1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 // * A success/failure flag indicating whether constant folding was successful.
14 // This is the 'bool' return value used by most of the code in this file. A
15 // 'false' return value indicates that constant folding has failed, and any
16 // appropriate diagnostic has already been produced.
17 //
18 // * An evaluated result, valid only if constant folding has not failed.
19 //
20 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 // where it is possible to determine the evaluated result regardless.
23 //
24 // * A set of notes indicating why the evaluation was not a constant expression
25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 // too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62
63 #define DEBUG_TYPE "exprconstant"
64
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72
73 namespace {
74 struct LValue;
75 class CallStackFrame;
76 class EvalInfo;
77
78 using SourceLocExprScopeGuard =
79 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80
getType(APValue::LValueBase B)81 static QualType getType(APValue::LValueBase B) {
82 return B.getType();
83 }
84
85 /// Get an LValue path entry, which is known to not be an array index, as a
86 /// field declaration.
getAsField(APValue::LValuePathEntry E)87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89 }
90 /// Get an LValue path entry, which is known to not be an array index, as a
91 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94 }
95 /// Determine whether this LValue path entry for a base class names a virtual
96 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98 return E.getAsBaseOrMember().getInt();
99 }
100
101 /// Given an expression, determine the type used to store the result of
102 /// evaluating that expression.
getStorageType(const ASTContext & Ctx,const Expr * E)103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104 if (E->isPRValue())
105 return E->getType();
106 return Ctx.getLValueReferenceType(E->getType());
107 }
108
109 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112 return DirectCallee->getAttr<AllocSizeAttr>();
113 if (const Decl *IndirectCallee = CE->getCalleeDecl())
114 return IndirectCallee->getAttr<AllocSizeAttr>();
115 return nullptr;
116 }
117
118 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119 /// This will look through a single cast.
120 ///
121 /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)122 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123 if (!E->getType()->isPointerType())
124 return nullptr;
125
126 E = E->IgnoreParens();
127 // If we're doing a variable assignment from e.g. malloc(N), there will
128 // probably be a cast of some kind. In exotic cases, we might also see a
129 // top-level ExprWithCleanups. Ignore them either way.
130 if (const auto *FE = dyn_cast<FullExpr>(E))
131 E = FE->getSubExpr()->IgnoreParens();
132
133 if (const auto *Cast = dyn_cast<CastExpr>(E))
134 E = Cast->getSubExpr()->IgnoreParens();
135
136 if (const auto *CE = dyn_cast<CallExpr>(E))
137 return getAllocSizeAttr(CE) ? CE : nullptr;
138 return nullptr;
139 }
140
141 /// Determines whether or not the given Base contains a call to a function
142 /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)143 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144 const auto *E = Base.dyn_cast<const Expr *>();
145 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146 }
147
148 /// Determines whether the given kind of constant expression is only ever
149 /// used for name mangling. If so, it's permitted to reference things that we
150 /// can't generate code for (in particular, dllimported functions).
isForManglingOnly(ConstantExprKind Kind)151 static bool isForManglingOnly(ConstantExprKind Kind) {
152 switch (Kind) {
153 case ConstantExprKind::Normal:
154 case ConstantExprKind::ClassTemplateArgument:
155 case ConstantExprKind::ImmediateInvocation:
156 // Note that non-type template arguments of class type are emitted as
157 // template parameter objects.
158 return false;
159
160 case ConstantExprKind::NonClassTemplateArgument:
161 return true;
162 }
163 llvm_unreachable("unknown ConstantExprKind");
164 }
165
isTemplateArgument(ConstantExprKind Kind)166 static bool isTemplateArgument(ConstantExprKind Kind) {
167 switch (Kind) {
168 case ConstantExprKind::Normal:
169 case ConstantExprKind::ImmediateInvocation:
170 return false;
171
172 case ConstantExprKind::ClassTemplateArgument:
173 case ConstantExprKind::NonClassTemplateArgument:
174 return true;
175 }
176 llvm_unreachable("unknown ConstantExprKind");
177 }
178
179 /// The bound to claim that an array of unknown bound has.
180 /// The value in MostDerivedArraySize is undefined in this case. So, set it
181 /// to an arbitrary value that's likely to loudly break things if it's used.
182 static const uint64_t AssumedSizeForUnsizedArray =
183 std::numeric_limits<uint64_t>::max() / 2;
184
185 /// Determines if an LValue with the given LValueBase will have an unsized
186 /// array in its designator.
187 /// Find the path length and type of the most-derived subobject in the given
188 /// path, and find the size of the containing array, if any.
189 static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)190 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191 ArrayRef<APValue::LValuePathEntry> Path,
192 uint64_t &ArraySize, QualType &Type, bool &IsArray,
193 bool &FirstEntryIsUnsizedArray) {
194 // This only accepts LValueBases from APValues, and APValues don't support
195 // arrays that lack size info.
196 assert(!isBaseAnAllocSizeCall(Base) &&
197 "Unsized arrays shouldn't appear here");
198 unsigned MostDerivedLength = 0;
199 Type = getType(Base);
200
201 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202 if (Type->isArrayType()) {
203 const ArrayType *AT = Ctx.getAsArrayType(Type);
204 Type = AT->getElementType();
205 MostDerivedLength = I + 1;
206 IsArray = true;
207
208 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209 ArraySize = CAT->getSize().getZExtValue();
210 } else {
211 assert(I == 0 && "unexpected unsized array designator");
212 FirstEntryIsUnsizedArray = true;
213 ArraySize = AssumedSizeForUnsizedArray;
214 }
215 } else if (Type->isAnyComplexType()) {
216 const ComplexType *CT = Type->castAs<ComplexType>();
217 Type = CT->getElementType();
218 ArraySize = 2;
219 MostDerivedLength = I + 1;
220 IsArray = true;
221 } else if (const FieldDecl *FD = getAsField(Path[I])) {
222 Type = FD->getType();
223 ArraySize = 0;
224 MostDerivedLength = I + 1;
225 IsArray = false;
226 } else {
227 // Path[I] describes a base class.
228 ArraySize = 0;
229 IsArray = false;
230 }
231 }
232 return MostDerivedLength;
233 }
234
235 /// A path from a glvalue to a subobject of that glvalue.
236 struct SubobjectDesignator {
237 /// True if the subobject was named in a manner not supported by C++11. Such
238 /// lvalues can still be folded, but they are not core constant expressions
239 /// and we cannot perform lvalue-to-rvalue conversions on them.
240 unsigned Invalid : 1;
241
242 /// Is this a pointer one past the end of an object?
243 unsigned IsOnePastTheEnd : 1;
244
245 /// Indicator of whether the first entry is an unsized array.
246 unsigned FirstEntryIsAnUnsizedArray : 1;
247
248 /// Indicator of whether the most-derived object is an array element.
249 unsigned MostDerivedIsArrayElement : 1;
250
251 /// The length of the path to the most-derived object of which this is a
252 /// subobject.
253 unsigned MostDerivedPathLength : 28;
254
255 /// The size of the array of which the most-derived object is an element.
256 /// This will always be 0 if the most-derived object is not an array
257 /// element. 0 is not an indicator of whether or not the most-derived object
258 /// is an array, however, because 0-length arrays are allowed.
259 ///
260 /// If the current array is an unsized array, the value of this is
261 /// undefined.
262 uint64_t MostDerivedArraySize;
263
264 /// The type of the most derived object referred to by this address.
265 QualType MostDerivedType;
266
267 typedef APValue::LValuePathEntry PathEntry;
268
269 /// The entries on the path from the glvalue to the designated subobject.
270 SmallVector<PathEntry, 8> Entries;
271
SubobjectDesignator__anon7a1fdcea0111::SubobjectDesignator272 SubobjectDesignator() : Invalid(true) {}
273
SubobjectDesignator__anon7a1fdcea0111::SubobjectDesignator274 explicit SubobjectDesignator(QualType T)
275 : Invalid(false), IsOnePastTheEnd(false),
276 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277 MostDerivedPathLength(0), MostDerivedArraySize(0),
278 MostDerivedType(T) {}
279
SubobjectDesignator__anon7a1fdcea0111::SubobjectDesignator280 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283 MostDerivedPathLength(0), MostDerivedArraySize(0) {
284 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285 if (!Invalid) {
286 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287 ArrayRef<PathEntry> VEntries = V.getLValuePath();
288 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289 if (V.getLValueBase()) {
290 bool IsArray = false;
291 bool FirstIsUnsizedArray = false;
292 MostDerivedPathLength = findMostDerivedSubobject(
293 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294 MostDerivedType, IsArray, FirstIsUnsizedArray);
295 MostDerivedIsArrayElement = IsArray;
296 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297 }
298 }
299 }
300
truncate__anon7a1fdcea0111::SubobjectDesignator301 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302 unsigned NewLength) {
303 if (Invalid)
304 return;
305
306 assert(Base && "cannot truncate path for null pointer");
307 assert(NewLength <= Entries.size() && "not a truncation");
308
309 if (NewLength == Entries.size())
310 return;
311 Entries.resize(NewLength);
312
313 bool IsArray = false;
314 bool FirstIsUnsizedArray = false;
315 MostDerivedPathLength = findMostDerivedSubobject(
316 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317 FirstIsUnsizedArray);
318 MostDerivedIsArrayElement = IsArray;
319 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320 }
321
setInvalid__anon7a1fdcea0111::SubobjectDesignator322 void setInvalid() {
323 Invalid = true;
324 Entries.clear();
325 }
326
327 /// Determine whether the most derived subobject is an array without a
328 /// known bound.
isMostDerivedAnUnsizedArray__anon7a1fdcea0111::SubobjectDesignator329 bool isMostDerivedAnUnsizedArray() const {
330 assert(!Invalid && "Calling this makes no sense on invalid designators");
331 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332 }
333
334 /// Determine what the most derived array's size is. Results in an assertion
335 /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anon7a1fdcea0111::SubobjectDesignator336 uint64_t getMostDerivedArraySize() const {
337 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338 return MostDerivedArraySize;
339 }
340
341 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon7a1fdcea0111::SubobjectDesignator342 bool isOnePastTheEnd() const {
343 assert(!Invalid);
344 if (IsOnePastTheEnd)
345 return true;
346 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348 MostDerivedArraySize)
349 return true;
350 return false;
351 }
352
353 /// Get the range of valid index adjustments in the form
354 /// {maximum value that can be subtracted from this pointer,
355 /// maximum value that can be added to this pointer}
validIndexAdjustments__anon7a1fdcea0111::SubobjectDesignator356 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357 if (Invalid || isMostDerivedAnUnsizedArray())
358 return {0, 0};
359
360 // [expr.add]p4: For the purposes of these operators, a pointer to a
361 // nonarray object behaves the same as a pointer to the first element of
362 // an array of length one with the type of the object as its element type.
363 bool IsArray = MostDerivedPathLength == Entries.size() &&
364 MostDerivedIsArrayElement;
365 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366 : (uint64_t)IsOnePastTheEnd;
367 uint64_t ArraySize =
368 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369 return {ArrayIndex, ArraySize - ArrayIndex};
370 }
371
372 /// Check that this refers to a valid subobject.
isValidSubobject__anon7a1fdcea0111::SubobjectDesignator373 bool isValidSubobject() const {
374 if (Invalid)
375 return false;
376 return !isOnePastTheEnd();
377 }
378 /// Check that this refers to a valid subobject, and if not, produce a
379 /// relevant diagnostic and set the designator as invalid.
380 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381
382 /// Get the type of the designated object.
getType__anon7a1fdcea0111::SubobjectDesignator383 QualType getType(ASTContext &Ctx) const {
384 assert(!Invalid && "invalid designator has no subobject type");
385 return MostDerivedPathLength == Entries.size()
386 ? MostDerivedType
387 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388 }
389
390 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon7a1fdcea0111::SubobjectDesignator391 void addArrayUnchecked(const ConstantArrayType *CAT) {
392 Entries.push_back(PathEntry::ArrayIndex(0));
393
394 // This is a most-derived object.
395 MostDerivedType = CAT->getElementType();
396 MostDerivedIsArrayElement = true;
397 MostDerivedArraySize = CAT->getSize().getZExtValue();
398 MostDerivedPathLength = Entries.size();
399 }
400 /// Update this designator to refer to the first element within the array of
401 /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anon7a1fdcea0111::SubobjectDesignator402 void addUnsizedArrayUnchecked(QualType ElemTy) {
403 Entries.push_back(PathEntry::ArrayIndex(0));
404
405 MostDerivedType = ElemTy;
406 MostDerivedIsArrayElement = true;
407 // The value in MostDerivedArraySize is undefined in this case. So, set it
408 // to an arbitrary value that's likely to loudly break things if it's
409 // used.
410 MostDerivedArraySize = AssumedSizeForUnsizedArray;
411 MostDerivedPathLength = Entries.size();
412 }
413 /// Update this designator to refer to the given base or member of this
414 /// object.
addDeclUnchecked__anon7a1fdcea0111::SubobjectDesignator415 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417
418 // If this isn't a base class, it's a new most-derived object.
419 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420 MostDerivedType = FD->getType();
421 MostDerivedIsArrayElement = false;
422 MostDerivedArraySize = 0;
423 MostDerivedPathLength = Entries.size();
424 }
425 }
426 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon7a1fdcea0111::SubobjectDesignator427 void addComplexUnchecked(QualType EltTy, bool Imag) {
428 Entries.push_back(PathEntry::ArrayIndex(Imag));
429
430 // This is technically a most-derived object, though in practice this
431 // is unlikely to matter.
432 MostDerivedType = EltTy;
433 MostDerivedIsArrayElement = true;
434 MostDerivedArraySize = 2;
435 MostDerivedPathLength = Entries.size();
436 }
437 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439 const APSInt &N);
440 /// Add N to the address of this subobject.
adjustIndex__anon7a1fdcea0111::SubobjectDesignator441 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442 if (Invalid || !N) return;
443 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444 if (isMostDerivedAnUnsizedArray()) {
445 diagnoseUnsizedArrayPointerArithmetic(Info, E);
446 // Can't verify -- trust that the user is doing the right thing (or if
447 // not, trust that the caller will catch the bad behavior).
448 // FIXME: Should we reject if this overflows, at least?
449 Entries.back() = PathEntry::ArrayIndex(
450 Entries.back().getAsArrayIndex() + TruncatedN);
451 return;
452 }
453
454 // [expr.add]p4: For the purposes of these operators, a pointer to a
455 // nonarray object behaves the same as a pointer to the first element of
456 // an array of length one with the type of the object as its element type.
457 bool IsArray = MostDerivedPathLength == Entries.size() &&
458 MostDerivedIsArrayElement;
459 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460 : (uint64_t)IsOnePastTheEnd;
461 uint64_t ArraySize =
462 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463
464 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465 // Calculate the actual index in a wide enough type, so we can include
466 // it in the note.
467 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468 (llvm::APInt&)N += ArrayIndex;
469 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470 diagnosePointerArithmetic(Info, E, N);
471 setInvalid();
472 return;
473 }
474
475 ArrayIndex += TruncatedN;
476 assert(ArrayIndex <= ArraySize &&
477 "bounds check succeeded for out-of-bounds index");
478
479 if (IsArray)
480 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481 else
482 IsOnePastTheEnd = (ArrayIndex != 0);
483 }
484 };
485
486 /// A scope at the end of which an object can need to be destroyed.
487 enum class ScopeKind {
488 Block,
489 FullExpression,
490 Call
491 };
492
493 /// A reference to a particular call and its arguments.
494 struct CallRef {
CallRef__anon7a1fdcea0111::CallRef495 CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef__anon7a1fdcea0111::CallRef496 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498
operator bool__anon7a1fdcea0111::CallRef499 explicit operator bool() const { return OrigCallee; }
500
501 /// Get the parameter that the caller initialized, corresponding to the
502 /// given parameter in the callee.
getOrigParam__anon7a1fdcea0111::CallRef503 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505 : PVD;
506 }
507
508 /// The callee at the point where the arguments were evaluated. This might
509 /// be different from the actual callee (a different redeclaration, or a
510 /// virtual override), but this function's parameters are the ones that
511 /// appear in the parameter map.
512 const FunctionDecl *OrigCallee;
513 /// The call index of the frame that holds the argument values.
514 unsigned CallIndex;
515 /// The version of the parameters corresponding to this call.
516 unsigned Version;
517 };
518
519 /// A stack frame in the constexpr call stack.
520 class CallStackFrame : public interp::Frame {
521 public:
522 EvalInfo &Info;
523
524 /// Parent - The caller of this stack frame.
525 CallStackFrame *Caller;
526
527 /// Callee - The function which was called.
528 const FunctionDecl *Callee;
529
530 /// This - The binding for the this pointer in this call, if any.
531 const LValue *This;
532
533 /// Information on how to find the arguments to this call. Our arguments
534 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535 /// key and this value as the version.
536 CallRef Arguments;
537
538 /// Source location information about the default argument or default
539 /// initializer expression we're evaluating, if any.
540 CurrentSourceLocExprScope CurSourceLocExprScope;
541
542 // Note that we intentionally use std::map here so that references to
543 // values are stable.
544 typedef std::pair<const void *, unsigned> MapKeyTy;
545 typedef std::map<MapKeyTy, APValue> MapTy;
546 /// Temporaries - Temporary lvalues materialized within this stack frame.
547 MapTy Temporaries;
548
549 /// CallLoc - The location of the call expression for this call.
550 SourceLocation CallLoc;
551
552 /// Index - The call index of this call.
553 unsigned Index;
554
555 /// The stack of integers for tracking version numbers for temporaries.
556 SmallVector<unsigned, 2> TempVersionStack = {1};
557 unsigned CurTempVersion = TempVersionStack.back();
558
getTempVersion() const559 unsigned getTempVersion() const { return TempVersionStack.back(); }
560
pushTempVersion()561 void pushTempVersion() {
562 TempVersionStack.push_back(++CurTempVersion);
563 }
564
popTempVersion()565 void popTempVersion() {
566 TempVersionStack.pop_back();
567 }
568
createCall(const FunctionDecl * Callee)569 CallRef createCall(const FunctionDecl *Callee) {
570 return {Callee, Index, ++CurTempVersion};
571 }
572
573 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574 // on the overall stack usage of deeply-recursing constexpr evaluations.
575 // (We should cache this map rather than recomputing it repeatedly.)
576 // But let's try this and see how it goes; we can look into caching the map
577 // as a later change.
578
579 /// LambdaCaptureFields - Mapping from captured variables/this to
580 /// corresponding data members in the closure class.
581 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582 FieldDecl *LambdaThisCaptureField;
583
584 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585 const FunctionDecl *Callee, const LValue *This,
586 CallRef Arguments);
587 ~CallStackFrame();
588
589 // Return the temporary for Key whose version number is Version.
getTemporary(const void * Key,unsigned Version)590 APValue *getTemporary(const void *Key, unsigned Version) {
591 MapKeyTy KV(Key, Version);
592 auto LB = Temporaries.lower_bound(KV);
593 if (LB != Temporaries.end() && LB->first == KV)
594 return &LB->second;
595 // Pair (Key,Version) wasn't found in the map. Check that no elements
596 // in the map have 'Key' as their key.
597 assert((LB == Temporaries.end() || LB->first.first != Key) &&
598 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
599 "Element with key 'Key' found in map");
600 return nullptr;
601 }
602
603 // Return the current temporary for Key in the map.
getCurrentTemporary(const void * Key)604 APValue *getCurrentTemporary(const void *Key) {
605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607 return &std::prev(UB)->second;
608 return nullptr;
609 }
610
611 // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion(const void * Key) const612 unsigned getCurrentTemporaryVersion(const void *Key) const {
613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615 return std::prev(UB)->first.second;
616 return 0;
617 }
618
619 /// Allocate storage for an object of type T in this stack frame.
620 /// Populates LV with a handle to the created object. Key identifies
621 /// the temporary within the stack frame, and must not be reused without
622 /// bumping the temporary version number.
623 template<typename KeyT>
624 APValue &createTemporary(const KeyT *Key, QualType T,
625 ScopeKind Scope, LValue &LV);
626
627 /// Allocate storage for a parameter of a function call made in this frame.
628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629
630 void describe(llvm::raw_ostream &OS) override;
631
getCaller() const632 Frame *getCaller() const override { return Caller; }
getCallLocation() const633 SourceLocation getCallLocation() const override { return CallLoc; }
getCallee() const634 const FunctionDecl *getCallee() const override { return Callee; }
635
isStdFunction() const636 bool isStdFunction() const {
637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638 if (DC->isStdNamespace())
639 return true;
640 return false;
641 }
642
643 private:
644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645 ScopeKind Scope);
646 };
647
648 /// Temporarily override 'this'.
649 class ThisOverrideRAII {
650 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652 : Frame(Frame), OldThis(Frame.This) {
653 if (Enable)
654 Frame.This = NewThis;
655 }
~ThisOverrideRAII()656 ~ThisOverrideRAII() {
657 Frame.This = OldThis;
658 }
659 private:
660 CallStackFrame &Frame;
661 const LValue *OldThis;
662 };
663 }
664
665 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666 const LValue &This, QualType ThisType);
667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668 APValue::LValueBase LVBase, APValue &Value,
669 QualType T);
670
671 namespace {
672 /// A cleanup, and a flag indicating whether it is lifetime-extended.
673 class Cleanup {
674 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675 APValue::LValueBase Base;
676 QualType T;
677
678 public:
Cleanup(APValue * Val,APValue::LValueBase Base,QualType T,ScopeKind Scope)679 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680 ScopeKind Scope)
681 : Value(Val, Scope), Base(Base), T(T) {}
682
683 /// Determine whether this cleanup should be performed at the end of the
684 /// given kind of scope.
isDestroyedAtEndOf(ScopeKind K) const685 bool isDestroyedAtEndOf(ScopeKind K) const {
686 return (int)Value.getInt() >= (int)K;
687 }
endLifetime(EvalInfo & Info,bool RunDestructors)688 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689 if (RunDestructors) {
690 SourceLocation Loc;
691 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692 Loc = VD->getLocation();
693 else if (const Expr *E = Base.dyn_cast<const Expr*>())
694 Loc = E->getExprLoc();
695 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696 }
697 *Value.getPointer() = APValue();
698 return true;
699 }
700
hasSideEffect()701 bool hasSideEffect() {
702 return T.isDestructedType();
703 }
704 };
705
706 /// A reference to an object whose construction we are currently evaluating.
707 struct ObjectUnderConstruction {
708 APValue::LValueBase Base;
709 ArrayRef<APValue::LValuePathEntry> Path;
operator ==(const ObjectUnderConstruction & LHS,const ObjectUnderConstruction & RHS)710 friend bool operator==(const ObjectUnderConstruction &LHS,
711 const ObjectUnderConstruction &RHS) {
712 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713 }
hash_value(const ObjectUnderConstruction & Obj)714 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715 return llvm::hash_combine(Obj.Base, Obj.Path);
716 }
717 };
718 enum class ConstructionPhase {
719 None,
720 Bases,
721 AfterBases,
722 AfterFields,
723 Destroying,
724 DestroyingBases
725 };
726 }
727
728 namespace llvm {
729 template<> struct DenseMapInfo<ObjectUnderConstruction> {
730 using Base = DenseMapInfo<APValue::LValueBase>;
getEmptyKeyllvm::DenseMapInfo731 static ObjectUnderConstruction getEmptyKey() {
732 return {Base::getEmptyKey(), {}}; }
getTombstoneKeyllvm::DenseMapInfo733 static ObjectUnderConstruction getTombstoneKey() {
734 return {Base::getTombstoneKey(), {}};
735 }
getHashValuellvm::DenseMapInfo736 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737 return hash_value(Object);
738 }
isEqualllvm::DenseMapInfo739 static bool isEqual(const ObjectUnderConstruction &LHS,
740 const ObjectUnderConstruction &RHS) {
741 return LHS == RHS;
742 }
743 };
744 }
745
746 namespace {
747 /// A dynamically-allocated heap object.
748 struct DynAlloc {
749 /// The value of this heap-allocated object.
750 APValue Value;
751 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752 /// or a CallExpr (the latter is for direct calls to operator new inside
753 /// std::allocator<T>::allocate).
754 const Expr *AllocExpr = nullptr;
755
756 enum Kind {
757 New,
758 ArrayNew,
759 StdAllocator
760 };
761
762 /// Get the kind of the allocation. This must match between allocation
763 /// and deallocation.
getKind__anon7a1fdcea0311::DynAlloc764 Kind getKind() const {
765 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766 return NE->isArray() ? ArrayNew : New;
767 assert(isa<CallExpr>(AllocExpr));
768 return StdAllocator;
769 }
770 };
771
772 struct DynAllocOrder {
operator ()__anon7a1fdcea0311::DynAllocOrder773 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774 return L.getIndex() < R.getIndex();
775 }
776 };
777
778 /// EvalInfo - This is a private struct used by the evaluator to capture
779 /// information about a subexpression as it is folded. It retains information
780 /// about the AST context, but also maintains information about the folded
781 /// expression.
782 ///
783 /// If an expression could be evaluated, it is still possible it is not a C
784 /// "integer constant expression" or constant expression. If not, this struct
785 /// captures information about how and why not.
786 ///
787 /// One bit of information passed *into* the request for constant folding
788 /// indicates whether the subexpression is "evaluated" or not according to C
789 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
790 /// evaluate the expression regardless of what the RHS is, but C only allows
791 /// certain things in certain situations.
792 class EvalInfo : public interp::State {
793 public:
794 ASTContext &Ctx;
795
796 /// EvalStatus - Contains information about the evaluation.
797 Expr::EvalStatus &EvalStatus;
798
799 /// CurrentCall - The top of the constexpr call stack.
800 CallStackFrame *CurrentCall;
801
802 /// CallStackDepth - The number of calls in the call stack right now.
803 unsigned CallStackDepth;
804
805 /// NextCallIndex - The next call index to assign.
806 unsigned NextCallIndex;
807
808 /// StepsLeft - The remaining number of evaluation steps we're permitted
809 /// to perform. This is essentially a limit for the number of statements
810 /// we will evaluate.
811 unsigned StepsLeft;
812
813 /// Enable the experimental new constant interpreter. If an expression is
814 /// not supported by the interpreter, an error is triggered.
815 bool EnableNewConstInterp;
816
817 /// BottomFrame - The frame in which evaluation started. This must be
818 /// initialized after CurrentCall and CallStackDepth.
819 CallStackFrame BottomFrame;
820
821 /// A stack of values whose lifetimes end at the end of some surrounding
822 /// evaluation frame.
823 llvm::SmallVector<Cleanup, 16> CleanupStack;
824
825 /// EvaluatingDecl - This is the declaration whose initializer is being
826 /// evaluated, if any.
827 APValue::LValueBase EvaluatingDecl;
828
829 enum class EvaluatingDeclKind {
830 None,
831 /// We're evaluating the construction of EvaluatingDecl.
832 Ctor,
833 /// We're evaluating the destruction of EvaluatingDecl.
834 Dtor,
835 };
836 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837
838 /// EvaluatingDeclValue - This is the value being constructed for the
839 /// declaration whose initializer is being evaluated, if any.
840 APValue *EvaluatingDeclValue;
841
842 /// Set of objects that are currently being constructed.
843 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844 ObjectsUnderConstruction;
845
846 /// Current heap allocations, along with the location where each was
847 /// allocated. We use std::map here because we need stable addresses
848 /// for the stored APValues.
849 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850
851 /// The number of heap allocations performed so far in this evaluation.
852 unsigned NumHeapAllocs = 0;
853
854 struct EvaluatingConstructorRAII {
855 EvalInfo &EI;
856 ObjectUnderConstruction Object;
857 bool DidInsert;
EvaluatingConstructorRAII__anon7a1fdcea0311::EvalInfo::EvaluatingConstructorRAII858 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859 bool HasBases)
860 : EI(EI), Object(Object) {
861 DidInsert =
862 EI.ObjectsUnderConstruction
863 .insert({Object, HasBases ? ConstructionPhase::Bases
864 : ConstructionPhase::AfterBases})
865 .second;
866 }
finishedConstructingBases__anon7a1fdcea0311::EvalInfo::EvaluatingConstructorRAII867 void finishedConstructingBases() {
868 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869 }
finishedConstructingFields__anon7a1fdcea0311::EvalInfo::EvaluatingConstructorRAII870 void finishedConstructingFields() {
871 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872 }
~EvaluatingConstructorRAII__anon7a1fdcea0311::EvalInfo::EvaluatingConstructorRAII873 ~EvaluatingConstructorRAII() {
874 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875 }
876 };
877
878 struct EvaluatingDestructorRAII {
879 EvalInfo &EI;
880 ObjectUnderConstruction Object;
881 bool DidInsert;
EvaluatingDestructorRAII__anon7a1fdcea0311::EvalInfo::EvaluatingDestructorRAII882 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883 : EI(EI), Object(Object) {
884 DidInsert = EI.ObjectsUnderConstruction
885 .insert({Object, ConstructionPhase::Destroying})
886 .second;
887 }
startedDestroyingBases__anon7a1fdcea0311::EvalInfo::EvaluatingDestructorRAII888 void startedDestroyingBases() {
889 EI.ObjectsUnderConstruction[Object] =
890 ConstructionPhase::DestroyingBases;
891 }
~EvaluatingDestructorRAII__anon7a1fdcea0311::EvalInfo::EvaluatingDestructorRAII892 ~EvaluatingDestructorRAII() {
893 if (DidInsert)
894 EI.ObjectsUnderConstruction.erase(Object);
895 }
896 };
897
898 ConstructionPhase
isEvaluatingCtorDtor(APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path)899 isEvaluatingCtorDtor(APValue::LValueBase Base,
900 ArrayRef<APValue::LValuePathEntry> Path) {
901 return ObjectsUnderConstruction.lookup({Base, Path});
902 }
903
904 /// If we're currently speculatively evaluating, the outermost call stack
905 /// depth at which we can mutate state, otherwise 0.
906 unsigned SpeculativeEvaluationDepth = 0;
907
908 /// The current array initialization index, if we're performing array
909 /// initialization.
910 uint64_t ArrayInitIndex = -1;
911
912 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913 /// notes attached to it will also be stored, otherwise they will not be.
914 bool HasActiveDiagnostic;
915
916 /// Have we emitted a diagnostic explaining why we couldn't constant
917 /// fold (not just why it's not strictly a constant expression)?
918 bool HasFoldFailureDiagnostic;
919
920 /// Whether or not we're in a context where the front end requires a
921 /// constant value.
922 bool InConstantContext;
923
924 /// Whether we're checking that an expression is a potential constant
925 /// expression. If so, do not fail on constructs that could become constant
926 /// later on (such as a use of an undefined global).
927 bool CheckingPotentialConstantExpression = false;
928
929 /// Whether we're checking for an expression that has undefined behavior.
930 /// If so, we will produce warnings if we encounter an operation that is
931 /// always undefined.
932 ///
933 /// Note that we still need to evaluate the expression normally when this
934 /// is set; this is used when evaluating ICEs in C.
935 bool CheckingForUndefinedBehavior = false;
936
937 enum EvaluationMode {
938 /// Evaluate as a constant expression. Stop if we find that the expression
939 /// is not a constant expression.
940 EM_ConstantExpression,
941
942 /// Evaluate as a constant expression. Stop if we find that the expression
943 /// is not a constant expression. Some expressions can be retried in the
944 /// optimizer if we don't constant fold them here, but in an unevaluated
945 /// context we try to fold them immediately since the optimizer never
946 /// gets a chance to look at it.
947 EM_ConstantExpressionUnevaluated,
948
949 /// Fold the expression to a constant. Stop if we hit a side-effect that
950 /// we can't model.
951 EM_ConstantFold,
952
953 /// Evaluate in any way we know how. Don't worry about side-effects that
954 /// can't be modeled.
955 EM_IgnoreSideEffects,
956 } EvalMode;
957
958 /// Are we checking whether the expression is a potential constant
959 /// expression?
checkingPotentialConstantExpression() const960 bool checkingPotentialConstantExpression() const override {
961 return CheckingPotentialConstantExpression;
962 }
963
964 /// Are we checking an expression for overflow?
965 // FIXME: We should check for any kind of undefined or suspicious behavior
966 // in such constructs, not just overflow.
checkingForUndefinedBehavior() const967 bool checkingForUndefinedBehavior() const override {
968 return CheckingForUndefinedBehavior;
969 }
970
EvalInfo(const ASTContext & C,Expr::EvalStatus & S,EvaluationMode Mode)971 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973 CallStackDepth(0), NextCallIndex(1),
974 StepsLeft(C.getLangOpts().ConstexprStepLimit),
975 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977 EvaluatingDecl((const ValueDecl *)nullptr),
978 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979 HasFoldFailureDiagnostic(false), InConstantContext(false),
980 EvalMode(Mode) {}
981
~EvalInfo()982 ~EvalInfo() {
983 discardCleanups();
984 }
985
getCtx() const986 ASTContext &getCtx() const override { return Ctx; }
987
setEvaluatingDecl(APValue::LValueBase Base,APValue & Value,EvaluatingDeclKind EDK=EvaluatingDeclKind::Ctor)988 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
989 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
990 EvaluatingDecl = Base;
991 IsEvaluatingDecl = EDK;
992 EvaluatingDeclValue = &Value;
993 }
994
CheckCallLimit(SourceLocation Loc)995 bool CheckCallLimit(SourceLocation Loc) {
996 // Don't perform any constexpr calls (other than the call we're checking)
997 // when checking a potential constant expression.
998 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
999 return false;
1000 if (NextCallIndex == 0) {
1001 // NextCallIndex has wrapped around.
1002 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1003 return false;
1004 }
1005 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1006 return true;
1007 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1008 << getLangOpts().ConstexprCallDepth;
1009 return false;
1010 }
1011
1012 std::pair<CallStackFrame *, unsigned>
getCallFrameAndDepth(unsigned CallIndex)1013 getCallFrameAndDepth(unsigned CallIndex) {
1014 assert(CallIndex && "no call index in getCallFrameAndDepth");
1015 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1016 // be null in this loop.
1017 unsigned Depth = CallStackDepth;
1018 CallStackFrame *Frame = CurrentCall;
1019 while (Frame->Index > CallIndex) {
1020 Frame = Frame->Caller;
1021 --Depth;
1022 }
1023 if (Frame->Index == CallIndex)
1024 return {Frame, Depth};
1025 return {nullptr, 0};
1026 }
1027
nextStep(const Stmt * S)1028 bool nextStep(const Stmt *S) {
1029 if (!StepsLeft) {
1030 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1031 return false;
1032 }
1033 --StepsLeft;
1034 return true;
1035 }
1036
1037 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1038
lookupDynamicAlloc(DynamicAllocLValue DA)1039 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1040 Optional<DynAlloc*> Result;
1041 auto It = HeapAllocs.find(DA);
1042 if (It != HeapAllocs.end())
1043 Result = &It->second;
1044 return Result;
1045 }
1046
1047 /// Get the allocated storage for the given parameter of the given call.
getParamSlot(CallRef Call,const ParmVarDecl * PVD)1048 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1049 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1050 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1051 : nullptr;
1052 }
1053
1054 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1055 struct StdAllocatorCaller {
1056 unsigned FrameIndex;
1057 QualType ElemType;
operator bool__anon7a1fdcea0311::EvalInfo::StdAllocatorCaller1058 explicit operator bool() const { return FrameIndex != 0; };
1059 };
1060
getStdAllocatorCaller(StringRef FnName) const1061 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1062 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1063 Call = Call->Caller) {
1064 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1065 if (!MD)
1066 continue;
1067 const IdentifierInfo *FnII = MD->getIdentifier();
1068 if (!FnII || !FnII->isStr(FnName))
1069 continue;
1070
1071 const auto *CTSD =
1072 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1073 if (!CTSD)
1074 continue;
1075
1076 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1077 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1078 if (CTSD->isInStdNamespace() && ClassII &&
1079 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1080 TAL[0].getKind() == TemplateArgument::Type)
1081 return {Call->Index, TAL[0].getAsType()};
1082 }
1083
1084 return {};
1085 }
1086
performLifetimeExtension()1087 void performLifetimeExtension() {
1088 // Disable the cleanups for lifetime-extended temporaries.
1089 llvm::erase_if(CleanupStack, [](Cleanup &C) {
1090 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1091 });
1092 }
1093
1094 /// Throw away any remaining cleanups at the end of evaluation. If any
1095 /// cleanups would have had a side-effect, note that as an unmodeled
1096 /// side-effect and return false. Otherwise, return true.
discardCleanups()1097 bool discardCleanups() {
1098 for (Cleanup &C : CleanupStack) {
1099 if (C.hasSideEffect() && !noteSideEffect()) {
1100 CleanupStack.clear();
1101 return false;
1102 }
1103 }
1104 CleanupStack.clear();
1105 return true;
1106 }
1107
1108 private:
getCurrentFrame()1109 interp::Frame *getCurrentFrame() override { return CurrentCall; }
getBottomFrame() const1110 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1111
hasActiveDiagnostic()1112 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
setActiveDiagnostic(bool Flag)1113 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1114
setFoldFailureDiagnostic(bool Flag)1115 void setFoldFailureDiagnostic(bool Flag) override {
1116 HasFoldFailureDiagnostic = Flag;
1117 }
1118
getEvalStatus() const1119 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1120
1121 // If we have a prior diagnostic, it will be noting that the expression
1122 // isn't a constant expression. This diagnostic is more important,
1123 // unless we require this evaluation to produce a constant expression.
1124 //
1125 // FIXME: We might want to show both diagnostics to the user in
1126 // EM_ConstantFold mode.
hasPriorDiagnostic()1127 bool hasPriorDiagnostic() override {
1128 if (!EvalStatus.Diag->empty()) {
1129 switch (EvalMode) {
1130 case EM_ConstantFold:
1131 case EM_IgnoreSideEffects:
1132 if (!HasFoldFailureDiagnostic)
1133 break;
1134 // We've already failed to fold something. Keep that diagnostic.
1135 LLVM_FALLTHROUGH;
1136 case EM_ConstantExpression:
1137 case EM_ConstantExpressionUnevaluated:
1138 setActiveDiagnostic(false);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
getCallStackDepth()1145 unsigned getCallStackDepth() override { return CallStackDepth; }
1146
1147 public:
1148 /// Should we continue evaluation after encountering a side-effect that we
1149 /// couldn't model?
keepEvaluatingAfterSideEffect()1150 bool keepEvaluatingAfterSideEffect() {
1151 switch (EvalMode) {
1152 case EM_IgnoreSideEffects:
1153 return true;
1154
1155 case EM_ConstantExpression:
1156 case EM_ConstantExpressionUnevaluated:
1157 case EM_ConstantFold:
1158 // By default, assume any side effect might be valid in some other
1159 // evaluation of this expression from a different context.
1160 return checkingPotentialConstantExpression() ||
1161 checkingForUndefinedBehavior();
1162 }
1163 llvm_unreachable("Missed EvalMode case");
1164 }
1165
1166 /// Note that we have had a side-effect, and determine whether we should
1167 /// keep evaluating.
noteSideEffect()1168 bool noteSideEffect() {
1169 EvalStatus.HasSideEffects = true;
1170 return keepEvaluatingAfterSideEffect();
1171 }
1172
1173 /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior()1174 bool keepEvaluatingAfterUndefinedBehavior() {
1175 switch (EvalMode) {
1176 case EM_IgnoreSideEffects:
1177 case EM_ConstantFold:
1178 return true;
1179
1180 case EM_ConstantExpression:
1181 case EM_ConstantExpressionUnevaluated:
1182 return checkingForUndefinedBehavior();
1183 }
1184 llvm_unreachable("Missed EvalMode case");
1185 }
1186
1187 /// Note that we hit something that was technically undefined behavior, but
1188 /// that we can evaluate past it (such as signed overflow or floating-point
1189 /// division by zero.)
noteUndefinedBehavior()1190 bool noteUndefinedBehavior() override {
1191 EvalStatus.HasUndefinedBehavior = true;
1192 return keepEvaluatingAfterUndefinedBehavior();
1193 }
1194
1195 /// Should we continue evaluation as much as possible after encountering a
1196 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure() const1197 bool keepEvaluatingAfterFailure() const override {
1198 if (!StepsLeft)
1199 return false;
1200
1201 switch (EvalMode) {
1202 case EM_ConstantExpression:
1203 case EM_ConstantExpressionUnevaluated:
1204 case EM_ConstantFold:
1205 case EM_IgnoreSideEffects:
1206 return checkingPotentialConstantExpression() ||
1207 checkingForUndefinedBehavior();
1208 }
1209 llvm_unreachable("Missed EvalMode case");
1210 }
1211
1212 /// Notes that we failed to evaluate an expression that other expressions
1213 /// directly depend on, and determine if we should keep evaluating. This
1214 /// should only be called if we actually intend to keep evaluating.
1215 ///
1216 /// Call noteSideEffect() instead if we may be able to ignore the value that
1217 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1218 ///
1219 /// (Foo(), 1) // use noteSideEffect
1220 /// (Foo() || true) // use noteSideEffect
1221 /// Foo() + 1 // use noteFailure
noteFailure()1222 LLVM_NODISCARD bool noteFailure() {
1223 // Failure when evaluating some expression often means there is some
1224 // subexpression whose evaluation was skipped. Therefore, (because we
1225 // don't track whether we skipped an expression when unwinding after an
1226 // evaluation failure) every evaluation failure that bubbles up from a
1227 // subexpression implies that a side-effect has potentially happened. We
1228 // skip setting the HasSideEffects flag to true until we decide to
1229 // continue evaluating after that point, which happens here.
1230 bool KeepGoing = keepEvaluatingAfterFailure();
1231 EvalStatus.HasSideEffects |= KeepGoing;
1232 return KeepGoing;
1233 }
1234
1235 class ArrayInitLoopIndex {
1236 EvalInfo &Info;
1237 uint64_t OuterIndex;
1238
1239 public:
ArrayInitLoopIndex(EvalInfo & Info)1240 ArrayInitLoopIndex(EvalInfo &Info)
1241 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1242 Info.ArrayInitIndex = 0;
1243 }
~ArrayInitLoopIndex()1244 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1245
operator uint64_t&()1246 operator uint64_t&() { return Info.ArrayInitIndex; }
1247 };
1248 };
1249
1250 /// Object used to treat all foldable expressions as constant expressions.
1251 struct FoldConstant {
1252 EvalInfo &Info;
1253 bool Enabled;
1254 bool HadNoPriorDiags;
1255 EvalInfo::EvaluationMode OldMode;
1256
FoldConstant__anon7a1fdcea0311::FoldConstant1257 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1258 : Info(Info),
1259 Enabled(Enabled),
1260 HadNoPriorDiags(Info.EvalStatus.Diag &&
1261 Info.EvalStatus.Diag->empty() &&
1262 !Info.EvalStatus.HasSideEffects),
1263 OldMode(Info.EvalMode) {
1264 if (Enabled)
1265 Info.EvalMode = EvalInfo::EM_ConstantFold;
1266 }
keepDiagnostics__anon7a1fdcea0311::FoldConstant1267 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon7a1fdcea0311::FoldConstant1268 ~FoldConstant() {
1269 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1270 !Info.EvalStatus.HasSideEffects)
1271 Info.EvalStatus.Diag->clear();
1272 Info.EvalMode = OldMode;
1273 }
1274 };
1275
1276 /// RAII object used to set the current evaluation mode to ignore
1277 /// side-effects.
1278 struct IgnoreSideEffectsRAII {
1279 EvalInfo &Info;
1280 EvalInfo::EvaluationMode OldMode;
IgnoreSideEffectsRAII__anon7a1fdcea0311::IgnoreSideEffectsRAII1281 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1282 : Info(Info), OldMode(Info.EvalMode) {
1283 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1284 }
1285
~IgnoreSideEffectsRAII__anon7a1fdcea0311::IgnoreSideEffectsRAII1286 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1287 };
1288
1289 /// RAII object used to optionally suppress diagnostics and side-effects from
1290 /// a speculative evaluation.
1291 class SpeculativeEvaluationRAII {
1292 EvalInfo *Info = nullptr;
1293 Expr::EvalStatus OldStatus;
1294 unsigned OldSpeculativeEvaluationDepth;
1295
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1296 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1297 Info = Other.Info;
1298 OldStatus = Other.OldStatus;
1299 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1300 Other.Info = nullptr;
1301 }
1302
maybeRestoreState()1303 void maybeRestoreState() {
1304 if (!Info)
1305 return;
1306
1307 Info->EvalStatus = OldStatus;
1308 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1309 }
1310
1311 public:
1312 SpeculativeEvaluationRAII() = default;
1313
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1314 SpeculativeEvaluationRAII(
1315 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1316 : Info(&Info), OldStatus(Info.EvalStatus),
1317 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1318 Info.EvalStatus.Diag = NewDiag;
1319 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1320 }
1321
1322 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1323 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1324 moveFromAndCancel(std::move(Other));
1325 }
1326
operator =(SpeculativeEvaluationRAII && Other)1327 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1328 maybeRestoreState();
1329 moveFromAndCancel(std::move(Other));
1330 return *this;
1331 }
1332
~SpeculativeEvaluationRAII()1333 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1334 };
1335
1336 /// RAII object wrapping a full-expression or block scope, and handling
1337 /// the ending of the lifetime of temporaries created within it.
