objects of non-class type to have no
5671   // dynamic type.)
5672   if (!checkDynamicType(Info, E, This, AK, true))
5673     return None;
5674 
5675   // Refuse to compute a dynamic type in the presence of virtual bases. This
5676   // shouldn't happen other than in constant-folding situations, since literal
5677   // types can't have virtual bases.
5678   //
5679   // Note that consumers of DynamicType assume that the type has no virtual
5680   // bases, and will need modifications if this restriction is relaxed.
5681   const CXXRecordDecl *Class =
5682       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5683   if (!Class || Class->getNumVBases()) {
5684     Info.FFDiag(E);
5685     return None;
5686   }
5687 
5688   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5689   // binary search here instead. But the overwhelmingly common case is that
5690   // we're not in the middle of a constructor, so it probably doesn't matter
5691   // in practice.
5692   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5693   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5694        PathLength <= Path.size(); ++PathLength) {
5695     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5696                                       Path.slice(0, PathLength))) {
5697     case ConstructionPhase::Bases:
5698     case ConstructionPhase::DestroyingBases:
5699       // We're constructing or destroying a base class. This is not the dynamic
5700       // type.
5701       break;
5702 
5703     case ConstructionPhase::None:
5704     case ConstructionPhase::AfterBases:
5705     case ConstructionPhase::AfterFields:
5706     case ConstructionPhase::Destroying:
5707       // We've finished constructing the base classes and not yet started
5708       // destroying them again, so this is the dynamic type.
5709       return DynamicType{getBaseClassType(This.Designator, PathLength),
5710                          PathLength};
5711     }
5712   }
5713 
5714   // CWG issue 1517: we're constructing a base class of the object described by
5715   // 'This', so that object has not yet begun its period of construction and
5716   // any polymorphic operation on it results in undefined behavior.
5717   Info.FFDiag(E);
5718   return None;
5719 }
5720 
5721 /// Perform virtual dispatch.
5722 static const CXXMethodDecl *HandleVirtualDispatch(
5723     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5724     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5725   Optional<DynamicType> DynType = ComputeDynamicType(
5726       Info, E, This,
5727       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5728   if (!DynType)
5729     return nullptr;
5730 
5731   // Find the final overrider. It must be declared in one of the classes on the
5732   // path from the dynamic type to the static type.
5733   // FIXME: If we ever allow literal types to have virtual base classes, that
5734   // won't be true.
5735   const CXXMethodDecl *Callee = Found;
5736   unsigned PathLength = DynType->PathLength;
5737   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5738     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5739     const CXXMethodDecl *Overrider =
5740         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5741     if (Overrider) {
5742       Callee = Overrider;
5743       break;
5744     }
5745   }
5746 
5747   // C++2a [class.abstract]p6:
5748   //   the effect of making a virtual call to a pure virtual function [...] is
5749   //   undefined
5750   if (Callee->isPure()) {
5751     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5752     Info.Note(Callee->getLocation(), diag::note_declared_at);
5753     return nullptr;
5754   }
5755 
5756   // If necessary, walk the rest of the path to determine the sequence of
5757   // covariant adjustment steps to apply.
5758   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5759                                        Found->getReturnType())) {
5760     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5761     for (unsigned CovariantPathLength = PathLength + 1;
5762          CovariantPathLength != This.Designator.Entries.size();
5763          ++CovariantPathLength) {
5764       const CXXRecordDecl *NextClass =
5765           getBaseClassType(This.Designator, CovariantPathLength);
5766       const CXXMethodDecl *Next =
5767           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5768       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5769                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5770         CovariantAdjustmentPath.push_back(Next->getReturnType());
5771     }
5772     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5773                                          CovariantAdjustmentPath.back()))
5774       CovariantAdjustmentPath.push_back(Found->getReturnType());
5775   }
5776 
5777   // Perform 'this' adjustment.
5778   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5779     return nullptr;
5780 
5781   return Callee;
5782 }
5783 
5784 /// Perform the adjustment from a value returned by a virtual function to
5785 /// a value of the statically expected type, which may be a pointer or
5786 /// reference to a base class of the returned type.
5787 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5788                                             APValue &Result,
5789                                             ArrayRef<QualType> Path) {
5790   assert(Result.isLValue() &&
5791          "unexpected kind of APValue for covariant return");
5792   if (Result.isNullPointer())
5793     return true;
5794 
5795   LValue LVal;
5796   LVal.setFrom(Info.Ctx, Result);
5797 
5798   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5799   for (unsigned I = 1; I != Path.size(); ++I) {
5800     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5801     assert(OldClass && NewClass && "unexpected kind of covariant return");
5802     if (OldClass != NewClass &&
5803         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5804       return false;
5805     OldClass = NewClass;
5806   }
5807 
5808   LVal.moveInto(Result);
5809   return true;
5810 }
5811 
5812 /// Determine whether \p Base, which is known to be a direct base class of
5813 /// \p Derived, is a public base class.
5814 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5815                               const CXXRecordDecl *Base) {
5816   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5817     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5818     if (BaseClass && declaresSameEntity(BaseClass, Base))
5819       return BaseSpec.getAccessSpecifier() == AS_public;
5820   }
5821   llvm_unreachable("Base is not a direct base of Derived");
5822 }
5823 
5824 /// Apply the given dynamic cast operation on the provided lvalue.
5825 ///
5826 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5827 /// to find a suitable target subobject.
5828 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5829                               LValue &Ptr) {
5830   // We can't do anything with a non-symbolic pointer value.
5831   SubobjectDesignator &D = Ptr.Designator;
5832   if (D.Invalid)
5833     return false;
5834 
5835   // C++ [expr.dynamic.cast]p6:
5836   //   If v is a null pointer value, the result is a null pointer value.
5837   if (Ptr.isNullPointer() && !E->isGLValue())
5838     return true;
5839 
5840   // For all the other cases, we need the pointer to point to an object within
5841   // its lifetime / period of construction / destruction, and we need to know
5842   // its dynamic type.
5843   Optional<DynamicType> DynType =
5844       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5845   if (!DynType)
5846     return false;
5847 
5848   // C++ [expr.dynamic.cast]p7:
5849   //   If T is "pointer to cv void", then the result is a pointer to the most
5850   //   derived object
5851   if (E->getType()->isVoidPointerType())
5852     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5853 
5854   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5855   assert(C && "dynamic_cast target is not void pointer nor class");
5856   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5857 
5858   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5859     // C++ [expr.dynamic.cast]p9:
5860     if (!E->isGLValue()) {
5861       //   The value of a failed cast to pointer type is the null pointer value
5862       //   of the required result type.
5863       Ptr.setNull(Info.Ctx, E->getType());
5864       return true;
5865     }
5866 
5867     //   A failed cast to reference type throws [...] std::bad_cast.
5868     unsigned DiagKind;
5869     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5870                    DynType->Type->isDerivedFrom(C)))
5871       DiagKind = 0;
5872     else if (!Paths || Paths->begin() == Paths->end())
5873       DiagKind = 1;
5874     else if (Paths->isAmbiguous(CQT))
5875       DiagKind = 2;
5876     else {
5877       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5878       DiagKind = 3;
5879     }
5880     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5881         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5882         << Info.Ctx.getRecordType(DynType->Type)
5883         << E->getType().getUnqualifiedType();
5884     return false;
5885   };
5886 
5887   // Runtime check, phase 1:
5888   //   Walk from the base subobject towards the derived object looking for the
5889   //   target type.
5890   for (int PathLength = Ptr.Designator.Entries.size();
5891        PathLength >= (int)DynType->PathLength; --PathLength) {
5892     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5893     if (declaresSameEntity(Class, C))
5894       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5895     // We can only walk across public inheritance edges.
5896     if (PathLength > (int)DynType->PathLength &&
5897         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5898                            Class))
5899       return RuntimeCheckFailed(nullptr);
5900   }
5901 
5902   // Runtime check, phase 2:
5903   //   Search the dynamic type for an unambiguous public base of type C.
5904   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5905                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5906   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5907       Paths.front().Access == AS_public) {
5908     // Downcast to the dynamic type...
5909     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5910       return false;
5911     // ... then upcast to the chosen base class subobject.
5912     for (CXXBasePathElement &Elem : Paths.front())
5913       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5914         return false;
5915     return true;
5916   }
5917 
5918   // Otherwise, the runtime check fails.
5919   return RuntimeCheckFailed(&Paths);
5920 }
5921 
5922 namespace {
5923 struct StartLifetimeOfUnionMemberHandler {
5924   EvalInfo &Info;
5925   const Expr *LHSExpr;
5926   const FieldDecl *Field;
5927   bool DuringInit;
5928   bool Failed = false;
5929   static const AccessKinds AccessKind = AK_Assign;
5930 
5931   typedef bool result_type;
5932   bool failed() { return Failed; }
5933   bool found(APValue &Subobj, QualType SubobjType) {
5934     // We are supposed to perform no initialization but begin the lifetime of
5935     // the object. We interpret that as meaning to do what default
5936     // initialization of the object would do if all constructors involved were
5937     // trivial:
5938     //  * All base, non-variant member, and array element subobjects' lifetimes
5939     //    begin
5940     //  * No variant members' lifetimes begin
5941     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5942     assert(SubobjType->isUnionType());
5943     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5944       // This union member is already active. If it's also in-lifetime, there's
5945       // nothing to do.
5946       if (Subobj.getUnionValue().hasValue())
5947         return true;
5948     } else if (DuringInit) {
5949       // We're currently in the process of initializing a different union
5950       // member.  If we carried on, that initialization would attempt to
5951       // store to an inactive union member, resulting in undefined behavior.
5952       Info.FFDiag(LHSExpr,
5953                   diag::note_constexpr_union_member_change_during_init);
5954       return false;
5955     }
5956     APValue Result;
5957     Failed = !getDefaultInitValue(Field->getType(), Result);
5958     Subobj.setUnion(Field, Result);
5959     return true;
5960   }
5961   bool found(APSInt &Value, QualType SubobjType) {
5962     llvm_unreachable("wrong value kind for union object");
5963   }
5964   bool found(APFloat &Value, QualType SubobjType) {
5965     llvm_unreachable("wrong value kind for union object");
5966   }
5967 };
5968 } // end anonymous namespace
5969 
5970 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5971 
5972 /// Handle a builtin simple-assignment or a call to a trivial assignment
5973 /// operator whose left-hand side might involve a union member access. If it
5974 /// does, implicitly start the lifetime of any accessed union elements per
5975 /// C++20 [class.union]5.
5976 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5977                                           const LValue &LHS) {
5978   if (LHS.InvalidBase || LHS.Designator.Invalid)
5979     return false;
5980 
5981   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5982   // C++ [class.union]p5:
5983   //   define the set S(E) of subexpressions of E as follows:
5984   unsigned PathLength = LHS.Designator.Entries.size();
5985   for (const Expr *E = LHSExpr; E != nullptr;) {
5986     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5987     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5988       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5989       // Note that we can't implicitly start the lifetime of a reference,
5990       // so we don't need to proceed any further if we reach one.
5991       if (!FD || FD->getType()->isReferenceType())
5992         break;
5993 
5994       //    ... and also contains A.B if B names a union member ...
5995       if (FD->getParent()->isUnion()) {
5996         //    ... of a non-class, non-array type, or of a class type with a
5997         //    trivial default constructor that is not deleted, or an array of
5998         //    such types.
5999         auto *RD =
6000             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6001         if (!RD || RD->hasTrivialDefaultConstructor())
6002           UnionPathLengths.push_back({PathLength - 1, FD});
6003       }
6004 
6005       E = ME->getBase();
6006       --PathLength;
6007       assert(declaresSameEntity(FD,
6008                                 LHS.Designator.Entries[PathLength]
6009                                     .getAsBaseOrMember().getPointer()));
6010 
6011       //   -- If E is of the form A[B] and is interpreted as a built-in array
6012       //      subscripting operator, S(E) is [S(the array operand, if any)].
6013     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6014       // Step over an ArrayToPointerDecay implicit cast.
6015       auto *Base = ASE->getBase()->IgnoreImplicit();
6016       if (!Base->getType()->isArrayType())
6017         break;
6018 
6019       E = Base;
6020       --PathLength;
6021 
6022     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6023       // Step over a derived-to-base conversion.
6024       E = ICE->getSubExpr();
6025       if (ICE->getCastKind() == CK_NoOp)
6026         continue;
6027       if (ICE->getCastKind() != CK_DerivedToBase &&
6028           ICE->getCastKind() != CK_UncheckedDerivedToBase)
6029         break;
6030       // Walk path backwards as we walk up from the base to the derived class.
6031       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6032         --PathLength;
6033         (void)Elt;
6034         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6035                                   LHS.Designator.Entries[PathLength]
6036                                       .getAsBaseOrMember().getPointer()));
6037       }
6038 
6039     //   -- Otherwise, S(E) is empty.
6040     } else {
6041       break;
6042     }
6043   }
6044 
6045   // Common case: no unions' lifetimes are started.
6046   if (UnionPathLengths.empty())
6047     return true;
6048 
6049   //   if modification of X [would access an inactive union member], an object
6050   //   of the type of X is implicitly created
6051   CompleteObject Obj =
6052       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6053   if (!Obj)
6054     return false;
6055   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6056            llvm::reverse(UnionPathLengths)) {
6057     // Form a designator for the union object.
6058     SubobjectDesignator D = LHS.Designator;
6059     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6060 
6061     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6062                       ConstructionPhase::AfterBases;
6063     StartLifetimeOfUnionMemberHandler StartLifetime{
6064         Info, LHSExpr, LengthAndField.second, DuringInit};
6065     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6066       return false;
6067   }
6068 
6069   return true;
6070 }
6071 
6072 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6073                             CallRef Call, EvalInfo &Info,
6074                             bool NonNull = false) {
6075   LValue LV;
6076   // Create the parameter slot and register its destruction. For a vararg
6077   // argument, create a temporary.
6078   // FIXME: For calling conventions that destroy parameters in the callee,
6079   // should we consider performing destruction when the function returns
6080   // instead?
6081   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6082                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6083                                                        ScopeKind::Call, LV);
6084   if (!EvaluateInPlace(V, Info, LV, Arg))
6085     return false;
6086 
6087   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6088   // undefined behavior, so is non-constant.
6089   if (NonNull && V.isLValue() && V.isNullPointer()) {
6090     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6091     return false;
6092   }
6093 
6094   return true;
6095 }
6096 
6097 /// Evaluate the arguments to a function call.
6098 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6099                          EvalInfo &Info, const FunctionDecl *Callee,
6100                          bool RightToLeft = false) {
6101   bool Success = true;
6102   llvm::SmallBitVector ForbiddenNullArgs;
6103   if (Callee->hasAttr<NonNullAttr>()) {
6104     ForbiddenNullArgs.resize(Args.size());
6105     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6106       if (!Attr->args_size()) {
6107         ForbiddenNullArgs.set();
6108         break;
6109       } else
6110         for (auto Idx : Attr->args()) {
6111           unsigned ASTIdx = Idx.getASTIndex();
6112           if (ASTIdx >= Args.size())
6113             continue;
6114           ForbiddenNullArgs[ASTIdx] = true;
6115         }
6116     }
6117   }
6118   for (unsigned I = 0; I < Args.size(); I++) {
6119     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6120     const ParmVarDecl *PVD =
6121         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6122     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6123     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6124       // If we're checking for a potential constant expression, evaluate all
6125       // initializers even if some of them fail.
6126       if (!Info.noteFailure())
6127         return false;
6128       Success = false;
6129     }
6130   }
6131   return Success;
6132 }
6133 
6134 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6135 /// constructor or assignment operator.
6136 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6137                               const Expr *E, APValue &Result,
6138                               bool CopyObjectRepresentation) {
6139   // Find the reference argument.
6140   CallStackFrame *Frame = Info.CurrentCall;
6141   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6142   if (!RefValue) {
6143     Info.FFDiag(E);
6144     return false;
6145   }
6146 
6147   // Copy out the contents of the RHS object.
6148   LValue RefLValue;
6149   RefLValue.setFrom(Info.Ctx, *RefValue);
6150   return handleLValueToRValueConversion(
6151       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6152       CopyObjectRepresentation);
6153 }
6154 
6155 /// Evaluate a function call.
6156 static bool HandleFunctionCall(SourceLocation CallLoc,
6157                                const FunctionDecl *Callee, const LValue *This,
6158                                ArrayRef<const Expr *> Args, CallRef Call,
6159                                const Stmt *Body, EvalInfo &Info,
6160                                APValue &Result, const LValue *ResultSlot) {
6161   if (!Info.CheckCallLimit(CallLoc))
6162     return false;
6163 
6164   CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6165 
6166   // For a trivial copy or move assignment, perform an APValue copy. This is
6167   // essential for unions, where the operations performed by the assignment
6168   // operator cannot be represented as statements.
6169   //
6170   // Skip this for non-union classes with no fields; in that case, the defaulted
6171   // copy/move does not actually read the object.
6172   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6173   if (MD && MD->isDefaulted() &&
6174       (MD->getParent()->isUnion() ||
6175        (MD->isTrivial() &&
6176         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6177     assert(This &&
6178            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6179     APValue RHSValue;
6180     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6181                            MD->getParent()->isUnion()))
6182       return false;
6183     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6184                           RHSValue))
6185       return false;
6186     This->moveInto(Result);
6187     return true;
6188   } else if (MD && isLambdaCallOperator(MD)) {
6189     // We're in a lambda; determine the lambda capture field maps unless we're
6190     // just constexpr checking a lambda's call operator. constexpr checking is
6191     // done before the captures have been added to the closure object (unless
6192     // we're inferring constexpr-ness), so we don't have access to them in this
6193     // case. But since we don't need the captures to constexpr check, we can
6194     // just ignore them.
6195     if (!Info.checkingPotentialConstantExpression())
6196       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6197                                         Frame.LambdaThisCaptureField);
6198   }
6199 
6200   StmtResult Ret = {Result, ResultSlot};
6201   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6202   if (ESR == ESR_Succeeded) {
6203     if (Callee->getReturnType()->isVoidType())
6204       return true;
6205     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6206   }
6207   return ESR == ESR_Returned;
6208 }
6209 
6210 /// Evaluate a constructor call.
6211 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6212                                   CallRef Call,
6213                                   const CXXConstructorDecl *Definition,
6214                                   EvalInfo &Info, APValue &Result) {
6215   SourceLocation CallLoc = E->getExprLoc();
6216   if (!Info.CheckCallLimit(CallLoc))
6217     return false;
6218 
6219   const CXXRecordDecl *RD = Definition->getParent();
6220   if (RD->getNumVBases()) {
6221     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6222     return false;
6223   }
6224 
6225   EvalInfo::EvaluatingConstructorRAII EvalObj(
6226       Info,
6227       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6228       RD->getNumBases());
6229   CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6230 
6231   // FIXME: Creating an APValue just to hold a nonexistent return value is
6232   // wasteful.
6233   APValue RetVal;
6234   StmtResult Ret = {RetVal, nullptr};
6235 
6236   // If it's a delegating constructor, delegate.
6237   if (Definition->isDelegatingConstructor()) {
6238     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6239     if ((*I)->getInit()->isValueDependent()) {
6240       if (!EvaluateDependentExpr((*I)->getInit(), Info))
6241         return false;
6242     } else {
6243       FullExpressionRAII InitScope(Info);
6244       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6245           !InitScope.destroy())
6246         return false;
6247     }
6248     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6249   }
6250 
6251   // For a trivial copy or move constructor, perform an APValue copy. This is
6252   // essential for unions (or classes with anonymous union members), where the
6253   // operations performed by the constructor cannot be represented by
6254   // ctor-initializers.
6255   //
6256   // Skip this for empty non-union classes; we should not perform an
6257   // lvalue-to-rvalue conversion on them because their copy constructor does not
6258   // actually read them.
6259   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6260       (Definition->getParent()->isUnion() ||
6261        (Definition->isTrivial() &&
6262         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6263     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6264                              Definition->getParent()->isUnion());
6265   }
6266 
6267   // Reserve space for the struct members.
6268   if (!Result.hasValue()) {
6269     if (!RD->isUnion())
6270       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6271                        std::distance(RD->field_begin(), RD->field_end()));
6272     else
6273       // A union starts with no active member.
6274       Result = APValue((const FieldDecl*)nullptr);
6275   }
6276 
6277   if (RD->isInvalidDecl()) return false;
6278   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6279 
6280   // A scope for temporaries lifetime-extended by reference members.
6281   BlockScopeRAII LifetimeExtendedScope(Info);
6282 
6283   bool Success = true;
6284   unsigned BasesSeen = 0;
6285 #ifndef NDEBUG
6286   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6287 #endif
6288   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6289   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6290     // We might be initializing the same field again if this is an indirect
6291     // field initialization.
6292     if (FieldIt == RD->field_end() ||
6293         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6294       assert(Indirect && "fields out of order?");
6295       return;
6296     }
6297 
6298     // Default-initialize any fields with no explicit initializer.
6299     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6300       assert(FieldIt != RD->field_end() && "missing field?");
6301       if (!FieldIt->isUnnamedBitfield())
6302         Success &= getDefaultInitValue(
6303             FieldIt->getType(),
6304             Result.getStructField(FieldIt->getFieldIndex()));
6305     }
6306     ++FieldIt;
6307   };
6308   for (const auto *I : Definition->inits()) {
6309     LValue Subobject = This;
6310     LValue SubobjectParent = This;
6311     APValue *Value = &Result;
6312 
6313     // Determine the subobject to initialize.
6314     FieldDecl *FD = nullptr;
6315     if (I->isBaseInitializer()) {
6316       QualType BaseType(I->getBaseClass(), 0);
6317 #ifndef NDEBUG
6318       // Non-virtual base classes are initialized in the order in the class
6319       // definition. We have already checked for virtual base classes.
6320       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6321       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6322              "base class initializers not in expected order");
6323       ++BaseIt;
6324 #endif
6325       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6326                                   BaseType->getAsCXXRecordDecl(), &Layout))
6327         return false;
6328       Value = &Result.getStructBase(BasesSeen++);
6329     } else if ((FD = I->getMember())) {
6330       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6331         return false;
6332       if (RD->isUnion()) {
6333         Result = APValue(FD);
6334         Value = &Result.getUnionValue();
6335       } else {
6336         SkipToField(FD, false);
6337         Value = &Result.getStructField(FD->getFieldIndex());
6338       }
6339     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6340       // Walk the indirect field decl's chain to find the object to initialize,
6341       // and make sure we've initialized every step along it.
6342       auto IndirectFieldChain = IFD->chain();
6343       for (auto *C : IndirectFieldChain) {
6344         FD = cast<FieldDecl>(C);
6345         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6346         // Switch the union field if it differs. This happens if we had
6347         // preceding zero-initialization, and we're now initializing a union
6348         // subobject other than the first.
6349         // FIXME: In this case, the values of the other subobjects are
6350         // specified, since zero-initialization sets all padding bits to zero.
6351         if (!Value->hasValue() ||
6352             (Value->isUnion() && Value->getUnionField() != FD)) {
6353           if (CD->isUnion())
6354             *Value = APValue(FD);
6355           else
6356             // FIXME: This immediately starts the lifetime of all members of
6357             // an anonymous struct. It would be preferable to strictly start
6358             // member lifetime in initialization order.
6359             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6360         }
6361         // Store Subobject as its parent before updating it for the last element
6362         // in the chain.
6363         if (C == IndirectFieldChain.back())
6364           SubobjectParent = Subobject;
6365         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6366           return false;
6367         if (CD->isUnion())
6368           Value = &Value->getUnionValue();
6369         else {
6370           if (C == IndirectFieldChain.front() && !RD->isUnion())
6371             SkipToField(FD, true);
6372           Value = &Value->getStructField(FD->getFieldIndex());
6373         }
6374       }
6375     } else {
6376       llvm_unreachable("unknown base initializer kind");
6377     }
6378 
6379     // Need to override This for implicit field initializers as in this case
6380     // This refers to innermost anonymous struct/union containing initializer,
6381     // not to currently constructed class.
6382     const Expr *Init = I->getInit();
6383     if (Init->isValueDependent()) {
6384       if (!EvaluateDependentExpr(Init, Info))
6385         return false;
6386     } else {
6387       ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6388                                     isa<CXXDefaultInitExpr>(Init));
6389       FullExpressionRAII InitScope(Info);
6390       if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6391           (FD && FD->isBitField() &&
6392            !truncateBitfieldValue(Info, Init, *Value, FD))) {
6393         // If we're checking for a potential constant expression, evaluate all
6394         // initializers even if some of them fail.
6395         if (!Info.noteFailure())
6396           return false;
6397         Success = false;
6398       }
6399     }
6400 
6401     // This is the point at which the dynamic type of the object becomes this
6402     // class type.
6403     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6404       EvalObj.finishedConstructingBases();
6405   }
6406 
6407   // Default-initialize any remaining fields.
6408   if (!RD->isUnion()) {
6409     for (; FieldIt != RD->field_end(); ++FieldIt) {
6410       if (!FieldIt->isUnnamedBitfield())
6411         Success &= getDefaultInitValue(
6412             FieldIt->getType(),
6413             Result.getStructField(FieldIt->getFieldIndex()));
6414     }
6415   }
6416 
6417   EvalObj.finishedConstructingFields();
6418 
6419   return Success &&
6420          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6421          LifetimeExtendedScope.destroy();
6422 }
6423 
6424 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6425                                   ArrayRef<const Expr*> Args,
6426                                   const CXXConstructorDecl *Definition,
6427                                   EvalInfo &Info, APValue &Result) {
6428   CallScopeRAII CallScope(Info);
6429   CallRef Call = Info.CurrentCall->createCall(Definition);
6430   if (!EvaluateArgs(Args, Call, Info, Definition))
6431     return false;
6432 
6433   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6434          CallScope.destroy();
6435 }
6436 
6437 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6438                                   const LValue &This, APValue &Value,
6439                                   QualType T) {
6440   // Objects can only be destroyed while they're within their lifetimes.
6441   // FIXME: We have no representation for whether an object of type nullptr_t
6442   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6443   // as indeterminate instead?
6444   if (Value.isAbsent() && !T->isNullPtrType()) {
6445     APValue Printable;
6446     This.moveInto(Printable);
6447     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6448       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6449     return false;
6450   }
6451 
6452   // Invent an expression for location purposes.
6453   // FIXME: We shouldn't need to do this.
6454   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6455 
6456   // For arrays, destroy elements right-to-left.
6457   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6458     uint64_t Size = CAT->getSize().getZExtValue();
6459     QualType ElemT = CAT->getElementType();
6460 
6461     LValue ElemLV = This;
6462     ElemLV.addArray(Info, &LocE, CAT);
6463     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6464       return false;
6465 
6466     // Ensure that we have actual array elements available to destroy; the
6467     // destructors might mutate the value, so we can't run them on the array
6468     // filler.
6469     if (Size && Size > Value.getArrayInitializedElts())
6470       expandArray(Value, Value.getArraySize() - 1);
6471 
6472     for (; Size != 0; --Size) {
6473       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6474       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6475           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6476         return false;
6477     }
6478 
6479     // End the lifetime of this array now.
6480     Value = APValue();
6481     return true;
6482   }
6483 
6484   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6485   if (!RD) {
6486     if (T.isDestructedType()) {
6487       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6488       return false;
6489     }
6490 
6491     Value = APValue();
6492     return true;
6493   }
6494 
6495   if (RD->getNumVBases()) {
6496     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6497     return false;
6498   }
6499 
6500   const CXXDestructorDecl *DD = RD->getDestructor();
6501   if (!DD && !RD->hasTrivialDestructor()) {
6502     Info.FFDiag(CallLoc);
6503     return false;
6504   }
6505 
6506   if (!DD || DD->isTrivial() ||
6507       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6508     // A trivial destructor just ends the lifetime of the object. Check for
6509     // this case before checking for a body, because we might not bother
6510     // building a body for a trivial destructor. Note that it doesn't matter
6511     // whether the destructor is constexpr in this case; all trivial
6512     // destructors are constexpr.
6513     //
6514     // If an anonymous union would be destroyed, some enclosing destructor must
6515     // have been explicitly defined, and the anonymous union destruction should
6516     // have no effect.
6517     Value = APValue();
6518     return true;
6519   }
6520 
6521   if (!Info.CheckCallLimit(CallLoc))
6522     return false;
6523 
6524   const FunctionDecl *Definition = nullptr;
6525   const Stmt *Body = DD->getBody(Definition);
6526 
6527   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6528     return false;
6529 
6530   CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6531 
6532   // We're now in the period of destruction of this object.
6533   unsigned BasesLeft = RD->getNumBases();
6534   EvalInfo::EvaluatingDestructorRAII EvalObj(
6535       Info,
6536       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6537   if (!EvalObj.DidInsert) {
6538     // C++2a [class.dtor]p19:
6539     //   the behavior is undefined if the destructor is invoked for an object
6540     //   whose lifetime has ended
6541     // (Note that formally the lifetime ends when the period of destruction
6542     // begins, even though certain uses of the object remain valid until the
6543     // period of destruction ends.)
6544     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6545     return false;
6546   }
6547 
6548   // FIXME: Creating an APValue just to hold a nonexistent return value is
6549   // wasteful.
6550   APValue RetVal;
6551   StmtResult Ret = {RetVal, nullptr};
6552   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6553     return false;
6554 
6555   // A union destructor does not implicitly destroy its members.
6556   if (RD->isUnion())
6557     return true;
6558 
6559   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6560 
6561   // We don't have a good way to iterate fields in reverse, so collect all the
6562   // fields first and then walk them backwards.
6563   SmallVector<FieldDecl*, 16> Fields(RD->fields());
6564   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6565     if (FD->isUnnamedBitfield())
6566       continue;
6567 
6568     LValue Subobject = This;
6569     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6570       return false;
6571 
6572     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6573     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6574                                FD->getType()))
6575       return false;
6576   }
6577 
6578   if (BasesLeft != 0)
6579     EvalObj.startedDestroyingBases();
6580 
6581   // Destroy base classes in reverse order.
6582   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6583     --BasesLeft;
6584 
6585     QualType BaseType = Base.getType();
6586     LValue Subobject = This;
6587     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6588                                 BaseType->getAsCXXRecordDecl(), &Layout))
6589       return false;
6590 
6591     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6592     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6593                                BaseType))
6594       return false;
6595   }
6596   assert(BasesLeft == 0 && "NumBases was wrong?");
6597 
6598   // The period of destruction ends now. The object is gone.
6599   Value = APValue();
6600   return true;
6601 }
6602 
6603 namespace {
6604 struct DestroyObjectHandler {
6605   EvalInfo &Info;
6606   const Expr *E;
6607   const LValue &This;
6608   const AccessKinds AccessKind;
6609 
6610   typedef bool result_type;
6611   bool failed() { return false; }
6612   bool found(APValue &Subobj, QualType SubobjType) {
6613     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6614                                  SubobjType);
6615   }
6616   bool found(APSInt &Value, QualType SubobjType) {
6617     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6618     return false;
6619   }
6620   bool found(APFloat &Value, QualType SubobjType) {
6621     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6622     return false;
6623   }
6624 };
6625 }
6626 
6627 /// Perform a destructor or pseudo-destructor call on the given object, which
6628 /// might in general not be a complete object.
6629 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6630                               const LValue &This, QualType ThisType) {
6631   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6632   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6633   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6634 }
6635 
6636 /// Destroy and end the lifetime of the given complete object.
6637 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6638                               APValue::LValueBase LVBase, APValue &Value,
6639                               QualType T) {
6640   // If we've had an unmodeled side-effect, we can't rely on mutable state
6641   // (such as the object we're about to destroy) being correct.
6642   if (Info.EvalStatus.HasSideEffects)
6643     return false;
6644 
6645   LValue LV;
6646   LV.set({LVBase});
6647   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6648 }
6649 
6650 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
6651 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6652                                   LValue &Result) {
6653   if (Info.checkingPotentialConstantExpression() ||
6654       Info.SpeculativeEvaluationDepth)
6655     return false;
6656 
6657   // This is permitted only within a call to std::allocator<T>::allocate.
6658   auto Caller = Info.getStdAllocatorCaller("allocate");
6659   if (!Caller) {
6660     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6661                                      ? diag::note_constexpr_new_untyped
6662                                      : diag::note_constexpr_new);
6663     return false;
6664   }
6665 
6666   QualType ElemType = Caller.ElemType;
6667   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6668     Info.FFDiag(E->getExprLoc(),
6669                 diag::note_constexpr_new_not_complete_object_type)
6670         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6671     return false;
6672   }
6673 
6674   APSInt ByteSize;
6675   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6676     return false;
6677   bool IsNothrow = false;
6678   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6679     EvaluateIgnoredValue(Info, E->getArg(I));
6680     IsNothrow |= E->getType()->isNothrowT();
6681   }
6682 
6683   CharUnits ElemSize;
6684   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6685     return false;
6686   APInt Size, Remainder;
6687   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6688   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6689   if (Remainder != 0) {
6690     // This likely indicates a bug in the implementation of 'std::allocator'.
6691     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6692         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6693     return false;
6694   }
6695 
6696   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6697     if (IsNothrow) {
6698       Result.setNull(Info.Ctx, E->getType());
6699       return true;
6700     }
6701 
6702     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6703     return false;
6704   }
6705 
6706   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6707                                                      ArrayType::Normal, 0);
6708   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6709   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6710   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6711   return true;
6712 }
6713 
6714 static bool hasVirtualDestructor(QualType T) {
6715   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6716     if (CXXDestructorDecl *DD = RD->getDestructor())
6717       return DD->isVirtual();
6718   return false;
6719 }
6720 
6721 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6722   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6723     if (CXXDestructorDecl *DD = RD->getDestructor())
6724       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6725   return nullptr;
6726 }
6727 
6728 /// Check that the given object is a suitable pointer to a heap allocation that
6729 /// still exists and is of the right kind for the purpose of a deletion.
6730 ///
6731 /// On success, returns the heap allocation to deallocate. On failure, produces
6732 /// a diagnostic and returns None.
6733 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6734                                             const LValue &Pointer,
6735                                             DynAlloc::Kind DeallocKind) {
6736   auto PointerAsString = [&] {
6737     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6738   };
6739 
6740   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6741   if (!DA) {
6742     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6743         << PointerAsString();
6744     if (Pointer.Base)
6745       NoteLValueLocation(Info, Pointer.Base);
6746     return None;
6747   }
6748 
6749   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6750   if (!Alloc) {
6751     Info.FFDiag(E, diag::note_constexpr_double_delete);
6752     return None;
6753   }
6754 
6755   QualType AllocType = Pointer.Base.getDynamicAllocType();
6756   if (DeallocKind != (*Alloc)->getKind()) {
6757     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6758         << DeallocKind << (*Alloc)->getKind() << AllocType;
6759     NoteLValueLocation(Info, Pointer.Base);
6760     return None;
6761   }
6762 
6763   bool Subobject = false;
6764   if (DeallocKind == DynAlloc::New) {
6765     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6766                 Pointer.Designator.isOnePastTheEnd();
6767   } else {
6768     Subobject = Pointer.Designator.Entries.size() != 1 ||
6769                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6770   }
6771   if (Subobject) {
6772     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6773         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6774     return None;
6775   }
6776 
6777   return Alloc;
6778 }
6779 
6780 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
6781 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6782   if (Info.checkingPotentialConstantExpression() ||
6783       Info.SpeculativeEvaluationDepth)
6784     return false;
6785 
6786   // This is permitted only within a call to std::allocator<T>::deallocate.
6787   if (!Info.getStdAllocatorCaller("deallocate")) {
6788     Info.FFDiag(E->getExprLoc());
6789     return true;
6790   }
6791 
6792   LValue Pointer;
6793   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6794     return false;
6795   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6796     EvaluateIgnoredValue(Info, E->getArg(I));
6797 
6798   if (Pointer.Designator.Invalid)
6799     return false;
6800 
6801   // Deleting a null pointer would have no effect, but it's not permitted by
6802   // std::allocator<T>::deallocate's contract.
6803   if (Pointer.isNullPointer()) {
6804     Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6805     return true;
6806   }
6807 
6808   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6809     return false;
6810 
6811   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6812   return true;
6813 }
6814 
6815 //===----------------------------------------------------------------------===//
6816 // Generic Evaluation
6817 //===----------------------------------------------------------------------===//
6818 namespace {
6819 
6820 class BitCastBuffer {
6821   // FIXME: We're going to need bit-level granularity when we support
6822   // bit-fields.
6823   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6824   // we don't support a host or target where that is the case. Still, we should
6825   // use a more generic type in case we ever do.
6826   SmallVector<Optional<unsigned char>, 32> Bytes;
6827 
6828   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6829                 "Need at least 8 bit unsigned char");
6830 
6831   bool TargetIsLittleEndian;
6832 
6833 public:
6834   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6835       : Bytes(Width.getQuantity()),
6836         TargetIsLittleEndian(TargetIsLittleEndian) {}
6837 
6838   LLVM_NODISCARD
6839   bool readObject(CharUnits Offset, CharUnits Width,
6840                   SmallVectorImpl<unsigned char> &Output) const {
6841     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6842       // If a byte of an integer is uninitialized, then the whole integer is
6843       // uninitialized.
6844       if (!Bytes[I.getQuantity()])
6845         return false;
6846       Output.push_back(*Bytes[I.getQuantity()]);
6847     }
6848     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6849       std::reverse(Output.begin(), Output.end());
6850     return true;
6851   }
6852 
6853   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6854     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6855       std::reverse(Input.begin(), Input.end());
6856 
6857     size_t Index = 0;
6858     for (unsigned char Byte : Input) {
6859       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6860       Bytes[Offset.getQuantity() + Index] = Byte;
6861       ++Index;
6862     }
6863   }
6864 
6865   size_t size() { return Bytes.size(); }
6866 };
6867 
6868 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6869 /// target would represent the value at runtime.
6870 class APValueToBufferConverter {
6871   EvalInfo &Info;
6872   BitCastBuffer Buffer;
6873   const CastExpr *BCE;
6874 
6875   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6876                            const CastExpr *BCE)
6877       : Info(Info),
6878         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6879         BCE(BCE) {}
6880 
6881   bool visit(const APValue &Val, QualType Ty) {
6882     return visit(Val, Ty, CharUnits::fromQuantity(0));
6883   }
6884 
6885   // Write out Val with type Ty into Buffer starting at Offset.
6886   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6887     assert((size_t)Offset.getQuantity() <= Buffer.size());
6888 
6889     // As a special case, nullptr_t has an indeterminate value.
6890     if (Ty->isNullPtrType())
6891       return true;
6892 
6893     // Dig through Src to find the byte at SrcOffset.
6894     switch (Val.getKind()) {
6895     case APValue::Indeterminate:
6896     case APValue::None:
6897       return true;
6898 
6899     case APValue::Int:
6900       return visitInt(Val.getInt(), Ty, Offset);
6901     case APValue::Float:
6902       return visitFloat(Val.getFloat(), Ty, Offset);
6903     case APValue::Array:
6904       return visitArray(Val, Ty, Offset);
6905     case APValue::Struct:
6906       return visitRecord(Val, Ty, Offset);
6907 
6908     case APValue::ComplexInt:
6909     case APValue::ComplexFloat:
6910     case APValue::Vector:
6911     case APValue::FixedPoint:
6912       // FIXME: We should support these.
6913 
6914     case APValue::Union:
6915     case APValue::MemberPointer:
6916     case APValue::AddrLabelDiff: {
6917       Info.FFDiag(BCE->getBeginLoc(),
6918                   diag::note_constexpr_bit_cast_unsupported_type)
6919           << Ty;
6920       return false;
6921     }
6922 
6923     case APValue::LValue:
6924       llvm_unreachable("LValue subobject in bit_cast?");
6925     }
6926     llvm_unreachable("Unhandled APValue::ValueKind");
6927   }
6928 
6929   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6930     const RecordDecl *RD = Ty->getAsRecordDecl();
6931     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6932 
6933     // Visit the base classes.
6934     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6935       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6936         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6937         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6938 
6939         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6940                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6941           return false;
6942       }
6943     }
6944 
6945     // Visit the fields.