1338 template<ScopeKind Kind>
1339 class ScopeRAII {
1340 EvalInfo &Info;
1341 unsigned OldStackSize;
1342 public:
ScopeRAII(EvalInfo & Info)1343 ScopeRAII(EvalInfo &Info)
1344 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1345 // Push a new temporary version. This is needed to distinguish between
1346 // temporaries created in different iterations of a loop.
1347 Info.CurrentCall->pushTempVersion();
1348 }
destroy(bool RunDestructors=true)1349 bool destroy(bool RunDestructors = true) {
1350 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1351 OldStackSize = -1U;
1352 return OK;
1353 }
~ScopeRAII()1354 ~ScopeRAII() {
1355 if (OldStackSize != -1U)
1356 destroy(false);
1357 // Body moved to a static method to encourage the compiler to inline away
1358 // instances of this class.
1359 Info.CurrentCall->popTempVersion();
1360 }
1361 private:
cleanup(EvalInfo & Info,bool RunDestructors,unsigned OldStackSize)1362 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1363 unsigned OldStackSize) {
1364 assert(OldStackSize <= Info.CleanupStack.size() &&
1365 "running cleanups out of order?");
1366
1367 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1368 // for a full-expression scope.
1369 bool Success = true;
1370 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1371 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1372 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1373 Success = false;
1374 break;
1375 }
1376 }
1377 }
1378
1379 // Compact any retained cleanups.
1380 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1381 if (Kind != ScopeKind::Block)
1382 NewEnd =
1383 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1384 return C.isDestroyedAtEndOf(Kind);
1385 });
1386 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1387 return Success;
1388 }
1389 };
1390 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1391 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1392 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1393 }
1394
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1395 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1396 CheckSubobjectKind CSK) {
1397 if (Invalid)
1398 return false;
1399 if (isOnePastTheEnd()) {
1400 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1401 << CSK;
1402 setInvalid();
1403 return false;
1404 }
1405 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1406 // must actually be at least one array element; even a VLA cannot have a
1407 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1408 return true;
1409 }
1410
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1411 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1412 const Expr *E) {
1413 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1414 // Do not set the designator as invalid: we can represent this situation,
1415 // and correct handling of __builtin_object_size requires us to do so.
1416 }
1417
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1418 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1419 const Expr *E,
1420 const APSInt &N) {
1421 // If we're complaining, we must be able to statically determine the size of
1422 // the most derived array.
1423 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1424 Info.CCEDiag(E, diag::note_constexpr_array_index)
1425 << N << /*array*/ 0
1426 << static_cast<unsigned>(getMostDerivedArraySize());
1427 else
1428 Info.CCEDiag(E, diag::note_constexpr_array_index)
1429 << N << /*non-array*/ 1;
1430 setInvalid();
1431 }
1432
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,CallRef Call)1433 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1434 const FunctionDecl *Callee, const LValue *This,
1435 CallRef Call)
1436 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1437 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1438 Info.CurrentCall = this;
1439 ++Info.CallStackDepth;
1440 }
1441
~CallStackFrame()1442 CallStackFrame::~CallStackFrame() {
1443 assert(Info.CurrentCall == this && "calls retired out of order");
1444 --Info.CallStackDepth;
1445 Info.CurrentCall = Caller;
1446 }
1447
isRead(AccessKinds AK)1448 static bool isRead(AccessKinds AK) {
1449 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1450 }
1451
isModification(AccessKinds AK)1452 static bool isModification(AccessKinds AK) {
1453 switch (AK) {
1454 case AK_Read:
1455 case AK_ReadObjectRepresentation:
1456 case AK_MemberCall:
1457 case AK_DynamicCast:
1458 case AK_TypeId:
1459 return false;
1460 case AK_Assign:
1461 case AK_Increment:
1462 case AK_Decrement:
1463 case AK_Construct:
1464 case AK_Destroy:
1465 return true;
1466 }
1467 llvm_unreachable("unknown access kind");
1468 }
1469
isAnyAccess(AccessKinds AK)1470 static bool isAnyAccess(AccessKinds AK) {
1471 return isRead(AK) || isModification(AK);
1472 }
1473
1474 /// Is this an access per the C++ definition?
isFormalAccess(AccessKinds AK)1475 static bool isFormalAccess(AccessKinds AK) {
1476 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1477 }
1478
1479 /// Is this kind of axcess valid on an indeterminate object value?
isValidIndeterminateAccess(AccessKinds AK)1480 static bool isValidIndeterminateAccess(AccessKinds AK) {
1481 switch (AK) {
1482 case AK_Read:
1483 case AK_Increment:
1484 case AK_Decrement:
1485 // These need the object's value.
1486 return false;
1487
1488 case AK_ReadObjectRepresentation:
1489 case AK_Assign:
1490 case AK_Construct:
1491 case AK_Destroy:
1492 // Construction and destruction don't need the value.
1493 return true;
1494
1495 case AK_MemberCall:
1496 case AK_DynamicCast:
1497 case AK_TypeId:
1498 // These aren't really meaningful on scalars.
1499 return true;
1500 }
1501 llvm_unreachable("unknown access kind");
1502 }
1503
1504 namespace {
1505 struct ComplexValue {
1506 private:
1507 bool IsInt;
1508
1509 public:
1510 APSInt IntReal, IntImag;
1511 APFloat FloatReal, FloatImag;
1512
ComplexValue__anon7a1fdcea0611::ComplexValue1513 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1514
makeComplexFloat__anon7a1fdcea0611::ComplexValue1515 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon7a1fdcea0611::ComplexValue1516 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon7a1fdcea0611::ComplexValue1517 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon7a1fdcea0611::ComplexValue1518 APFloat &getComplexFloatImag() { return FloatImag; }
1519
makeComplexInt__anon7a1fdcea0611::ComplexValue1520 void makeComplexInt() { IsInt = true; }
isComplexInt__anon7a1fdcea0611::ComplexValue1521 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon7a1fdcea0611::ComplexValue1522 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon7a1fdcea0611::ComplexValue1523 APSInt &getComplexIntImag() { return IntImag; }
1524
moveInto__anon7a1fdcea0611::ComplexValue1525 void moveInto(APValue &v) const {
1526 if (isComplexFloat())
1527 v = APValue(FloatReal, FloatImag);
1528 else
1529 v = APValue(IntReal, IntImag);
1530 }
setFrom__anon7a1fdcea0611::ComplexValue1531 void setFrom(const APValue &v) {
1532 assert(v.isComplexFloat() || v.isComplexInt());
1533 if (v.isComplexFloat()) {
1534 makeComplexFloat();
1535 FloatReal = v.getComplexFloatReal();
1536 FloatImag = v.getComplexFloatImag();
1537 } else {
1538 makeComplexInt();
1539 IntReal = v.getComplexIntReal();
1540 IntImag = v.getComplexIntImag();
1541 }
1542 }
1543 };
1544
1545 struct LValue {
1546 APValue::LValueBase Base;
1547 CharUnits Offset;
1548 SubobjectDesignator Designator;
1549 bool IsNullPtr : 1;
1550 bool InvalidBase : 1;
1551
getLValueBase__anon7a1fdcea0611::LValue1552 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon7a1fdcea0611::LValue1553 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon7a1fdcea0611::LValue1554 const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anon7a1fdcea0611::LValue1555 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon7a1fdcea0611::LValue1556 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anon7a1fdcea0611::LValue1557 bool isNullPointer() const { return IsNullPtr;}
1558
getLValueCallIndex__anon7a1fdcea0611::LValue1559 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anon7a1fdcea0611::LValue1560 unsigned getLValueVersion() const { return Base.getVersion(); }
1561
moveInto__anon7a1fdcea0611::LValue1562 void moveInto(APValue &V) const {
1563 if (Designator.Invalid)
1564 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1565 else {
1566 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1567 V = APValue(Base, Offset, Designator.Entries,
1568 Designator.IsOnePastTheEnd, IsNullPtr);
1569 }
1570 }
setFrom__anon7a1fdcea0611::LValue1571 void setFrom(ASTContext &Ctx, const APValue &V) {
1572 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1573 Base = V.getLValueBase();
1574 Offset = V.getLValueOffset();
1575 InvalidBase = false;
1576 Designator = SubobjectDesignator(Ctx, V);
1577 IsNullPtr = V.isNullPointer();
1578 }
1579
set__anon7a1fdcea0611::LValue1580 void set(APValue::LValueBase B, bool BInvalid = false) {
1581 #ifndef NDEBUG
1582 // We only allow a few types of invalid bases. Enforce that here.
1583 if (BInvalid) {
1584 const auto *E = B.get<const Expr *>();
1585 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1586 "Unexpected type of invalid base");
1587 }
1588 #endif
1589
1590 Base = B;
1591 Offset = CharUnits::fromQuantity(0);
1592 InvalidBase = BInvalid;
1593 Designator = SubobjectDesignator(getType(B));
1594 IsNullPtr = false;
1595 }
1596
setNull__anon7a1fdcea0611::LValue1597 void setNull(ASTContext &Ctx, QualType PointerTy) {
1598 Base = (const ValueDecl *)nullptr;
1599 Offset =
1600 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1601 InvalidBase = false;
1602 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1603 IsNullPtr = true;
1604 }
1605
setInvalid__anon7a1fdcea0611::LValue1606 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1607 set(B, true);
1608 }
1609
toString__anon7a1fdcea0611::LValue1610 std::string toString(ASTContext &Ctx, QualType T) const {
1611 APValue Printable;
1612 moveInto(Printable);
1613 return Printable.getAsString(Ctx, T);
1614 }
1615
1616 private:
1617 // Check that this LValue is not based on a null pointer. If it is, produce
1618 // a diagnostic and mark the designator as invalid.
1619 template <typename GenDiagType>
checkNullPointerDiagnosingWith__anon7a1fdcea0611::LValue1620 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1621 if (Designator.Invalid)
1622 return false;
1623 if (IsNullPtr) {
1624 GenDiag();
1625 Designator.setInvalid();
1626 return false;
1627 }
1628 return true;
1629 }
1630
1631 public:
checkNullPointer__anon7a1fdcea0611::LValue1632 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1633 CheckSubobjectKind CSK) {
1634 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1635 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1636 });
1637 }
1638
checkNullPointerForFoldAccess__anon7a1fdcea0611::LValue1639 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1640 AccessKinds AK) {
1641 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1642 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1643 });
1644 }
1645
1646 // Check this LValue refers to an object. If not, set the designator to be
1647 // invalid and emit a diagnostic.
checkSubobject__anon7a1fdcea0611::LValue1648 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1649 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1650 Designator.checkSubobject(Info, E, CSK);
1651 }
1652
addDecl__anon7a1fdcea0611::LValue1653 void addDecl(EvalInfo &Info, const Expr *E,
1654 const Decl *D, bool Virtual = false) {
1655 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1656 Designator.addDeclUnchecked(D, Virtual);
1657 }
addUnsizedArray__anon7a1fdcea0611::LValue1658 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1659 if (!Designator.Entries.empty()) {
1660 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1661 Designator.setInvalid();
1662 return;
1663 }
1664 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1665 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1666 Designator.FirstEntryIsAnUnsizedArray = true;
1667 Designator.addUnsizedArrayUnchecked(ElemTy);
1668 }
1669 }
addArray__anon7a1fdcea0611::LValue1670 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1671 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1672 Designator.addArrayUnchecked(CAT);
1673 }
addComplex__anon7a1fdcea0611::LValue1674 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1675 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1676 Designator.addComplexUnchecked(EltTy, Imag);
1677 }
clearIsNullPointer__anon7a1fdcea0611::LValue1678 void clearIsNullPointer() {
1679 IsNullPtr = false;
1680 }
adjustOffsetAndIndex__anon7a1fdcea0611::LValue1681 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1682 const APSInt &Index, CharUnits ElementSize) {
1683 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1684 // but we're not required to diagnose it and it's valid in C++.)
1685 if (!Index)
1686 return;
1687
1688 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1689 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1690 // offsets.
1691 uint64_t Offset64 = Offset.getQuantity();
1692 uint64_t ElemSize64 = ElementSize.getQuantity();
1693 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1694 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1695
1696 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1697 Designator.adjustIndex(Info, E, Index);
1698 clearIsNullPointer();
1699 }
adjustOffset__anon7a1fdcea0611::LValue1700 void adjustOffset(CharUnits N) {
1701 Offset += N;
1702 if (N.getQuantity())
1703 clearIsNullPointer();
1704 }
1705 };
1706
1707 struct MemberPtr {
MemberPtr__anon7a1fdcea0611::MemberPtr1708 MemberPtr() {}
MemberPtr__anon7a1fdcea0611::MemberPtr1709 explicit MemberPtr(const ValueDecl *Decl)
1710 : DeclAndIsDerivedMember(Decl, false) {}
1711
1712 /// The member or (direct or indirect) field referred to by this member
1713 /// pointer, or 0 if this is a null member pointer.
getDecl__anon7a1fdcea0611::MemberPtr1714 const ValueDecl *getDecl() const {
1715 return DeclAndIsDerivedMember.getPointer();
1716 }
1717 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon7a1fdcea0611::MemberPtr1718 bool isDerivedMember() const {
1719 return DeclAndIsDerivedMember.getInt();
1720 }
1721 /// Get the class which the declaration actually lives in.
getContainingRecord__anon7a1fdcea0611::MemberPtr1722 const CXXRecordDecl *getContainingRecord() const {
1723 return cast<CXXRecordDecl>(
1724 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1725 }
1726
moveInto__anon7a1fdcea0611::MemberPtr1727 void moveInto(APValue &V) const {
1728 V = APValue(getDecl(), isDerivedMember(), Path);
1729 }
setFrom__anon7a1fdcea0611::MemberPtr1730 void setFrom(const APValue &V) {
1731 assert(V.isMemberPointer());
1732 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1733 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1734 Path.clear();
1735 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1736 Path.insert(Path.end(), P.begin(), P.end());
1737 }
1738
1739 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1740 /// whether the member is a member of some class derived from the class type
1741 /// of the member pointer.
1742 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1743 /// Path - The path of base/derived classes from the member declaration's
1744 /// class (exclusive) to the class type of the member pointer (inclusive).
1745 SmallVector<const CXXRecordDecl*, 4> Path;
1746
1747 /// Perform a cast towards the class of the Decl (either up or down the
1748 /// hierarchy).
castBack__anon7a1fdcea0611::MemberPtr1749 bool castBack(const CXXRecordDecl *Class) {
1750 assert(!Path.empty());
1751 const CXXRecordDecl *Expected;
1752 if (Path.size() >= 2)
1753 Expected = Path[Path.size() - 2];
1754 else
1755 Expected = getContainingRecord();
1756 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1757 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1758 // if B does not contain the original member and is not a base or
1759 // derived class of the class containing the original member, the result
1760 // of the cast is undefined.
1761 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1762 // (D::*). We consider that to be a language defect.
1763 return false;
1764 }
1765 Path.pop_back();
1766 return true;
1767 }
1768 /// Perform a base-to-derived member pointer cast.
castToDerived__anon7a1fdcea0611::MemberPtr1769 bool castToDerived(const CXXRecordDecl *Derived) {
1770 if (!getDecl())
1771 return true;
1772 if (!isDerivedMember()) {
1773 Path.push_back(Derived);
1774 return true;
1775 }
1776 if (!castBack(Derived))
1777 return false;
1778 if (Path.empty())
1779 DeclAndIsDerivedMember.setInt(false);
1780 return true;
1781 }
1782 /// Perform a derived-to-base member pointer cast.
castToBase__anon7a1fdcea0611::MemberPtr1783 bool castToBase(const CXXRecordDecl *Base) {
1784 if (!getDecl())
1785 return true;
1786 if (Path.empty())
1787 DeclAndIsDerivedMember.setInt(true);
1788 if (isDerivedMember()) {
1789 Path.push_back(Base);
1790 return true;
1791 }
1792 return castBack(Base);
1793 }
1794 };
1795
1796 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1797 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1798 if (!LHS.getDecl() || !RHS.getDecl())
1799 return !LHS.getDecl() && !RHS.getDecl();
1800 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1801 return false;
1802 return LHS.Path == RHS.Path;
1803 }
1804 }
1805
1806 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1807 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1808 const LValue &This, const Expr *E,
1809 bool AllowNonLiteralTypes = false);
1810 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1811 bool InvalidBaseOK = false);
1812 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1813 bool InvalidBaseOK = false);
1814 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1815 EvalInfo &Info);
1816 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1817 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1818 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1819 EvalInfo &Info);
1820 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1821 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1822 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1823 EvalInfo &Info);
1824 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1825 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1826 EvalInfo &Info);
1827
1828 /// Evaluate an integer or fixed point expression into an APResult.
1829 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1830 EvalInfo &Info);
1831
1832 /// Evaluate only a fixed point expression into an APResult.
1833 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1834 EvalInfo &Info);
1835
1836 //===----------------------------------------------------------------------===//
1837 // Misc utilities
1838 //===----------------------------------------------------------------------===//
1839
1840 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1841 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1842 static void negateAsSigned(APSInt &Int) {
1843 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1844 Int = Int.extend(Int.getBitWidth() + 1);
1845 Int.setIsSigned(true);
1846 }
1847 Int = -Int;
1848 }
1849
1850 template<typename KeyT>
createTemporary(const KeyT * Key,QualType T,ScopeKind Scope,LValue & LV)1851 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1852 ScopeKind Scope, LValue &LV) {
1853 unsigned Version = getTempVersion();
1854 APValue::LValueBase Base(Key, Index, Version);
1855 LV.set(Base);
1856 return createLocal(Base, Key, T, Scope);
1857 }
1858
1859 /// Allocate storage for a parameter of a function call made in this frame.
createParam(CallRef Args,const ParmVarDecl * PVD,LValue & LV)1860 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1861 LValue &LV) {
1862 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1863 APValue::LValueBase Base(PVD, Index, Args.Version);
1864 LV.set(Base);
1865 // We always destroy parameters at the end of the call, even if we'd allow
1866 // them to live to the end of the full-expression at runtime, in order to
1867 // give portable results and match other compilers.
1868 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1869 }
1870
createLocal(APValue::LValueBase Base,const void * Key,QualType T,ScopeKind Scope)1871 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1872 QualType T, ScopeKind Scope) {
1873 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1874 unsigned Version = Base.getVersion();
1875 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1876 assert(Result.isAbsent() && "local created multiple times");
1877
1878 // If we're creating a local immediately in the operand of a speculative
1879 // evaluation, don't register a cleanup to be run outside the speculative
1880 // evaluation context, since we won't actually be able to initialize this
1881 // object.
1882 if (Index <= Info.SpeculativeEvaluationDepth) {
1883 if (T.isDestructedType())
1884 Info.noteSideEffect();
1885 } else {
1886 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1887 }
1888 return Result;
1889 }
1890
createHeapAlloc(const Expr * E,QualType T,LValue & LV)1891 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1892 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1893 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1894 return nullptr;
1895 }
1896
1897 DynamicAllocLValue DA(NumHeapAllocs++);
1898 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1899 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1900 std::forward_as_tuple(DA), std::tuple<>());
1901 assert(Result.second && "reused a heap alloc index?");
1902 Result.first->second.AllocExpr = E;
1903 return &Result.first->second.Value;
1904 }
1905
1906 /// Produce a string describing the given constexpr call.
describe(raw_ostream & Out)1907 void CallStackFrame::describe(raw_ostream &Out) {
1908 unsigned ArgIndex = 0;
1909 bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1910 !isa<CXXConstructorDecl>(Callee) &&
1911 cast<CXXMethodDecl>(Callee)->isInstance();
1912
1913 if (!IsMemberCall)
1914 Out << *Callee << '(';
1915
1916 if (This && IsMemberCall) {
1917 APValue Val;
1918 This->moveInto(Val);
1919 Val.printPretty(Out, Info.Ctx,
1920 This->Designator.MostDerivedType);
1921 // FIXME: Add parens around Val if needed.
1922 Out << "->" << *Callee << '(';
1923 IsMemberCall = false;
1924 }
1925
1926 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1927 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1928 if (ArgIndex > (unsigned)IsMemberCall)
1929 Out << ", ";
1930
1931 const ParmVarDecl *Param = *I;
1932 APValue *V = Info.getParamSlot(Arguments, Param);
1933 if (V)
1934 V->printPretty(Out, Info.Ctx, Param->getType());
1935 else
1936 Out << "<...>";
1937
1938 if (ArgIndex == 0 && IsMemberCall)
1939 Out << "->" << *Callee << '(';
1940 }
1941
1942 Out << ')';
1943 }
1944
1945 /// Evaluate an expression to see if it had side-effects, and discard its
1946 /// result.
1947 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1948 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1949 assert(!E->isValueDependent());
1950 APValue Scratch;
1951 if (!Evaluate(Scratch, Info, E))
1952 // We don't need the value, but we might have skipped a side effect here.
1953 return Info.noteSideEffect();
1954 return true;
1955 }
1956
1957 /// Should this call expression be treated as a constant?
IsConstantCall(const CallExpr * E)1958 static bool IsConstantCall(const CallExpr *E) {
1959 unsigned Builtin = E->getBuiltinCallee();
1960 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1961 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1962 Builtin == Builtin::BI__builtin_function_start);
1963 }
1964
IsGlobalLValue(APValue::LValueBase B)1965 static bool IsGlobalLValue(APValue::LValueBase B) {
1966 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1967 // constant expression of pointer type that evaluates to...
1968
1969 // ... a null pointer value, or a prvalue core constant expression of type
1970 // std::nullptr_t.
1971 if (!B) return true;
1972
1973 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1974 // ... the address of an object with static storage duration,
1975 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1976 return VD->hasGlobalStorage();
1977 if (isa<TemplateParamObjectDecl>(D))
1978 return true;
1979 // ... the address of a function,
1980 // ... the address of a GUID [MS extension],
1981 // ... the address of an unnamed global constant
1982 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
1983 }
1984
1985 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1986 return true;
1987
1988 const Expr *E = B.get<const Expr*>();
1989 switch (E->getStmtClass()) {
1990 default:
1991 return false;
1992 case Expr::CompoundLiteralExprClass: {
1993 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1994 return CLE->isFileScope() && CLE->isLValue();
1995 }
1996 case Expr::MaterializeTemporaryExprClass:
1997 // A materialized temporary might have been lifetime-extended to static
1998 // storage duration.
1999 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2000 // A string literal has static storage duration.
2001 case Expr::StringLiteralClass:
2002 case Expr::PredefinedExprClass:
2003 case Expr::ObjCStringLiteralClass:
2004 case Expr::ObjCEncodeExprClass:
2005 return true;
2006 case Expr::ObjCBoxedExprClass:
2007 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2008 case Expr::CallExprClass:
2009 return IsConstantCall(cast<CallExpr>(E));
2010 // For GCC compatibility, &&label has static storage duration.
2011 case Expr::AddrLabelExprClass:
2012 return true;
2013 // A Block literal expression may be used as the initialization value for
2014 // Block variables at global or local static scope.
2015 case Expr::BlockExprClass:
2016 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2017 // The APValue generated from a __builtin_source_location will be emitted as a
2018 // literal.
2019 case Expr::SourceLocExprClass:
2020 return true;
2021 case Expr::ImplicitValueInitExprClass:
2022 // FIXME:
2023 // We can never form an lvalue with an implicit value initialization as its
2024 // base through expression evaluation, so these only appear in one case: the
2025 // implicit variable declaration we invent when checking whether a constexpr
2026 // constructor can produce a constant expression. We must assume that such
2027 // an expression might be a global lvalue.
2028 return true;
2029 }
2030 }
2031
GetLValueBaseDecl(const LValue & LVal)2032 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2033 return LVal.Base.dyn_cast<const ValueDecl*>();
2034 }
2035
IsLiteralLValue(const LValue & Value)2036 static bool IsLiteralLValue(const LValue &Value) {
2037 if (Value.getLValueCallIndex())
2038 return false;
2039 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2040 return E && !isa<MaterializeTemporaryExpr>(E);
2041 }
2042
IsWeakLValue(const LValue & Value)2043 static bool IsWeakLValue(const LValue &Value) {
2044 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2045 return Decl && Decl->isWeak();
2046 }
2047
isZeroSized(const LValue & Value)2048 static bool isZeroSized(const LValue &Value) {
2049 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2050 if (Decl && isa<VarDecl>(Decl)) {
2051 QualType Ty = Decl->getType();
2052 if (Ty->isArrayType())
2053 return Ty->isIncompleteType() ||
2054 Decl->getASTContext().getTypeSize(Ty) == 0;
2055 }
2056 return false;
2057 }
2058
HasSameBase(const LValue & A,const LValue & B)2059 static bool HasSameBase(const LValue &A, const LValue &B) {
2060 if (!A.getLValueBase())
2061 return !B.getLValueBase();
2062 if (!B.getLValueBase())
2063 return false;
2064
2065 if (A.getLValueBase().getOpaqueValue() !=
2066 B.getLValueBase().getOpaqueValue())
2067 return false;
2068
2069 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2070 A.getLValueVersion() == B.getLValueVersion();
2071 }
2072
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)2073 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2074 assert(Base && "no location for a null lvalue");
2075 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2076
2077 // For a parameter, find the corresponding call stack frame (if it still
2078 // exists), and point at the parameter of the function definition we actually
2079 // invoked.
2080 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2081 unsigned Idx = PVD->getFunctionScopeIndex();
2082 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2083 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2084 F->Arguments.Version == Base.getVersion() && F->Callee &&
2085 Idx < F->Callee->getNumParams()) {
2086 VD = F->Callee->getParamDecl(Idx);
2087 break;
2088 }
2089 }
2090 }
2091
2092 if (VD)
2093 Info.Note(VD->getLocation(), diag::note_declared_at);
2094 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2095 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2096 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2097 // FIXME: Produce a note for dangling pointers too.
2098 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2099 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2100 diag::note_constexpr_dynamic_alloc_here);
2101 }
2102 // We have no information to show for a typeid(T) object.
2103 }
2104
2105 enum class CheckEvaluationResultKind {
2106 ConstantExpression,
2107 FullyInitialized,
2108 };
2109
2110 /// Materialized temporaries that we've already checked to determine if they're
2111 /// initializsed by a constant expression.
2112 using CheckedTemporaries =
2113 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2114
2115 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2116 EvalInfo &Info, SourceLocation DiagLoc,
2117 QualType Type, const APValue &Value,
2118 ConstantExprKind Kind,
2119 SourceLocation SubobjectLoc,
2120 CheckedTemporaries &CheckedTemps);
2121
2122 /// Check that this reference or pointer core constant expression is a valid
2123 /// value for an address or reference constant expression. Return true if we
2124 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,ConstantExprKind Kind,CheckedTemporaries & CheckedTemps)2125 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2126 QualType Type, const LValue &LVal,
2127 ConstantExprKind Kind,
2128 CheckedTemporaries &CheckedTemps) {
2129 bool IsReferenceType = Type->isReferenceType();
2130
2131 APValue::LValueBase Base = LVal.getLValueBase();
2132 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2133
2134 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2135 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2136
2137 // Additional restrictions apply in a template argument. We only enforce the
2138 // C++20 restrictions here; additional syntactic and semantic restrictions
2139 // are applied elsewhere.
2140 if (isTemplateArgument(Kind)) {
2141 int InvalidBaseKind = -1;
2142 StringRef Ident;
2143 if (Base.is<TypeInfoLValue>())
2144 InvalidBaseKind = 0;
2145 else if (isa_and_nonnull<StringLiteral>(BaseE))
2146 InvalidBaseKind = 1;
2147 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2148 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2149 InvalidBaseKind = 2;
2150 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2151 InvalidBaseKind = 3;
2152 Ident = PE->getIdentKindName();
2153 }
2154
2155 if (InvalidBaseKind != -1) {
2156 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2157 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2158 << Ident;
2159 return false;
2160 }
2161 }
2162
2163 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2164 if (FD->isConsteval()) {
2165 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2166 << !Type->isAnyPointerType();
2167 Info.Note(FD->getLocation(), diag::note_declared_at);
2168 return false;
2169 }
2170 }
2171
2172 // Check that the object is a global. Note that the fake 'this' object we
2173 // manufacture when checking potential constant expressions is conservatively
2174 // assumed to be global here.
2175 if (!IsGlobalLValue(Base)) {
2176 if (Info.getLangOpts().CPlusPlus11) {
2177 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2178 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2179 << IsReferenceType << !Designator.Entries.empty()
2180 << !!VD << VD;
2181
2182 auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2183 if (VarD && VarD->isConstexpr()) {
2184 // Non-static local constexpr variables have unintuitive semantics:
2185 // constexpr int a = 1;
2186 // constexpr const int *p = &a;
2187 // ... is invalid because the address of 'a' is not constant. Suggest
2188 // adding a 'static' in this case.
2189 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2190 << VarD
2191 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2192 } else {
2193 NoteLValueLocation(Info, Base);
2194 }
2195 } else {
2196 Info.FFDiag(Loc);
2197 }
2198 // Don't allow references to temporaries to escape.
2199 return false;
2200 }
2201 assert((Info.checkingPotentialConstantExpression() ||
2202 LVal.getLValueCallIndex() == 0) &&
2203 "have call index for global lvalue");
2204
2205 if (Base.is<DynamicAllocLValue>()) {
2206 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2207 << IsReferenceType << !Designator.Entries.empty();
2208 NoteLValueLocation(Info, Base);
2209 return false;
2210 }
2211
2212 if (BaseVD) {
2213 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2214 // Check if this is a thread-local variable.
2215 if (Var->getTLSKind())
2216 // FIXME: Diagnostic!
2217 return false;
2218
2219 // A dllimport variable never acts like a constant, unless we're
2220 // evaluating a value for use only in name mangling.
2221 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2222 // FIXME: Diagnostic!
2223 return false;
2224
2225 // In CUDA/HIP device compilation, only device side variables have
2226 // constant addresses.
2227 if (Info.getCtx().getLangOpts().CUDA &&
2228 Info.getCtx().getLangOpts().CUDAIsDevice &&
2229 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2230 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2231 !Var->hasAttr<CUDAConstantAttr>() &&
2232 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2233 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2234 Var->hasAttr<HIPManagedAttr>())
2235 return false;
2236 }
2237 }
2238 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2239 // __declspec(dllimport) must be handled very carefully:
2240 // We must never initialize an expression with the thunk in C++.
2241 // Doing otherwise would allow the same id-expression to yield
2242 // different addresses for the same function in different translation
2243 // units. However, this means that we must dynamically initialize the
2244 // expression with the contents of the import address table at runtime.
2245 //
2246 // The C language has no notion of ODR; furthermore, it has no notion of
2247 // dynamic initialization. This means that we are permitted to
2248 // perform initialization with the address of the thunk.
2249 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2250 FD->hasAttr<DLLImportAttr>())
2251 // FIXME: Diagnostic!
2252 return false;
2253 }
2254 } else if (const auto *MTE =
2255 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2256 if (CheckedTemps.insert(MTE).second) {
2257 QualType TempType = getType(Base);
2258 if (TempType.isDestructedType()) {
2259 Info.FFDiag(MTE->getExprLoc(),
2260 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2261 << TempType;
2262 return false;
2263 }
2264
2265 APValue *V = MTE->getOrCreateValue(false);
2266 assert(V && "evasluation result refers to uninitialised temporary");
2267 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2268 Info, MTE->getExprLoc(), TempType, *V,
2269 Kind, SourceLocation(), CheckedTemps))
2270 return false;
2271 }
2272 }
2273
2274 // Allow address constant expressions to be past-the-end pointers. This is
2275 // an extension: the standard requires them to point to an object.
2276 if (!IsReferenceType)
2277 return true;
2278
2279 // A reference constant expression must refer to an object.
2280 if (!Base) {
2281 // FIXME: diagnostic
2282 Info.CCEDiag(Loc);
2283 return true;
2284 }
2285
2286 // Does this refer one past the end of some object?
2287 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2288 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2289 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2290 NoteLValueLocation(Info, Base);
2291 }
2292
2293 return true;
2294 }
2295
2296 /// Member pointers are constant expressions unless they point to a
2297 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,ConstantExprKind Kind)2298 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2299 SourceLocation Loc,
2300 QualType Type,
2301 const APValue &Value,
2302 ConstantExprKind Kind) {
2303 const ValueDecl *Member = Value.getMemberPointerDecl();
2304 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2305 if (!FD)
2306 return true;
2307 if (FD->isConsteval()) {
2308 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2309 Info.Note(FD->getLocation(), diag::note_declared_at);
2310 return false;
2311 }
2312 return isForManglingOnly(Kind) || FD->isVirtual() ||
2313 !FD->hasAttr<DLLImportAttr>();
2314 }
2315
2316 /// Check that this core constant expression is of literal type, and if not,
2317 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)2318 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2319 const LValue *This = nullptr) {
2320 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2321 return true;
2322
2323 // C++1y: A constant initializer for an object o [...] may also invoke
2324 // constexpr constructors for o and its subobjects even if those objects
2325 // are of non-literal class types.
2326 //
2327 // C++11 missed this detail for aggregates, so classes like this:
2328 // struct foo_t { union { int i; volatile int j; } u; };
2329 // are not (obviously) initializable like so:
2330 // __attribute__((__require_constant_initialization__))
2331 // static const foo_t x = {{0}};
2332 // because "i" is a subobject with non-literal initialization (due to the
2333 // volatile member of the union). See:
2334 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2335 // Therefore, we use the C++1y behavior.
2336 if (This && Info.EvaluatingDecl == This->getLValueBase())
2337 return true;
2338
2339 // Prvalue constant expressions must be of literal types.
2340 if (Info.getLangOpts().CPlusPlus11)
2341 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2342 << E->getType();
2343 else
2344 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2345 return false;
2346 }
2347
CheckEvaluationResult(CheckEvaluationResultKind CERK,EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind,SourceLocation SubobjectLoc,CheckedTemporaries & CheckedTemps)2348 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2349 EvalInfo &Info, SourceLocation DiagLoc,
2350 QualType Type, const APValue &Value,
2351 ConstantExprKind Kind,
2352 SourceLocation SubobjectLoc,
2353 CheckedTemporaries &CheckedTemps) {
2354 if (!Value.hasValue()) {
2355 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2356 << true << Type;
2357 if (SubobjectLoc.isValid())
2358 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2359 return false;
2360 }
2361
2362 // We allow _Atomic(T) to be initialized from anything that T can be
2363 // initialized from.
2364 if (const AtomicType *AT = Type->getAs<AtomicType>())
2365 Type = AT->getValueType();
2366
2367 // Core issue 1454: For a literal constant expression of array or class type,
2368 // each subobject of its value shall have been initialized by a constant
2369 // expression.
2370 if (Value.isArray()) {
2371 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2372 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2373 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2374 Value.getArrayInitializedElt(I), Kind,
2375 SubobjectLoc, CheckedTemps))
2376 return false;
2377 }
2378 if (!Value.hasArrayFiller())
2379 return true;
2380 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2381 Value.getArrayFiller(), Kind, SubobjectLoc,
2382 CheckedTemps);
2383 }
2384 if (Value.isUnion() && Value.getUnionField()) {
2385 return CheckEvaluationResult(
2386 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2387 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2388 CheckedTemps);
2389 }
2390 if (Value.isStruct()) {
2391 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2392 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2393 unsigned BaseIndex = 0;
2394 for (const CXXBaseSpecifier &BS : CD->bases()) {
2395 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2396 Value.getStructBase(BaseIndex), Kind,
2397 BS.getBeginLoc(), CheckedTemps))
2398 return false;
2399 ++BaseIndex;
2400 }
2401 }
2402 for (const auto *I : RD->fields()) {
2403 if (I->isUnnamedBitfield())
2404 continue;
2405
2406 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2407 Value.getStructField(I->getFieldIndex()),
2408 Kind, I->getLocation(), CheckedTemps))
2409 return false;
2410 }
2411 }
2412
2413 if (Value.isLValue() &&
2414 CERK == CheckEvaluationResultKind::ConstantExpression) {
2415 LValue LVal;
2416 LVal.setFrom(Info.Ctx, Value);
2417 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2418 CheckedTemps);
2419 }
2420
2421 if (Value.isMemberPointer() &&
2422 CERK == CheckEvaluationResultKind::ConstantExpression)
2423 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2424
2425 // Everything else is fine.
2426 return true;
2427 }
2428
2429 /// Check that this core constant expression value is a valid value for a
2430 /// constant expression. If not, report an appropriate diagnostic. Does not
2431 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind)2432 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2433 QualType Type, const APValue &Value,
2434 ConstantExprKind Kind) {
2435 // Nothing to check for a constant expression of type 'cv void'.
2436 if (Type->isVoidType())
2437 return true;
2438
2439 CheckedTemporaries CheckedTemps;
2440 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2441 Info, DiagLoc, Type, Value, Kind,
2442 SourceLocation(), CheckedTemps);
2443 }
2444
2445 /// Check that this evaluated value is fully-initialized and can be loaded by
2446 /// an lvalue-to-rvalue conversion.
CheckFullyInitialized(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)2447 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2448 QualType Type, const APValue &Value) {
2449 CheckedTemporaries CheckedTemps;
2450 return CheckEvaluationResult(
2451 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2452 ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2453 }
2454
2455 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2456 /// "the allocated storage is deallocated within the evaluation".
CheckMemoryLeaks(EvalInfo & Info)2457 static bool CheckMemoryLeaks(EvalInfo &Info) {
2458 if (!Info.HeapAllocs.empty()) {
2459 // We can still fold to a constant despite a compile-time memory leak,
2460 // so long as the heap allocation isn't referenced in the result (we check
2461 // that in CheckConstantExpression).
2462 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2463 diag::note_constexpr_memory_leak)
2464 << unsigned(Info.HeapAllocs.size() - 1);
2465 }
2466 return true;
2467 }
2468
EvalPointerValueAsBool(const APValue & Value,bool & Result)2469 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2470 // A null base expression indicates a null pointer. These are always
2471 // evaluatable, and they are false unless the offset is zero.
2472 if (!Value.getLValueBase()) {
2473 Result = !Value.getLValueOffset().isZero();
2474 return true;
2475 }
2476
2477 // We have a non-null base. These are generally known to be true, but if it's
2478 // a weak declaration it can be null at runtime.
2479 Result = true;
2480 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2481 return !Decl || !Decl->isWeak();
2482 }
2483
HandleConversionToBool(const APValue & Val,bool & Result)2484 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2485 switch (Val.getKind()) {
2486 case APValue::None:
2487 case APValue::Indeterminate:
2488 return false;
2489 case APValue::Int:
2490 Result = Val.getInt().getBoolValue();
2491 return true;
2492 case APValue::FixedPoint:
2493 Result = Val.getFixedPoint().getBoolValue();
2494 return true;
2495 case APValue::Float:
2496 Result = !Val.getFloat().isZero();
2497 return true;
2498 case APValue::ComplexInt:
2499 Result = Val.getComplexIntReal().getBoolValue() ||
2500 Val.getComplexIntImag().getBoolValue();
2501 return true;
2502 case APValue::ComplexFloat:
2503 Result = !Val.getComplexFloatReal().isZero() ||
2504 !Val.getComplexFloatImag().isZero();
2505 return true;
2506 case APValue::LValue:
2507 return EvalPointerValueAsBool(Val, Result);
2508 case APValue::MemberPointer:
2509 Result = Val.getMemberPointerDecl();
2510 return true;
2511 case APValue::Vector:
2512 case APValue::Array:
2513 case APValue::Struct:
2514 case APValue::Union:
2515 case APValue::AddrLabelDiff:
2516 return false;
2517 }
2518
2519 llvm_unreachable("unknown APValue kind");
2520 }
2521
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)2522 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2523 EvalInfo &Info) {
2524 assert(!E->isValueDependent());
2525 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2526 APValue Val;
2527 if (!Evaluate(Val, Info, E))
2528 return false;
2529 return HandleConversionToBool(Val, Result);
2530 }
2531
2532 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2533 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2534 const T &SrcValue, QualType DestType) {
2535 Info.CCEDiag(E, diag::note_constexpr_overflow)
2536 << SrcValue << DestType;
2537 return Info.noteUndefinedBehavior();
2538 }
2539
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2540 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2541 QualType SrcType, const APFloat &Value,
2542 QualType DestType, APSInt &Result) {
2543 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2544 // Determine whether we are converting to unsigned or signed.
2545 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2546
2547 Result = APSInt(DestWidth, !DestSigned);
2548 bool ignored;
2549 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2550 & APFloat::opInvalidOp)
2551 return HandleOverflow(Info, E, Value, DestType);
2552 return true;
2553 }
2554
2555 /// Get rounding mode to use in evaluation of the specified expression.
2556 ///
2557 /// If rounding mode is unknown at compile time, still try to evaluate the
2558 /// expression. If the result is exact, it does not depend on rounding mode.
2559 /// So return "tonearest" mode instead of "dynamic".
getActiveRoundingMode(EvalInfo & Info,const Expr * E)2560 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2561 llvm::RoundingMode RM =
2562 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2563 if (RM == llvm::RoundingMode::Dynamic)
2564 RM = llvm::RoundingMode::NearestTiesToEven;
2565 return RM;
2566 }
2567
2568 /// Check if the given evaluation result is allowed for constant evaluation.
checkFloatingPointResult(EvalInfo & Info,const Expr * E,APFloat::opStatus St)2569 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2570 APFloat::opStatus St) {
2571 // In a constant context, assume that any dynamic rounding mode or FP
2572 // exception state matches the default floating-point environment.
2573 if (Info.InConstantContext)
2574 return true;
2575
2576 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2577 if ((St & APFloat::opInexact) &&
2578 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2579 // Inexact result means that it depends on rounding mode. If the requested
2580 // mode is dynamic, the evaluation cannot be made in compile time.
2581 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2582 return false;
2583 }
2584
2585 if ((St != APFloat::opOK) &&
2586 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2587 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2588 FPO.getAllowFEnvAccess())) {
2589 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2590 return false;
2591 }
2592
2593 if ((St & APFloat::opStatus::opInvalidOp) &&
2594 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2595 // There is no usefully definable result.
2596 Info.FFDiag(E);
2597 return false;
2598 }
2599
2600 // FIXME: if:
2601 // - evaluation triggered other FP exception, and
2602 // - exception mode is not "ignore", and
2603 // - the expression being evaluated is not a part of global variable
2604 // initializer,
2605 // the evaluation probably need to be rejected.
2606 return true;
2607 }
2608
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2609 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2610 QualType SrcType, QualType DestType,
2611 APFloat &Result) {
2612 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2613 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2614 APFloat::opStatus St;
2615 APFloat Value = Result;
2616 bool ignored;
2617 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2618 return checkFloatingPointResult(Info, E, St);
2619 }
2620
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2621 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2622 QualType DestType, QualType SrcType,
2623 const APSInt &Value) {
2624 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2625 // Figure out if this is a truncate, extend or noop cast.
2626 // If the input is signed, do a sign extend, noop, or truncate.
2627 APSInt Result = Value.extOrTrunc(DestWidth);
2628 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2629 if (DestType->isBooleanType())
2630 Result = Value.getBoolValue();
2631 return Result;
2632 }
2633
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,const FPOptions FPO,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2634 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2635 const FPOptions FPO,
2636 QualType SrcType, const APSInt &Value,
2637 QualType DestType, APFloat &Result) {
2638 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2639 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2640 APFloat::rmNearestTiesToEven);
2641 if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2642 FPO.isFPConstrained()) {
2643 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2644 return false;
2645 }
2646 return true;
2647 }
2648
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2649 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2650 APValue &Value, const FieldDecl *FD) {
2651 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2652
2653 if (!Value.isInt()) {
2654 // Trying to store a pointer-cast-to-integer into a bitfield.
2655 // FIXME: In this case, we should provide the diagnostic for casting
2656 // a pointer to an integer.