6946     unsigned FieldIdx = 0;
6947     for (FieldDecl *FD : RD->fields()) {
6948       if (FD->isBitField()) {
6949         Info.FFDiag(BCE->getBeginLoc(),
6950                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6951         return false;
6952       }
6953 
6954       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6955 
6956       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6957              "only bit-fields can have sub-char alignment");
6958       CharUnits FieldOffset =
6959           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6960       QualType FieldTy = FD->getType();
6961       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6962         return false;
6963       ++FieldIdx;
6964     }
6965 
6966     return true;
6967   }
6968 
6969   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6970     const auto *CAT =
6971         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6972     if (!CAT)
6973       return false;
6974 
6975     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6976     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6977     unsigned ArraySize = Val.getArraySize();
6978     // First, initialize the initialized elements.
6979     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6980       const APValue &SubObj = Val.getArrayInitializedElt(I);
6981       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6982         return false;
6983     }
6984 
6985     // Next, initialize the rest of the array using the filler.
6986     if (Val.hasArrayFiller()) {
6987       const APValue &Filler = Val.getArrayFiller();
6988       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6989         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6990           return false;
6991       }
6992     }
6993 
6994     return true;
6995   }
6996 
6997   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6998     APSInt AdjustedVal = Val;
6999     unsigned Width = AdjustedVal.getBitWidth();
7000     if (Ty->isBooleanType()) {
7001       Width = Info.Ctx.getTypeSize(Ty);
7002       AdjustedVal = AdjustedVal.extend(Width);
7003     }
7004 
7005     SmallVector<unsigned char, 8> Bytes(Width / 8);
7006     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7007     Buffer.writeObject(Offset, Bytes);
7008     return true;
7009   }
7010 
7011   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7012     APSInt AsInt(Val.bitcastToAPInt());
7013     return visitInt(AsInt, Ty, Offset);
7014   }
7015 
7016 public:
7017   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
7018                                          const CastExpr *BCE) {
7019     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7020     APValueToBufferConverter Converter(Info, DstSize, BCE);
7021     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7022       return None;
7023     return Converter.Buffer;
7024   }
7025 };
7026 
7027 /// Write an BitCastBuffer into an APValue.
7028 class BufferToAPValueConverter {
7029   EvalInfo &Info;
7030   const BitCastBuffer &Buffer;
7031   const CastExpr *BCE;
7032 
7033   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7034                            const CastExpr *BCE)
7035       : Info(Info), Buffer(Buffer), BCE(BCE) {}
7036 
7037   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7038   // with an invalid type, so anything left is a deficiency on our part (FIXME).
7039   // Ideally this will be unreachable.
7040   llvm::NoneType unsupportedType(QualType Ty) {
7041     Info.FFDiag(BCE->getBeginLoc(),
7042                 diag::note_constexpr_bit_cast_unsupported_type)
7043         << Ty;
7044     return None;
7045   }
7046 
7047   llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
7048     Info.FFDiag(BCE->getBeginLoc(),
7049                 diag::note_constexpr_bit_cast_unrepresentable_value)
7050         << Ty << toString(Val, /*Radix=*/10);
7051     return None;
7052   }
7053 
7054   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7055                           const EnumType *EnumSugar = nullptr) {
7056     if (T->isNullPtrType()) {
7057       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7058       return APValue((Expr *)nullptr,
7059                      /*Offset=*/CharUnits::fromQuantity(NullValue),
7060                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7061     }
7062 
7063     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7064 
7065     // Work around floating point types that contain unused padding bytes. This
7066     // is really just `long double` on x86, which is the only fundamental type
7067     // with padding bytes.
7068     if (T->isRealFloatingType()) {
7069       const llvm::fltSemantics &Semantics =
7070           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7071       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7072       assert(NumBits % 8 == 0);
7073       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7074       if (NumBytes != SizeOf)
7075         SizeOf = NumBytes;
7076     }
7077 
7078     SmallVector<uint8_t, 8> Bytes;
7079     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7080       // If this is std::byte or unsigned char, then its okay to store an
7081       // indeterminate value.
7082       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7083       bool IsUChar =
7084           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7085                          T->isSpecificBuiltinType(BuiltinType::Char_U));
7086       if (!IsStdByte && !IsUChar) {
7087         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7088         Info.FFDiag(BCE->getExprLoc(),
7089                     diag::note_constexpr_bit_cast_indet_dest)
7090             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7091         return None;
7092       }
7093 
7094       return APValue::IndeterminateValue();
7095     }
7096 
7097     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7098     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7099 
7100     if (T->isIntegralOrEnumerationType()) {
7101       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7102 
7103       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7104       if (IntWidth != Val.getBitWidth()) {
7105         APSInt Truncated = Val.trunc(IntWidth);
7106         if (Truncated.extend(Val.getBitWidth()) != Val)
7107           return unrepresentableValue(QualType(T, 0), Val);
7108         Val = Truncated;
7109       }
7110 
7111       return APValue(Val);
7112     }
7113 
7114     if (T->isRealFloatingType()) {
7115       const llvm::fltSemantics &Semantics =
7116           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7117       return APValue(APFloat(Semantics, Val));
7118     }
7119 
7120     return unsupportedType(QualType(T, 0));
7121   }
7122 
7123   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7124     const RecordDecl *RD = RTy->getAsRecordDecl();
7125     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7126 
7127     unsigned NumBases = 0;
7128     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7129       NumBases = CXXRD->getNumBases();
7130 
7131     APValue ResultVal(APValue::UninitStruct(), NumBases,
7132                       std::distance(RD->field_begin(), RD->field_end()));
7133 
7134     // Visit the base classes.
7135     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7136       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7137         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7138         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7139         if (BaseDecl->isEmpty() ||
7140             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7141           continue;
7142 
7143         Optional<APValue> SubObj = visitType(
7144             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7145         if (!SubObj)
7146           return None;
7147         ResultVal.getStructBase(I) = *SubObj;
7148       }
7149     }
7150 
7151     // Visit the fields.
7152     unsigned FieldIdx = 0;
7153     for (FieldDecl *FD : RD->fields()) {
7154       // FIXME: We don't currently support bit-fields. A lot of the logic for
7155       // this is in CodeGen, so we need to factor it around.
7156       if (FD->isBitField()) {
7157         Info.FFDiag(BCE->getBeginLoc(),
7158                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7159         return None;
7160       }
7161 
7162       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7163       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7164 
7165       CharUnits FieldOffset =
7166           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7167           Offset;
7168       QualType FieldTy = FD->getType();
7169       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7170       if (!SubObj)
7171         return None;
7172       ResultVal.getStructField(FieldIdx) = *SubObj;
7173       ++FieldIdx;
7174     }
7175 
7176     return ResultVal;
7177   }
7178 
7179   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7180     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7181     assert(!RepresentationType.isNull() &&
7182            "enum forward decl should be caught by Sema");
7183     const auto *AsBuiltin =
7184         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7185     // Recurse into the underlying type. Treat std::byte transparently as
7186     // unsigned char.
7187     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7188   }
7189 
7190   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7191     size_t Size = Ty->getSize().getLimitedValue();
7192     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7193 
7194     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7195     for (size_t I = 0; I != Size; ++I) {
7196       Optional<APValue> ElementValue =
7197           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7198       if (!ElementValue)
7199         return None;
7200       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7201     }
7202 
7203     return ArrayValue;
7204   }
7205 
7206   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7207     return unsupportedType(QualType(Ty, 0));
7208   }
7209 
7210   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7211     QualType Can = Ty.getCanonicalType();
7212 
7213     switch (Can->getTypeClass()) {
7214 #define TYPE(Class, Base)                                                      \
7215   case Type::Class:                                                            \
7216     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7217 #define ABSTRACT_TYPE(Class, Base)
7218 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7219   case Type::Class:                                                            \
7220     llvm_unreachable("non-canonical type should be impossible!");
7221 #define DEPENDENT_TYPE(Class, Base)                                            \
7222   case Type::Class:                                                            \
7223     llvm_unreachable(                                                          \
7224         "dependent types aren't supported in the constant evaluator!");
7225 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7226   case Type::Class:                                                            \
7227     llvm_unreachable("either dependent or not canonical!");
7228 #include "clang/AST/TypeNodes.inc"
7229     }
7230     llvm_unreachable("Unhandled Type::TypeClass");
7231   }
7232 
7233 public:
7234   // Pull out a full value of type DstType.
7235   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7236                                    const CastExpr *BCE) {
7237     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7238     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7239   }
7240 };
7241 
7242 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7243                                                  QualType Ty, EvalInfo *Info,
7244                                                  const ASTContext &Ctx,
7245                                                  bool CheckingDest) {
7246   Ty = Ty.getCanonicalType();
7247 
7248   auto diag = [&](int Reason) {
7249     if (Info)
7250       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7251           << CheckingDest << (Reason == 4) << Reason;
7252     return false;
7253   };
7254   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7255     if (Info)
7256       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7257           << NoteTy << Construct << Ty;
7258     return false;
7259   };
7260 
7261   if (Ty->isUnionType())
7262     return diag(0);
7263   if (Ty->isPointerType())
7264     return diag(1);
7265   if (Ty->isMemberPointerType())
7266     return diag(2);
7267   if (Ty.isVolatileQualified())
7268     return diag(3);
7269 
7270   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7271     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7272       for (CXXBaseSpecifier &BS : CXXRD->bases())
7273         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7274                                                   CheckingDest))
7275           return note(1, BS.getType(), BS.getBeginLoc());
7276     }
7277     for (FieldDecl *FD : Record->fields()) {
7278       if (FD->getType()->isReferenceType())
7279         return diag(4);
7280       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7281                                                 CheckingDest))
7282         return note(0, FD->getType(), FD->getBeginLoc());
7283     }
7284   }
7285 
7286   if (Ty->isArrayType() &&
7287       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7288                                             Info, Ctx, CheckingDest))
7289     return false;
7290 
7291   return true;
7292 }
7293 
7294 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7295                                              const ASTContext &Ctx,
7296                                              const CastExpr *BCE) {
7297   bool DestOK = checkBitCastConstexprEligibilityType(
7298       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7299   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7300                                 BCE->getBeginLoc(),
7301                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7302   return SourceOK;
7303 }
7304 
7305 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7306                                         APValue &SourceValue,
7307                                         const CastExpr *BCE) {
7308   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7309          "no host or target supports non 8-bit chars");
7310   assert(SourceValue.isLValue() &&
7311          "LValueToRValueBitcast requires an lvalue operand!");
7312 
7313   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7314     return false;
7315 
7316   LValue SourceLValue;
7317   APValue SourceRValue;
7318   SourceLValue.setFrom(Info.Ctx, SourceValue);
7319   if (!handleLValueToRValueConversion(
7320           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7321           SourceRValue, /*WantObjectRepresentation=*/true))
7322     return false;
7323 
7324   // Read out SourceValue into a char buffer.
7325   Optional<BitCastBuffer> Buffer =
7326       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7327   if (!Buffer)
7328     return false;
7329 
7330   // Write out the buffer into a new APValue.
7331   Optional<APValue> MaybeDestValue =
7332       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7333   if (!MaybeDestValue)
7334     return false;
7335 
7336   DestValue = std::move(*MaybeDestValue);
7337   return true;
7338 }
7339 
7340 template <class Derived>
7341 class ExprEvaluatorBase
7342   : public ConstStmtVisitor<Derived, bool> {
7343 private:
7344   Derived &getDerived() { return static_cast<Derived&>(*this); }
7345   bool DerivedSuccess(const APValue &V, const Expr *E) {
7346     return getDerived().Success(V, E);
7347   }
7348   bool DerivedZeroInitialization(const Expr *E) {
7349     return getDerived().ZeroInitialization(E);
7350   }
7351 
7352   // Check whether a conditional operator with a non-constant condition is a
7353   // potential constant expression. If neither arm is a potential constant
7354   // expression, then the conditional operator is not either.
7355   template<typename ConditionalOperator>
7356   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7357     assert(Info.checkingPotentialConstantExpression());
7358 
7359     // Speculatively evaluate both arms.
7360     SmallVector<PartialDiagnosticAt, 8> Diag;
7361     {
7362       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7363       StmtVisitorTy::Visit(E->getFalseExpr());
7364       if (Diag.empty())
7365         return;
7366     }
7367 
7368     {
7369       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7370       Diag.clear();
7371       StmtVisitorTy::Visit(E->getTrueExpr());
7372       if (Diag.empty())
7373         return;
7374     }
7375 
7376     Error(E, diag::note_constexpr_conditional_never_const);
7377   }
7378 
7379 
7380   template<typename ConditionalOperator>
7381   bool HandleConditionalOperator(const ConditionalOperator *E) {
7382     bool BoolResult;
7383     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7384       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7385         CheckPotentialConstantConditional(E);
7386         return false;
7387       }
7388       if (Info.noteFailure()) {
7389         StmtVisitorTy::Visit(E->getTrueExpr());
7390         StmtVisitorTy::Visit(E->getFalseExpr());
7391       }
7392       return false;
7393     }
7394 
7395     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7396     return StmtVisitorTy::Visit(EvalExpr);
7397   }
7398 
7399 protected:
7400   EvalInfo &Info;
7401   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7402   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7403 
7404   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7405     return Info.CCEDiag(E, D);
7406   }
7407 
7408   bool ZeroInitialization(const Expr *E) { return Error(E); }
7409 
7410 public:
7411   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7412 
7413   EvalInfo &getEvalInfo() { return Info; }
7414 
7415   /// Report an evaluation error. This should only be called when an error is
7416   /// first discovered. When propagating an error, just return false.
7417   bool Error(const Expr *E, diag::kind D) {
7418     Info.FFDiag(E, D);
7419     return false;
7420   }
7421   bool Error(const Expr *E) {
7422     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7423   }
7424 
7425   bool VisitStmt(const Stmt *) {
7426     llvm_unreachable("Expression evaluator should not be called on stmts");
7427   }
7428   bool VisitExpr(const Expr *E) {
7429     return Error(E);
7430   }
7431 
7432   bool VisitConstantExpr(const ConstantExpr *E) {
7433     if (E->hasAPValueResult())
7434       return DerivedSuccess(E->getAPValueResult(), E);
7435 
7436     return StmtVisitorTy::Visit(E->getSubExpr());
7437   }
7438 
7439   bool VisitParenExpr(const ParenExpr *E)
7440     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7441   bool VisitUnaryExtension(const UnaryOperator *E)
7442     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7443   bool VisitUnaryPlus(const UnaryOperator *E)
7444     { return StmtVisitorTy::Visit(E->getSubExpr()); }
7445   bool VisitChooseExpr(const ChooseExpr *E)
7446     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7447   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7448     { return StmtVisitorTy::Visit(E->getResultExpr()); }
7449   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7450     { return StmtVisitorTy::Visit(E->getReplacement()); }
7451   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7452     TempVersionRAII RAII(*Info.CurrentCall);
7453     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7454     return StmtVisitorTy::Visit(E->getExpr());
7455   }
7456   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7457     TempVersionRAII RAII(*Info.CurrentCall);
7458     // The initializer may not have been parsed yet, or might be erroneous.
7459     if (!E->getExpr())
7460       return Error(E);
7461     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7462     return StmtVisitorTy::Visit(E->getExpr());
7463   }
7464 
7465   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7466     FullExpressionRAII Scope(Info);
7467     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7468   }
7469 
7470   // Temporaries are registered when created, so we don't care about
7471   // CXXBindTemporaryExpr.
7472   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7473     return StmtVisitorTy::Visit(E->getSubExpr());
7474   }
7475 
7476   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7477     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7478     return static_cast<Derived*>(this)->VisitCastExpr(E);
7479   }
7480   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7481     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7482       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7483     return static_cast<Derived*>(this)->VisitCastExpr(E);
7484   }
7485   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7486     return static_cast<Derived*>(this)->VisitCastExpr(E);
7487   }
7488 
7489   bool VisitBinaryOperator(const BinaryOperator *E) {
7490     switch (E->getOpcode()) {
7491     default:
7492       return Error(E);
7493 
7494     case BO_Comma:
7495       VisitIgnoredValue(E->getLHS());
7496       return StmtVisitorTy::Visit(E->getRHS());
7497 
7498     case BO_PtrMemD:
7499     case BO_PtrMemI: {
7500       LValue Obj;
7501       if (!HandleMemberPointerAccess(Info, E, Obj))
7502         return false;
7503       APValue Result;
7504       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7505         return false;
7506       return DerivedSuccess(Result, E);
7507     }
7508     }
7509   }
7510 
7511   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7512     return StmtVisitorTy::Visit(E->getSemanticForm());
7513   }
7514 
7515   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7516     // Evaluate and cache the common expression. We treat it as a temporary,
7517     // even though it's not quite the same thing.
7518     LValue CommonLV;
7519     if (!Evaluate(Info.CurrentCall->createTemporary(
7520                       E->getOpaqueValue(),
7521                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7522                       ScopeKind::FullExpression, CommonLV),
7523                   Info, E->getCommon()))
7524       return false;
7525 
7526     return HandleConditionalOperator(E);
7527   }
7528 
7529   bool VisitConditionalOperator(const ConditionalOperator *E) {
7530     bool IsBcpCall = false;
7531     // If the condition (ignoring parens) is a __builtin_constant_p call,
7532     // the result is a constant expression if it can be folded without
7533     // side-effects. This is an important GNU extension. See GCC PR38377
7534     // for discussion.
7535     if (const CallExpr *CallCE =
7536           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7537       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7538         IsBcpCall = true;
7539 
7540     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7541     // constant expression; we can't check whether it's potentially foldable.
7542     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7543     // it would return 'false' in this mode.
7544     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7545       return false;
7546 
7547     FoldConstant Fold(Info, IsBcpCall);
7548     if (!HandleConditionalOperator(E)) {
7549       Fold.keepDiagnostics();
7550       return false;
7551     }
7552 
7553     return true;
7554   }
7555 
7556   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7557     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7558       return DerivedSuccess(*Value, E);
7559 
7560     const Expr *Source = E->getSourceExpr();
7561     if (!Source)
7562       return Error(E);
7563     if (Source == E) {
7564       assert(0 && "OpaqueValueExpr recursively refers to itself");
7565       return Error(E);
7566     }
7567     return StmtVisitorTy::Visit(Source);
7568   }
7569 
7570   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7571     for (const Expr *SemE : E->semantics()) {
7572       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7573         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7574         // result expression: there could be two different LValues that would
7575         // refer to the same object in that case, and we can't model that.
7576         if (SemE == E->getResultExpr())
7577           return Error(E);
7578 
7579         // Unique OVEs get evaluated if and when we encounter them when
7580         // emitting the rest of the semantic form, rather than eagerly.
7581         if (OVE->isUnique())
7582           continue;
7583 
7584         LValue LV;
7585         if (!Evaluate(Info.CurrentCall->createTemporary(
7586                           OVE, getStorageType(Info.Ctx, OVE),
7587                           ScopeKind::FullExpression, LV),
7588                       Info, OVE->getSourceExpr()))
7589           return false;
7590       } else if (SemE == E->getResultExpr()) {
7591         if (!StmtVisitorTy::Visit(SemE))
7592           return false;
7593       } else {
7594         if (!EvaluateIgnoredValue(Info, SemE))
7595           return false;
7596       }
7597     }
7598     return true;
7599   }
7600 
7601   bool VisitCallExpr(const CallExpr *E) {
7602     APValue Result;
7603     if (!handleCallExpr(E, Result, nullptr))
7604       return false;
7605     return DerivedSuccess(Result, E);
7606   }
7607 
7608   bool handleCallExpr(const CallExpr *E, APValue &Result,
7609                      const LValue *ResultSlot) {
7610     CallScopeRAII CallScope(Info);
7611 
7612     const Expr *Callee = E->getCallee()->IgnoreParens();
7613     QualType CalleeType = Callee->getType();
7614 
7615     const FunctionDecl *FD = nullptr;
7616     LValue *This = nullptr, ThisVal;
7617     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7618     bool HasQualifier = false;
7619 
7620     CallRef Call;
7621 
7622     // Extract function decl and 'this' pointer from the callee.
7623     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7624       const CXXMethodDecl *Member = nullptr;
7625       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7626         // Explicit bound member calls, such as x.f() or p->g();
7627         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7628           return false;
7629         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7630         if (!Member)
7631           return Error(Callee);
7632         This = &ThisVal;
7633         HasQualifier = ME->hasQualifier();
7634       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7635         // Indirect bound member calls ('.*' or '->*').
7636         const ValueDecl *D =
7637             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7638         if (!D)
7639           return false;
7640         Member = dyn_cast<CXXMethodDecl>(D);
7641         if (!Member)
7642           return Error(Callee);
7643         This = &ThisVal;
7644       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7645         if (!Info.getLangOpts().CPlusPlus20)
7646           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7647         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7648                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7649       } else
7650         return Error(Callee);
7651       FD = Member;
7652     } else if (CalleeType->isFunctionPointerType()) {
7653       LValue CalleeLV;
7654       if (!EvaluatePointer(Callee, CalleeLV, Info))
7655         return false;
7656 
7657       if (!CalleeLV.getLValueOffset().isZero())
7658         return Error(Callee);
7659       FD = dyn_cast_or_null<FunctionDecl>(
7660           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7661       if (!FD)
7662         return Error(Callee);
7663       // Don't call function pointers which have been cast to some other type.
7664       // Per DR (no number yet), the caller and callee can differ in noexcept.
7665       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7666         CalleeType->getPointeeType(), FD->getType())) {
7667         return Error(E);
7668       }
7669 
7670       // For an (overloaded) assignment expression, evaluate the RHS before the
7671       // LHS.
7672       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7673       if (OCE && OCE->isAssignmentOp()) {
7674         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7675         Call = Info.CurrentCall->createCall(FD);
7676         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7677                           Info, FD, /*RightToLeft=*/true))
7678           return false;
7679       }
7680 
7681       // Overloaded operator calls to member functions are represented as normal
7682       // calls with '*this' as the first argument.
7683       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7684       if (MD && !MD->isStatic()) {
7685         // FIXME: When selecting an implicit conversion for an overloaded
7686         // operator delete, we sometimes try to evaluate calls to conversion
7687         // operators without a 'this' parameter!
7688         if (Args.empty())
7689           return Error(E);
7690 
7691         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7692           return false;
7693         This = &ThisVal;
7694 
7695         // If this is syntactically a simple assignment using a trivial
7696         // assignment operator, start the lifetimes of union members as needed,
7697         // per C++20 [class.union]5.
7698         if (Info.getLangOpts().CPlusPlus20 && OCE &&
7699             OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7700             !HandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7701           return false;
7702 
7703         Args = Args.slice(1);
7704       } else if (MD && MD->isLambdaStaticInvoker()) {
7705         // Map the static invoker for the lambda back to the call operator.
7706         // Conveniently, we don't have to slice out the 'this' argument (as is
7707         // being done for the non-static case), since a static member function
7708         // doesn't have an implicit argument passed in.
7709         const CXXRecordDecl *ClosureClass = MD->getParent();
7710         assert(
7711             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7712             "Number of captures must be zero for conversion to function-ptr");
7713 
7714         const CXXMethodDecl *LambdaCallOp =
7715             ClosureClass->getLambdaCallOperator();
7716 
7717         // Set 'FD', the function that will be called below, to the call
7718         // operator.  If the closure object represents a generic lambda, find
7719         // the corresponding specialization of the call operator.
7720 
7721         if (ClosureClass->isGenericLambda()) {
7722           assert(MD->isFunctionTemplateSpecialization() &&
7723                  "A generic lambda's static-invoker function must be a "
7724                  "template specialization");
7725           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7726           FunctionTemplateDecl *CallOpTemplate =
7727               LambdaCallOp->getDescribedFunctionTemplate();
7728           void *InsertPos = nullptr;
7729           FunctionDecl *CorrespondingCallOpSpecialization =
7730               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7731           assert(CorrespondingCallOpSpecialization &&
7732                  "We must always have a function call operator specialization "
7733                  "that corresponds to our static invoker specialization");
7734           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7735         } else
7736           FD = LambdaCallOp;
7737       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7738         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7739             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7740           LValue Ptr;
7741           if (!HandleOperatorNewCall(Info, E, Ptr))
7742             return false;
7743           Ptr.moveInto(Result);
7744           return CallScope.destroy();
7745         } else {
7746           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7747         }
7748       }
7749     } else
7750       return Error(E);
7751 
7752     // Evaluate the arguments now if we've not already done so.
7753     if (!Call) {
7754       Call = Info.CurrentCall->createCall(FD);
7755       if (!EvaluateArgs(Args, Call, Info, FD))
7756         return false;
7757     }
7758 
7759     SmallVector<QualType, 4> CovariantAdjustmentPath;
7760     if (This) {
7761       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7762       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7763         // Perform virtual dispatch, if necessary.
7764         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7765                                    CovariantAdjustmentPath);
7766         if (!FD)
7767           return false;
7768       } else {
7769         // Check that the 'this' pointer points to an object of the right type.
7770         // FIXME: If this is an assignment operator call, we may need to change
7771         // the active union member before we check this.
7772         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7773           return false;
7774       }
7775     }
7776 
7777     // Destructor calls are different enough that they have their own codepath.
7778     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7779       assert(This && "no 'this' pointer for destructor call");
7780       return HandleDestruction(Info, E, *This,
7781                                Info.Ctx.getRecordType(DD->getParent())) &&
7782              CallScope.destroy();
7783     }
7784 
7785     const FunctionDecl *Definition = nullptr;
7786     Stmt *Body = FD->getBody(Definition);
7787 
7788     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7789         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7790                             Body, Info, Result, ResultSlot))
7791       return false;
7792 
7793     if (!CovariantAdjustmentPath.empty() &&
7794         !HandleCovariantReturnAdjustment(Info, E, Result,
7795                                          CovariantAdjustmentPath))
7796       return false;
7797 
7798     return CallScope.destroy();
7799   }
7800 
7801   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7802     return StmtVisitorTy::Visit(E->getInitializer());
7803   }
7804   bool VisitInitListExpr(const InitListExpr *E) {
7805     if (E->getNumInits() == 0)
7806       return DerivedZeroInitialization(E);
7807     if (E->getNumInits() == 1)
7808       return StmtVisitorTy::Visit(E->getInit(0));
7809     return Error(E);
7810   }
7811   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7812     return DerivedZeroInitialization(E);
7813   }
7814   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7815     return DerivedZeroInitialization(E);
7816   }
7817   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7818     return DerivedZeroInitialization(E);
7819   }
7820 
7821   /// A member expression where the object is a prvalue is itself a prvalue.
7822   bool VisitMemberExpr(const MemberExpr *E) {
7823     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7824            "missing temporary materialization conversion");
7825     assert(!E->isArrow() && "missing call to bound member function?");
7826 
7827     APValue Val;
7828     if (!Evaluate(Val, Info, E->getBase()))
7829       return false;
7830 
7831     QualType BaseTy = E->getBase()->getType();
7832 
7833     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7834     if (!FD) return Error(E);
7835     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7836     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7837            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7838 
7839     // Note: there is no lvalue base here. But this case should only ever
7840     // happen in C or in C++98, where we cannot be evaluating a constexpr
7841     // constructor, which is the only case the base matters.
7842     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7843     SubobjectDesignator Designator(BaseTy);
7844     Designator.addDeclUnchecked(FD);
7845 
7846     APValue Result;
7847     return extractSubobject(Info, E, Obj, Designator, Result) &&
7848            DerivedSuccess(Result, E);
7849   }
7850 
7851   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7852     APValue Val;
7853     if (!Evaluate(Val, Info, E->getBase()))
7854       return false;
7855 
7856     if (Val.isVector()) {
7857       SmallVector<uint32_t, 4> Indices;
7858       E->getEncodedElementAccess(Indices);
7859       if (Indices.size() == 1) {
7860         // Return scalar.
7861         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7862       } else {
7863         // Construct new APValue vector.
7864         SmallVector<APValue, 4> Elts;
7865         for (unsigned I = 0; I < Indices.size(); ++I) {
7866           Elts.push_back(Val.getVectorElt(Indices[I]));
7867         }
7868         APValue VecResult(Elts.data(), Indices.size());
7869         return DerivedSuccess(VecResult, E);
7870       }
7871     }
7872 
7873     return false;
7874   }
7875 
7876   bool VisitCastExpr(const CastExpr *E) {
7877     switch (E->getCastKind()) {
7878     default:
7879       break;
7880 
7881     case CK_AtomicToNonAtomic: {
7882       APValue AtomicVal;
7883       // This does not need to be done in place even for class/array types:
7884       // atomic-to-non-atomic conversion implies copying the object
7885       // representation.
7886       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7887         return false;
7888       return DerivedSuccess(AtomicVal, E);
7889     }
7890 
7891     case CK_NoOp:
7892     case CK_UserDefinedConversion:
7893       return StmtVisitorTy::Visit(E->getSubExpr());
7894 
7895     case CK_LValueToRValue: {
7896       LValue LVal;
7897       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7898         return false;
7899       APValue RVal;
7900       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7901       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7902                                           LVal, RVal))
7903         return false;
7904       return DerivedSuccess(RVal, E);
7905     }
7906     case CK_LValueToRValueBitCast: {
7907       APValue DestValue, SourceValue;
7908       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7909         return false;
7910       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7911         return false;
7912       return DerivedSuccess(DestValue, E);
7913     }
7914 
7915     case CK_AddressSpaceConversion: {
7916       APValue Value;
7917       if (!Evaluate(Value, Info, E->getSubExpr()))
7918         return false;
7919       return DerivedSuccess(Value, E);
7920     }
7921     }
7922 
7923     return Error(E);
7924   }
7925 
7926   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7927     return VisitUnaryPostIncDec(UO);
7928   }
7929   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7930     return VisitUnaryPostIncDec(UO);
7931   }
7932   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7933     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7934       return Error(UO);
7935 
7936     LValue LVal;
7937     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7938       return false;
7939     APValue RVal;
7940     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7941                       UO->isIncrementOp(), &RVal))
7942       return false;
7943     return DerivedSuccess(RVal, UO);
7944   }
7945 
7946   bool VisitStmtExpr(const StmtExpr *E) {
7947     // We will have checked the full-expressions inside the statement expression
7948     // when they were completed, and don't need to check them again now.
7949     llvm::SaveAndRestore<bool> NotCheckingForUB(
7950         Info.CheckingForUndefinedBehavior, false);
7951 
7952     const CompoundStmt *CS = E->getSubStmt();
7953     if (CS->body_empty())
7954       return true;
7955 
7956     BlockScopeRAII Scope(Info);
7957     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7958                                            BE = CS->body_end();
7959          /**/; ++BI) {
7960       if (BI + 1 == BE) {
7961         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7962         if (!FinalExpr) {
7963           Info.FFDiag((*BI)->getBeginLoc(),
7964                       diag::note_constexpr_stmt_expr_unsupported);
7965           return false;
7966         }
7967         return this->Visit(FinalExpr) && Scope.destroy();
7968       }
7969 
7970       APValue ReturnValue;
7971       StmtResult Result = { ReturnValue, nullptr };
7972       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7973       if (ESR != ESR_Succeeded) {
7974         // FIXME: If the statement-expression terminated due to 'return',
7975         // 'break', or 'continue', it would be nice to propagate that to
7976         // the outer statement evaluation rather than bailing out.
7977         if (ESR != ESR_Failed)
7978           Info.FFDiag((*BI)->getBeginLoc(),
7979                       diag::note_constexpr_stmt_expr_unsupported);
7980         return false;
7981       }
7982     }
7983 
7984     llvm_unreachable("Return from function from the loop above.");
7985   }
7986 
7987   /// Visit a value which is evaluated, but whose value is ignored.
7988   void VisitIgnoredValue(const Expr *E) {
7989     EvaluateIgnoredValue(Info, E);
7990   }
7991 
7992   /// Potentially visit a MemberExpr's base expression.
7993   void VisitIgnoredBaseExpression(const Expr *E) {
7994     // While MSVC doesn't evaluate the base expression, it does diagnose the
7995     // presence of side-effecting behavior.
7996     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7997       return;
7998     VisitIgnoredValue(E);
7999   }
8000 };
8001 
8002 } // namespace
8003 
8004 //===----------------------------------------------------------------------===//
8005 // Common base class for lvalue and temporary evaluation.
8006 //===----------------------------------------------------------------------===//
8007 namespace {
8008 template<class Derived>
8009 class LValueExprEvaluatorBase
8010   : public ExprEvaluatorBase<Derived> {
8011 protected:
8012   LValue &Result;
8013   bool InvalidBaseOK;
8014   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8015   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8016 
8017   bool Success(APValue::LValueBase B) {
8018     Result.set(B);
8019     return true;
8020   }
8021 
8022   bool evaluatePointer(const Expr *E, LValue &Result) {
8023     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8024   }
8025 
8026 public:
8027   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8028       : ExprEvaluatorBaseTy(Info), Result(Result),
8029         InvalidBaseOK(InvalidBaseOK) {}
8030 
8031   bool Success(const APValue &V, const Expr *E) {
8032     Result.setFrom(this->Info.Ctx, V);
8033     return true;
8034   }
8035 
8036   bool VisitMemberExpr(const MemberExpr *E) {
8037     // Handle non-static data members.
8038     QualType BaseTy;
8039     bool EvalOK;
8040     if (E->isArrow()) {
8041       EvalOK = evaluatePointer(E->getBase(), Result);
8042       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8043     } else if (E->getBase()->isPRValue()) {
8044       assert(E->getBase()->getType()->isRecordType());
8045       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8046       BaseTy = E->getBase()->getType();
8047     } else {
8048       EvalOK = this->Visit(E->getBase());
8049       BaseTy = E->getBase()->getType();
8050     }
8051     if (!EvalOK) {
8052       if (!InvalidBaseOK)
8053         return false;
8054       Result.setInvalid(E);
8055       return true;
8056     }
8057 
8058     const ValueDecl *MD = E->getMemberDecl();
8059     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8060       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8061              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8062       (void)BaseTy;
8063       if (!HandleLValueMember(this->Info, E, Result, FD))
8064         return false;
8065     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8066       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8067         return false;
8068     } else
8069       return this->Error(E);
8070 
8071     if (MD->getType()->isReferenceType()) {
8072       APValue RefValue;
8073       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8074                                           RefValue))
8075         return false;
8076       return Success(RefValue, E);
8077     }
8078     return true;
8079   }
8080 
8081   bool VisitBinaryOperator(const BinaryOperator *E) {
8082     switch (E->getOpcode()) {
8083     default:
8084       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8085 
8086     case BO_PtrMemD:
8087     case BO_PtrMemI:
8088       return HandleMemberPointerAccess(this->Info, E, Result);
8089     }
8090   }
8091 
8092   bool VisitCastExpr(const CastExpr *E) {
8093     switch (E->getCastKind()) {
8094     default:
8095       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8096 
8097     case CK_DerivedToBase:
8098     case CK_UncheckedDerivedToBase:
8099       if (!this->Visit(E->getSubExpr()))
8100         return false;
8101 
8102       // Now figure out the necessary offset to add to the base LV to get from
8103       // the derived class to the base class.
8104       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8105                                   Result);
8106     }
8107   }
8108 };
8109 }
8110 
8111 //===----------------------------------------------------------------------===//
8112 // LValue Evaluation
8113 //
8114 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8115 // function designators (in C), decl references to void objects (in C), and
8116 // temporaries (if building with -Wno-address-of-temporary).
8117 //
8118 // LValue evaluation produces values comprising a base expression of one of the
8119 // following types:
8120 // - Declarations
8121 //  * VarDecl
8122 //  * FunctionDecl
8123 // - Literals
8124 //  * CompoundLiteralExpr in C (and in global scope in C++)
8125 //  * StringLiteral
8126 //  * PredefinedExpr
8127 //  * ObjCStringLiteralExpr
8128 //  * ObjCEncodeExpr
8129 //  * AddrLabelExpr
8130 //  * BlockExpr
8131 //  * CallExpr for a MakeStringConstant builtin
8132 // - typeid(T) expressions, as TypeInfoLValues
8133 // - Locals and temporaries
8134 //  * MaterializeTemporaryExpr
8135 //  * Any Expr, with a CallIndex indicating the function in which the temporary
8136 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
8137 //    from the AST (FIXME).
8138 //  * A MaterializeTemporaryExpr that has static storage duration, with no
8139 //    CallIndex, for a lifetime-extended temporary.
8140 //  * The ConstantExpr that is currently being evaluated during evaluation of an
8141 //    immediate invocation.
8142 // plus an offset in bytes.
8143 //===----------------------------------------------------------------------===//
8144 namespace {
8145 class LValueExprEvaluator
8146   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8147 public:
8148   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8149     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8150 
8151   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8152   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8153 
8154   bool VisitCallExpr(const CallExpr *E);
8155   bool VisitDeclRefExpr(const DeclRefExpr *E);
8156   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8157   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8158   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8159   bool VisitMemberExpr(const MemberExpr *E);
8160   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8161   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8162   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8163   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8164   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8165   bool VisitUnaryDeref(const UnaryOperator *E);
8166   bool VisitUnaryReal(const UnaryOperator *E);
8167   bool VisitUnaryImag(const UnaryOperator *E);
8168   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8169     return VisitUnaryPreIncDec(UO);
8170   }
8171   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8172     return VisitUnaryPreIncDec(UO);
8173   }
8174   bool VisitBinAssign(const BinaryOperator *BO);
8175   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8176 
8177   bool VisitCastExpr(const CastExpr *E) {
8178     switch (E->getCastKind()) {
8179     default:
8180       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8181 
8182     case CK_LValueBitCast:
8183       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8184       if (!Visit(E->getSubExpr()))
8185         return false;
8186       Result.Designator.setInvalid();
8187       return true;
8188 
8189     case CK_BaseToDerived:
8190       if (!Visit(E->getSubExpr()))
8191         return false;
8192       return HandleBaseToDerivedCast(Info, E, Result);
8193 
8194     case CK_Dynamic:
8195       if (!Visit(E->getSubExpr()))
8196         return false;
8197       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8198     }
8199   }
8200 };
8201 } // end anonymous namespace
8202 
8203 /// Evaluate an expression as an lvalue. This can be legitimately called on
8204 /// expressions which are not glvalues, in three cases:
8205 ///  * function designators in C, and
8206 ///  * "extern void" objects
8207 ///  * @selector() expressions in Objective-C
8208 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8209                            bool InvalidBaseOK) {
8210   assert(!E->isValueDependent());
8211   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8212          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8213   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8214 }
8215 
8216 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8217   const NamedDecl *D = E->getDecl();
8218   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8219           UnnamedGlobalConstantDecl>(D))
8220     return Success(cast<ValueDecl>(D));
8221   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8222     return VisitVarDecl(E, VD);
8223   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8224     return Visit(BD->getBinding());
8225   return Error(E);
8226 }
8227 
8228 
8229 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8230 
8231   // If we are within a lambda's call operator, check whether the 'VD' referred
8232   // to within 'E' actually represents a lambda-capture that maps to a
8233   // data-member/field within the closure object, and if so, evaluate to the
8234   // field or what the field refers to.
8235   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8236       isa<DeclRefExpr>(E) &&
8237       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8238     // We don't always have a complete capture-map when checking or inferring if
8239     // the function call operator meets the requirements of a constexpr function
8240     // - but we don't need to evaluate the captures to determine constexprness
8241     // (dcl.constexpr C++17).
8242     if (Info.checkingPotentialConstantExpression())
8243       return false;
8244 
8245     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8246       // Start with 'Result' referring to the complete closure object...
8247       Result = *Info.CurrentCall->This;
8248       // ... then update it to refer to the field of the closure object
8249       // that represents the capture.
8250       if (!HandleLValueMember(Info, E, Result, FD))
8251         return false;
8252       // And if the field is of reference type, update 'Result' to refer to what
8253       // the field refers to.
8254       if (FD->getType()->isReferenceType()) {
8255         APValue RVal;
8256         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8257                                             RVal))
8258           return false;
8259         Result.setFrom(Info.Ctx, RVal);
8260       }
8261       return true;
8262     }
8263   }
8264 
8265   CallStackFrame *Frame = nullptr;
8266   unsigned Version = 0;
8267   if (VD->hasLocalStorage()) {
8268     // Only if a local variable was declared in the function currently being
8269     // evaluated, do we expect to be able to find its value in the current
8270     // frame. (Otherwise it was likely declared in an enclosing context and
8271     // could either have a valid evaluatable value (for e.g. a constexpr
8272     // variable) or be ill-formed (and trigger an appropriate evaluation
8273     // diagnostic)).
8274     CallStackFrame *CurrFrame = Info.CurrentCall;
8275     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8276       // Function parameters are stored in some caller's frame. (Usually the
8277       // immediate caller, but for an inherited constructor they may be more
8278       // distant.)
8279       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8280         if (CurrFrame->Arguments) {
8281           VD = CurrFrame->Arguments.getOrigParam(PVD);
8282           Frame =
8283               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8284           Version = CurrFrame->Arguments.Version;
8285         }
8286       } else {
8287         Frame = CurrFrame;
8288         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8289       }
8290     }
8291   }
8292 
8293   if (!VD->getType()->isReferenceType()) {
8294     if (Frame) {
8295       Result.set({VD, Frame->Index, Version});
8296       return true;
8297     }
8298     return Success(VD);
8299   }
8300 
8301   if (!Info.getLangOpts().CPlusPlus11) {
8302     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8303         << VD << VD->getType();
8304     Info.Note(VD->getLocation(), diag::note_declared_at);
8305   }
8306 
8307   APValue *V;
8308   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8309     return false;
8310   if (!V->hasValue()) {
8311     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8312     // adjust the diagnostic to say that.
8313     if (!Info.checkingPotentialConstantExpression())
8314       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8315     return false;
8316   }
8317   return Success(*V, E);
8318 }
8319 
8320 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8321   switch (E->getBuiltinCallee()) {
8322   case Builtin::BIas_const:
8323   case Builtin::BIforward:
8324   case Builtin::BImove:
8325   case Builtin::BImove_if_noexcept:
8326     if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8327       return Visit(E->getArg(0));
8328     break;
8329   }
8330 
8331   return ExprEvaluatorBaseTy::VisitCallExpr(E);
8332 }
8333 
8334 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8335     const MaterializeTemporaryExpr *E) {
8336   // Walk through the expression to find the materialized temporary itself.
8337   SmallVector<const Expr *, 2> CommaLHSs;
8338   SmallVector<SubobjectAdjustment, 2> Adjustments;
8339   const Expr *Inner =
8340       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8341 
8342   // If we passed any comma operators, evaluate their LHSs.
8343   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8344     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8345       return false;
8346 
8347   // A materialized temporary with static storage duration can appear within the
8348   // result of a constant expression evaluation, so we need to preserve its
8349   // value for use outside this evaluation.
8350   APValue *Value;
8351   if (E->getStorageDuration() == SD_Static) {
8352     // FIXME: What about SD_Thread?
8353     Value = E->getOrCreateValue(true);
8354     *Value = APValue();
8355     Result.set(E);
8356   } else {
8357     Value = &Info.CurrentCall->createTemporary(
8358         E, E->getType(),
8359         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8360                                                      : ScopeKind::Block,
8361         Result);
8362   }
8363 
8364   QualType Type = Inner->getType();
8365 
8366   // Materialize the temporary itself.
8367   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8368     *Value = APValue();
8369     return false;
8370   }
8371 
8372   // Adjust our lvalue to refer to the desired subobject.
8373   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8374     --I;
8375     switch (Adjustments[I].Kind) {
8376     case SubobjectAdjustment::DerivedToBaseAdjustment:
8377       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8378                                 Type, Result))
8379         return false;
8380       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8381       break;
8382 
8383     case SubobjectAdjustment::FieldAdjustment:
8384       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8385         return false;
8386       Type = Adjustments[I].Field->getType();
8387       break;
8388 
8389     case SubobjectAdjustment::MemberPointerAdjustment:
8390       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8391                                      Adjustments[I].Ptr.RHS))
8392         return false;
8393       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8394       break;
8395     }
8396   }
8397 
8398   return true;
8399 }
8400 
8401 bool
8402 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8403   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8404          "lvalue compound literal in c++?");
8405   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8406   // only see this when folding in C, so there's no standard to follow here.
8407   return Success(E);
8408 }
8409 
8410 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8411   TypeInfoLValue TypeInfo;
8412 
8413   if (!E->isPotentiallyEvaluated()) {
8414     if (E->isTypeOperand())
8415       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8416     else
8417       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8418   } else {
8419     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8420       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8421         << E->getExprOperand()->getType()
8422         << E->getExprOperand()->getSourceRange();
8423     }
8424 
8425     if (!Visit(E->getExprOperand()))
8426       return false;
8427 
8428     Optional<DynamicType> DynType =
8429         ComputeDynamicType(Info, E, Result, AK_TypeId);
8430     if (!DynType)
8431       return false;
8432 
8433     TypeInfo =
8434         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8435   }
8436 
8437   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8438 }
8439 
8440 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8441   return Success(E->getGuidDecl());
8442 }
8443 
8444 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8445   // Handle static data members.
8446   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8447     VisitIgnoredBaseExpression(E->getBase());
8448     return VisitVarDecl(E, VD);
8449   }
8450 
8451   // Handle static member functions.
8452   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8453     if (MD->isStatic()) {
8454       VisitIgnoredBaseExpression(E->getBase());
8455       return Success(MD);
8456     }
8457   }
8458 
8459   // Handle non-static data members.
8460   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8461 }
8462 
8463 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8464   // FIXME: Deal with vectors as array subscript bases.
8465   if (E->getBase()->getType()->isVectorType() ||
8466       E->getBase()->getType()->isVLSTBuiltinType())
8467     return Error(E);
8468 
8469   APSInt Index;
8470   bool Success = true;
8471 
8472   // C++17's rules require us to evaluate the LHS first, regardless of which
8473   // side is the base.
8474   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8475     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8476                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8477       if (!Info.noteFailure())
8478         return false;
8479       Success = false;
8480     }
8481   }
8482 
8483   return Success &&
8484          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8485 }
8486 
8487 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8488   return evaluatePointer(E->getSubExpr(), Result);
8489 }
8490 
8491 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8492   if (!Visit(E->getSubExpr()))
8493     return false;
8494   // __real is a no-op on scalar lvalues.
8495   if (E->getSubExpr()->getType()->isAnyComplexType())
8496     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8497   return true;
8498 }
8499 
8500 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8501   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8502          "lvalue __imag__ on scalar?");
8503   if (!Visit(E->getSubExpr()))
8504     return false;
8505   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8506   return true;
8507 }
8508 
8509 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8510   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8511     return Error(UO);
8512 
8513   if (!this->Visit(UO->getSubExpr()))
8514     return false;
8515 
8516   return handleIncDec(
8517       this->Info, UO, Result, UO->getSubExpr()->getType(),
8518       UO->isIncrementOp(), nullptr);
8519 }
8520 
8521 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8522     const CompoundAssignOperator *CAO) {
8523   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8524     return Error(CAO);
8525 
8526   bool Success = true;
8527 
8528   // C++17 onwards require that we evaluate the RHS first.
8529   APValue RHS;
8530   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8531     if (!Info.noteFailure())
8532       return false;
8533     Success = false;
8534   }
8535 
8536   // The overall lvalue result is the result of evaluating the LHS.
8537   if (!this->Visit(CAO->getLHS()) || !Success)
8538     return false;
8539 
8540   return handleCompoundAssignment(
8541       this->Info, CAO,
8542       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8543       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8544 }
8545 
8546 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8547   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8548     return Error(E);
8549 
8550   bool Success = true;
8551 
8552   // C++17 onwards require that we evaluate the RHS first.
8553   APValue NewVal;
8554   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8555     if (!Info.noteFailure())
8556       return false;
8557     Success = false;
8558   }
8559 
8560   if (!this->Visit(E->getLHS()) || !Success)
8561     return false;
8562 
8563   if (Info.getLangOpts().CPlusPlus20 &&
8564       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8565     return false;
8566 
8567   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8568                           NewVal);
8569 }
8570 
8571 //===----------------------------------------------------------------------===//
8572 // Pointer Evaluation
8573 //===----------------------------------------------------------------------===//
8574 
8575 /// Attempts to compute the number of bytes available at the pointer
8576 /// returned by a function with the alloc_size attribute. Returns true if we
8577 /// were successful. Places an unsigned number into `Result`.
8578 ///
8579 /// This expects the given CallExpr to be a call to a function with an
8580 /// alloc_size attribute.
8581 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8582                                             const CallExpr *Call,
8583                                             llvm::APInt &Result) {
8584   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8585 
8586   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8587   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8588   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8589   if (Call->getNumArgs() <= SizeArgNo)
8590     return false;
8591 
8592   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8593     Expr::EvalResult ExprResult;
8594     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8595       return false;
8596     Into = ExprResult.Val.getInt();
8597     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8598       return false;
8599     Into = Into.zext(BitsInSizeT);
8600     return true;
8601   };
8602 
8603   APSInt SizeOfElem;
8604   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8605     return false;
8606 
8607   if (!AllocSize->getNumElemsParam().isValid()) {
8608     Result = std::move(SizeOfElem);
8609     return true;
8610   }
8611 
8612   APSInt NumberOfElems;
8613   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8614   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8615     return false;
8616 
8617   bool Overflow;
8618   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8619   if (Overflow)
8620     return false;
8621 
8622   Result = std::move(BytesAvailable);
8623   return true;
8624 }
8625 
8626 /// Convenience function. LVal's base must be a call to an alloc_size
8627 /// function.
8628 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8629                                             const LValue &LVal,
8630                                             llvm::APInt &Result) {
8631   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8632          "Can't get the size of a non alloc_size function");
8633   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8634   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8635   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8636 }
8637 
8638 /// Attempts to evaluate the given LValueBase as the result of a call to
8639 /// a function with the alloc_size attribute. If it was possible to do so, this
8640 /// function will return true, make Result's Base point to said function call,
8641 /// and mark Result's Base as invalid.
8642 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8643                                       LValue &Result) {
8644   if (Base.isNull())
8645     return false;
8646 
8647   // Because we do no form of static analysis, we only support const variables.
8648   //
8649   // Additionally, we can't support parameters, nor can we support static
8650   // variables (in the latter case, use-before-assign isn't UB; in the former,
8651   // we have no clue what they'll be assigned to).
8652   const auto *VD =
8653       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8654   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8655     return false;
8656 
8657   const Expr *Init = VD->getAnyInitializer();
8658   if (!Init || Init->getType().isNull())
8659     return false;
8660 
8661   const Expr *E = Init->IgnoreParens();
8662   if (!tryUnwrapAllocSizeCall(E))
8663     return false;
8664 
8665   // Store E instead of E unwrapped so that the type of the LValue's base is
8666   // what the user wanted.
8667   Result.setInvalid(E);
8668 
8669   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8670   Result.addUnsizedArray(Info, E, Pointee);
8671   return true;
8672 }
8673 
8674 namespace {
8675 class PointerExprEvaluator
8676   : public ExprEvaluatorBase<PointerExprEvaluator> {
8677   LValue &Result;
8678   bool InvalidBaseOK;
8679 
8680   bool Success(const Expr *E) {
8681     Result.set(E);
8682     return true;
8683   }
8684 
8685   bool evaluateLValue(const Expr *E, LValue &Result) {
8686     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8687   }
8688 
8689   bool evaluatePointer(const Expr *E, LValue &Result) {
8690     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8691   }
8692 
8693   bool visitNonBuiltinCallExpr(const CallExpr *E);
8694 public:
8695 
8696   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8697       : ExprEvaluatorBaseTy(info), Result(Result),
8698         InvalidBaseOK(InvalidBaseOK) {}
8699 
8700   bool Success(const APValue &V, const Expr *E) {
8701     Result.setFrom(Info.Ctx, V);
8702     return true;
8703   }
8704   bool ZeroInitialization(const Expr *E) {
8705     Result.setNull(Info.Ctx, E->getType());
8706     return true;
8707   }
8708 
8709   bool VisitBinaryOperator(const BinaryOperator *E);
8710   bool VisitCastExpr(const CastExpr* E);
8711   bool VisitUnaryAddrOf(const UnaryOperator *E);
8712   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8713       { return Success(E); }
8714   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8715     if (E->isExpressibleAsConstantInitializer())
8716       return Success(E);
8717     if (Info.noteFailure())
8718       EvaluateIgnoredValue(Info, E->getSubExpr());
8719     return Error(E);
8720   }
8721   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8722       { return Success(E); }
8723   bool VisitCallExpr(const CallExpr *E);
8724   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8725   bool VisitBlockExpr(const BlockExpr *E) {
8726     if (!E->getBlockDecl()->hasCaptures())
8727       return Success(E);
8728     return Error(E);
8729   }
8730   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8731     // Can't look at 'this' when checking a potential constant expression.
8732     if (Info.checkingPotentialConstantExpression())
8733       return false;
8734     if (!Info.CurrentCall->This) {
8735       if (Info.getLangOpts().CPlusPlus11)
8736         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8737       else
8738         Info.FFDiag(E);
8739       return false;
8740     }
8741     Result = *Info.CurrentCall->This;
8742     // If we are inside a lambda's call operator, the 'this' expression refers
8743     // to the enclosing '*this' object (either by value or reference) which is
8744     // either copied into the closure object's field that represents the '*this'
8745     // or refers to '*this'.
8746     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8747       // Ensure we actually have captured 'this'. (an error will have
8748       // been previously reported if not).
8749       if (!Info.CurrentCall->LambdaThisCaptureField)
8750         return false;
8751 
8752       // Update 'Result' to refer to the data member/field of the closure object
8753       // that represents the '*this' capture.
8754       if (!HandleLValueMember(Info, E, Result,
8755                              Info.CurrentCall->LambdaThisCaptureField))
8756         return false;
8757       // If we captured '*this' by reference, replace the field with its referent.
8758       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8759               ->isPointerType()) {
8760         APValue RVal;
8761         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8762                                             RVal))
8763           return false;
8764 
8765         Result.setFrom(Info.Ctx, RVal);
8766       }
8767     }
8768     return true;
8769   }
8770 
8771   bool VisitCXXNewExpr(const CXXNewExpr *E);
8772 
8773   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8774     assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
8775     APValue LValResult = E->EvaluateInContext(
8776         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8777     Result.setFrom(Info.Ctx, LValResult);
8778     return true;
8779   }
8780 
8781   bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8782     std::string ResultStr = E->ComputeName(Info.Ctx);
8783 
8784     QualType CharTy = Info.Ctx.CharTy.withConst();
8785     APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8786                ResultStr.size() + 1);
8787     QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8788                                                      ArrayType::Normal, 0);
8789 
8790     StringLiteral *SL =
8791         StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii,
8792                               /*Pascal*/ false, ArrayTy, E->getLocation());
8793 
8794     evaluateLValue(SL, Result);
8795     Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8796     return true;
8797   }
8798 
8799   // FIXME: Missing: @protocol, @selector
8800 };
8801 } // end anonymous namespace
8802 
8803 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8804                             bool InvalidBaseOK) {
8805   assert(!E->isValueDependent());
8806   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8807   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8808 }
8809 
8810 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8811   if (E->getOpcode() != BO_Add &&
8812       E->getOpcode() != BO_Sub)
8813     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8814 
8815   const Expr *PExp = E->getLHS();
8816   const Expr *IExp = E->getRHS();
8817   if (IExp->getType()->isPointerType())
8818     std::swap(PExp, IExp);
8819 
8820   bool EvalPtrOK = evaluatePointer(PExp, Result);
8821   if (!EvalPtrOK && !Info.noteFailure())
8822     return false;
8823 
8824   llvm::APSInt Offset;
8825   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8826     return false;
8827 
8828   if (E->getOpcode() == BO_Sub)
8829     negateAsSigned(Offset);
8830 
8831   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8832   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8833 }
8834 
8835 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8836   return evaluateLValue(E->getSubExpr(), Result);
8837 }
8838 
8839 // Is the provided decl 'std::source_location::current'?
8840 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
8841   if (!FD)
8842     return false;
8843   const IdentifierInfo *FnII = FD->getIdentifier();
8844   if (!FnII || !FnII->isStr("current"))
8845     return false;
8846 
8847   const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
8848   if (!RD)
8849     return false;
8850 
8851   const IdentifierInfo *ClassII = RD->getIdentifier();
8852   return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
8853 }
8854 
8855 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8856   const Expr *SubExpr = E->getSubExpr();
8857 
8858   switch (E->getCastKind()) {
8859   default:
8860     break;
8861   case CK_BitCast:
8862   case CK_CPointerToObjCPointerCast:
8863   case CK_BlockPointerToObjCPointerCast:
8864   case CK_AnyPointerToBlockPointerCast:
8865   case CK_AddressSpaceConversion:
8866     if (!Visit(SubExpr))
8867       return false;
8868     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8869     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8870     // also static_casts, but we disallow them as a resolution to DR1312.
8871     if (!E->getType()->isVoidPointerType()) {
8872       // In some circumstances, we permit casting from void* to cv1 T*, when the
8873       // actual pointee object is actually a cv2 T.
8874       bool VoidPtrCastMaybeOK =
8875           !Result.InvalidBase && !Result.Designator.Invalid &&
8876           !Result.IsNullPtr &&
8877           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8878                                           E->getType()->getPointeeType());
8879       // 1. We'll allow it in std::allocator::allocate, and anything which that
8880       //    calls.
8881       // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8882       //    <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8883       //    We'll allow it in the body of std::source_location::current.  GCC's
8884       //    implementation had a parameter of type `void*`, and casts from
8885       //    that back to `const __impl*` in its body.
8886       if (VoidPtrCastMaybeOK &&
8887           (Info.getStdAllocatorCaller("allocate") ||
8888            IsDeclSourceLocationCurrent(Info.CurrentCall->Callee))) {
8889         // Permitted.
8890       } else {
8891         Result.Designator.setInvalid();
8892         if (SubExpr->getType()->isVoidPointerType())
8893           CCEDiag(E, diag::note_constexpr_invalid_cast)
8894             << 3 << SubExpr->getType();
8895         else
8896           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8897       }
8898     }
8899     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8900       ZeroInitialization(E);
8901     return true;
8902 
8903   case CK_DerivedToBase:
8904   case CK_UncheckedDerivedToBase:
8905     if (!evaluatePointer(E->getSubExpr(), Result))
8906       return false;
8907     if (!Result.Base && Result.Offset.isZero())
8908       return true;
8909 
8910     // Now figure out the necessary offset to add to the base LV to get from
8911     // the derived class to the base class.
8912     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8913                                   castAs<PointerType>()->getPointeeType(),
8914                                 Result);
8915 
8916   case CK_BaseToDerived:
8917     if (!Visit(E->getSubExpr()))
8918       return false;
8919     if (!Result.Base && Result.Offset.isZero())
8920       return true;
8921     return HandleBaseToDerivedCast(Info, E, Result);
8922 
8923   case CK_Dynamic:
8924     if (!Visit(E->getSubExpr()))
8925       return false;
8926     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8927 
8928   case CK_NullToPointer:
8929     VisitIgnoredValue(E->getSubExpr());
8930     return ZeroInitialization(E);
8931 
8932   case CK_IntegralToPointer: {
8933     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8934 
8935     APValue Value;
8936     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8937       break;
8938 
8939     if (Value.isInt()) {
8940       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8941       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8942       Result.Base = (Expr*)nullptr;
8943       Result.InvalidBase = false;
8944       Result.Offset = CharUnits::fromQuantity(N);
8945       Result.Designator.setInvalid();
8946       Result.IsNullPtr = false;
8947       return true;
8948     } else {
8949       // Cast is of an lvalue, no need to change value.
8950       Result.setFrom(Info.Ctx, Value);
8951       return true;
8952     }
8953   }
8954 
8955   case CK_ArrayToPointerDecay: {
8956     if (SubExpr->isGLValue()) {
8957       if (!evaluateLValue(SubExpr, Result))
8958         return false;
8959     } else {
8960       APValue &Value = Info.CurrentCall->createTemporary(
8961           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8962       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8963         return false;
8964     }
8965     // The result is a pointer to the first element of the array.
8966     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8967     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8968       Result.addArray(Info, E, CAT);
8969     else
8970       Result.addUnsizedArray(Info, E, AT->getElementType());
8971     return true;
8972   }
8973 
8974   case CK_FunctionToPointerDecay:
8975     return evaluateLValue(SubExpr, Result);
8976 
8977   case CK_LValueToRValue: {
8978     LValue LVal;
8979     if (!evaluateLValue(E->getSubExpr(), LVal))
8980       return false;
8981 
8982     APValue RVal;
8983     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8984     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8985                                         LVal, RVal))
8986       return InvalidBaseOK &&
8987              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8988     return Success(RVal, E);
8989   }
8990   }
8991 
8992   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8993 }
8994 
8995 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8996                                 UnaryExprOrTypeTrait ExprKind) {
8997   // C++ [expr.alignof]p3:
8998   //     When alignof is applied to a reference type, the result is the
8999   //     alignment of the referenced type.
9000   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
9001     T = Ref->getPointeeType();
9002 
9003   if (T.getQualifiers().hasUnaligned())
9004     return CharUnits::One();
9005 
9006   const bool AlignOfReturnsPreferred =
9007       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9008 
9009   // __alignof is defined to return the preferred alignment.
9010   // Before 8, clang returned the preferred alignment for alignof and _Alignof
9011   // as well.
9012   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9013     return Info.Ctx.toCharUnitsFromBits(
9014       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9015   // alignof and _Alignof are defined to return the ABI alignment.
9016   else if (ExprKind == UETT_AlignOf)
9017     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9018   else
9019     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9020 }
9021 
9022 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9023                                 UnaryExprOrTypeTrait ExprKind) {
9024   E = E->IgnoreParens();
9025 
9026   // The kinds of expressions that we have special-case logic here for
9027   // should be kept up to date with the special checks for those
9028   // expressions in Sema.
9029 
9030   // alignof decl is always accepted, even if it doesn't make sense: we default
9031   // to 1 in those cases.
9032   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9033     return Info.Ctx.getDeclAlign(DRE->getDecl(),
9034                                  /*RefAsPointee*/true);
9035 
9036   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9037     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9038                                  /*RefAsPointee*/true);
9039 
9040   return GetAlignOfType(Info, E->getType(), ExprKind);
9041 }
9042 
9043 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9044   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9045     return Info.Ctx.getDeclAlign(VD);
9046   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9047     return GetAlignOfExpr(Info, E, UETT_AlignOf);
9048   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9049 }
9050 
9051 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9052 /// __builtin_is_aligned and __builtin_assume_aligned.
9053 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9054                                  EvalInfo &Info, APSInt &Alignment) {
9055   if (!EvaluateInteger(E, Alignment, Info))
9056     return false;
9057   if (Alignment < 0 || !Alignment.isPowerOf2()) {
9058     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9059     return false;
9060   }
9061   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9062   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9063   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9064     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9065         << MaxValue << ForType << Alignment;
9066     return false;
9067   }
9068   // Ensure both alignment and source value have the same bit width so that we
9069   // don't assert when computing the resulting value.
9070   APSInt ExtAlignment =
9071       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9072   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9073          "Alignment should not be changed by ext/trunc");
9074   Alignment = ExtAlignment;
9075   assert(Alignment.getBitWidth() == SrcWidth);
9076   return true;
9077 }
9078 
9079 // To be clear: this happily visits unsupported builtins. Better name welcomed.
9080 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9081   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9082     return true;
9083 
9084   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9085     return false;
9086 
9087   Result.setInvalid(E);
9088   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9089   Result.addUnsizedArray(Info, E, PointeeTy);
9090   return true;
9091 }
9092 
9093 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9094   if (IsConstantCall(E))
9095     return Success(E);
9096 
9097   if (unsigned BuiltinOp = E->getBuiltinCallee())
9098     return VisitBuiltinCallExpr(E, BuiltinOp);
9099 
9100   return visitNonBuiltinCallExpr(E);
9101 }
9102 
9103 // Determine if T is a character type for which we guarantee that
9104 // sizeof(T) == 1.
9105 static bool isOneByteCharacterType(QualType T) {
9106   return T->isCharType() || T->isChar8Type();
9107 }
9108 
9109 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9110                                                 unsigned BuiltinOp) {
9111   switch (BuiltinOp) {
9112   case Builtin::BIaddressof:
9113   case Builtin::BI__addressof:
9114   case Builtin::BI__builtin_addressof:
9115     return evaluateLValue(E->getArg(0), Result);
9116   case Builtin::BI__builtin_assume_aligned: {
9117     // We need to be very careful here because: if the pointer does not have the
9118     // asserted alignment, then the behavior is undefined, and undefined
9119     // behavior is non-constant.
9120     if (!evaluatePointer(E->getArg(0), Result))
9121       return false;
9122 
9123     LValue OffsetResult(Result);
9124     APSInt Alignment;
9125     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9126                               Alignment))
9127       return false;
9128     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9129 
9130     if (E->getNumArgs() > 2) {
9131       APSInt Offset;
9132       if (!EvaluateInteger(E->getArg(2), Offset, Info))
9133         return false;
9134 
9135       int64_t AdditionalOffset = -Offset.getZExtValue();
9136       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9137     }
9138 
9139     // If there is a base object, then it must have the correct alignment.
9140     if (OffsetResult.Base) {
9141       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9142 
9143       if (BaseAlignment < Align) {
9144         Result.Designator.setInvalid();
9145         // FIXME: Add support to Diagnostic for long / long long.
9146         CCEDiag(E->getArg(0),
9147                 diag::note_constexpr_baa_insufficient_alignment) << 0
9148           << (unsigned)BaseAlignment.getQuantity()
9149           << (unsigned)Align.getQuantity();
9150         return false;
9151       }
9152     }
9153 
9154     // The offset must also have the correct alignment.
9155     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9156       Result.Designator.setInvalid();
9157 
9158       (OffsetResult.Base
9159            ? CCEDiag(E->getArg(0),
9160                      diag::note_constexpr_baa_insufficient_alignment) << 1
9161            : CCEDiag(E->getArg(0),
9162                      diag::note_constexpr_baa_value_insufficient_alignment))
9163         << (int)OffsetResult.Offset.getQuantity()
9164         << (unsigned)Align.getQuantity();
9165       return false;
9166     }
9167 
9168     return true;
9169   }
9170   case Builtin::BI__builtin_align_up:
9171   case Builtin::BI__builtin_align_down: {
9172     if (!evaluatePointer(E->getArg(0), Result))
9173       return false;
9174     APSInt Alignment;
9175     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9176                               Alignment))
9177       return false;
9178     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9179     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9180     // For align_up/align_down, we can return the same value if the alignment
9181     // is known to be greater or equal to the requested value.
9182     if (PtrAlign.getQuantity() >= Alignment)
9183       return true;
9184 
9185     // The alignment could be greater than the minimum at run-time, so we cannot
9186     // infer much about the resulting pointer value. One case is possible:
9187     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9188     // can infer the correct index if the requested alignment is smaller than
9189     // the base alignment so we can perform the computation on the offset.
9190     if (BaseAlignment.getQuantity() >= Alignment) {
9191       assert(Alignment.getBitWidth() <= 64 &&
9192              "Cannot handle > 64-bit address-space");
9193       uint64_t Alignment64 = Alignment.getZExtValue();
9194       CharUnits NewOffset = CharUnits::fromQuantity(
9195           BuiltinOp == Builtin::BI__builtin_align_down
9196               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9197               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9198       Result.adjustOffset(NewOffset - Result.Offset);
9199       // TODO: diagnose out-of-bounds values/only allow for arrays?
9200       return true;
9201     }
9202     // Otherwise, we cannot constant-evaluate the result.
9203     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9204         << Alignment;
9205     return false;
9206   }
9207   case Builtin::BI__builtin_operator_new:
9208     return HandleOperatorNewCall(Info, E, Result);
9209   case Builtin::BI__builtin_launder:
9210     return evaluatePointer(E->getArg(0), Result);
9211   case Builtin::BIstrchr:
9212   case Builtin::BIwcschr:
9213   case Builtin::BImemchr:
9214   case Builtin::BIwmemchr:
9215     if (Info.getLangOpts().CPlusPlus11)
9216       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9217         << /*isConstexpr*/0 << /*isConstructor*/0
9218         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9219     else
9220       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9221     LLVM_FALLTHROUGH;
9222   case Builtin::BI__builtin_strchr:
9223   case Builtin::BI__builtin_wcschr:
9224   case Builtin::BI__builtin_memchr:
9225   case Builtin::BI__builtin_char_memchr:
9226   case Builtin::BI__builtin_wmemchr: {
9227     if (!Visit(E->getArg(0)))
9228       return false;
9229     APSInt Desired;
9230     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9231       return false;
9232     uint64_t MaxLength = uint64_t(-1);
9233     if (BuiltinOp != Builtin::BIstrchr &&
9234         BuiltinOp != Builtin::BIwcschr &&
9235         BuiltinOp != Builtin::BI__builtin_strchr &&
9236         BuiltinOp != Builtin::BI__builtin_wcschr) {
9237       APSInt N;
9238       if (!EvaluateInteger(E->getArg(2), N, Info))
9239         return false;
9240       MaxLength = N.getExtValue();
9241     }
9242     // We cannot find the value if there are no candidates to match against.
9243     if (MaxLength == 0u)
9244       return ZeroInitialization(E);
9245     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9246         Result.Designator.Invalid)
9247       return false;
9248     QualType CharTy = Result.Designator.getType(Info.Ctx);
9249     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9250                      BuiltinOp == Builtin::BI__builtin_memchr;
9251     assert(IsRawByte ||
9252            Info.Ctx.hasSameUnqualifiedType(
9253                CharTy, E->getArg(0)->getType()->getPointeeType()));
9254     // Pointers to const void may point to objects of incomplete type.
9255     if (IsRawByte && CharTy->isIncompleteType()) {
9256       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9257       return false;
9258     }
9259     // Give up on byte-oriented matching against multibyte elements.
9260     // FIXME: We can compare the bytes in the correct order.
9261     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9262       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9263           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9264           << CharTy;
9265       return false;
9266     }
9267     // Figure out what value we're actually looking for (after converting to
9268     // the corresponding unsigned type if necessary).
9269     uint64_t DesiredVal;
9270     bool StopAtNull = false;
9271     switch (BuiltinOp) {
9272     case Builtin::BIstrchr:
9273     case Builtin::BI__builtin_strchr:
9274       // strchr compares directly to the passed integer, and therefore
9275       // always fails if given an int that is not a char.
9276       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9277                                                   E->getArg(1)->getType(),
9278                                                   Desired),
9279                                Desired))
9280         return ZeroInitialization(E);
9281       StopAtNull = true;
9282       LLVM_FALLTHROUGH;
9283     case Builtin::BImemchr:
9284     case Builtin::BI__builtin_memchr:
9285     case Builtin::BI__builtin_char_memchr:
9286       // memchr compares by converting both sides to unsigned char. That's also
9287       // correct for strchr if we get this far (to cope with plain char being
9288       // unsigned in the strchr case).
9289       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9290       break;
9291 
9292     case Builtin::BIwcschr:
9293     case Builtin::BI__builtin_wcschr:
9294       StopAtNull = true;
9295       LLVM_FALLTHROUGH;
9296     case Builtin::BIwmemchr:
9297     case Builtin::BI__builtin_wmemchr:
9298       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9299       DesiredVal = Desired.getZExtValue();
9300       break;
9301     }
9302 
9303     for (; MaxLength; --MaxLength) {
9304       APValue Char;
9305       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9306           !Char.isInt())
9307         return false;
9308       if (Char.getInt().getZExtValue() == DesiredVal)
9309         return true;
9310       if (StopAtNull && !Char.getInt())
9311         break;
9312       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9313         return false;
9314     }
9315     // Not found: return nullptr.
9316     return ZeroInitialization(E);
9317   }
9318 
9319   case Builtin::BImemcpy:
9320   case Builtin::BImemmove:
9321   case Builtin::BIwmemcpy:
9322   case Builtin::BIwmemmove:
9323     if (Info.getLangOpts().CPlusPlus11)
9324       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9325         << /*isConstexpr*/0 << /*isConstructor*/0
9326         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9327     else
9328       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9329     LLVM_FALLTHROUGH;
9330   case Builtin::BI__builtin_memcpy:
9331   case Builtin::BI__builtin_memmove:
9332   case Builtin::BI__builtin_wmemcpy:
9333   case Builtin::BI__builtin_wmemmove: {
9334     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9335                  BuiltinOp == Builtin::BIwmemmove ||
9336                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9337                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9338     bool Move = BuiltinOp == Builtin::BImemmove ||
9339                 BuiltinOp == Builtin::BIwmemmove ||
9340                 BuiltinOp == Builtin::BI__builtin_memmove ||
9341                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9342 
9343     // The result of mem* is the first argument.
9344     if (!Visit(E->getArg(0)))
9345       return false;
9346     LValue Dest = Result;
9347 
9348     LValue Src;
9349     if (!EvaluatePointer(E->getArg(1), Src, Info))
9350       return false;
9351 
9352     APSInt N;
9353     if (!EvaluateInteger(E->getArg(2), N, Info))
9354       return false;
9355     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9356 
9357     // If the size is zero, we treat this as always being a valid no-op.
9358     // (Even if one of the src and dest pointers is null.)
9359     if (!N)
9360       return true;
9361 
9362     // Otherwise, if either of the operands is null, we can't proceed. Don't
9363     // try to determine the type of the copied objects, because there aren't
9364     // any.
9365     if (!Src.Base || !Dest.Base) {
9366       APValue Val;
9367       (!Src.Base ? Src : Dest).moveInto(Val);
9368       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9369           << Move << WChar << !!Src.Base
9370           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9371       return false;
9372     }
9373     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9374       return false;
9375 
9376     // We require that Src and Dest are both pointers to arrays of
9377     // trivially-copyable type. (For the wide version, the designator will be
9378     // invalid if the designated object is not a wchar_t.)
9379     QualType T = Dest.Designator.getType(Info.Ctx);
9380     QualType SrcT = Src.Designator.getType(Info.Ctx);
9381     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9382       // FIXME: Consider using our bit_cast implementation to support this.
9383       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9384       return false;
9385     }
9386     if (T->isIncompleteType()) {
9387       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9388       return false;
9389     }
9390     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9391       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9392       return false;
9393     }
9394 
9395     // Figure out how many T's we're copying.
9396     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9397     if (!WChar) {
9398       uint64_t Remainder;
9399       llvm::APInt OrigN = N;
9400       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9401       if (Remainder) {
9402         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9403             << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9404             << (unsigned)TSize;
9405         return false;
9406       }
9407     }
9408 
9409     // Check that the copying will remain within the arrays, just so that we
9410     // can give a more meaningful diagnostic. This implicitly also checks that
9411     // N fits into 64 bits.
9412     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9413     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9414     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9415       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9416           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9417           << toString(N, 10, /*Signed*/false);
9418       return false;
9419     }
9420     uint64_t NElems = N.getZExtValue();
9421     uint64_t NBytes = NElems * TSize;
9422 
9423     // Check for overlap.
9424     int Direction = 1;
9425     if (HasSameBase(Src, Dest)) {
9426       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9427       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9428       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9429         // Dest is inside the source region.
9430         if (!Move) {
9431           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9432           return false;
9433         }
9434         // For memmove and friends, copy backwards.
9435         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9436             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9437           return false;
9438         Direction = -1;
9439       } else if (!Move && SrcOffset >= DestOffset &&
9440                  SrcOffset - DestOffset < NBytes) {
9441         // Src is inside the destination region for memcpy: invalid.
9442         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9443         return false;
9444       }
9445     }
9446 
9447     while (true) {
9448       APValue Val;
9449       // FIXME: Set WantObjectRepresentation to true if we're copying a
9450       // char-like type?
9451       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9452           !handleAssignment(Info, E, Dest, T, Val))
9453         return false;
9454       // Do not iterate past the last element; if we're copying backwards, that
9455       // might take us off the start of the array.
9456       if (--NElems == 0)
9457         return true;
9458       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9459           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9460         return false;
9461     }
9462   }
9463 
9464   default:
9465     break;
9466   }
9467 
9468   return visitNonBuiltinCallExpr(E);
9469 }
9470 
9471 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9472                                      APValue &Result, const InitListExpr *ILE,
9473                                      QualType AllocType);
9474 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9475                                           APValue &Result,
9476                                           const CXXConstructExpr *CCE,
9477                                           QualType AllocType);
9478 
9479 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9480   if (!Info.getLangOpts().CPlusPlus20)
9481     Info.CCEDiag(E, diag::note_constexpr_new);
9482 
9483   // We cannot speculatively evaluate a delete expression.
9484   if (Info.SpeculativeEvaluationDepth)
9485     return false;
9486 
9487   FunctionDecl *OperatorNew = E->getOperatorNew();
9488 
9489   bool IsNothrow = false;
9490   bool IsPlacement = false;
9491   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9492       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9493     // FIXME Support array placement new.
9494     assert(E->getNumPlacementArgs() == 1);
9495     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9496       return false;
9497     if (Result.Designator.Invalid)
9498       return false;
9499     IsPlacement = true;
9500   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9501     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9502         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9503     return false;
9504   } else if (E->getNumPlacementArgs()) {
9505     // The only new-placement list we support is of the form (std::nothrow).
9506     //
9507     // FIXME: There is no restriction on this, but it's not clear that any
9508     // other form makes any sense. We get here for cases such as:
9509     //
9510     //   new (std::align_val_t{N}) X(int)
9511     //
9512     // (which should presumably be valid only if N is a multiple of
9513     // alignof(int), and in any case can't be deallocated unless N is
9514     // alignof(X) and X has new-extended alignment).
9515     if (E->getNumPlacementArgs() != 1 ||
9516         !E->getPlacementArg(0)->getType()->isNothrowT())
9517       return Error(E, diag::note_constexpr_new_placement);
9518 
9519     LValue Nothrow;
9520     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9521       return false;
9522     IsNothrow = true;
9523   }
9524 
9525   const Expr *Init = E->getInitializer();
9526   const InitListExpr *ResizedArrayILE = nullptr;
9527   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9528   bool ValueInit = false;
9529 
9530   QualType AllocType = E->getAllocatedType();
9531   if (Optional<const Expr *> ArraySize = E->getArraySize()) {
9532     const Expr *Stripped = *ArraySize;
9533     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9534          Stripped = ICE->getSubExpr())
9535       if (ICE->getCastKind() != CK_NoOp &&
9536           ICE->getCastKind() != CK_IntegralCast)
9537         break;
9538 
9539     llvm::APSInt ArrayBound;
9540     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9541       return false;
9542 
9543     // C++ [expr.new]p9:
9544     //   The expression is erroneous if:
9545     //   -- [...] its value before converting to size_t [or] applying the
9546     //      second standard conversion sequence is less than zero
9547     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9548       if (IsNothrow)
9549         return ZeroInitialization(E);
9550 
9551       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9552           << ArrayBound << (*ArraySize)->getSourceRange();
9553       return false;
9554     }
9555 
9556     //   -- its value is such that the size of the allocated object would
9557     //      exceed the implementation-defined limit
9558     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9559                                                 ArrayBound) >
9560         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9561       if (IsNothrow)
9562         return ZeroInitialization(E);
9563 
9564       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9565         << ArrayBound << (*ArraySize)->getSourceRange();
9566       return false;
9567     }
9568 
9569     //   -- the new-initializer is a braced-init-list and the number of
9570     //      array elements for which initializers are provided [...]
9571     //      exceeds the number of elements to initialize
9572     if (!Init) {
9573       // No initialization is performed.
9574     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9575                isa<ImplicitValueInitExpr>(Init)) {
9576       ValueInit = true;
9577     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9578       ResizedArrayCCE = CCE;
9579     } else {
9580       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9581       assert(CAT && "unexpected type for array initializer");
9582 
9583       unsigned Bits =
9584           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9585       llvm::APInt InitBound = CAT->getSize().zext(Bits);
9586       llvm::APInt AllocBound = ArrayBound.zext(Bits);
9587       if (InitBound.ugt(AllocBound)) {
9588         if (IsNothrow)
9589           return ZeroInitialization(E);
9590 
9591         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9592             << toString(AllocBound, 10, /*Signed=*/false)
9593             << toString(InitBound, 10, /*Signed=*/false)
9594             << (*ArraySize)->getSourceRange();
9595         return false;
9596       }
9597 
9598       // If the sizes differ, we must have an initializer list, and we need
9599       // special handling for this case when we initialize.