2657 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2658 Info.FFDiag(E);
2659 return false;
2660 }
2661
2662 APSInt &Int = Value.getInt();
2663 unsigned OldBitWidth = Int.getBitWidth();
2664 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2665 if (NewBitWidth < OldBitWidth)
2666 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2667 return true;
2668 }
2669
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2670 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2671 llvm::APInt &Res) {
2672 APValue SVal;
2673 if (!Evaluate(SVal, Info, E))
2674 return false;
2675 if (SVal.isInt()) {
2676 Res = SVal.getInt();
2677 return true;
2678 }
2679 if (SVal.isFloat()) {
2680 Res = SVal.getFloat().bitcastToAPInt();
2681 return true;
2682 }
2683 if (SVal.isVector()) {
2684 QualType VecTy = E->getType();
2685 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2686 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2687 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2688 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2689 Res = llvm::APInt::getZero(VecSize);
2690 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2691 APValue &Elt = SVal.getVectorElt(i);
2692 llvm::APInt EltAsInt;
2693 if (Elt.isInt()) {
2694 EltAsInt = Elt.getInt();
2695 } else if (Elt.isFloat()) {
2696 EltAsInt = Elt.getFloat().bitcastToAPInt();
2697 } else {
2698 // Don't try to handle vectors of anything other than int or float
2699 // (not sure if it's possible to hit this case).
2700 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2701 return false;
2702 }
2703 unsigned BaseEltSize = EltAsInt.getBitWidth();
2704 if (BigEndian)
2705 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2706 else
2707 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2708 }
2709 return true;
2710 }
2711 // Give up if the input isn't an int, float, or vector. For example, we
2712 // reject "(v4i16)(intptr_t)&a".
2713 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2714 return false;
2715 }
2716
2717 /// Perform the given integer operation, which is known to need at most BitWidth
2718 /// bits, and check for overflow in the original type (if that type was not an
2719 /// unsigned type).
2720 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2721 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2722 const APSInt &LHS, const APSInt &RHS,
2723 unsigned BitWidth, Operation Op,
2724 APSInt &Result) {
2725 if (LHS.isUnsigned()) {
2726 Result = Op(LHS, RHS);
2727 return true;
2728 }
2729
2730 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2731 Result = Value.trunc(LHS.getBitWidth());
2732 if (Result.extend(BitWidth) != Value) {
2733 if (Info.checkingForUndefinedBehavior())
2734 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2735 diag::warn_integer_constant_overflow)
2736 << toString(Result, 10) << E->getType();
2737 return HandleOverflow(Info, E, Value, E->getType());
2738 }
2739 return true;
2740 }
2741
2742 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2743 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2744 BinaryOperatorKind Opcode, APSInt RHS,
2745 APSInt &Result) {
2746 switch (Opcode) {
2747 default:
2748 Info.FFDiag(E);
2749 return false;
2750 case BO_Mul:
2751 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2752 std::multiplies<APSInt>(), Result);
2753 case BO_Add:
2754 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2755 std::plus<APSInt>(), Result);
2756 case BO_Sub:
2757 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2758 std::minus<APSInt>(), Result);
2759 case BO_And: Result = LHS & RHS; return true;
2760 case BO_Xor: Result = LHS ^ RHS; return true;
2761 case BO_Or: Result = LHS | RHS; return true;
2762 case BO_Div:
2763 case BO_Rem:
2764 if (RHS == 0) {
2765 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2766 return false;
2767 }
2768 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2769 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2770 // this operation and gives the two's complement result.
2771 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2772 LHS.isMinSignedValue())
2773 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2774 E->getType());
2775 return true;
2776 case BO_Shl: {
2777 if (Info.getLangOpts().OpenCL)
2778 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2779 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2780 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2781 RHS.isUnsigned());
2782 else if (RHS.isSigned() && RHS.isNegative()) {
2783 // During constant-folding, a negative shift is an opposite shift. Such
2784 // a shift is not a constant expression.
2785 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2786 RHS = -RHS;
2787 goto shift_right;
2788 }
2789 shift_left:
2790 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2791 // the shifted type.
2792 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2793 if (SA != RHS) {
2794 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2795 << RHS << E->getType() << LHS.getBitWidth();
2796 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2797 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2798 // operand, and must not overflow the corresponding unsigned type.
2799 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2800 // E1 x 2^E2 module 2^N.
2801 if (LHS.isNegative())
2802 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2803 else if (LHS.countLeadingZeros() < SA)
2804 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2805 }
2806 Result = LHS << SA;
2807 return true;
2808 }
2809 case BO_Shr: {
2810 if (Info.getLangOpts().OpenCL)
2811 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2812 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2813 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2814 RHS.isUnsigned());
2815 else if (RHS.isSigned() && RHS.isNegative()) {
2816 // During constant-folding, a negative shift is an opposite shift. Such a
2817 // shift is not a constant expression.
2818 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2819 RHS = -RHS;
2820 goto shift_left;
2821 }
2822 shift_right:
2823 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2824 // shifted type.
2825 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2826 if (SA != RHS)
2827 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2828 << RHS << E->getType() << LHS.getBitWidth();
2829 Result = LHS >> SA;
2830 return true;
2831 }
2832
2833 case BO_LT: Result = LHS < RHS; return true;
2834 case BO_GT: Result = LHS > RHS; return true;
2835 case BO_LE: Result = LHS <= RHS; return true;
2836 case BO_GE: Result = LHS >= RHS; return true;
2837 case BO_EQ: Result = LHS == RHS; return true;
2838 case BO_NE: Result = LHS != RHS; return true;
2839 case BO_Cmp:
2840 llvm_unreachable("BO_Cmp should be handled elsewhere");
2841 }
2842 }
2843
2844 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const BinaryOperator * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2845 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2846 APFloat &LHS, BinaryOperatorKind Opcode,
2847 const APFloat &RHS) {
2848 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2849 APFloat::opStatus St;
2850 switch (Opcode) {
2851 default:
2852 Info.FFDiag(E);
2853 return false;
2854 case BO_Mul:
2855 St = LHS.multiply(RHS, RM);
2856 break;
2857 case BO_Add:
2858 St = LHS.add(RHS, RM);
2859 break;
2860 case BO_Sub:
2861 St = LHS.subtract(RHS, RM);
2862 break;
2863 case BO_Div:
2864 // [expr.mul]p4:
2865 // If the second operand of / or % is zero the behavior is undefined.
2866 if (RHS.isZero())
2867 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2868 St = LHS.divide(RHS, RM);
2869 break;
2870 }
2871
2872 // [expr.pre]p4:
2873 // If during the evaluation of an expression, the result is not
2874 // mathematically defined [...], the behavior is undefined.
2875 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2876 if (LHS.isNaN()) {
2877 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2878 return Info.noteUndefinedBehavior();
2879 }
2880
2881 return checkFloatingPointResult(Info, E, St);
2882 }
2883
handleLogicalOpForVector(const APInt & LHSValue,BinaryOperatorKind Opcode,const APInt & RHSValue,APInt & Result)2884 static bool handleLogicalOpForVector(const APInt &LHSValue,
2885 BinaryOperatorKind Opcode,
2886 const APInt &RHSValue, APInt &Result) {
2887 bool LHS = (LHSValue != 0);
2888 bool RHS = (RHSValue != 0);
2889
2890 if (Opcode == BO_LAnd)
2891 Result = LHS && RHS;
2892 else
2893 Result = LHS || RHS;
2894 return true;
2895 }
handleLogicalOpForVector(const APFloat & LHSValue,BinaryOperatorKind Opcode,const APFloat & RHSValue,APInt & Result)2896 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2897 BinaryOperatorKind Opcode,
2898 const APFloat &RHSValue, APInt &Result) {
2899 bool LHS = !LHSValue.isZero();
2900 bool RHS = !RHSValue.isZero();
2901
2902 if (Opcode == BO_LAnd)
2903 Result = LHS && RHS;
2904 else
2905 Result = LHS || RHS;
2906 return true;
2907 }
2908
handleLogicalOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2909 static bool handleLogicalOpForVector(const APValue &LHSValue,
2910 BinaryOperatorKind Opcode,
2911 const APValue &RHSValue, APInt &Result) {
2912 // The result is always an int type, however operands match the first.
2913 if (LHSValue.getKind() == APValue::Int)
2914 return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2915 RHSValue.getInt(), Result);
2916 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2917 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2918 RHSValue.getFloat(), Result);
2919 }
2920
2921 template <typename APTy>
2922 static bool
handleCompareOpForVectorHelper(const APTy & LHSValue,BinaryOperatorKind Opcode,const APTy & RHSValue,APInt & Result)2923 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2924 const APTy &RHSValue, APInt &Result) {
2925 switch (Opcode) {
2926 default:
2927 llvm_unreachable("unsupported binary operator");
2928 case BO_EQ:
2929 Result = (LHSValue == RHSValue);
2930 break;
2931 case BO_NE:
2932 Result = (LHSValue != RHSValue);
2933 break;
2934 case BO_LT:
2935 Result = (LHSValue < RHSValue);
2936 break;
2937 case BO_GT:
2938 Result = (LHSValue > RHSValue);
2939 break;
2940 case BO_LE:
2941 Result = (LHSValue <= RHSValue);
2942 break;
2943 case BO_GE:
2944 Result = (LHSValue >= RHSValue);
2945 break;
2946 }
2947
2948 // The boolean operations on these vector types use an instruction that
2949 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2950 // to -1 to make sure that we produce the correct value.
2951 Result.negate();
2952
2953 return true;
2954 }
2955
handleCompareOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2956 static bool handleCompareOpForVector(const APValue &LHSValue,
2957 BinaryOperatorKind Opcode,
2958 const APValue &RHSValue, APInt &Result) {
2959 // The result is always an int type, however operands match the first.
2960 if (LHSValue.getKind() == APValue::Int)
2961 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2962 RHSValue.getInt(), Result);
2963 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2964 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2965 RHSValue.getFloat(), Result);
2966 }
2967
2968 // Perform binary operations for vector types, in place on the LHS.
handleVectorVectorBinOp(EvalInfo & Info,const BinaryOperator * E,BinaryOperatorKind Opcode,APValue & LHSValue,const APValue & RHSValue)2969 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2970 BinaryOperatorKind Opcode,
2971 APValue &LHSValue,
2972 const APValue &RHSValue) {
2973 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2974 "Operation not supported on vector types");
2975
2976 const auto *VT = E->getType()->castAs<VectorType>();
2977 unsigned NumElements = VT->getNumElements();
2978 QualType EltTy = VT->getElementType();
2979
2980 // In the cases (typically C as I've observed) where we aren't evaluating
2981 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2982 // just give up.
2983 if (!LHSValue.isVector()) {
2984 assert(LHSValue.isLValue() &&
2985 "A vector result that isn't a vector OR uncalculated LValue");
2986 Info.FFDiag(E);
2987 return false;
2988 }
2989
2990 assert(LHSValue.getVectorLength() == NumElements &&
2991 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2992
2993 SmallVector<APValue, 4> ResultElements;
2994
2995 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2996 APValue LHSElt = LHSValue.getVectorElt(EltNum);
2997 APValue RHSElt = RHSValue.getVectorElt(EltNum);
2998
2999 if (EltTy->isIntegerType()) {
3000 APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3001 EltTy->isUnsignedIntegerType()};
3002 bool Success = true;
3003
3004 if (BinaryOperator::isLogicalOp(Opcode))
3005 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3006 else if (BinaryOperator::isComparisonOp(Opcode))
3007 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3008 else
3009 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3010 RHSElt.getInt(), EltResult);
3011
3012 if (!Success) {
3013 Info.FFDiag(E);
3014 return false;
3015 }
3016 ResultElements.emplace_back(EltResult);
3017
3018 } else if (EltTy->isFloatingType()) {
3019 assert(LHSElt.getKind() == APValue::Float &&
3020 RHSElt.getKind() == APValue::Float &&
3021 "Mismatched LHS/RHS/Result Type");
3022 APFloat LHSFloat = LHSElt.getFloat();
3023
3024 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3025 RHSElt.getFloat())) {
3026 Info.FFDiag(E);
3027 return false;
3028 }
3029
3030 ResultElements.emplace_back(LHSFloat);
3031 }
3032 }
3033
3034 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3035 return true;
3036 }
3037
3038 /// Cast an lvalue referring to a base subobject to a derived class, by
3039 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)3040 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3041 const RecordDecl *TruncatedType,
3042 unsigned TruncatedElements) {
3043 SubobjectDesignator &D = Result.Designator;
3044
3045 // Check we actually point to a derived class object.
3046 if (TruncatedElements == D.Entries.size())
3047 return true;
3048 assert(TruncatedElements >= D.MostDerivedPathLength &&
3049 "not casting to a derived class");
3050 if (!Result.checkSubobject(Info, E, CSK_Derived))
3051 return false;
3052
3053 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3054 const RecordDecl *RD = TruncatedType;
3055 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3056 if (RD->isInvalidDecl()) return false;
3057 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3058 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3059 if (isVirtualBaseClass(D.Entries[I]))
3060 Result.Offset -= Layout.getVBaseClassOffset(Base);
3061 else
3062 Result.Offset -= Layout.getBaseClassOffset(Base);
3063 RD = Base;
3064 }
3065 D.Entries.resize(TruncatedElements);
3066 return true;
3067 }
3068
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)3069 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3070 const CXXRecordDecl *Derived,
3071 const CXXRecordDecl *Base,
3072 const ASTRecordLayout *RL = nullptr) {
3073 if (!RL) {
3074 if (Derived->isInvalidDecl()) return false;
3075 RL = &Info.Ctx.getASTRecordLayout(Derived);
3076 }
3077
3078 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3079 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3080 return true;
3081 }
3082
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)3083 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3084 const CXXRecordDecl *DerivedDecl,
3085 const CXXBaseSpecifier *Base) {
3086 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3087
3088 if (!Base->isVirtual())
3089 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3090
3091 SubobjectDesignator &D = Obj.Designator;
3092 if (D.Invalid)
3093 return false;
3094
3095 // Extract most-derived object and corresponding type.
3096 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3097 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3098 return false;
3099
3100 // Find the virtual base class.
3101 if (DerivedDecl->isInvalidDecl()) return false;
3102 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3103 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3104 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3105 return true;
3106 }
3107
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)3108 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3109 QualType Type, LValue &Result) {
3110 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3111 PathE = E->path_end();
3112 PathI != PathE; ++PathI) {
3113 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3114 *PathI))
3115 return false;
3116 Type = (*PathI)->getType();
3117 }
3118 return true;
3119 }
3120
3121 /// Cast an lvalue referring to a derived class to a known base subobject.
CastToBaseClass(EvalInfo & Info,const Expr * E,LValue & Result,const CXXRecordDecl * DerivedRD,const CXXRecordDecl * BaseRD)3122 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3123 const CXXRecordDecl *DerivedRD,
3124 const CXXRecordDecl *BaseRD) {
3125 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3126 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3127 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3128 llvm_unreachable("Class must be derived from the passed in base class!");
3129
3130 for (CXXBasePathElement &Elem : Paths.front())
3131 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3132 return false;
3133 return true;
3134 }
3135
3136 /// Update LVal to refer to the given field, which must be a member of the type
3137 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)3138 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3139 const FieldDecl *FD,
3140 const ASTRecordLayout *RL = nullptr) {
3141 if (!RL) {
3142 if (FD->getParent()->isInvalidDecl()) return false;
3143 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3144 }
3145
3146 unsigned I = FD->getFieldIndex();
3147 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3148 LVal.addDecl(Info, E, FD);
3149 return true;
3150 }
3151
3152 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)3153 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3154 LValue &LVal,
3155 const IndirectFieldDecl *IFD) {
3156 for (const auto *C : IFD->chain())
3157 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3158 return false;
3159 return true;
3160 }
3161
3162 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)3163 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3164 QualType Type, CharUnits &Size) {
3165 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3166 // extension.
3167 if (Type->isVoidType() || Type->isFunctionType()) {
3168 Size = CharUnits::One();
3169 return true;
3170 }
3171
3172 if (Type->isDependentType()) {
3173 Info.FFDiag(Loc);
3174 return false;
3175 }
3176
3177 if (!Type->isConstantSizeType()) {
3178 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3179 // FIXME: Better diagnostic.
3180 Info.FFDiag(Loc);
3181 return false;
3182 }
3183
3184 Size = Info.Ctx.getTypeSizeInChars(Type);
3185 return true;
3186 }
3187
3188 /// Update a pointer value to model pointer arithmetic.
3189 /// \param Info - Information about the ongoing evaluation.
3190 /// \param E - The expression being evaluated, for diagnostic purposes.
3191 /// \param LVal - The pointer value to be updated.
3192 /// \param EltTy - The pointee type represented by LVal.
3193 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)3194 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3195 LValue &LVal, QualType EltTy,
3196 APSInt Adjustment) {
3197 CharUnits SizeOfPointee;
3198 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3199 return false;
3200
3201 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3202 return true;
3203 }
3204
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)3205 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3206 LValue &LVal, QualType EltTy,
3207 int64_t Adjustment) {
3208 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3209 APSInt::get(Adjustment));
3210 }
3211
3212 /// Update an lvalue to refer to a component of a complex number.
3213 /// \param Info - Information about the ongoing evaluation.
3214 /// \param LVal - The lvalue to be updated.
3215 /// \param EltTy - The complex number's component type.
3216 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)3217 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3218 LValue &LVal, QualType EltTy,
3219 bool Imag) {
3220 if (Imag) {
3221 CharUnits SizeOfComponent;
3222 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3223 return false;
3224 LVal.Offset += SizeOfComponent;
3225 }
3226 LVal.addComplex(Info, E, EltTy, Imag);
3227 return true;
3228 }
3229
3230 /// Try to evaluate the initializer for a variable declaration.
3231 ///
3232 /// \param Info Information about the ongoing evaluation.
3233 /// \param E An expression to be used when printing diagnostics.
3234 /// \param VD The variable whose initializer should be obtained.
3235 /// \param Version The version of the variable within the frame.
3236 /// \param Frame The frame in which the variable was created. Must be null
3237 /// if this variable is not local to the evaluation.
3238 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,unsigned Version,APValue * & Result)3239 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3240 const VarDecl *VD, CallStackFrame *Frame,
3241 unsigned Version, APValue *&Result) {
3242 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3243
3244 // If this is a local variable, dig out its value.
3245 if (Frame) {
3246 Result = Frame->getTemporary(VD, Version);
3247 if (Result)
3248 return true;
3249
3250 if (!isa<ParmVarDecl>(VD)) {
3251 // Assume variables referenced within a lambda's call operator that were
3252 // not declared within the call operator are captures and during checking
3253 // of a potential constant expression, assume they are unknown constant
3254 // expressions.
3255 assert(isLambdaCallOperator(Frame->Callee) &&
3256 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3257 "missing value for local variable");
3258 if (Info.checkingPotentialConstantExpression())
3259 return false;
3260 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3261 // still reachable at all?
3262 Info.FFDiag(E->getBeginLoc(),
3263 diag::note_unimplemented_constexpr_lambda_feature_ast)
3264 << "captures not currently allowed";
3265 return false;
3266 }
3267 }
3268
3269 // If we're currently evaluating the initializer of this declaration, use that
3270 // in-flight value.
3271 if (Info.EvaluatingDecl == Base) {
3272 Result = Info.EvaluatingDeclValue;
3273 return true;
3274 }
3275
3276 if (isa<ParmVarDecl>(VD)) {
3277 // Assume parameters of a potential constant expression are usable in
3278 // constant expressions.
3279 if (!Info.checkingPotentialConstantExpression() ||
3280 !Info.CurrentCall->Callee ||
3281 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3282 if (Info.getLangOpts().CPlusPlus11) {
3283 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3284 << VD;
3285 NoteLValueLocation(Info, Base);
3286 } else {
3287 Info.FFDiag(E);
3288 }
3289 }
3290 return false;
3291 }
3292
3293 // Dig out the initializer, and use the declaration which it's attached to.
3294 // FIXME: We should eventually check whether the variable has a reachable
3295 // initializing declaration.
3296 const Expr *Init = VD->getAnyInitializer(VD);
3297 if (!Init) {
3298 // Don't diagnose during potential constant expression checking; an
3299 // initializer might be added later.
3300 if (!Info.checkingPotentialConstantExpression()) {
3301 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3302 << VD;
3303 NoteLValueLocation(Info, Base);
3304 }
3305 return false;
3306 }
3307
3308 if (Init->isValueDependent()) {
3309 // The DeclRefExpr is not value-dependent, but the variable it refers to
3310 // has a value-dependent initializer. This should only happen in
3311 // constant-folding cases, where the variable is not actually of a suitable
3312 // type for use in a constant expression (otherwise the DeclRefExpr would
3313 // have been value-dependent too), so diagnose that.
3314 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3315 if (!Info.checkingPotentialConstantExpression()) {
3316 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3317 ? diag::note_constexpr_ltor_non_constexpr
3318 : diag::note_constexpr_ltor_non_integral, 1)
3319 << VD << VD->getType();
3320 NoteLValueLocation(Info, Base);
3321 }
3322 return false;
3323 }
3324
3325 // Check that we can fold the initializer. In C++, we will have already done
3326 // this in the cases where it matters for conformance.
3327 if (!VD->evaluateValue()) {
3328 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3329 NoteLValueLocation(Info, Base);
3330 return false;
3331 }
3332
3333 // Check that the variable is actually usable in constant expressions. For a
3334 // const integral variable or a reference, we might have a non-constant
3335 // initializer that we can nonetheless evaluate the initializer for. Such
3336 // variables are not usable in constant expressions. In C++98, the
3337 // initializer also syntactically needs to be an ICE.
3338 //
3339 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3340 // expressions here; doing so would regress diagnostics for things like
3341 // reading from a volatile constexpr variable.
3342 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3343 VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3344 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3345 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3346 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3347 NoteLValueLocation(Info, Base);
3348 }
3349
3350 // Never use the initializer of a weak variable, not even for constant
3351 // folding. We can't be sure that this is the definition that will be used.
3352 if (VD->isWeak()) {
3353 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3354 NoteLValueLocation(Info, Base);
3355 return false;
3356 }
3357
3358 Result = VD->getEvaluatedValue();
3359 return true;
3360 }
3361
3362 /// Get the base index of the given base class within an APValue representing
3363 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)3364 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3365 const CXXRecordDecl *Base) {
3366 Base = Base->getCanonicalDecl();
3367 unsigned Index = 0;
3368 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3369 E = Derived->bases_end(); I != E; ++I, ++Index) {
3370 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3371 return Index;
3372 }
3373
3374 llvm_unreachable("base class missing from derived class's bases list");
3375 }
3376
3377 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)3378 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3379 uint64_t Index) {
3380 assert(!isa<SourceLocExpr>(Lit) &&
3381 "SourceLocExpr should have already been converted to a StringLiteral");
3382
3383 // FIXME: Support MakeStringConstant
3384 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3385 std::string Str;
3386 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3387 assert(Index <= Str.size() && "Index too large");
3388 return APSInt::getUnsigned(Str.c_str()[Index]);
3389 }
3390
3391 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3392 Lit = PE->getFunctionName();
3393 const StringLiteral *S = cast<StringLiteral>(Lit);
3394 const ConstantArrayType *CAT =
3395 Info.Ctx.getAsConstantArrayType(S->getType());
3396 assert(CAT && "string literal isn't an array");
3397 QualType CharType = CAT->getElementType();
3398 assert(CharType->isIntegerType() && "unexpected character type");
3399
3400 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3401 CharType->isUnsignedIntegerType());
3402 if (Index < S->getLength())
3403 Value = S->getCodeUnit(Index);
3404 return Value;
3405 }
3406
3407 // Expand a string literal into an array of characters.
3408 //
3409 // FIXME: This is inefficient; we should probably introduce something similar
3410 // to the LLVM ConstantDataArray to make this cheaper.
expandStringLiteral(EvalInfo & Info,const StringLiteral * S,APValue & Result,QualType AllocType=QualType ())3411 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3412 APValue &Result,
3413 QualType AllocType = QualType()) {
3414 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3415 AllocType.isNull() ? S->getType() : AllocType);
3416 assert(CAT && "string literal isn't an array");
3417 QualType CharType = CAT->getElementType();
3418 assert(CharType->isIntegerType() && "unexpected character type");
3419
3420 unsigned Elts = CAT->getSize().getZExtValue();
3421 Result = APValue(APValue::UninitArray(),
3422 std::min(S->getLength(), Elts), Elts);
3423 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3424 CharType->isUnsignedIntegerType());
3425 if (Result.hasArrayFiller())
3426 Result.getArrayFiller() = APValue(Value);
3427 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3428 Value = S->getCodeUnit(I);
3429 Result.getArrayInitializedElt(I) = APValue(Value);
3430 }
3431 }
3432
3433 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)3434 static void expandArray(APValue &Array, unsigned Index) {
3435 unsigned Size = Array.getArraySize();
3436 assert(Index < Size);
3437
3438 // Always at least double the number of elements for which we store a value.
3439 unsigned OldElts = Array.getArrayInitializedElts();
3440 unsigned NewElts = std::max(Index+1, OldElts * 2);
3441 NewElts = std::min(Size, std::max(NewElts, 8u));
3442
3443 // Copy the data across.
3444 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3445 for (unsigned I = 0; I != OldElts; ++I)
3446 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3447 for (unsigned I = OldElts; I != NewElts; ++I)
3448 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3449 if (NewValue.hasArrayFiller())
3450 NewValue.getArrayFiller() = Array.getArrayFiller();
3451 Array.swap(NewValue);
3452 }
3453
3454 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3455 /// conversion. If it's of class type, we may assume that the copy operation
3456 /// is trivial. Note that this is never true for a union type with fields
3457 /// (because the copy always "reads" the active member) and always true for
3458 /// a non-class type.
3459 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
isReadByLvalueToRvalueConversion(QualType T)3460 static bool isReadByLvalueToRvalueConversion(QualType T) {
3461 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3462 return !RD || isReadByLvalueToRvalueConversion(RD);
3463 }
isReadByLvalueToRvalueConversion(const CXXRecordDecl * RD)3464 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3465 // FIXME: A trivial copy of a union copies the object representation, even if
3466 // the union is empty.
3467 if (RD->isUnion())
3468 return !RD->field_empty();
3469 if (RD->isEmpty())
3470 return false;
3471
3472 for (auto *Field : RD->fields())
3473 if (!Field->isUnnamedBitfield() &&
3474 isReadByLvalueToRvalueConversion(Field->getType()))
3475 return true;
3476
3477 for (auto &BaseSpec : RD->bases())
3478 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3479 return true;
3480
3481 return false;
3482 }
3483
3484 /// Diagnose an attempt to read from any unreadable field within the specified
3485 /// type, which might be a class type.
diagnoseMutableFields(EvalInfo & Info,const Expr * E,AccessKinds AK,QualType T)3486 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3487 QualType T) {
3488 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3489 if (!RD)
3490 return false;
3491
3492 if (!RD->hasMutableFields())
3493 return false;
3494
3495 for (auto *Field : RD->fields()) {
3496 // If we're actually going to read this field in some way, then it can't
3497 // be mutable. If we're in a union, then assigning to a mutable field
3498 // (even an empty one) can change the active member, so that's not OK.
3499 // FIXME: Add core issue number for the union case.
3500 if (Field->isMutable() &&
3501 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3502 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3503 Info.Note(Field->getLocation(), diag::note_declared_at);
3504 return true;
3505 }
3506
3507 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3508 return true;
3509 }
3510
3511 for (auto &BaseSpec : RD->bases())
3512 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3513 return true;
3514
3515 // All mutable fields were empty, and thus not actually read.
3516 return false;
3517 }
3518
lifetimeStartedInEvaluation(EvalInfo & Info,APValue::LValueBase Base,bool MutableSubobject=false)3519 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3520 APValue::LValueBase Base,
3521 bool MutableSubobject = false) {
3522 // A temporary or transient heap allocation we created.
3523 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3524 return true;
3525
3526 switch (Info.IsEvaluatingDecl) {
3527 case EvalInfo::EvaluatingDeclKind::None:
3528 return false;
3529
3530 case EvalInfo::EvaluatingDeclKind::Ctor:
3531 // The variable whose initializer we're evaluating.
3532 if (Info.EvaluatingDecl == Base)
3533 return true;
3534
3535 // A temporary lifetime-extended by the variable whose initializer we're
3536 // evaluating.
3537 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3538 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3539 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3540 return false;
3541
3542 case EvalInfo::EvaluatingDeclKind::Dtor:
3543 // C++2a [expr.const]p6:
3544 // [during constant destruction] the lifetime of a and its non-mutable
3545 // subobjects (but not its mutable subobjects) [are] considered to start
3546 // within e.
3547 if (MutableSubobject || Base != Info.EvaluatingDecl)
3548 return false;
3549 // FIXME: We can meaningfully extend this to cover non-const objects, but
3550 // we will need special handling: we should be able to access only
3551 // subobjects of such objects that are themselves declared const.
3552 QualType T = getType(Base);
3553 return T.isConstQualified() || T->isReferenceType();
3554 }
3555
3556 llvm_unreachable("unknown evaluating decl kind");
3557 }
3558
3559 namespace {
3560 /// A handle to a complete object (an object that is not a subobject of
3561 /// another object).
3562 struct CompleteObject {
3563 /// The identity of the object.
3564 APValue::LValueBase Base;
3565 /// The value of the complete object.
3566 APValue *Value;
3567 /// The type of the complete object.
3568 QualType Type;
3569
CompleteObject__anon7a1fdcea0911::CompleteObject3570 CompleteObject() : Value(nullptr) {}
CompleteObject__anon7a1fdcea0911::CompleteObject3571 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3572 : Base(Base), Value(Value), Type(Type) {}
3573
mayAccessMutableMembers__anon7a1fdcea0911::CompleteObject3574 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3575 // If this isn't a "real" access (eg, if it's just accessing the type
3576 // info), allow it. We assume the type doesn't change dynamically for
3577 // subobjects of constexpr objects (even though we'd hit UB here if it
3578 // did). FIXME: Is this right?
3579 if (!isAnyAccess(AK))
3580 return true;
3581
3582 // In C++14 onwards, it is permitted to read a mutable member whose
3583 // lifetime began within the evaluation.
3584 // FIXME: Should we also allow this in C++11?
3585 if (!Info.getLangOpts().CPlusPlus14)
3586 return false;
3587 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3588 }
3589
operator bool__anon7a1fdcea0911::CompleteObject3590 explicit operator bool() const { return !Type.isNull(); }
3591 };
3592 } // end anonymous namespace
3593
getSubobjectType(QualType ObjType,QualType SubobjType,bool IsMutable=false)3594 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3595 bool IsMutable = false) {
3596 // C++ [basic.type.qualifier]p1:
3597 // - A const object is an object of type const T or a non-mutable subobject
3598 // of a const object.
3599 if (ObjType.isConstQualified() && !IsMutable)
3600 SubobjType.addConst();
3601 // - A volatile object is an object of type const T or a subobject of a
3602 // volatile object.
3603 if (ObjType.isVolatileQualified())
3604 SubobjType.addVolatile();
3605 return SubobjType;
3606 }
3607
3608 /// Find the designated sub-object of an rvalue.
3609 template<typename SubobjectHandler>
3610 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)3611 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3612 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3613 if (Sub.Invalid)
3614 // A diagnostic will have already been produced.
3615 return handler.failed();
3616 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3617 if (Info.getLangOpts().CPlusPlus11)
3618 Info.FFDiag(E, Sub.isOnePastTheEnd()
3619 ? diag::note_constexpr_access_past_end
3620 : diag::note_constexpr_access_unsized_array)
3621 << handler.AccessKind;
3622 else
3623 Info.FFDiag(E);
3624 return handler.failed();
3625 }
3626
3627 APValue *O = Obj.Value;
3628 QualType ObjType = Obj.Type;
3629 const FieldDecl *LastField = nullptr;
3630 const FieldDecl *VolatileField = nullptr;
3631
3632 // Walk the designator's path to find the subobject.
3633 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3634 // Reading an indeterminate value is undefined, but assigning over one is OK.
3635 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3636 (O->isIndeterminate() &&
3637 !isValidIndeterminateAccess(handler.AccessKind))) {
3638 if (!Info.checkingPotentialConstantExpression())
3639 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3640 << handler.AccessKind << O->isIndeterminate();
3641 return handler.failed();
3642 }
3643
3644 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3645 // const and volatile semantics are not applied on an object under
3646 // {con,de}struction.
3647 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3648 ObjType->isRecordType() &&
3649 Info.isEvaluatingCtorDtor(
3650 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3651 Sub.Entries.begin() + I)) !=
3652 ConstructionPhase::None) {
3653 ObjType = Info.Ctx.getCanonicalType(ObjType);
3654 ObjType.removeLocalConst();
3655 ObjType.removeLocalVolatile();
3656 }
3657
3658 // If this is our last pass, check that the final object type is OK.
3659 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3660 // Accesses to volatile objects are prohibited.
3661 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3662 if (Info.getLangOpts().CPlusPlus) {
3663 int DiagKind;
3664 SourceLocation Loc;
3665 const NamedDecl *Decl = nullptr;
3666 if (VolatileField) {
3667 DiagKind = 2;
3668 Loc = VolatileField->getLocation();
3669 Decl = VolatileField;
3670 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3671 DiagKind = 1;
3672 Loc = VD->getLocation();
3673 Decl = VD;
3674 } else {
3675 DiagKind = 0;
3676 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3677 Loc = E->getExprLoc();
3678 }
3679 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3680 << handler.AccessKind << DiagKind << Decl;
3681 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3682 } else {
3683 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3684 }
3685 return handler.failed();
3686 }
3687
3688 // If we are reading an object of class type, there may still be more
3689 // things we need to check: if there are any mutable subobjects, we
3690 // cannot perform this read. (This only happens when performing a trivial
3691 // copy or assignment.)
3692 if (ObjType->isRecordType() &&
3693 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3694 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3695 return handler.failed();
3696 }
3697
3698 if (I == N) {
3699 if (!handler.found(*O, ObjType))
3700 return false;
3701
3702 // If we modified a bit-field, truncate it to the right width.
3703 if (isModification(handler.AccessKind) &&
3704 LastField && LastField->isBitField() &&
3705 !truncateBitfieldValue(Info, E, *O, LastField))
3706 return false;
3707
3708 return true;
3709 }
3710
3711 LastField = nullptr;
3712 if (ObjType->isArrayType()) {
3713 // Next subobject is an array element.
3714 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3715 assert(CAT && "vla in literal type?");
3716 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3717 if (CAT->getSize().ule(Index)) {
3718 // Note, it should not be possible to form a pointer with a valid
3719 // designator which points more than one past the end of the array.
3720 if (Info.getLangOpts().CPlusPlus11)
3721 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3722 << handler.AccessKind;
3723 else
3724 Info.FFDiag(E);
3725 return handler.failed();
3726 }
3727
3728 ObjType = CAT->getElementType();
3729
3730 if (O->getArrayInitializedElts() > Index)
3731 O = &O->getArrayInitializedElt(Index);
3732 else if (!isRead(handler.AccessKind)) {
3733 expandArray(*O, Index);
3734 O = &O->getArrayInitializedElt(Index);
3735 } else
3736 O = &O->getArrayFiller();
3737 } else if (ObjType->isAnyComplexType()) {
3738 // Next subobject is a complex number.
3739 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3740 if (Index > 1) {
3741 if (Info.getLangOpts().CPlusPlus11)
3742 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3743 << handler.AccessKind;
3744 else
3745 Info.FFDiag(E);
3746 return handler.failed();
3747 }
3748
3749 ObjType = getSubobjectType(
3750 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3751
3752 assert(I == N - 1 && "extracting subobject of scalar?");
3753 if (O->isComplexInt()) {
3754 return handler.found(Index ? O->getComplexIntImag()
3755 : O->getComplexIntReal(), ObjType);
3756 } else {
3757 assert(O->isComplexFloat());
3758 return handler.found(Index ? O->getComplexFloatImag()
3759 : O->getComplexFloatReal(), ObjType);
3760 }
3761 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3762 if (Field->isMutable() &&
3763 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3764 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3765 << handler.AccessKind << Field;
3766 Info.Note(Field->getLocation(), diag::note_declared_at);
3767 return handler.failed();
3768 }
3769
3770 // Next subobject is a class, struct or union field.
3771 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3772 if (RD->isUnion()) {
3773 const FieldDecl *UnionField = O->getUnionField();
3774 if (!UnionField ||
3775 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3776 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3777 // Placement new onto an inactive union member makes it active.
3778 O->setUnion(Field, APValue());
3779 } else {
3780 // FIXME: If O->getUnionValue() is absent, report that there's no
3781 // active union member rather than reporting the prior active union
3782 // member. We'll need to fix nullptr_t to not use APValue() as its
3783 // representation first.
3784 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3785 << handler.AccessKind << Field << !UnionField << UnionField;
3786 return handler.failed();
3787 }
3788 }
3789 O = &O->getUnionValue();
3790 } else
3791 O = &O->getStructField(Field->getFieldIndex());
3792
3793 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3794 LastField = Field;
3795 if (Field->getType().isVolatileQualified())
3796 VolatileField = Field;
3797 } else {
3798 // Next subobject is a base class.
3799 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3800 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3801 O = &O->getStructBase(getBaseIndex(Derived, Base));
3802
3803 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3804 }
3805 }
3806 }
3807
3808 namespace {
3809 struct ExtractSubobjectHandler {
3810 EvalInfo &Info;
3811 const Expr *E;
3812 APValue &Result;
3813 const AccessKinds AccessKind;
3814
3815 typedef bool result_type;
failed__anon7a1fdcea0a11::ExtractSubobjectHandler3816 bool failed() { return false; }
found__anon7a1fdcea0a11::ExtractSubobjectHandler3817 bool found(APValue &Subobj, QualType SubobjType) {
3818 Result = Subobj;
3819 if (AccessKind == AK_ReadObjectRepresentation)
3820 return true;
3821 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3822 }
found__anon7a1fdcea0a11::ExtractSubobjectHandler3823 bool found(APSInt &Value, QualType SubobjType) {
3824 Result = APValue(Value);
3825 return true;
3826 }
found__anon7a1fdcea0a11::ExtractSubobjectHandler3827 bool found(APFloat &Value, QualType SubobjType) {
3828 Result = APValue(Value);
3829 return true;
3830 }
3831 };
3832 } // end anonymous namespace
3833
3834 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result,AccessKinds AK=AK_Read)3835 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3836 const CompleteObject &Obj,
3837 const SubobjectDesignator &Sub, APValue &Result,
3838 AccessKinds AK = AK_Read) {
3839 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3840 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3841 return findSubobject(Info, E, Obj, Sub, Handler);
3842 }
3843
3844 namespace {
3845 struct ModifySubobjectHandler {
3846 EvalInfo &Info;
3847 APValue &NewVal;
3848 const Expr *E;
3849
3850 typedef bool result_type;
3851 static const AccessKinds AccessKind = AK_Assign;
3852
checkConst__anon7a1fdcea0b11::ModifySubobjectHandler3853 bool checkConst(QualType QT) {
3854 // Assigning to a const object has undefined behavior.
3855 if (QT.isConstQualified()) {
3856 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3857 return false;
3858 }
3859 return true;
3860 }
3861
failed__anon7a1fdcea0b11::ModifySubobjectHandler3862 bool failed() { return false; }
found__anon7a1fdcea0b11::ModifySubobjectHandler3863 bool found(APValue &Subobj, QualType SubobjType) {
3864 if (!checkConst(SubobjType))
3865 return false;
3866 // We've been given ownership of NewVal, so just swap it in.
3867 Subobj.swap(NewVal);
3868 return true;
3869 }
found__anon7a1fdcea0b11::ModifySubobjectHandler3870 bool found(APSInt &Value, QualType SubobjType) {
3871 if (!checkConst(SubobjType))
3872 return false;
3873 if (!NewVal.isInt()) {
3874 // Maybe trying to write a cast pointer value into a complex?
3875 Info.FFDiag(E);
3876 return false;
3877 }
3878 Value = NewVal.getInt();
3879 return true;
3880 }
found__anon7a1fdcea0b11::ModifySubobjectHandler3881 bool found(APFloat &Value, QualType SubobjType) {
3882 if (!checkConst(SubobjType))
3883 return false;
3884 Value = NewVal.getFloat();
3885 return true;
3886 }
3887 };
3888 } // end anonymous namespace
3889
3890 const AccessKinds ModifySubobjectHandler::AccessKind;
3891
3892 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3893 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3894 const CompleteObject &Obj,
3895 const SubobjectDesignator &Sub,
3896 APValue &NewVal) {
3897 ModifySubobjectHandler Handler = { Info, NewVal, E };
3898 return findSubobject(Info, E, Obj, Sub, Handler);
3899 }
3900
3901 /// Find the position where two subobject designators diverge, or equivalently
3902 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3903 static unsigned FindDesignatorMismatch(QualType ObjType,
3904 const SubobjectDesignator &A,
3905 const SubobjectDesignator &B,
3906 bool &WasArrayIndex) {
3907 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3908 for (/**/; I != N; ++I) {
3909 if (!ObjType.isNull() &&
3910 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3911 // Next subobject is an array element.
3912 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3913 WasArrayIndex = true;
3914 return I;
3915 }
3916 if (ObjType->isAnyComplexType())
3917 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3918 else
3919 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3920 } else {
3921 if (A.Entries[I].getAsBaseOrMember() !=
3922 B.Entries[I].getAsBaseOrMember()) {
3923 WasArrayIndex = false;
3924 return I;
3925 }
3926 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3927 // Next subobject is a field.
3928 ObjType = FD->getType();
3929 else
3930 // Next subobject is a base class.
3931 ObjType = QualType();
3932 }
3933 }
3934 WasArrayIndex = false;
3935 return I;
3936 }
3937
3938 /// Determine whether the given subobject designators refer to elements of the
3939 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3940 static bool AreElementsOfSameArray(QualType ObjType,
3941 const SubobjectDesignator &A,
3942 const SubobjectDesignator &B) {
3943 if (A.Entries.size() != B.Entries.size())
3944 return false;
3945
3946 bool IsArray = A.MostDerivedIsArrayElement;
3947 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3948 // A is a subobject of the array element.
3949 return false;
3950
3951 // If A (and B) designates an array element, the last entry will be the array
3952 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3953 // of length 1' case, and the entire path must match.
3954 bool WasArrayIndex;
3955 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3956 return CommonLength >= A.Entries.size() - IsArray;
3957 }
3958
3959 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3960 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3961 AccessKinds AK, const LValue &LVal,
3962 QualType LValType) {
3963 if (LVal.InvalidBase) {
3964 Info.FFDiag(E);
3965 return CompleteObject();
3966 }
3967
3968 if (!LVal.Base) {
3969 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3970 return CompleteObject();
3971 }
3972
3973 CallStackFrame *Frame = nullptr;
3974 unsigned Depth = 0;
3975 if (LVal.getLValueCallIndex()) {
3976 std::tie(Frame, Depth) =
3977 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3978 if (!Frame) {
3979 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3980 << AK << LVal.Base.is<const ValueDecl*>();
3981 NoteLValueLocation(Info, LVal.Base);
3982 return CompleteObject();
3983 }
3984 }
3985
3986 bool IsAccess = isAnyAccess(AK);
3987
3988 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3989 // is not a constant expression (even if the object is non-volatile). We also
3990 // apply this rule to C++98, in order to conform to the expected 'volatile'
3991 // semantics.
3992 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3993 if (Info.getLangOpts().CPlusPlus)
3994 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3995 << AK << LValType;
3996 else
3997 Info.FFDiag(E);
3998 return CompleteObject();
3999 }
4000
4001 // Compute value storage location and type of base object.
4002 APValue *BaseVal = nullptr;
4003 QualType BaseType = getType(LVal.Base);
4004
4005 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4006 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4007 // This is the object whose initializer we're evaluating, so its lifetime
4008 // started in the current evaluation.
4009 BaseVal = Info.EvaluatingDeclValue;
4010 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4011 // Allow reading from a GUID declaration.
4012 if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4013 if (isModification(AK)) {
4014 // All the remaining cases do not permit modification of the object.
4015 Info.FFDiag(E, diag::note_constexpr_modify_global);
4016 return CompleteObject();
4017 }
4018 APValue &V = GD->getAsAPValue();
4019 if (V.isAbsent()) {
4020 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4021 << GD->getType();
4022 return CompleteObject();
4023 }
4024 return CompleteObject(LVal.Base, &V, GD->getType());
4025 }
4026
4027 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4028 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4029 if (isModification(AK)) {
4030 Info.FFDiag(E, diag::note_constexpr_modify_global);
4031 return CompleteObject();
4032 }
4033 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4034 GCD->getType());
4035 }
4036
4037 // Allow reading from template parameter objects.
4038 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4039 if (isModification(AK)) {
4040 Info.FFDiag(E, diag::note_constexpr_modify_global);
4041 return CompleteObject();
4042 }
4043 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4044 TPO->getType());
4045 }
4046
4047 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4048 // In C++11, constexpr, non-volatile variables initialized with constant
4049 // expressions are constant expressions too. Inside constexpr functions,
4050 // parameters are constant expressions even if they're non-const.
4051 // In C++1y, objects local to a constant expression (those with a Frame) are
4052 // both readable and writable inside constant expressions.
4053 // In C, such things can also be folded, although they are not ICEs.