9600       if (InitBound != AllocBound)
9601         ResizedArrayILE = cast<InitListExpr>(Init);
9602     }
9603 
9604     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9605                                               ArrayType::Normal, 0);
9606   } else {
9607     assert(!AllocType->isArrayType() &&
9608            "array allocation with non-array new");
9609   }
9610 
9611   APValue *Val;
9612   if (IsPlacement) {
9613     AccessKinds AK = AK_Construct;
9614     struct FindObjectHandler {
9615       EvalInfo &Info;
9616       const Expr *E;
9617       QualType AllocType;
9618       const AccessKinds AccessKind;
9619       APValue *Value;
9620 
9621       typedef bool result_type;
9622       bool failed() { return false; }
9623       bool found(APValue &Subobj, QualType SubobjType) {
9624         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9625         // old name of the object to be used to name the new object.
9626         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9627           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9628             SubobjType << AllocType;
9629           return false;
9630         }
9631         Value = &Subobj;
9632         return true;
9633       }
9634       bool found(APSInt &Value, QualType SubobjType) {
9635         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9636         return false;
9637       }
9638       bool found(APFloat &Value, QualType SubobjType) {
9639         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9640         return false;
9641       }
9642     } Handler = {Info, E, AllocType, AK, nullptr};
9643 
9644     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9645     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9646       return false;
9647 
9648     Val = Handler.Value;
9649 
9650     // [basic.life]p1:
9651     //   The lifetime of an object o of type T ends when [...] the storage
9652     //   which the object occupies is [...] reused by an object that is not
9653     //   nested within o (6.6.2).
9654     *Val = APValue();
9655   } else {
9656     // Perform the allocation and obtain a pointer to the resulting object.
9657     Val = Info.createHeapAlloc(E, AllocType, Result);
9658     if (!Val)
9659       return false;
9660   }
9661 
9662   if (ValueInit) {
9663     ImplicitValueInitExpr VIE(AllocType);
9664     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9665       return false;
9666   } else if (ResizedArrayILE) {
9667     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9668                                   AllocType))
9669       return false;
9670   } else if (ResizedArrayCCE) {
9671     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9672                                        AllocType))
9673       return false;
9674   } else if (Init) {
9675     if (!EvaluateInPlace(*Val, Info, Result, Init))
9676       return false;
9677   } else if (!getDefaultInitValue(AllocType, *Val)) {
9678     return false;
9679   }
9680 
9681   // Array new returns a pointer to the first element, not a pointer to the
9682   // array.
9683   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9684     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9685 
9686   return true;
9687 }
9688 //===----------------------------------------------------------------------===//
9689 // Member Pointer Evaluation
9690 //===----------------------------------------------------------------------===//
9691 
9692 namespace {
9693 class MemberPointerExprEvaluator
9694   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9695   MemberPtr &Result;
9696 
9697   bool Success(const ValueDecl *D) {
9698     Result = MemberPtr(D);
9699     return true;
9700   }
9701 public:
9702 
9703   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9704     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9705 
9706   bool Success(const APValue &V, const Expr *E) {
9707     Result.setFrom(V);
9708     return true;
9709   }
9710   bool ZeroInitialization(const Expr *E) {
9711     return Success((const ValueDecl*)nullptr);
9712   }
9713 
9714   bool VisitCastExpr(const CastExpr *E);
9715   bool VisitUnaryAddrOf(const UnaryOperator *E);
9716 };
9717 } // end anonymous namespace
9718 
9719 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9720                                   EvalInfo &Info) {
9721   assert(!E->isValueDependent());
9722   assert(E->isPRValue() && E->getType()->isMemberPointerType());
9723   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9724 }
9725 
9726 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9727   switch (E->getCastKind()) {
9728   default:
9729     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9730 
9731   case CK_NullToMemberPointer:
9732     VisitIgnoredValue(E->getSubExpr());
9733     return ZeroInitialization(E);
9734 
9735   case CK_BaseToDerivedMemberPointer: {
9736     if (!Visit(E->getSubExpr()))
9737       return false;
9738     if (E->path_empty())
9739       return true;
9740     // Base-to-derived member pointer casts store the path in derived-to-base
9741     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9742     // the wrong end of the derived->base arc, so stagger the path by one class.
9743     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9744     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9745          PathI != PathE; ++PathI) {
9746       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9747       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9748       if (!Result.castToDerived(Derived))
9749         return Error(E);
9750     }
9751     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9752     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9753       return Error(E);
9754     return true;
9755   }
9756 
9757   case CK_DerivedToBaseMemberPointer:
9758     if (!Visit(E->getSubExpr()))
9759       return false;
9760     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9761          PathE = E->path_end(); PathI != PathE; ++PathI) {
9762       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9763       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9764       if (!Result.castToBase(Base))
9765         return Error(E);
9766     }
9767     return true;
9768   }
9769 }
9770 
9771 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9772   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9773   // member can be formed.
9774   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9775 }
9776 
9777 //===----------------------------------------------------------------------===//
9778 // Record Evaluation
9779 //===----------------------------------------------------------------------===//
9780 
9781 namespace {
9782   class RecordExprEvaluator
9783   : public ExprEvaluatorBase<RecordExprEvaluator> {
9784     const LValue &This;
9785     APValue &Result;
9786   public:
9787 
9788     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9789       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9790 
9791     bool Success(const APValue &V, const Expr *E) {
9792       Result = V;
9793       return true;
9794     }
9795     bool ZeroInitialization(const Expr *E) {
9796       return ZeroInitialization(E, E->getType());
9797     }
9798     bool ZeroInitialization(const Expr *E, QualType T);
9799 
9800     bool VisitCallExpr(const CallExpr *E) {
9801       return handleCallExpr(E, Result, &This);
9802     }
9803     bool VisitCastExpr(const CastExpr *E);
9804     bool VisitInitListExpr(const InitListExpr *E);
9805     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9806       return VisitCXXConstructExpr(E, E->getType());
9807     }
9808     bool VisitLambdaExpr(const LambdaExpr *E);
9809     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9810     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9811     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9812     bool VisitBinCmp(const BinaryOperator *E);
9813   };
9814 }
9815 
9816 /// Perform zero-initialization on an object of non-union class type.
9817 /// C++11 [dcl.init]p5:
9818 ///  To zero-initialize an object or reference of type T means:
9819 ///    [...]
9820 ///    -- if T is a (possibly cv-qualified) non-union class type,
9821 ///       each non-static data member and each base-class subobject is
9822 ///       zero-initialized
9823 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9824                                           const RecordDecl *RD,
9825                                           const LValue &This, APValue &Result) {
9826   assert(!RD->isUnion() && "Expected non-union class type");
9827   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9828   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9829                    std::distance(RD->field_begin(), RD->field_end()));
9830 
9831   if (RD->isInvalidDecl()) return false;
9832   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9833 
9834   if (CD) {
9835     unsigned Index = 0;
9836     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9837            End = CD->bases_end(); I != End; ++I, ++Index) {
9838       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9839       LValue Subobject = This;
9840       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9841         return false;
9842       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9843                                          Result.getStructBase(Index)))
9844         return false;
9845     }
9846   }
9847 
9848   for (const auto *I : RD->fields()) {
9849     // -- if T is a reference type, no initialization is performed.
9850     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9851       continue;
9852 
9853     LValue Subobject = This;
9854     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9855       return false;
9856 
9857     ImplicitValueInitExpr VIE(I->getType());
9858     if (!EvaluateInPlace(
9859           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9860       return false;
9861   }
9862 
9863   return true;
9864 }
9865 
9866 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9867   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9868   if (RD->isInvalidDecl()) return false;
9869   if (RD->isUnion()) {
9870     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9871     // object's first non-static named data member is zero-initialized
9872     RecordDecl::field_iterator I = RD->field_begin();
9873     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9874       ++I;
9875     if (I == RD->field_end()) {
9876       Result = APValue((const FieldDecl*)nullptr);
9877       return true;
9878     }
9879 
9880     LValue Subobject = This;
9881     if (!HandleLValueMember(Info, E, Subobject, *I))
9882       return false;
9883     Result = APValue(*I);
9884     ImplicitValueInitExpr VIE(I->getType());
9885     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9886   }
9887 
9888   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9889     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9890     return false;
9891   }
9892 
9893   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9894 }
9895 
9896 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9897   switch (E->getCastKind()) {
9898   default:
9899     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9900 
9901   case CK_ConstructorConversion:
9902     return Visit(E->getSubExpr());
9903 
9904   case CK_DerivedToBase:
9905   case CK_UncheckedDerivedToBase: {
9906     APValue DerivedObject;
9907     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9908       return false;
9909     if (!DerivedObject.isStruct())
9910       return Error(E->getSubExpr());
9911 
9912     // Derived-to-base rvalue conversion: just slice off the derived part.
9913     APValue *Value = &DerivedObject;
9914     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9915     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9916          PathE = E->path_end(); PathI != PathE; ++PathI) {
9917       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9918       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9919       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9920       RD = Base;
9921     }
9922     Result = *Value;
9923     return true;
9924   }
9925   }
9926 }
9927 
9928 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9929   if (E->isTransparent())
9930     return Visit(E->getInit(0));
9931 
9932   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9933   if (RD->isInvalidDecl()) return false;
9934   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9935   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9936 
9937   EvalInfo::EvaluatingConstructorRAII EvalObj(
9938       Info,
9939       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9940       CXXRD && CXXRD->getNumBases());
9941 
9942   if (RD->isUnion()) {
9943     const FieldDecl *Field = E->getInitializedFieldInUnion();
9944     Result = APValue(Field);
9945     if (!Field)
9946       return true;
9947 
9948     // If the initializer list for a union does not contain any elements, the
9949     // first element of the union is value-initialized.
9950     // FIXME: The element should be initialized from an initializer list.
9951     //        Is this difference ever observable for initializer lists which
9952     //        we don't build?
9953     ImplicitValueInitExpr VIE(Field->getType());
9954     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9955 
9956     LValue Subobject = This;
9957     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9958       return false;
9959 
9960     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9961     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9962                                   isa<CXXDefaultInitExpr>(InitExpr));
9963 
9964     if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9965       if (Field->isBitField())
9966         return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9967                                      Field);
9968       return true;
9969     }
9970 
9971     return false;
9972   }
9973 
9974   if (!Result.hasValue())
9975     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9976                      std::distance(RD->field_begin(), RD->field_end()));
9977   unsigned ElementNo = 0;
9978   bool Success = true;
9979 
9980   // Initialize base classes.
9981   if (CXXRD && CXXRD->getNumBases()) {
9982     for (const auto &Base : CXXRD->bases()) {
9983       assert(ElementNo < E->getNumInits() && "missing init for base class");
9984       const Expr *Init = E->getInit(ElementNo);
9985 
9986       LValue Subobject = This;
9987       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9988         return false;
9989 
9990       APValue &FieldVal = Result.getStructBase(ElementNo);
9991       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9992         if (!Info.noteFailure())
9993           return false;
9994         Success = false;
9995       }
9996       ++ElementNo;
9997     }
9998 
9999     EvalObj.finishedConstructingBases();
10000   }
10001 
10002   // Initialize members.
10003   for (const auto *Field : RD->fields()) {
10004     // Anonymous bit-fields are not considered members of the class for
10005     // purposes of aggregate initialization.
10006     if (Field->isUnnamedBitfield())
10007       continue;
10008 
10009     LValue Subobject = This;
10010 
10011     bool HaveInit = ElementNo < E->getNumInits();
10012 
10013     // FIXME: Diagnostics here should point to the end of the initializer
10014     // list, not the start.
10015     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
10016                             Subobject, Field, &Layout))
10017       return false;
10018 
10019     // Perform an implicit value-initialization for members beyond the end of
10020     // the initializer list.
10021     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10022     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
10023 
10024     if (Field->getType()->isIncompleteArrayType()) {
10025       if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10026         if (!CAT->getSize().isZero()) {
10027           // Bail out for now. This might sort of "work", but the rest of the
10028           // code isn't really prepared to handle it.
10029           Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10030           return false;
10031         }
10032       }
10033     }
10034 
10035     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10036     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10037                                   isa<CXXDefaultInitExpr>(Init));
10038 
10039     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10040     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10041         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10042                                                        FieldVal, Field))) {
10043       if (!Info.noteFailure())
10044         return false;
10045       Success = false;
10046     }
10047   }
10048 
10049   EvalObj.finishedConstructingFields();
10050 
10051   return Success;
10052 }
10053 
10054 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10055                                                 QualType T) {
10056   // Note that E's type is not necessarily the type of our class here; we might
10057   // be initializing an array element instead.
10058   const CXXConstructorDecl *FD = E->getConstructor();
10059   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10060 
10061   bool ZeroInit = E->requiresZeroInitialization();
10062   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10063     // If we've already performed zero-initialization, we're already done.
10064     if (Result.hasValue())
10065       return true;
10066 
10067     if (ZeroInit)
10068       return ZeroInitialization(E, T);
10069 
10070     return getDefaultInitValue(T, Result);
10071   }
10072 
10073   const FunctionDecl *Definition = nullptr;
10074   auto Body = FD->getBody(Definition);
10075 
10076   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10077     return false;
10078 
10079   // Avoid materializing a temporary for an elidable copy/move constructor.
10080   if (E->isElidable() && !ZeroInit) {
10081     // FIXME: This only handles the simplest case, where the source object
10082     //        is passed directly as the first argument to the constructor.
10083     //        This should also handle stepping though implicit casts and
10084     //        and conversion sequences which involve two steps, with a
10085     //        conversion operator followed by a converting constructor.
10086     const Expr *SrcObj = E->getArg(0);
10087     assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10088     assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10089     if (const MaterializeTemporaryExpr *ME =
10090             dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10091       return Visit(ME->getSubExpr());
10092   }
10093 
10094   if (ZeroInit && !ZeroInitialization(E, T))
10095     return false;
10096 
10097   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
10098   return HandleConstructorCall(E, This, Args,
10099                                cast<CXXConstructorDecl>(Definition), Info,
10100                                Result);
10101 }
10102 
10103 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10104     const CXXInheritedCtorInitExpr *E) {
10105   if (!Info.CurrentCall) {
10106     assert(Info.checkingPotentialConstantExpression());
10107     return false;
10108   }
10109 
10110   const CXXConstructorDecl *FD = E->getConstructor();
10111   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10112     return false;
10113 
10114   const FunctionDecl *Definition = nullptr;
10115   auto Body = FD->getBody(Definition);
10116 
10117   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10118     return false;
10119 
10120   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10121                                cast<CXXConstructorDecl>(Definition), Info,
10122                                Result);
10123 }
10124 
10125 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10126     const CXXStdInitializerListExpr *E) {
10127   const ConstantArrayType *ArrayType =
10128       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10129 
10130   LValue Array;
10131   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10132     return false;
10133 
10134   // Get a pointer to the first element of the array.
10135   Array.addArray(Info, E, ArrayType);
10136 
10137   auto InvalidType = [&] {
10138     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10139       << E->getType();
10140     return false;
10141   };
10142 
10143   // FIXME: Perform the checks on the field types in SemaInit.
10144   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10145   RecordDecl::field_iterator Field = Record->field_begin();
10146   if (Field == Record->field_end())
10147     return InvalidType();
10148 
10149   // Start pointer.
10150   if (!Field->getType()->isPointerType() ||
10151       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10152                             ArrayType->getElementType()))
10153     return InvalidType();
10154 
10155   // FIXME: What if the initializer_list type has base classes, etc?
10156   Result = APValue(APValue::UninitStruct(), 0, 2);
10157   Array.moveInto(Result.getStructField(0));
10158 
10159   if (++Field == Record->field_end())
10160     return InvalidType();
10161 
10162   if (Field->getType()->isPointerType() &&
10163       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10164                            ArrayType->getElementType())) {
10165     // End pointer.
10166     if (!HandleLValueArrayAdjustment(Info, E, Array,
10167                                      ArrayType->getElementType(),
10168                                      ArrayType->getSize().getZExtValue()))
10169       return false;
10170     Array.moveInto(Result.getStructField(1));
10171   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10172     // Length.
10173     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10174   else
10175     return InvalidType();
10176 
10177   if (++Field != Record->field_end())
10178     return InvalidType();
10179 
10180   return true;
10181 }
10182 
10183 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10184   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10185   if (ClosureClass->isInvalidDecl())
10186     return false;
10187 
10188   const size_t NumFields =
10189       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10190 
10191   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10192                                             E->capture_init_end()) &&
10193          "The number of lambda capture initializers should equal the number of "
10194          "fields within the closure type");
10195 
10196   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10197   // Iterate through all the lambda's closure object's fields and initialize
10198   // them.
10199   auto *CaptureInitIt = E->capture_init_begin();
10200   bool Success = true;
10201   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10202   for (const auto *Field : ClosureClass->fields()) {
10203     assert(CaptureInitIt != E->capture_init_end());
10204     // Get the initializer for this field
10205     Expr *const CurFieldInit = *CaptureInitIt++;
10206 
10207     // If there is no initializer, either this is a VLA or an error has
10208     // occurred.
10209     if (!CurFieldInit)
10210       return Error(E);
10211 
10212     LValue Subobject = This;
10213 
10214     if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10215       return false;
10216 
10217     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10218     if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10219       if (!Info.keepEvaluatingAfterFailure())
10220         return false;
10221       Success = false;
10222     }
10223   }
10224   return Success;
10225 }
10226 
10227 static bool EvaluateRecord(const Expr *E, const LValue &This,
10228                            APValue &Result, EvalInfo &Info) {
10229   assert(!E->isValueDependent());
10230   assert(E->isPRValue() && E->getType()->isRecordType() &&
10231          "can't evaluate expression as a record rvalue");
10232   return RecordExprEvaluator(Info, This, Result).Visit(E);
10233 }
10234 
10235 //===----------------------------------------------------------------------===//
10236 // Temporary Evaluation
10237 //
10238 // Temporaries are represented in the AST as rvalues, but generally behave like
10239 // lvalues. The full-object of which the temporary is a subobject is implicitly
10240 // materialized so that a reference can bind to it.
10241 //===----------------------------------------------------------------------===//
10242 namespace {
10243 class TemporaryExprEvaluator
10244   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10245 public:
10246   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10247     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10248 
10249   /// Visit an expression which constructs the value of this temporary.
10250   bool VisitConstructExpr(const Expr *E) {
10251     APValue &Value = Info.CurrentCall->createTemporary(
10252         E, E->getType(), ScopeKind::FullExpression, Result);
10253     return EvaluateInPlace(Value, Info, Result, E);
10254   }
10255 
10256   bool VisitCastExpr(const CastExpr *E) {
10257     switch (E->getCastKind()) {
10258     default:
10259       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10260 
10261     case CK_ConstructorConversion:
10262       return VisitConstructExpr(E->getSubExpr());
10263     }
10264   }
10265   bool VisitInitListExpr(const InitListExpr *E) {
10266     return VisitConstructExpr(E);
10267   }
10268   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10269     return VisitConstructExpr(E);
10270   }
10271   bool VisitCallExpr(const CallExpr *E) {
10272     return VisitConstructExpr(E);
10273   }
10274   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10275     return VisitConstructExpr(E);
10276   }
10277   bool VisitLambdaExpr(const LambdaExpr *E) {
10278     return VisitConstructExpr(E);
10279   }
10280 };
10281 } // end anonymous namespace
10282 
10283 /// Evaluate an expression of record type as a temporary.
10284 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10285   assert(!E->isValueDependent());
10286   assert(E->isPRValue() && E->getType()->isRecordType());
10287   return TemporaryExprEvaluator(Info, Result).Visit(E);
10288 }
10289 
10290 //===----------------------------------------------------------------------===//
10291 // Vector Evaluation
10292 //===----------------------------------------------------------------------===//
10293 
10294 namespace {
10295   class VectorExprEvaluator
10296   : public ExprEvaluatorBase<VectorExprEvaluator> {
10297     APValue &Result;
10298   public:
10299 
10300     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10301       : ExprEvaluatorBaseTy(info), Result(Result) {}
10302 
10303     bool Success(ArrayRef<APValue> V, const Expr *E) {
10304       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10305       // FIXME: remove this APValue copy.
10306       Result = APValue(V.data(), V.size());
10307       return true;
10308     }
10309     bool Success(const APValue &V, const Expr *E) {
10310       assert(V.isVector());
10311       Result = V;
10312       return true;
10313     }
10314     bool ZeroInitialization(const Expr *E);
10315 
10316     bool VisitUnaryReal(const UnaryOperator *E)
10317       { return Visit(E->getSubExpr()); }
10318     bool VisitCastExpr(const CastExpr* E);
10319     bool VisitInitListExpr(const InitListExpr *E);
10320     bool VisitUnaryImag(const UnaryOperator *E);
10321     bool VisitBinaryOperator(const BinaryOperator *E);
10322     bool VisitUnaryOperator(const UnaryOperator *E);
10323     // FIXME: Missing: conditional operator (for GNU
10324     //                 conditional select), shufflevector, ExtVectorElementExpr
10325   };
10326 } // end anonymous namespace
10327 
10328 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10329   assert(E->isPRValue() && E->getType()->isVectorType() &&
10330          "not a vector prvalue");
10331   return VectorExprEvaluator(Info, Result).Visit(E);
10332 }
10333 
10334 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10335   const VectorType *VTy = E->getType()->castAs<VectorType>();
10336   unsigned NElts = VTy->getNumElements();
10337 
10338   const Expr *SE = E->getSubExpr();
10339   QualType SETy = SE->getType();
10340 
10341   switch (E->getCastKind()) {
10342   case CK_VectorSplat: {
10343     APValue Val = APValue();
10344     if (SETy->isIntegerType()) {
10345       APSInt IntResult;
10346       if (!EvaluateInteger(SE, IntResult, Info))
10347         return false;
10348       Val = APValue(std::move(IntResult));
10349     } else if (SETy->isRealFloatingType()) {
10350       APFloat FloatResult(0.0);
10351       if (!EvaluateFloat(SE, FloatResult, Info))
10352         return false;
10353       Val = APValue(std::move(FloatResult));
10354     } else {
10355       return Error(E);
10356     }
10357 
10358     // Splat and create vector APValue.
10359     SmallVector<APValue, 4> Elts(NElts, Val);
10360     return Success(Elts, E);
10361   }
10362   case CK_BitCast: {
10363     // Evaluate the operand into an APInt we can extract from.
10364     llvm::APInt SValInt;
10365     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10366       return false;
10367     // Extract the elements
10368     QualType EltTy = VTy->getElementType();
10369     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10370     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10371     SmallVector<APValue, 4> Elts;
10372     if (EltTy->isRealFloatingType()) {
10373       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10374       unsigned FloatEltSize = EltSize;
10375       if (&Sem == &APFloat::x87DoubleExtended())
10376         FloatEltSize = 80;
10377       for (unsigned i = 0; i < NElts; i++) {
10378         llvm::APInt Elt;
10379         if (BigEndian)
10380           Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize);
10381         else
10382           Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize);
10383         Elts.push_back(APValue(APFloat(Sem, Elt)));
10384       }
10385     } else if (EltTy->isIntegerType()) {
10386       for (unsigned i = 0; i < NElts; i++) {
10387         llvm::APInt Elt;
10388         if (BigEndian)
10389           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10390         else
10391           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10392         Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10393       }
10394     } else {
10395       return Error(E);
10396     }
10397     return Success(Elts, E);
10398   }
10399   default:
10400     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10401   }
10402 }
10403 
10404 bool
10405 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10406   const VectorType *VT = E->getType()->castAs<VectorType>();
10407   unsigned NumInits = E->getNumInits();
10408   unsigned NumElements = VT->getNumElements();
10409 
10410   QualType EltTy = VT->getElementType();
10411   SmallVector<APValue, 4> Elements;
10412 
10413   // The number of initializers can be less than the number of
10414   // vector elements. For OpenCL, this can be due to nested vector
10415   // initialization. For GCC compatibility, missing trailing elements
10416   // should be initialized with zeroes.
10417   unsigned CountInits = 0, CountElts = 0;
10418   while (CountElts < NumElements) {
10419     // Handle nested vector initialization.
10420     if (CountInits < NumInits
10421         && E->getInit(CountInits)->getType()->isVectorType()) {
10422       APValue v;
10423       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10424         return Error(E);
10425       unsigned vlen = v.getVectorLength();
10426       for (unsigned j = 0; j < vlen; j++)
10427         Elements.push_back(v.getVectorElt(j));
10428       CountElts += vlen;
10429     } else if (EltTy->isIntegerType()) {
10430       llvm::APSInt sInt(32);
10431       if (CountInits < NumInits) {
10432         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10433           return false;
10434       } else // trailing integer zero.
10435         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10436       Elements.push_back(APValue(sInt));
10437       CountElts++;
10438     } else {
10439       llvm::APFloat f(0.0);
10440       if (CountInits < NumInits) {
10441         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10442           return false;
10443       } else // trailing float zero.
10444         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10445       Elements.push_back(APValue(f));
10446       CountElts++;
10447     }
10448     CountInits++;
10449   }
10450   return Success(Elements, E);
10451 }
10452 
10453 bool
10454 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10455   const auto *VT = E->getType()->castAs<VectorType>();
10456   QualType EltTy = VT->getElementType();
10457   APValue ZeroElement;
10458   if (EltTy->isIntegerType())
10459     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10460   else
10461     ZeroElement =
10462         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10463 
10464   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10465   return Success(Elements, E);
10466 }
10467 
10468 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10469   VisitIgnoredValue(E->getSubExpr());
10470   return ZeroInitialization(E);
10471 }
10472 
10473 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10474   BinaryOperatorKind Op = E->getOpcode();
10475   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10476          "Operation not supported on vector types");
10477 
10478   if (Op == BO_Comma)
10479     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10480 
10481   Expr *LHS = E->getLHS();
10482   Expr *RHS = E->getRHS();
10483 
10484   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10485          "Must both be vector types");
10486   // Checking JUST the types are the same would be fine, except shifts don't
10487   // need to have their types be the same (since you always shift by an int).
10488   assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10489              E->getType()->castAs<VectorType>()->getNumElements() &&
10490          RHS->getType()->castAs<VectorType>()->getNumElements() ==
10491              E->getType()->castAs<VectorType>()->getNumElements() &&
10492          "All operands must be the same size.");
10493 
10494   APValue LHSValue;
10495   APValue RHSValue;
10496   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10497   if (!LHSOK && !Info.noteFailure())
10498     return false;
10499   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10500     return false;
10501 
10502   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10503     return false;
10504 
10505   return Success(LHSValue, E);
10506 }
10507 
10508 static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10509                                                          QualType ResultTy,
10510                                                          UnaryOperatorKind Op,
10511                                                          APValue Elt) {
10512   switch (Op) {
10513   case UO_Plus:
10514     // Nothing to do here.
10515     return Elt;
10516   case UO_Minus:
10517     if (Elt.getKind() == APValue::Int) {
10518       Elt.getInt().negate();
10519     } else {
10520       assert(Elt.getKind() == APValue::Float &&
10521              "Vector can only be int or float type");
10522       Elt.getFloat().changeSign();
10523     }
10524     return Elt;
10525   case UO_Not:
10526     // This is only valid for integral types anyway, so we don't have to handle
10527     // float here.
10528     assert(Elt.getKind() == APValue::Int &&
10529            "Vector operator ~ can only be int");
10530     Elt.getInt().flipAllBits();
10531     return Elt;
10532   case UO_LNot: {
10533     if (Elt.getKind() == APValue::Int) {
10534       Elt.getInt() = !Elt.getInt();
10535       // operator ! on vectors returns -1 for 'truth', so negate it.
10536       Elt.getInt().negate();
10537       return Elt;
10538     }
10539     assert(Elt.getKind() == APValue::Float &&
10540            "Vector can only be int or float type");
10541     // Float types result in an int of the same size, but -1 for true, or 0 for
10542     // false.
10543     APSInt EltResult{Ctx.getIntWidth(ResultTy),
10544                      ResultTy->isUnsignedIntegerType()};
10545     if (Elt.getFloat().isZero())
10546       EltResult.setAllBits();
10547     else
10548       EltResult.clearAllBits();
10549 
10550     return APValue{EltResult};
10551   }
10552   default:
10553     // FIXME: Implement the rest of the unary operators.
10554     return llvm::None;
10555   }
10556 }
10557 
10558 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10559   Expr *SubExpr = E->getSubExpr();
10560   const auto *VD = SubExpr->getType()->castAs<VectorType>();
10561   // This result element type differs in the case of negating a floating point
10562   // vector, since the result type is the a vector of the equivilant sized
10563   // integer.
10564   const QualType ResultEltTy = VD->getElementType();
10565   UnaryOperatorKind Op = E->getOpcode();
10566 
10567   APValue SubExprValue;
10568   if (!Evaluate(SubExprValue, Info, SubExpr))
10569     return false;
10570 
10571   // FIXME: This vector evaluator someday needs to be changed to be LValue
10572   // aware/keep LValue information around, rather than dealing with just vector
10573   // types directly. Until then, we cannot handle cases where the operand to
10574   // these unary operators is an LValue. The only case I've been able to see
10575   // cause this is operator++ assigning to a member expression (only valid in
10576   // altivec compilations) in C mode, so this shouldn't limit us too much.
10577   if (SubExprValue.isLValue())
10578     return false;
10579 
10580   assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10581          "Vector length doesn't match type?");
10582 
10583   SmallVector<APValue, 4> ResultElements;
10584   for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10585     llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
10586         Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10587     if (!Elt)
10588       return false;
10589     ResultElements.push_back(*Elt);
10590   }
10591   return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10592 }
10593 
10594 //===----------------------------------------------------------------------===//
10595 // Array Evaluation
10596 //===----------------------------------------------------------------------===//
10597 
10598 namespace {
10599   class ArrayExprEvaluator
10600   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10601     const LValue &This;
10602     APValue &Result;
10603   public:
10604 
10605     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10606       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10607 
10608     bool Success(const APValue &V, const Expr *E) {
10609       assert(V.isArray() && "expected array");
10610       Result = V;
10611       return true;
10612     }
10613 
10614     bool ZeroInitialization(const Expr *E) {
10615       const ConstantArrayType *CAT =
10616           Info.Ctx.getAsConstantArrayType(E->getType());
10617       if (!CAT) {
10618         if (E->getType()->isIncompleteArrayType()) {
10619           // We can be asked to zero-initialize a flexible array member; this
10620           // is represented as an ImplicitValueInitExpr of incomplete array
10621           // type. In this case, the array has zero elements.
10622           Result = APValue(APValue::UninitArray(), 0, 0);
10623           return true;
10624         }
10625         // FIXME: We could handle VLAs here.
10626         return Error(E);
10627       }
10628 
10629       Result = APValue(APValue::UninitArray(), 0,
10630                        CAT->getSize().getZExtValue());
10631       if (!Result.hasArrayFiller())
10632         return true;
10633 
10634       // Zero-initialize all elements.
10635       LValue Subobject = This;
10636       Subobject.addArray(Info, E, CAT);
10637       ImplicitValueInitExpr VIE(CAT->getElementType());
10638       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10639     }
10640 
10641     bool VisitCallExpr(const CallExpr *E) {
10642       return handleCallExpr(E, Result, &This);
10643     }
10644     bool VisitInitListExpr(const InitListExpr *E,
10645                            QualType AllocType = QualType());
10646     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10647     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10648     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10649                                const LValue &Subobject,
10650                                APValue *Value, QualType Type);
10651     bool VisitStringLiteral(const StringLiteral *E,
10652                             QualType AllocType = QualType()) {
10653       expandStringLiteral(Info, E, Result, AllocType);
10654       return true;
10655     }
10656   };
10657 } // end anonymous namespace
10658 
10659 static bool EvaluateArray(const Expr *E, const LValue &This,
10660                           APValue &Result, EvalInfo &Info) {
10661   assert(!E->isValueDependent());
10662   assert(E->isPRValue() && E->getType()->isArrayType() &&
10663          "not an array prvalue");
10664   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10665 }
10666 
10667 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10668                                      APValue &Result, const InitListExpr *ILE,
10669                                      QualType AllocType) {
10670   assert(!ILE->isValueDependent());
10671   assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10672          "not an array prvalue");
10673   return ArrayExprEvaluator(Info, This, Result)
10674       .VisitInitListExpr(ILE, AllocType);
10675 }
10676 
10677 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10678                                           APValue &Result,
10679                                           const CXXConstructExpr *CCE,
10680                                           QualType AllocType) {
10681   assert(!CCE->isValueDependent());
10682   assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10683          "not an array prvalue");
10684   return ArrayExprEvaluator(Info, This, Result)
10685       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10686 }
10687 
10688 // Return true iff the given array filler may depend on the element index.
10689 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10690   // For now, just allow non-class value-initialization and initialization
10691   // lists comprised of them.
10692   if (isa<ImplicitValueInitExpr>(FillerExpr))
10693     return false;
10694   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10695     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10696       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10697         return true;
10698     }
10699     return false;
10700   }
10701   return true;
10702 }
10703 
10704 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10705                                            QualType AllocType) {
10706   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10707       AllocType.isNull() ? E->getType() : AllocType);
10708   if (!CAT)
10709     return Error(E);
10710 
10711   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10712   // an appropriately-typed string literal enclosed in braces.
10713   if (E->isStringLiteralInit()) {
10714     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10715     // FIXME: Support ObjCEncodeExpr here once we support it in
10716     // ArrayExprEvaluator generally.
10717     if (!SL)
10718       return Error(E);
10719     return VisitStringLiteral(SL, AllocType);
10720   }
10721   // Any other transparent list init will need proper handling of the
10722   // AllocType; we can't just recurse to the inner initializer.
10723   assert(!E->isTransparent() &&
10724          "transparent array list initialization is not string literal init?");
10725 
10726   bool Success = true;
10727 
10728   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10729          "zero-initialized array shouldn't have any initialized elts");
10730   APValue Filler;
10731   if (Result.isArray() && Result.hasArrayFiller())
10732     Filler = Result.getArrayFiller();
10733 
10734   unsigned NumEltsToInit = E->getNumInits();
10735   unsigned NumElts = CAT->getSize().getZExtValue();
10736   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10737 
10738   // If the initializer might depend on the array index, run it for each
10739   // array element.
10740   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10741     NumEltsToInit = NumElts;
10742 
10743   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10744                           << NumEltsToInit << ".\n");
10745 
10746   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10747 
10748   // If the array was previously zero-initialized, preserve the
10749   // zero-initialized values.
10750   if (Filler.hasValue()) {
10751     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10752       Result.getArrayInitializedElt(I) = Filler;
10753     if (Result.hasArrayFiller())
10754       Result.getArrayFiller() = Filler;
10755   }
10756 
10757   LValue Subobject = This;
10758   Subobject.addArray(Info, E, CAT);
10759   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10760     const Expr *Init =
10761         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10762     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10763                          Info, Subobject, Init) ||
10764         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10765                                      CAT->getElementType(), 1)) {
10766       if (!Info.noteFailure())
10767         return false;
10768       Success = false;
10769     }
10770   }
10771 
10772   if (!Result.hasArrayFiller())
10773     return Success;
10774 
10775   // If we get here, we have a trivial filler, which we can just evaluate
10776   // once and splat over the rest of the array elements.
10777   assert(FillerExpr && "no array filler for incomplete init list");
10778   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10779                          FillerExpr) && Success;
10780 }
10781 
10782 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10783   LValue CommonLV;
10784   if (E->getCommonExpr() &&
10785       !Evaluate(Info.CurrentCall->createTemporary(
10786                     E->getCommonExpr(),
10787                     getStorageType(Info.Ctx, E->getCommonExpr()),
10788                     ScopeKind::FullExpression, CommonLV),
10789                 Info, E->getCommonExpr()->getSourceExpr()))
10790     return false;
10791 
10792   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10793 
10794   uint64_t Elements = CAT->getSize().getZExtValue();
10795   Result = APValue(APValue::UninitArray(), Elements, Elements);
10796 
10797   LValue Subobject = This;
10798   Subobject.addArray(Info, E, CAT);
10799 
10800   bool Success = true;
10801   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10802     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10803                          Info, Subobject, E->getSubExpr()) ||
10804         !HandleLValueArrayAdjustment(Info, E, Subobject,
10805                                      CAT->getElementType(), 1)) {
10806       if (!Info.noteFailure())
10807         return false;
10808       Success = false;
10809     }
10810   }
10811 
10812   return Success;
10813 }
10814 
10815 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10816   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10817 }
10818 
10819 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10820                                                const LValue &Subobject,
10821                                                APValue *Value,
10822                                                QualType Type) {
10823   bool HadZeroInit = Value->hasValue();
10824 
10825   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10826     unsigned FinalSize = CAT->getSize().getZExtValue();
10827 
10828     // Preserve the array filler if we had prior zero-initialization.
10829     APValue Filler =
10830       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10831                                              : APValue();
10832 
10833     *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10834     if (FinalSize == 0)
10835       return true;
10836 
10837     LValue ArrayElt = Subobject;
10838     ArrayElt.addArray(Info, E, CAT);
10839     // We do the whole initialization in two passes, first for just one element,
10840     // then for the whole array. It's possible we may find out we can't do const
10841     // init in the first pass, in which case we avoid allocating a potentially
10842     // large array. We don't do more passes because expanding array requires
10843     // copying the data, which is wasteful.
10844     for (const unsigned N : {1u, FinalSize}) {
10845       unsigned OldElts = Value->getArrayInitializedElts();
10846       if (OldElts == N)
10847         break;
10848 
10849       // Expand the array to appropriate size.
10850       APValue NewValue(APValue::UninitArray(), N, FinalSize);
10851       for (unsigned I = 0; I < OldElts; ++I)
10852         NewValue.getArrayInitializedElt(I).swap(
10853             Value->getArrayInitializedElt(I));
10854       Value->swap(NewValue);
10855 
10856       if (HadZeroInit)
10857         for (unsigned I = OldElts; I < N; ++I)
10858           Value->getArrayInitializedElt(I) = Filler;
10859 
10860       // Initialize the elements.
10861       for (unsigned I = OldElts; I < N; ++I) {
10862         if (!VisitCXXConstructExpr(E, ArrayElt,
10863                                    &Value->getArrayInitializedElt(I),
10864                                    CAT->getElementType()) ||
10865             !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10866                                          CAT->getElementType(), 1))
10867           return false;
10868         // When checking for const initilization any diagnostic is considered
10869         // an error.
10870         if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10871             !Info.keepEvaluatingAfterFailure())
10872           return false;
10873       }
10874     }
10875 
10876     return true;
10877   }
10878 
10879   if (!Type->isRecordType())
10880     return Error(E);
10881 
10882   return RecordExprEvaluator(Info, Subobject, *Value)
10883              .VisitCXXConstructExpr(E, Type);
10884 }
10885 
10886 //===----------------------------------------------------------------------===//
10887 // Integer Evaluation
10888 //
10889 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10890 // types and back in constant folding. Integer values are thus represented
10891 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10892 //===----------------------------------------------------------------------===//
10893 
10894 namespace {
10895 class IntExprEvaluator
10896         : public ExprEvaluatorBase<IntExprEvaluator> {
10897   APValue &Result;
10898 public:
10899   IntExprEvaluator(EvalInfo &info, APValue &result)
10900       : ExprEvaluatorBaseTy(info), Result(result) {}
10901 
10902   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10903     assert(E->getType()->isIntegralOrEnumerationType() &&
10904            "Invalid evaluation result.");
10905     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10906            "Invalid evaluation result.");
10907     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10908            "Invalid evaluation result.");
10909     Result = APValue(SI);
10910     return true;
10911   }
10912   bool Success(const llvm::APSInt &SI, const Expr *E) {
10913     return Success(SI, E, Result);
10914   }
10915 
10916   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10917     assert(E->getType()->isIntegralOrEnumerationType() &&
10918            "Invalid evaluation result.");
10919     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10920            "Invalid evaluation result.");
10921     Result = APValue(APSInt(I));
10922     Result.getInt().setIsUnsigned(
10923                             E->getType()->isUnsignedIntegerOrEnumerationType());
10924     return true;
10925   }
10926   bool Success(const llvm::APInt &I, const Expr *E) {
10927     return Success(I, E, Result);
10928   }
10929 
10930   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10931     assert(E->getType()->isIntegralOrEnumerationType() &&
10932            "Invalid evaluation result.");
10933     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10934     return true;
10935   }
10936   bool Success(uint64_t Value, const Expr *E) {
10937     return Success(Value, E, Result);
10938   }
10939 
10940   bool Success(CharUnits Size, const Expr *E) {
10941     return Success(Size.getQuantity(), E);
10942   }
10943 
10944   bool Success(const APValue &V, const Expr *E) {
10945     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10946       Result = V;
10947       return true;
10948     }
10949     return Success(V.getInt(), E);
10950   }
10951 
10952   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10953 
10954   //===--------------------------------------------------------------------===//
10955   //                            Visitor Methods
10956   //===--------------------------------------------------------------------===//
10957 
10958   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10959     return Success(E->getValue(), E);
10960   }
10961   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10962     return Success(E->getValue(), E);
10963   }
10964 
10965   bool CheckReferencedDecl(const Expr *E, const Decl *D);
10966   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10967     if (CheckReferencedDecl(E, E->getDecl()))
10968       return true;
10969 
10970     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10971   }
10972   bool VisitMemberExpr(const MemberExpr *E) {
10973     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10974       VisitIgnoredBaseExpression(E->getBase());
10975       return true;
10976     }
10977 
10978     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10979   }
10980 
10981   bool VisitCallExpr(const CallExpr *E);
10982   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10983   bool VisitBinaryOperator(const BinaryOperator *E);
10984   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10985   bool VisitUnaryOperator(const UnaryOperator *E);
10986 
10987   bool VisitCastExpr(const CastExpr* E);
10988   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10989 
10990   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10991     return Success(E->getValue(), E);
10992   }
10993 
10994   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10995     return Success(E->getValue(), E);
10996   }
10997 
10998   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10999     if (Info.ArrayInitIndex == uint64_t(-1)) {
11000       // We were asked to evaluate this subexpression independent of the
11001       // enclosing ArrayInitLoopExpr. We can't do that.
11002       Info.FFDiag(E);
11003       return false;
11004     }
11005     return Success(Info.ArrayInitIndex, E);
11006   }
11007 
11008   // Note, GNU defines __null as an integer, not a pointer.
11009   bool VisitGNUNullExpr(const GNUNullExpr *E) {
11010     return ZeroInitialization(E);
11011   }
11012 
11013   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11014     return Success(E->getValue(), E);
11015   }
11016 
11017   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11018     return Success(E->getValue(), E);
11019   }
11020 
11021   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11022     return Success(E->getValue(), E);
11023   }
11024 
11025   bool VisitUnaryReal(const UnaryOperator *E);
11026   bool VisitUnaryImag(const UnaryOperator *E);
11027 
11028   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11029   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11030   bool VisitSourceLocExpr(const SourceLocExpr *E);
11031   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11032   bool VisitRequiresExpr(const RequiresExpr *E);
11033   // FIXME: Missing: array subscript of vector, member of vector
11034 };
11035 
11036 class FixedPointExprEvaluator
11037     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11038   APValue &Result;
11039 
11040  public:
11041   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11042       : ExprEvaluatorBaseTy(info), Result(result) {}
11043 
11044   bool Success(const llvm::APInt &I, const Expr *E) {
11045     return Success(
11046         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11047   }
11048 
11049   bool Success(uint64_t Value, const Expr *E) {
11050     return Success(
11051         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11052   }
11053 
11054   bool Success(const APValue &V, const Expr *E) {
11055     return Success(V.getFixedPoint(), E);
11056   }
11057 
11058   bool Success(const APFixedPoint &V, const Expr *E) {
11059     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11060     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11061            "Invalid evaluation result.");
11062     Result = APValue(V);
11063     return true;
11064   }
11065 
11066   //===--------------------------------------------------------------------===//
11067   //                            Visitor Methods
11068   //===--------------------------------------------------------------------===//
11069 
11070   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11071     return Success(E->getValue(), E);
11072   }
11073 
11074   bool VisitCastExpr(const CastExpr *E);
11075   bool VisitUnaryOperator(const UnaryOperator *E);
11076   bool VisitBinaryOperator(const BinaryOperator *E);
11077 };
11078 } // end anonymous namespace
11079 
11080 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11081 /// produce either the integer value or a pointer.
11082 ///
11083 /// GCC has a heinous extension which folds casts between pointer types and
11084 /// pointer-sized integral types. We support this by allowing the evaluation of
11085 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11086 /// Some simple arithmetic on such values is supported (they are treated much
11087 /// like char*).
11088 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11089                                     EvalInfo &Info) {
11090   assert(!E->isValueDependent());
11091   assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11092   return IntExprEvaluator(Info, Result).Visit(E);
11093 }
11094 
11095 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11096   assert(!E->isValueDependent());
11097   APValue Val;
11098   if (!EvaluateIntegerOrLValue(E, Val, Info))
11099     return false;
11100   if (!Val.isInt()) {
11101     // FIXME: It would be better to produce the diagnostic for casting
11102     //        a pointer to an integer.
11103     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11104     return false;
11105   }
11106   Result = Val.getInt();
11107   return true;
11108 }
11109 
11110 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11111   APValue Evaluated = E->EvaluateInContext(
11112       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11113   return Success(Evaluated, E);
11114 }
11115 
11116 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11117                                EvalInfo &Info) {
11118   assert(!E->isValueDependent());
11119   if (E->getType()->isFixedPointType()) {
11120     APValue Val;
11121     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11122       return false;
11123     if (!Val.isFixedPoint())
11124       return false;
11125 
11126     Result = Val.getFixedPoint();
11127     return true;
11128   }
11129   return false;
11130 }
11131 
11132 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11133                                         EvalInfo &Info) {
11134   assert(!E->isValueDependent());
11135   if (E->getType()->isIntegerType()) {
11136     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11137     APSInt Val;
11138     if (!EvaluateInteger(E, Val, Info))
11139       return false;
11140     Result = APFixedPoint(Val, FXSema);
11141     return true;
11142   } else if (E->getType()->isFixedPointType()) {
11143     return EvaluateFixedPoint(E, Result, Info);
11144   }
11145   return false;
11146 }
11147 
11148 /// Check whether the given declaration can be directly converted to an integral
11149 /// rvalue. If not, no diagnostic is produced; there are other things we can
11150 /// try.
11151 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11152   // Enums are integer constant exprs.
11153   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11154     // Check for signedness/width mismatches between E type and ECD value.
11155     bool SameSign = (ECD->getInitVal().isSigned()
11156                      == E->getType()->isSignedIntegerOrEnumerationType());
11157     bool SameWidth = (ECD->getInitVal().getBitWidth()
11158                       == Info.Ctx.getIntWidth(E->getType()));
11159     if (SameSign && SameWidth)
11160       return Success(ECD->getInitVal(), E);
11161     else {
11162       // Get rid of mismatch (otherwise Success assertions will fail)
11163       // by computing a new value matching the type of E.
11164       llvm::APSInt Val = ECD->getInitVal();
11165       if (!SameSign)
11166         Val.setIsSigned(!ECD->getInitVal().isSigned());
11167       if (!SameWidth)
11168         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11169       return Success(Val, E);
11170     }
11171   }
11172   return false;
11173 }
11174 
11175 /// Values returned by __builtin_classify_type, chosen to match the values
11176 /// produced by GCC's builtin.
11177 enum class GCCTypeClass {
11178   None = -1,
11179   Void = 0,
11180   Integer = 1,
11181   // GCC reserves 2 for character types, but instead classifies them as
11182   // integers.
11183   Enum = 3,
11184   Bool = 4,
11185   Pointer = 5,
11186   // GCC reserves 6 for references, but appears to never use it (because
11187   // expressions never have reference type, presumably).
11188   PointerToDataMember = 7,
11189   RealFloat = 8,
11190   Complex = 9,
11191   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11192   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11193   // GCC claims to reserve 11 for pointers to member functions, but *actually*
11194   // uses 12 for that purpose, same as for a class or struct. Maybe it
11195   // internally implements a pointer to member as a struct?  Who knows.
11196   PointerToMemberFunction = 12, // Not a bug, see above.
11197   ClassOrStruct = 12,
11198   Union = 13,
11199   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11200   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11201   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11202   // literals.
11203 };
11204 
11205 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11206 /// as GCC.
11207 static GCCTypeClass
11208 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11209   assert(!T->isDependentType() && "unexpected dependent type");
11210 
11211   QualType CanTy = T.getCanonicalType();
11212   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11213 
11214   switch (CanTy->getTypeClass()) {
11215 #define TYPE(ID, BASE)
11216 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11217 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11218 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11219 #include "clang/AST/TypeNodes.inc"
11220   case Type::Auto:
11221   case Type::DeducedTemplateSpecialization:
11222       llvm_unreachable("unexpected non-canonical or dependent type");
11223 
11224   case Type::Builtin:
11225     switch (BT->getKind()) {
11226 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11227 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11228     case BuiltinType::ID: return GCCTypeClass::Integer;
11229 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11230     case BuiltinType::ID: return GCCTypeClass::RealFloat;
11231 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11232     case BuiltinType::ID: break;
11233 #include "clang/AST/BuiltinTypes.def"
11234     case BuiltinType::Void:
11235       return GCCTypeClass::Void;
11236 
11237     case BuiltinType::Bool:
11238       return GCCTypeClass::Bool;
11239 
11240     case BuiltinType::Char_U:
11241     case BuiltinType::UChar:
11242     case BuiltinType::WChar_U:
11243     case BuiltinType::Char8:
11244     case BuiltinType::Char16:
11245     case BuiltinType::Char32:
11246     case BuiltinType::UShort:
11247     case BuiltinType::UInt:
11248     case BuiltinType::ULong:
11249     case BuiltinType::ULongLong:
11250     case BuiltinType::UInt128:
11251       return GCCTypeClass::Integer;
11252 
11253     case BuiltinType::UShortAccum:
11254     case BuiltinType::UAccum:
11255     case BuiltinType::ULongAccum:
11256     case BuiltinType::UShortFract:
11257     case BuiltinType::UFract:
11258     case BuiltinType::ULongFract:
11259     case BuiltinType::SatUShortAccum:
11260     case BuiltinType::SatUAccum:
11261     case BuiltinType::SatULongAccum:
11262     case BuiltinType::SatUShortFract:
11263     case BuiltinType::SatUFract:
11264     case BuiltinType::SatULongFract:
11265       return GCCTypeClass::None;
11266 
11267     case BuiltinType::NullPtr:
11268 
11269     case BuiltinType::ObjCId:
11270     case BuiltinType::ObjCClass:
11271     case BuiltinType::ObjCSel:
11272 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11273     case BuiltinType::Id:
11274 #include "clang/Basic/OpenCLImageTypes.def"
11275 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11276     case BuiltinType::Id:
11277 #include "clang/Basic/OpenCLExtensionTypes.def"
11278     case BuiltinType::OCLSampler:
11279     case BuiltinType::OCLEvent:
11280     case BuiltinType::OCLClkEvent:
11281     case BuiltinType::OCLQueue:
11282     case BuiltinType::OCLReserveID:
11283 #define SVE_TYPE(Name, Id, SingletonId) \
11284     case BuiltinType::Id:
11285 #include "clang/Basic/AArch64SVEACLETypes.def"
11286 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11287     case BuiltinType::Id:
11288 #include "clang/Basic/PPCTypes.def"
11289 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11290 #include "clang/Basic/RISCVVTypes.def"
11291       return GCCTypeClass::None;
11292 
11293     case BuiltinType::Dependent:
11294       llvm_unreachable("unexpected dependent type");
11295     };
11296     llvm_unreachable("unexpected placeholder type");
11297 
11298   case Type::Enum:
11299     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11300 
11301   case Type::Pointer:
11302   case Type::ConstantArray:
11303   case Type::VariableArray:
11304   case Type::IncompleteArray:
11305   case Type::FunctionNoProto:
11306   case Type::FunctionProto:
11307     return GCCTypeClass::Pointer;
11308 
11309   case Type::MemberPointer:
11310     return CanTy->isMemberDataPointerType()
11311                ? GCCTypeClass::PointerToDataMember
11312                : GCCTypeClass::PointerToMemberFunction;
11313 
11314   case Type::Complex:
11315     return GCCTypeClass::Complex;
11316 
11317   case Type::Record:
11318     return CanTy->isUnionType() ? GCCTypeClass::Union
11319                                 : GCCTypeClass::ClassOrStruct;
11320 
11321   case Type::Atomic:
11322     // GCC classifies _Atomic T the same as T.
11323     return EvaluateBuiltinClassifyType(
11324         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11325 
11326   case Type::BlockPointer:
11327   case Type::Vector:
11328   case Type::ExtVector:
11329   case Type::ConstantMatrix:
11330   case Type::ObjCObject:
11331   case Type::ObjCInterface:
11332   case Type::ObjCObjectPointer:
11333   case Type::Pipe:
11334   case Type::BitInt:
11335     // GCC classifies vectors as None. We follow its lead and classify all
11336     // other types that don't fit into the regular classification the same way.
11337     return GCCTypeClass::None;
11338 
11339   case Type::LValueReference:
11340   case Type::RValueReference:
11341     llvm_unreachable("invalid type for expression");
11342   }
11343 
11344   llvm_unreachable("unexpected type class");
11345 }
11346 
11347 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11348 /// as GCC.
11349 static GCCTypeClass
11350 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11351   // If no argument was supplied, default to None. This isn't
11352   // ideal, however it is what gcc does.
11353   if (E->getNumArgs() == 0)
11354     return GCCTypeClass::None;
11355 
11356   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11357   // being an ICE, but still folds it to a constant using the type of the first
11358   // argument.
11359   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11360 }
11361 
11362 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11363 /// __builtin_constant_p when applied to the given pointer.
11364 ///
11365 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11366 /// or it points to the first character of a string literal.
11367 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11368   APValue::LValueBase Base = LV.getLValueBase();
11369   if (Base.isNull()) {
11370     // A null base is acceptable.
11371     return true;
11372   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11373     if (!isa<StringLiteral>(E))
11374       return false;
11375     return LV.getLValueOffset().isZero();
11376   } else if (Base.is<TypeInfoLValue>()) {
11377     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11378     // evaluate to true.
11379     return true;
11380   } else {
11381     // Any other base is not constant enough for GCC.
11382     return false;
11383   }
11384 }
11385 
11386 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11387 /// GCC as we can manage.
11388 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11389   // This evaluation is not permitted to have side-effects, so evaluate it in
11390   // a speculative evaluation context.
11391   SpeculativeEvaluationRAII SpeculativeEval(Info);
11392 
11393   // Constant-folding is always enabled for the operand of __builtin_constant_p
11394   // (even when the enclosing evaluation context otherwise requires a strict
11395   // language-specific constant expression).
11396   FoldConstant Fold(Info, true);
11397 
11398   QualType ArgType = Arg->getType();
11399 
11400   // __builtin_constant_p always has one operand. The rules which gcc follows
11401   // are not precisely documented, but are as follows:
11402   //
11403   //  - If the operand is of integral, floating, complex or enumeration type,
11404   //    and can be folded to a known value of that type, it returns 1.
11405   //  - If the operand can be folded to a pointer to the first character
11406   //    of a string literal (or such a pointer cast to an integral type)
11407   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11408   //
11409   // Otherwise, it returns 0.
11410   //
11411   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11412   // its support for this did not work prior to GCC 9 and is not yet well
11413   // understood.
11414   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11415       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11416       ArgType->isNullPtrType()) {
11417     APValue V;
11418     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11419       Fold.keepDiagnostics();
11420       return false;
11421     }
11422 
11423     // For a pointer (possibly cast to integer), there are special rules.
11424     if (V.getKind() == APValue::LValue)
11425       return EvaluateBuiltinConstantPForLValue(V);
11426 
11427     // Otherwise, any constant value is good enough.
11428     return V.hasValue();
11429   }
11430 
11431   // Anything else isn't considered to be sufficiently constant.
11432   return false;
11433 }
11434 
11435 /// Retrieves the "underlying object type" of the given expression,
11436 /// as used by __builtin_object_size.
11437 static QualType getObjectType(APValue::LValueBase B) {
11438   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11439     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11440       return VD->getType();
11441   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11442     if (isa<CompoundLiteralExpr>(E))
11443       return E->getType();
11444   } else if (B.is<TypeInfoLValue>()) {
11445     return B.getTypeInfoType();
11446   } else if (B.is<DynamicAllocLValue>()) {
11447     return B.getDynamicAllocType();
11448   }
11449 
11450   return QualType();
11451 }
11452 
11453 /// A more selective version of E->IgnoreParenCasts for
11454 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11455 /// to change the type of E.
11456 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11457 ///
11458 /// Always returns an RValue with a pointer representation.
11459 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11460   assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11461 
11462   auto *NoParens = E->IgnoreParens();
11463   auto *Cast = dyn_cast<CastExpr>(NoParens);
11464   if (Cast == nullptr)
11465     return NoParens;
11466 
11467   // We only conservatively allow a few kinds of casts, because this code is
11468   // inherently a simple solution that seeks to support the common case.
11469   auto CastKind = Cast->getCastKind();
11470   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11471       CastKind != CK_AddressSpaceConversion)
11472     return NoParens;
11473 
11474   auto *SubExpr = Cast->getSubExpr();
11475   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11476     return NoParens;
11477   return ignorePointerCastsAndParens(SubExpr);
11478 }
11479 
11480 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11481 /// record layout. e.g.
11482 ///   struct { struct { int a, b; } fst, snd; } obj;
11483 ///   obj.fst   // no
11484 ///   obj.snd   // yes
11485 ///   obj.fst.a // no
11486 ///   obj.fst.b // no
11487 ///   obj.snd.a // no
11488 ///   obj.snd.b // yes
11489 ///
11490 /// Please note: this function is specialized for how __builtin_object_size
11491 /// views "objects".
11492 ///
11493 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11494 /// correct result, it will always return true.
11495 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11496   assert(!LVal.Designator.Invalid);
11497 
11498   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11499     const RecordDecl *Parent = FD->getParent();
11500     Invalid = Parent->isInvalidDecl();
11501     if (Invalid || Parent->isUnion())
11502       return true;
11503     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11504     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11505   };
11506 
11507   auto &Base = LVal.getLValueBase();
11508   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11509     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11510       bool Invalid;
11511       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11512         return Invalid;
11513     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11514       for (auto *FD : IFD->chain()) {
11515         bool Invalid;
11516         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11517           return Invalid;
11518       }
11519     }
11520   }
11521 
11522   unsigned I = 0;
11523   QualType BaseType = getType(Base);
11524   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11525     // If we don't know the array bound, conservatively assume we're looking at
11526     // the final array element.
11527     ++I;
11528     if (BaseType->isIncompleteArrayType())
11529       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11530     else
11531       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11532   }
11533 
11534   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11535     const auto &Entry = LVal.Designator.Entries[I];
11536     if (BaseType->isArrayType()) {
11537       // Because __builtin_object_size treats arrays as objects, we can ignore
11538       // the index iff this is the last array in the Designator.
11539       if (I + 1 == E)
11540         return true;
11541       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11542       uint64_t Index = Entry.getAsArrayIndex();
11543       if (Index + 1 != CAT->getSize())
11544         return false;
11545       BaseType = CAT->getElementType();
11546     } else if (BaseType->isAnyComplexType()) {
11547       const auto *CT = BaseType->castAs<ComplexType>();
11548       uint64_t Index = Entry.getAsArrayIndex();
11549       if (Index != 1)
11550         return false;
11551       BaseType = CT->getElementType();
11552     } else if (auto *FD = getAsField(Entry)) {
11553       bool Invalid;
11554       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11555         return Invalid;
11556       BaseType = FD->getType();
11557     } else {
11558       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11559       return false;
11560     }
11561   }
11562   return true;
11563 }
11564 
11565 /// Tests to see if the LValue has a user-specified designator (that isn't
11566 /// necessarily valid). Note that this always returns 'true' if the LValue has
11567 /// an unsized array as its first designator entry, because there's currently no
11568 /// way to tell if the user typed *foo or foo[0].
11569 static bool refersToCompleteObject(const LValue &LVal) {
11570   if (LVal.Designator.Invalid)
11571     return false;
11572 
11573   if (!LVal.Designator.Entries.empty())
11574     return LVal.Designator.isMostDerivedAnUnsizedArray();
11575 
11576   if (!LVal.InvalidBase)
11577     return true;
11578 
11579   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11580   // the LValueBase.
11581   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11582   return !E || !isa<MemberExpr>(E);
11583 }
11584 
11585 /// Attempts to detect a user writing into a piece of memory that's impossible
11586 /// to figure out the size of by just using types.
11587 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11588   const SubobjectDesignator &Designator = LVal.Designator;
11589   // Notes:
11590   // - Users can only write off of the end when we have an invalid base. Invalid
11591   //   bases imply we don't know where the memory came from.
11592   // - We used to be a bit more aggressive here; we'd only be conservative if
11593   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11594   //   broke some common standard library extensions (PR30346), but was
11595   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11596   //   with some sort of list. OTOH, it seems that GCC is always
11597   //   conservative with the last element in structs (if it's an array), so our
11598   //   current behavior is more compatible than an explicit list approach would
11599   //   be.
11600   return LVal.InvalidBase &&
11601          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11602          Designator.MostDerivedIsArrayElement &&
11603          isDesignatorAtObjectEnd(Ctx, LVal);
11604 }
11605 
11606 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11607 /// Fails if the conversion would cause loss of precision.
11608 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11609                                             CharUnits &Result) {
11610   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11611   if (Int.ugt(CharUnitsMax))
11612     return false;
11613   Result = CharUnits::fromQuantity(Int.getZExtValue());
11614   return true;
11615 }
11616 
11617 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11618 /// determine how many bytes exist from the beginning of the object to either
11619 /// the end of the current subobject, or the end of the object itself, depending
11620 /// on what the LValue looks like + the value of Type.
11621 ///
11622 /// If this returns false, the value of Result is undefined.
11623 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11624                                unsigned Type, const LValue &LVal,
11625                                CharUnits &EndOffset) {
11626   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11627 
11628   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11629     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11630       return false;
11631     return HandleSizeof(Info, ExprLoc, Ty, Result);
11632   };
11633 
11634   // We want to evaluate the size of the entire object. This is a valid fallback
11635   // for when Type=1 and the designator is invalid, because we're asked for an
11636   // upper-bound.
11637   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11638     // Type=3 wants a lower bound, so we can't fall back to this.
11639     if (Type == 3 && !DetermineForCompleteObject)
11640       return false;
11641 
11642     llvm::APInt APEndOffset;
11643     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11644         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11645       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11646 
11647     if (LVal.InvalidBase)
11648       return false;
11649 
11650     QualType BaseTy = getObjectType(LVal.getLValueBase());
11651     return CheckedHandleSizeof(BaseTy, EndOffset);
11652   }
11653 
11654   // We want to evaluate the size of a subobject.
11655   const SubobjectDesignator &Designator = LVal.Designator;
11656 
11657   // The following is a moderately common idiom in C:
11658   //
11659   // struct Foo { int a; char c[1]; };
11660   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11661   // strcpy(&F->c[0], Bar);
11662   //
11663   // In order to not break too much legacy code, we need to support it.
11664   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11665     // If we can resolve this to an alloc_size call, we can hand that back,
11666     // because we know for certain how many bytes there are to write to.
11667     llvm::APInt APEndOffset;
11668     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11669         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11670       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11671 
11672     // If we cannot determine the size of the initial allocation, then we can't
11673     // given an accurate upper-bound. However, we are still able to give
11674     // conservative lower-bounds for Type=3.
11675     if (Type == 1)
11676       return false;
11677   }
11678 
11679   CharUnits BytesPerElem;
11680   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11681     return false;
11682 
11683   // According to the GCC documentation, we want the size of the subobject
11684   // denoted by the pointer. But that's not quite right -- what we actually
11685   // want is the size of the immediately-enclosing array, if there is one.
11686   int64_t ElemsRemaining;
11687   if (Designator.MostDerivedIsArrayElement &&
11688       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11689     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11690     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11691     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11692   } else {
11693     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11694   }
11695 
11696   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11697   return true;
11698 }
11699 
11700 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11701 /// returns true and stores the result in @p Size.
11702 ///
11703 /// If @p WasError is non-null, this will report whether the failure to evaluate
11704 /// is to be treated as an Error in IntExprEvaluator.
11705 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11706                                          EvalInfo &Info, uint64_t &Size) {
11707   // Determine the denoted object.
11708   LValue LVal;
11709   {
11710     // The operand of __builtin_object_size is never evaluated for side-effects.
11711     // If there are any, but we can determine the pointed-to object anyway, then
11712     // ignore the side-effects.
11713     SpeculativeEvaluationRAII SpeculativeEval(Info);
11714     IgnoreSideEffectsRAII Fold(Info);
11715 
11716     if (E->isGLValue()) {
11717       // It's possible for us to be given GLValues if we're called via
11718       // Expr::tryEvaluateObjectSize.
11719       APValue RVal;
11720       if (!EvaluateAsRValue(Info, E, RVal))
11721         return false;
11722       LVal.setFrom(Info.Ctx, RVal);
11723     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11724                                 /*InvalidBaseOK=*/true))
11725       return false;
11726   }
11727 
11728   // If we point to before the start of the object, there are no accessible
11729   // bytes.
11730   if (LVal.getLValueOffset().isNegative()) {
11731     Size = 0;
11732     return true;
11733   }
11734 
11735   CharUnits EndOffset;
11736   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11737     return false;
11738 
11739   // If we've fallen outside of the end offset, just pretend there's nothing to
11740   // write to/read from.
11741   if (EndOffset <= LVal.getLValueOffset())
11742     Size = 0;
11743   else
11744     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11745   return true;
11746 }
11747 
11748 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11749   if (unsigned BuiltinOp = E->getBuiltinCallee())
11750     return VisitBuiltinCallExpr(E, BuiltinOp);
11751 
11752   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11753 }
11754 
11755 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11756                                      APValue &Val, APSInt &Alignment) {
11757   QualType SrcTy = E->getArg(0)->getType();
11758   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11759     return false;
11760   // Even though we are evaluating integer expressions we could get a pointer
11761   // argument for the __builtin_is_aligned() case.
11762   if (SrcTy->isPointerType()) {
11763     LValue Ptr;
11764     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11765       return false;
11766     Ptr.moveInto(Val);
11767   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11768     Info.FFDiag(E->getArg(0));
11769     return false;
11770   } else {
11771     APSInt SrcInt;
11772     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11773       return false;
11774     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11775            "Bit widths must be the same");
11776     Val = APValue(SrcInt);
11777   }
11778   assert(Val.hasValue());
11779   return true;
11780 }
11781 
11782 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11783                                             unsigned BuiltinOp) {
11784   switch (BuiltinOp) {
11785   default:
11786     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11787 
11788   case Builtin::BI__builtin_dynamic_object_size:
11789   case Builtin::BI__builtin_object_size: {
11790     // The type was checked when we built the expression.
11791     unsigned Type =
11792         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11793     assert(Type <= 3 && "unexpected type");
11794 
11795     uint64_t Size;
11796     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11797       return Success(Size, E);
11798 
11799     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11800       return Success((Type & 2) ? 0 : -1, E);
11801 
11802     // Expression had no side effects, but we couldn't statically determine the
11803     // size of the referenced object.
11804     switch (Info.EvalMode) {
11805     case EvalInfo::EM_ConstantExpression:
11806     case EvalInfo::EM_ConstantFold:
11807     case EvalInfo::EM_IgnoreSideEffects:
11808       // Leave it to IR generation.
11809       return Error(E);
11810     case EvalInfo::EM_ConstantExpressionUnevaluated:
11811       // Reduce it to a constant now.
11812       return Success((Type & 2) ? 0 : -1, E);
11813     }
11814 
11815     llvm_unreachable("unexpected EvalMode");
11816   }
11817 
11818   case Builtin::BI__builtin_os_log_format_buffer_size: {
11819     analyze_os_log::OSLogBufferLayout Layout;
11820     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11821     return Success(Layout.size().getQuantity(), E);
11822   }
11823 
11824   case Builtin::BI__builtin_is_aligned: {
11825     APValue Src;
11826     APSInt Alignment;
11827     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11828       return false;
11829     if (Src.isLValue()) {
11830       // If we evaluated a pointer, check the minimum known alignment.
11831       LValue Ptr;
11832       Ptr.setFrom(Info.Ctx, Src);
11833       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11834       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11835       // We can return true if the known alignment at the computed offset is
11836       // greater than the requested alignment.
11837       assert(PtrAlign.isPowerOfTwo());
11838       assert(Alignment.isPowerOf2());
11839       if (PtrAlign.getQuantity() >= Alignment)
11840         return Success(1, E);
11841       // If the alignment is not known to be sufficient, some cases could still
11842       // be aligned at run time. However, if the requested alignment is less or
11843       // equal to the base alignment and the offset is not aligned, we know that
11844       // the run-time value can never be aligned.
11845       if (BaseAlignment.getQuantity() >= Alignment &&
11846           PtrAlign.getQuantity() < Alignment)
11847         return Success(0, E);
11848       // Otherwise we can't infer whether the value is sufficiently aligned.
11849       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11850       //  in cases where we can't fully evaluate the pointer.
11851       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11852           << Alignment;
11853       return false;
11854     }
11855     assert(Src.isInt());
11856     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11857   }
11858   case Builtin::BI__builtin_align_up: {
11859     APValue Src;
11860     APSInt Alignment;
11861     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11862       return false;
11863     if (!Src.isInt())
11864       return Error(E);
11865     APSInt AlignedVal =
11866         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11867                Src.getInt().isUnsigned());
11868     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11869     return Success(AlignedVal, E);
11870   }
11871   case Builtin::BI__builtin_align_down: {
11872     APValue Src;
11873     APSInt Alignment;
11874     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11875       return false;
11876     if (!Src.isInt())
11877       return Error(E);
11878     APSInt AlignedVal =
11879         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11880     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11881     return Success(AlignedVal, E);
11882   }
11883 
11884   case Builtin::BI__builtin_bitreverse8:
11885   case Builtin::BI__builtin_bitreverse16:
11886   case Builtin::BI__builtin_bitreverse32:
11887   case Builtin::BI__builtin_bitreverse64: {
11888     APSInt Val;
11889     if (!EvaluateInteger(E->getArg(0), Val, Info))
11890       return false;
11891 
11892     return Success(Val.reverseBits(), E);
11893   }
11894 
11895   case Builtin::BI__builtin_bswap16:
11896   case Builtin::BI__builtin_bswap32:
11897   case Builtin::BI__builtin_bswap64: {
11898     APSInt Val;
11899     if (!EvaluateInteger(E->getArg(0), Val, Info))
11900       return false;
11901 
11902     return Success(Val.byteSwap(), E);
11903   }
11904 
11905   case Builtin::BI__builtin_classify_type:
11906     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11907 
11908   case Builtin::BI__builtin_clrsb:
11909   case Builtin::BI__builtin_clrsbl:
11910   case Builtin::BI__builtin_clrsbll: {
11911     APSInt Val;
11912     if (!EvaluateInteger(E->getArg(0), Val, Info))
11913       return false;
11914 
11915     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11916   }
11917 
11918   case Builtin::BI__builtin_clz:
11919   case Builtin::BI__builtin_clzl:
11920   case Builtin::BI__builtin_clzll:
11921   case Builtin::BI__builtin_clzs: {
11922     APSInt Val;
11923     if (!EvaluateInteger(E->getArg(0), Val, Info))
11924       return false;
11925     if (!Val)
11926       return Error(E);
11927 
11928     return Success(Val.countLeadingZeros(), E);
11929   }
11930 
11931   case Builtin::BI__builtin_constant_p: {
11932     const Expr *Arg = E->getArg(0);
11933     if (EvaluateBuiltinConstantP(Info, Arg))
11934       return Success(true, E);
11935     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11936       // Outside a constant context, eagerly evaluate to false in the presence
11937       // of side-effects in order to avoid -Wunsequenced false-positives in
11938       // a branch on __builtin_constant_p(expr).
11939       return Success(false, E);
11940     }
11941     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11942     return false;
11943   }
11944 
11945   case Builtin::BI__builtin_is_constant_evaluated: {
11946     const auto *Callee = Info.CurrentCall->getCallee();
11947     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11948         (Info.CallStackDepth == 1 ||
11949          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11950           Callee->getIdentifier() &&
11951           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11952       // FIXME: Find a better way to avoid duplicated diagnostics.
11953       if (Info.EvalStatus.Diag)
11954         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11955                                                : Info.CurrentCall->CallLoc,
11956                     diag::warn_is_constant_evaluated_always_true_constexpr)
11957             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11958                                          : "std::is_constant_evaluated");
11959     }
11960 
11961     return Success(Info.InConstantContext, E);
11962   }
11963 
11964   case Builtin::BI__builtin_ctz:
11965   case Builtin::BI__builtin_ctzl:
11966   case Builtin::BI__builtin_ctzll:
11967   case Builtin::BI__builtin_ctzs: {
11968     APSInt Val;
11969     if (!EvaluateInteger(E->getArg(0), Val, Info))
11970       return false;
11971     if (!Val)
11972       return Error(E);
11973 
11974     return Success(Val.countTrailingZeros(), E);
11975   }
11976 
11977   case Builtin::BI__builtin_eh_return_data_regno: {
11978     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11979     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11980     return Success(Operand, E);
11981   }
11982 
11983   case Builtin::BI__builtin_expect:
11984   case Builtin::BI__builtin_expect_with_probability:
11985     return Visit(E->getArg(0));
11986 
11987   case Builtin::BI__builtin_ffs:
11988   case Builtin::BI__builtin_ffsl:
11989   case Builtin::BI__builtin_ffsll: {
11990     APSInt Val;
11991     if (!EvaluateInteger(E->getArg(0), Val, Info))
11992       return false;
11993 
11994     unsigned N = Val.countTrailingZeros();
11995     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11996   }
11997 
11998   case Builtin::BI__builtin_fpclassify: {
11999     APFloat Val(0.0);
12000     if (!EvaluateFloat(E->getArg(5), Val, Info))
12001       return false;
12002     unsigned Arg;
12003     switch (Val.getCategory()) {
12004     case APFloat::fcNaN: Arg = 0; break;
12005     case APFloat::fcInfinity: Arg = 1; break;
12006     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12007     case APFloat::fcZero: Arg = 4; break;
12008     }
12009     return Visit(E->getArg(Arg));
12010   }
12011 
12012   case Builtin::BI__builtin_isinf_sign: {
12013     APFloat Val(0.0);
12014     return EvaluateFloat(E->getArg(0), Val, Info) &&
12015            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12016   }
12017 
12018   case Builtin::BI__builtin_isinf: {
12019     APFloat Val(0.0);
12020     return EvaluateFloat(E->getArg(0), Val, Info) &&
12021            Success(Val.isInfinity() ? 1 : 0, E);
12022   }
12023 
12024   case Builtin::BI__builtin_isfinite: {
12025     APFloat Val(0.0);
12026     return EvaluateFloat(E->getArg(0), Val, Info) &&
12027            Success(Val.isFinite() ? 1 : 0, E);
12028   }
12029 
12030   case Builtin::BI__builtin_isnan: {
12031     APFloat Val(0.0);
12032     return EvaluateFloat(E->getArg(0), Val, Info) &&
12033            Success(Val.isNaN() ? 1 : 0, E);
12034   }
12035 
12036   case Builtin::BI__builtin_isnormal: {
12037     APFloat Val(0.0);
12038     return EvaluateFloat(E->getArg(0), Val, Info) &&
12039            Success(Val.isNormal() ? 1 : 0, E);
12040   }
12041 
12042   case Builtin::BI__builtin_parity:
12043   case Builtin::BI__builtin_parityl:
12044   case Builtin::BI__builtin_parityll: {
12045     APSInt Val;
12046     if (!EvaluateInteger(E->getArg(0), Val, Info))
12047       return false;
12048 
12049     return Success(Val.countPopulation() % 2, E);
12050   }
12051 
12052   case Builtin::BI__builtin_popcount:
12053   case Builtin::BI__builtin_popcountl:
12054   case Builtin::BI__builtin_popcountll: {
12055     APSInt Val;
12056     if (!EvaluateInteger(E->getArg(0), Val, Info))
12057       return false;
12058 
12059     return Success(Val.countPopulation(), E);
12060   }
12061 
12062   case Builtin::BI__builtin_rotateleft8:
12063   case Builtin::BI__builtin_rotateleft16:
12064   case Builtin::BI__builtin_rotateleft32:
12065   case Builtin::BI__builtin_rotateleft64:
12066   case Builtin::BI_rotl8: // Microsoft variants of rotate right
12067   case Builtin::BI_rotl16:
12068   case Builtin::BI_rotl:
12069   case Builtin::BI_lrotl:
12070   case Builtin::BI_rotl64: {
12071     APSInt Val, Amt;
12072     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12073         !EvaluateInteger(E->getArg(1), Amt, Info))
12074       return false;
12075 
12076     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12077   }
12078 
12079   case Builtin::BI__builtin_rotateright8:
12080   case Builtin::BI__builtin_rotateright16:
12081   case Builtin::BI__builtin_rotateright32:
12082   case Builtin::BI__builtin_rotateright64:
12083   case Builtin::BI_rotr8: // Microsoft variants of rotate right
12084   case Builtin::BI_rotr16:
12085   case Builtin::BI_rotr:
12086   case Builtin::BI_lrotr:
12087   case Builtin::BI_rotr64: {
12088     APSInt Val, Amt;
12089     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12090         !EvaluateInteger(E->getArg(1), Amt, Info))
12091       return false;
12092 
12093     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12094   }
12095 
12096   case Builtin::BIstrlen:
12097   case Builtin::BIwcslen:
12098     // A call to strlen is not a constant expression.
12099     if (Info.getLangOpts().CPlusPlus11)
12100       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12101         << /*isConstexpr*/0 << /*isConstructor*/0
12102         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12103     else
12104       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12105     LLVM_FALLTHROUGH;
12106   case Builtin::BI__builtin_strlen:
12107   case Builtin::BI__builtin_wcslen: {
12108     // As an extension, we support __builtin_strlen() as a constant expression,
12109     // and support folding strlen() to a constant.
12110     uint64_t StrLen;
12111     if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12112       return Success(StrLen, E);
12113     return false;
12114   }
12115 
12116   case Builtin::BIstrcmp:
12117   case Builtin::BIwcscmp:
12118   case Builtin::BIstrncmp:
12119   case Builtin::BIwcsncmp:
12120   case Builtin::BImemcmp:
12121   case Builtin::BIbcmp:
12122   case Builtin::BIwmemcmp:
12123     // A call to strlen is not a constant expression.
12124     if (Info.getLangOpts().CPlusPlus11)
12125       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12126         << /*isConstexpr*/0 << /*isConstructor*/0
12127         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12128     else
12129       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12130     LLVM_FALLTHROUGH;
12131   case Builtin::BI__builtin_strcmp:
12132   case Builtin::BI__builtin_wcscmp:
12133   case Builtin::BI__builtin_strncmp:
12134   case Builtin::BI__builtin_wcsncmp:
12135   case Builtin::BI__builtin_memcmp:
12136   case Builtin::BI__builtin_bcmp:
12137   case Builtin::BI__builtin_wmemcmp: {
12138     LValue String1, String2;
12139     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12140         !EvaluatePointer(E->getArg(1), String2, Info))
12141       return false;
12142 
12143     uint64_t MaxLength = uint64_t(-1);
12144     if (BuiltinOp != Builtin::BIstrcmp &&
12145         BuiltinOp != Builtin::BIwcscmp &&
12146         BuiltinOp != Builtin::BI__builtin_strcmp &&
12147         BuiltinOp != Builtin::BI__builtin_wcscmp) {
12148       APSInt N;
12149       if (!EvaluateInteger(E->getArg(2), N, Info))
12150         return false;
12151       MaxLength = N.getExtValue();
12152     }
12153 
12154     // Empty substrings compare equal by definition.
12155     if (MaxLength == 0u)
12156       return Success(0, E);
12157 
12158     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12159         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12160         String1.Designator.Invalid || String2.Designator.Invalid)
12161       return false;
12162 
12163     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12164     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12165 
12166     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12167                      BuiltinOp == Builtin::BIbcmp ||
12168                      BuiltinOp == Builtin::BI__builtin_memcmp ||
12169                      BuiltinOp == Builtin::BI__builtin_bcmp;
12170 
12171     assert(IsRawByte ||
12172            (Info.Ctx.hasSameUnqualifiedType(
12173                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12174             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12175 
12176     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12177     // 'char8_t', but no other types.
12178     if (IsRawByte &&
12179         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12180       // FIXME: Consider using our bit_cast implementation to support this.