4054 const VarDecl *VD = dyn_cast<VarDecl>(D);
4055 if (VD) {
4056 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4057 VD = VDef;
4058 }
4059 if (!VD || VD->isInvalidDecl()) {
4060 Info.FFDiag(E);
4061 return CompleteObject();
4062 }
4063
4064 bool IsConstant = BaseType.isConstant(Info.Ctx);
4065
4066 // Unless we're looking at a local variable or argument in a constexpr call,
4067 // the variable we're reading must be const.
4068 if (!Frame) {
4069 if (IsAccess && isa<ParmVarDecl>(VD)) {
4070 // Access of a parameter that's not associated with a frame isn't going
4071 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4072 // suitable diagnostic.
4073 } else if (Info.getLangOpts().CPlusPlus14 &&
4074 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4075 // OK, we can read and modify an object if we're in the process of
4076 // evaluating its initializer, because its lifetime began in this
4077 // evaluation.
4078 } else if (isModification(AK)) {
4079 // All the remaining cases do not permit modification of the object.
4080 Info.FFDiag(E, diag::note_constexpr_modify_global);
4081 return CompleteObject();
4082 } else if (VD->isConstexpr()) {
4083 // OK, we can read this variable.
4084 } else if (BaseType->isIntegralOrEnumerationType()) {
4085 if (!IsConstant) {
4086 if (!IsAccess)
4087 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4088 if (Info.getLangOpts().CPlusPlus) {
4089 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4090 Info.Note(VD->getLocation(), diag::note_declared_at);
4091 } else {
4092 Info.FFDiag(E);
4093 }
4094 return CompleteObject();
4095 }
4096 } else if (!IsAccess) {
4097 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4098 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4099 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4100 // This variable might end up being constexpr. Don't diagnose it yet.
4101 } else if (IsConstant) {
4102 // Keep evaluating to see what we can do. In particular, we support
4103 // folding of const floating-point types, in order to make static const
4104 // data members of such types (supported as an extension) more useful.
4105 if (Info.getLangOpts().CPlusPlus) {
4106 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4107 ? diag::note_constexpr_ltor_non_constexpr
4108 : diag::note_constexpr_ltor_non_integral, 1)
4109 << VD << BaseType;
4110 Info.Note(VD->getLocation(), diag::note_declared_at);
4111 } else {
4112 Info.CCEDiag(E);
4113 }
4114 } else {
4115 // Never allow reading a non-const value.
4116 if (Info.getLangOpts().CPlusPlus) {
4117 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4118 ? diag::note_constexpr_ltor_non_constexpr
4119 : diag::note_constexpr_ltor_non_integral, 1)
4120 << VD << BaseType;
4121 Info.Note(VD->getLocation(), diag::note_declared_at);
4122 } else {
4123 Info.FFDiag(E);
4124 }
4125 return CompleteObject();
4126 }
4127 }
4128
4129 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4130 return CompleteObject();
4131 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4132 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4133 if (!Alloc) {
4134 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4135 return CompleteObject();
4136 }
4137 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4138 LVal.Base.getDynamicAllocType());
4139 } else {
4140 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4141
4142 if (!Frame) {
4143 if (const MaterializeTemporaryExpr *MTE =
4144 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4145 assert(MTE->getStorageDuration() == SD_Static &&
4146 "should have a frame for a non-global materialized temporary");
4147
4148 // C++20 [expr.const]p4: [DR2126]
4149 // An object or reference is usable in constant expressions if it is
4150 // - a temporary object of non-volatile const-qualified literal type
4151 // whose lifetime is extended to that of a variable that is usable
4152 // in constant expressions
4153 //
4154 // C++20 [expr.const]p5:
4155 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4156 // - a non-volatile glvalue that refers to an object that is usable
4157 // in constant expressions, or
4158 // - a non-volatile glvalue of literal type that refers to a
4159 // non-volatile object whose lifetime began within the evaluation
4160 // of E;
4161 //
4162 // C++11 misses the 'began within the evaluation of e' check and
4163 // instead allows all temporaries, including things like:
4164 // int &&r = 1;
4165 // int x = ++r;
4166 // constexpr int k = r;
4167 // Therefore we use the C++14-onwards rules in C++11 too.
4168 //
4169 // Note that temporaries whose lifetimes began while evaluating a
4170 // variable's constructor are not usable while evaluating the
4171 // corresponding destructor, not even if they're of const-qualified
4172 // types.
4173 if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4174 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4175 if (!IsAccess)
4176 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4177 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4178 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4179 return CompleteObject();
4180 }
4181
4182 BaseVal = MTE->getOrCreateValue(false);
4183 assert(BaseVal && "got reference to unevaluated temporary");
4184 } else {
4185 if (!IsAccess)
4186 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4187 APValue Val;
4188 LVal.moveInto(Val);
4189 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4190 << AK
4191 << Val.getAsString(Info.Ctx,
4192 Info.Ctx.getLValueReferenceType(LValType));
4193 NoteLValueLocation(Info, LVal.Base);
4194 return CompleteObject();
4195 }
4196 } else {
4197 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4198 assert(BaseVal && "missing value for temporary");
4199 }
4200 }
4201
4202 // In C++14, we can't safely access any mutable state when we might be
4203 // evaluating after an unmodeled side effect. Parameters are modeled as state
4204 // in the caller, but aren't visible once the call returns, so they can be
4205 // modified in a speculatively-evaluated call.
4206 //
4207 // FIXME: Not all local state is mutable. Allow local constant subobjects
4208 // to be read here (but take care with 'mutable' fields).
4209 unsigned VisibleDepth = Depth;
4210 if (llvm::isa_and_nonnull<ParmVarDecl>(
4211 LVal.Base.dyn_cast<const ValueDecl *>()))
4212 ++VisibleDepth;
4213 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4214 Info.EvalStatus.HasSideEffects) ||
4215 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4216 return CompleteObject();
4217
4218 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4219 }
4220
4221 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4222 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4223 /// glvalue referred to by an entity of reference type.
4224 ///
4225 /// \param Info - Information about the ongoing evaluation.
4226 /// \param Conv - The expression for which we are performing the conversion.
4227 /// Used for diagnostics.
4228 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4229 /// case of a non-class type).
4230 /// \param LVal - The glvalue on which we are attempting to perform this action.
4231 /// \param RVal - The produced value will be placed here.
4232 /// \param WantObjectRepresentation - If true, we're looking for the object
4233 /// representation rather than the value, and in particular,
4234 /// there is no requirement that the result be fully initialized.
4235 static bool
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal,bool WantObjectRepresentation=false)4236 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4237 const LValue &LVal, APValue &RVal,
4238 bool WantObjectRepresentation = false) {
4239 if (LVal.Designator.Invalid)
4240 return false;
4241
4242 // Check for special cases where there is no existing APValue to look at.
4243 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4244
4245 AccessKinds AK =
4246 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4247
4248 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4249 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4250 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4251 // initializer until now for such expressions. Such an expression can't be
4252 // an ICE in C, so this only matters for fold.
4253 if (Type.isVolatileQualified()) {
4254 Info.FFDiag(Conv);
4255 return false;
4256 }
4257
4258 APValue Lit;
4259 if (!Evaluate(Lit, Info, CLE->getInitializer()))
4260 return false;
4261
4262 // According to GCC info page:
4263 //
4264 // 6.28 Compound Literals
4265 //
4266 // As an optimization, G++ sometimes gives array compound literals longer
4267 // lifetimes: when the array either appears outside a function or has a
4268 // const-qualified type. If foo and its initializer had elements of type
4269 // char *const rather than char *, or if foo were a global variable, the
4270 // array would have static storage duration. But it is probably safest
4271 // just to avoid the use of array compound literals in C++ code.
4272 //
4273 // Obey that rule by checking constness for converted array types.
4274
4275 QualType CLETy = CLE->getType();
4276 if (CLETy->isArrayType() && !Type->isArrayType()) {
4277 if (!CLETy.isConstant(Info.Ctx)) {
4278 Info.FFDiag(Conv);
4279 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4280 return false;
4281 }
4282 }
4283
4284 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4285 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4286 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4287 // Special-case character extraction so we don't have to construct an
4288 // APValue for the whole string.
4289 assert(LVal.Designator.Entries.size() <= 1 &&
4290 "Can only read characters from string literals");
4291 if (LVal.Designator.Entries.empty()) {
4292 // Fail for now for LValue to RValue conversion of an array.
4293 // (This shouldn't show up in C/C++, but it could be triggered by a
4294 // weird EvaluateAsRValue call from a tool.)
4295 Info.FFDiag(Conv);
4296 return false;
4297 }
4298 if (LVal.Designator.isOnePastTheEnd()) {
4299 if (Info.getLangOpts().CPlusPlus11)
4300 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4301 else
4302 Info.FFDiag(Conv);
4303 return false;
4304 }
4305 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4306 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4307 return true;
4308 }
4309 }
4310
4311 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4312 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4313 }
4314
4315 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)4316 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4317 QualType LValType, APValue &Val) {
4318 if (LVal.Designator.Invalid)
4319 return false;
4320
4321 if (!Info.getLangOpts().CPlusPlus14) {
4322 Info.FFDiag(E);
4323 return false;
4324 }
4325
4326 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4327 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4328 }
4329
4330 namespace {
4331 struct CompoundAssignSubobjectHandler {
4332 EvalInfo &Info;
4333 const CompoundAssignOperator *E;
4334 QualType PromotedLHSType;
4335 BinaryOperatorKind Opcode;
4336 const APValue &RHS;
4337
4338 static const AccessKinds AccessKind = AK_Assign;
4339
4340 typedef bool result_type;
4341
checkConst__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4342 bool checkConst(QualType QT) {
4343 // Assigning to a const object has undefined behavior.
4344 if (QT.isConstQualified()) {
4345 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4346 return false;
4347 }
4348 return true;
4349 }
4350
failed__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4351 bool failed() { return false; }
found__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4352 bool found(APValue &Subobj, QualType SubobjType) {
4353 switch (Subobj.getKind()) {
4354 case APValue::Int:
4355 return found(Subobj.getInt(), SubobjType);
4356 case APValue::Float:
4357 return found(Subobj.getFloat(), SubobjType);
4358 case APValue::ComplexInt:
4359 case APValue::ComplexFloat:
4360 // FIXME: Implement complex compound assignment.
4361 Info.FFDiag(E);
4362 return false;
4363 case APValue::LValue:
4364 return foundPointer(Subobj, SubobjType);
4365 case APValue::Vector:
4366 return foundVector(Subobj, SubobjType);
4367 default:
4368 // FIXME: can this happen?
4369 Info.FFDiag(E);
4370 return false;
4371 }
4372 }
4373
foundVector__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4374 bool foundVector(APValue &Value, QualType SubobjType) {
4375 if (!checkConst(SubobjType))
4376 return false;
4377
4378 if (!SubobjType->isVectorType()) {
4379 Info.FFDiag(E);
4380 return false;
4381 }
4382 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4383 }
4384
found__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4385 bool found(APSInt &Value, QualType SubobjType) {
4386 if (!checkConst(SubobjType))
4387 return false;
4388
4389 if (!SubobjType->isIntegerType()) {
4390 // We don't support compound assignment on integer-cast-to-pointer
4391 // values.
4392 Info.FFDiag(E);
4393 return false;
4394 }
4395
4396 if (RHS.isInt()) {
4397 APSInt LHS =
4398 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4399 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4400 return false;
4401 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4402 return true;
4403 } else if (RHS.isFloat()) {
4404 const FPOptions FPO = E->getFPFeaturesInEffect(
4405 Info.Ctx.getLangOpts());
4406 APFloat FValue(0.0);
4407 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4408 PromotedLHSType, FValue) &&
4409 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4410 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4411 Value);
4412 }
4413
4414 Info.FFDiag(E);
4415 return false;
4416 }
found__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4417 bool found(APFloat &Value, QualType SubobjType) {
4418 return checkConst(SubobjType) &&
4419 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4420 Value) &&
4421 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4422 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4423 }
foundPointer__anon7a1fdcea0c11::CompoundAssignSubobjectHandler4424 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4425 if (!checkConst(SubobjType))
4426 return false;
4427
4428 QualType PointeeType;
4429 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4430 PointeeType = PT->getPointeeType();
4431
4432 if (PointeeType.isNull() || !RHS.isInt() ||
4433 (Opcode != BO_Add && Opcode != BO_Sub)) {
4434 Info.FFDiag(E);
4435 return false;
4436 }
4437
4438 APSInt Offset = RHS.getInt();
4439 if (Opcode == BO_Sub)
4440 negateAsSigned(Offset);
4441
4442 LValue LVal;
4443 LVal.setFrom(Info.Ctx, Subobj);
4444 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4445 return false;
4446 LVal.moveInto(Subobj);
4447 return true;
4448 }
4449 };
4450 } // end anonymous namespace
4451
4452 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4453
4454 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const CompoundAssignOperator * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)4455 static bool handleCompoundAssignment(EvalInfo &Info,
4456 const CompoundAssignOperator *E,
4457 const LValue &LVal, QualType LValType,
4458 QualType PromotedLValType,
4459 BinaryOperatorKind Opcode,
4460 const APValue &RVal) {
4461 if (LVal.Designator.Invalid)
4462 return false;
4463
4464 if (!Info.getLangOpts().CPlusPlus14) {
4465 Info.FFDiag(E);
4466 return false;
4467 }
4468
4469 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4470 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4471 RVal };
4472 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4473 }
4474
4475 namespace {
4476 struct IncDecSubobjectHandler {
4477 EvalInfo &Info;
4478 const UnaryOperator *E;
4479 AccessKinds AccessKind;
4480 APValue *Old;
4481
4482 typedef bool result_type;
4483
checkConst__anon7a1fdcea0d11::IncDecSubobjectHandler4484 bool checkConst(QualType QT) {
4485 // Assigning to a const object has undefined behavior.
4486 if (QT.isConstQualified()) {
4487 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4488 return false;
4489 }
4490 return true;
4491 }
4492
failed__anon7a1fdcea0d11::IncDecSubobjectHandler4493 bool failed() { return false; }
found__anon7a1fdcea0d11::IncDecSubobjectHandler4494 bool found(APValue &Subobj, QualType SubobjType) {
4495 // Stash the old value. Also clear Old, so we don't clobber it later
4496 // if we're post-incrementing a complex.
4497 if (Old) {
4498 *Old = Subobj;
4499 Old = nullptr;
4500 }
4501
4502 switch (Subobj.getKind()) {
4503 case APValue::Int:
4504 return found(Subobj.getInt(), SubobjType);
4505 case APValue::Float:
4506 return found(Subobj.getFloat(), SubobjType);
4507 case APValue::ComplexInt:
4508 return found(Subobj.getComplexIntReal(),
4509 SubobjType->castAs<ComplexType>()->getElementType()
4510 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4511 case APValue::ComplexFloat:
4512 return found(Subobj.getComplexFloatReal(),
4513 SubobjType->castAs<ComplexType>()->getElementType()
4514 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4515 case APValue::LValue:
4516 return foundPointer(Subobj, SubobjType);
4517 default:
4518 // FIXME: can this happen?
4519 Info.FFDiag(E);
4520 return false;
4521 }
4522 }
found__anon7a1fdcea0d11::IncDecSubobjectHandler4523 bool found(APSInt &Value, QualType SubobjType) {
4524 if (!checkConst(SubobjType))
4525 return false;
4526
4527 if (!SubobjType->isIntegerType()) {
4528 // We don't support increment / decrement on integer-cast-to-pointer
4529 // values.
4530 Info.FFDiag(E);
4531 return false;
4532 }
4533
4534 if (Old) *Old = APValue(Value);
4535
4536 // bool arithmetic promotes to int, and the conversion back to bool
4537 // doesn't reduce mod 2^n, so special-case it.
4538 if (SubobjType->isBooleanType()) {
4539 if (AccessKind == AK_Increment)
4540 Value = 1;
4541 else
4542 Value = !Value;
4543 return true;
4544 }
4545
4546 bool WasNegative = Value.isNegative();
4547 if (AccessKind == AK_Increment) {
4548 ++Value;
4549
4550 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4551 APSInt ActualValue(Value, /*IsUnsigned*/true);
4552 return HandleOverflow(Info, E, ActualValue, SubobjType);
4553 }
4554 } else {
4555 --Value;
4556
4557 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4558 unsigned BitWidth = Value.getBitWidth();
4559 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4560 ActualValue.setBit(BitWidth);
4561 return HandleOverflow(Info, E, ActualValue, SubobjType);
4562 }
4563 }
4564 return true;
4565 }
found__anon7a1fdcea0d11::IncDecSubobjectHandler4566 bool found(APFloat &Value, QualType SubobjType) {
4567 if (!checkConst(SubobjType))
4568 return false;
4569
4570 if (Old) *Old = APValue(Value);
4571
4572 APFloat One(Value.getSemantics(), 1);
4573 if (AccessKind == AK_Increment)
4574 Value.add(One, APFloat::rmNearestTiesToEven);
4575 else
4576 Value.subtract(One, APFloat::rmNearestTiesToEven);
4577 return true;
4578 }
foundPointer__anon7a1fdcea0d11::IncDecSubobjectHandler4579 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4580 if (!checkConst(SubobjType))
4581 return false;
4582
4583 QualType PointeeType;
4584 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4585 PointeeType = PT->getPointeeType();
4586 else {
4587 Info.FFDiag(E);
4588 return false;
4589 }
4590
4591 LValue LVal;
4592 LVal.setFrom(Info.Ctx, Subobj);
4593 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4594 AccessKind == AK_Increment ? 1 : -1))
4595 return false;
4596 LVal.moveInto(Subobj);
4597 return true;
4598 }
4599 };
4600 } // end anonymous namespace
4601
4602 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)4603 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4604 QualType LValType, bool IsIncrement, APValue *Old) {
4605 if (LVal.Designator.Invalid)
4606 return false;
4607
4608 if (!Info.getLangOpts().CPlusPlus14) {
4609 Info.FFDiag(E);
4610 return false;
4611 }
4612
4613 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4614 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4615 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4616 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4617 }
4618
4619 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)4620 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4621 LValue &This) {
4622 if (Object->getType()->isPointerType() && Object->isPRValue())
4623 return EvaluatePointer(Object, This, Info);
4624
4625 if (Object->isGLValue())
4626 return EvaluateLValue(Object, This, Info);
4627
4628 if (Object->getType()->isLiteralType(Info.Ctx))
4629 return EvaluateTemporary(Object, This, Info);
4630
4631 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4632 return false;
4633 }
4634
4635 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4636 /// lvalue referring to the result.
4637 ///
4638 /// \param Info - Information about the ongoing evaluation.
4639 /// \param LV - An lvalue referring to the base of the member pointer.
4640 /// \param RHS - The member pointer expression.
4641 /// \param IncludeMember - Specifies whether the member itself is included in
4642 /// the resulting LValue subobject designator. This is not possible when
4643 /// creating a bound member function.
4644 /// \return The field or method declaration to which the member pointer refers,
4645 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)4646 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4647 QualType LVType,
4648 LValue &LV,
4649 const Expr *RHS,
4650 bool IncludeMember = true) {
4651 MemberPtr MemPtr;
4652 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4653 return nullptr;
4654
4655 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4656 // member value, the behavior is undefined.
4657 if (!MemPtr.getDecl()) {
4658 // FIXME: Specific diagnostic.
4659 Info.FFDiag(RHS);
4660 return nullptr;
4661 }
4662
4663 if (MemPtr.isDerivedMember()) {
4664 // This is a member of some derived class. Truncate LV appropriately.
4665 // The end of the derived-to-base path for the base object must match the
4666 // derived-to-base path for the member pointer.
4667 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4668 LV.Designator.Entries.size()) {
4669 Info.FFDiag(RHS);
4670 return nullptr;
4671 }
4672 unsigned PathLengthToMember =
4673 LV.Designator.Entries.size() - MemPtr.Path.size();
4674 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4675 const CXXRecordDecl *LVDecl = getAsBaseClass(
4676 LV.Designator.Entries[PathLengthToMember + I]);
4677 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4678 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4679 Info.FFDiag(RHS);
4680 return nullptr;
4681 }
4682 }
4683
4684 // Truncate the lvalue to the appropriate derived class.
4685 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4686 PathLengthToMember))
4687 return nullptr;
4688 } else if (!MemPtr.Path.empty()) {
4689 // Extend the LValue path with the member pointer's path.
4690 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4691 MemPtr.Path.size() + IncludeMember);
4692
4693 // Walk down to the appropriate base class.
4694 if (const PointerType *PT = LVType->getAs<PointerType>())
4695 LVType = PT->getPointeeType();
4696 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4697 assert(RD && "member pointer access on non-class-type expression");
4698 // The first class in the path is that of the lvalue.
4699 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4700 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4701 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4702 return nullptr;
4703 RD = Base;
4704 }
4705 // Finally cast to the class containing the member.
4706 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4707 MemPtr.getContainingRecord()))
4708 return nullptr;
4709 }
4710
4711 // Add the member. Note that we cannot build bound member functions here.
4712 if (IncludeMember) {
4713 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4714 if (!HandleLValueMember(Info, RHS, LV, FD))
4715 return nullptr;
4716 } else if (const IndirectFieldDecl *IFD =
4717 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4718 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4719 return nullptr;
4720 } else {
4721 llvm_unreachable("can't construct reference to bound member function");
4722 }
4723 }
4724
4725 return MemPtr.getDecl();
4726 }
4727
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)4728 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4729 const BinaryOperator *BO,
4730 LValue &LV,
4731 bool IncludeMember = true) {
4732 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4733
4734 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4735 if (Info.noteFailure()) {
4736 MemberPtr MemPtr;
4737 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4738 }
4739 return nullptr;
4740 }
4741
4742 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4743 BO->getRHS(), IncludeMember);
4744 }
4745
4746 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4747 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)4748 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4749 LValue &Result) {
4750 SubobjectDesignator &D = Result.Designator;
4751 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4752 return false;
4753
4754 QualType TargetQT = E->getType();
4755 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4756 TargetQT = PT->getPointeeType();
4757
4758 // Check this cast lands within the final derived-to-base subobject path.
4759 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4760 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4761 << D.MostDerivedType << TargetQT;
4762 return false;
4763 }
4764
4765 // Check the type of the final cast. We don't need to check the path,
4766 // since a cast can only be formed if the path is unique.
4767 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4768 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4769 const CXXRecordDecl *FinalType;
4770 if (NewEntriesSize == D.MostDerivedPathLength)
4771 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4772 else
4773 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4774 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4775 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4776 << D.MostDerivedType << TargetQT;
4777 return false;
4778 }
4779
4780 // Truncate the lvalue to the appropriate derived class.
4781 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4782 }
4783
4784 /// Get the value to use for a default-initialized object of type T.
4785 /// Return false if it encounters something invalid.
getDefaultInitValue(QualType T,APValue & Result)4786 static bool getDefaultInitValue(QualType T, APValue &Result) {
4787 bool Success = true;
4788 if (auto *RD = T->getAsCXXRecordDecl()) {
4789 if (RD->isInvalidDecl()) {
4790 Result = APValue();
4791 return false;
4792 }
4793 if (RD->isUnion()) {
4794 Result = APValue((const FieldDecl *)nullptr);
4795 return true;
4796 }
4797 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4798 std::distance(RD->field_begin(), RD->field_end()));
4799
4800 unsigned Index = 0;
4801 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4802 End = RD->bases_end();
4803 I != End; ++I, ++Index)
4804 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4805
4806 for (const auto *I : RD->fields()) {
4807 if (I->isUnnamedBitfield())
4808 continue;
4809 Success &= getDefaultInitValue(I->getType(),
4810 Result.getStructField(I->getFieldIndex()));
4811 }
4812 return Success;
4813 }
4814
4815 if (auto *AT =
4816 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4817 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4818 if (Result.hasArrayFiller())
4819 Success &=
4820 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4821
4822 return Success;
4823 }
4824
4825 Result = APValue::IndeterminateValue();
4826 return true;
4827 }
4828
4829 namespace {
4830 enum EvalStmtResult {
4831 /// Evaluation failed.
4832 ESR_Failed,
4833 /// Hit a 'return' statement.
4834 ESR_Returned,
4835 /// Evaluation succeeded.
4836 ESR_Succeeded,
4837 /// Hit a 'continue' statement.
4838 ESR_Continue,
4839 /// Hit a 'break' statement.
4840 ESR_Break,
4841 /// Still scanning for 'case' or 'default' statement.
4842 ESR_CaseNotFound
4843 };
4844 }
4845
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)4846 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4847 // We don't need to evaluate the initializer for a static local.
4848 if (!VD->hasLocalStorage())
4849 return true;
4850
4851 LValue Result;
4852 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4853 ScopeKind::Block, Result);
4854
4855 const Expr *InitE = VD->getInit();
4856 if (!InitE) {
4857 if (VD->getType()->isDependentType())
4858 return Info.noteSideEffect();
4859 return getDefaultInitValue(VD->getType(), Val);
4860 }
4861 if (InitE->isValueDependent())
4862 return false;
4863
4864 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4865 // Wipe out any partially-computed value, to allow tracking that this
4866 // evaluation failed.
4867 Val = APValue();
4868 return false;
4869 }
4870
4871 return true;
4872 }
4873
EvaluateDecl(EvalInfo & Info,const Decl * D)4874 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4875 bool OK = true;
4876
4877 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4878 OK &= EvaluateVarDecl(Info, VD);
4879
4880 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4881 for (auto *BD : DD->bindings())
4882 if (auto *VD = BD->getHoldingVar())
4883 OK &= EvaluateDecl(Info, VD);
4884
4885 return OK;
4886 }
4887
EvaluateDependentExpr(const Expr * E,EvalInfo & Info)4888 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4889 assert(E->isValueDependent());
4890 if (Info.noteSideEffect())
4891 return true;
4892 assert(E->containsErrors() && "valid value-dependent expression should never "
4893 "reach invalid code path.");
4894 return false;
4895 }
4896
4897 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)4898 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4899 const Expr *Cond, bool &Result) {
4900 if (Cond->isValueDependent())
4901 return false;
4902 FullExpressionRAII Scope(Info);
4903 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4904 return false;
4905 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4906 return false;
4907 return Scope.destroy();
4908 }
4909
4910 namespace {
4911 /// A location where the result (returned value) of evaluating a
4912 /// statement should be stored.
4913 struct StmtResult {
4914 /// The APValue that should be filled in with the returned value.
4915 APValue &Value;
4916 /// The location containing the result, if any (used to support RVO).
4917 const LValue *Slot;
4918 };
4919
4920 struct TempVersionRAII {
4921 CallStackFrame &Frame;
4922
TempVersionRAII__anon7a1fdcea0f11::TempVersionRAII4923 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4924 Frame.pushTempVersion();
4925 }
4926
~TempVersionRAII__anon7a1fdcea0f11::TempVersionRAII4927 ~TempVersionRAII() {
4928 Frame.popTempVersion();
4929 }
4930 };
4931
4932 }
4933
4934 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4935 const Stmt *S,
4936 const SwitchCase *SC = nullptr);
4937
4938 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)4939 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4940 const Stmt *Body,
4941 const SwitchCase *Case = nullptr) {
4942 BlockScopeRAII Scope(Info);
4943
4944 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4945 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4946 ESR = ESR_Failed;
4947
4948 switch (ESR) {
4949 case ESR_Break:
4950 return ESR_Succeeded;
4951 case ESR_Succeeded:
4952 case ESR_Continue:
4953 return ESR_Continue;
4954 case ESR_Failed:
4955 case ESR_Returned:
4956 case ESR_CaseNotFound:
4957 return ESR;
4958 }
4959 llvm_unreachable("Invalid EvalStmtResult!");
4960 }
4961
4962 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)4963 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4964 const SwitchStmt *SS) {
4965 BlockScopeRAII Scope(Info);
4966
4967 // Evaluate the switch condition.
4968 APSInt Value;
4969 {
4970 if (const Stmt *Init = SS->getInit()) {
4971 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4972 if (ESR != ESR_Succeeded) {
4973 if (ESR != ESR_Failed && !Scope.destroy())
4974 ESR = ESR_Failed;
4975 return ESR;
4976 }
4977 }
4978
4979 FullExpressionRAII CondScope(Info);
4980 if (SS->getConditionVariable() &&
4981 !EvaluateDecl(Info, SS->getConditionVariable()))
4982 return ESR_Failed;
4983 if (SS->getCond()->isValueDependent()) {
4984 if (!EvaluateDependentExpr(SS->getCond(), Info))
4985 return ESR_Failed;
4986 } else {
4987 if (!EvaluateInteger(SS->getCond(), Value, Info))
4988 return ESR_Failed;
4989 }
4990 if (!CondScope.destroy())
4991 return ESR_Failed;
4992 }
4993
4994 // Find the switch case corresponding to the value of the condition.
4995 // FIXME: Cache this lookup.
4996 const SwitchCase *Found = nullptr;
4997 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4998 SC = SC->getNextSwitchCase()) {
4999 if (isa<DefaultStmt>(SC)) {
5000 Found = SC;
5001 continue;
5002 }
5003
5004 const CaseStmt *CS = cast<CaseStmt>(SC);
5005 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5006 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5007 : LHS;
5008 if (LHS <= Value && Value <= RHS) {
5009 Found = SC;
5010 break;
5011 }
5012 }
5013
5014 if (!Found)
5015 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5016
5017 // Search the switch body for the switch case and evaluate it from there.
5018 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5019 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5020 return ESR_Failed;
5021
5022 switch (ESR) {
5023 case ESR_Break:
5024 return ESR_Succeeded;
5025 case ESR_Succeeded:
5026 case ESR_Continue:
5027 case ESR_Failed:
5028 case ESR_Returned:
5029 return ESR;
5030 case ESR_CaseNotFound:
5031 // This can only happen if the switch case is nested within a statement
5032 // expression. We have no intention of supporting that.
5033 Info.FFDiag(Found->getBeginLoc(),
5034 diag::note_constexpr_stmt_expr_unsupported);
5035 return ESR_Failed;
5036 }
5037 llvm_unreachable("Invalid EvalStmtResult!");
5038 }
5039
CheckLocalVariableDeclaration(EvalInfo & Info,const VarDecl * VD)5040 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5041 // An expression E is a core constant expression unless the evaluation of E
5042 // would evaluate one of the following: [C++2b] - a control flow that passes
5043 // through a declaration of a variable with static or thread storage duration.
5044 if (VD->isLocalVarDecl() && VD->isStaticLocal()) {
5045 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5046 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5047 return false;
5048 }
5049 return true;
5050 }
5051
5052 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)5053 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5054 const Stmt *S, const SwitchCase *Case) {
5055 if (!Info.nextStep(S))
5056 return ESR_Failed;
5057
5058 // If we're hunting down a 'case' or 'default' label, recurse through
5059 // substatements until we hit the label.
5060 if (Case) {
5061 switch (S->getStmtClass()) {
5062 case Stmt::CompoundStmtClass:
5063 // FIXME: Precompute which substatement of a compound statement we
5064 // would jump to, and go straight there rather than performing a
5065 // linear scan each time.
5066 case Stmt::LabelStmtClass:
5067 case Stmt::AttributedStmtClass:
5068 case Stmt::DoStmtClass:
5069 break;
5070
5071 case Stmt::CaseStmtClass:
5072 case Stmt::DefaultStmtClass:
5073 if (Case == S)
5074 Case = nullptr;
5075 break;
5076
5077 case Stmt::IfStmtClass: {
5078 // FIXME: Precompute which side of an 'if' we would jump to, and go
5079 // straight there rather than scanning both sides.
5080 const IfStmt *IS = cast<IfStmt>(S);
5081
5082 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5083 // preceded by our switch label.
5084 BlockScopeRAII Scope(Info);
5085
5086 // Step into the init statement in case it brings an (uninitialized)
5087 // variable into scope.
5088 if (const Stmt *Init = IS->getInit()) {
5089 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5090 if (ESR != ESR_CaseNotFound) {
5091 assert(ESR != ESR_Succeeded);
5092 return ESR;
5093 }
5094 }
5095
5096 // Condition variable must be initialized if it exists.
5097 // FIXME: We can skip evaluating the body if there's a condition
5098 // variable, as there can't be any case labels within it.
5099 // (The same is true for 'for' statements.)
5100
5101 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5102 if (ESR == ESR_Failed)
5103 return ESR;
5104 if (ESR != ESR_CaseNotFound)
5105 return Scope.destroy() ? ESR : ESR_Failed;
5106 if (!IS->getElse())
5107 return ESR_CaseNotFound;
5108
5109 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5110 if (ESR == ESR_Failed)
5111 return ESR;
5112 if (ESR != ESR_CaseNotFound)
5113 return Scope.destroy() ? ESR : ESR_Failed;
5114 return ESR_CaseNotFound;
5115 }
5116
5117 case Stmt::WhileStmtClass: {
5118 EvalStmtResult ESR =
5119 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5120 if (ESR != ESR_Continue)
5121 return ESR;
5122 break;
5123 }
5124
5125 case Stmt::ForStmtClass: {
5126 const ForStmt *FS = cast<ForStmt>(S);
5127 BlockScopeRAII Scope(Info);
5128
5129 // Step into the init statement in case it brings an (uninitialized)
5130 // variable into scope.
5131 if (const Stmt *Init = FS->getInit()) {
5132 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5133 if (ESR != ESR_CaseNotFound) {
5134 assert(ESR != ESR_Succeeded);
5135 return ESR;
5136 }
5137 }
5138
5139 EvalStmtResult ESR =
5140 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5141 if (ESR != ESR_Continue)
5142 return ESR;
5143 if (const auto *Inc = FS->getInc()) {
5144 if (Inc->isValueDependent()) {
5145 if (!EvaluateDependentExpr(Inc, Info))
5146 return ESR_Failed;
5147 } else {
5148 FullExpressionRAII IncScope(Info);
5149 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5150 return ESR_Failed;
5151 }
5152 }
5153 break;
5154 }
5155
5156 case Stmt::DeclStmtClass: {
5157 // Start the lifetime of any uninitialized variables we encounter. They
5158 // might be used by the selected branch of the switch.
5159 const DeclStmt *DS = cast<DeclStmt>(S);
5160 for (const auto *D : DS->decls()) {
5161 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5162 if (!CheckLocalVariableDeclaration(Info, VD))
5163 return ESR_Failed;
5164 if (VD->hasLocalStorage() && !VD->getInit())
5165 if (!EvaluateVarDecl(Info, VD))
5166 return ESR_Failed;
5167 // FIXME: If the variable has initialization that can't be jumped
5168 // over, bail out of any immediately-surrounding compound-statement
5169 // too. There can't be any case labels here.
5170 }
5171 }
5172 return ESR_CaseNotFound;
5173 }
5174
5175 default:
5176 return ESR_CaseNotFound;
5177 }
5178 }
5179
5180 switch (S->getStmtClass()) {
5181 default:
5182 if (const Expr *E = dyn_cast<Expr>(S)) {
5183 if (E->isValueDependent()) {
5184 if (!EvaluateDependentExpr(E, Info))
5185 return ESR_Failed;
5186 } else {
5187 // Don't bother evaluating beyond an expression-statement which couldn't
5188 // be evaluated.
5189 // FIXME: Do we need the FullExpressionRAII object here?
5190 // VisitExprWithCleanups should create one when necessary.
5191 FullExpressionRAII Scope(Info);
5192 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5193 return ESR_Failed;
5194 }
5195 return ESR_Succeeded;
5196 }
5197
5198 Info.FFDiag(S->getBeginLoc());
5199 return ESR_Failed;
5200
5201 case Stmt::NullStmtClass:
5202 return ESR_Succeeded;
5203
5204 case Stmt::DeclStmtClass: {
5205 const DeclStmt *DS = cast<DeclStmt>(S);
5206 for (const auto *D : DS->decls()) {
5207 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5208 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5209 return ESR_Failed;
5210 // Each declaration initialization is its own full-expression.
5211 FullExpressionRAII Scope(Info);
5212 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5213 return ESR_Failed;
5214 if (!Scope.destroy())
5215 return ESR_Failed;
5216 }
5217 return ESR_Succeeded;
5218 }
5219
5220 case Stmt::ReturnStmtClass: {
5221 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5222 FullExpressionRAII Scope(Info);
5223 if (RetExpr && RetExpr->isValueDependent()) {
5224 EvaluateDependentExpr(RetExpr, Info);
5225 // We know we returned, but we don't know what the value is.
5226 return ESR_Failed;
5227 }
5228 if (RetExpr &&
5229 !(Result.Slot
5230 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5231 : Evaluate(Result.Value, Info, RetExpr)))
5232 return ESR_Failed;
5233 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5234 }
5235
5236 case Stmt::CompoundStmtClass: {
5237 BlockScopeRAII Scope(Info);
5238
5239 const CompoundStmt *CS = cast<CompoundStmt>(S);
5240 for (const auto *BI : CS->body()) {
5241 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5242 if (ESR == ESR_Succeeded)
5243 Case = nullptr;
5244 else if (ESR != ESR_CaseNotFound) {
5245 if (ESR != ESR_Failed && !Scope.destroy())
5246 return ESR_Failed;
5247 return ESR;
5248 }
5249 }
5250 if (Case)
5251 return ESR_CaseNotFound;
5252 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5253 }
5254
5255 case Stmt::IfStmtClass: {
5256 const IfStmt *IS = cast<IfStmt>(S);
5257
5258 // Evaluate the condition, as either a var decl or as an expression.
5259 BlockScopeRAII Scope(Info);
5260 if (const Stmt *Init = IS->getInit()) {
5261 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5262 if (ESR != ESR_Succeeded) {
5263 if (ESR != ESR_Failed && !Scope.destroy())
5264 return ESR_Failed;
5265 return ESR;
5266 }
5267 }
5268 bool Cond;
5269 if (IS->isConsteval()) {
5270 Cond = IS->isNonNegatedConsteval();
5271 // If we are not in a constant context, if consteval should not evaluate
5272 // to true.
5273 if (!Info.InConstantContext)
5274 Cond = !Cond;
5275 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5276 Cond))
5277 return ESR_Failed;
5278
5279 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5280 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5281 if (ESR != ESR_Succeeded) {
5282 if (ESR != ESR_Failed && !Scope.destroy())
5283 return ESR_Failed;
5284 return ESR;
5285 }
5286 }
5287 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5288 }
5289
5290 case Stmt::WhileStmtClass: {
5291 const WhileStmt *WS = cast<WhileStmt>(S);
5292 while (true) {
5293 BlockScopeRAII Scope(Info);
5294 bool Continue;
5295 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5296 Continue))
5297 return ESR_Failed;
5298 if (!Continue)
5299 break;
5300
5301 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5302 if (ESR != ESR_Continue) {
5303 if (ESR != ESR_Failed && !Scope.destroy())
5304 return ESR_Failed;
5305 return ESR;
5306 }
5307 if (!Scope.destroy())
5308 return ESR_Failed;
5309 }
5310 return ESR_Succeeded;
5311 }
5312
5313 case Stmt::DoStmtClass: {
5314 const DoStmt *DS = cast<DoStmt>(S);
5315 bool Continue;
5316 do {
5317 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5318 if (ESR != ESR_Continue)
5319 return ESR;
5320 Case = nullptr;
5321
5322 if (DS->getCond()->isValueDependent()) {
5323 EvaluateDependentExpr(DS->getCond(), Info);
5324 // Bailout as we don't know whether to keep going or terminate the loop.
5325 return ESR_Failed;
5326 }
5327 FullExpressionRAII CondScope(Info);
5328 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5329 !CondScope.destroy())
5330 return ESR_Failed;
5331 } while (Continue);
5332 return ESR_Succeeded;
5333 }
5334
5335 case Stmt::ForStmtClass: {
5336 const ForStmt *FS = cast<ForStmt>(S);
5337 BlockScopeRAII ForScope(Info);
5338 if (FS->getInit()) {
5339 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5340 if (ESR != ESR_Succeeded) {
5341 if (ESR != ESR_Failed && !ForScope.destroy())
5342 return ESR_Failed;
5343 return ESR;
5344 }
5345 }
5346 while (true) {
5347 BlockScopeRAII IterScope(Info);
5348 bool Continue = true;
5349 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5350 FS->getCond(), Continue))
5351 return ESR_Failed;
5352 if (!Continue)
5353 break;
5354
5355 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5356 if (ESR != ESR_Continue) {
5357 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5358 return ESR_Failed;
5359 return ESR;
5360 }
5361
5362 if (const auto *Inc = FS->getInc()) {
5363 if (Inc->isValueDependent()) {
5364 if (!EvaluateDependentExpr(Inc, Info))
5365 return ESR_Failed;
5366 } else {
5367 FullExpressionRAII IncScope(Info);
5368 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5369 return ESR_Failed;
5370 }
5371 }
5372
5373 if (!IterScope.destroy())
5374 return ESR_Failed;
5375 }
5376 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5377 }
5378
5379 case Stmt::CXXForRangeStmtClass: {
5380 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5381 BlockScopeRAII Scope(Info);
5382
5383 // Evaluate the init-statement if present.
5384 if (FS->getInit()) {
5385 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5386 if (ESR != ESR_Succeeded) {
5387 if (ESR != ESR_Failed && !Scope.destroy())
5388 return ESR_Failed;
5389 return ESR;
5390 }
5391 }
5392
5393 // Initialize the __range variable.
5394 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5395 if (ESR != ESR_Succeeded) {
5396 if (ESR != ESR_Failed && !Scope.destroy())
5397 return ESR_Failed;
5398 return ESR;
5399 }
5400
5401 // In error-recovery cases it's possible to get here even if we failed to
5402 // synthesize the __begin and __end variables.
5403 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5404 return ESR_Failed;
5405
5406 // Create the __begin and __end iterators.
5407 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5408 if (ESR != ESR_Succeeded) {
5409 if (ESR != ESR_Failed && !Scope.destroy())
5410 return ESR_Failed;
5411 return ESR;
5412 }
5413 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5414 if (ESR != ESR_Succeeded) {
5415 if (ESR != ESR_Failed && !Scope.destroy())
5416 return ESR_Failed;
5417 return ESR;
5418 }
5419
5420 while (true) {
5421 // Condition: __begin != __end.
5422 {
5423 if (FS->getCond()->isValueDependent()) {
5424 EvaluateDependentExpr(FS->getCond(), Info);
5425 // We don't know whether to keep going or terminate the loop.
5426 return ESR_Failed;
5427 }
5428 bool Continue = true;
5429 FullExpressionRAII CondExpr(Info);
5430 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5431 return ESR_Failed;
5432 if (!Continue)
5433 break;
5434 }
5435
5436 // User's variable declaration, initialized by *__begin.
5437 BlockScopeRAII InnerScope(Info);
5438 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5439 if (ESR != ESR_Succeeded) {
5440 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5441 return ESR_Failed;
5442 return ESR;
5443 }
5444
5445 // Loop body.
5446 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5447 if (ESR != ESR_Continue) {
5448 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5449 return ESR_Failed;
5450 return ESR;
5451 }
5452 if (FS->getInc()->isValueDependent()) {
5453 if (!EvaluateDependentExpr(FS->getInc(), Info))
5454 return ESR_Failed;
5455 } else {
5456 // Increment: ++__begin
5457 if (!EvaluateIgnoredValue(Info, FS->getInc()))
5458 return ESR_Failed;
5459 }
5460
5461 if (!InnerScope.destroy())
5462 return ESR_Failed;
5463 }
5464
5465 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5466 }
5467
5468 case Stmt::SwitchStmtClass:
5469 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5470
5471 case Stmt::ContinueStmtClass:
5472 return ESR_Continue;
5473
5474 case Stmt::BreakStmtClass:
5475 return ESR_Break;
5476
5477 case Stmt::LabelStmtClass:
5478 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5479
5480 case Stmt::AttributedStmtClass:
5481 // As a general principle, C++11 attributes can be ignored without
5482 // any semantic impact.
5483 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5484 Case);
5485
5486 case Stmt::CaseStmtClass:
5487 case Stmt::DefaultStmtClass:
5488 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5489 case Stmt::CXXTryStmtClass:
5490 // Evaluate try blocks by evaluating all sub statements.
5491 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5492 }
5493 }
5494
5495 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5496 /// default constructor. If so, we'll fold it whether or not it's marked as
5497 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5498 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)5499 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5500 const CXXConstructorDecl *CD,
5501 bool IsValueInitialization) {
5502 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5503 return false;
5504
5505 // Value-initialization does not call a trivial default constructor, so such a
5506 // call is a core constant expression whether or not the constructor is
5507 // constexpr.
5508 if (!CD->isConstexpr() && !IsValueInitialization) {
5509 if (Info.getLangOpts().CPlusPlus11) {
5510 // FIXME: If DiagDecl is an implicitly-declared special member function,
5511 // we should be much more explicit about why it's not constexpr.