12181       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12182           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
12183           << CharTy1 << CharTy2;
12184       return false;
12185     }
12186 
12187     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12188       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12189              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12190              Char1.isInt() && Char2.isInt();
12191     };
12192     const auto &AdvanceElems = [&] {
12193       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12194              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12195     };
12196 
12197     bool StopAtNull =
12198         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12199          BuiltinOp != Builtin::BIwmemcmp &&
12200          BuiltinOp != Builtin::BI__builtin_memcmp &&
12201          BuiltinOp != Builtin::BI__builtin_bcmp &&
12202          BuiltinOp != Builtin::BI__builtin_wmemcmp);
12203     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12204                   BuiltinOp == Builtin::BIwcsncmp ||
12205                   BuiltinOp == Builtin::BIwmemcmp ||
12206                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
12207                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12208                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
12209 
12210     for (; MaxLength; --MaxLength) {
12211       APValue Char1, Char2;
12212       if (!ReadCurElems(Char1, Char2))
12213         return false;
12214       if (Char1.getInt().ne(Char2.getInt())) {
12215         if (IsWide) // wmemcmp compares with wchar_t signedness.
12216           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12217         // memcmp always compares unsigned chars.
12218         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12219       }
12220       if (StopAtNull && !Char1.getInt())
12221         return Success(0, E);
12222       assert(!(StopAtNull && !Char2.getInt()));
12223       if (!AdvanceElems())
12224         return false;
12225     }
12226     // We hit the strncmp / memcmp limit.
12227     return Success(0, E);
12228   }
12229 
12230   case Builtin::BI__atomic_always_lock_free:
12231   case Builtin::BI__atomic_is_lock_free:
12232   case Builtin::BI__c11_atomic_is_lock_free: {
12233     APSInt SizeVal;
12234     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12235       return false;
12236 
12237     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12238     // of two less than or equal to the maximum inline atomic width, we know it
12239     // is lock-free.  If the size isn't a power of two, or greater than the
12240     // maximum alignment where we promote atomics, we know it is not lock-free
12241     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
12242     // the answer can only be determined at runtime; for example, 16-byte
12243     // atomics have lock-free implementations on some, but not all,
12244     // x86-64 processors.
12245 
12246     // Check power-of-two.
12247     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12248     if (Size.isPowerOfTwo()) {
12249       // Check against inlining width.
12250       unsigned InlineWidthBits =
12251           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12252       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12253         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12254             Size == CharUnits::One() ||
12255             E->getArg(1)->isNullPointerConstant(Info.Ctx,
12256                                                 Expr::NPC_NeverValueDependent))
12257           // OK, we will inline appropriately-aligned operations of this size,
12258           // and _Atomic(T) is appropriately-aligned.
12259           return Success(1, E);
12260 
12261         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12262           castAs<PointerType>()->getPointeeType();
12263         if (!PointeeType->isIncompleteType() &&
12264             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12265           // OK, we will inline operations on this object.
12266           return Success(1, E);
12267         }
12268       }
12269     }
12270 
12271     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12272         Success(0, E) : Error(E);
12273   }
12274   case Builtin::BI__builtin_add_overflow:
12275   case Builtin::BI__builtin_sub_overflow:
12276   case Builtin::BI__builtin_mul_overflow:
12277   case Builtin::BI__builtin_sadd_overflow:
12278   case Builtin::BI__builtin_uadd_overflow:
12279   case Builtin::BI__builtin_uaddl_overflow:
12280   case Builtin::BI__builtin_uaddll_overflow:
12281   case Builtin::BI__builtin_usub_overflow:
12282   case Builtin::BI__builtin_usubl_overflow:
12283   case Builtin::BI__builtin_usubll_overflow:
12284   case Builtin::BI__builtin_umul_overflow:
12285   case Builtin::BI__builtin_umull_overflow:
12286   case Builtin::BI__builtin_umulll_overflow:
12287   case Builtin::BI__builtin_saddl_overflow:
12288   case Builtin::BI__builtin_saddll_overflow:
12289   case Builtin::BI__builtin_ssub_overflow:
12290   case Builtin::BI__builtin_ssubl_overflow:
12291   case Builtin::BI__builtin_ssubll_overflow:
12292   case Builtin::BI__builtin_smul_overflow:
12293   case Builtin::BI__builtin_smull_overflow:
12294   case Builtin::BI__builtin_smulll_overflow: {
12295     LValue ResultLValue;
12296     APSInt LHS, RHS;
12297 
12298     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12299     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12300         !EvaluateInteger(E->getArg(1), RHS, Info) ||
12301         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12302       return false;
12303 
12304     APSInt Result;
12305     bool DidOverflow = false;
12306 
12307     // If the types don't have to match, enlarge all 3 to the largest of them.
12308     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12309         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12310         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12311       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12312                       ResultType->isSignedIntegerOrEnumerationType();
12313       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12314                       ResultType->isSignedIntegerOrEnumerationType();
12315       uint64_t LHSSize = LHS.getBitWidth();
12316       uint64_t RHSSize = RHS.getBitWidth();
12317       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12318       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12319 
12320       // Add an additional bit if the signedness isn't uniformly agreed to. We
12321       // could do this ONLY if there is a signed and an unsigned that both have
12322       // MaxBits, but the code to check that is pretty nasty.  The issue will be
12323       // caught in the shrink-to-result later anyway.
12324       if (IsSigned && !AllSigned)
12325         ++MaxBits;
12326 
12327       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12328       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12329       Result = APSInt(MaxBits, !IsSigned);
12330     }
12331 
12332     // Find largest int.
12333     switch (BuiltinOp) {
12334     default:
12335       llvm_unreachable("Invalid value for BuiltinOp");
12336     case Builtin::BI__builtin_add_overflow:
12337     case Builtin::BI__builtin_sadd_overflow:
12338     case Builtin::BI__builtin_saddl_overflow:
12339     case Builtin::BI__builtin_saddll_overflow:
12340     case Builtin::BI__builtin_uadd_overflow:
12341     case Builtin::BI__builtin_uaddl_overflow:
12342     case Builtin::BI__builtin_uaddll_overflow:
12343       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12344                               : LHS.uadd_ov(RHS, DidOverflow);
12345       break;
12346     case Builtin::BI__builtin_sub_overflow:
12347     case Builtin::BI__builtin_ssub_overflow:
12348     case Builtin::BI__builtin_ssubl_overflow:
12349     case Builtin::BI__builtin_ssubll_overflow:
12350     case Builtin::BI__builtin_usub_overflow:
12351     case Builtin::BI__builtin_usubl_overflow:
12352     case Builtin::BI__builtin_usubll_overflow:
12353       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12354                               : LHS.usub_ov(RHS, DidOverflow);
12355       break;
12356     case Builtin::BI__builtin_mul_overflow:
12357     case Builtin::BI__builtin_smul_overflow:
12358     case Builtin::BI__builtin_smull_overflow:
12359     case Builtin::BI__builtin_smulll_overflow:
12360     case Builtin::BI__builtin_umul_overflow:
12361     case Builtin::BI__builtin_umull_overflow:
12362     case Builtin::BI__builtin_umulll_overflow:
12363       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12364                               : LHS.umul_ov(RHS, DidOverflow);
12365       break;
12366     }
12367 
12368     // In the case where multiple sizes are allowed, truncate and see if
12369     // the values are the same.
12370     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12371         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12372         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12373       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12374       // since it will give us the behavior of a TruncOrSelf in the case where
12375       // its parameter <= its size.  We previously set Result to be at least the
12376       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12377       // will work exactly like TruncOrSelf.
12378       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12379       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12380 
12381       if (!APSInt::isSameValue(Temp, Result))
12382         DidOverflow = true;
12383       Result = Temp;
12384     }
12385 
12386     APValue APV{Result};
12387     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12388       return false;
12389     return Success(DidOverflow, E);
12390   }
12391   }
12392 }
12393 
12394 /// Determine whether this is a pointer past the end of the complete
12395 /// object referred to by the lvalue.
12396 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12397                                             const LValue &LV) {
12398   // A null pointer can be viewed as being "past the end" but we don't
12399   // choose to look at it that way here.
12400   if (!LV.getLValueBase())
12401     return false;
12402 
12403   // If the designator is valid and refers to a subobject, we're not pointing
12404   // past the end.
12405   if (!LV.getLValueDesignator().Invalid &&
12406       !LV.getLValueDesignator().isOnePastTheEnd())
12407     return false;
12408 
12409   // A pointer to an incomplete type might be past-the-end if the type's size is
12410   // zero.  We cannot tell because the type is incomplete.
12411   QualType Ty = getType(LV.getLValueBase());
12412   if (Ty->isIncompleteType())
12413     return true;
12414 
12415   // We're a past-the-end pointer if we point to the byte after the object,
12416   // no matter what our type or path is.
12417   auto Size = Ctx.getTypeSizeInChars(Ty);
12418   return LV.getLValueOffset() == Size;
12419 }
12420 
12421 namespace {
12422 
12423 /// Data recursive integer evaluator of certain binary operators.
12424 ///
12425 /// We use a data recursive algorithm for binary operators so that we are able
12426 /// to handle extreme cases of chained binary operators without causing stack
12427 /// overflow.
12428 class DataRecursiveIntBinOpEvaluator {
12429   struct EvalResult {
12430     APValue Val;
12431     bool Failed;
12432 
12433     EvalResult() : Failed(false) { }
12434 
12435     void swap(EvalResult &RHS) {
12436       Val.swap(RHS.Val);
12437       Failed = RHS.Failed;
12438       RHS.Failed = false;
12439     }
12440   };
12441 
12442   struct Job {
12443     const Expr *E;
12444     EvalResult LHSResult; // meaningful only for binary operator expression.
12445     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12446 
12447     Job() = default;
12448     Job(Job &&) = default;
12449 
12450     void startSpeculativeEval(EvalInfo &Info) {
12451       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12452     }
12453 
12454   private:
12455     SpeculativeEvaluationRAII SpecEvalRAII;
12456   };
12457 
12458   SmallVector<Job, 16> Queue;
12459 
12460   IntExprEvaluator &IntEval;
12461   EvalInfo &Info;
12462   APValue &FinalResult;
12463 
12464 public:
12465   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12466     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12467 
12468   /// True if \param E is a binary operator that we are going to handle
12469   /// data recursively.
12470   /// We handle binary operators that are comma, logical, or that have operands
12471   /// with integral or enumeration type.
12472   static bool shouldEnqueue(const BinaryOperator *E) {
12473     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12474            (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12475             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12476             E->getRHS()->getType()->isIntegralOrEnumerationType());
12477   }
12478 
12479   bool Traverse(const BinaryOperator *E) {
12480     enqueue(E);
12481     EvalResult PrevResult;
12482     while (!Queue.empty())
12483       process(PrevResult);
12484 
12485     if (PrevResult.Failed) return false;
12486 
12487     FinalResult.swap(PrevResult.Val);
12488     return true;
12489   }
12490 
12491 private:
12492   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12493     return IntEval.Success(Value, E, Result);
12494   }
12495   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12496     return IntEval.Success(Value, E, Result);
12497   }
12498   bool Error(const Expr *E) {
12499     return IntEval.Error(E);
12500   }
12501   bool Error(const Expr *E, diag::kind D) {
12502     return IntEval.Error(E, D);
12503   }
12504 
12505   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12506     return Info.CCEDiag(E, D);
12507   }
12508 
12509   // Returns true if visiting the RHS is necessary, false otherwise.
12510   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12511                          bool &SuppressRHSDiags);
12512 
12513   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12514                   const BinaryOperator *E, APValue &Result);
12515 
12516   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12517     Result.Failed = !Evaluate(Result.Val, Info, E);
12518     if (Result.Failed)
12519       Result.Val = APValue();
12520   }
12521 
12522   void process(EvalResult &Result);
12523 
12524   void enqueue(const Expr *E) {
12525     E = E->IgnoreParens();
12526     Queue.resize(Queue.size()+1);
12527     Queue.back().E = E;
12528     Queue.back().Kind = Job::AnyExprKind;
12529   }
12530 };
12531 
12532 }
12533 
12534 bool DataRecursiveIntBinOpEvaluator::
12535        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12536                          bool &SuppressRHSDiags) {
12537   if (E->getOpcode() == BO_Comma) {
12538     // Ignore LHS but note if we could not evaluate it.
12539     if (LHSResult.Failed)
12540       return Info.noteSideEffect();
12541     return true;
12542   }
12543 
12544   if (E->isLogicalOp()) {
12545     bool LHSAsBool;
12546     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12547       // We were able to evaluate the LHS, see if we can get away with not
12548       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12549       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12550         Success(LHSAsBool, E, LHSResult.Val);
12551         return false; // Ignore RHS
12552       }
12553     } else {
12554       LHSResult.Failed = true;
12555 
12556       // Since we weren't able to evaluate the left hand side, it
12557       // might have had side effects.
12558       if (!Info.noteSideEffect())
12559         return false;
12560 
12561       // We can't evaluate the LHS; however, sometimes the result
12562       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12563       // Don't ignore RHS and suppress diagnostics from this arm.
12564       SuppressRHSDiags = true;
12565     }
12566 
12567     return true;
12568   }
12569 
12570   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12571          E->getRHS()->getType()->isIntegralOrEnumerationType());
12572 
12573   if (LHSResult.Failed && !Info.noteFailure())
12574     return false; // Ignore RHS;
12575 
12576   return true;
12577 }
12578 
12579 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12580                                     bool IsSub) {
12581   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12582   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12583   // offsets.
12584   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12585   CharUnits &Offset = LVal.getLValueOffset();
12586   uint64_t Offset64 = Offset.getQuantity();
12587   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12588   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12589                                          : Offset64 + Index64);
12590 }
12591 
12592 bool DataRecursiveIntBinOpEvaluator::
12593        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12594                   const BinaryOperator *E, APValue &Result) {
12595   if (E->getOpcode() == BO_Comma) {
12596     if (RHSResult.Failed)
12597       return false;
12598     Result = RHSResult.Val;
12599     return true;
12600   }
12601 
12602   if (E->isLogicalOp()) {
12603     bool lhsResult, rhsResult;
12604     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12605     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12606 
12607     if (LHSIsOK) {
12608       if (RHSIsOK) {
12609         if (E->getOpcode() == BO_LOr)
12610           return Success(lhsResult || rhsResult, E, Result);
12611         else
12612           return Success(lhsResult && rhsResult, E, Result);
12613       }
12614     } else {
12615       if (RHSIsOK) {
12616         // We can't evaluate the LHS; however, sometimes the result
12617         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12618         if (rhsResult == (E->getOpcode() == BO_LOr))
12619           return Success(rhsResult, E, Result);
12620       }
12621     }
12622 
12623     return false;
12624   }
12625 
12626   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12627          E->getRHS()->getType()->isIntegralOrEnumerationType());
12628 
12629   if (LHSResult.Failed || RHSResult.Failed)
12630     return false;
12631 
12632   const APValue &LHSVal = LHSResult.Val;
12633   const APValue &RHSVal = RHSResult.Val;
12634 
12635   // Handle cases like (unsigned long)&a + 4.
12636   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12637     Result = LHSVal;
12638     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12639     return true;
12640   }
12641 
12642   // Handle cases like 4 + (unsigned long)&a
12643   if (E->getOpcode() == BO_Add &&
12644       RHSVal.isLValue() && LHSVal.isInt()) {
12645     Result = RHSVal;
12646     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12647     return true;
12648   }
12649 
12650   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12651     // Handle (intptr_t)&&A - (intptr_t)&&B.
12652     if (!LHSVal.getLValueOffset().isZero() ||
12653         !RHSVal.getLValueOffset().isZero())
12654       return false;
12655     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12656     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12657     if (!LHSExpr || !RHSExpr)
12658       return false;
12659     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12660     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12661     if (!LHSAddrExpr || !RHSAddrExpr)
12662       return false;
12663     // Make sure both labels come from the same function.
12664     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12665         RHSAddrExpr->getLabel()->getDeclContext())
12666       return false;
12667     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12668     return true;
12669   }
12670 
12671   // All the remaining cases expect both operands to be an integer
12672   if (!LHSVal.isInt() || !RHSVal.isInt())
12673     return Error(E);
12674 
12675   // Set up the width and signedness manually, in case it can't be deduced
12676   // from the operation we're performing.
12677   // FIXME: Don't do this in the cases where we can deduce it.
12678   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12679                E->getType()->isUnsignedIntegerOrEnumerationType());
12680   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12681                          RHSVal.getInt(), Value))
12682     return false;
12683   return Success(Value, E, Result);
12684 }
12685 
12686 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12687   Job &job = Queue.back();
12688 
12689   switch (job.Kind) {
12690     case Job::AnyExprKind: {
12691       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12692         if (shouldEnqueue(Bop)) {
12693           job.Kind = Job::BinOpKind;
12694           enqueue(Bop->getLHS());
12695           return;
12696         }
12697       }
12698 
12699       EvaluateExpr(job.E, Result);
12700       Queue.pop_back();
12701       return;
12702     }
12703 
12704     case Job::BinOpKind: {
12705       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12706       bool SuppressRHSDiags = false;
12707       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12708         Queue.pop_back();
12709         return;
12710       }
12711       if (SuppressRHSDiags)
12712         job.startSpeculativeEval(Info);
12713       job.LHSResult.swap(Result);
12714       job.Kind = Job::BinOpVisitedLHSKind;
12715       enqueue(Bop->getRHS());
12716       return;
12717     }
12718 
12719     case Job::BinOpVisitedLHSKind: {
12720       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12721       EvalResult RHS;
12722       RHS.swap(Result);
12723       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12724       Queue.pop_back();
12725       return;
12726     }
12727   }
12728 
12729   llvm_unreachable("Invalid Job::Kind!");
12730 }
12731 
12732 namespace {
12733 enum class CmpResult {
12734   Unequal,
12735   Less,
12736   Equal,
12737   Greater,
12738   Unordered,
12739 };
12740 }
12741 
12742 template <class SuccessCB, class AfterCB>
12743 static bool
12744 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12745                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12746   assert(!E->isValueDependent());
12747   assert(E->isComparisonOp() && "expected comparison operator");
12748   assert((E->getOpcode() == BO_Cmp ||
12749           E->getType()->isIntegralOrEnumerationType()) &&
12750          "unsupported binary expression evaluation");
12751   auto Error = [&](const Expr *E) {
12752     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12753     return false;
12754   };
12755 
12756   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12757   bool IsEquality = E->isEqualityOp();
12758 
12759   QualType LHSTy = E->getLHS()->getType();
12760   QualType RHSTy = E->getRHS()->getType();
12761 
12762   if (LHSTy->isIntegralOrEnumerationType() &&
12763       RHSTy->isIntegralOrEnumerationType()) {
12764     APSInt LHS, RHS;
12765     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12766     if (!LHSOK && !Info.noteFailure())
12767       return false;
12768     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12769       return false;
12770     if (LHS < RHS)
12771       return Success(CmpResult::Less, E);
12772     if (LHS > RHS)
12773       return Success(CmpResult::Greater, E);
12774     return Success(CmpResult::Equal, E);
12775   }
12776 
12777   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12778     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12779     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12780 
12781     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12782     if (!LHSOK && !Info.noteFailure())
12783       return false;
12784     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12785       return false;
12786     if (LHSFX < RHSFX)
12787       return Success(CmpResult::Less, E);
12788     if (LHSFX > RHSFX)
12789       return Success(CmpResult::Greater, E);
12790     return Success(CmpResult::Equal, E);
12791   }
12792 
12793   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12794     ComplexValue LHS, RHS;
12795     bool LHSOK;
12796     if (E->isAssignmentOp()) {
12797       LValue LV;
12798       EvaluateLValue(E->getLHS(), LV, Info);
12799       LHSOK = false;
12800     } else if (LHSTy->isRealFloatingType()) {
12801       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12802       if (LHSOK) {
12803         LHS.makeComplexFloat();
12804         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12805       }
12806     } else {
12807       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12808     }
12809     if (!LHSOK && !Info.noteFailure())
12810       return false;
12811 
12812     if (E->getRHS()->getType()->isRealFloatingType()) {
12813       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12814         return false;
12815       RHS.makeComplexFloat();
12816       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12817     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12818       return false;
12819 
12820     if (LHS.isComplexFloat()) {
12821       APFloat::cmpResult CR_r =
12822         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12823       APFloat::cmpResult CR_i =
12824         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12825       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12826       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12827     } else {
12828       assert(IsEquality && "invalid complex comparison");
12829       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12830                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12831       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12832     }
12833   }
12834 
12835   if (LHSTy->isRealFloatingType() &&
12836       RHSTy->isRealFloatingType()) {
12837     APFloat RHS(0.0), LHS(0.0);
12838 
12839     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12840     if (!LHSOK && !Info.noteFailure())
12841       return false;
12842 
12843     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12844       return false;
12845 
12846     assert(E->isComparisonOp() && "Invalid binary operator!");
12847     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12848     if (!Info.InConstantContext &&
12849         APFloatCmpResult == APFloat::cmpUnordered &&
12850         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12851       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12852       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12853       return false;
12854     }
12855     auto GetCmpRes = [&]() {
12856       switch (APFloatCmpResult) {
12857       case APFloat::cmpEqual:
12858         return CmpResult::Equal;
12859       case APFloat::cmpLessThan:
12860         return CmpResult::Less;
12861       case APFloat::cmpGreaterThan:
12862         return CmpResult::Greater;
12863       case APFloat::cmpUnordered:
12864         return CmpResult::Unordered;
12865       }
12866       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12867     };
12868     return Success(GetCmpRes(), E);
12869   }
12870 
12871   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12872     LValue LHSValue, RHSValue;
12873 
12874     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12875     if (!LHSOK && !Info.noteFailure())
12876       return false;
12877 
12878     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12879       return false;
12880 
12881     // Reject differing bases from the normal codepath; we special-case
12882     // comparisons to null.
12883     if (!HasSameBase(LHSValue, RHSValue)) {
12884       // Inequalities and subtractions between unrelated pointers have
12885       // unspecified or undefined behavior.
12886       if (!IsEquality) {
12887         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12888         return false;
12889       }
12890       // A constant address may compare equal to the address of a symbol.
12891       // The one exception is that address of an object cannot compare equal
12892       // to a null pointer constant.
12893       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12894           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12895         return Error(E);
12896       // It's implementation-defined whether distinct literals will have
12897       // distinct addresses. In clang, the result of such a comparison is
12898       // unspecified, so it is not a constant expression. However, we do know
12899       // that the address of a literal will be non-null.
12900       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12901           LHSValue.Base && RHSValue.Base)
12902         return Error(E);
12903       // We can't tell whether weak symbols will end up pointing to the same
12904       // object.
12905       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12906         return Error(E);
12907       // We can't compare the address of the start of one object with the
12908       // past-the-end address of another object, per C++ DR1652.
12909       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12910            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12911           (RHSValue.Base && RHSValue.Offset.isZero() &&
12912            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12913         return Error(E);
12914       // We can't tell whether an object is at the same address as another
12915       // zero sized object.
12916       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12917           (LHSValue.Base && isZeroSized(RHSValue)))
12918         return Error(E);
12919       return Success(CmpResult::Unequal, E);
12920     }
12921 
12922     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12923     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12924 
12925     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12926     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12927 
12928     // C++11 [expr.rel]p3:
12929     //   Pointers to void (after pointer conversions) can be compared, with a
12930     //   result defined as follows: If both pointers represent the same
12931     //   address or are both the null pointer value, the result is true if the
12932     //   operator is <= or >= and false otherwise; otherwise the result is
12933     //   unspecified.
12934     // We interpret this as applying to pointers to *cv* void.
12935     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12936       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12937 
12938     // C++11 [expr.rel]p2:
12939     // - If two pointers point to non-static data members of the same object,
12940     //   or to subobjects or array elements fo such members, recursively, the
12941     //   pointer to the later declared member compares greater provided the
12942     //   two members have the same access control and provided their class is
12943     //   not a union.
12944     //   [...]
12945     // - Otherwise pointer comparisons are unspecified.
12946     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12947       bool WasArrayIndex;
12948       unsigned Mismatch = FindDesignatorMismatch(
12949           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12950       // At the point where the designators diverge, the comparison has a
12951       // specified value if:
12952       //  - we are comparing array indices
12953       //  - we are comparing fields of a union, or fields with the same access
12954       // Otherwise, the result is unspecified and thus the comparison is not a
12955       // constant expression.
12956       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12957           Mismatch < RHSDesignator.Entries.size()) {
12958         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12959         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12960         if (!LF && !RF)
12961           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12962         else if (!LF)
12963           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12964               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12965               << RF->getParent() << RF;
12966         else if (!RF)
12967           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12968               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12969               << LF->getParent() << LF;
12970         else if (!LF->getParent()->isUnion() &&
12971                  LF->getAccess() != RF->getAccess())
12972           Info.CCEDiag(E,
12973                        diag::note_constexpr_pointer_comparison_differing_access)
12974               << LF << LF->getAccess() << RF << RF->getAccess()
12975               << LF->getParent();
12976       }
12977     }
12978 
12979     // The comparison here must be unsigned, and performed with the same
12980     // width as the pointer.
12981     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12982     uint64_t CompareLHS = LHSOffset.getQuantity();
12983     uint64_t CompareRHS = RHSOffset.getQuantity();
12984     assert(PtrSize <= 64 && "Unexpected pointer width");
12985     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12986     CompareLHS &= Mask;
12987     CompareRHS &= Mask;
12988 
12989     // If there is a base and this is a relational operator, we can only
12990     // compare pointers within the object in question; otherwise, the result
12991     // depends on where the object is located in memory.
12992     if (!LHSValue.Base.isNull() && IsRelational) {
12993       QualType BaseTy = getType(LHSValue.Base);
12994       if (BaseTy->isIncompleteType())
12995         return Error(E);
12996       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12997       uint64_t OffsetLimit = Size.getQuantity();
12998       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12999         return Error(E);
13000     }
13001 
13002     if (CompareLHS < CompareRHS)
13003       return Success(CmpResult::Less, E);
13004     if (CompareLHS > CompareRHS)
13005       return Success(CmpResult::Greater, E);
13006     return Success(CmpResult::Equal, E);
13007   }
13008 
13009   if (LHSTy->isMemberPointerType()) {
13010     assert(IsEquality && "unexpected member pointer operation");
13011     assert(RHSTy->isMemberPointerType() && "invalid comparison");
13012 
13013     MemberPtr LHSValue, RHSValue;
13014 
13015     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13016     if (!LHSOK && !Info.noteFailure())
13017       return false;
13018 
13019     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13020       return false;
13021 
13022     // C++11 [expr.eq]p2:
13023     //   If both operands are null, they compare equal. Otherwise if only one is
13024     //   null, they compare unequal.
13025     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13026       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13027       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13028     }
13029 
13030     //   Otherwise if either is a pointer to a virtual member function, the
13031     //   result is unspecified.
13032     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13033       if (MD->isVirtual())
13034         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13035     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13036       if (MD->isVirtual())
13037         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13038 
13039     //   Otherwise they compare equal if and only if they would refer to the
13040     //   same member of the same most derived object or the same subobject if
13041     //   they were dereferenced with a hypothetical object of the associated
13042     //   class type.
13043     bool Equal = LHSValue == RHSValue;
13044     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13045   }
13046 
13047   if (LHSTy->isNullPtrType()) {
13048     assert(E->isComparisonOp() && "unexpected nullptr operation");
13049     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13050     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13051     // are compared, the result is true of the operator is <=, >= or ==, and
13052     // false otherwise.
13053     return Success(CmpResult::Equal, E);
13054   }
13055 
13056   return DoAfter();
13057 }
13058 
13059 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13060   if (!CheckLiteralType(Info, E))
13061     return false;
13062 
13063   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13064     ComparisonCategoryResult CCR;
13065     switch (CR) {
13066     case CmpResult::Unequal:
13067       llvm_unreachable("should never produce Unequal for three-way comparison");
13068     case CmpResult::Less:
13069       CCR = ComparisonCategoryResult::Less;
13070       break;
13071     case CmpResult::Equal:
13072       CCR = ComparisonCategoryResult::Equal;
13073       break;
13074     case CmpResult::Greater:
13075       CCR = ComparisonCategoryResult::Greater;
13076       break;
13077     case CmpResult::Unordered:
13078       CCR = ComparisonCategoryResult::Unordered;
13079       break;
13080     }
13081     // Evaluation succeeded. Lookup the information for the comparison category
13082     // type and fetch the VarDecl for the result.
13083     const ComparisonCategoryInfo &CmpInfo =
13084         Info.Ctx.CompCategories.getInfoForType(E->getType());
13085     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13086     // Check and evaluate the result as a constant expression.
13087     LValue LV;
13088     LV.set(VD);
13089     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13090       return false;
13091     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13092                                    ConstantExprKind::Normal);
13093   };
13094   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13095     return ExprEvaluatorBaseTy::VisitBinCmp(E);
13096   });
13097 }
13098 
13099 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13100   // We don't support assignment in C. C++ assignments don't get here because
13101   // assignment is an lvalue in C++.
13102   if (E->isAssignmentOp()) {
13103     Error(E);
13104     if (!Info.noteFailure())
13105       return false;
13106   }
13107 
13108   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13109     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13110 
13111   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13112           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13113          "DataRecursiveIntBinOpEvaluator should have handled integral types");
13114 
13115   if (E->isComparisonOp()) {
13116     // Evaluate builtin binary comparisons by evaluating them as three-way
13117     // comparisons and then translating the result.
13118     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13119       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13120              "should only produce Unequal for equality comparisons");
13121       bool IsEqual   = CR == CmpResult::Equal,
13122            IsLess    = CR == CmpResult::Less,
13123            IsGreater = CR == CmpResult::Greater;
13124       auto Op = E->getOpcode();
13125       switch (Op) {
13126       default:
13127         llvm_unreachable("unsupported binary operator");
13128       case BO_EQ:
13129       case BO_NE:
13130         return Success(IsEqual == (Op == BO_EQ), E);
13131       case BO_LT:
13132         return Success(IsLess, E);
13133       case BO_GT:
13134         return Success(IsGreater, E);
13135       case BO_LE:
13136         return Success(IsEqual || IsLess, E);
13137       case BO_GE:
13138         return Success(IsEqual || IsGreater, E);
13139       }
13140     };
13141     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13142       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13143     });
13144   }
13145 
13146   QualType LHSTy = E->getLHS()->getType();
13147   QualType RHSTy = E->getRHS()->getType();
13148 
13149   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13150       E->getOpcode() == BO_Sub) {
13151     LValue LHSValue, RHSValue;
13152 
13153     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13154     if (!LHSOK && !Info.noteFailure())
13155       return false;
13156 
13157     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13158       return false;
13159 
13160     // Reject differing bases from the normal codepath; we special-case
13161     // comparisons to null.
13162     if (!HasSameBase(LHSValue, RHSValue)) {
13163       // Handle &&A - &&B.
13164       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13165         return Error(E);
13166       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13167       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13168       if (!LHSExpr || !RHSExpr)
13169         return Error(E);
13170       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13171       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13172       if (!LHSAddrExpr || !RHSAddrExpr)
13173         return Error(E);
13174       // Make sure both labels come from the same function.
13175       if (LHSAddrExpr->getLabel()->getDeclContext() !=
13176           RHSAddrExpr->getLabel()->getDeclContext())
13177         return Error(E);
13178       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13179     }
13180     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13181     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13182 
13183     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13184     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13185 
13186     // C++11 [expr.add]p6:
13187     //   Unless both pointers point to elements of the same array object, or
13188     //   one past the last element of the array object, the behavior is
13189     //   undefined.
13190     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13191         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13192                                 RHSDesignator))
13193       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13194 
13195     QualType Type = E->getLHS()->getType();
13196     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13197 
13198     CharUnits ElementSize;
13199     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13200       return false;
13201 
13202     // As an extension, a type may have zero size (empty struct or union in
13203     // C, array of zero length). Pointer subtraction in such cases has
13204     // undefined behavior, so is not constant.
13205     if (ElementSize.isZero()) {
13206       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13207           << ElementType;
13208       return false;
13209     }
13210 
13211     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13212     // and produce incorrect results when it overflows. Such behavior
13213     // appears to be non-conforming, but is common, so perhaps we should
13214     // assume the standard intended for such cases to be undefined behavior
13215     // and check for them.
13216 
13217     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13218     // overflow in the final conversion to ptrdiff_t.
13219     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13220     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13221     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13222                     false);
13223     APSInt TrueResult = (LHS - RHS) / ElemSize;
13224     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13225 
13226     if (Result.extend(65) != TrueResult &&
13227         !HandleOverflow(Info, E, TrueResult, E->getType()))
13228       return false;
13229     return Success(Result, E);
13230   }
13231 
13232   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13233 }
13234 
13235 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13236 /// a result as the expression's type.
13237 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13238                                     const UnaryExprOrTypeTraitExpr *E) {
13239   switch(E->getKind()) {
13240   case UETT_PreferredAlignOf:
13241   case UETT_AlignOf: {
13242     if (E->isArgumentType())
13243       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13244                      E);
13245     else
13246       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13247                      E);
13248   }
13249 
13250   case UETT_VecStep: {
13251     QualType Ty = E->getTypeOfArgument();
13252 
13253     if (Ty->isVectorType()) {
13254       unsigned n = Ty->castAs<VectorType>()->getNumElements();
13255 
13256       // The vec_step built-in functions that take a 3-component
13257       // vector return 4. (OpenCL 1.1 spec 6.11.12)
13258       if (n == 3)
13259         n = 4;
13260 
13261       return Success(n, E);
13262     } else
13263       return Success(1, E);
13264   }
13265 
13266   case UETT_SizeOf: {
13267     QualType SrcTy = E->getTypeOfArgument();
13268     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13269     //   the result is the size of the referenced type."
13270     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13271       SrcTy = Ref->getPointeeType();
13272 
13273     CharUnits Sizeof;
13274     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13275       return false;
13276     return Success(Sizeof, E);
13277   }
13278   case UETT_OpenMPRequiredSimdAlign:
13279     assert(E->isArgumentType());
13280     return Success(
13281         Info.Ctx.toCharUnitsFromBits(
13282                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13283             .getQuantity(),
13284         E);
13285   }
13286 
13287   llvm_unreachable("unknown expr/type trait");
13288 }
13289 
13290 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13291   CharUnits Result;
13292   unsigned n = OOE->getNumComponents();
13293   if (n == 0)
13294     return Error(OOE);
13295   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13296   for (unsigned i = 0; i != n; ++i) {
13297     OffsetOfNode ON = OOE->getComponent(i);
13298     switch (ON.getKind()) {
13299     case OffsetOfNode::Array: {
13300       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13301       APSInt IdxResult;
13302       if (!EvaluateInteger(Idx, IdxResult, Info))
13303         return false;
13304       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13305       if (!AT)
13306         return Error(OOE);
13307       CurrentType = AT->getElementType();
13308       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13309       Result += IdxResult.getSExtValue() * ElementSize;
13310       break;
13311     }
13312 
13313     case OffsetOfNode::Field: {
13314       FieldDecl *MemberDecl = ON.getField();
13315       const RecordType *RT = CurrentType->getAs<RecordType>();
13316       if (!RT)
13317         return Error(OOE);
13318       RecordDecl *RD = RT->getDecl();
13319       if (RD->isInvalidDecl()) return false;
13320       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13321       unsigned i = MemberDecl->getFieldIndex();
13322       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13323       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13324       CurrentType = MemberDecl->getType().getNonReferenceType();
13325       break;
13326     }
13327 
13328     case OffsetOfNode::Identifier:
13329       llvm_unreachable("dependent __builtin_offsetof");
13330 
13331     case OffsetOfNode::Base: {
13332       CXXBaseSpecifier *BaseSpec = ON.getBase();
13333       if (BaseSpec->isVirtual())
13334         return Error(OOE);
13335 
13336       // Find the layout of the class whose base we are looking into.
13337       const RecordType *RT = CurrentType->getAs<RecordType>();
13338       if (!RT)
13339         return Error(OOE);
13340       RecordDecl *RD = RT->getDecl();
13341       if (RD->isInvalidDecl()) return false;
13342       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13343 
13344       // Find the base class itself.
13345       CurrentType = BaseSpec->getType();
13346       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13347       if (!BaseRT)
13348         return Error(OOE);
13349 
13350       // Add the offset to the base.
13351       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13352       break;
13353     }
13354     }
13355   }
13356   return Success(Result, OOE);
13357 }
13358 
13359 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13360   switch (E->getOpcode()) {
13361   default:
13362     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13363     // See C99 6.6p3.
13364     return Error(E);
13365   case UO_Extension:
13366     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13367     // If so, we could clear the diagnostic ID.
13368     return Visit(E->getSubExpr());
13369   case UO_Plus:
13370     // The result is just the value.
13371     return Visit(E->getSubExpr());
13372   case UO_Minus: {
13373     if (!Visit(E->getSubExpr()))
13374       return false;
13375     if (!Result.isInt()) return Error(E);
13376     const APSInt &Value = Result.getInt();
13377     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13378         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13379                         E->getType()))
13380       return false;
13381     return Success(-Value, E);
13382   }
13383   case UO_Not: {
13384     if (!Visit(E->getSubExpr()))
13385       return false;
13386     if (!Result.isInt()) return Error(E);
13387     return Success(~Result.getInt(), E);
13388   }
13389   case UO_LNot: {
13390     bool bres;
13391     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13392       return false;
13393     return Success(!bres, E);
13394   }
13395   }
13396 }
13397 
13398 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13399 /// result type is integer.
13400 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13401   const Expr *SubExpr = E->getSubExpr();
13402   QualType DestType = E->getType();
13403   QualType SrcType = SubExpr->getType();
13404 
13405   switch (E->getCastKind()) {
13406   case CK_BaseToDerived:
13407   case CK_DerivedToBase:
13408   case CK_UncheckedDerivedToBase:
13409   case CK_Dynamic:
13410   case CK_ToUnion:
13411   case CK_ArrayToPointerDecay:
13412   case CK_FunctionToPointerDecay:
13413   case CK_NullToPointer:
13414   case CK_NullToMemberPointer:
13415   case CK_BaseToDerivedMemberPointer:
13416   case CK_DerivedToBaseMemberPointer:
13417   case CK_ReinterpretMemberPointer:
13418   case CK_ConstructorConversion:
13419   case CK_IntegralToPointer:
13420   case CK_ToVoid:
13421   case CK_VectorSplat:
13422   case CK_IntegralToFloating:
13423   case CK_FloatingCast:
13424   case CK_CPointerToObjCPointerCast:
13425   case CK_BlockPointerToObjCPointerCast:
13426   case CK_AnyPointerToBlockPointerCast:
13427   case CK_ObjCObjectLValueCast:
13428   case CK_FloatingRealToComplex:
13429   case CK_FloatingComplexToReal:
13430   case CK_FloatingComplexCast:
13431   case CK_FloatingComplexToIntegralComplex:
13432   case CK_IntegralRealToComplex:
13433   case CK_IntegralComplexCast:
13434   case CK_IntegralComplexToFloatingComplex:
13435   case CK_BuiltinFnToFnPtr:
13436   case CK_ZeroToOCLOpaqueType:
13437   case CK_NonAtomicToAtomic:
13438   case CK_AddressSpaceConversion:
13439   case CK_IntToOCLSampler:
13440   case CK_FloatingToFixedPoint:
13441   case CK_FixedPointToFloating:
13442   case CK_FixedPointCast:
13443   case CK_IntegralToFixedPoint:
13444   case CK_MatrixCast:
13445     llvm_unreachable("invalid cast kind for integral value");
13446 
13447   case CK_BitCast:
13448   case CK_Dependent:
13449   case CK_LValueBitCast:
13450   case CK_ARCProduceObject:
13451   case CK_ARCConsumeObject:
13452   case CK_ARCReclaimReturnedObject:
13453   case CK_ARCExtendBlockObject:
13454   case CK_CopyAndAutoreleaseBlockObject:
13455     return Error(E);
13456 
13457   case CK_UserDefinedConversion:
13458   case CK_LValueToRValue:
13459   case CK_AtomicToNonAtomic:
13460   case CK_NoOp:
13461   case CK_LValueToRValueBitCast:
13462     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13463 
13464   case CK_MemberPointerToBoolean:
13465   case CK_PointerToBoolean:
13466   case CK_IntegralToBoolean:
13467   case CK_FloatingToBoolean:
13468   case CK_BooleanToSignedIntegral:
13469   case CK_FloatingComplexToBoolean:
13470   case CK_IntegralComplexToBoolean: {
13471     bool BoolResult;
13472     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13473       return false;
13474     uint64_t IntResult = BoolResult;
13475     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13476       IntResult = (uint64_t)-1;
13477     return Success(IntResult, E);
13478   }
13479 
13480   case CK_FixedPointToIntegral: {
13481     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13482     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13483       return false;
13484     bool Overflowed;
13485     llvm::APSInt Result = Src.convertToInt(
13486         Info.Ctx.getIntWidth(DestType),
13487         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13488     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13489       return false;
13490     return Success(Result, E);
13491   }
13492 
13493   case CK_FixedPointToBoolean: {
13494     // Unsigned padding does not affect this.