5512 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5513 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5514 Info.Note(CD->getLocation(), diag::note_declared_at);
5515 } else {
5516 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5517 }
5518 }
5519 return true;
5520 }
5521
5522 /// CheckConstexprFunction - Check that a function can be called in a constant
5523 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)5524 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5525 const FunctionDecl *Declaration,
5526 const FunctionDecl *Definition,
5527 const Stmt *Body) {
5528 // Potential constant expressions can contain calls to declared, but not yet
5529 // defined, constexpr functions.
5530 if (Info.checkingPotentialConstantExpression() && !Definition &&
5531 Declaration->isConstexpr())
5532 return false;
5533
5534 // Bail out if the function declaration itself is invalid. We will
5535 // have produced a relevant diagnostic while parsing it, so just
5536 // note the problematic sub-expression.
5537 if (Declaration->isInvalidDecl()) {
5538 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5539 return false;
5540 }
5541
5542 // DR1872: An instantiated virtual constexpr function can't be called in a
5543 // constant expression (prior to C++20). We can still constant-fold such a
5544 // call.
5545 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5546 cast<CXXMethodDecl>(Declaration)->isVirtual())
5547 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5548
5549 if (Definition && Definition->isInvalidDecl()) {
5550 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5551 return false;
5552 }
5553
5554 // Can we evaluate this function call?
5555 if (Definition && Definition->isConstexpr() && Body)
5556 return true;
5557
5558 if (Info.getLangOpts().CPlusPlus11) {
5559 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5560
5561 // If this function is not constexpr because it is an inherited
5562 // non-constexpr constructor, diagnose that directly.
5563 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5564 if (CD && CD->isInheritingConstructor()) {
5565 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5566 if (!Inherited->isConstexpr())
5567 DiagDecl = CD = Inherited;
5568 }
5569
5570 // FIXME: If DiagDecl is an implicitly-declared special member function
5571 // or an inheriting constructor, we should be much more explicit about why
5572 // it's not constexpr.
5573 if (CD && CD->isInheritingConstructor())
5574 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5575 << CD->getInheritedConstructor().getConstructor()->getParent();
5576 else
5577 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5578 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5579 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5580 } else {
5581 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5582 }
5583 return false;
5584 }
5585
5586 namespace {
5587 struct CheckDynamicTypeHandler {
5588 AccessKinds AccessKind;
5589 typedef bool result_type;
failed__anon7a1fdcea1011::CheckDynamicTypeHandler5590 bool failed() { return false; }
found__anon7a1fdcea1011::CheckDynamicTypeHandler5591 bool found(APValue &Subobj, QualType SubobjType) { return true; }
found__anon7a1fdcea1011::CheckDynamicTypeHandler5592 bool found(APSInt &Value, QualType SubobjType) { return true; }
found__anon7a1fdcea1011::CheckDynamicTypeHandler5593 bool found(APFloat &Value, QualType SubobjType) { return true; }
5594 };
5595 } // end anonymous namespace
5596
5597 /// Check that we can access the notional vptr of an object / determine its
5598 /// dynamic type.
checkDynamicType(EvalInfo & Info,const Expr * E,const LValue & This,AccessKinds AK,bool Polymorphic)5599 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5600 AccessKinds AK, bool Polymorphic) {
5601 if (This.Designator.Invalid)
5602 return false;
5603
5604 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5605
5606 if (!Obj)
5607 return false;
5608
5609 if (!Obj.Value) {
5610 // The object is not usable in constant expressions, so we can't inspect
5611 // its value to see if it's in-lifetime or what the active union members
5612 // are. We can still check for a one-past-the-end lvalue.
5613 if (This.Designator.isOnePastTheEnd() ||
5614 This.Designator.isMostDerivedAnUnsizedArray()) {
5615 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5616 ? diag::note_constexpr_access_past_end
5617 : diag::note_constexpr_access_unsized_array)
5618 << AK;
5619 return false;
5620 } else if (Polymorphic) {
5621 // Conservatively refuse to perform a polymorphic operation if we would
5622 // not be able to read a notional 'vptr' value.
5623 APValue Val;
5624 This.moveInto(Val);
5625 QualType StarThisType =
5626 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5627 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5628 << AK << Val.getAsString(Info.Ctx, StarThisType);
5629 return false;
5630 }
5631 return true;
5632 }
5633
5634 CheckDynamicTypeHandler Handler{AK};
5635 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5636 }
5637
5638 /// Check that the pointee of the 'this' pointer in a member function call is
5639 /// either within its lifetime or in its period of construction or destruction.
5640 static bool
checkNonVirtualMemberCallThisPointer(EvalInfo & Info,const Expr * E,const LValue & This,const CXXMethodDecl * NamedMember)5641 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5642 const LValue &This,
5643 const CXXMethodDecl *NamedMember) {
5644 return checkDynamicType(
5645 Info, E, This,
5646 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5647 }
5648
5649 struct DynamicType {
5650 /// The dynamic class type of the object.
5651 const CXXRecordDecl *Type;
5652 /// The corresponding path length in the lvalue.
5653 unsigned PathLength;
5654 };
5655
getBaseClassType(SubobjectDesignator & Designator,unsigned PathLength)5656 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5657 unsigned PathLength) {
5658 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5659 Designator.Entries.size() && "invalid path length");
5660 return (PathLength == Designator.MostDerivedPathLength)
5661 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5662 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5663 }
5664
5665 /// Determine the dynamic type of an object.
ComputeDynamicType(EvalInfo & Info,const Expr * E,LValue & This,AccessKinds AK)5666 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5667 LValue &This, AccessKinds AK) {
5668 // If we don't have an lvalue denoting an object of class type, there is no
5669 // meaningful dynamic type. (We consider objects of non-class type to have no
5670 // dynamic type.)
5671 if (!checkDynamicType(Info, E, This, AK, true))
5672 return None;
5673
5674 // Refuse to compute a dynamic type in the presence of virtual bases. This
5675 // shouldn't happen other than in constant-folding situations, since literal
5676 // types can't have virtual bases.
5677 //
5678 // Note that consumers of DynamicType assume that the type has no virtual
5679 // bases, and will need modifications if this restriction is relaxed.
5680 const CXXRecordDecl *Class =
5681 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5682 if (!Class || Class->getNumVBases()) {
5683 Info.FFDiag(E);
5684 return None;
5685 }
5686
5687 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5688 // binary search here instead. But the overwhelmingly common case is that
5689 // we're not in the middle of a constructor, so it probably doesn't matter
5690 // in practice.
5691 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5692 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5693 PathLength <= Path.size(); ++PathLength) {
5694 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5695 Path.slice(0, PathLength))) {
5696 case ConstructionPhase::Bases:
5697 case ConstructionPhase::DestroyingBases:
5698 // We're constructing or destroying a base class. This is not the dynamic
5699 // type.
5700 break;
5701
5702 case ConstructionPhase::None:
5703 case ConstructionPhase::AfterBases:
5704 case ConstructionPhase::AfterFields:
5705 case ConstructionPhase::Destroying:
5706 // We've finished constructing the base classes and not yet started
5707 // destroying them again, so this is the dynamic type.
5708 return DynamicType{getBaseClassType(This.Designator, PathLength),
5709 PathLength};
5710 }
5711 }
5712
5713 // CWG issue 1517: we're constructing a base class of the object described by
5714 // 'This', so that object has not yet begun its period of construction and
5715 // any polymorphic operation on it results in undefined behavior.
5716 Info.FFDiag(E);
5717 return None;
5718 }
5719
5720 /// Perform virtual dispatch.
HandleVirtualDispatch(EvalInfo & Info,const Expr * E,LValue & This,const CXXMethodDecl * Found,llvm::SmallVectorImpl<QualType> & CovariantAdjustmentPath)5721 static const CXXMethodDecl *HandleVirtualDispatch(
5722 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5723 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5724 Optional<DynamicType> DynType = ComputeDynamicType(
5725 Info, E, This,
5726 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5727 if (!DynType)
5728 return nullptr;
5729
5730 // Find the final overrider. It must be declared in one of the classes on the
5731 // path from the dynamic type to the static type.
5732 // FIXME: If we ever allow literal types to have virtual base classes, that
5733 // won't be true.
5734 const CXXMethodDecl *Callee = Found;
5735 unsigned PathLength = DynType->PathLength;
5736 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5737 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5738 const CXXMethodDecl *Overrider =
5739 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5740 if (Overrider) {
5741 Callee = Overrider;
5742 break;
5743 }
5744 }
5745
5746 // C++2a [class.abstract]p6:
5747 // the effect of making a virtual call to a pure virtual function [...] is
5748 // undefined
5749 if (Callee->isPure()) {
5750 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5751 Info.Note(Callee->getLocation(), diag::note_declared_at);
5752 return nullptr;
5753 }
5754
5755 // If necessary, walk the rest of the path to determine the sequence of
5756 // covariant adjustment steps to apply.
5757 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5758 Found->getReturnType())) {
5759 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5760 for (unsigned CovariantPathLength = PathLength + 1;
5761 CovariantPathLength != This.Designator.Entries.size();
5762 ++CovariantPathLength) {
5763 const CXXRecordDecl *NextClass =
5764 getBaseClassType(This.Designator, CovariantPathLength);
5765 const CXXMethodDecl *Next =
5766 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5767 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5768 Next->getReturnType(), CovariantAdjustmentPath.back()))
5769 CovariantAdjustmentPath.push_back(Next->getReturnType());
5770 }
5771 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5772 CovariantAdjustmentPath.back()))
5773 CovariantAdjustmentPath.push_back(Found->getReturnType());
5774 }
5775
5776 // Perform 'this' adjustment.
5777 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5778 return nullptr;
5779
5780 return Callee;
5781 }
5782
5783 /// Perform the adjustment from a value returned by a virtual function to
5784 /// a value of the statically expected type, which may be a pointer or
5785 /// reference to a base class of the returned type.
HandleCovariantReturnAdjustment(EvalInfo & Info,const Expr * E,APValue & Result,ArrayRef<QualType> Path)5786 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5787 APValue &Result,
5788 ArrayRef<QualType> Path) {
5789 assert(Result.isLValue() &&
5790 "unexpected kind of APValue for covariant return");
5791 if (Result.isNullPointer())
5792 return true;
5793
5794 LValue LVal;
5795 LVal.setFrom(Info.Ctx, Result);
5796
5797 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5798 for (unsigned I = 1; I != Path.size(); ++I) {
5799 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5800 assert(OldClass && NewClass && "unexpected kind of covariant return");
5801 if (OldClass != NewClass &&
5802 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5803 return false;
5804 OldClass = NewClass;
5805 }
5806
5807 LVal.moveInto(Result);
5808 return true;
5809 }
5810
5811 /// Determine whether \p Base, which is known to be a direct base class of
5812 /// \p Derived, is a public base class.
isBaseClassPublic(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)5813 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5814 const CXXRecordDecl *Base) {
5815 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5816 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5817 if (BaseClass && declaresSameEntity(BaseClass, Base))
5818 return BaseSpec.getAccessSpecifier() == AS_public;
5819 }
5820 llvm_unreachable("Base is not a direct base of Derived");
5821 }
5822
5823 /// Apply the given dynamic cast operation on the provided lvalue.
5824 ///
5825 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5826 /// to find a suitable target subobject.
HandleDynamicCast(EvalInfo & Info,const ExplicitCastExpr * E,LValue & Ptr)5827 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5828 LValue &Ptr) {
5829 // We can't do anything with a non-symbolic pointer value.
5830 SubobjectDesignator &D = Ptr.Designator;
5831 if (D.Invalid)
5832 return false;
5833
5834 // C++ [expr.dynamic.cast]p6:
5835 // If v is a null pointer value, the result is a null pointer value.
5836 if (Ptr.isNullPointer() && !E->isGLValue())
5837 return true;
5838
5839 // For all the other cases, we need the pointer to point to an object within
5840 // its lifetime / period of construction / destruction, and we need to know
5841 // its dynamic type.
5842 Optional<DynamicType> DynType =
5843 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5844 if (!DynType)
5845 return false;
5846
5847 // C++ [expr.dynamic.cast]p7:
5848 // If T is "pointer to cv void", then the result is a pointer to the most
5849 // derived object
5850 if (E->getType()->isVoidPointerType())
5851 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5852
5853 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5854 assert(C && "dynamic_cast target is not void pointer nor class");
5855 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5856
5857 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5858 // C++ [expr.dynamic.cast]p9:
5859 if (!E->isGLValue()) {
5860 // The value of a failed cast to pointer type is the null pointer value
5861 // of the required result type.
5862 Ptr.setNull(Info.Ctx, E->getType());
5863 return true;
5864 }
5865
5866 // A failed cast to reference type throws [...] std::bad_cast.
5867 unsigned DiagKind;
5868 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5869 DynType->Type->isDerivedFrom(C)))
5870 DiagKind = 0;
5871 else if (!Paths || Paths->begin() == Paths->end())
5872 DiagKind = 1;
5873 else if (Paths->isAmbiguous(CQT))
5874 DiagKind = 2;
5875 else {
5876 assert(Paths->front().Access != AS_public && "why did the cast fail?");
5877 DiagKind = 3;
5878 }
5879 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5880 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5881 << Info.Ctx.getRecordType(DynType->Type)
5882 << E->getType().getUnqualifiedType();
5883 return false;
5884 };
5885
5886 // Runtime check, phase 1:
5887 // Walk from the base subobject towards the derived object looking for the
5888 // target type.
5889 for (int PathLength = Ptr.Designator.Entries.size();
5890 PathLength >= (int)DynType->PathLength; --PathLength) {
5891 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5892 if (declaresSameEntity(Class, C))
5893 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5894 // We can only walk across public inheritance edges.
5895 if (PathLength > (int)DynType->PathLength &&
5896 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5897 Class))
5898 return RuntimeCheckFailed(nullptr);
5899 }
5900
5901 // Runtime check, phase 2:
5902 // Search the dynamic type for an unambiguous public base of type C.
5903 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5904 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5905 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5906 Paths.front().Access == AS_public) {
5907 // Downcast to the dynamic type...
5908 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5909 return false;
5910 // ... then upcast to the chosen base class subobject.
5911 for (CXXBasePathElement &Elem : Paths.front())
5912 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5913 return false;
5914 return true;
5915 }
5916
5917 // Otherwise, the runtime check fails.
5918 return RuntimeCheckFailed(&Paths);
5919 }
5920
5921 namespace {
5922 struct StartLifetimeOfUnionMemberHandler {
5923 EvalInfo &Info;
5924 const Expr *LHSExpr;
5925 const FieldDecl *Field;
5926 bool DuringInit;
5927 bool Failed = false;
5928 static const AccessKinds AccessKind = AK_Assign;
5929
5930 typedef bool result_type;
failed__anon7a1fdcea1211::StartLifetimeOfUnionMemberHandler5931 bool failed() { return Failed; }
found__anon7a1fdcea1211::StartLifetimeOfUnionMemberHandler5932 bool found(APValue &Subobj, QualType SubobjType) {
5933 // We are supposed to perform no initialization but begin the lifetime of
5934 // the object. We interpret that as meaning to do what default
5935 // initialization of the object would do if all constructors involved were
5936 // trivial:
5937 // * All base, non-variant member, and array element subobjects' lifetimes
5938 // begin
5939 // * No variant members' lifetimes begin
5940 // * All scalar subobjects whose lifetimes begin have indeterminate values
5941 assert(SubobjType->isUnionType());
5942 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5943 // This union member is already active. If it's also in-lifetime, there's
5944 // nothing to do.
5945 if (Subobj.getUnionValue().hasValue())
5946 return true;
5947 } else if (DuringInit) {
5948 // We're currently in the process of initializing a different union
5949 // member. If we carried on, that initialization would attempt to
5950 // store to an inactive union member, resulting in undefined behavior.
5951 Info.FFDiag(LHSExpr,
5952 diag::note_constexpr_union_member_change_during_init);
5953 return false;
5954 }
5955 APValue Result;
5956 Failed = !getDefaultInitValue(Field->getType(), Result);
5957 Subobj.setUnion(Field, Result);
5958 return true;
5959 }
found__anon7a1fdcea1211::StartLifetimeOfUnionMemberHandler5960 bool found(APSInt &Value, QualType SubobjType) {
5961 llvm_unreachable("wrong value kind for union object");
5962 }
found__anon7a1fdcea1211::StartLifetimeOfUnionMemberHandler5963 bool found(APFloat &Value, QualType SubobjType) {
5964 llvm_unreachable("wrong value kind for union object");
5965 }
5966 };
5967 } // end anonymous namespace
5968
5969 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5970
5971 /// Handle a builtin simple-assignment or a call to a trivial assignment
5972 /// operator whose left-hand side might involve a union member access. If it
5973 /// does, implicitly start the lifetime of any accessed union elements per
5974 /// C++20 [class.union]5.
HandleUnionActiveMemberChange(EvalInfo & Info,const Expr * LHSExpr,const LValue & LHS)5975 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5976 const LValue &LHS) {
5977 if (LHS.InvalidBase || LHS.Designator.Invalid)
5978 return false;
5979
5980 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5981 // C++ [class.union]p5:
5982 // define the set S(E) of subexpressions of E as follows:
5983 unsigned PathLength = LHS.Designator.Entries.size();
5984 for (const Expr *E = LHSExpr; E != nullptr;) {
5985 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
5986 if (auto *ME = dyn_cast<MemberExpr>(E)) {
5987 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5988 // Note that we can't implicitly start the lifetime of a reference,
5989 // so we don't need to proceed any further if we reach one.
5990 if (!FD || FD->getType()->isReferenceType())
5991 break;
5992
5993 // ... and also contains A.B if B names a union member ...
5994 if (FD->getParent()->isUnion()) {
5995 // ... of a non-class, non-array type, or of a class type with a
5996 // trivial default constructor that is not deleted, or an array of
5997 // such types.
5998 auto *RD =
5999 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6000 if (!RD || RD->hasTrivialDefaultConstructor())
6001 UnionPathLengths.push_back({PathLength - 1, FD});
6002 }
6003
6004 E = ME->getBase();
6005 --PathLength;
6006 assert(declaresSameEntity(FD,
6007 LHS.Designator.Entries[PathLength]
6008 .getAsBaseOrMember().getPointer()));
6009
6010 // -- If E is of the form A[B] and is interpreted as a built-in array
6011 // subscripting operator, S(E) is [S(the array operand, if any)].
6012 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6013 // Step over an ArrayToPointerDecay implicit cast.
6014 auto *Base = ASE->getBase()->IgnoreImplicit();
6015 if (!Base->getType()->isArrayType())
6016 break;
6017
6018 E = Base;
6019 --PathLength;
6020
6021 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6022 // Step over a derived-to-base conversion.
6023 E = ICE->getSubExpr();
6024 if (ICE->getCastKind() == CK_NoOp)
6025 continue;
6026 if (ICE->getCastKind() != CK_DerivedToBase &&
6027 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6028 break;
6029 // Walk path backwards as we walk up from the base to the derived class.
6030 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6031 --PathLength;
6032 (void)Elt;
6033 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6034 LHS.Designator.Entries[PathLength]
6035 .getAsBaseOrMember().getPointer()));
6036 }
6037
6038 // -- Otherwise, S(E) is empty.
6039 } else {
6040 break;
6041 }
6042 }
6043
6044 // Common case: no unions' lifetimes are started.
6045 if (UnionPathLengths.empty())
6046 return true;
6047
6048 // if modification of X [would access an inactive union member], an object
6049 // of the type of X is implicitly created
6050 CompleteObject Obj =
6051 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6052 if (!Obj)
6053 return false;
6054 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6055 llvm::reverse(UnionPathLengths)) {
6056 // Form a designator for the union object.
6057 SubobjectDesignator D = LHS.Designator;
6058 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6059
6060 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6061 ConstructionPhase::AfterBases;
6062 StartLifetimeOfUnionMemberHandler StartLifetime{
6063 Info, LHSExpr, LengthAndField.second, DuringInit};
6064 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6065 return false;
6066 }
6067
6068 return true;
6069 }
6070
EvaluateCallArg(const ParmVarDecl * PVD,const Expr * Arg,CallRef Call,EvalInfo & Info,bool NonNull=false)6071 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6072 CallRef Call, EvalInfo &Info,
6073 bool NonNull = false) {
6074 LValue LV;
6075 // Create the parameter slot and register its destruction. For a vararg
6076 // argument, create a temporary.
6077 // FIXME: For calling conventions that destroy parameters in the callee,
6078 // should we consider performing destruction when the function returns
6079 // instead?
6080 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6081 : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6082 ScopeKind::Call, LV);
6083 if (!EvaluateInPlace(V, Info, LV, Arg))
6084 return false;
6085
6086 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6087 // undefined behavior, so is non-constant.
6088 if (NonNull && V.isLValue() && V.isNullPointer()) {
6089 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6090 return false;
6091 }
6092
6093 return true;
6094 }
6095
6096 /// Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,CallRef Call,EvalInfo & Info,const FunctionDecl * Callee,bool RightToLeft=false)6097 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6098 EvalInfo &Info, const FunctionDecl *Callee,
6099 bool RightToLeft = false) {
6100 bool Success = true;
6101 llvm::SmallBitVector ForbiddenNullArgs;
6102 if (Callee->hasAttr<NonNullAttr>()) {
6103 ForbiddenNullArgs.resize(Args.size());
6104 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6105 if (!Attr->args_size()) {
6106 ForbiddenNullArgs.set();
6107 break;
6108 } else
6109 for (auto Idx : Attr->args()) {
6110 unsigned ASTIdx = Idx.getASTIndex();
6111 if (ASTIdx >= Args.size())
6112 continue;
6113 ForbiddenNullArgs[ASTIdx] = true;
6114 }
6115 }
6116 }
6117 for (unsigned I = 0; I < Args.size(); I++) {
6118 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6119 const ParmVarDecl *PVD =
6120 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6121 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6122 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6123 // If we're checking for a potential constant expression, evaluate all
6124 // initializers even if some of them fail.
6125 if (!Info.noteFailure())
6126 return false;
6127 Success = false;
6128 }
6129 }
6130 return Success;
6131 }
6132
6133 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6134 /// constructor or assignment operator.
handleTrivialCopy(EvalInfo & Info,const ParmVarDecl * Param,const Expr * E,APValue & Result,bool CopyObjectRepresentation)6135 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6136 const Expr *E, APValue &Result,
6137 bool CopyObjectRepresentation) {
6138 // Find the reference argument.
6139 CallStackFrame *Frame = Info.CurrentCall;
6140 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6141 if (!RefValue) {
6142 Info.FFDiag(E);
6143 return false;
6144 }
6145
6146 // Copy out the contents of the RHS object.
6147 LValue RefLValue;
6148 RefLValue.setFrom(Info.Ctx, *RefValue);
6149 return handleLValueToRValueConversion(
6150 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6151 CopyObjectRepresentation);
6152 }
6153
6154 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,CallRef Call,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)6155 static bool HandleFunctionCall(SourceLocation CallLoc,
6156 const FunctionDecl *Callee, const LValue *This,
6157 ArrayRef<const Expr *> Args, CallRef Call,
6158 const Stmt *Body, EvalInfo &Info,
6159 APValue &Result, const LValue *ResultSlot) {
6160 if (!Info.CheckCallLimit(CallLoc))
6161 return false;
6162
6163 CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6164
6165 // For a trivial copy or move assignment, perform an APValue copy. This is
6166 // essential for unions, where the operations performed by the assignment
6167 // operator cannot be represented as statements.
6168 //
6169 // Skip this for non-union classes with no fields; in that case, the defaulted
6170 // copy/move does not actually read the object.
6171 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6172 if (MD && MD->isDefaulted() &&
6173 (MD->getParent()->isUnion() ||
6174 (MD->isTrivial() &&
6175 isReadByLvalueToRvalueConversion(MD->getParent())))) {
6176 assert(This &&
6177 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6178 APValue RHSValue;
6179 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6180 MD->getParent()->isUnion()))
6181 return false;
6182 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6183 RHSValue))
6184 return false;
6185 This->moveInto(Result);
6186 return true;
6187 } else if (MD && isLambdaCallOperator(MD)) {
6188 // We're in a lambda; determine the lambda capture field maps unless we're
6189 // just constexpr checking a lambda's call operator. constexpr checking is
6190 // done before the captures have been added to the closure object (unless
6191 // we're inferring constexpr-ness), so we don't have access to them in this
6192 // case. But since we don't need the captures to constexpr check, we can
6193 // just ignore them.
6194 if (!Info.checkingPotentialConstantExpression())
6195 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6196 Frame.LambdaThisCaptureField);
6197 }
6198
6199 StmtResult Ret = {Result, ResultSlot};
6200 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6201 if (ESR == ESR_Succeeded) {
6202 if (Callee->getReturnType()->isVoidType())
6203 return true;
6204 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6205 }
6206 return ESR == ESR_Returned;
6207 }
6208
6209 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,CallRef Call,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6210 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6211 CallRef Call,
6212 const CXXConstructorDecl *Definition,
6213 EvalInfo &Info, APValue &Result) {
6214 SourceLocation CallLoc = E->getExprLoc();
6215 if (!Info.CheckCallLimit(CallLoc))
6216 return false;
6217
6218 const CXXRecordDecl *RD = Definition->getParent();
6219 if (RD->getNumVBases()) {
6220 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6221 return false;
6222 }
6223
6224 EvalInfo::EvaluatingConstructorRAII EvalObj(
6225 Info,
6226 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6227 RD->getNumBases());
6228 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6229
6230 // FIXME: Creating an APValue just to hold a nonexistent return value is
6231 // wasteful.
6232 APValue RetVal;
6233 StmtResult Ret = {RetVal, nullptr};
6234
6235 // If it's a delegating constructor, delegate.
6236 if (Definition->isDelegatingConstructor()) {
6237 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6238 if ((*I)->getInit()->isValueDependent()) {
6239 if (!EvaluateDependentExpr((*I)->getInit(), Info))
6240 return false;
6241 } else {
6242 FullExpressionRAII InitScope(Info);
6243 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6244 !InitScope.destroy())
6245 return false;
6246 }
6247 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6248 }
6249
6250 // For a trivial copy or move constructor, perform an APValue copy. This is
6251 // essential for unions (or classes with anonymous union members), where the
6252 // operations performed by the constructor cannot be represented by
6253 // ctor-initializers.
6254 //
6255 // Skip this for empty non-union classes; we should not perform an
6256 // lvalue-to-rvalue conversion on them because their copy constructor does not
6257 // actually read them.
6258 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6259 (Definition->getParent()->isUnion() ||
6260 (Definition->isTrivial() &&
6261 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6262 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6263 Definition->getParent()->isUnion());
6264 }
6265
6266 // Reserve space for the struct members.
6267 if (!Result.hasValue()) {
6268 if (!RD->isUnion())
6269 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6270 std::distance(RD->field_begin(), RD->field_end()));
6271 else
6272 // A union starts with no active member.
6273 Result = APValue((const FieldDecl*)nullptr);
6274 }
6275
6276 if (RD->isInvalidDecl()) return false;
6277 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6278
6279 // A scope for temporaries lifetime-extended by reference members.
6280 BlockScopeRAII LifetimeExtendedScope(Info);
6281
6282 bool Success = true;
6283 unsigned BasesSeen = 0;
6284 #ifndef NDEBUG
6285 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6286 #endif
6287 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6288 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6289 // We might be initializing the same field again if this is an indirect
6290 // field initialization.
6291 if (FieldIt == RD->field_end() ||
6292 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6293 assert(Indirect && "fields out of order?");
6294 return;
6295 }
6296
6297 // Default-initialize any fields with no explicit initializer.
6298 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6299 assert(FieldIt != RD->field_end() && "missing field?");
6300 if (!FieldIt->isUnnamedBitfield())
6301 Success &= getDefaultInitValue(
6302 FieldIt->getType(),
6303 Result.getStructField(FieldIt->getFieldIndex()));
6304 }
6305 ++FieldIt;
6306 };
6307 for (const auto *I : Definition->inits()) {
6308 LValue Subobject = This;
6309 LValue SubobjectParent = This;
6310 APValue *Value = &Result;
6311
6312 // Determine the subobject to initialize.
6313 FieldDecl *FD = nullptr;
6314 if (I->isBaseInitializer()) {
6315 QualType BaseType(I->getBaseClass(), 0);
6316 #ifndef NDEBUG
6317 // Non-virtual base classes are initialized in the order in the class
6318 // definition. We have already checked for virtual base classes.
6319 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6320 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6321 "base class initializers not in expected order");
6322 ++BaseIt;
6323 #endif
6324 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6325 BaseType->getAsCXXRecordDecl(), &Layout))
6326 return false;
6327 Value = &Result.getStructBase(BasesSeen++);
6328 } else if ((FD = I->getMember())) {
6329 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6330 return false;
6331 if (RD->isUnion()) {
6332 Result = APValue(FD);
6333 Value = &Result.getUnionValue();
6334 } else {
6335 SkipToField(FD, false);
6336 Value = &Result.getStructField(FD->getFieldIndex());
6337 }
6338 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6339 // Walk the indirect field decl's chain to find the object to initialize,
6340 // and make sure we've initialized every step along it.
6341 auto IndirectFieldChain = IFD->chain();
6342 for (auto *C : IndirectFieldChain) {
6343 FD = cast<FieldDecl>(C);
6344 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6345 // Switch the union field if it differs. This happens if we had
6346 // preceding zero-initialization, and we're now initializing a union
6347 // subobject other than the first.
6348 // FIXME: In this case, the values of the other subobjects are
6349 // specified, since zero-initialization sets all padding bits to zero.
6350 if (!Value->hasValue() ||
6351 (Value->isUnion() && Value->getUnionField() != FD)) {
6352 if (CD->isUnion())
6353 *Value = APValue(FD);
6354 else
6355 // FIXME: This immediately starts the lifetime of all members of
6356 // an anonymous struct. It would be preferable to strictly start
6357 // member lifetime in initialization order.
6358 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6359 }
6360 // Store Subobject as its parent before updating it for the last element
6361 // in the chain.
6362 if (C == IndirectFieldChain.back())
6363 SubobjectParent = Subobject;
6364 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6365 return false;
6366 if (CD->isUnion())
6367 Value = &Value->getUnionValue();
6368 else {
6369 if (C == IndirectFieldChain.front() && !RD->isUnion())
6370 SkipToField(FD, true);
6371 Value = &Value->getStructField(FD->getFieldIndex());
6372 }
6373 }
6374 } else {
6375 llvm_unreachable("unknown base initializer kind");
6376 }
6377
6378 // Need to override This for implicit field initializers as in this case
6379 // This refers to innermost anonymous struct/union containing initializer,
6380 // not to currently constructed class.
6381 const Expr *Init = I->getInit();
6382 if (Init->isValueDependent()) {
6383 if (!EvaluateDependentExpr(Init, Info))
6384 return false;
6385 } else {
6386 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6387 isa<CXXDefaultInitExpr>(Init));
6388 FullExpressionRAII InitScope(Info);
6389 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6390 (FD && FD->isBitField() &&
6391 !truncateBitfieldValue(Info, Init, *Value, FD))) {
6392 // If we're checking for a potential constant expression, evaluate all
6393 // initializers even if some of them fail.
6394 if (!Info.noteFailure())
6395 return false;
6396 Success = false;
6397 }
6398 }
6399
6400 // This is the point at which the dynamic type of the object becomes this
6401 // class type.
6402 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6403 EvalObj.finishedConstructingBases();
6404 }
6405
6406 // Default-initialize any remaining fields.
6407 if (!RD->isUnion()) {
6408 for (; FieldIt != RD->field_end(); ++FieldIt) {
6409 if (!FieldIt->isUnnamedBitfield())
6410 Success &= getDefaultInitValue(
6411 FieldIt->getType(),
6412 Result.getStructField(FieldIt->getFieldIndex()));
6413 }
6414 }
6415
6416 EvalObj.finishedConstructingFields();
6417
6418 return Success &&
6419 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6420 LifetimeExtendedScope.destroy();
6421 }
6422
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6423 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6424 ArrayRef<const Expr*> Args,
6425 const CXXConstructorDecl *Definition,
6426 EvalInfo &Info, APValue &Result) {
6427 CallScopeRAII CallScope(Info);
6428 CallRef Call = Info.CurrentCall->createCall(Definition);
6429 if (!EvaluateArgs(Args, Call, Info, Definition))
6430 return false;
6431
6432 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6433 CallScope.destroy();
6434 }
6435
HandleDestructionImpl(EvalInfo & Info,SourceLocation CallLoc,const LValue & This,APValue & Value,QualType T)6436 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6437 const LValue &This, APValue &Value,
6438 QualType T) {
6439 // Objects can only be destroyed while they're within their lifetimes.
6440 // FIXME: We have no representation for whether an object of type nullptr_t
6441 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6442 // as indeterminate instead?
6443 if (Value.isAbsent() && !T->isNullPtrType()) {
6444 APValue Printable;
6445 This.moveInto(Printable);
6446 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6447 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6448 return false;
6449 }
6450
6451 // Invent an expression for location purposes.
6452 // FIXME: We shouldn't need to do this.
6453 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6454
6455 // For arrays, destroy elements right-to-left.
6456 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6457 uint64_t Size = CAT->getSize().getZExtValue();
6458 QualType ElemT = CAT->getElementType();
6459
6460 LValue ElemLV = This;
6461 ElemLV.addArray(Info, &LocE, CAT);
6462 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6463 return false;
6464
6465 // Ensure that we have actual array elements available to destroy; the
6466 // destructors might mutate the value, so we can't run them on the array
6467 // filler.
6468 if (Size && Size > Value.getArrayInitializedElts())
6469 expandArray(Value, Value.getArraySize() - 1);
6470
6471 for (; Size != 0; --Size) {
6472 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6473 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6474 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6475 return false;
6476 }
6477
6478 // End the lifetime of this array now.
6479 Value = APValue();
6480 return true;
6481 }
6482
6483 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6484 if (!RD) {
6485 if (T.isDestructedType()) {
6486 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6487 return false;
6488 }
6489
6490 Value = APValue();
6491 return true;
6492 }
6493
6494 if (RD->getNumVBases()) {
6495 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6496 return false;
6497 }
6498
6499 const CXXDestructorDecl *DD = RD->getDestructor();
6500 if (!DD && !RD->hasTrivialDestructor()) {
6501 Info.FFDiag(CallLoc);
6502 return false;
6503 }
6504
6505 if (!DD || DD->isTrivial() ||
6506 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6507 // A trivial destructor just ends the lifetime of the object. Check for
6508 // this case before checking for a body, because we might not bother
6509 // building a body for a trivial destructor. Note that it doesn't matter
6510 // whether the destructor is constexpr in this case; all trivial
6511 // destructors are constexpr.
6512 //
6513 // If an anonymous union would be destroyed, some enclosing destructor must
6514 // have been explicitly defined, and the anonymous union destruction should
6515 // have no effect.
6516 Value = APValue();
6517 return true;
6518 }
6519
6520 if (!Info.CheckCallLimit(CallLoc))
6521 return false;
6522
6523 const FunctionDecl *Definition = nullptr;
6524 const Stmt *Body = DD->getBody(Definition);
6525
6526 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6527 return false;
6528
6529 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6530
6531 // We're now in the period of destruction of this object.
6532 unsigned BasesLeft = RD->getNumBases();
6533 EvalInfo::EvaluatingDestructorRAII EvalObj(
6534 Info,
6535 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6536 if (!EvalObj.DidInsert) {
6537 // C++2a [class.dtor]p19:
6538 // the behavior is undefined if the destructor is invoked for an object
6539 // whose lifetime has ended
6540 // (Note that formally the lifetime ends when the period of destruction
6541 // begins, even though certain uses of the object remain valid until the
6542 // period of destruction ends.)
6543 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6544 return false;
6545 }
6546
6547 // FIXME: Creating an APValue just to hold a nonexistent return value is
6548 // wasteful.
6549 APValue RetVal;
6550 StmtResult Ret = {RetVal, nullptr};
6551 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6552 return false;
6553
6554 // A union destructor does not implicitly destroy its members.
6555 if (RD->isUnion())
6556 return true;
6557
6558 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6559
6560 // We don't have a good way to iterate fields in reverse, so collect all the
6561 // fields first and then walk them backwards.
6562 SmallVector<FieldDecl*, 16> Fields(RD->fields());
6563 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6564 if (FD->isUnnamedBitfield())
6565 continue;
6566
6567 LValue Subobject = This;
6568 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6569 return false;
6570
6571 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6572 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6573 FD->getType()))
6574 return false;
6575 }
6576
6577 if (BasesLeft != 0)
6578 EvalObj.startedDestroyingBases();
6579
6580 // Destroy base classes in reverse order.
6581 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6582 --BasesLeft;
6583
6584 QualType BaseType = Base.getType();
6585 LValue Subobject = This;
6586 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6587 BaseType->getAsCXXRecordDecl(), &Layout))
6588 return false;
6589
6590 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6591 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6592 BaseType))
6593 return false;
6594 }
6595 assert(BasesLeft == 0 && "NumBases was wrong?");
6596
6597 // The period of destruction ends now. The object is gone.
6598 Value = APValue();
6599 return true;
6600 }
6601
6602 namespace {
6603 struct DestroyObjectHandler {
6604 EvalInfo &Info;
6605 const Expr *E;
6606 const LValue &This;
6607 const AccessKinds AccessKind;
6608
6609 typedef bool result_type;
failed__anon7a1fdcea1411::DestroyObjectHandler6610 bool failed() { return false; }
found__anon7a1fdcea1411::DestroyObjectHandler6611 bool found(APValue &Subobj, QualType SubobjType) {
6612 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6613 SubobjType);
6614 }
found__anon7a1fdcea1411::DestroyObjectHandler6615 bool found(APSInt &Value, QualType SubobjType) {
6616 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6617 return false;
6618 }
found__anon7a1fdcea1411::DestroyObjectHandler6619 bool found(APFloat &Value, QualType SubobjType) {
6620 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6621 return false;
6622 }
6623 };
6624 }
6625
6626 /// Perform a destructor or pseudo-destructor call on the given object, which
6627 /// might in general not be a complete object.
HandleDestruction(EvalInfo & Info,const Expr * E,const LValue & This,QualType ThisType)6628 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6629 const LValue &This, QualType ThisType) {
6630 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6631 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6632 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6633 }
6634
6635 /// Destroy and end the lifetime of the given complete object.
HandleDestruction(EvalInfo & Info,SourceLocation Loc,APValue::LValueBase LVBase,APValue & Value,QualType T)6636 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6637 APValue::LValueBase LVBase, APValue &Value,
6638 QualType T) {
6639 // If we've had an unmodeled side-effect, we can't rely on mutable state
6640 // (such as the object we're about to destroy) being correct.
6641 if (Info.EvalStatus.HasSideEffects)
6642 return false;
6643
6644 LValue LV;
6645 LV.set({LVBase});
6646 return HandleDestructionImpl(Info, Loc, LV, Value, T);
6647 }
6648
6649 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
HandleOperatorNewCall(EvalInfo & Info,const CallExpr * E,LValue & Result)6650 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6651 LValue &Result) {
6652 if (Info.checkingPotentialConstantExpression() ||
6653 Info.SpeculativeEvaluationDepth)
6654 return false;
6655
6656 // This is permitted only within a call to std::allocator<T>::allocate.
6657 auto Caller = Info.getStdAllocatorCaller("allocate");
6658 if (!Caller) {
6659 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6660 ? diag::note_constexpr_new_untyped
6661 : diag::note_constexpr_new);
6662 return false;
6663 }
6664
6665 QualType ElemType = Caller.ElemType;
6666 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6667 Info.FFDiag(E->getExprLoc(),
6668 diag::note_constexpr_new_not_complete_object_type)
6669 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6670 return false;
6671 }
6672
6673 APSInt ByteSize;
6674 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6675 return false;
6676 bool IsNothrow = false;
6677 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6678 EvaluateIgnoredValue(Info, E->getArg(I));
6679 IsNothrow |= E->getType()->isNothrowT();
6680 }
6681
6682 CharUnits ElemSize;
6683 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6684 return false;
6685 APInt Size, Remainder;
6686 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6687 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6688 if (Remainder != 0) {
6689 // This likely indicates a bug in the implementation of 'std::allocator'.
6690 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6691 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6692 return false;
6693 }
6694
6695 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6696 if (IsNothrow) {
6697 Result.setNull(Info.Ctx, E->getType());
6698 return true;
6699 }
6700
6701 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6702 return false;
6703 }
6704
6705 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6706 ArrayType::Normal, 0);
6707 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6708 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6709 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6710 return true;
6711 }
6712
hasVirtualDestructor(QualType T)6713 static bool hasVirtualDestructor(QualType T) {
6714 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6715 if (CXXDestructorDecl *DD = RD->getDestructor())
6716 return DD->isVirtual();
6717 return false;
6718 }
6719
getVirtualOperatorDelete(QualType T)6720 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6721 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6722 if (CXXDestructorDecl *DD = RD->getDestructor())
6723 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6724 return nullptr;
6725 }
6726
6727 /// Check that the given object is a suitable pointer to a heap allocation that
6728 /// still exists and is of the right kind for the purpose of a deletion.
6729 ///
6730 /// On success, returns the heap allocation to deallocate. On failure, produces
6731 /// a diagnostic and returns None.
CheckDeleteKind(EvalInfo & Info,const Expr * E,const LValue & Pointer,DynAlloc::Kind DeallocKind)6732 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6733 const LValue &Pointer,
6734 DynAlloc::Kind DeallocKind) {
6735 auto PointerAsString = [&] {
6736 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6737 };
6738
6739 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6740 if (!DA) {
6741 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6742 << PointerAsString();
6743 if (Pointer.Base)
6744 NoteLValueLocation(Info, Pointer.Base);
6745 return None;
6746 }
6747
6748 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6749 if (!Alloc) {
6750 Info.FFDiag(E, diag::note_constexpr_double_delete);
6751 return None;
6752 }
6753
6754 QualType AllocType = Pointer.Base.getDynamicAllocType();
6755 if (DeallocKind != (*Alloc)->getKind()) {
6756 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6757 << DeallocKind << (*Alloc)->getKind() << AllocType;
6758 NoteLValueLocation(Info, Pointer.Base);
6759 return None;
6760 }
6761
6762 bool Subobject = false;
6763 if (DeallocKind == DynAlloc::New) {
6764 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6765 Pointer.Designator.isOnePastTheEnd();
6766 } else {
6767 Subobject = Pointer.Designator.Entries.size() != 1 ||
6768 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6769 }
6770 if (Subobject) {
6771 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6772 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6773 return None;
6774 }
6775
6776 return Alloc;
6777 }
6778
6779 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
HandleOperatorDeleteCall(EvalInfo & Info,const CallExpr * E)6780 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6781 if (Info.checkingPotentialConstantExpression() ||
6782 Info.SpeculativeEvaluationDepth)
6783 return false;
6784
6785 // This is permitted only within a call to std::allocator<T>::deallocate.
6786 if (!Info.getStdAllocatorCaller("deallocate")) {
6787 Info.FFDiag(E->getExprLoc());
6788 return true;
6789 }
6790
6791 LValue Pointer;
6792 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6793 return false;
6794 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6795 EvaluateIgnoredValue(Info, E->getArg(I));
6796
6797 if (Pointer.Designator.Invalid)
6798 return false;
6799
6800 // Deleting a null pointer would have no effect, but it's not permitted by
6801 // std::allocator<T>::deallocate's contract.
6802 if (Pointer.isNullPointer()) {
6803 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6804 return true;
6805 }
6806
6807 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6808 return false;
6809
6810 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6811 return true;
6812 }
6813
6814 //===----------------------------------------------------------------------===//
6815 // Generic Evaluation
6816 //===----------------------------------------------------------------------===//
6817 namespace {
6818
6819 class BitCastBuffer {
6820 // FIXME: We're going to need bit-level granularity when we support
6821 // bit-fields.
6822 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6823 // we don't support a host or target where that is the case. Still, we should
6824 // use a more generic type in case we ever do.
6825 SmallVector<Optional<unsigned char>, 32> Bytes;
6826
6827 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6828 "Need at least 8 bit unsigned char");
6829
6830 bool TargetIsLittleEndian;
6831
6832 public:
BitCastBuffer(CharUnits Width,bool TargetIsLittleEndian)6833 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6834 : Bytes(Width.getQuantity()),
6835 TargetIsLittleEndian(TargetIsLittleEndian) {}
6836
6837 LLVM_NODISCARD
readObject(CharUnits Offset,CharUnits Width,SmallVectorImpl<unsigned char> & Output) const6838 bool readObject(CharUnits Offset, CharUnits Width,
6839 SmallVectorImpl<unsigned char> &Output) const {
6840 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6841 // If a byte of an integer is uninitialized, then the whole integer is
6842 // uninitialized.
6843 if (!Bytes[I.getQuantity()])
6844 return false;
6845 Output.push_back(*Bytes[I.getQuantity()]);
6846 }
6847 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6848 std::reverse(Output.begin(), Output.end());
6849 return true;
6850 }
6851
writeObject(CharUnits Offset,SmallVectorImpl<unsigned char> & Input)6852 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6853 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6854 std::reverse(Input.begin(), Input.end());
6855
6856 size_t Index = 0;
6857 for (unsigned char Byte : Input) {
6858 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6859 Bytes[Offset.getQuantity() + Index] = Byte;
6860 ++Index;
6861 }
6862 }
6863
size()6864 size_t size() { return Bytes.size(); }
6865 };
6866
6867 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6868 /// target would represent the value at runtime.
6869 class APValueToBufferConverter {
6870 EvalInfo &Info;
6871 BitCastBuffer Buffer;
6872 const CastExpr *BCE;
6873
APValueToBufferConverter(EvalInfo & Info,CharUnits ObjectWidth,const CastExpr * BCE)6874 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6875 const CastExpr *BCE)
6876 : Info(Info),
6877 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6878 BCE(BCE) {}
6879
visit(const APValue & Val,QualType Ty)6880 bool visit(const APValue &Val, QualType Ty) {
6881 return visit(Val, Ty, CharUnits::fromQuantity(0));
6882 }
6883
6884 // Write out Val with type Ty into Buffer starting at Offset.
visit(const APValue & Val,QualType Ty,CharUnits Offset)6885 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6886 assert((size_t)Offset.getQuantity() <= Buffer.size());
6887
6888 // As a special case, nullptr_t has an indeterminate value.
6889 if (Ty->isNullPtrType())
6890 return true;
6891
6892 // Dig through Src to find the byte at SrcOffset.
6893 switch (Val.getKind()) {
6894 case APValue::Indeterminate:
6895 case APValue::None:
6896 return true;
6897
6898 case APValue::Int:
6899 return visitInt(Val.getInt(), Ty, Offset);
6900 case APValue::Float:
6901 return visitFloat(Val.getFloat(), Ty, Offset);
6902 case APValue::Array:
6903 return visitArray(Val, Ty, Offset);
6904 case APValue::Struct:
6905 return visitRecord(Val, Ty, Offset);
6906
6907 case APValue::ComplexInt:
6908 case APValue::ComplexFloat:
6909 case APValue::Vector:
6910 case APValue::FixedPoint:
6911 // FIXME: We should support these.
6912
6913 case APValue::Union:
6914 case APValue::MemberPointer:
6915 case APValue::AddrLabelDiff: {
6916 Info.FFDiag(BCE->getBeginLoc(),
6917 diag::note_constexpr_bit_cast_unsupported_type)
6918 << Ty;
6919 return false;
6920 }
6921
6922 case APValue::LValue:
6923 llvm_unreachable("LValue subobject in bit_cast?");
6924 }
6925 llvm_unreachable("Unhandled APValue::ValueKind");
6926 }
6927
visitRecord(const APValue & Val,QualType Ty,CharUnits Offset)6928 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6929 const RecordDecl *RD = Ty->getAsRecordDecl();
6930 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6931
6932 // Visit the base classes.
6933 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6934 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6935 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6936 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6937
6938 if (!visitRecord(Val.getStructBase(I), BS.getType(),
6939 Layout.getBaseClassOffset(BaseDecl) + Offset))
6940 return false;
6941 }
6942 }
6943
6944 // Visit the fields.
6945 unsigned FieldIdx = 0;
6946 for (FieldDecl *FD : RD->fields()) {
6947 if (FD->isBitField()) {
6948 Info.FFDiag(BCE->getBeginLoc(),
6949 diag::note_constexpr_bit_cast_unsupported_bitfield);
6950 return false;
6951 }
6952
6953 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6954
6955 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6956 "only bit-fields can have sub-char alignment");
6957 CharUnits FieldOffset =
6958 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6959 QualType FieldTy = FD->getType();
6960 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6961 return false;
6962 ++FieldIdx;
6963 }
6964
6965 return true;
6966 }
6967
visitArray(const APValue & Val,QualType Ty,CharUnits Offset)6968 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6969 const auto *CAT =
6970 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6971 if (!CAT)
6972 return false;
6973
6974 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6975 unsigned NumInitializedElts = Val.getArrayInitializedElts();
6976 unsigned ArraySize = Val.getArraySize();
6977 // First, initialize the initialized elements.
6978 for (unsigned I = 0; I != NumInitializedElts; ++I) {
6979 const APValue &SubObj = Val.getArrayInitializedElt(I);
6980 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6981 return false;
6982 }
6983
6984 // Next, initialize the rest of the array using the filler.
6985 if (Val.hasArrayFiller()) {
6986 const APValue &Filler = Val.getArrayFiller();
6987 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6988 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6989 return false;
6990 }
6991 }
6992
6993 return true;
6994 }
6995
visitInt(const APSInt & Val,QualType Ty,CharUnits Offset)6996 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6997 APSInt AdjustedVal = Val;
6998 unsigned Width = AdjustedVal.getBitWidth();
6999 if (Ty->isBooleanType()) {
7000 Width = Info.Ctx.getTypeSize(Ty);
7001 AdjustedVal = AdjustedVal.extend(Width);
7002 }
7003
7004 SmallVector<unsigned char, 8> Bytes(Width / 8);
7005 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7006 Buffer.writeObject(Offset, Bytes);
7007 return true;
7008 }
7009
visitFloat(const APFloat & Val,QualType Ty,CharUnits Offset)7010 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7011 APSInt AsInt(Val.bitcastToAPInt());
7012 return visitInt(AsInt, Ty, Offset);
7013 }
7014
7015 public:
convert(EvalInfo & Info,const APValue & Src,const CastExpr * BCE)7016 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
7017 const CastExpr *BCE) {
7018 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7019 APValueToBufferConverter Converter(Info, DstSize, BCE);
7020 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7021 return None;
7022 return Converter.Buffer;
7023 }
7024 };
7025
7026 /// Write an BitCastBuffer into an APValue.
7027 class BufferToAPValueConverter {
7028 EvalInfo &Info;
7029 const BitCastBuffer &Buffer;
7030 const CastExpr *BCE;
7031
BufferToAPValueConverter(EvalInfo & Info,const BitCastBuffer & Buffer,const CastExpr * BCE)7032 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7033 const CastExpr *BCE)
7034 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7035
7036 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7037 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7038 // Ideally this will be unreachable.
unsupportedType(QualType Ty)7039 llvm::NoneType unsupportedType(QualType Ty) {
7040 Info.FFDiag(BCE->getBeginLoc(),
7041 diag::note_constexpr_bit_cast_unsupported_type)
7042 << Ty;
7043 return None;
7044 }
7045
unrepresentableValue(QualType Ty,const APSInt & Val)7046 llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
7047 Info.FFDiag(BCE->getBeginLoc(),
7048 diag::note_constexpr_bit_cast_unrepresentable_value)
7049 << Ty << toString(Val, /*Radix=*/10);
7050 return None;
7051 }
7052
visit(const BuiltinType * T,CharUnits Offset,const EnumType * EnumSugar=nullptr)7053 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7054 const EnumType *EnumSugar = nullptr) {
7055 if (T->isNullPtrType()) {
7056 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7057 return APValue((Expr *)nullptr,
7058 /*Offset=*/CharUnits::fromQuantity(NullValue),
7059 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7060 }
7061
7062 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7063
7064 // Work around floating point types that contain unused padding bytes. This
7065 // is really just `long double` on x86, which is the only fundamental type
7066 // with padding bytes.
7067 if (T->isRealFloatingType()) {
7068 const llvm::fltSemantics &Semantics =
7069 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7070 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7071 assert(NumBits % 8 == 0);
7072 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7073 if (NumBytes != SizeOf)
7074 SizeOf = NumBytes;
7075 }
7076
7077 SmallVector<uint8_t, 8> Bytes;
7078 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7079 // If this is std::byte or unsigned char, then its okay to store an
7080 // indeterminate value.
7081 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7082 bool IsUChar =
7083 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7084 T->isSpecificBuiltinType(BuiltinType::Char_U));
7085 if (!IsStdByte && !IsUChar) {
7086 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7087 Info.FFDiag(BCE->getExprLoc(),
7088 diag::note_constexpr_bit_cast_indet_dest)
7089 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7090 return None;
7091 }
7092
7093 return APValue::IndeterminateValue();
7094 }
7095
7096 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7097 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7098
7099 if (T->isIntegralOrEnumerationType()) {
7100 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7101
7102 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7103 if (IntWidth != Val.getBitWidth()) {
7104 APSInt Truncated = Val.trunc(IntWidth);
7105 if (Truncated.extend(Val.getBitWidth()) != Val)
7106 return unrepresentableValue(QualType(T, 0), Val);
7107 Val = Truncated;
7108 }
7109
7110 return APValue(Val);
7111 }
7112
7113 if (T->isRealFloatingType()) {
7114 const llvm::fltSemantics &Semantics =
7115 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7116 return APValue(APFloat(Semantics, Val));
7117 }
7118
7119 return unsupportedType(QualType(T, 0));
7120 }
7121
visit(const RecordType * RTy,CharUnits Offset)7122 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7123 const RecordDecl *RD = RTy->getAsRecordDecl();
7124 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7125
7126 unsigned NumBases = 0;
7127 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7128 NumBases = CXXRD->getNumBases();
7129
7130 APValue ResultVal(APValue::UninitStruct(), NumBases,
7131 std::distance(RD->field_begin(), RD->field_end()));
7132
7133 // Visit the base classes.
7134 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7135 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7136 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7137 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7138 if (BaseDecl->isEmpty() ||
7139 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7140 continue;
7141
7142 Optional<APValue> SubObj = visitType(
7143 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7144 if (!SubObj)
7145 return None;
7146 ResultVal.getStructBase(I) = *SubObj;
7147 }
7148 }
7149
7150 // Visit the fields.
7151 unsigned FieldIdx = 0;
7152 for (FieldDecl *FD : RD->fields()) {
7153 // FIXME: We don't currently support bit-fields. A lot of the logic for
7154 // this is in CodeGen, so we need to factor it around.
7155 if (FD->isBitField()) {
7156 Info.FFDiag(BCE->getBeginLoc(),
7157 diag::note_constexpr_bit_cast_unsupported_bitfield);
7158 return None;
7159 }
7160
7161 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7162 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7163
7164 CharUnits FieldOffset =
7165 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7166 Offset;
7167 QualType FieldTy = FD->getType();
7168 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7169 if (!SubObj)
7170 return None;
7171 ResultVal.getStructField(FieldIdx) = *SubObj;
7172 ++FieldIdx;
7173 }
7174
7175 return ResultVal;
7176 }
7177
visit(const EnumType * Ty,CharUnits Offset)7178 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7179 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7180 assert(!RepresentationType.isNull() &&
7181 "enum forward decl should be caught by Sema");
7182 const auto *AsBuiltin =
7183 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7184 // Recurse into the underlying type. Treat std::byte transparently as
7185 // unsigned char.
7186 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7187 }
7188
visit(const ConstantArrayType * Ty,CharUnits Offset)7189 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7190 size_t Size = Ty->getSize().getLimitedValue();
7191 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7192
7193 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7194 for (size_t I = 0; I != Size; ++I) {
7195 Optional<APValue> ElementValue =
7196 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7197 if (!ElementValue)
7198 return None;
7199 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7200 }
7201
7202 return ArrayValue;
7203 }
7204
visit(const Type * Ty,CharUnits Offset)7205 Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7206 return unsupportedType(QualType(Ty, 0));
7207 }
7208
visitType(QualType Ty,CharUnits Offset)7209 Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7210 QualType Can = Ty.getCanonicalType();
7211
7212 switch (Can->getTypeClass()) {
7213 #define TYPE(Class, Base) \
7214 case Type::Class: \
7215 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7216 #define ABSTRACT_TYPE(Class, Base)
7217 #define NON_CANONICAL_TYPE(Class, Base) \
7218 case Type::Class: \
7219 llvm_unreachable("non-canonical type should be impossible!");
7220 #define DEPENDENT_TYPE(Class, Base) \
7221 case Type::Class: \
7222 llvm_unreachable( \
7223 "dependent types aren't supported in the constant evaluator!");
7224 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7225 case Type::Class: \
7226 llvm_unreachable("either dependent or not canonical!");
7227 #include "clang/AST/TypeNodes.inc"
7228 }
7229 llvm_unreachable("Unhandled Type::TypeClass");
7230 }
7231
7232 public:
7233 // Pull out a full value of type DstType.
convert(EvalInfo & Info,BitCastBuffer & Buffer,const CastExpr * BCE)7234 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7235 const CastExpr *BCE) {
7236 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7237 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7238 }
7239 };
7240
checkBitCastConstexprEligibilityType(SourceLocation Loc,QualType Ty,EvalInfo * Info,const ASTContext & Ctx,bool CheckingDest)7241 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7242 QualType Ty, EvalInfo *Info,
7243 const ASTContext &Ctx,
7244 bool CheckingDest) {
7245 Ty = Ty.getCanonicalType();
7246
7247 auto diag = [&](int Reason) {
7248 if (Info)
7249 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7250 << CheckingDest << (Reason == 4) << Reason;
7251 return false;
7252 };
7253 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7254 if (Info)
7255 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7256 << NoteTy << Construct << Ty;
7257 return false;
7258 };
7259
7260 if (Ty->isUnionType())
7261 return diag(0);
7262 if (Ty->isPointerType())
7263 return diag(1);
7264 if (Ty->isMemberPointerType())
7265 return diag(2);
7266 if (Ty.isVolatileQualified())
7267 return diag(3);
7268
7269 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7270 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7271 for (CXXBaseSpecifier &BS : CXXRD->bases())
7272 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7273 CheckingDest))
7274 return note(1, BS.getType(), BS.getBeginLoc());
7275 }
7276 for (FieldDecl *FD : Record->fields()) {
7277 if (FD->getType()->isReferenceType())
7278 return diag(4);
7279 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7280 CheckingDest))
7281 return note(0, FD->getType(), FD->getBeginLoc());
7282 }
7283 }
7284
7285 if (Ty->isArrayType() &&
7286 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7287 Info, Ctx, CheckingDest))
7288 return false;
7289
7290 return true;
7291 }
7292
checkBitCastConstexprEligibility(EvalInfo * Info,const ASTContext & Ctx,const CastExpr * BCE)7293 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7294 const ASTContext &Ctx,
7295 const CastExpr *BCE) {
7296 bool DestOK = checkBitCastConstexprEligibilityType(
7297 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7298 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7299 BCE->getBeginLoc(),
7300 BCE->getSubExpr()->getType(), Info, Ctx, false);
7301 return SourceOK;
7302 }
7303
handleLValueToRValueBitCast(EvalInfo & Info,APValue & DestValue,APValue & SourceValue,const CastExpr * BCE)7304 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7305 APValue &SourceValue,
7306 const CastExpr *BCE) {
7307 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7308 "no host or target supports non 8-bit chars");
7309 assert(SourceValue.isLValue() &&
7310 "LValueToRValueBitcast requires an lvalue operand!");
7311
7312 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7313 return false;
7314
7315 LValue SourceLValue;
7316 APValue SourceRValue;
7317 SourceLValue.setFrom(Info.Ctx, SourceValue);
7318 if (!handleLValueToRValueConversion(
7319 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7320 SourceRValue, /*WantObjectRepresentation=*/true))
7321 return false;
7322
7323 // Read out SourceValue into a char buffer.
7324 Optional<BitCastBuffer> Buffer =
7325 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7326 if (!Buffer)
7327 return false;
7328
7329 // Write out the buffer into a new APValue.
7330 Optional<APValue> MaybeDestValue =
7331 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7332 if (!MaybeDestValue)
7333 return false;
7334
7335 DestValue = std::move(*MaybeDestValue);
7336 return true;
7337 }
7338
7339 template <class Derived>
7340 class ExprEvaluatorBase
7341 : public ConstStmtVisitor<Derived, bool> {
7342 private:
getDerived()7343 Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)7344 bool DerivedSuccess(const APValue &V, const Expr *E) {
7345 return getDerived().Success(V, E);
7346 }
DerivedZeroInitialization(const Expr * E)7347 bool DerivedZeroInitialization(const Expr *E) {
7348 return getDerived().ZeroInitialization(E);
7349 }
7350
7351 // Check whether a conditional operator with a non-constant condition is a
7352 // potential constant expression. If neither arm is a potential constant
7353 // expression, then the conditional operator is not either.
7354 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)7355 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7356 assert(Info.checkingPotentialConstantExpression());
7357
7358 // Speculatively evaluate both arms.
7359 SmallVector<PartialDiagnosticAt, 8> Diag;
7360 {
7361 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7362 StmtVisitorTy::Visit(E->getFalseExpr());
7363 if (Diag.empty())
7364 return;
7365 }
7366
7367 {
7368 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7369 Diag.clear();
7370 StmtVisitorTy::Visit(E->getTrueExpr());
7371 if (Diag.empty())
7372 return;
7373 }
7374
7375 Error(E, diag::note_constexpr_conditional_never_const);
7376 }
7377
7378
7379 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)7380 bool HandleConditionalOperator(const ConditionalOperator *E) {
7381 bool BoolResult;
7382 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7383 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7384 CheckPotentialConstantConditional(E);
7385 return false;
7386 }
7387 if (Info.noteFailure()) {
7388 StmtVisitorTy::Visit(E->getTrueExpr());
7389 StmtVisitorTy::Visit(E->getFalseExpr());
7390 }
7391 return false;
7392 }
7393
7394 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7395 return StmtVisitorTy::Visit(EvalExpr);
7396 }
7397
7398 protected:
7399 EvalInfo &Info;
7400 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7401 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7402
CCEDiag(const Expr * E,diag::kind D)7403 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7404 return Info.CCEDiag(E, D);
7405 }
7406
ZeroInitialization(const Expr * E)7407 bool ZeroInitialization(const Expr *E) { return Error(E); }
7408
7409 public:
ExprEvaluatorBase(EvalInfo & Info)7410 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7411
getEvalInfo()7412 EvalInfo &getEvalInfo() { return Info; }
7413
7414 /// Report an evaluation error. This should only be called when an error is
7415 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)7416 bool Error(const Expr *E, diag::kind D) {
7417 Info.FFDiag(E, D);
7418 return false;
7419 }
Error(const Expr * E)7420 bool Error(const Expr *E) {
7421 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7422 }
7423
VisitStmt(const Stmt *)7424 bool VisitStmt(const Stmt *) {
7425 llvm_unreachable("Expression evaluator should not be called on stmts");
7426 }
VisitExpr(const Expr * E)7427 bool VisitExpr(const Expr *E) {
7428 return Error(E);
7429 }
7430
VisitConstantExpr(const ConstantExpr * E)7431 bool VisitConstantExpr(const ConstantExpr *E) {
7432 if (E->hasAPValueResult())
7433 return DerivedSuccess(E->getAPValueResult(), E);
7434
7435 return StmtVisitorTy::Visit(E->getSubExpr());
7436 }
7437
VisitParenExpr(const ParenExpr * E)7438 bool VisitParenExpr(const ParenExpr *E)
7439 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)7440 bool VisitUnaryExtension(const UnaryOperator *E)
7441 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)7442 bool VisitUnaryPlus(const UnaryOperator *E)
7443 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)7444 bool VisitChooseExpr(const ChooseExpr *E)
7445 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)7446 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7447 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)7448 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7449 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)7450 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7451 TempVersionRAII RAII(*Info.CurrentCall);
7452 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7453 return StmtVisitorTy::Visit(E->getExpr());
7454 }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)7455 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7456 TempVersionRAII RAII(*Info.CurrentCall);
7457 // The initializer may not have been parsed yet, or might be erroneous.
7458 if (!E->getExpr())
7459 return Error(E);
7460 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7461 return StmtVisitorTy::Visit(E->getExpr());
7462 }
7463
VisitExprWithCleanups(const ExprWithCleanups * E)7464 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7465 FullExpressionRAII Scope(Info);
7466 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7467 }
7468
7469 // Temporaries are registered when created, so we don't care about
7470 // CXXBindTemporaryExpr.
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)7471 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7472 return StmtVisitorTy::Visit(E->getSubExpr());
7473 }
7474
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)7475 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7476 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7477 return static_cast<Derived*>(this)->VisitCastExpr(E);
7478 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)7479 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7480 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7481 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7482 return static_cast<Derived*>(this)->VisitCastExpr(E);
7483 }
VisitBuiltinBitCastExpr(const BuiltinBitCastExpr * E)7484 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7485 return static_cast<Derived*>(this)->VisitCastExpr(E);
7486 }
7487
VisitBinaryOperator(const BinaryOperator * E)7488 bool VisitBinaryOperator(const BinaryOperator *E) {
7489 switch (E->getOpcode()) {
7490 default:
7491 return Error(E);
7492
7493 case BO_Comma:
7494 VisitIgnoredValue(E->getLHS());
7495 return StmtVisitorTy::Visit(E->getRHS());
7496
7497 case BO_PtrMemD:
7498 case BO_PtrMemI: {
7499 LValue Obj;
7500 if (!HandleMemberPointerAccess(Info, E, Obj))
7501 return false;
7502 APValue Result;
7503 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7504 return false;
7505 return DerivedSuccess(Result, E);
7506 }
7507 }
7508 }
7509
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator * E)7510 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7511 return StmtVisitorTy::Visit(E->getSemanticForm());
7512 }
7513
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)7514 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7515 // Evaluate and cache the common expression. We treat it as a temporary,
7516 // even though it's not quite the same thing.
7517 LValue CommonLV;
7518 if (!Evaluate(Info.CurrentCall->createTemporary(
7519 E->getOpaqueValue(),
7520 getStorageType(Info.Ctx, E->getOpaqueValue()),
7521 ScopeKind::FullExpression, CommonLV),
7522 Info, E->getCommon()))
7523 return false;
7524
7525 return HandleConditionalOperator(E);
7526 }
7527
VisitConditionalOperator(const ConditionalOperator * E)7528 bool VisitConditionalOperator(const ConditionalOperator *E) {
7529 bool IsBcpCall = false;
7530 // If the condition (ignoring parens) is a __builtin_constant_p call,
7531 // the result is a constant expression if it can be folded without
7532 // side-effects. This is an important GNU extension. See GCC PR38377
7533 // for discussion.
7534 if (const CallExpr *CallCE =
7535 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7536 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7537 IsBcpCall = true;
7538
7539 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7540 // constant expression; we can't check whether it's potentially foldable.
7541 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7542 // it would return 'false' in this mode.
7543 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7544 return false;
7545
7546 FoldConstant Fold(Info, IsBcpCall);
7547 if (!HandleConditionalOperator(E)) {
7548 Fold.keepDiagnostics();
7549 return false;
7550 }
7551
7552 return true;
7553 }
7554
VisitOpaqueValueExpr(const OpaqueValueExpr * E)7555 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7556 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7557 return DerivedSuccess(*Value, E);
7558
7559 const Expr *Source = E->getSourceExpr();
7560 if (!Source)
7561 return Error(E);
7562 if (Source == E) {
7563 assert(0 && "OpaqueValueExpr recursively refers to itself");
7564 return Error(E);
7565 }
7566 return StmtVisitorTy::Visit(Source);
7567 }
7568
VisitPseudoObjectExpr(const PseudoObjectExpr * E)7569 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7570 for (const Expr *SemE : E->semantics()) {
7571 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7572 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7573 // result expression: there could be two different LValues that would
7574 // refer to the same object in that case, and we can't model that.
7575 if (SemE == E->getResultExpr())
7576 return Error(E);
7577
7578 // Unique OVEs get evaluated if and when we encounter them when
7579 // emitting the rest of the semantic form, rather than eagerly.
7580 if (OVE->isUnique())
7581 continue;
7582
7583 LValue LV;
7584 if (!Evaluate(Info.CurrentCall->createTemporary(
7585 OVE, getStorageType(Info.Ctx, OVE),
7586 ScopeKind::FullExpression, LV),
7587 Info, OVE->getSourceExpr()))
7588 return false;
7589 } else if (SemE == E->getResultExpr()) {
7590 if (!StmtVisitorTy::Visit(SemE))
7591 return false;
7592 } else {
7593 if (!EvaluateIgnoredValue(Info, SemE))
7594 return false;
7595 }
7596 }
7597 return true;
7598 }
7599
VisitCallExpr(const CallExpr * E)7600 bool VisitCallExpr(const CallExpr *E) {
7601 APValue Result;
7602 if (!handleCallExpr(E, Result, nullptr))
7603 return false;
7604 return DerivedSuccess(Result, E);
7605 }
7606
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)7607 bool handleCallExpr(const CallExpr *E, APValue &Result,
7608 const LValue *ResultSlot) {
7609 CallScopeRAII CallScope(Info);
7610
7611 const Expr *Callee = E->getCallee()->IgnoreParens();
7612 QualType CalleeType = Callee->getType();
7613
7614 const FunctionDecl *FD = nullptr;
7615 LValue *This = nullptr, ThisVal;
7616 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7617 bool HasQualifier = false;
7618
7619 CallRef Call;
7620
7621 // Extract function decl and 'this' pointer from the callee.
7622 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7623 const CXXMethodDecl *Member = nullptr;
7624 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7625 // Explicit bound member calls, such as x.f() or p->g();
7626 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7627 return false;
7628 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7629 if (!Member)
7630 return Error(Callee);
7631 This = &ThisVal;
7632 HasQualifier = ME->hasQualifier();
7633 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7634 // Indirect bound member calls ('.*' or '->*').
7635 const ValueDecl *D =
7636 HandleMemberPointerAccess(Info, BE, ThisVal, false);
7637 if (!D)
7638 return false;
7639 Member = dyn_cast<CXXMethodDecl>(D);
7640 if (!Member)
7641 return Error(Callee);
7642 This = &ThisVal;
7643 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7644 if (!Info.getLangOpts().CPlusPlus20)
7645 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7646 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7647 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7648 } else
7649 return Error(Callee);
7650 FD = Member;
7651 } else if (CalleeType->isFunctionPointerType()) {
7652 LValue CalleeLV;
7653 if (!EvaluatePointer(Callee, CalleeLV, Info))
7654 return false;
7655
7656 if (!CalleeLV.getLValueOffset().isZero())
7657 return Error(Callee);
7658 FD = dyn_cast_or_null<FunctionDecl>(
7659 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7660 if (!FD)
7661 return Error(Callee);
7662 // Don't call function pointers which have been cast to some other type.
7663 // Per DR (no number yet), the caller and callee can differ in noexcept.
7664 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7665 CalleeType->getPointeeType(), FD->getType())) {
7666 return Error(E);
7667 }
7668
7669 // For an (overloaded) assignment expression, evaluate the RHS before the
7670 // LHS.
7671 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7672 if (OCE && OCE->isAssignmentOp()) {
7673 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7674 Call = Info.CurrentCall->createCall(FD);
7675 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7676 Info, FD, /*RightToLeft=*/true))
7677 return false;
7678 }
7679
7680 // Overloaded operator calls to member functions are represented as normal
7681 // calls with '*this' as the first argument.
7682 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7683 if (MD && !MD->isStatic()) {
7684 // FIXME: When selecting an implicit conversion for an overloaded
7685 // operator delete, we sometimes try to evaluate calls to conversion
7686 // operators without a 'this' parameter!
7687 if (Args.empty())
7688 return Error(E);
7689
7690 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7691 return false;
7692 This = &ThisVal;
7693
7694 // If this is syntactically a simple assignment using a trivial
7695 // assignment operator, start the lifetimes of union members as needed,
7696 // per C++20 [class.union]5.
7697 if (Info.getLangOpts().CPlusPlus20 && OCE &&
7698 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7699 !HandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7700 return false;
7701
7702 Args = Args.slice(1);
7703 } else if (MD && MD->isLambdaStaticInvoker()) {
7704 // Map the static invoker for the lambda back to the call operator.
7705 // Conveniently, we don't have to slice out the 'this' argument (as is
7706 // being done for the non-static case), since a static member function
7707 // doesn't have an implicit argument passed in.
7708 const CXXRecordDecl *ClosureClass = MD->getParent();
7709 assert(
7710 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7711 "Number of captures must be zero for conversion to function-ptr");
7712
7713 const CXXMethodDecl *LambdaCallOp =
7714 ClosureClass->getLambdaCallOperator();
7715
7716 // Set 'FD', the function that will be called below, to the call
7717 // operator. If the closure object represents a generic lambda, find
7718 // the corresponding specialization of the call operator.
7719
7720 if (ClosureClass->isGenericLambda()) {
7721 assert(MD->isFunctionTemplateSpecialization() &&
7722 "A generic lambda's static-invoker function must be a "
7723 "template specialization");
7724 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7725 FunctionTemplateDecl *CallOpTemplate =
7726 LambdaCallOp->getDescribedFunctionTemplate();
7727 void *InsertPos = nullptr;
7728 FunctionDecl *CorrespondingCallOpSpecialization =
7729 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7730 assert(CorrespondingCallOpSpecialization &&
7731 "We must always have a function call operator specialization "
7732 "that corresponds to our static invoker specialization");
7733 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7734 } else
7735 FD = LambdaCallOp;
7736 } else if (FD->isReplaceableGlobalAllocationFunction()) {
7737 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7738 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7739 LValue Ptr;
7740 if (!HandleOperatorNewCall(Info, E, Ptr))
7741 return false;
7742 Ptr.moveInto(Result);
7743 return CallScope.destroy();
7744 } else {
7745 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7746 }
7747 }
7748 } else
7749 return Error(E);
7750
7751 // Evaluate the arguments now if we've not already done so.
7752 if (!Call) {
7753 Call = Info.CurrentCall->createCall(FD);
7754 if (!EvaluateArgs(Args, Call, Info, FD))
7755 return false;
7756 }
7757
7758 SmallVector<QualType, 4> CovariantAdjustmentPath;
7759 if (This) {
7760 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7761 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7762 // Perform virtual dispatch, if necessary.
7763 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7764 CovariantAdjustmentPath);
7765 if (!FD)
7766 return false;
7767 } else {
7768 // Check that the 'this' pointer points to an object of the right type.
7769 // FIXME: If this is an assignment operator call, we may need to change
7770 // the active union member before we check this.
7771 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7772 return false;
7773 }
7774 }
7775
7776 // Destructor calls are different enough that they have their own codepath.
7777 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7778 assert(This && "no 'this' pointer for destructor call");
7779 return HandleDestruction(Info, E, *This,
7780 Info.Ctx.getRecordType(DD->getParent())) &&
7781 CallScope.destroy();
7782 }
7783
7784 const FunctionDecl *Definition = nullptr;
7785 Stmt *Body = FD->getBody(Definition);
7786
7787 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7788 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7789 Body, Info, Result, ResultSlot))
7790 return false;
7791
7792 if (!CovariantAdjustmentPath.empty() &&
7793 !HandleCovariantReturnAdjustment(Info, E, Result,
7794 CovariantAdjustmentPath))
7795 return false;
7796
7797 return CallScope.destroy();
7798 }
7799
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)7800 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7801 return StmtVisitorTy::Visit(E->getInitializer());
7802 }
VisitInitListExpr(const InitListExpr * E)7803 bool VisitInitListExpr(const InitListExpr *E) {
7804 if (E->getNumInits() == 0)
7805 return DerivedZeroInitialization(E);
7806 if (E->getNumInits() == 1)
7807 return StmtVisitorTy::Visit(E->getInit(0));
7808 return Error(E);
7809 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)7810 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7811 return DerivedZeroInitialization(E);
7812 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)7813 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7814 return DerivedZeroInitialization(E);
7815 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)7816 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7817 return DerivedZeroInitialization(E);
7818 }
7819
7820 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)7821 bool VisitMemberExpr(const MemberExpr *E) {
7822 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7823 "missing temporary materialization conversion");
7824 assert(!E->isArrow() && "missing call to bound member function?");
7825
7826 APValue Val;
7827 if (!Evaluate(Val, Info, E->getBase()))
7828 return false;
7829
7830 QualType BaseTy = E->getBase()->getType();
7831
7832 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7833 if (!FD) return Error(E);
7834 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7835 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7836 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7837
7838 // Note: there is no lvalue base here. But this case should only ever
7839 // happen in C or in C++98, where we cannot be evaluating a constexpr
7840 // constructor, which is the only case the base matters.
7841 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7842 SubobjectDesignator Designator(BaseTy);
7843 Designator.addDeclUnchecked(FD);
7844
7845 APValue Result;
7846 return extractSubobject(Info, E, Obj, Designator, Result) &&
7847 DerivedSuccess(Result, E);
7848 }
7849
VisitExtVectorElementExpr(const ExtVectorElementExpr * E)7850 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7851 APValue Val;
7852 if (!Evaluate(Val, Info, E->getBase()))
7853 return false;
7854
7855 if (Val.isVector()) {
7856 SmallVector<uint32_t, 4> Indices;
7857 E->getEncodedElementAccess(Indices);
7858 if (Indices.size() == 1) {
7859 // Return scalar.
7860 return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7861 } else {
7862 // Construct new APValue vector.
7863 SmallVector<APValue, 4> Elts;
7864 for (unsigned I = 0; I < Indices.size(); ++I) {
7865 Elts.push_back(Val.getVectorElt(Indices[I]));
7866 }
7867 APValue VecResult(Elts.data(), Indices.size());
7868 return DerivedSuccess(VecResult, E);
7869 }
7870 }
7871
7872 return false;
7873 }
7874
VisitCastExpr(const CastExpr * E)7875 bool VisitCastExpr(const CastExpr *E) {
7876 switch (E->getCastKind()) {
7877 default:
7878 break;
7879
7880 case CK_AtomicToNonAtomic: {
7881 APValue AtomicVal;
7882 // This does not need to be done in place even for class/array types:
7883 // atomic-to-non-atomic conversion implies copying the object
7884 // representation.
7885 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7886 return false;
7887 return DerivedSuccess(AtomicVal, E);
7888 }
7889
7890 case CK_NoOp:
7891 case CK_UserDefinedConversion:
7892 return StmtVisitorTy::Visit(E->getSubExpr());
7893
7894 case CK_LValueToRValue: {
7895 LValue LVal;
7896 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7897 return false;
7898 APValue RVal;
7899 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7900 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7901 LVal, RVal))
7902 return false;
7903 return DerivedSuccess(RVal, E);
7904 }
7905 case CK_LValueToRValueBitCast: {
7906 APValue DestValue, SourceValue;
7907 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7908 return false;
7909 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7910 return false;
7911 return DerivedSuccess(DestValue, E);
7912 }
7913
7914 case CK_AddressSpaceConversion: {
7915 APValue Value;
7916 if (!Evaluate(Value, Info, E->getSubExpr()))
7917 return false;
7918 return DerivedSuccess(Value, E);
7919 }
7920 }
7921
7922 return Error(E);
7923 }
7924
VisitUnaryPostInc(const UnaryOperator * UO)7925 bool VisitUnaryPostInc(const UnaryOperator *UO) {
7926 return VisitUnaryPostIncDec(UO);
7927 }
VisitUnaryPostDec(const UnaryOperator * UO)7928 bool VisitUnaryPostDec(const UnaryOperator *UO) {
7929 return VisitUnaryPostIncDec(UO);
7930 }
VisitUnaryPostIncDec(const UnaryOperator * UO)7931 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7932 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7933 return Error(UO);
7934
7935 LValue LVal;
7936 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7937 return false;
7938 APValue RVal;
7939 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7940 UO->isIncrementOp(), &RVal))
7941 return false;
7942 return DerivedSuccess(RVal, UO);
7943 }
7944
VisitStmtExpr(const StmtExpr * E)7945 bool VisitStmtExpr(const StmtExpr *E) {
7946 // We will have checked the full-expressions inside the statement expression
7947 // when they were completed, and don't need to check them again now.
7948 llvm::SaveAndRestore<bool> NotCheckingForUB(
7949 Info.CheckingForUndefinedBehavior, false);
7950
7951 const CompoundStmt *CS = E->getSubStmt();
7952 if (CS->body_empty())
7953 return true;
7954
7955 BlockScopeRAII Scope(Info);
7956 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7957 BE = CS->body_end();
7958 /**/; ++BI) {
7959 if (BI + 1 == BE) {
7960 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7961 if (!FinalExpr) {
7962 Info.FFDiag((*BI)->getBeginLoc(),
7963 diag::note_constexpr_stmt_expr_unsupported);
7964 return false;
7965 }
7966 return this->Visit(FinalExpr) && Scope.destroy();
7967 }
7968
7969 APValue ReturnValue;
7970 StmtResult Result = { ReturnValue, nullptr };
7971 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7972 if (ESR != ESR_Succeeded) {
7973 // FIXME: If the statement-expression terminated due to 'return',
7974 // 'break', or 'continue', it would be nice to propagate that to
7975 // the outer statement evaluation rather than bailing out.
7976 if (ESR != ESR_Failed)
7977 Info.FFDiag((*BI)->getBeginLoc(),
7978 diag::note_constexpr_stmt_expr_unsupported);
7979 return false;
7980 }
7981 }
7982
7983 llvm_unreachable("Return from function from the loop above.");
7984 }
7985
7986 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)7987 void VisitIgnoredValue(const Expr *E) {
7988 EvaluateIgnoredValue(Info, E);
7989 }
7990
7991 /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)7992 void VisitIgnoredBaseExpression(const Expr *E) {
7993 // While MSVC doesn't evaluate the base expression, it does diagnose the
7994 // presence of side-effecting behavior.
7995 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7996 return;
7997 VisitIgnoredValue(E);
7998 }
7999 };
8000
8001 } // namespace
8002
8003 //===----------------------------------------------------------------------===//
8004 // Common base class for lvalue and temporary evaluation.
8005 //===----------------------------------------------------------------------===//
8006 namespace {
8007 template<class Derived>
8008 class LValueExprEvaluatorBase
8009 : public ExprEvaluatorBase<Derived> {
8010 protected:
8011 LValue &Result;
8012 bool InvalidBaseOK;
8013 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8014 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8015
Success(APValue::LValueBase B)8016 bool Success(APValue::LValueBase B) {
8017 Result.set(B);
8018 return true;
8019 }
8020
evaluatePointer(const Expr * E,LValue & Result)8021 bool evaluatePointer(const Expr *E, LValue &Result) {
8022 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8023 }
8024
8025 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8026 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8027 : ExprEvaluatorBaseTy(Info), Result(Result),
8028 InvalidBaseOK(InvalidBaseOK) {}
8029
Success(const APValue & V,const Expr * E)8030 bool Success(const APValue &V, const Expr *E) {
8031 Result.setFrom(this->Info.Ctx, V);
8032 return true;
8033 }
8034
VisitMemberExpr(const MemberExpr * E)8035 bool VisitMemberExpr(const MemberExpr *E) {
8036 // Handle non-static data members.
8037 QualType BaseTy;
8038 bool EvalOK;
8039 if (E->isArrow()) {
8040 EvalOK = evaluatePointer(E->getBase(), Result);
8041 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8042 } else if (E->getBase()->isPRValue()) {
8043 assert(E->getBase()->getType()->isRecordType());
8044 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8045 BaseTy = E->getBase()->getType();
8046 } else {
8047 EvalOK = this->Visit(E->getBase());
8048 BaseTy = E->getBase()->getType();
8049 }
8050 if (!EvalOK) {
8051 if (!InvalidBaseOK)
8052 return false;
8053 Result.setInvalid(E);
8054 return true;
8055 }
8056
8057 const ValueDecl *MD = E->getMemberDecl();
8058 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8059 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8060 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8061 (void)BaseTy;
8062 if (!HandleLValueMember(this->Info, E, Result, FD))
8063 return false;
8064 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8065 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8066 return false;
8067 } else
8068 return this->Error(E);
8069
8070 if (MD->getType()->isReferenceType()) {
8071 APValue RefValue;
8072 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8073 RefValue))
8074 return false;
8075 return Success(RefValue, E);
8076 }
8077 return true;
8078 }
8079
VisitBinaryOperator(const BinaryOperator * E)8080 bool VisitBinaryOperator(const BinaryOperator *E) {
8081 switch (E->getOpcode()) {
8082 default:
8083 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8084
8085 case BO_PtrMemD:
8086 case BO_PtrMemI:
8087 return HandleMemberPointerAccess(this->Info, E, Result);
8088 }
8089 }
8090
VisitCastExpr(const CastExpr * E)8091 bool VisitCastExpr(const CastExpr *E) {
8092 switch (E->getCastKind()) {
8093 default:
8094 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8095
8096 case CK_DerivedToBase:
8097 case CK_UncheckedDerivedToBase:
8098 if (!this->Visit(E->getSubExpr()))
8099 return false;
8100
8101 // Now figure out the necessary offset to add to the base LV to get from
8102 // the derived class to the base class.
8103 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8104 Result);
8105 }
8106 }
8107 };
8108 }
8109
8110 //===----------------------------------------------------------------------===//
8111 // LValue Evaluation
8112 //
8113 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8114 // function designators (in C), decl references to void objects (in C), and
8115 // temporaries (if building with -Wno-address-of-temporary).
8116 //
8117 // LValue evaluation produces values comprising a base expression of one of the
8118 // following types:
8119 // - Declarations
8120 // * VarDecl
8121 // * FunctionDecl
8122 // - Literals
8123 // * CompoundLiteralExpr in C (and in global scope in C++)
8124 // * StringLiteral
8125 // * PredefinedExpr
8126 // * ObjCStringLiteralExpr
8127 // * ObjCEncodeExpr
8128 // * AddrLabelExpr
8129 // * BlockExpr
8130 // * CallExpr for a MakeStringConstant builtin
8131 // - typeid(T) expressions, as TypeInfoLValues
8132 // - Locals and temporaries
8133 // * MaterializeTemporaryExpr
8134 // * Any Expr, with a CallIndex indicating the function in which the temporary
8135 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
8136 // from the AST (FIXME).
8137 // * A MaterializeTemporaryExpr that has static storage duration, with no
8138 // CallIndex, for a lifetime-extended temporary.
8139 // * The ConstantExpr that is currently being evaluated during evaluation of an
8140 // immediate invocation.
8141 // plus an offset in bytes.
8142 //===----------------------------------------------------------------------===//
8143 namespace {
8144 class LValueExprEvaluator
8145 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8146 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8147 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8148 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8149
8150 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8151 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8152
8153 bool VisitCallExpr(const CallExpr *E);
8154 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)8155 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8156 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8157 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8158 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)8159 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)8160 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8161 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8162 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8163 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8164 bool VisitUnaryDeref(const UnaryOperator *E);
8165 bool VisitUnaryReal(const UnaryOperator *E);
8166 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)8167 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8168 return VisitUnaryPreIncDec(UO);
8169 }
VisitUnaryPreDec(const UnaryOperator * UO)8170 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8171 return VisitUnaryPreIncDec(UO);
8172 }
8173 bool VisitBinAssign(const BinaryOperator *BO);
8174 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8175
VisitCastExpr(const CastExpr * E)8176 bool VisitCastExpr(const CastExpr *E) {
8177 switch (E->getCastKind()) {
8178 default:
8179 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8180
8181 case CK_LValueBitCast:
8182 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8183 if (!Visit(E->getSubExpr()))
8184 return false;
8185 Result.Designator.setInvalid();
8186 return true;
8187
8188 case CK_BaseToDerived:
8189 if (!Visit(E->getSubExpr()))
8190 return false;
8191 return HandleBaseToDerivedCast(Info, E, Result);
8192
8193 case CK_Dynamic:
8194 if (!Visit(E->getSubExpr()))
8195 return false;
8196 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8197 }
8198 }
8199 };
8200 } // end anonymous namespace
8201
8202 /// Evaluate an expression as an lvalue. This can be legitimately called on
8203 /// expressions which are not glvalues, in three cases:
8204 /// * function designators in C, and
8205 /// * "extern void" objects
8206 /// * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8207 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8208 bool InvalidBaseOK) {
8209 assert(!E->isValueDependent());
8210 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8211 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8212 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8213 }
8214
VisitDeclRefExpr(const DeclRefExpr * E)8215 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8216 const NamedDecl *D = E->getDecl();
8217 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8218 UnnamedGlobalConstantDecl>(D))
8219 return Success(cast<ValueDecl>(D));
8220 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8221 return VisitVarDecl(E, VD);
8222 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8223 return Visit(BD->getBinding());
8224 return Error(E);
8225 }
8226
8227
VisitVarDecl(const Expr * E,const VarDecl * VD)8228 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8229
8230 // If we are within a lambda's call operator, check whether the 'VD' referred
8231 // to within 'E' actually represents a lambda-capture that maps to a
8232 // data-member/field within the closure object, and if so, evaluate to the
8233 // field or what the field refers to.