13495     APValue Val;
13496     if (!Evaluate(Val, Info, SubExpr))
13497       return false;
13498     return Success(Val.getFixedPoint().getBoolValue(), E);
13499   }
13500 
13501   case CK_IntegralCast: {
13502     if (!Visit(SubExpr))
13503       return false;
13504 
13505     if (!Result.isInt()) {
13506       // Allow casts of address-of-label differences if they are no-ops
13507       // or narrowing.  (The narrowing case isn't actually guaranteed to
13508       // be constant-evaluatable except in some narrow cases which are hard
13509       // to detect here.  We let it through on the assumption the user knows
13510       // what they are doing.)
13511       if (Result.isAddrLabelDiff())
13512         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13513       // Only allow casts of lvalues if they are lossless.
13514       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13515     }
13516 
13517     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13518                                       Result.getInt()), E);
13519   }
13520 
13521   case CK_PointerToIntegral: {
13522     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13523 
13524     LValue LV;
13525     if (!EvaluatePointer(SubExpr, LV, Info))
13526       return false;
13527 
13528     if (LV.getLValueBase()) {
13529       // Only allow based lvalue casts if they are lossless.
13530       // FIXME: Allow a larger integer size than the pointer size, and allow
13531       // narrowing back down to pointer width in subsequent integral casts.
13532       // FIXME: Check integer type's active bits, not its type size.
13533       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13534         return Error(E);
13535 
13536       LV.Designator.setInvalid();
13537       LV.moveInto(Result);
13538       return true;
13539     }
13540 
13541     APSInt AsInt;
13542     APValue V;
13543     LV.moveInto(V);
13544     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13545       llvm_unreachable("Can't cast this!");
13546 
13547     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13548   }
13549 
13550   case CK_IntegralComplexToReal: {
13551     ComplexValue C;
13552     if (!EvaluateComplex(SubExpr, C, Info))
13553       return false;
13554     return Success(C.getComplexIntReal(), E);
13555   }
13556 
13557   case CK_FloatingToIntegral: {
13558     APFloat F(0.0);
13559     if (!EvaluateFloat(SubExpr, F, Info))
13560       return false;
13561 
13562     APSInt Value;
13563     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13564       return false;
13565     return Success(Value, E);
13566   }
13567   }
13568 
13569   llvm_unreachable("unknown cast resulting in integral value");
13570 }
13571 
13572 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13573   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13574     ComplexValue LV;
13575     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13576       return false;
13577     if (!LV.isComplexInt())
13578       return Error(E);
13579     return Success(LV.getComplexIntReal(), E);
13580   }
13581 
13582   return Visit(E->getSubExpr());
13583 }
13584 
13585 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13586   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13587     ComplexValue LV;
13588     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13589       return false;
13590     if (!LV.isComplexInt())
13591       return Error(E);
13592     return Success(LV.getComplexIntImag(), E);
13593   }
13594 
13595   VisitIgnoredValue(E->getSubExpr());
13596   return Success(0, E);
13597 }
13598 
13599 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13600   return Success(E->getPackLength(), E);
13601 }
13602 
13603 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13604   return Success(E->getValue(), E);
13605 }
13606 
13607 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13608        const ConceptSpecializationExpr *E) {
13609   return Success(E->isSatisfied(), E);
13610 }
13611 
13612 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13613   return Success(E->isSatisfied(), E);
13614 }
13615 
13616 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13617   switch (E->getOpcode()) {
13618     default:
13619       // Invalid unary operators
13620       return Error(E);
13621     case UO_Plus:
13622       // The result is just the value.
13623       return Visit(E->getSubExpr());
13624     case UO_Minus: {
13625       if (!Visit(E->getSubExpr())) return false;
13626       if (!Result.isFixedPoint())
13627         return Error(E);
13628       bool Overflowed;
13629       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13630       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13631         return false;
13632       return Success(Negated, E);
13633     }
13634     case UO_LNot: {
13635       bool bres;
13636       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13637         return false;
13638       return Success(!bres, E);
13639     }
13640   }
13641 }
13642 
13643 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13644   const Expr *SubExpr = E->getSubExpr();
13645   QualType DestType = E->getType();
13646   assert(DestType->isFixedPointType() &&
13647          "Expected destination type to be a fixed point type");
13648   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13649 
13650   switch (E->getCastKind()) {
13651   case CK_FixedPointCast: {
13652     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13653     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13654       return false;
13655     bool Overflowed;
13656     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13657     if (Overflowed) {
13658       if (Info.checkingForUndefinedBehavior())
13659         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13660                                          diag::warn_fixedpoint_constant_overflow)
13661           << Result.toString() << E->getType();
13662       if (!HandleOverflow(Info, E, Result, E->getType()))
13663         return false;
13664     }
13665     return Success(Result, E);
13666   }
13667   case CK_IntegralToFixedPoint: {
13668     APSInt Src;
13669     if (!EvaluateInteger(SubExpr, Src, Info))
13670       return false;
13671 
13672     bool Overflowed;
13673     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13674         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13675 
13676     if (Overflowed) {
13677       if (Info.checkingForUndefinedBehavior())
13678         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13679                                          diag::warn_fixedpoint_constant_overflow)
13680           << IntResult.toString() << E->getType();
13681       if (!HandleOverflow(Info, E, IntResult, E->getType()))
13682         return false;
13683     }
13684 
13685     return Success(IntResult, E);
13686   }
13687   case CK_FloatingToFixedPoint: {
13688     APFloat Src(0.0);
13689     if (!EvaluateFloat(SubExpr, Src, Info))
13690       return false;
13691 
13692     bool Overflowed;
13693     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13694         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13695 
13696     if (Overflowed) {
13697       if (Info.checkingForUndefinedBehavior())
13698         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13699                                          diag::warn_fixedpoint_constant_overflow)
13700           << Result.toString() << E->getType();
13701       if (!HandleOverflow(Info, E, Result, E->getType()))
13702         return false;
13703     }
13704 
13705     return Success(Result, E);
13706   }
13707   case CK_NoOp:
13708   case CK_LValueToRValue:
13709     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13710   default:
13711     return Error(E);
13712   }
13713 }
13714 
13715 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13716   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13717     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13718 
13719   const Expr *LHS = E->getLHS();
13720   const Expr *RHS = E->getRHS();
13721   FixedPointSemantics ResultFXSema =
13722       Info.Ctx.getFixedPointSemantics(E->getType());
13723 
13724   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13725   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13726     return false;
13727   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13728   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13729     return false;
13730 
13731   bool OpOverflow = false, ConversionOverflow = false;
13732   APFixedPoint Result(LHSFX.getSemantics());
13733   switch (E->getOpcode()) {
13734   case BO_Add: {
13735     Result = LHSFX.add(RHSFX, &OpOverflow)
13736                   .convert(ResultFXSema, &ConversionOverflow);
13737     break;
13738   }
13739   case BO_Sub: {
13740     Result = LHSFX.sub(RHSFX, &OpOverflow)
13741                   .convert(ResultFXSema, &ConversionOverflow);
13742     break;
13743   }
13744   case BO_Mul: {
13745     Result = LHSFX.mul(RHSFX, &OpOverflow)
13746                   .convert(ResultFXSema, &ConversionOverflow);
13747     break;
13748   }
13749   case BO_Div: {
13750     if (RHSFX.getValue() == 0) {
13751       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13752       return false;
13753     }
13754     Result = LHSFX.div(RHSFX, &OpOverflow)
13755                   .convert(ResultFXSema, &ConversionOverflow);
13756     break;
13757   }
13758   case BO_Shl:
13759   case BO_Shr: {
13760     FixedPointSemantics LHSSema = LHSFX.getSemantics();
13761     llvm::APSInt RHSVal = RHSFX.getValue();
13762 
13763     unsigned ShiftBW =
13764         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13765     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13766     // Embedded-C 4.1.6.2.2:
13767     //   The right operand must be nonnegative and less than the total number
13768     //   of (nonpadding) bits of the fixed-point operand ...
13769     if (RHSVal.isNegative())
13770       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13771     else if (Amt != RHSVal)
13772       Info.CCEDiag(E, diag::note_constexpr_large_shift)
13773           << RHSVal << E->getType() << ShiftBW;
13774 
13775     if (E->getOpcode() == BO_Shl)
13776       Result = LHSFX.shl(Amt, &OpOverflow);
13777     else
13778       Result = LHSFX.shr(Amt, &OpOverflow);
13779     break;
13780   }
13781   default:
13782     return false;
13783   }
13784   if (OpOverflow || ConversionOverflow) {
13785     if (Info.checkingForUndefinedBehavior())
13786       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13787                                        diag::warn_fixedpoint_constant_overflow)
13788         << Result.toString() << E->getType();
13789     if (!HandleOverflow(Info, E, Result, E->getType()))
13790       return false;
13791   }
13792   return Success(Result, E);
13793 }
13794 
13795 //===----------------------------------------------------------------------===//
13796 // Float Evaluation
13797 //===----------------------------------------------------------------------===//
13798 
13799 namespace {
13800 class FloatExprEvaluator
13801   : public ExprEvaluatorBase<FloatExprEvaluator> {
13802   APFloat &Result;
13803 public:
13804   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13805     : ExprEvaluatorBaseTy(info), Result(result) {}
13806 
13807   bool Success(const APValue &V, const Expr *e) {
13808     Result = V.getFloat();
13809     return true;
13810   }
13811 
13812   bool ZeroInitialization(const Expr *E) {
13813     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13814     return true;
13815   }
13816 
13817   bool VisitCallExpr(const CallExpr *E);
13818 
13819   bool VisitUnaryOperator(const UnaryOperator *E);
13820   bool VisitBinaryOperator(const BinaryOperator *E);
13821   bool VisitFloatingLiteral(const FloatingLiteral *E);
13822   bool VisitCastExpr(const CastExpr *E);
13823 
13824   bool VisitUnaryReal(const UnaryOperator *E);
13825   bool VisitUnaryImag(const UnaryOperator *E);
13826 
13827   // FIXME: Missing: array subscript of vector, member of vector
13828 };
13829 } // end anonymous namespace
13830 
13831 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13832   assert(!E->isValueDependent());
13833   assert(E->isPRValue() && E->getType()->isRealFloatingType());
13834   return FloatExprEvaluator(Info, Result).Visit(E);
13835 }
13836 
13837 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13838                                   QualType ResultTy,
13839                                   const Expr *Arg,
13840                                   bool SNaN,
13841                                   llvm::APFloat &Result) {
13842   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13843   if (!S) return false;
13844 
13845   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13846 
13847   llvm::APInt fill;
13848 
13849   // Treat empty strings as if they were zero.
13850   if (S->getString().empty())
13851     fill = llvm::APInt(32, 0);
13852   else if (S->getString().getAsInteger(0, fill))
13853     return false;
13854 
13855   if (Context.getTargetInfo().isNan2008()) {
13856     if (SNaN)
13857       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13858     else
13859       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13860   } else {
13861     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13862     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13863     // a different encoding to what became a standard in 2008, and for pre-
13864     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13865     // sNaN. This is now known as "legacy NaN" encoding.
13866     if (SNaN)
13867       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13868     else
13869       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13870   }
13871 
13872   return true;
13873 }
13874 
13875 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13876   switch (E->getBuiltinCallee()) {
13877   default:
13878     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13879 
13880   case Builtin::BI__builtin_huge_val:
13881   case Builtin::BI__builtin_huge_valf:
13882   case Builtin::BI__builtin_huge_vall:
13883   case Builtin::BI__builtin_huge_valf16:
13884   case Builtin::BI__builtin_huge_valf128:
13885   case Builtin::BI__builtin_inf:
13886   case Builtin::BI__builtin_inff:
13887   case Builtin::BI__builtin_infl:
13888   case Builtin::BI__builtin_inff16:
13889   case Builtin::BI__builtin_inff128: {
13890     const llvm::fltSemantics &Sem =
13891       Info.Ctx.getFloatTypeSemantics(E->getType());
13892     Result = llvm::APFloat::getInf(Sem);
13893     return true;
13894   }
13895 
13896   case Builtin::BI__builtin_nans:
13897   case Builtin::BI__builtin_nansf:
13898   case Builtin::BI__builtin_nansl:
13899   case Builtin::BI__builtin_nansf16:
13900   case Builtin::BI__builtin_nansf128:
13901     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13902                                true, Result))
13903       return Error(E);
13904     return true;
13905 
13906   case Builtin::BI__builtin_nan:
13907   case Builtin::BI__builtin_nanf:
13908   case Builtin::BI__builtin_nanl:
13909   case Builtin::BI__builtin_nanf16:
13910   case Builtin::BI__builtin_nanf128:
13911     // If this is __builtin_nan() turn this into a nan, otherwise we
13912     // can't constant fold it.
13913     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13914                                false, Result))
13915       return Error(E);
13916     return true;
13917 
13918   case Builtin::BI__builtin_fabs:
13919   case Builtin::BI__builtin_fabsf:
13920   case Builtin::BI__builtin_fabsl:
13921   case Builtin::BI__builtin_fabsf128:
13922     // The C standard says "fabs raises no floating-point exceptions,
13923     // even if x is a signaling NaN. The returned value is independent of
13924     // the current rounding direction mode."  Therefore constant folding can
13925     // proceed without regard to the floating point settings.
13926     // Reference, WG14 N2478 F.10.4.3
13927     if (!EvaluateFloat(E->getArg(0), Result, Info))
13928       return false;
13929 
13930     if (Result.isNegative())
13931       Result.changeSign();
13932     return true;
13933 
13934   case Builtin::BI__arithmetic_fence:
13935     return EvaluateFloat(E->getArg(0), Result, Info);
13936 
13937   // FIXME: Builtin::BI__builtin_powi
13938   // FIXME: Builtin::BI__builtin_powif
13939   // FIXME: Builtin::BI__builtin_powil
13940 
13941   case Builtin::BI__builtin_copysign:
13942   case Builtin::BI__builtin_copysignf:
13943   case Builtin::BI__builtin_copysignl:
13944   case Builtin::BI__builtin_copysignf128: {
13945     APFloat RHS(0.);
13946     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13947         !EvaluateFloat(E->getArg(1), RHS, Info))
13948       return false;
13949     Result.copySign(RHS);
13950     return true;
13951   }
13952   }
13953 }
13954 
13955 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13956   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13957     ComplexValue CV;
13958     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13959       return false;
13960     Result = CV.FloatReal;
13961     return true;
13962   }
13963 
13964   return Visit(E->getSubExpr());
13965 }
13966 
13967 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13968   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13969     ComplexValue CV;
13970     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13971       return false;
13972     Result = CV.FloatImag;
13973     return true;
13974   }
13975 
13976   VisitIgnoredValue(E->getSubExpr());
13977   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13978   Result = llvm::APFloat::getZero(Sem);
13979   return true;
13980 }
13981 
13982 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13983   switch (E->getOpcode()) {
13984   default: return Error(E);
13985   case UO_Plus:
13986     return EvaluateFloat(E->getSubExpr(), Result, Info);
13987   case UO_Minus:
13988     // In C standard, WG14 N2478 F.3 p4
13989     // "the unary - raises no floating point exceptions,
13990     // even if the operand is signalling."
13991     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13992       return false;
13993     Result.changeSign();
13994     return true;
13995   }
13996 }
13997 
13998 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13999   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14000     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14001 
14002   APFloat RHS(0.0);
14003   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14004   if (!LHSOK && !Info.noteFailure())
14005     return false;
14006   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14007          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14008 }
14009 
14010 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14011   Result = E->getValue();
14012   return true;
14013 }
14014 
14015 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14016   const Expr* SubExpr = E->getSubExpr();
14017 
14018   switch (E->getCastKind()) {
14019   default:
14020     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14021 
14022   case CK_IntegralToFloating: {
14023     APSInt IntResult;
14024     const FPOptions FPO = E->getFPFeaturesInEffect(
14025                                   Info.Ctx.getLangOpts());
14026     return EvaluateInteger(SubExpr, IntResult, Info) &&
14027            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14028                                 IntResult, E->getType(), Result);
14029   }
14030 
14031   case CK_FixedPointToFloating: {
14032     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14033     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14034       return false;
14035     Result =
14036         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14037     return true;
14038   }
14039 
14040   case CK_FloatingCast: {
14041     if (!Visit(SubExpr))
14042       return false;
14043     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14044                                   Result);
14045   }
14046 
14047   case CK_FloatingComplexToReal: {
14048     ComplexValue V;
14049     if (!EvaluateComplex(SubExpr, V, Info))
14050       return false;
14051     Result = V.getComplexFloatReal();
14052     return true;
14053   }
14054   }
14055 }
14056 
14057 //===----------------------------------------------------------------------===//
14058 // Complex Evaluation (for float and integer)
14059 //===----------------------------------------------------------------------===//
14060 
14061 namespace {
14062 class ComplexExprEvaluator
14063   : public ExprEvaluatorBase<ComplexExprEvaluator> {
14064   ComplexValue &Result;
14065 
14066 public:
14067   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14068     : ExprEvaluatorBaseTy(info), Result(Result) {}
14069 
14070   bool Success(const APValue &V, const Expr *e) {
14071     Result.setFrom(V);
14072     return true;
14073   }
14074 
14075   bool ZeroInitialization(const Expr *E);
14076 
14077   //===--------------------------------------------------------------------===//
14078   //                            Visitor Methods
14079   //===--------------------------------------------------------------------===//
14080 
14081   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14082   bool VisitCastExpr(const CastExpr *E);
14083   bool VisitBinaryOperator(const BinaryOperator *E);
14084   bool VisitUnaryOperator(const UnaryOperator *E);
14085   bool VisitInitListExpr(const InitListExpr *E);
14086   bool VisitCallExpr(const CallExpr *E);
14087 };
14088 } // end anonymous namespace
14089 
14090 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14091                             EvalInfo &Info) {
14092   assert(!E->isValueDependent());
14093   assert(E->isPRValue() && E->getType()->isAnyComplexType());
14094   return ComplexExprEvaluator(Info, Result).Visit(E);
14095 }
14096 
14097 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14098   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14099   if (ElemTy->isRealFloatingType()) {
14100     Result.makeComplexFloat();
14101     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14102     Result.FloatReal = Zero;
14103     Result.FloatImag = Zero;
14104   } else {
14105     Result.makeComplexInt();
14106     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14107     Result.IntReal = Zero;
14108     Result.IntImag = Zero;
14109   }
14110   return true;
14111 }
14112 
14113 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14114   const Expr* SubExpr = E->getSubExpr();
14115 
14116   if (SubExpr->getType()->isRealFloatingType()) {
14117     Result.makeComplexFloat();
14118     APFloat &Imag = Result.FloatImag;
14119     if (!EvaluateFloat(SubExpr, Imag, Info))
14120       return false;
14121 
14122     Result.FloatReal = APFloat(Imag.getSemantics());
14123     return true;
14124   } else {
14125     assert(SubExpr->getType()->isIntegerType() &&
14126            "Unexpected imaginary literal.");
14127 
14128     Result.makeComplexInt();
14129     APSInt &Imag = Result.IntImag;
14130     if (!EvaluateInteger(SubExpr, Imag, Info))
14131       return false;
14132 
14133     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14134     return true;
14135   }
14136 }
14137 
14138 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14139 
14140   switch (E->getCastKind()) {
14141   case CK_BitCast:
14142   case CK_BaseToDerived:
14143   case CK_DerivedToBase:
14144   case CK_UncheckedDerivedToBase:
14145   case CK_Dynamic:
14146   case CK_ToUnion:
14147   case CK_ArrayToPointerDecay:
14148   case CK_FunctionToPointerDecay:
14149   case CK_NullToPointer:
14150   case CK_NullToMemberPointer:
14151   case CK_BaseToDerivedMemberPointer:
14152   case CK_DerivedToBaseMemberPointer:
14153   case CK_MemberPointerToBoolean:
14154   case CK_ReinterpretMemberPointer:
14155   case CK_ConstructorConversion:
14156   case CK_IntegralToPointer:
14157   case CK_PointerToIntegral:
14158   case CK_PointerToBoolean:
14159   case CK_ToVoid:
14160   case CK_VectorSplat:
14161   case CK_IntegralCast:
14162   case CK_BooleanToSignedIntegral:
14163   case CK_IntegralToBoolean:
14164   case CK_IntegralToFloating:
14165   case CK_FloatingToIntegral:
14166   case CK_FloatingToBoolean:
14167   case CK_FloatingCast:
14168   case CK_CPointerToObjCPointerCast:
14169   case CK_BlockPointerToObjCPointerCast:
14170   case CK_AnyPointerToBlockPointerCast:
14171   case CK_ObjCObjectLValueCast:
14172   case CK_FloatingComplexToReal:
14173   case CK_FloatingComplexToBoolean:
14174   case CK_IntegralComplexToReal:
14175   case CK_IntegralComplexToBoolean:
14176   case CK_ARCProduceObject:
14177   case CK_ARCConsumeObject:
14178   case CK_ARCReclaimReturnedObject:
14179   case CK_ARCExtendBlockObject:
14180   case CK_CopyAndAutoreleaseBlockObject:
14181   case CK_BuiltinFnToFnPtr:
14182   case CK_ZeroToOCLOpaqueType:
14183   case CK_NonAtomicToAtomic:
14184   case CK_AddressSpaceConversion:
14185   case CK_IntToOCLSampler:
14186   case CK_FloatingToFixedPoint:
14187   case CK_FixedPointToFloating:
14188   case CK_FixedPointCast:
14189   case CK_FixedPointToBoolean:
14190   case CK_FixedPointToIntegral:
14191   case CK_IntegralToFixedPoint:
14192   case CK_MatrixCast:
14193     llvm_unreachable("invalid cast kind for complex value");
14194 
14195   case CK_LValueToRValue:
14196   case CK_AtomicToNonAtomic:
14197   case CK_NoOp:
14198   case CK_LValueToRValueBitCast:
14199     return ExprEvaluatorBaseTy::VisitCastExpr(E);
14200 
14201   case CK_Dependent:
14202   case CK_LValueBitCast:
14203   case CK_UserDefinedConversion:
14204     return Error(E);
14205 
14206   case CK_FloatingRealToComplex: {
14207     APFloat &Real = Result.FloatReal;
14208     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14209       return false;
14210 
14211     Result.makeComplexFloat();
14212     Result.FloatImag = APFloat(Real.getSemantics());
14213     return true;
14214   }
14215 
14216   case CK_FloatingComplexCast: {
14217     if (!Visit(E->getSubExpr()))
14218       return false;
14219 
14220     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14221     QualType From
14222       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14223 
14224     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14225            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14226   }
14227 
14228   case CK_FloatingComplexToIntegralComplex: {
14229     if (!Visit(E->getSubExpr()))
14230       return false;
14231 
14232     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14233     QualType From
14234       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14235     Result.makeComplexInt();
14236     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14237                                 To, Result.IntReal) &&
14238            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14239                                 To, Result.IntImag);
14240   }
14241 
14242   case CK_IntegralRealToComplex: {
14243     APSInt &Real = Result.IntReal;
14244     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14245       return false;
14246 
14247     Result.makeComplexInt();
14248     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14249     return true;
14250   }
14251 
14252   case CK_IntegralComplexCast: {
14253     if (!Visit(E->getSubExpr()))
14254       return false;
14255 
14256     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14257     QualType From
14258       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14259 
14260     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14261     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14262     return true;
14263   }
14264 
14265   case CK_IntegralComplexToFloatingComplex: {
14266     if (!Visit(E->getSubExpr()))
14267       return false;
14268 
14269     const FPOptions FPO = E->getFPFeaturesInEffect(
14270                                   Info.Ctx.getLangOpts());
14271     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14272     QualType From
14273       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14274     Result.makeComplexFloat();
14275     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14276                                 To, Result.FloatReal) &&
14277            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14278                                 To, Result.FloatImag);
14279   }
14280   }
14281 
14282   llvm_unreachable("unknown cast resulting in complex value");
14283 }
14284 
14285 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14286   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14287     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14288 
14289   // Track whether the LHS or RHS is real at the type system level. When this is
14290   // the case we can simplify our evaluation strategy.
14291   bool LHSReal = false, RHSReal = false;
14292 
14293   bool LHSOK;
14294   if (E->getLHS()->getType()->isRealFloatingType()) {
14295     LHSReal = true;
14296     APFloat &Real = Result.FloatReal;
14297     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14298     if (LHSOK) {
14299       Result.makeComplexFloat();
14300       Result.FloatImag = APFloat(Real.getSemantics());
14301     }
14302   } else {
14303     LHSOK = Visit(E->getLHS());
14304   }
14305   if (!LHSOK && !Info.noteFailure())
14306     return false;
14307 
14308   ComplexValue RHS;
14309   if (E->getRHS()->getType()->isRealFloatingType()) {
14310     RHSReal = true;
14311     APFloat &Real = RHS.FloatReal;
14312     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14313       return false;
14314     RHS.makeComplexFloat();
14315     RHS.FloatImag = APFloat(Real.getSemantics());
14316   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14317     return false;
14318 
14319   assert(!(LHSReal && RHSReal) &&
14320          "Cannot have both operands of a complex operation be real.");
14321   switch (E->getOpcode()) {
14322   default: return Error(E);
14323   case BO_Add:
14324     if (Result.isComplexFloat()) {
14325       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14326                                        APFloat::rmNearestTiesToEven);
14327       if (LHSReal)
14328         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14329       else if (!RHSReal)
14330         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14331                                          APFloat::rmNearestTiesToEven);
14332     } else {
14333       Result.getComplexIntReal() += RHS.getComplexIntReal();
14334       Result.getComplexIntImag() += RHS.getComplexIntImag();
14335     }
14336     break;
14337   case BO_Sub:
14338     if (Result.isComplexFloat()) {
14339       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14340                                             APFloat::rmNearestTiesToEven);
14341       if (LHSReal) {
14342         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14343         Result.getComplexFloatImag().changeSign();
14344       } else if (!RHSReal) {
14345         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14346                                               APFloat::rmNearestTiesToEven);
14347       }
14348     } else {
14349       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14350       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14351     }
14352     break;
14353   case BO_Mul:
14354     if (Result.isComplexFloat()) {
14355       // This is an implementation of complex multiplication according to the
14356       // constraints laid out in C11 Annex G. The implementation uses the
14357       // following naming scheme:
14358       //   (a + ib) * (c + id)
14359       ComplexValue LHS = Result;
14360       APFloat &A = LHS.getComplexFloatReal();
14361       APFloat &B = LHS.getComplexFloatImag();
14362       APFloat &C = RHS.getComplexFloatReal();
14363       APFloat &D = RHS.getComplexFloatImag();
14364       APFloat &ResR = Result.getComplexFloatReal();
14365       APFloat &ResI = Result.getComplexFloatImag();
14366       if (LHSReal) {
14367         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14368         ResR = A * C;
14369         ResI = A * D;
14370       } else if (RHSReal) {
14371         ResR = C * A;
14372         ResI = C * B;
14373       } else {
14374         // In the fully general case, we need to handle NaNs and infinities
14375         // robustly.
14376         APFloat AC = A * C;
14377         APFloat BD = B * D;
14378         APFloat AD = A * D;
14379         APFloat BC = B * C;
14380         ResR = AC - BD;
14381         ResI = AD + BC;
14382         if (ResR.isNaN() && ResI.isNaN()) {
14383           bool Recalc = false;
14384           if (A.isInfinity() || B.isInfinity()) {
14385             A = APFloat::copySign(
14386                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14387             B = APFloat::copySign(
14388                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14389             if (C.isNaN())
14390               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14391             if (D.isNaN())
14392               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14393             Recalc = true;
14394           }
14395           if (C.isInfinity() || D.isInfinity()) {
14396             C = APFloat::copySign(
14397                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14398             D = APFloat::copySign(
14399                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14400             if (A.isNaN())
14401               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14402             if (B.isNaN())
14403               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14404             Recalc = true;
14405           }
14406           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14407                           AD.isInfinity() || BC.isInfinity())) {
14408             if (A.isNaN())
14409               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14410             if (B.isNaN())
14411               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14412             if (C.isNaN())
14413               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14414             if (D.isNaN())
14415               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14416             Recalc = true;
14417           }
14418           if (Recalc) {
14419             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14420             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14421           }
14422         }
14423       }
14424     } else {
14425       ComplexValue LHS = Result;
14426       Result.getComplexIntReal() =
14427         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14428          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14429       Result.getComplexIntImag() =
14430         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14431          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14432     }
14433     break;
14434   case BO_Div:
14435     if (Result.isComplexFloat()) {
14436       // This is an implementation of complex division according to the
14437       // constraints laid out in C11 Annex G. The implementation uses the
14438       // following naming scheme:
14439       //   (a + ib) / (c + id)
14440       ComplexValue LHS = Result;
14441       APFloat &A = LHS.getComplexFloatReal();
14442       APFloat &B = LHS.getComplexFloatImag();
14443       APFloat &C = RHS.getComplexFloatReal();
14444       APFloat &D = RHS.getComplexFloatImag();
14445       APFloat &ResR = Result.getComplexFloatReal();
14446       APFloat &ResI = Result.getComplexFloatImag();
14447       if (RHSReal) {
14448         ResR = A / C;
14449         ResI = B / C;
14450       } else {
14451         if (LHSReal) {
14452           // No real optimizations we can do here, stub out with zero.
14453           B = APFloat::getZero(A.getSemantics());
14454         }
14455         int DenomLogB = 0;
14456         APFloat MaxCD = maxnum(abs(C), abs(D));
14457         if (MaxCD.isFinite()) {
14458           DenomLogB = ilogb(MaxCD);
14459           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14460           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14461         }
14462         APFloat Denom = C * C + D * D;
14463         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14464                       APFloat::rmNearestTiesToEven);
14465         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14466                       APFloat::rmNearestTiesToEven);
14467         if (ResR.isNaN() && ResI.isNaN()) {
14468           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14469             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14470             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14471           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14472                      D.isFinite()) {
14473             A = APFloat::copySign(
14474                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14475             B = APFloat::copySign(
14476                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14477             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14478             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14479           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14480             C = APFloat::copySign(
14481                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14482             D = APFloat::copySign(
14483                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14484             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14485             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14486           }
14487         }
14488       }
14489     } else {
14490       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14491         return Error(E, diag::note_expr_divide_by_zero);
14492 
14493       ComplexValue LHS = Result;
14494       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14495         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14496       Result.getComplexIntReal() =
14497         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14498          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14499       Result.getComplexIntImag() =
14500         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14501          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14502     }
14503     break;
14504   }
14505 
14506   return true;
14507 }
14508 
14509 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14510   // Get the operand value into 'Result'.
14511   if (!Visit(E->getSubExpr()))
14512     return false;
14513 
14514   switch (E->getOpcode()) {
14515   default:
14516     return Error(E);
14517   case UO_Extension:
14518     return true;
14519   case UO_Plus:
14520     // The result is always just the subexpr.
14521     return true;
14522   case UO_Minus:
14523     if (Result.isComplexFloat()) {
14524       Result.getComplexFloatReal().changeSign();
14525       Result.getComplexFloatImag().changeSign();
14526     }
14527     else {
14528       Result.getComplexIntReal() = -Result.getComplexIntReal();
14529       Result.getComplexIntImag() = -Result.getComplexIntImag();
14530     }
14531     return true;
14532   case UO_Not:
14533     if (Result.isComplexFloat())
14534       Result.getComplexFloatImag().changeSign();
14535     else
14536       Result.getComplexIntImag() = -Result.getComplexIntImag();
14537     return true;
14538   }
14539 }
14540 
14541 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14542   if (E->getNumInits() == 2) {
14543     if (E->getType()->isComplexType()) {
14544       Result.makeComplexFloat();
14545       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14546         return false;
14547       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14548         return false;
14549     } else {
14550       Result.makeComplexInt();
14551       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14552         return false;
14553       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14554         return false;
14555     }
14556     return true;
14557   }
14558   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14559 }
14560 
14561 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14562   switch (E->getBuiltinCallee()) {
14563   case Builtin::BI__builtin_complex:
14564     Result.makeComplexFloat();
14565     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14566       return false;
14567     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14568       return false;
14569     return true;
14570 
14571   default:
14572     break;
14573   }
14574 
14575   return ExprEvaluatorBaseTy::VisitCallExpr(E);
14576 }
14577 
14578 //===----------------------------------------------------------------------===//
14579 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14580 // implicit conversion.
14581 //===----------------------------------------------------------------------===//
14582 
14583 namespace {
14584 class AtomicExprEvaluator :
14585     public ExprEvaluatorBase<AtomicExprEvaluator> {
14586   const LValue *This;
14587   APValue &Result;
14588 public:
14589   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14590       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14591 
14592   bool Success(const APValue &V, const Expr *E) {
14593     Result = V;
14594     return true;
14595   }
14596 
14597   bool ZeroInitialization(const Expr *E) {
14598     ImplicitValueInitExpr VIE(
14599         E->getType()->castAs<AtomicType>()->getValueType());
14600     // For atomic-qualified class (and array) types in C++, initialize the
14601     // _Atomic-wrapped subobject directly, in-place.
14602     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14603                 : Evaluate(Result, Info, &VIE);
14604   }
14605 
14606   bool VisitCastExpr(const CastExpr *E) {
14607     switch (E->getCastKind()) {
14608     default:
14609       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14610     case CK_NonAtomicToAtomic:
14611       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14612                   : Evaluate(Result, Info, E->getSubExpr());
14613     }
14614   }
14615 };
14616 } // end anonymous namespace
14617 
14618 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14619                            EvalInfo &Info) {
14620   assert(!E->isValueDependent());
14621   assert(E->isPRValue() && E->getType()->isAtomicType());
14622   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14623 }
14624 
14625 //===----------------------------------------------------------------------===//
14626 // Void expression evaluation, primarily for a cast to void on the LHS of a
14627 // comma operator
14628 //===----------------------------------------------------------------------===//
14629 
14630 namespace {
14631 class VoidExprEvaluator
14632   : public ExprEvaluatorBase<VoidExprEvaluator> {
14633 public:
14634   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14635 
14636   bool Success(const APValue &V, const Expr *e) { return true; }
14637 
14638   bool ZeroInitialization(const Expr *E) { return true; }
14639 
14640   bool VisitCastExpr(const CastExpr *E) {
14641     switch (E->getCastKind()) {
14642     default:
14643       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14644     case CK_ToVoid:
14645       VisitIgnoredValue(E->getSubExpr());
14646       return true;
14647     }
14648   }
14649 
14650   bool VisitCallExpr(const CallExpr *E) {
14651     switch (E->getBuiltinCallee()) {
14652     case Builtin::BI__assume:
14653     case Builtin::BI__builtin_assume:
14654       // The argument is not evaluated!
14655       return true;
14656 
14657     case Builtin::BI__builtin_operator_delete:
14658       return HandleOperatorDeleteCall(Info, E);
14659 
14660     default:
14661       break;
14662     }
14663 
14664     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14665   }
14666 
14667   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14668 };
14669 } // end anonymous namespace
14670 
14671 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14672   // We cannot speculatively evaluate a delete expression.
14673   if (Info.SpeculativeEvaluationDepth)
14674     return false;
14675 
14676   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14677   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14678     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14679         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14680     return false;
14681   }
14682 
14683   const Expr *Arg = E->getArgument();
14684 
14685   LValue Pointer;
14686   if (!EvaluatePointer(Arg, Pointer, Info))
14687     return false;
14688   if (Pointer.Designator.Invalid)
14689     return false;
14690 
14691   // Deleting a null pointer has no effect.
14692   if (Pointer.isNullPointer()) {
14693     // This is the only case where we need to produce an extension warning:
14694     // the only other way we can succeed is if we find a dynamic allocation,
14695     // and we will have warned when we allocated it in that case.
14696     if (!Info.getLangOpts().CPlusPlus20)
14697       Info.CCEDiag(E, diag::note_constexpr_new);
14698     return true;
14699   }
14700 
14701   Optional<DynAlloc *> Alloc = CheckDeleteKind(
14702       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14703   if (!Alloc)
14704     return false;
14705   QualType AllocType = Pointer.Base.getDynamicAllocType();
14706 
14707   // For the non-array case, the designator must be empty if the static type
14708   // does not have a virtual destructor.
14709   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14710       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14711     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14712         << Arg->getType()->getPointeeType() << AllocType;
14713     return false;
14714   }
14715 
14716   // For a class type with a virtual destructor, the selected operator delete
14717   // is the one looked up when building the destructor.
14718   if (!E->isArrayForm() && !E->isGlobalDelete()) {
14719     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14720     if (VirtualDelete &&
14721         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14722       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14723           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14724       return false;
14725     }
14726   }
14727 
14728   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14729                          (*Alloc)->Value, AllocType))
14730     return false;
14731 
14732   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14733     // The element was already erased. This means the destructor call also
14734     // deleted the object.
14735     // FIXME: This probably results in undefined behavior before we get this
14736     // far, and should be diagnosed elsewhere first.
14737     Info.FFDiag(E, diag::note_constexpr_double_delete);
14738     return false;
14739   }
14740 
14741   return true;
14742 }
14743 
14744 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14745   assert(!E->isValueDependent());
14746   assert(E->isPRValue() && E->getType()->isVoidType());
14747   return VoidExprEvaluator(Info).Visit(E);
14748 }
14749 
14750 //===----------------------------------------------------------------------===//
14751 // Top level Expr::EvaluateAsRValue method.
14752 //===----------------------------------------------------------------------===//
14753 
14754 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14755   assert(!E->isValueDependent());
14756   // In C, function designators are not lvalues, but we evaluate them as if they
14757   // are.
14758   QualType T = E->getType();
14759   if (E->isGLValue() || T->isFunctionType()) {
14760     LValue LV;
14761     if (!EvaluateLValue(E, LV, Info))
14762       return false;
14763     LV.moveInto(Result);
14764   } else if (T->isVectorType()) {
14765     if (!EvaluateVector(E, Result, Info))
14766       return false;
14767   } else if (T->isIntegralOrEnumerationType()) {
14768     if (!IntExprEvaluator(Info, Result).Visit(E))
14769       return false;
14770   } else if (T->hasPointerRepresentation()) {
14771     LValue LV;
14772     if (!EvaluatePointer(E, LV, Info))
14773       return false;
14774     LV.moveInto(Result);
14775   } else if (T->isRealFloatingType()) {
14776     llvm::APFloat F(0.0);
14777     if (!EvaluateFloat(E, F, Info))
14778       return false;
14779     Result = APValue(F);
14780   } else if (T->isAnyComplexType()) {
14781     ComplexValue C;
14782     if (!EvaluateComplex(E, C, Info))
14783       return false;
14784     C.moveInto(Result);
14785   } else if (T->isFixedPointType()) {
14786     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14787   } else if (T->isMemberPointerType()) {
14788     MemberPtr P;
14789     if (!EvaluateMemberPointer(E, P, Info))
14790       return false;
14791     P.moveInto(Result);
14792     return true;
14793   } else if (T->isArrayType()) {
14794     LValue LV;
14795     APValue &Value =
14796         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14797     if (!EvaluateArray(E, LV, Value, Info))
14798       return false;
14799     Result = Value;
14800   } else if (T->isRecordType()) {
14801     LValue LV;
14802     APValue &Value =
14803         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14804     if (!EvaluateRecord(E, LV, Value, Info))
14805       return false;
14806     Result = Value;
14807   } else if (T->isVoidType()) {
14808     if (!Info.getLangOpts().CPlusPlus11)
14809       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14810         << E->getType();
14811     if (!EvaluateVoid(E, Info))
14812       return false;
14813   } else if (T->isAtomicType()) {
14814     QualType Unqual = T.getAtomicUnqualifiedType();
14815     if (Unqual->isArrayType() || Unqual->isRecordType()) {
14816       LValue LV;
14817       APValue &Value = Info.CurrentCall->createTemporary(
14818           E, Unqual, ScopeKind::FullExpression, LV);
14819       if (!EvaluateAtomic(E, &LV, Value, Info))
14820         return false;
14821     } else {
14822       if (!EvaluateAtomic(E, nullptr, Result, Info))
14823         return false;
14824     }
14825   } else if (Info.getLangOpts().CPlusPlus11) {
14826     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14827     return false;
14828   } else {
14829     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14830     return false;
14831   }
14832 
14833   return true;
14834 }
14835 
14836 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14837 /// cases, the in-place evaluation is essential, since later initializers for
14838 /// an object can indirectly refer to subobjects which were initialized earlier.