8234 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8235 isa<DeclRefExpr>(E) &&
8236 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8237 // We don't always have a complete capture-map when checking or inferring if
8238 // the function call operator meets the requirements of a constexpr function
8239 // - but we don't need to evaluate the captures to determine constexprness
8240 // (dcl.constexpr C++17).
8241 if (Info.checkingPotentialConstantExpression())
8242 return false;
8243
8244 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8245 // Start with 'Result' referring to the complete closure object...
8246 Result = *Info.CurrentCall->This;
8247 // ... then update it to refer to the field of the closure object
8248 // that represents the capture.
8249 if (!HandleLValueMember(Info, E, Result, FD))
8250 return false;
8251 // And if the field is of reference type, update 'Result' to refer to what
8252 // the field refers to.
8253 if (FD->getType()->isReferenceType()) {
8254 APValue RVal;
8255 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8256 RVal))
8257 return false;
8258 Result.setFrom(Info.Ctx, RVal);
8259 }
8260 return true;
8261 }
8262 }
8263
8264 CallStackFrame *Frame = nullptr;
8265 unsigned Version = 0;
8266 if (VD->hasLocalStorage()) {
8267 // Only if a local variable was declared in the function currently being
8268 // evaluated, do we expect to be able to find its value in the current
8269 // frame. (Otherwise it was likely declared in an enclosing context and
8270 // could either have a valid evaluatable value (for e.g. a constexpr
8271 // variable) or be ill-formed (and trigger an appropriate evaluation
8272 // diagnostic)).
8273 CallStackFrame *CurrFrame = Info.CurrentCall;
8274 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8275 // Function parameters are stored in some caller's frame. (Usually the
8276 // immediate caller, but for an inherited constructor they may be more
8277 // distant.)
8278 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8279 if (CurrFrame->Arguments) {
8280 VD = CurrFrame->Arguments.getOrigParam(PVD);
8281 Frame =
8282 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8283 Version = CurrFrame->Arguments.Version;
8284 }
8285 } else {
8286 Frame = CurrFrame;
8287 Version = CurrFrame->getCurrentTemporaryVersion(VD);
8288 }
8289 }
8290 }
8291
8292 if (!VD->getType()->isReferenceType()) {
8293 if (Frame) {
8294 Result.set({VD, Frame->Index, Version});
8295 return true;
8296 }
8297 return Success(VD);
8298 }
8299
8300 if (!Info.getLangOpts().CPlusPlus11) {
8301 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8302 << VD << VD->getType();
8303 Info.Note(VD->getLocation(), diag::note_declared_at);
8304 }
8305
8306 APValue *V;
8307 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8308 return false;
8309 if (!V->hasValue()) {
8310 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8311 // adjust the diagnostic to say that.
8312 if (!Info.checkingPotentialConstantExpression())
8313 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8314 return false;
8315 }
8316 return Success(*V, E);
8317 }
8318
VisitCallExpr(const CallExpr * E)8319 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8320 switch (E->getBuiltinCallee()) {
8321 case Builtin::BIas_const:
8322 case Builtin::BIforward:
8323 case Builtin::BImove:
8324 case Builtin::BImove_if_noexcept:
8325 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8326 return Visit(E->getArg(0));
8327 break;
8328 }
8329
8330 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8331 }
8332
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)8333 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8334 const MaterializeTemporaryExpr *E) {
8335 // Walk through the expression to find the materialized temporary itself.
8336 SmallVector<const Expr *, 2> CommaLHSs;
8337 SmallVector<SubobjectAdjustment, 2> Adjustments;
8338 const Expr *Inner =
8339 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8340
8341 // If we passed any comma operators, evaluate their LHSs.
8342 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8343 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8344 return false;
8345
8346 // A materialized temporary with static storage duration can appear within the
8347 // result of a constant expression evaluation, so we need to preserve its
8348 // value for use outside this evaluation.
8349 APValue *Value;
8350 if (E->getStorageDuration() == SD_Static) {
8351 // FIXME: What about SD_Thread?
8352 Value = E->getOrCreateValue(true);
8353 *Value = APValue();
8354 Result.set(E);
8355 } else {
8356 Value = &Info.CurrentCall->createTemporary(
8357 E, E->getType(),
8358 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8359 : ScopeKind::Block,
8360 Result);
8361 }
8362
8363 QualType Type = Inner->getType();
8364
8365 // Materialize the temporary itself.
8366 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8367 *Value = APValue();
8368 return false;
8369 }
8370
8371 // Adjust our lvalue to refer to the desired subobject.
8372 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8373 --I;
8374 switch (Adjustments[I].Kind) {
8375 case SubobjectAdjustment::DerivedToBaseAdjustment:
8376 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8377 Type, Result))
8378 return false;
8379 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8380 break;
8381
8382 case SubobjectAdjustment::FieldAdjustment:
8383 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8384 return false;
8385 Type = Adjustments[I].Field->getType();
8386 break;
8387
8388 case SubobjectAdjustment::MemberPointerAdjustment:
8389 if (!HandleMemberPointerAccess(this->Info, Type, Result,
8390 Adjustments[I].Ptr.RHS))
8391 return false;
8392 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8393 break;
8394 }
8395 }
8396
8397 return true;
8398 }
8399
8400 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)8401 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8402 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8403 "lvalue compound literal in c++?");
8404 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8405 // only see this when folding in C, so there's no standard to follow here.
8406 return Success(E);
8407 }
8408
VisitCXXTypeidExpr(const CXXTypeidExpr * E)8409 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8410 TypeInfoLValue TypeInfo;
8411
8412 if (!E->isPotentiallyEvaluated()) {
8413 if (E->isTypeOperand())
8414 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8415 else
8416 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8417 } else {
8418 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8419 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8420 << E->getExprOperand()->getType()
8421 << E->getExprOperand()->getSourceRange();
8422 }
8423
8424 if (!Visit(E->getExprOperand()))
8425 return false;
8426
8427 Optional<DynamicType> DynType =
8428 ComputeDynamicType(Info, E, Result, AK_TypeId);
8429 if (!DynType)
8430 return false;
8431
8432 TypeInfo =
8433 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8434 }
8435
8436 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8437 }
8438
VisitCXXUuidofExpr(const CXXUuidofExpr * E)8439 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8440 return Success(E->getGuidDecl());
8441 }
8442
VisitMemberExpr(const MemberExpr * E)8443 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8444 // Handle static data members.
8445 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8446 VisitIgnoredBaseExpression(E->getBase());
8447 return VisitVarDecl(E, VD);
8448 }
8449
8450 // Handle static member functions.
8451 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8452 if (MD->isStatic()) {
8453 VisitIgnoredBaseExpression(E->getBase());
8454 return Success(MD);
8455 }
8456 }
8457
8458 // Handle non-static data members.
8459 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8460 }
8461
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)8462 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8463 // FIXME: Deal with vectors as array subscript bases.
8464 if (E->getBase()->getType()->isVectorType() ||
8465 E->getBase()->getType()->isVLSTBuiltinType())
8466 return Error(E);
8467
8468 APSInt Index;
8469 bool Success = true;
8470
8471 // C++17's rules require us to evaluate the LHS first, regardless of which
8472 // side is the base.
8473 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8474 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8475 : !EvaluateInteger(SubExpr, Index, Info)) {
8476 if (!Info.noteFailure())
8477 return false;
8478 Success = false;
8479 }
8480 }
8481
8482 return Success &&
8483 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8484 }
8485
VisitUnaryDeref(const UnaryOperator * E)8486 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8487 return evaluatePointer(E->getSubExpr(), Result);
8488 }
8489
VisitUnaryReal(const UnaryOperator * E)8490 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8491 if (!Visit(E->getSubExpr()))
8492 return false;
8493 // __real is a no-op on scalar lvalues.
8494 if (E->getSubExpr()->getType()->isAnyComplexType())
8495 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8496 return true;
8497 }
8498
VisitUnaryImag(const UnaryOperator * E)8499 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8500 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8501 "lvalue __imag__ on scalar?");
8502 if (!Visit(E->getSubExpr()))
8503 return false;
8504 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8505 return true;
8506 }
8507
VisitUnaryPreIncDec(const UnaryOperator * UO)8508 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8509 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8510 return Error(UO);
8511
8512 if (!this->Visit(UO->getSubExpr()))
8513 return false;
8514
8515 return handleIncDec(
8516 this->Info, UO, Result, UO->getSubExpr()->getType(),
8517 UO->isIncrementOp(), nullptr);
8518 }
8519
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)8520 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8521 const CompoundAssignOperator *CAO) {
8522 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8523 return Error(CAO);
8524
8525 bool Success = true;
8526
8527 // C++17 onwards require that we evaluate the RHS first.
8528 APValue RHS;
8529 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8530 if (!Info.noteFailure())
8531 return false;
8532 Success = false;
8533 }
8534
8535 // The overall lvalue result is the result of evaluating the LHS.
8536 if (!this->Visit(CAO->getLHS()) || !Success)
8537 return false;
8538
8539 return handleCompoundAssignment(
8540 this->Info, CAO,
8541 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8542 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8543 }
8544
VisitBinAssign(const BinaryOperator * E)8545 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8546 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8547 return Error(E);
8548
8549 bool Success = true;
8550
8551 // C++17 onwards require that we evaluate the RHS first.
8552 APValue NewVal;
8553 if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8554 if (!Info.noteFailure())
8555 return false;
8556 Success = false;
8557 }
8558
8559 if (!this->Visit(E->getLHS()) || !Success)
8560 return false;
8561
8562 if (Info.getLangOpts().CPlusPlus20 &&
8563 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8564 return false;
8565
8566 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8567 NewVal);
8568 }
8569
8570 //===----------------------------------------------------------------------===//
8571 // Pointer Evaluation
8572 //===----------------------------------------------------------------------===//
8573
8574 /// Attempts to compute the number of bytes available at the pointer
8575 /// returned by a function with the alloc_size attribute. Returns true if we
8576 /// were successful. Places an unsigned number into `Result`.
8577 ///
8578 /// This expects the given CallExpr to be a call to a function with an
8579 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)8580 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8581 const CallExpr *Call,
8582 llvm::APInt &Result) {
8583 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8584
8585 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8586 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8587 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8588 if (Call->getNumArgs() <= SizeArgNo)
8589 return false;
8590
8591 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8592 Expr::EvalResult ExprResult;
8593 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8594 return false;
8595 Into = ExprResult.Val.getInt();
8596 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8597 return false;
8598 Into = Into.zext(BitsInSizeT);
8599 return true;
8600 };
8601
8602 APSInt SizeOfElem;
8603 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8604 return false;
8605
8606 if (!AllocSize->getNumElemsParam().isValid()) {
8607 Result = std::move(SizeOfElem);
8608 return true;
8609 }
8610
8611 APSInt NumberOfElems;
8612 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8613 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8614 return false;
8615
8616 bool Overflow;
8617 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8618 if (Overflow)
8619 return false;
8620
8621 Result = std::move(BytesAvailable);
8622 return true;
8623 }
8624
8625 /// Convenience function. LVal's base must be a call to an alloc_size
8626 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)8627 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8628 const LValue &LVal,
8629 llvm::APInt &Result) {
8630 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8631 "Can't get the size of a non alloc_size function");
8632 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8633 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8634 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8635 }
8636
8637 /// Attempts to evaluate the given LValueBase as the result of a call to
8638 /// a function with the alloc_size attribute. If it was possible to do so, this
8639 /// function will return true, make Result's Base point to said function call,
8640 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)8641 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8642 LValue &Result) {
8643 if (Base.isNull())
8644 return false;
8645
8646 // Because we do no form of static analysis, we only support const variables.
8647 //
8648 // Additionally, we can't support parameters, nor can we support static
8649 // variables (in the latter case, use-before-assign isn't UB; in the former,
8650 // we have no clue what they'll be assigned to).
8651 const auto *VD =
8652 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8653 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8654 return false;
8655
8656 const Expr *Init = VD->getAnyInitializer();
8657 if (!Init || Init->getType().isNull())
8658 return false;
8659
8660 const Expr *E = Init->IgnoreParens();
8661 if (!tryUnwrapAllocSizeCall(E))
8662 return false;
8663
8664 // Store E instead of E unwrapped so that the type of the LValue's base is
8665 // what the user wanted.
8666 Result.setInvalid(E);
8667
8668 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8669 Result.addUnsizedArray(Info, E, Pointee);
8670 return true;
8671 }
8672
8673 namespace {
8674 class PointerExprEvaluator
8675 : public ExprEvaluatorBase<PointerExprEvaluator> {
8676 LValue &Result;
8677 bool InvalidBaseOK;
8678
Success(const Expr * E)8679 bool Success(const Expr *E) {
8680 Result.set(E);
8681 return true;
8682 }
8683
evaluateLValue(const Expr * E,LValue & Result)8684 bool evaluateLValue(const Expr *E, LValue &Result) {
8685 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8686 }
8687
evaluatePointer(const Expr * E,LValue & Result)8688 bool evaluatePointer(const Expr *E, LValue &Result) {
8689 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8690 }
8691
8692 bool visitNonBuiltinCallExpr(const CallExpr *E);
8693 public:
8694
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)8695 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8696 : ExprEvaluatorBaseTy(info), Result(Result),
8697 InvalidBaseOK(InvalidBaseOK) {}
8698
Success(const APValue & V,const Expr * E)8699 bool Success(const APValue &V, const Expr *E) {
8700 Result.setFrom(Info.Ctx, V);
8701 return true;
8702 }
ZeroInitialization(const Expr * E)8703 bool ZeroInitialization(const Expr *E) {
8704 Result.setNull(Info.Ctx, E->getType());
8705 return true;
8706 }
8707
8708 bool VisitBinaryOperator(const BinaryOperator *E);
8709 bool VisitCastExpr(const CastExpr* E);
8710 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)8711 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8712 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)8713 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8714 if (E->isExpressibleAsConstantInitializer())
8715 return Success(E);
8716 if (Info.noteFailure())
8717 EvaluateIgnoredValue(Info, E->getSubExpr());
8718 return Error(E);
8719 }
VisitAddrLabelExpr(const AddrLabelExpr * E)8720 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8721 { return Success(E); }
8722 bool VisitCallExpr(const CallExpr *E);
8723 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)8724 bool VisitBlockExpr(const BlockExpr *E) {
8725 if (!E->getBlockDecl()->hasCaptures())
8726 return Success(E);
8727 return Error(E);
8728 }
VisitCXXThisExpr(const CXXThisExpr * E)8729 bool VisitCXXThisExpr(const CXXThisExpr *E) {
8730 // Can't look at 'this' when checking a potential constant expression.
8731 if (Info.checkingPotentialConstantExpression())
8732 return false;
8733 if (!Info.CurrentCall->This) {
8734 if (Info.getLangOpts().CPlusPlus11)
8735 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8736 else
8737 Info.FFDiag(E);
8738 return false;
8739 }
8740 Result = *Info.CurrentCall->This;
8741 // If we are inside a lambda's call operator, the 'this' expression refers
8742 // to the enclosing '*this' object (either by value or reference) which is
8743 // either copied into the closure object's field that represents the '*this'
8744 // or refers to '*this'.
8745 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8746 // Ensure we actually have captured 'this'. (an error will have
8747 // been previously reported if not).
8748 if (!Info.CurrentCall->LambdaThisCaptureField)
8749 return false;
8750
8751 // Update 'Result' to refer to the data member/field of the closure object
8752 // that represents the '*this' capture.
8753 if (!HandleLValueMember(Info, E, Result,
8754 Info.CurrentCall->LambdaThisCaptureField))
8755 return false;
8756 // If we captured '*this' by reference, replace the field with its referent.
8757 if (Info.CurrentCall->LambdaThisCaptureField->getType()
8758 ->isPointerType()) {
8759 APValue RVal;
8760 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8761 RVal))
8762 return false;
8763
8764 Result.setFrom(Info.Ctx, RVal);
8765 }
8766 }
8767 return true;
8768 }
8769
8770 bool VisitCXXNewExpr(const CXXNewExpr *E);
8771
VisitSourceLocExpr(const SourceLocExpr * E)8772 bool VisitSourceLocExpr(const SourceLocExpr *E) {
8773 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
8774 APValue LValResult = E->EvaluateInContext(
8775 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8776 Result.setFrom(Info.Ctx, LValResult);
8777 return true;
8778 }
8779
VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr * E)8780 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8781 std::string ResultStr = E->ComputeName(Info.Ctx);
8782
8783 QualType CharTy = Info.Ctx.CharTy.withConst();
8784 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8785 ResultStr.size() + 1);
8786 QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8787 ArrayType::Normal, 0);
8788
8789 StringLiteral *SL =
8790 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary,
8791 /*Pascal*/ false, ArrayTy, E->getLocation());
8792
8793 evaluateLValue(SL, Result);
8794 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8795 return true;
8796 }
8797
8798 // FIXME: Missing: @protocol, @selector
8799 };
8800 } // end anonymous namespace
8801
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8802 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8803 bool InvalidBaseOK) {
8804 assert(!E->isValueDependent());
8805 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8806 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8807 }
8808
VisitBinaryOperator(const BinaryOperator * E)8809 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8810 if (E->getOpcode() != BO_Add &&
8811 E->getOpcode() != BO_Sub)
8812 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8813
8814 const Expr *PExp = E->getLHS();
8815 const Expr *IExp = E->getRHS();
8816 if (IExp->getType()->isPointerType())
8817 std::swap(PExp, IExp);
8818
8819 bool EvalPtrOK = evaluatePointer(PExp, Result);
8820 if (!EvalPtrOK && !Info.noteFailure())
8821 return false;
8822
8823 llvm::APSInt Offset;
8824 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8825 return false;
8826
8827 if (E->getOpcode() == BO_Sub)
8828 negateAsSigned(Offset);
8829
8830 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8831 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8832 }
8833
VisitUnaryAddrOf(const UnaryOperator * E)8834 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8835 return evaluateLValue(E->getSubExpr(), Result);
8836 }
8837
8838 // Is the provided decl 'std::source_location::current'?
IsDeclSourceLocationCurrent(const FunctionDecl * FD)8839 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
8840 if (!FD)
8841 return false;
8842 const IdentifierInfo *FnII = FD->getIdentifier();
8843 if (!FnII || !FnII->isStr("current"))
8844 return false;
8845
8846 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
8847 if (!RD)
8848 return false;
8849
8850 const IdentifierInfo *ClassII = RD->getIdentifier();
8851 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
8852 }
8853
VisitCastExpr(const CastExpr * E)8854 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8855 const Expr *SubExpr = E->getSubExpr();
8856
8857 switch (E->getCastKind()) {
8858 default:
8859 break;
8860 case CK_BitCast:
8861 case CK_CPointerToObjCPointerCast:
8862 case CK_BlockPointerToObjCPointerCast:
8863 case CK_AnyPointerToBlockPointerCast:
8864 case CK_AddressSpaceConversion:
8865 if (!Visit(SubExpr))
8866 return false;
8867 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8868 // permitted in constant expressions in C++11. Bitcasts from cv void* are
8869 // also static_casts, but we disallow them as a resolution to DR1312.
8870 if (!E->getType()->isVoidPointerType()) {
8871 // In some circumstances, we permit casting from void* to cv1 T*, when the
8872 // actual pointee object is actually a cv2 T.
8873 bool VoidPtrCastMaybeOK =
8874 !Result.InvalidBase && !Result.Designator.Invalid &&
8875 !Result.IsNullPtr &&
8876 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8877 E->getType()->getPointeeType());
8878 // 1. We'll allow it in std::allocator::allocate, and anything which that
8879 // calls.
8880 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8881 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8882 // We'll allow it in the body of std::source_location::current. GCC's
8883 // implementation had a parameter of type `void*`, and casts from
8884 // that back to `const __impl*` in its body.
8885 if (VoidPtrCastMaybeOK &&
8886 (Info.getStdAllocatorCaller("allocate") ||
8887 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee))) {
8888 // Permitted.
8889 } else {
8890 Result.Designator.setInvalid();
8891 if (SubExpr->getType()->isVoidPointerType())
8892 CCEDiag(E, diag::note_constexpr_invalid_cast)
8893 << 3 << SubExpr->getType();
8894 else
8895 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8896 }
8897 }
8898 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8899 ZeroInitialization(E);
8900 return true;
8901
8902 case CK_DerivedToBase:
8903 case CK_UncheckedDerivedToBase:
8904 if (!evaluatePointer(E->getSubExpr(), Result))
8905 return false;
8906 if (!Result.Base && Result.Offset.isZero())
8907 return true;
8908
8909 // Now figure out the necessary offset to add to the base LV to get from
8910 // the derived class to the base class.
8911 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8912 castAs<PointerType>()->getPointeeType(),
8913 Result);
8914
8915 case CK_BaseToDerived:
8916 if (!Visit(E->getSubExpr()))
8917 return false;
8918 if (!Result.Base && Result.Offset.isZero())
8919 return true;
8920 return HandleBaseToDerivedCast(Info, E, Result);
8921
8922 case CK_Dynamic:
8923 if (!Visit(E->getSubExpr()))
8924 return false;
8925 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8926
8927 case CK_NullToPointer:
8928 VisitIgnoredValue(E->getSubExpr());
8929 return ZeroInitialization(E);
8930
8931 case CK_IntegralToPointer: {
8932 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8933
8934 APValue Value;
8935 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8936 break;
8937
8938 if (Value.isInt()) {
8939 unsigned Size = Info.Ctx.getTypeSize(E->getType());
8940 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8941 Result.Base = (Expr*)nullptr;
8942 Result.InvalidBase = false;
8943 Result.Offset = CharUnits::fromQuantity(N);
8944 Result.Designator.setInvalid();
8945 Result.IsNullPtr = false;
8946 return true;
8947 } else {
8948 // Cast is of an lvalue, no need to change value.
8949 Result.setFrom(Info.Ctx, Value);
8950 return true;
8951 }
8952 }
8953
8954 case CK_ArrayToPointerDecay: {
8955 if (SubExpr->isGLValue()) {
8956 if (!evaluateLValue(SubExpr, Result))
8957 return false;
8958 } else {
8959 APValue &Value = Info.CurrentCall->createTemporary(
8960 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8961 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8962 return false;
8963 }
8964 // The result is a pointer to the first element of the array.
8965 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8966 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8967 Result.addArray(Info, E, CAT);
8968 else
8969 Result.addUnsizedArray(Info, E, AT->getElementType());
8970 return true;
8971 }
8972
8973 case CK_FunctionToPointerDecay:
8974 return evaluateLValue(SubExpr, Result);
8975
8976 case CK_LValueToRValue: {
8977 LValue LVal;
8978 if (!evaluateLValue(E->getSubExpr(), LVal))
8979 return false;
8980
8981 APValue RVal;
8982 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8983 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8984 LVal, RVal))
8985 return InvalidBaseOK &&
8986 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8987 return Success(RVal, E);
8988 }
8989 }
8990
8991 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8992 }
8993
GetAlignOfType(EvalInfo & Info,QualType T,UnaryExprOrTypeTrait ExprKind)8994 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8995 UnaryExprOrTypeTrait ExprKind) {
8996 // C++ [expr.alignof]p3:
8997 // When alignof is applied to a reference type, the result is the
8998 // alignment of the referenced type.
8999 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
9000 T = Ref->getPointeeType();
9001
9002 if (T.getQualifiers().hasUnaligned())
9003 return CharUnits::One();
9004
9005 const bool AlignOfReturnsPreferred =
9006 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9007
9008 // __alignof is defined to return the preferred alignment.
9009 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9010 // as well.
9011 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9012 return Info.Ctx.toCharUnitsFromBits(
9013 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9014 // alignof and _Alignof are defined to return the ABI alignment.
9015 else if (ExprKind == UETT_AlignOf)
9016 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9017 else
9018 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9019 }
9020
GetAlignOfExpr(EvalInfo & Info,const Expr * E,UnaryExprOrTypeTrait ExprKind)9021 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9022 UnaryExprOrTypeTrait ExprKind) {
9023 E = E->IgnoreParens();
9024
9025 // The kinds of expressions that we have special-case logic here for
9026 // should be kept up to date with the special checks for those
9027 // expressions in Sema.
9028
9029 // alignof decl is always accepted, even if it doesn't make sense: we default
9030 // to 1 in those cases.
9031 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9032 return Info.Ctx.getDeclAlign(DRE->getDecl(),
9033 /*RefAsPointee*/true);
9034
9035 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9036 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9037 /*RefAsPointee*/true);
9038
9039 return GetAlignOfType(Info, E->getType(), ExprKind);
9040 }
9041
getBaseAlignment(EvalInfo & Info,const LValue & Value)9042 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9043 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9044 return Info.Ctx.getDeclAlign(VD);
9045 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9046 return GetAlignOfExpr(Info, E, UETT_AlignOf);
9047 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9048 }
9049
9050 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9051 /// __builtin_is_aligned and __builtin_assume_aligned.
getAlignmentArgument(const Expr * E,QualType ForType,EvalInfo & Info,APSInt & Alignment)9052 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9053 EvalInfo &Info, APSInt &Alignment) {
9054 if (!EvaluateInteger(E, Alignment, Info))
9055 return false;
9056 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9057 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9058 return false;
9059 }
9060 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9061 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9062 if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9063 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9064 << MaxValue << ForType << Alignment;
9065 return false;
9066 }
9067 // Ensure both alignment and source value have the same bit width so that we
9068 // don't assert when computing the resulting value.
9069 APSInt ExtAlignment =
9070 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9071 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9072 "Alignment should not be changed by ext/trunc");
9073 Alignment = ExtAlignment;
9074 assert(Alignment.getBitWidth() == SrcWidth);
9075 return true;
9076 }
9077
9078 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)9079 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9080 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9081 return true;
9082
9083 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9084 return false;
9085
9086 Result.setInvalid(E);
9087 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9088 Result.addUnsizedArray(Info, E, PointeeTy);
9089 return true;
9090 }
9091
VisitCallExpr(const CallExpr * E)9092 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9093 if (IsConstantCall(E))
9094 return Success(E);
9095
9096 if (unsigned BuiltinOp = E->getBuiltinCallee())
9097 return VisitBuiltinCallExpr(E, BuiltinOp);
9098
9099 return visitNonBuiltinCallExpr(E);
9100 }
9101
9102 // Determine if T is a character type for which we guarantee that
9103 // sizeof(T) == 1.
isOneByteCharacterType(QualType T)9104 static bool isOneByteCharacterType(QualType T) {
9105 return T->isCharType() || T->isChar8Type();
9106 }
9107
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)9108 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9109 unsigned BuiltinOp) {
9110 switch (BuiltinOp) {
9111 case Builtin::BIaddressof:
9112 case Builtin::BI__addressof:
9113 case Builtin::BI__builtin_addressof:
9114 return evaluateLValue(E->getArg(0), Result);
9115 case Builtin::BI__builtin_assume_aligned: {
9116 // We need to be very careful here because: if the pointer does not have the
9117 // asserted alignment, then the behavior is undefined, and undefined
9118 // behavior is non-constant.
9119 if (!evaluatePointer(E->getArg(0), Result))
9120 return false;
9121
9122 LValue OffsetResult(Result);
9123 APSInt Alignment;
9124 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9125 Alignment))
9126 return false;
9127 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9128
9129 if (E->getNumArgs() > 2) {
9130 APSInt Offset;
9131 if (!EvaluateInteger(E->getArg(2), Offset, Info))
9132 return false;
9133
9134 int64_t AdditionalOffset = -Offset.getZExtValue();
9135 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9136 }
9137
9138 // If there is a base object, then it must have the correct alignment.
9139 if (OffsetResult.Base) {
9140 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9141
9142 if (BaseAlignment < Align) {
9143 Result.Designator.setInvalid();
9144 // FIXME: Add support to Diagnostic for long / long long.
9145 CCEDiag(E->getArg(0),
9146 diag::note_constexpr_baa_insufficient_alignment) << 0
9147 << (unsigned)BaseAlignment.getQuantity()
9148 << (unsigned)Align.getQuantity();
9149 return false;
9150 }
9151 }
9152
9153 // The offset must also have the correct alignment.
9154 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9155 Result.Designator.setInvalid();
9156
9157 (OffsetResult.Base
9158 ? CCEDiag(E->getArg(0),
9159 diag::note_constexpr_baa_insufficient_alignment) << 1
9160 : CCEDiag(E->getArg(0),
9161 diag::note_constexpr_baa_value_insufficient_alignment))
9162 << (int)OffsetResult.Offset.getQuantity()
9163 << (unsigned)Align.getQuantity();
9164 return false;
9165 }
9166
9167 return true;
9168 }
9169 case Builtin::BI__builtin_align_up:
9170 case Builtin::BI__builtin_align_down: {
9171 if (!evaluatePointer(E->getArg(0), Result))
9172 return false;
9173 APSInt Alignment;
9174 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9175 Alignment))
9176 return false;
9177 CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9178 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9179 // For align_up/align_down, we can return the same value if the alignment
9180 // is known to be greater or equal to the requested value.
9181 if (PtrAlign.getQuantity() >= Alignment)
9182 return true;
9183
9184 // The alignment could be greater than the minimum at run-time, so we cannot
9185 // infer much about the resulting pointer value. One case is possible:
9186 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9187 // can infer the correct index if the requested alignment is smaller than
9188 // the base alignment so we can perform the computation on the offset.
9189 if (BaseAlignment.getQuantity() >= Alignment) {
9190 assert(Alignment.getBitWidth() <= 64 &&
9191 "Cannot handle > 64-bit address-space");
9192 uint64_t Alignment64 = Alignment.getZExtValue();
9193 CharUnits NewOffset = CharUnits::fromQuantity(
9194 BuiltinOp == Builtin::BI__builtin_align_down
9195 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9196 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9197 Result.adjustOffset(NewOffset - Result.Offset);
9198 // TODO: diagnose out-of-bounds values/only allow for arrays?
9199 return true;
9200 }
9201 // Otherwise, we cannot constant-evaluate the result.
9202 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9203 << Alignment;
9204 return false;
9205 }
9206 case Builtin::BI__builtin_operator_new:
9207 return HandleOperatorNewCall(Info, E, Result);
9208 case Builtin::BI__builtin_launder:
9209 return evaluatePointer(E->getArg(0), Result);
9210 case Builtin::BIstrchr:
9211 case Builtin::BIwcschr:
9212 case Builtin::BImemchr:
9213 case Builtin::BIwmemchr:
9214 if (Info.getLangOpts().CPlusPlus11)
9215 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9216 << /*isConstexpr*/0 << /*isConstructor*/0
9217 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9218 else
9219 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9220 LLVM_FALLTHROUGH;
9221 case Builtin::BI__builtin_strchr:
9222 case Builtin::BI__builtin_wcschr:
9223 case Builtin::BI__builtin_memchr:
9224 case Builtin::BI__builtin_char_memchr:
9225 case Builtin::BI__builtin_wmemchr: {
9226 if (!Visit(E->getArg(0)))
9227 return false;
9228 APSInt Desired;
9229 if (!EvaluateInteger(E->getArg(1), Desired, Info))
9230 return false;
9231 uint64_t MaxLength = uint64_t(-1);
9232 if (BuiltinOp != Builtin::BIstrchr &&
9233 BuiltinOp != Builtin::BIwcschr &&
9234 BuiltinOp != Builtin::BI__builtin_strchr &&
9235 BuiltinOp != Builtin::BI__builtin_wcschr) {
9236 APSInt N;
9237 if (!EvaluateInteger(E->getArg(2), N, Info))
9238 return false;
9239 MaxLength = N.getExtValue();
9240 }
9241 // We cannot find the value if there are no candidates to match against.
9242 if (MaxLength == 0u)
9243 return ZeroInitialization(E);
9244 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9245 Result.Designator.Invalid)
9246 return false;
9247 QualType CharTy = Result.Designator.getType(Info.Ctx);
9248 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9249 BuiltinOp == Builtin::BI__builtin_memchr;
9250 assert(IsRawByte ||
9251 Info.Ctx.hasSameUnqualifiedType(
9252 CharTy, E->getArg(0)->getType()->getPointeeType()));
9253 // Pointers to const void may point to objects of incomplete type.
9254 if (IsRawByte && CharTy->isIncompleteType()) {
9255 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9256 return false;
9257 }
9258 // Give up on byte-oriented matching against multibyte elements.
9259 // FIXME: We can compare the bytes in the correct order.
9260 if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9261 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9262 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9263 << CharTy;
9264 return false;
9265 }
9266 // Figure out what value we're actually looking for (after converting to
9267 // the corresponding unsigned type if necessary).
9268 uint64_t DesiredVal;
9269 bool StopAtNull = false;
9270 switch (BuiltinOp) {
9271 case Builtin::BIstrchr:
9272 case Builtin::BI__builtin_strchr:
9273 // strchr compares directly to the passed integer, and therefore
9274 // always fails if given an int that is not a char.
9275 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9276 E->getArg(1)->getType(),
9277 Desired),
9278 Desired))
9279 return ZeroInitialization(E);
9280 StopAtNull = true;
9281 LLVM_FALLTHROUGH;
9282 case Builtin::BImemchr:
9283 case Builtin::BI__builtin_memchr:
9284 case Builtin::BI__builtin_char_memchr:
9285 // memchr compares by converting both sides to unsigned char. That's also
9286 // correct for strchr if we get this far (to cope with plain char being
9287 // unsigned in the strchr case).
9288 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9289 break;
9290
9291 case Builtin::BIwcschr:
9292 case Builtin::BI__builtin_wcschr:
9293 StopAtNull = true;
9294 LLVM_FALLTHROUGH;
9295 case Builtin::BIwmemchr:
9296 case Builtin::BI__builtin_wmemchr:
9297 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9298 DesiredVal = Desired.getZExtValue();
9299 break;
9300 }
9301
9302 for (; MaxLength; --MaxLength) {
9303 APValue Char;
9304 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9305 !Char.isInt())
9306 return false;
9307 if (Char.getInt().getZExtValue() == DesiredVal)
9308 return true;
9309 if (StopAtNull && !Char.getInt())
9310 break;
9311 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9312 return false;
9313 }
9314 // Not found: return nullptr.
9315 return ZeroInitialization(E);
9316 }
9317
9318 case Builtin::BImemcpy:
9319 case Builtin::BImemmove:
9320 case Builtin::BIwmemcpy:
9321 case Builtin::BIwmemmove:
9322 if (Info.getLangOpts().CPlusPlus11)
9323 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9324 << /*isConstexpr*/0 << /*isConstructor*/0
9325 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9326 else
9327 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9328 LLVM_FALLTHROUGH;
9329 case Builtin::BI__builtin_memcpy:
9330 case Builtin::BI__builtin_memmove:
9331 case Builtin::BI__builtin_wmemcpy:
9332 case Builtin::BI__builtin_wmemmove: {
9333 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9334 BuiltinOp == Builtin::BIwmemmove ||
9335 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9336 BuiltinOp == Builtin::BI__builtin_wmemmove;
9337 bool Move = BuiltinOp == Builtin::BImemmove ||
9338 BuiltinOp == Builtin::BIwmemmove ||
9339 BuiltinOp == Builtin::BI__builtin_memmove ||
9340 BuiltinOp == Builtin::BI__builtin_wmemmove;
9341
9342 // The result of mem* is the first argument.
9343 if (!Visit(E->getArg(0)))
9344 return false;
9345 LValue Dest = Result;
9346
9347 LValue Src;
9348 if (!EvaluatePointer(E->getArg(1), Src, Info))
9349 return false;
9350
9351 APSInt N;
9352 if (!EvaluateInteger(E->getArg(2), N, Info))
9353 return false;
9354 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9355
9356 // If the size is zero, we treat this as always being a valid no-op.
9357 // (Even if one of the src and dest pointers is null.)
9358 if (!N)
9359 return true;
9360
9361 // Otherwise, if either of the operands is null, we can't proceed. Don't
9362 // try to determine the type of the copied objects, because there aren't
9363 // any.
9364 if (!Src.Base || !Dest.Base) {
9365 APValue Val;
9366 (!Src.Base ? Src : Dest).moveInto(Val);
9367 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9368 << Move << WChar << !!Src.Base
9369 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9370 return false;
9371 }
9372 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9373 return false;
9374
9375 // We require that Src and Dest are both pointers to arrays of
9376 // trivially-copyable type. (For the wide version, the designator will be
9377 // invalid if the designated object is not a wchar_t.)
9378 QualType T = Dest.Designator.getType(Info.Ctx);
9379 QualType SrcT = Src.Designator.getType(Info.Ctx);
9380 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9381 // FIXME: Consider using our bit_cast implementation to support this.
9382 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9383 return false;
9384 }
9385 if (T->isIncompleteType()) {
9386 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9387 return false;
9388 }
9389 if (!T.isTriviallyCopyableType(Info.Ctx)) {
9390 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9391 return false;
9392 }
9393
9394 // Figure out how many T's we're copying.
9395 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9396 if (!WChar) {
9397 uint64_t Remainder;
9398 llvm::APInt OrigN = N;
9399 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9400 if (Remainder) {
9401 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9402 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9403 << (unsigned)TSize;
9404 return false;
9405 }
9406 }
9407
9408 // Check that the copying will remain within the arrays, just so that we
9409 // can give a more meaningful diagnostic. This implicitly also checks that
9410 // N fits into 64 bits.
9411 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9412 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9413 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9414 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9415 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9416 << toString(N, 10, /*Signed*/false);
9417 return false;
9418 }
9419 uint64_t NElems = N.getZExtValue();
9420 uint64_t NBytes = NElems * TSize;
9421
9422 // Check for overlap.
9423 int Direction = 1;
9424 if (HasSameBase(Src, Dest)) {
9425 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9426 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9427 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9428 // Dest is inside the source region.
9429 if (!Move) {
9430 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9431 return false;
9432 }
9433 // For memmove and friends, copy backwards.
9434 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9435 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9436 return false;
9437 Direction = -1;
9438 } else if (!Move && SrcOffset >= DestOffset &&
9439 SrcOffset - DestOffset < NBytes) {
9440 // Src is inside the destination region for memcpy: invalid.
9441 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9442 return false;
9443 }
9444 }
9445
9446 while (true) {
9447 APValue Val;
9448 // FIXME: Set WantObjectRepresentation to true if we're copying a
9449 // char-like type?
9450 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9451 !handleAssignment(Info, E, Dest, T, Val))
9452 return false;
9453 // Do not iterate past the last element; if we're copying backwards, that
9454 // might take us off the start of the array.
9455 if (--NElems == 0)
9456 return true;
9457 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9458 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9459 return false;
9460 }
9461 }
9462
9463 default:
9464 break;
9465 }
9466
9467 return visitNonBuiltinCallExpr(E);
9468 }
9469
9470 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9471 APValue &Result, const InitListExpr *ILE,
9472 QualType AllocType);
9473 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9474 APValue &Result,
9475 const CXXConstructExpr *CCE,
9476 QualType AllocType);
9477
VisitCXXNewExpr(const CXXNewExpr * E)9478 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9479 if (!Info.getLangOpts().CPlusPlus20)
9480 Info.CCEDiag(E, diag::note_constexpr_new);
9481
9482 // We cannot speculatively evaluate a delete expression.
9483 if (Info.SpeculativeEvaluationDepth)
9484 return false;
9485
9486 FunctionDecl *OperatorNew = E->getOperatorNew();
9487
9488 bool IsNothrow = false;
9489 bool IsPlacement = false;
9490 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9491 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9492 // FIXME Support array placement new.
9493 assert(E->getNumPlacementArgs() == 1);
9494 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9495 return false;
9496 if (Result.Designator.Invalid)
9497 return false;
9498 IsPlacement = true;
9499 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9500 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9501 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9502 return false;
9503 } else if (E->getNumPlacementArgs()) {
9504 // The only new-placement list we support is of the form (std::nothrow).
9505 //
9506 // FIXME: There is no restriction on this, but it's not clear that any
9507 // other form makes any sense. We get here for cases such as:
9508 //
9509 // new (std::align_val_t{N}) X(int)
9510 //
9511 // (which should presumably be valid only if N is a multiple of
9512 // alignof(int), and in any case can't be deallocated unless N is
9513 // alignof(X) and X has new-extended alignment).
9514 if (E->getNumPlacementArgs() != 1 ||
9515 !E->getPlacementArg(0)->getType()->isNothrowT())
9516 return Error(E, diag::note_constexpr_new_placement);
9517
9518 LValue Nothrow;
9519 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9520 return false;
9521 IsNothrow = true;
9522 }
9523
9524 const Expr *Init = E->getInitializer();
9525 const InitListExpr *ResizedArrayILE = nullptr;
9526 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9527 bool ValueInit = false;
9528
9529 QualType AllocType = E->getAllocatedType();
9530 if (Optional<const Expr *> ArraySize = E->getArraySize()) {
9531 const Expr *Stripped = *ArraySize;
9532 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9533 Stripped = ICE->getSubExpr())
9534 if (ICE->getCastKind() != CK_NoOp &&
9535 ICE->getCastKind() != CK_IntegralCast)
9536 break;
9537
9538 llvm::APSInt ArrayBound;
9539 if (!EvaluateInteger(Stripped, ArrayBound, Info))
9540 return false;
9541
9542 // C++ [expr.new]p9:
9543 // The expression is erroneous if:
9544 // -- [...] its value before converting to size_t [or] applying the
9545 // second standard conversion sequence is less than zero
9546 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9547 if (IsNothrow)
9548 return ZeroInitialization(E);
9549
9550 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9551 << ArrayBound << (*ArraySize)->getSourceRange();
9552 return false;
9553 }
9554
9555 // -- its value is such that the size of the allocated object would
9556 // exceed the implementation-defined limit
9557 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9558 ArrayBound) >
9559 ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9560 if (IsNothrow)
9561 return ZeroInitialization(E);
9562
9563 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9564 << ArrayBound << (*ArraySize)->getSourceRange();
9565 return false;
9566 }
9567
9568 // -- the new-initializer is a braced-init-list and the number of
9569 // array elements for which initializers are provided [...]
9570 // exceeds the number of elements to initialize
9571 if (!Init) {
9572 // No initialization is performed.
9573 } else if (isa<CXXScalarValueInitExpr>(Init) ||
9574 isa<ImplicitValueInitExpr>(Init)) {
9575 ValueInit = true;
9576 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9577 ResizedArrayCCE = CCE;
9578 } else {
9579 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9580 assert(CAT && "unexpected type for array initializer");
9581
9582 unsigned Bits =
9583 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9584 llvm::APInt InitBound = CAT->getSize().zext(Bits);
9585 llvm::APInt AllocBound = ArrayBound.zext(Bits);
9586 if (InitBound.ugt(AllocBound)) {
9587 if (IsNothrow)
9588 return ZeroInitialization(E);
9589
9590 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9591 << toString(AllocBound, 10, /*Signed=*/false)
9592 << toString(InitBound, 10, /*Signed=*/false)
9593 << (*ArraySize)->getSourceRange();
9594 return false;
9595 }
9596
9597 // If the sizes differ, we must have an initializer list, and we need
9598 // special handling for this case when we initialize.
9599 if (InitBound != AllocBound)
9600 ResizedArrayILE = cast<InitListExpr>(Init);
9601 }
9602
9603 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9604 ArrayType::Normal, 0);
9605 } else {
9606 assert(!AllocType->isArrayType() &&
9607 "array allocation with non-array new");
9608 }
9609
9610 APValue *Val;
9611 if (IsPlacement) {
9612 AccessKinds AK = AK_Construct;
9613 struct FindObjectHandler {
9614 EvalInfo &Info;
9615 const Expr *E;
9616 QualType AllocType;
9617 const AccessKinds AccessKind;
9618 APValue *Value;
9619
9620 typedef bool result_type;
9621 bool failed() { return false; }
9622 bool found(APValue &Subobj, QualType SubobjType) {
9623 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9624 // old name of the object to be used to name the new object.
9625 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9626 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9627 SubobjType << AllocType;
9628 return false;
9629 }
9630 Value = &Subobj;
9631 return true;
9632 }
9633 bool found(APSInt &Value, QualType SubobjType) {
9634 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9635 return false;
9636 }
9637 bool found(APFloat &Value, QualType SubobjType) {
9638 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9639 return false;
9640 }
9641 } Handler = {Info, E, AllocType, AK, nullptr};
9642
9643 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9644 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9645 return false;
9646
9647 Val = Handler.Value;
9648
9649 // [basic.life]p1:
9650 // The lifetime of an object o of type T ends when [...] the storage
9651 // which the object occupies is [...] reused by an object that is not
9652 // nested within o (6.6.2).
9653 *Val = APValue();
9654 } else {
9655 // Perform the allocation and obtain a pointer to the resulting object.