14839 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14840                             const Expr *E, bool AllowNonLiteralTypes) {
14841   assert(!E->isValueDependent());
14842 
14843   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14844     return false;
14845 
14846   if (E->isPRValue()) {
14847     // Evaluate arrays and record types in-place, so that later initializers can
14848     // refer to earlier-initialized members of the object.
14849     QualType T = E->getType();
14850     if (T->isArrayType())
14851       return EvaluateArray(E, This, Result, Info);
14852     else if (T->isRecordType())
14853       return EvaluateRecord(E, This, Result, Info);
14854     else if (T->isAtomicType()) {
14855       QualType Unqual = T.getAtomicUnqualifiedType();
14856       if (Unqual->isArrayType() || Unqual->isRecordType())
14857         return EvaluateAtomic(E, &This, Result, Info);
14858     }
14859   }
14860 
14861   // For any other type, in-place evaluation is unimportant.
14862   return Evaluate(Result, Info, E);
14863 }
14864 
14865 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14866 /// lvalue-to-rvalue cast if it is an lvalue.
14867 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14868   assert(!E->isValueDependent());
14869   if (Info.EnableNewConstInterp) {
14870     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14871       return false;
14872   } else {
14873     if (E->getType().isNull())
14874       return false;
14875 
14876     if (!CheckLiteralType(Info, E))
14877       return false;
14878 
14879     if (!::Evaluate(Result, Info, E))
14880       return false;
14881 
14882     if (E->isGLValue()) {
14883       LValue LV;
14884       LV.setFrom(Info.Ctx, Result);
14885       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14886         return false;
14887     }
14888   }
14889 
14890   // Check this core constant expression is a constant expression.
14891   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14892                                  ConstantExprKind::Normal) &&
14893          CheckMemoryLeaks(Info);
14894 }
14895 
14896 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14897                                  const ASTContext &Ctx, bool &IsConst) {
14898   // Fast-path evaluations of integer literals, since we sometimes see files
14899   // containing vast quantities of these.
14900   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14901     Result.Val = APValue(APSInt(L->getValue(),
14902                                 L->getType()->isUnsignedIntegerType()));
14903     IsConst = true;
14904     return true;
14905   }
14906 
14907   // This case should be rare, but we need to check it before we check on
14908   // the type below.
14909   if (Exp->getType().isNull()) {
14910     IsConst = false;
14911     return true;
14912   }
14913 
14914   // FIXME: Evaluating values of large array and record types can cause
14915   // performance problems. Only do so in C++11 for now.
14916   if (Exp->isPRValue() &&
14917       (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
14918       !Ctx.getLangOpts().CPlusPlus11) {
14919     IsConst = false;
14920     return true;
14921   }
14922   return false;
14923 }
14924 
14925 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14926                                       Expr::SideEffectsKind SEK) {
14927   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14928          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14929 }
14930 
14931 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14932                              const ASTContext &Ctx, EvalInfo &Info) {
14933   assert(!E->isValueDependent());
14934   bool IsConst;
14935   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14936     return IsConst;
14937 
14938   return EvaluateAsRValue(Info, E, Result.Val);
14939 }
14940 
14941 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14942                           const ASTContext &Ctx,
14943                           Expr::SideEffectsKind AllowSideEffects,
14944                           EvalInfo &Info) {
14945   assert(!E->isValueDependent());
14946   if (!E->getType()->isIntegralOrEnumerationType())
14947     return false;
14948 
14949   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14950       !ExprResult.Val.isInt() ||
14951       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14952     return false;
14953 
14954   return true;
14955 }
14956 
14957 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14958                                  const ASTContext &Ctx,
14959                                  Expr::SideEffectsKind AllowSideEffects,
14960                                  EvalInfo &Info) {
14961   assert(!E->isValueDependent());
14962   if (!E->getType()->isFixedPointType())
14963     return false;
14964 
14965   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14966     return false;
14967 
14968   if (!ExprResult.Val.isFixedPoint() ||
14969       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14970     return false;
14971 
14972   return true;
14973 }
14974 
14975 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14976 /// any crazy technique (that has nothing to do with language standards) that
14977 /// we want to.  If this function returns true, it returns the folded constant
14978 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14979 /// will be applied to the result.
14980 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14981                             bool InConstantContext) const {
14982   assert(!isValueDependent() &&
14983          "Expression evaluator can't be called on a dependent expression.");
14984   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14985   Info.InConstantContext = InConstantContext;
14986   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14987 }
14988 
14989 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14990                                       bool InConstantContext) const {
14991   assert(!isValueDependent() &&
14992          "Expression evaluator can't be called on a dependent expression.");
14993   EvalResult Scratch;
14994   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14995          HandleConversionToBool(Scratch.Val, Result);
14996 }
14997 
14998 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14999                          SideEffectsKind AllowSideEffects,
15000                          bool InConstantContext) const {
15001   assert(!isValueDependent() &&
15002          "Expression evaluator can't be called on a dependent expression.");
15003   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15004   Info.InConstantContext = InConstantContext;
15005   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15006 }
15007 
15008 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15009                                 SideEffectsKind AllowSideEffects,
15010                                 bool InConstantContext) const {
15011   assert(!isValueDependent() &&
15012          "Expression evaluator can't be called on a dependent expression.");
15013   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15014   Info.InConstantContext = InConstantContext;
15015   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15016 }
15017 
15018 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15019                            SideEffectsKind AllowSideEffects,
15020                            bool InConstantContext) const {
15021   assert(!isValueDependent() &&
15022          "Expression evaluator can't be called on a dependent expression.");
15023 
15024   if (!getType()->isRealFloatingType())
15025     return false;
15026 
15027   EvalResult ExprResult;
15028   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15029       !ExprResult.Val.isFloat() ||
15030       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15031     return false;
15032 
15033   Result = ExprResult.Val.getFloat();
15034   return true;
15035 }
15036 
15037 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15038                             bool InConstantContext) const {
15039   assert(!isValueDependent() &&
15040          "Expression evaluator can't be called on a dependent expression.");
15041 
15042   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15043   Info.InConstantContext = InConstantContext;
15044   LValue LV;
15045   CheckedTemporaries CheckedTemps;
15046   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15047       Result.HasSideEffects ||
15048       !CheckLValueConstantExpression(Info, getExprLoc(),
15049                                      Ctx.getLValueReferenceType(getType()), LV,
15050                                      ConstantExprKind::Normal, CheckedTemps))
15051     return false;
15052 
15053   LV.moveInto(Result.Val);
15054   return true;
15055 }
15056 
15057 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15058                                 APValue DestroyedValue, QualType Type,
15059                                 SourceLocation Loc, Expr::EvalStatus &EStatus,
15060                                 bool IsConstantDestruction) {
15061   EvalInfo Info(Ctx, EStatus,
15062                 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15063                                       : EvalInfo::EM_ConstantFold);
15064   Info.setEvaluatingDecl(Base, DestroyedValue,
15065                          EvalInfo::EvaluatingDeclKind::Dtor);
15066   Info.InConstantContext = IsConstantDestruction;
15067 
15068   LValue LVal;
15069   LVal.set(Base);
15070 
15071   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15072       EStatus.HasSideEffects)
15073     return false;
15074 
15075   if (!Info.discardCleanups())
15076     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15077 
15078   return true;
15079 }
15080 
15081 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15082                                   ConstantExprKind Kind) const {
15083   assert(!isValueDependent() &&
15084          "Expression evaluator can't be called on a dependent expression.");
15085 
15086   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15087   EvalInfo Info(Ctx, Result, EM);
15088   Info.InConstantContext = true;
15089 
15090   // The type of the object we're initializing is 'const T' for a class NTTP.
15091   QualType T = getType();
15092   if (Kind == ConstantExprKind::ClassTemplateArgument)
15093     T.addConst();
15094 
15095   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15096   // represent the result of the evaluation. CheckConstantExpression ensures
15097   // this doesn't escape.
15098   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15099   APValue::LValueBase Base(&BaseMTE);
15100 
15101   Info.setEvaluatingDecl(Base, Result.Val);
15102   LValue LVal;
15103   LVal.set(Base);
15104 
15105   if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
15106     return false;
15107 
15108   if (!Info.discardCleanups())
15109     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15110 
15111   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15112                                Result.Val, Kind))
15113     return false;
15114   if (!CheckMemoryLeaks(Info))
15115     return false;
15116 
15117   // If this is a class template argument, it's required to have constant
15118   // destruction too.
15119   if (Kind == ConstantExprKind::ClassTemplateArgument &&
15120       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15121                             true) ||
15122        Result.HasSideEffects)) {
15123     // FIXME: Prefix a note to indicate that the problem is lack of constant
15124     // destruction.
15125     return false;
15126   }
15127 
15128   return true;
15129 }
15130 
15131 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15132                                  const VarDecl *VD,
15133                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
15134                                  bool IsConstantInitialization) const {
15135   assert(!isValueDependent() &&
15136          "Expression evaluator can't be called on a dependent expression.");
15137 
15138   // FIXME: Evaluating initializers for large array and record types can cause
15139   // performance problems. Only do so in C++11 for now.
15140   if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15141       !Ctx.getLangOpts().CPlusPlus11)
15142     return false;
15143 
15144   Expr::EvalStatus EStatus;
15145   EStatus.Diag = &Notes;
15146 
15147   EvalInfo Info(Ctx, EStatus,
15148                 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
15149                     ? EvalInfo::EM_ConstantExpression
15150                     : EvalInfo::EM_ConstantFold);
15151   Info.setEvaluatingDecl(VD, Value);
15152   Info.InConstantContext = IsConstantInitialization;
15153 
15154   SourceLocation DeclLoc = VD->getLocation();
15155   QualType DeclTy = VD->getType();
15156 
15157   if (Info.EnableNewConstInterp) {
15158     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15159     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15160       return false;
15161   } else {
15162     LValue LVal;
15163     LVal.set(VD);
15164 
15165     if (!EvaluateInPlace(Value, Info, LVal, this,
15166                          /*AllowNonLiteralTypes=*/true) ||
15167         EStatus.HasSideEffects)
15168       return false;
15169 
15170     // At this point, any lifetime-extended temporaries are completely
15171     // initialized.
15172     Info.performLifetimeExtension();
15173 
15174     if (!Info.discardCleanups())
15175       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15176   }
15177   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15178                                  ConstantExprKind::Normal) &&
15179          CheckMemoryLeaks(Info);
15180 }
15181 
15182 bool VarDecl::evaluateDestruction(
15183     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15184   Expr::EvalStatus EStatus;
15185   EStatus.Diag = &Notes;
15186 
15187   // Only treat the destruction as constant destruction if we formally have
15188   // constant initialization (or are usable in a constant expression).
15189   bool IsConstantDestruction = hasConstantInitialization();
15190 
15191   // Make a copy of the value for the destructor to mutate, if we know it.
15192   // Otherwise, treat the value as default-initialized; if the destructor works
15193   // anyway, then the destruction is constant (and must be essentially empty).
15194   APValue DestroyedValue;
15195   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15196     DestroyedValue = *getEvaluatedValue();
15197   else if (!getDefaultInitValue(getType(), DestroyedValue))
15198     return false;
15199 
15200   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15201                            getType(), getLocation(), EStatus,
15202                            IsConstantDestruction) ||
15203       EStatus.HasSideEffects)
15204     return false;
15205 
15206   ensureEvaluatedStmt()->HasConstantDestruction = true;
15207   return true;
15208 }
15209 
15210 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15211 /// constant folded, but discard the result.
15212 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15213   assert(!isValueDependent() &&
15214          "Expression evaluator can't be called on a dependent expression.");
15215 
15216   EvalResult Result;
15217   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15218          !hasUnacceptableSideEffect(Result, SEK);
15219 }
15220 
15221 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15222                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15223   assert(!isValueDependent() &&
15224          "Expression evaluator can't be called on a dependent expression.");
15225 
15226   EvalResult EVResult;
15227   EVResult.Diag = Diag;
15228   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15229   Info.InConstantContext = true;
15230 
15231   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15232   (void)Result;
15233   assert(Result && "Could not evaluate expression");
15234   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15235 
15236   return EVResult.Val.getInt();
15237 }
15238 
15239 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15240     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15241   assert(!isValueDependent() &&
15242          "Expression evaluator can't be called on a dependent expression.");
15243 
15244   EvalResult EVResult;
15245   EVResult.Diag = Diag;
15246   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15247   Info.InConstantContext = true;
15248   Info.CheckingForUndefinedBehavior = true;
15249 
15250   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15251   (void)Result;
15252   assert(Result && "Could not evaluate expression");
15253   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15254 
15255   return EVResult.Val.getInt();
15256 }
15257 
15258 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15259   assert(!isValueDependent() &&
15260          "Expression evaluator can't be called on a dependent expression.");
15261 
15262   bool IsConst;
15263   EvalResult EVResult;
15264   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15265     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15266     Info.CheckingForUndefinedBehavior = true;
15267     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15268   }
15269 }
15270 
15271 bool Expr::EvalResult::isGlobalLValue() const {
15272   assert(Val.isLValue());
15273   return IsGlobalLValue(Val.getLValueBase());
15274 }
15275 
15276 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15277 /// an integer constant expression.
15278 
15279 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15280 /// comma, etc
15281 
15282 // CheckICE - This function does the fundamental ICE checking: the returned
15283 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15284 // and a (possibly null) SourceLocation indicating the location of the problem.
15285 //
15286 // Note that to reduce code duplication, this helper does no evaluation
15287 // itself; the caller checks whether the expression is evaluatable, and
15288 // in the rare cases where CheckICE actually cares about the evaluated
15289 // value, it calls into Evaluate.
15290 
15291 namespace {
15292 
15293 enum ICEKind {
15294   /// This expression is an ICE.
15295   IK_ICE,
15296   /// This expression is not an ICE, but if it isn't evaluated, it's
15297   /// a legal subexpression for an ICE. This return value is used to handle
15298   /// the comma operator in C99 mode, and non-constant subexpressions.
15299   IK_ICEIfUnevaluated,
15300   /// This expression is not an ICE, and is not a legal subexpression for one.
15301   IK_NotICE
15302 };
15303 
15304 struct ICEDiag {
15305   ICEKind Kind;
15306   SourceLocation Loc;
15307 
15308   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15309 };
15310 
15311 }
15312 
15313 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15314 
15315 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15316 
15317 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15318   Expr::EvalResult EVResult;
15319   Expr::EvalStatus Status;
15320   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15321 
15322   Info.InConstantContext = true;
15323   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15324       !EVResult.Val.isInt())
15325     return ICEDiag(IK_NotICE, E->getBeginLoc());
15326 
15327   return NoDiag();
15328 }
15329 
15330 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15331   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15332   if (!E->getType()->isIntegralOrEnumerationType())
15333     return ICEDiag(IK_NotICE, E->getBeginLoc());
15334 
15335   switch (E->getStmtClass()) {
15336 #define ABSTRACT_STMT(Node)
15337 #define STMT(Node, Base) case Expr::Node##Class:
15338 #define EXPR(Node, Base)
15339 #include "clang/AST/StmtNodes.inc"
15340   case Expr::PredefinedExprClass:
15341   case Expr::FloatingLiteralClass:
15342   case Expr::ImaginaryLiteralClass:
15343   case Expr::StringLiteralClass:
15344   case Expr::ArraySubscriptExprClass:
15345   case Expr::MatrixSubscriptExprClass:
15346   case Expr::OMPArraySectionExprClass:
15347   case Expr::OMPArrayShapingExprClass:
15348   case Expr::OMPIteratorExprClass:
15349   case Expr::MemberExprClass:
15350   case Expr::CompoundAssignOperatorClass:
15351   case Expr::CompoundLiteralExprClass:
15352   case Expr::ExtVectorElementExprClass:
15353   case Expr::DesignatedInitExprClass:
15354   case Expr::ArrayInitLoopExprClass:
15355   case Expr::ArrayInitIndexExprClass:
15356   case Expr::NoInitExprClass:
15357   case Expr::DesignatedInitUpdateExprClass:
15358   case Expr::ImplicitValueInitExprClass:
15359   case Expr::ParenListExprClass:
15360   case Expr::VAArgExprClass:
15361   case Expr::AddrLabelExprClass:
15362   case Expr::StmtExprClass:
15363   case Expr::CXXMemberCallExprClass:
15364   case Expr::CUDAKernelCallExprClass:
15365   case Expr::CXXAddrspaceCastExprClass:
15366   case Expr::CXXDynamicCastExprClass:
15367   case Expr::CXXTypeidExprClass:
15368   case Expr::CXXUuidofExprClass:
15369   case Expr::MSPropertyRefExprClass:
15370   case Expr::MSPropertySubscriptExprClass:
15371   case Expr::CXXNullPtrLiteralExprClass:
15372   case Expr::UserDefinedLiteralClass:
15373   case Expr::CXXThisExprClass:
15374   case Expr::CXXThrowExprClass:
15375   case Expr::CXXNewExprClass:
15376   case Expr::CXXDeleteExprClass:
15377   case Expr::CXXPseudoDestructorExprClass:
15378   case Expr::UnresolvedLookupExprClass:
15379   case Expr::TypoExprClass:
15380   case Expr::RecoveryExprClass:
15381   case Expr::DependentScopeDeclRefExprClass:
15382   case Expr::CXXConstructExprClass:
15383   case Expr::CXXInheritedCtorInitExprClass:
15384   case Expr::CXXStdInitializerListExprClass:
15385   case Expr::CXXBindTemporaryExprClass:
15386   case Expr::ExprWithCleanupsClass:
15387   case Expr::CXXTemporaryObjectExprClass:
15388   case Expr::CXXUnresolvedConstructExprClass:
15389   case Expr::CXXDependentScopeMemberExprClass:
15390   case Expr::UnresolvedMemberExprClass:
15391   case Expr::ObjCStringLiteralClass:
15392   case Expr::ObjCBoxedExprClass:
15393   case Expr::ObjCArrayLiteralClass:
15394   case Expr::ObjCDictionaryLiteralClass:
15395   case Expr::ObjCEncodeExprClass:
15396   case Expr::ObjCMessageExprClass:
15397   case Expr::ObjCSelectorExprClass:
15398   case Expr::ObjCProtocolExprClass:
15399   case Expr::ObjCIvarRefExprClass:
15400   case Expr::ObjCPropertyRefExprClass:
15401   case Expr::ObjCSubscriptRefExprClass:
15402   case Expr::ObjCIsaExprClass:
15403   case Expr::ObjCAvailabilityCheckExprClass:
15404   case Expr::ShuffleVectorExprClass:
15405   case Expr::ConvertVectorExprClass:
15406   case Expr::BlockExprClass:
15407   case Expr::NoStmtClass:
15408   case Expr::OpaqueValueExprClass:
15409   case Expr::PackExpansionExprClass:
15410   case Expr::SubstNonTypeTemplateParmPackExprClass:
15411   case Expr::FunctionParmPackExprClass:
15412   case Expr::AsTypeExprClass:
15413   case Expr::ObjCIndirectCopyRestoreExprClass:
15414   case Expr::MaterializeTemporaryExprClass:
15415   case Expr::PseudoObjectExprClass:
15416   case Expr::AtomicExprClass:
15417   case Expr::LambdaExprClass:
15418   case Expr::CXXFoldExprClass:
15419   case Expr::CoawaitExprClass:
15420   case Expr::DependentCoawaitExprClass:
15421   case Expr::CoyieldExprClass:
15422   case Expr::SYCLUniqueStableNameExprClass:
15423     return ICEDiag(IK_NotICE, E->getBeginLoc());
15424 
15425   case Expr::InitListExprClass: {
15426     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15427     // form "T x = { a };" is equivalent to "T x = a;".
15428     // Unless we're initializing a reference, T is a scalar as it is known to be
15429     // of integral or enumeration type.
15430     if (E->isPRValue())
15431       if (cast<InitListExpr>(E)->getNumInits() == 1)
15432         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15433     return ICEDiag(IK_NotICE, E->getBeginLoc());
15434   }
15435 
15436   case Expr::SizeOfPackExprClass:
15437   case Expr::GNUNullExprClass:
15438   case Expr::SourceLocExprClass:
15439     return NoDiag();
15440 
15441   case Expr::SubstNonTypeTemplateParmExprClass:
15442     return
15443       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15444 
15445   case Expr::ConstantExprClass:
15446     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15447 
15448   case Expr::ParenExprClass:
15449     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15450   case Expr::GenericSelectionExprClass:
15451     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15452   case Expr::IntegerLiteralClass:
15453   case Expr::FixedPointLiteralClass:
15454   case Expr::CharacterLiteralClass:
15455   case Expr::ObjCBoolLiteralExprClass:
15456   case Expr::CXXBoolLiteralExprClass:
15457   case Expr::CXXScalarValueInitExprClass:
15458   case Expr::TypeTraitExprClass:
15459   case Expr::ConceptSpecializationExprClass:
15460   case Expr::RequiresExprClass:
15461   case Expr::ArrayTypeTraitExprClass:
15462   case Expr::ExpressionTraitExprClass:
15463   case Expr::CXXNoexceptExprClass:
15464     return NoDiag();
15465   case Expr::CallExprClass:
15466   case Expr::CXXOperatorCallExprClass: {
15467     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15468     // constant expressions, but they can never be ICEs because an ICE cannot
15469     // contain an operand of (pointer to) function type.
15470     const CallExpr *CE = cast<CallExpr>(E);
15471     if (CE->getBuiltinCallee())
15472       return CheckEvalInICE(E, Ctx);
15473     return ICEDiag(IK_NotICE, E->getBeginLoc());
15474   }
15475   case Expr::CXXRewrittenBinaryOperatorClass:
15476     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15477                     Ctx);
15478   case Expr::DeclRefExprClass: {
15479     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15480     if (isa<EnumConstantDecl>(D))
15481       return NoDiag();
15482 
15483     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15484     // integer variables in constant expressions:
15485     //
15486     // C++ 7.1.5.1p2
15487     //   A variable of non-volatile const-qualified integral or enumeration
15488     //   type initialized by an ICE can be used in ICEs.
15489     //
15490     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15491     // that mode, use of reference variables should not be allowed.
15492     const VarDecl *VD = dyn_cast<VarDecl>(D);
15493     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15494         !VD->getType()->isReferenceType())
15495       return NoDiag();
15496 
15497     return ICEDiag(IK_NotICE, E->getBeginLoc());
15498   }
15499   case Expr::UnaryOperatorClass: {
15500     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15501     switch (Exp->getOpcode()) {
15502     case UO_PostInc:
15503     case UO_PostDec:
15504     case UO_PreInc:
15505     case UO_PreDec:
15506     case UO_AddrOf:
15507     case UO_Deref:
15508     case UO_Coawait:
15509       // C99 6.6/3 allows increment and decrement within unevaluated
15510       // subexpressions of constant expressions, but they can never be ICEs
15511       // because an ICE cannot contain an lvalue operand.
15512       return ICEDiag(IK_NotICE, E->getBeginLoc());
15513     case UO_Extension:
15514     case UO_LNot:
15515     case UO_Plus:
15516     case UO_Minus:
15517     case UO_Not:
15518     case UO_Real:
15519     case UO_Imag:
15520       return CheckICE(Exp->getSubExpr(), Ctx);
15521     }
15522     llvm_unreachable("invalid unary operator class");
15523   }
15524   case Expr::OffsetOfExprClass: {
15525     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15526     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15527     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15528     // compliance: we should warn earlier for offsetof expressions with
15529     // array subscripts that aren't ICEs, and if the array subscripts
15530     // are ICEs, the value of the offsetof must be an integer constant.
15531     return CheckEvalInICE(E, Ctx);
15532   }
15533   case Expr::UnaryExprOrTypeTraitExprClass: {
15534     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15535     if ((Exp->getKind() ==  UETT_SizeOf) &&
15536         Exp->getTypeOfArgument()->isVariableArrayType())
15537       return ICEDiag(IK_NotICE, E->getBeginLoc());
15538     return NoDiag();
15539   }
15540   case Expr::BinaryOperatorClass: {
15541     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15542     switch (Exp->getOpcode()) {
15543     case BO_PtrMemD:
15544     case BO_PtrMemI:
15545     case BO_Assign:
15546     case BO_MulAssign:
15547     case BO_DivAssign:
15548     case BO_RemAssign:
15549     case BO_AddAssign:
15550     case BO_SubAssign:
15551     case BO_ShlAssign:
15552     case BO_ShrAssign:
15553     case BO_AndAssign:
15554     case BO_XorAssign:
15555     case BO_OrAssign:
15556       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15557       // constant expressions, but they can never be ICEs because an ICE cannot
15558       // contain an lvalue operand.
15559       return ICEDiag(IK_NotICE, E->getBeginLoc());
15560 
15561     case BO_Mul:
15562     case BO_Div:
15563     case BO_Rem:
15564     case BO_Add:
15565     case BO_Sub:
15566     case BO_Shl:
15567     case BO_Shr:
15568     case BO_LT:
15569     case BO_GT:
15570     case BO_LE:
15571     case BO_GE:
15572     case BO_EQ:
15573     case BO_NE:
15574     case BO_And:
15575     case BO_Xor:
15576     case BO_Or:
15577     case BO_Comma:
15578     case BO_Cmp: {
15579       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15580       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15581       if (Exp->getOpcode() == BO_Div ||
15582           Exp->getOpcode() == BO_Rem) {
15583         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15584         // we don't evaluate one.
15585         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15586           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15587           if (REval == 0)
15588             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15589           if (REval.isSigned() && REval.isAllOnes()) {
15590             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15591             if (LEval.isMinSignedValue())
15592               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15593           }
15594         }
15595       }
15596       if (Exp->getOpcode() == BO_Comma) {
15597         if (Ctx.getLangOpts().C99) {
15598           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15599           // if it isn't evaluated.
15600           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15601             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15602         } else {
15603           // In both C89 and C++, commas in ICEs are illegal.
15604           return ICEDiag(IK_NotICE, E->getBeginLoc());
15605         }
15606       }
15607       return Worst(LHSResult, RHSResult);
15608     }
15609     case BO_LAnd:
15610     case BO_LOr: {
15611       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15612       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15613       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15614         // Rare case where the RHS has a comma "side-effect"; we need
15615         // to actually check the condition to see whether the side
15616         // with the comma is evaluated.
15617         if ((Exp->getOpcode() == BO_LAnd) !=
15618             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15619           return RHSResult;
15620         return NoDiag();
15621       }
15622 
15623       return Worst(LHSResult, RHSResult);
15624     }
15625     }
15626     llvm_unreachable("invalid binary operator kind");
15627   }
15628   case Expr::ImplicitCastExprClass:
15629   case Expr::CStyleCastExprClass:
15630   case Expr::CXXFunctionalCastExprClass:
15631   case Expr::CXXStaticCastExprClass:
15632   case Expr::CXXReinterpretCastExprClass:
15633   case Expr::CXXConstCastExprClass:
15634   case Expr::ObjCBridgedCastExprClass: {
15635     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15636     if (isa<ExplicitCastExpr>(E)) {
15637       if (const FloatingLiteral *FL
15638             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15639         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15640         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15641         APSInt IgnoredVal(DestWidth, !DestSigned);
15642         bool Ignored;
15643         // If the value does not fit in the destination type, the behavior is
15644         // undefined, so we are not required to treat it as a constant
15645         // expression.
15646         if (FL->getValue().convertToInteger(IgnoredVal,
15647                                             llvm::APFloat::rmTowardZero,
15648                                             &Ignored) & APFloat::opInvalidOp)
15649           return ICEDiag(IK_NotICE, E->getBeginLoc());
15650         return NoDiag();
15651       }
15652     }
15653     switch (cast<CastExpr>(E)->getCastKind()) {
15654     case CK_LValueToRValue:
15655     case CK_AtomicToNonAtomic:
15656     case CK_NonAtomicToAtomic:
15657     case CK_NoOp:
15658     case CK_IntegralToBoolean:
15659     case CK_IntegralCast:
15660       return CheckICE(SubExpr, Ctx);
15661     default:
15662       return ICEDiag(IK_NotICE, E->getBeginLoc());
15663     }
15664   }
15665   case Expr::BinaryConditionalOperatorClass: {
15666     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15667     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15668     if (CommonResult.Kind == IK_NotICE) return CommonResult;
15669     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15670     if (FalseResult.Kind == IK_NotICE) return FalseResult;
15671     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15672     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15673         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15674     return FalseResult;
15675   }
15676   case Expr::ConditionalOperatorClass: {
15677     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15678     // If the condition (ignoring parens) is a __builtin_constant_p call,
15679     // then only the true side is actually considered in an integer constant
15680     // expression, and it is fully evaluated.  This is an important GNU
15681     // extension.  See GCC PR38377 for discussion.
15682     if (const CallExpr *CallCE
15683         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15684       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15685         return CheckEvalInICE(E, Ctx);
15686     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15687     if (CondResult.Kind == IK_NotICE)
15688       return CondResult;
15689 
15690     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15691     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15692 
15693     if (TrueResult.Kind == IK_NotICE)
15694       return TrueResult;
15695     if (FalseResult.Kind == IK_NotICE)
15696       return FalseResult;
15697     if (CondResult.Kind == IK_ICEIfUnevaluated)
15698       return CondResult;
15699     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15700       return NoDiag();
15701     // Rare case where the diagnostics depend on which side is evaluated
15702     // Note that if we get here, CondResult is 0, and at least one of
15703     // TrueResult and FalseResult is non-zero.
15704     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15705       return FalseResult;
15706     return TrueResult;
15707   }
15708   case Expr::CXXDefaultArgExprClass:
15709     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15710   case Expr::CXXDefaultInitExprClass:
15711     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15712   case Expr::ChooseExprClass: {
15713     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15714   }
15715   case Expr::BuiltinBitCastExprClass: {
15716     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15717       return ICEDiag(IK_NotICE, E->getBeginLoc());
15718     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15719   }
15720   }
15721 
15722   llvm_unreachable("Invalid StmtClass!");
15723 }
15724 
15725 /// Evaluate an expression as a C++11 integral constant expression.
15726 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15727                                                     const Expr *E,
15728                                                     llvm::APSInt *Value,
15729                                                     SourceLocation *Loc) {
15730   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15731     if (Loc) *Loc = E->getExprLoc();
15732     return false;
15733   }
15734 
15735   APValue Result;
15736   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15737     return false;
15738 
15739   if (!Result.isInt()) {
15740     if (Loc) *Loc = E->getExprLoc();
15741     return false;
15742   }
15743 
15744   if (Value) *Value = Result.getInt();
15745   return true;
15746 }
15747 
15748 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15749                                  SourceLocation *Loc) const {
15750   assert(!isValueDependent() &&
15751          "Expression evaluator can't be called on a dependent expression.");
15752 
15753   if (Ctx.getLangOpts().CPlusPlus11)
15754     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15755 
15756   ICEDiag D = CheckICE(this, Ctx);
15757   if (D.Kind != IK_ICE) {
15758     if (Loc) *Loc = D.Loc;
15759     return false;
15760   }
15761   return true;
15762 }
15763 
15764 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15765                                                     SourceLocation *Loc,
15766                                                     bool isEvaluated) const {
15767   if (isValueDependent()) {
15768     // Expression evaluator can't succeed on a dependent expression.
15769     return None;
15770   }
15771 
15772   APSInt Value;
15773 
15774   if (Ctx.getLangOpts().CPlusPlus11) {
15775     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15776       return Value;
15777     return None;
15778   }
15779 
15780   if (!isIntegerConstantExpr(Ctx, Loc))
15781     return None;
15782 
15783   // The only possible side-effects here are due to UB discovered in the
15784   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15785   // required to treat the expression as an ICE, so we produce the folded
15786   // value.
15787   EvalResult ExprResult;
15788   Expr::EvalStatus Status;
15789   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15790   Info.InConstantContext = true;
15791 
15792   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15793     llvm_unreachable("ICE cannot be evaluated!");
15794 
15795   return ExprResult.Val.getInt();
15796 }
15797 
15798 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15799   assert(!isValueDependent() &&
15800          "Expression evaluator can't be called on a dependent expression.");
15801 
15802   return CheckICE(this, Ctx).Kind == IK_ICE;
15803 }
15804 
15805 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15806                                SourceLocation *Loc) const {
15807   assert(!isValueDependent() &&
15808          "Expression evaluator can't be called on a dependent expression.");
15809 
15810   // We support this checking in C++98 mode in order to diagnose compatibility
15811   // issues.
15812   assert(Ctx.getLangOpts().CPlusPlus);
15813 
15814   // Build evaluation settings.
15815   Expr::EvalStatus Status;
15816   SmallVector<PartialDiagnosticAt, 8> Diags;
15817   Status.Diag = &Diags;
15818   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15819 
15820   APValue Scratch;
15821   bool IsConstExpr =
15822       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15823       // FIXME: We don't produce a diagnostic for this, but the callers that
15824       // call us on arbitrary full-expressions should generally not care.
15825       Info.discardCleanups() && !Status.HasSideEffects;
15826 
15827   if (!Diags.empty()) {
15828     IsConstExpr = false;
15829     if (Loc) *Loc = Diags[0].first;
15830   } else if (!IsConstExpr) {
15831     // FIXME: This shouldn't happen.
15832     if (Loc) *Loc = getExprLoc();
15833   }
15834 
15835   return IsConstExpr;
15836 }
15837 
15838 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15839                                     const FunctionDecl *Callee,
15840                                     ArrayRef<const Expr*> Args,
15841                                     const Expr *This) const {
15842   assert(!isValueDependent() &&
15843          "Expression evaluator can't be called on a dependent expression.");
15844 
15845   Expr::EvalStatus Status;
15846   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15847   Info.InConstantContext = true;
15848 
15849   LValue ThisVal;
15850   const LValue *ThisPtr = nullptr;
15851   if (This) {
15852 #ifndef NDEBUG
15853     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15854     assert(MD && "Don't provide `this` for non-methods.");
15855     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15856 #endif
15857     if (!This->isValueDependent() &&
15858         EvaluateObjectArgument(Info, This, ThisVal) &&
15859         !Info.EvalStatus.HasSideEffects)
15860       ThisPtr = &ThisVal;
15861 
15862     // Ignore any side-effects from a failed evaluation. This is safe because
15863     // they can't interfere with any other argument evaluation.
15864     Info.EvalStatus.HasSideEffects = false;
15865   }
15866 
15867   CallRef Call = Info.CurrentCall->createCall(Callee);
15868   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15869        I != E; ++I) {
15870     unsigned Idx = I - Args.begin();
15871     if (Idx >= Callee->getNumParams())
15872       break;
15873     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15874     if ((*I)->isValueDependent() ||
15875         !EvaluateCallArg(PVD, *I, Call, Info) ||
15876         Info.EvalStatus.HasSideEffects) {
15877       // If evaluation fails, throw away the argument entirely.
15878       if (APValue *Slot = Info.getParamSlot(Call, PVD))
15879         *Slot = APValue();
15880     }
15881 
15882     // Ignore any side-effects from a failed evaluation. This is safe because
15883     // they can't interfere with any other argument evaluation.
15884     Info.EvalStatus.HasSideEffects = false;
15885   }
15886 
15887   // Parameter cleanups happen in the caller and are not part of this
15888   // evaluation.
15889   Info.discardCleanups();
15890   Info.EvalStatus.HasSideEffects = false;
15891 
15892   // Build fake call to Callee.
15893   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15894   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15895   FullExpressionRAII Scope(Info);
15896   return Evaluate(Value, Info, this) && Scope.destroy() &&
15897          !Info.EvalStatus.HasSideEffects;
15898 }
15899 
15900 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15901                                    SmallVectorImpl<
15902                                      PartialDiagnosticAt> &Diags) {
15903   // FIXME: It would be useful to check constexpr function templates, but at the
15904   // moment the constant expression evaluator cannot cope with the non-rigorous
15905   // ASTs which we build for dependent expressions.
15906   if (FD->isDependentContext())
15907     return true;
15908 
15909   Expr::EvalStatus Status;
15910   Status.Diag = &Diags;
15911 
15912   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15913   Info.InConstantContext = true;
15914   Info.CheckingPotentialConstantExpression = true;
15915 
15916   // The constexpr VM attempts to compile all methods to bytecode here.
15917   if (Info.EnableNewConstInterp) {
15918     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15919     return Diags.empty();
15920   }
15921 
15922   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15923   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15924 
15925   // Fabricate an arbitrary expression on the stack and pretend that it
15926   // is a temporary being used as the 'this' pointer.
15927   LValue This;
15928   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15929   This.set({&VIE, Info.CurrentCall->Index});
15930 
15931   ArrayRef<const Expr*> Args;
15932 
15933   APValue Scratch;
15934   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15935     // Evaluate the call as a constant initializer, to allow the construction
15936     // of objects of non-literal types.
15937     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15938     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15939   } else {
15940     SourceLocation Loc = FD->getLocation();
15941     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15942                        Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15943   }
15944 
15945   return Diags.empty();
15946 }
15947 
15948 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15949                                               const FunctionDecl *FD,
15950                                               SmallVectorImpl<
15951                                                 PartialDiagnosticAt> &Diags) {
15952   assert(!E->isValueDependent() &&
15953          "Expression evaluator can't be called on a dependent expression.");
15954 
15955   Expr::EvalStatus Status;
15956   Status.Diag = &Diags;
15957 
15958   EvalInfo Info(FD->getASTContext(), Status,
15959                 EvalInfo::EM_ConstantExpressionUnevaluated);
15960   Info.InConstantContext = true;
15961   Info.CheckingPotentialConstantExpression = true;
15962 
15963   // Fabricate a call stack frame to give the arguments a plausible cover story.
15964   CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15965 
15966   APValue ResultScratch;
15967   Evaluate(ResultScratch, Info, E);
15968   return Diags.empty();
15969 }
15970 
15971 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15972                                  unsigned Type) const {
15973   if (!getType()->isPointerType())
15974     return false;
15975 
15976   Expr::EvalStatus Status;
15977   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15978   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15979 }
15980 
15981 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
15982                                   EvalInfo &Info) {
15983   if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
15984     return false;
15985 
15986   LValue String;
15987 
15988   if (!EvaluatePointer(E, String, Info))
15989     return false;
15990 
15991   QualType CharTy = E->getType()->getPointeeType();
15992 
15993   // Fast path: if it's a string literal, search the string value.
15994   if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
15995           String.getLValueBase().dyn_cast<const Expr *>())) {
15996     StringRef Str = S->getBytes();
15997     int64_t Off = String.Offset.getQuantity();
15998     if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
15999         S->getCharByteWidth() == 1 &&
16000         // FIXME: Add fast-path for wchar_t too.
16001         Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16002       Str = Str.substr(Off);
16003 
16004       StringRef::size_type Pos = Str.find(0);
16005       if (Pos != StringRef::npos)
16006         Str = Str.substr(0, Pos);
16007 
16008       Result = Str.size();
16009       return true;
16010     }
16011 
16012     // Fall through to slow path.
16013   }
16014 
16015   // Slow path: scan the bytes of the string looking for the terminating 0.
16016   for (uint64_t Strlen = 0; /**/; ++Strlen) {
16017     APValue Char;
16018     if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16019         !Char.isInt())
16020       return false;
16021     if (!Char.getInt()) {
16022       Result = Strlen;
16023       return true;
16024     }
16025     if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16026       return false;
16027   }
16028 }
16029 
16030 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16031   Expr::EvalStatus Status;
16032   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16033   return EvaluateBuiltinStrLen(this, Result, Info);
16034 }
16035