9656 Val = Info.createHeapAlloc(E, AllocType, Result);
9657 if (!Val)
9658 return false;
9659 }
9660
9661 if (ValueInit) {
9662 ImplicitValueInitExpr VIE(AllocType);
9663 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9664 return false;
9665 } else if (ResizedArrayILE) {
9666 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9667 AllocType))
9668 return false;
9669 } else if (ResizedArrayCCE) {
9670 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9671 AllocType))
9672 return false;
9673 } else if (Init) {
9674 if (!EvaluateInPlace(*Val, Info, Result, Init))
9675 return false;
9676 } else if (!getDefaultInitValue(AllocType, *Val)) {
9677 return false;
9678 }
9679
9680 // Array new returns a pointer to the first element, not a pointer to the
9681 // array.
9682 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9683 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9684
9685 return true;
9686 }
9687 //===----------------------------------------------------------------------===//
9688 // Member Pointer Evaluation
9689 //===----------------------------------------------------------------------===//
9690
9691 namespace {
9692 class MemberPointerExprEvaluator
9693 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9694 MemberPtr &Result;
9695
Success(const ValueDecl * D)9696 bool Success(const ValueDecl *D) {
9697 Result = MemberPtr(D);
9698 return true;
9699 }
9700 public:
9701
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)9702 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9703 : ExprEvaluatorBaseTy(Info), Result(Result) {}
9704
Success(const APValue & V,const Expr * E)9705 bool Success(const APValue &V, const Expr *E) {
9706 Result.setFrom(V);
9707 return true;
9708 }
ZeroInitialization(const Expr * E)9709 bool ZeroInitialization(const Expr *E) {
9710 return Success((const ValueDecl*)nullptr);
9711 }
9712
9713 bool VisitCastExpr(const CastExpr *E);
9714 bool VisitUnaryAddrOf(const UnaryOperator *E);
9715 };
9716 } // end anonymous namespace
9717
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)9718 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9719 EvalInfo &Info) {
9720 assert(!E->isValueDependent());
9721 assert(E->isPRValue() && E->getType()->isMemberPointerType());
9722 return MemberPointerExprEvaluator(Info, Result).Visit(E);
9723 }
9724
VisitCastExpr(const CastExpr * E)9725 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9726 switch (E->getCastKind()) {
9727 default:
9728 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9729
9730 case CK_NullToMemberPointer:
9731 VisitIgnoredValue(E->getSubExpr());
9732 return ZeroInitialization(E);
9733
9734 case CK_BaseToDerivedMemberPointer: {
9735 if (!Visit(E->getSubExpr()))
9736 return false;
9737 if (E->path_empty())
9738 return true;
9739 // Base-to-derived member pointer casts store the path in derived-to-base
9740 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9741 // the wrong end of the derived->base arc, so stagger the path by one class.
9742 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9743 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9744 PathI != PathE; ++PathI) {
9745 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9746 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9747 if (!Result.castToDerived(Derived))
9748 return Error(E);
9749 }
9750 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9751 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9752 return Error(E);
9753 return true;
9754 }
9755
9756 case CK_DerivedToBaseMemberPointer:
9757 if (!Visit(E->getSubExpr()))
9758 return false;
9759 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9760 PathE = E->path_end(); PathI != PathE; ++PathI) {
9761 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9762 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9763 if (!Result.castToBase(Base))
9764 return Error(E);
9765 }
9766 return true;
9767 }
9768 }
9769
VisitUnaryAddrOf(const UnaryOperator * E)9770 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9771 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9772 // member can be formed.
9773 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9774 }
9775
9776 //===----------------------------------------------------------------------===//
9777 // Record Evaluation
9778 //===----------------------------------------------------------------------===//
9779
9780 namespace {
9781 class RecordExprEvaluator
9782 : public ExprEvaluatorBase<RecordExprEvaluator> {
9783 const LValue &This;
9784 APValue &Result;
9785 public:
9786
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)9787 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9788 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9789
Success(const APValue & V,const Expr * E)9790 bool Success(const APValue &V, const Expr *E) {
9791 Result = V;
9792 return true;
9793 }
ZeroInitialization(const Expr * E)9794 bool ZeroInitialization(const Expr *E) {
9795 return ZeroInitialization(E, E->getType());
9796 }
9797 bool ZeroInitialization(const Expr *E, QualType T);
9798
VisitCallExpr(const CallExpr * E)9799 bool VisitCallExpr(const CallExpr *E) {
9800 return handleCallExpr(E, Result, &This);
9801 }
9802 bool VisitCastExpr(const CastExpr *E);
9803 bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)9804 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9805 return VisitCXXConstructExpr(E, E->getType());
9806 }
9807 bool VisitLambdaExpr(const LambdaExpr *E);
9808 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9809 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9810 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9811 bool VisitBinCmp(const BinaryOperator *E);
9812 };
9813 }
9814
9815 /// Perform zero-initialization on an object of non-union class type.
9816 /// C++11 [dcl.init]p5:
9817 /// To zero-initialize an object or reference of type T means:
9818 /// [...]
9819 /// -- if T is a (possibly cv-qualified) non-union class type,
9820 /// each non-static data member and each base-class subobject is
9821 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)9822 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9823 const RecordDecl *RD,
9824 const LValue &This, APValue &Result) {
9825 assert(!RD->isUnion() && "Expected non-union class type");
9826 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9827 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9828 std::distance(RD->field_begin(), RD->field_end()));
9829
9830 if (RD->isInvalidDecl()) return false;
9831 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9832
9833 if (CD) {
9834 unsigned Index = 0;
9835 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9836 End = CD->bases_end(); I != End; ++I, ++Index) {
9837 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9838 LValue Subobject = This;
9839 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9840 return false;
9841 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9842 Result.getStructBase(Index)))
9843 return false;
9844 }
9845 }
9846
9847 for (const auto *I : RD->fields()) {
9848 // -- if T is a reference type, no initialization is performed.
9849 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9850 continue;
9851
9852 LValue Subobject = This;
9853 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9854 return false;
9855
9856 ImplicitValueInitExpr VIE(I->getType());
9857 if (!EvaluateInPlace(
9858 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9859 return false;
9860 }
9861
9862 return true;
9863 }
9864
ZeroInitialization(const Expr * E,QualType T)9865 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9866 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9867 if (RD->isInvalidDecl()) return false;
9868 if (RD->isUnion()) {
9869 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9870 // object's first non-static named data member is zero-initialized
9871 RecordDecl::field_iterator I = RD->field_begin();
9872 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9873 ++I;
9874 if (I == RD->field_end()) {
9875 Result = APValue((const FieldDecl*)nullptr);
9876 return true;
9877 }
9878
9879 LValue Subobject = This;
9880 if (!HandleLValueMember(Info, E, Subobject, *I))
9881 return false;
9882 Result = APValue(*I);
9883 ImplicitValueInitExpr VIE(I->getType());
9884 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9885 }
9886
9887 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9888 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9889 return false;
9890 }
9891
9892 return HandleClassZeroInitialization(Info, E, RD, This, Result);
9893 }
9894
VisitCastExpr(const CastExpr * E)9895 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9896 switch (E->getCastKind()) {
9897 default:
9898 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9899
9900 case CK_ConstructorConversion:
9901 return Visit(E->getSubExpr());
9902
9903 case CK_DerivedToBase:
9904 case CK_UncheckedDerivedToBase: {
9905 APValue DerivedObject;
9906 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9907 return false;
9908 if (!DerivedObject.isStruct())
9909 return Error(E->getSubExpr());
9910
9911 // Derived-to-base rvalue conversion: just slice off the derived part.
9912 APValue *Value = &DerivedObject;
9913 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9914 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9915 PathE = E->path_end(); PathI != PathE; ++PathI) {
9916 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9917 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9918 Value = &Value->getStructBase(getBaseIndex(RD, Base));
9919 RD = Base;
9920 }
9921 Result = *Value;
9922 return true;
9923 }
9924 }
9925 }
9926
VisitInitListExpr(const InitListExpr * E)9927 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9928 if (E->isTransparent())
9929 return Visit(E->getInit(0));
9930
9931 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9932 if (RD->isInvalidDecl()) return false;
9933 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9934 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9935
9936 EvalInfo::EvaluatingConstructorRAII EvalObj(
9937 Info,
9938 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9939 CXXRD && CXXRD->getNumBases());
9940
9941 if (RD->isUnion()) {
9942 const FieldDecl *Field = E->getInitializedFieldInUnion();
9943 Result = APValue(Field);
9944 if (!Field)
9945 return true;
9946
9947 // If the initializer list for a union does not contain any elements, the
9948 // first element of the union is value-initialized.
9949 // FIXME: The element should be initialized from an initializer list.
9950 // Is this difference ever observable for initializer lists which
9951 // we don't build?
9952 ImplicitValueInitExpr VIE(Field->getType());
9953 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9954
9955 LValue Subobject = This;
9956 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9957 return false;
9958
9959 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9960 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9961 isa<CXXDefaultInitExpr>(InitExpr));
9962
9963 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9964 if (Field->isBitField())
9965 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9966 Field);
9967 return true;
9968 }
9969
9970 return false;
9971 }
9972
9973 if (!Result.hasValue())
9974 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9975 std::distance(RD->field_begin(), RD->field_end()));
9976 unsigned ElementNo = 0;
9977 bool Success = true;
9978
9979 // Initialize base classes.
9980 if (CXXRD && CXXRD->getNumBases()) {
9981 for (const auto &Base : CXXRD->bases()) {
9982 assert(ElementNo < E->getNumInits() && "missing init for base class");
9983 const Expr *Init = E->getInit(ElementNo);
9984
9985 LValue Subobject = This;
9986 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9987 return false;
9988
9989 APValue &FieldVal = Result.getStructBase(ElementNo);
9990 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9991 if (!Info.noteFailure())
9992 return false;
9993 Success = false;
9994 }
9995 ++ElementNo;
9996 }
9997
9998 EvalObj.finishedConstructingBases();
9999 }
10000
10001 // Initialize members.
10002 for (const auto *Field : RD->fields()) {
10003 // Anonymous bit-fields are not considered members of the class for
10004 // purposes of aggregate initialization.
10005 if (Field->isUnnamedBitfield())
10006 continue;
10007
10008 LValue Subobject = This;
10009
10010 bool HaveInit = ElementNo < E->getNumInits();
10011
10012 // FIXME: Diagnostics here should point to the end of the initializer
10013 // list, not the start.
10014 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
10015 Subobject, Field, &Layout))
10016 return false;
10017
10018 // Perform an implicit value-initialization for members beyond the end of
10019 // the initializer list.
10020 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10021 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
10022
10023 if (Field->getType()->isIncompleteArrayType()) {
10024 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10025 if (!CAT->getSize().isZero()) {
10026 // Bail out for now. This might sort of "work", but the rest of the
10027 // code isn't really prepared to handle it.
10028 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10029 return false;
10030 }
10031 }
10032 }
10033
10034 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10035 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10036 isa<CXXDefaultInitExpr>(Init));
10037
10038 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10039 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10040 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10041 FieldVal, Field))) {
10042 if (!Info.noteFailure())
10043 return false;
10044 Success = false;
10045 }
10046 }
10047
10048 EvalObj.finishedConstructingFields();
10049
10050 return Success;
10051 }
10052
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)10053 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10054 QualType T) {
10055 // Note that E's type is not necessarily the type of our class here; we might
10056 // be initializing an array element instead.
10057 const CXXConstructorDecl *FD = E->getConstructor();
10058 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10059
10060 bool ZeroInit = E->requiresZeroInitialization();
10061 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10062 // If we've already performed zero-initialization, we're already done.
10063 if (Result.hasValue())
10064 return true;
10065
10066 if (ZeroInit)
10067 return ZeroInitialization(E, T);
10068
10069 return getDefaultInitValue(T, Result);
10070 }
10071
10072 const FunctionDecl *Definition = nullptr;
10073 auto Body = FD->getBody(Definition);
10074
10075 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10076 return false;
10077
10078 // Avoid materializing a temporary for an elidable copy/move constructor.
10079 if (E->isElidable() && !ZeroInit) {
10080 // FIXME: This only handles the simplest case, where the source object
10081 // is passed directly as the first argument to the constructor.
10082 // This should also handle stepping though implicit casts and
10083 // and conversion sequences which involve two steps, with a
10084 // conversion operator followed by a converting constructor.
10085 const Expr *SrcObj = E->getArg(0);
10086 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10087 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10088 if (const MaterializeTemporaryExpr *ME =
10089 dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10090 return Visit(ME->getSubExpr());
10091 }
10092
10093 if (ZeroInit && !ZeroInitialization(E, T))
10094 return false;
10095
10096 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
10097 return HandleConstructorCall(E, This, Args,
10098 cast<CXXConstructorDecl>(Definition), Info,
10099 Result);
10100 }
10101
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)10102 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10103 const CXXInheritedCtorInitExpr *E) {
10104 if (!Info.CurrentCall) {
10105 assert(Info.checkingPotentialConstantExpression());
10106 return false;
10107 }
10108
10109 const CXXConstructorDecl *FD = E->getConstructor();
10110 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10111 return false;
10112
10113 const FunctionDecl *Definition = nullptr;
10114 auto Body = FD->getBody(Definition);
10115
10116 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10117 return false;
10118
10119 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10120 cast<CXXConstructorDecl>(Definition), Info,
10121 Result);
10122 }
10123
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10124 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10125 const CXXStdInitializerListExpr *E) {
10126 const ConstantArrayType *ArrayType =
10127 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10128
10129 LValue Array;
10130 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10131 return false;
10132
10133 // Get a pointer to the first element of the array.
10134 Array.addArray(Info, E, ArrayType);
10135
10136 auto InvalidType = [&] {
10137 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10138 << E->getType();
10139 return false;
10140 };
10141
10142 // FIXME: Perform the checks on the field types in SemaInit.
10143 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10144 RecordDecl::field_iterator Field = Record->field_begin();
10145 if (Field == Record->field_end())
10146 return InvalidType();
10147
10148 // Start pointer.
10149 if (!Field->getType()->isPointerType() ||
10150 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10151 ArrayType->getElementType()))
10152 return InvalidType();
10153
10154 // FIXME: What if the initializer_list type has base classes, etc?
10155 Result = APValue(APValue::UninitStruct(), 0, 2);
10156 Array.moveInto(Result.getStructField(0));
10157
10158 if (++Field == Record->field_end())
10159 return InvalidType();
10160
10161 if (Field->getType()->isPointerType() &&
10162 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10163 ArrayType->getElementType())) {
10164 // End pointer.
10165 if (!HandleLValueArrayAdjustment(Info, E, Array,
10166 ArrayType->getElementType(),
10167 ArrayType->getSize().getZExtValue()))
10168 return false;
10169 Array.moveInto(Result.getStructField(1));
10170 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10171 // Length.
10172 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10173 else
10174 return InvalidType();
10175
10176 if (++Field != Record->field_end())
10177 return InvalidType();
10178
10179 return true;
10180 }
10181
VisitLambdaExpr(const LambdaExpr * E)10182 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10183 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10184 if (ClosureClass->isInvalidDecl())
10185 return false;
10186
10187 const size_t NumFields =
10188 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10189
10190 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10191 E->capture_init_end()) &&
10192 "The number of lambda capture initializers should equal the number of "
10193 "fields within the closure type");
10194
10195 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10196 // Iterate through all the lambda's closure object's fields and initialize
10197 // them.
10198 auto *CaptureInitIt = E->capture_init_begin();
10199 bool Success = true;
10200 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10201 for (const auto *Field : ClosureClass->fields()) {
10202 assert(CaptureInitIt != E->capture_init_end());
10203 // Get the initializer for this field
10204 Expr *const CurFieldInit = *CaptureInitIt++;
10205
10206 // If there is no initializer, either this is a VLA or an error has
10207 // occurred.
10208 if (!CurFieldInit)
10209 return Error(E);
10210
10211 LValue Subobject = This;
10212
10213 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10214 return false;
10215
10216 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10217 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10218 if (!Info.keepEvaluatingAfterFailure())
10219 return false;
10220 Success = false;
10221 }
10222 }
10223 return Success;
10224 }
10225
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10226 static bool EvaluateRecord(const Expr *E, const LValue &This,
10227 APValue &Result, EvalInfo &Info) {
10228 assert(!E->isValueDependent());
10229 assert(E->isPRValue() && E->getType()->isRecordType() &&
10230 "can't evaluate expression as a record rvalue");
10231 return RecordExprEvaluator(Info, This, Result).Visit(E);
10232 }
10233
10234 //===----------------------------------------------------------------------===//
10235 // Temporary Evaluation
10236 //
10237 // Temporaries are represented in the AST as rvalues, but generally behave like
10238 // lvalues. The full-object of which the temporary is a subobject is implicitly
10239 // materialized so that a reference can bind to it.
10240 //===----------------------------------------------------------------------===//
10241 namespace {
10242 class TemporaryExprEvaluator
10243 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10244 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)10245 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10246 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10247
10248 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)10249 bool VisitConstructExpr(const Expr *E) {
10250 APValue &Value = Info.CurrentCall->createTemporary(
10251 E, E->getType(), ScopeKind::FullExpression, Result);
10252 return EvaluateInPlace(Value, Info, Result, E);
10253 }
10254
VisitCastExpr(const CastExpr * E)10255 bool VisitCastExpr(const CastExpr *E) {
10256 switch (E->getCastKind()) {
10257 default:
10258 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10259
10260 case CK_ConstructorConversion:
10261 return VisitConstructExpr(E->getSubExpr());
10262 }
10263 }
VisitInitListExpr(const InitListExpr * E)10264 bool VisitInitListExpr(const InitListExpr *E) {
10265 return VisitConstructExpr(E);
10266 }
VisitCXXConstructExpr(const CXXConstructExpr * E)10267 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10268 return VisitConstructExpr(E);
10269 }
VisitCallExpr(const CallExpr * E)10270 bool VisitCallExpr(const CallExpr *E) {
10271 return VisitConstructExpr(E);
10272 }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10273 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10274 return VisitConstructExpr(E);
10275 }
VisitLambdaExpr(const LambdaExpr * E)10276 bool VisitLambdaExpr(const LambdaExpr *E) {
10277 return VisitConstructExpr(E);
10278 }
10279 };
10280 } // end anonymous namespace
10281
10282 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)10283 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10284 assert(!E->isValueDependent());
10285 assert(E->isPRValue() && E->getType()->isRecordType());
10286 return TemporaryExprEvaluator(Info, Result).Visit(E);
10287 }
10288
10289 //===----------------------------------------------------------------------===//
10290 // Vector Evaluation
10291 //===----------------------------------------------------------------------===//
10292
10293 namespace {
10294 class VectorExprEvaluator
10295 : public ExprEvaluatorBase<VectorExprEvaluator> {
10296 APValue &Result;
10297 public:
10298
VectorExprEvaluator(EvalInfo & info,APValue & Result)10299 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10300 : ExprEvaluatorBaseTy(info), Result(Result) {}
10301
Success(ArrayRef<APValue> V,const Expr * E)10302 bool Success(ArrayRef<APValue> V, const Expr *E) {
10303 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10304 // FIXME: remove this APValue copy.
10305 Result = APValue(V.data(), V.size());
10306 return true;
10307 }
Success(const APValue & V,const Expr * E)10308 bool Success(const APValue &V, const Expr *E) {
10309 assert(V.isVector());
10310 Result = V;
10311 return true;
10312 }
10313 bool ZeroInitialization(const Expr *E);
10314
VisitUnaryReal(const UnaryOperator * E)10315 bool VisitUnaryReal(const UnaryOperator *E)
10316 { return Visit(E->getSubExpr()); }
10317 bool VisitCastExpr(const CastExpr* E);
10318 bool VisitInitListExpr(const InitListExpr *E);
10319 bool VisitUnaryImag(const UnaryOperator *E);
10320 bool VisitBinaryOperator(const BinaryOperator *E);
10321 bool VisitUnaryOperator(const UnaryOperator *E);
10322 // FIXME: Missing: conditional operator (for GNU
10323 // conditional select), shufflevector, ExtVectorElementExpr
10324 };
10325 } // end anonymous namespace
10326
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)10327 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10328 assert(E->isPRValue() && E->getType()->isVectorType() &&
10329 "not a vector prvalue");
10330 return VectorExprEvaluator(Info, Result).Visit(E);
10331 }
10332
VisitCastExpr(const CastExpr * E)10333 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10334 const VectorType *VTy = E->getType()->castAs<VectorType>();
10335 unsigned NElts = VTy->getNumElements();
10336
10337 const Expr *SE = E->getSubExpr();
10338 QualType SETy = SE->getType();
10339
10340 switch (E->getCastKind()) {
10341 case CK_VectorSplat: {
10342 APValue Val = APValue();
10343 if (SETy->isIntegerType()) {
10344 APSInt IntResult;
10345 if (!EvaluateInteger(SE, IntResult, Info))
10346 return false;
10347 Val = APValue(std::move(IntResult));
10348 } else if (SETy->isRealFloatingType()) {
10349 APFloat FloatResult(0.0);
10350 if (!EvaluateFloat(SE, FloatResult, Info))
10351 return false;
10352 Val = APValue(std::move(FloatResult));
10353 } else {
10354 return Error(E);
10355 }
10356
10357 // Splat and create vector APValue.
10358 SmallVector<APValue, 4> Elts(NElts, Val);
10359 return Success(Elts, E);
10360 }
10361 case CK_BitCast: {
10362 // Evaluate the operand into an APInt we can extract from.
10363 llvm::APInt SValInt;
10364 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10365 return false;
10366 // Extract the elements
10367 QualType EltTy = VTy->getElementType();
10368 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10369 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10370 SmallVector<APValue, 4> Elts;
10371 if (EltTy->isRealFloatingType()) {
10372 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10373 unsigned FloatEltSize = EltSize;
10374 if (&Sem == &APFloat::x87DoubleExtended())
10375 FloatEltSize = 80;
10376 for (unsigned i = 0; i < NElts; i++) {
10377 llvm::APInt Elt;
10378 if (BigEndian)
10379 Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize);
10380 else
10381 Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize);
10382 Elts.push_back(APValue(APFloat(Sem, Elt)));
10383 }
10384 } else if (EltTy->isIntegerType()) {
10385 for (unsigned i = 0; i < NElts; i++) {
10386 llvm::APInt Elt;
10387 if (BigEndian)
10388 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10389 else
10390 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10391 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10392 }
10393 } else {
10394 return Error(E);
10395 }
10396 return Success(Elts, E);
10397 }
10398 default:
10399 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10400 }
10401 }
10402
10403 bool
VisitInitListExpr(const InitListExpr * E)10404 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10405 const VectorType *VT = E->getType()->castAs<VectorType>();
10406 unsigned NumInits = E->getNumInits();
10407 unsigned NumElements = VT->getNumElements();
10408
10409 QualType EltTy = VT->getElementType();
10410 SmallVector<APValue, 4> Elements;
10411
10412 // The number of initializers can be less than the number of
10413 // vector elements. For OpenCL, this can be due to nested vector
10414 // initialization. For GCC compatibility, missing trailing elements
10415 // should be initialized with zeroes.
10416 unsigned CountInits = 0, CountElts = 0;
10417 while (CountElts < NumElements) {
10418 // Handle nested vector initialization.
10419 if (CountInits < NumInits
10420 && E->getInit(CountInits)->getType()->isVectorType()) {
10421 APValue v;
10422 if (!EvaluateVector(E->getInit(CountInits), v, Info))
10423 return Error(E);
10424 unsigned vlen = v.getVectorLength();
10425 for (unsigned j = 0; j < vlen; j++)
10426 Elements.push_back(v.getVectorElt(j));
10427 CountElts += vlen;
10428 } else if (EltTy->isIntegerType()) {
10429 llvm::APSInt sInt(32);
10430 if (CountInits < NumInits) {
10431 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10432 return false;
10433 } else // trailing integer zero.
10434 sInt = Info.Ctx.MakeIntValue(0, EltTy);
10435 Elements.push_back(APValue(sInt));
10436 CountElts++;
10437 } else {
10438 llvm::APFloat f(0.0);
10439 if (CountInits < NumInits) {
10440 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10441 return false;
10442 } else // trailing float zero.
10443 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10444 Elements.push_back(APValue(f));
10445 CountElts++;
10446 }
10447 CountInits++;
10448 }
10449 return Success(Elements, E);
10450 }
10451
10452 bool
ZeroInitialization(const Expr * E)10453 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10454 const auto *VT = E->getType()->castAs<VectorType>();
10455 QualType EltTy = VT->getElementType();
10456 APValue ZeroElement;
10457 if (EltTy->isIntegerType())
10458 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10459 else
10460 ZeroElement =
10461 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10462
10463 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10464 return Success(Elements, E);
10465 }
10466
VisitUnaryImag(const UnaryOperator * E)10467 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10468 VisitIgnoredValue(E->getSubExpr());
10469 return ZeroInitialization(E);
10470 }
10471
VisitBinaryOperator(const BinaryOperator * E)10472 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10473 BinaryOperatorKind Op = E->getOpcode();
10474 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10475 "Operation not supported on vector types");
10476
10477 if (Op == BO_Comma)
10478 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10479
10480 Expr *LHS = E->getLHS();
10481 Expr *RHS = E->getRHS();
10482
10483 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10484 "Must both be vector types");
10485 // Checking JUST the types are the same would be fine, except shifts don't
10486 // need to have their types be the same (since you always shift by an int).
10487 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10488 E->getType()->castAs<VectorType>()->getNumElements() &&
10489 RHS->getType()->castAs<VectorType>()->getNumElements() ==
10490 E->getType()->castAs<VectorType>()->getNumElements() &&
10491 "All operands must be the same size.");
10492
10493 APValue LHSValue;
10494 APValue RHSValue;
10495 bool LHSOK = Evaluate(LHSValue, Info, LHS);
10496 if (!LHSOK && !Info.noteFailure())
10497 return false;
10498 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10499 return false;
10500
10501 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10502 return false;
10503
10504 return Success(LHSValue, E);
10505 }
10506
handleVectorUnaryOperator(ASTContext & Ctx,QualType ResultTy,UnaryOperatorKind Op,APValue Elt)10507 static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10508 QualType ResultTy,
10509 UnaryOperatorKind Op,
10510 APValue Elt) {
10511 switch (Op) {
10512 case UO_Plus:
10513 // Nothing to do here.
10514 return Elt;
10515 case UO_Minus:
10516 if (Elt.getKind() == APValue::Int) {
10517 Elt.getInt().negate();
10518 } else {
10519 assert(Elt.getKind() == APValue::Float &&
10520 "Vector can only be int or float type");
10521 Elt.getFloat().changeSign();
10522 }
10523 return Elt;
10524 case UO_Not:
10525 // This is only valid for integral types anyway, so we don't have to handle
10526 // float here.
10527 assert(Elt.getKind() == APValue::Int &&
10528 "Vector operator ~ can only be int");
10529 Elt.getInt().flipAllBits();
10530 return Elt;
10531 case UO_LNot: {
10532 if (Elt.getKind() == APValue::Int) {
10533 Elt.getInt() = !Elt.getInt();
10534 // operator ! on vectors returns -1 for 'truth', so negate it.
10535 Elt.getInt().negate();
10536 return Elt;
10537 }
10538 assert(Elt.getKind() == APValue::Float &&
10539 "Vector can only be int or float type");
10540 // Float types result in an int of the same size, but -1 for true, or 0 for
10541 // false.
10542 APSInt EltResult{Ctx.getIntWidth(ResultTy),
10543 ResultTy->isUnsignedIntegerType()};
10544 if (Elt.getFloat().isZero())
10545 EltResult.setAllBits();
10546 else
10547 EltResult.clearAllBits();
10548
10549 return APValue{EltResult};
10550 }
10551 default:
10552 // FIXME: Implement the rest of the unary operators.
10553 return llvm::None;
10554 }
10555 }
10556
VisitUnaryOperator(const UnaryOperator * E)10557 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10558 Expr *SubExpr = E->getSubExpr();
10559 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10560 // This result element type differs in the case of negating a floating point
10561 // vector, since the result type is the a vector of the equivilant sized
10562 // integer.
10563 const QualType ResultEltTy = VD->getElementType();
10564 UnaryOperatorKind Op = E->getOpcode();
10565
10566 APValue SubExprValue;
10567 if (!Evaluate(SubExprValue, Info, SubExpr))
10568 return false;
10569
10570 // FIXME: This vector evaluator someday needs to be changed to be LValue
10571 // aware/keep LValue information around, rather than dealing with just vector
10572 // types directly. Until then, we cannot handle cases where the operand to
10573 // these unary operators is an LValue. The only case I've been able to see
10574 // cause this is operator++ assigning to a member expression (only valid in
10575 // altivec compilations) in C mode, so this shouldn't limit us too much.
10576 if (SubExprValue.isLValue())
10577 return false;
10578
10579 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10580 "Vector length doesn't match type?");
10581
10582 SmallVector<APValue, 4> ResultElements;
10583 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10584 llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
10585 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10586 if (!Elt)
10587 return false;
10588 ResultElements.push_back(*Elt);
10589 }
10590 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10591 }
10592
10593 //===----------------------------------------------------------------------===//
10594 // Array Evaluation
10595 //===----------------------------------------------------------------------===//
10596
10597 namespace {
10598 class ArrayExprEvaluator
10599 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10600 const LValue &This;
10601 APValue &Result;
10602 public:
10603
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)10604 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10605 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10606
Success(const APValue & V,const Expr * E)10607 bool Success(const APValue &V, const Expr *E) {
10608 assert(V.isArray() && "expected array");
10609 Result = V;
10610 return true;
10611 }
10612
ZeroInitialization(const Expr * E)10613 bool ZeroInitialization(const Expr *E) {
10614 const ConstantArrayType *CAT =
10615 Info.Ctx.getAsConstantArrayType(E->getType());
10616 if (!CAT) {
10617 if (E->getType()->isIncompleteArrayType()) {
10618 // We can be asked to zero-initialize a flexible array member; this
10619 // is represented as an ImplicitValueInitExpr of incomplete array
10620 // type. In this case, the array has zero elements.
10621 Result = APValue(APValue::UninitArray(), 0, 0);
10622 return true;
10623 }
10624 // FIXME: We could handle VLAs here.
10625 return Error(E);
10626 }
10627
10628 Result = APValue(APValue::UninitArray(), 0,
10629 CAT->getSize().getZExtValue());
10630 if (!Result.hasArrayFiller())
10631 return true;
10632
10633 // Zero-initialize all elements.
10634 LValue Subobject = This;
10635 Subobject.addArray(Info, E, CAT);
10636 ImplicitValueInitExpr VIE(CAT->getElementType());
10637 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10638 }
10639
VisitCallExpr(const CallExpr * E)10640 bool VisitCallExpr(const CallExpr *E) {
10641 return handleCallExpr(E, Result, &This);
10642 }
10643 bool VisitInitListExpr(const InitListExpr *E,
10644 QualType AllocType = QualType());
10645 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10646 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10647 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10648 const LValue &Subobject,
10649 APValue *Value, QualType Type);
VisitStringLiteral(const StringLiteral * E,QualType AllocType=QualType ())10650 bool VisitStringLiteral(const StringLiteral *E,
10651 QualType AllocType = QualType()) {
10652 expandStringLiteral(Info, E, Result, AllocType);
10653 return true;
10654 }
10655 };
10656 } // end anonymous namespace
10657
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10658 static bool EvaluateArray(const Expr *E, const LValue &This,
10659 APValue &Result, EvalInfo &Info) {
10660 assert(!E->isValueDependent());
10661 assert(E->isPRValue() && E->getType()->isArrayType() &&
10662 "not an array prvalue");
10663 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10664 }
10665
EvaluateArrayNewInitList(EvalInfo & Info,LValue & This,APValue & Result,const InitListExpr * ILE,QualType AllocType)10666 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10667 APValue &Result, const InitListExpr *ILE,
10668 QualType AllocType) {
10669 assert(!ILE->isValueDependent());
10670 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10671 "not an array prvalue");
10672 return ArrayExprEvaluator(Info, This, Result)
10673 .VisitInitListExpr(ILE, AllocType);
10674 }
10675
EvaluateArrayNewConstructExpr(EvalInfo & Info,LValue & This,APValue & Result,const CXXConstructExpr * CCE,QualType AllocType)10676 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10677 APValue &Result,
10678 const CXXConstructExpr *CCE,
10679 QualType AllocType) {
10680 assert(!CCE->isValueDependent());
10681 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10682 "not an array prvalue");
10683 return ArrayExprEvaluator(Info, This, Result)
10684 .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10685 }
10686
10687 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)10688 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10689 // For now, just allow non-class value-initialization and initialization
10690 // lists comprised of them.
10691 if (isa<ImplicitValueInitExpr>(FillerExpr))
10692 return false;
10693 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10694 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10695 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10696 return true;
10697 }
10698 return false;
10699 }
10700 return true;
10701 }
10702
VisitInitListExpr(const InitListExpr * E,QualType AllocType)10703 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10704 QualType AllocType) {
10705 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10706 AllocType.isNull() ? E->getType() : AllocType);
10707 if (!CAT)
10708 return Error(E);
10709
10710 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10711 // an appropriately-typed string literal enclosed in braces.
10712 if (E->isStringLiteralInit()) {
10713 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10714 // FIXME: Support ObjCEncodeExpr here once we support it in
10715 // ArrayExprEvaluator generally.
10716 if (!SL)
10717 return Error(E);
10718 return VisitStringLiteral(SL, AllocType);
10719 }
10720 // Any other transparent list init will need proper handling of the
10721 // AllocType; we can't just recurse to the inner initializer.
10722 assert(!E->isTransparent() &&
10723 "transparent array list initialization is not string literal init?");
10724
10725 bool Success = true;
10726
10727 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10728 "zero-initialized array shouldn't have any initialized elts");
10729 APValue Filler;
10730 if (Result.isArray() && Result.hasArrayFiller())
10731 Filler = Result.getArrayFiller();
10732
10733 unsigned NumEltsToInit = E->getNumInits();
10734 unsigned NumElts = CAT->getSize().getZExtValue();
10735 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10736
10737 // If the initializer might depend on the array index, run it for each
10738 // array element.
10739 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10740 NumEltsToInit = NumElts;
10741
10742 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10743 << NumEltsToInit << ".\n");
10744
10745 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10746
10747 // If the array was previously zero-initialized, preserve the
10748 // zero-initialized values.
10749 if (Filler.hasValue()) {
10750 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10751 Result.getArrayInitializedElt(I) = Filler;
10752 if (Result.hasArrayFiller())
10753 Result.getArrayFiller() = Filler;
10754 }
10755
10756 LValue Subobject = This;
10757 Subobject.addArray(Info, E, CAT);
10758 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10759 const Expr *Init =
10760 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10761 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10762 Info, Subobject, Init) ||
10763 !HandleLValueArrayAdjustment(Info, Init, Subobject,
10764 CAT->getElementType(), 1)) {
10765 if (!Info.noteFailure())
10766 return false;
10767 Success = false;
10768 }
10769 }
10770
10771 if (!Result.hasArrayFiller())
10772 return Success;
10773
10774 // If we get here, we have a trivial filler, which we can just evaluate
10775 // once and splat over the rest of the array elements.
10776 assert(FillerExpr && "no array filler for incomplete init list");
10777 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10778 FillerExpr) && Success;
10779 }
10780
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)10781 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10782 LValue CommonLV;
10783 if (E->getCommonExpr() &&
10784 !Evaluate(Info.CurrentCall->createTemporary(
10785 E->getCommonExpr(),
10786 getStorageType(Info.Ctx, E->getCommonExpr()),
10787 ScopeKind::FullExpression, CommonLV),
10788 Info, E->getCommonExpr()->getSourceExpr()))
10789 return false;
10790
10791 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10792
10793 uint64_t Elements = CAT->getSize().getZExtValue();
10794 Result = APValue(APValue::UninitArray(), Elements, Elements);
10795
10796 LValue Subobject = This;
10797 Subobject.addArray(Info, E, CAT);
10798
10799 bool Success = true;
10800 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10801 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10802 Info, Subobject, E->getSubExpr()) ||
10803 !HandleLValueArrayAdjustment(Info, E, Subobject,
10804 CAT->getElementType(), 1)) {
10805 if (!Info.noteFailure())
10806 return false;
10807 Success = false;
10808 }
10809 }
10810
10811 return Success;
10812 }
10813
VisitCXXConstructExpr(const CXXConstructExpr * E)10814 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10815 return VisitCXXConstructExpr(E, This, &Result, E->getType());
10816 }
10817
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)10818 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10819 const LValue &Subobject,
10820 APValue *Value,
10821 QualType Type) {
10822 bool HadZeroInit = Value->hasValue();
10823
10824 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10825 unsigned FinalSize = CAT->getSize().getZExtValue();
10826
10827 // Preserve the array filler if we had prior zero-initialization.
10828 APValue Filler =
10829 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10830 : APValue();
10831
10832 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10833 if (FinalSize == 0)
10834 return true;
10835
10836 LValue ArrayElt = Subobject;
10837 ArrayElt.addArray(Info, E, CAT);
10838 // We do the whole initialization in two passes, first for just one element,
10839 // then for the whole array. It's possible we may find out we can't do const
10840 // init in the first pass, in which case we avoid allocating a potentially
10841 // large array. We don't do more passes because expanding array requires
10842 // copying the data, which is wasteful.
10843 for (const unsigned N : {1u, FinalSize}) {
10844 unsigned OldElts = Value->getArrayInitializedElts();
10845 if (OldElts == N)
10846 break;
10847
10848 // Expand the array to appropriate size.
10849 APValue NewValue(APValue::UninitArray(), N, FinalSize);
10850 for (unsigned I = 0; I < OldElts; ++I)
10851 NewValue.getArrayInitializedElt(I).swap(
10852 Value->getArrayInitializedElt(I));
10853 Value->swap(NewValue);
10854
10855 if (HadZeroInit)
10856 for (unsigned I = OldElts; I < N; ++I)
10857 Value->getArrayInitializedElt(I) = Filler;
10858
10859 // Initialize the elements.
10860 for (unsigned I = OldElts; I < N; ++I) {
10861 if (!VisitCXXConstructExpr(E, ArrayElt,
10862 &Value->getArrayInitializedElt(I),
10863 CAT->getElementType()) ||
10864 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10865 CAT->getElementType(), 1))
10866 return false;
10867 // When checking for const initilization any diagnostic is considered
10868 // an error.
10869 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10870 !Info.keepEvaluatingAfterFailure())
10871 return false;
10872 }
10873 }
10874
10875 return true;
10876 }
10877
10878 if (!Type->isRecordType())
10879 return Error(E);
10880
10881 return RecordExprEvaluator(Info, Subobject, *Value)
10882 .VisitCXXConstructExpr(E, Type);
10883 }
10884
10885 //===----------------------------------------------------------------------===//
10886 // Integer Evaluation
10887 //
10888 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10889 // types and back in constant folding. Integer values are thus represented
10890 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10891 //===----------------------------------------------------------------------===//
10892
10893 namespace {
10894 class IntExprEvaluator
10895 : public ExprEvaluatorBase<IntExprEvaluator> {
10896 APValue &Result;
10897 public:
IntExprEvaluator(EvalInfo & info,APValue & result)10898 IntExprEvaluator(EvalInfo &info, APValue &result)
10899 : ExprEvaluatorBaseTy(info), Result(result) {}
10900
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)10901 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10902 assert(E->getType()->isIntegralOrEnumerationType() &&
10903 "Invalid evaluation result.");
10904 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10905 "Invalid evaluation result.");
10906 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10907 "Invalid evaluation result.");
10908 Result = APValue(SI);
10909 return true;
10910 }
Success(const llvm::APSInt & SI,const Expr * E)10911 bool Success(const llvm::APSInt &SI, const Expr *E) {
10912 return Success(SI, E, Result);
10913 }
10914
Success(const llvm::APInt & I,const Expr * E,APValue & Result)10915 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10916 assert(E->getType()->isIntegralOrEnumerationType() &&
10917 "Invalid evaluation result.");
10918 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10919 "Invalid evaluation result.");
10920 Result = APValue(APSInt(I));
10921 Result.getInt().setIsUnsigned(
10922 E->getType()->isUnsignedIntegerOrEnumerationType());
10923 return true;
10924 }
Success(const llvm::APInt & I,const Expr * E)10925 bool Success(const llvm::APInt &I, const Expr *E) {
10926 return Success(I, E, Result);
10927 }
10928
Success(uint64_t Value,const Expr * E,APValue & Result)10929 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10930 assert(E->getType()->isIntegralOrEnumerationType() &&
10931 "Invalid evaluation result.");
10932 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10933 return true;
10934 }
Success(uint64_t Value,const Expr * E)10935 bool Success(uint64_t Value, const Expr *E) {
10936 return Success(Value, E, Result);
10937 }
10938
Success(CharUnits Size,const Expr * E)10939 bool Success(CharUnits Size, const Expr *E) {
10940 return Success(Size.getQuantity(), E);
10941 }
10942
Success(const APValue & V,const Expr * E)10943 bool Success(const APValue &V, const Expr *E) {
10944 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10945 Result = V;
10946 return true;
10947 }
10948 return Success(V.getInt(), E);
10949 }
10950
ZeroInitialization(const Expr * E)10951 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10952
10953 //===--------------------------------------------------------------------===//
10954 // Visitor Methods
10955 //===--------------------------------------------------------------------===//
10956
VisitIntegerLiteral(const IntegerLiteral * E)10957 bool VisitIntegerLiteral(const IntegerLiteral *E) {
10958 return Success(E->getValue(), E);
10959 }
VisitCharacterLiteral(const CharacterLiteral * E)10960 bool VisitCharacterLiteral(const CharacterLiteral *E) {
10961 return Success(E->getValue(), E);
10962 }
10963
10964 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)10965 bool VisitDeclRefExpr(const DeclRefExpr *E) {
10966 if (CheckReferencedDecl(E, E->getDecl()))
10967 return true;
10968
10969 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10970 }
VisitMemberExpr(const MemberExpr * E)10971 bool VisitMemberExpr(const MemberExpr *E) {
10972 if (CheckReferencedDecl(E, E->getMemberDecl())) {
10973 VisitIgnoredBaseExpression(E->getBase());
10974 return true;
10975 }
10976
10977 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10978 }
10979
10980 bool VisitCallExpr(const CallExpr *E);
10981 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10982 bool VisitBinaryOperator(const BinaryOperator *E);
10983 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10984 bool VisitUnaryOperator(const UnaryOperator *E);
10985
10986 bool VisitCastExpr(const CastExpr* E);
10987 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10988
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)10989 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10990 return Success(E->getValue(), E);
10991 }
10992
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)10993 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10994 return Success(E->getValue(), E);
10995 }
10996
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)10997 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10998 if (Info.ArrayInitIndex == uint64_t(-1)) {
10999 // We were asked to evaluate this subexpression independent of the
11000 // enclosing ArrayInitLoopExpr. We can't do that.
11001 Info.FFDiag(E);
11002 return false;
11003 }
11004 return Success(Info.ArrayInitIndex, E);
11005 }
11006
11007 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)11008 bool VisitGNUNullExpr(const GNUNullExpr *E) {
11009 return ZeroInitialization(E);
11010 }
11011
VisitTypeTraitExpr(const TypeTraitExpr * E)11012 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11013 return Success(E->getValue(), E);
11014 }
11015
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)11016 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11017 return Success(E->getValue(), E);
11018 }
11019
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)11020 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11021 return Success(E->getValue(), E);
11022 }
11023
11024 bool VisitUnaryReal(const UnaryOperator *E);
11025 bool VisitUnaryImag(const UnaryOperator *E);
11026
11027 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11028 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11029 bool VisitSourceLocExpr(const SourceLocExpr *E);
11030 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11031 bool VisitRequiresExpr(const RequiresExpr *E);
11032 // FIXME: Missing: array subscript of vector, member of vector
11033 };
11034
11035 class FixedPointExprEvaluator
11036 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11037 APValue &Result;
11038
11039 public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)11040 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11041 : ExprEvaluatorBaseTy(info), Result(result) {}
11042
Success(const llvm::APInt & I,const Expr * E)11043 bool Success(const llvm::APInt &I, const Expr *E) {
11044 return Success(
11045 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11046 }
11047
Success(uint64_t Value,const Expr * E)11048 bool Success(uint64_t Value, const Expr *E) {
11049 return Success(
11050 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11051 }
11052
Success(const APValue & V,const Expr * E)11053 bool Success(const APValue &V, const Expr *E) {
11054 return Success(V.getFixedPoint(), E);
11055 }
11056
Success(const APFixedPoint & V,const Expr * E)11057 bool Success(const APFixedPoint &V, const Expr *E) {
11058 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11059 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11060 "Invalid evaluation result.");
11061 Result = APValue(V);
11062 return true;
11063 }
11064
11065 //===--------------------------------------------------------------------===//
11066 // Visitor Methods
11067 //===--------------------------------------------------------------------===//
11068
VisitFixedPointLiteral(const FixedPointLiteral * E)11069 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11070 return Success(E->getValue(), E);
11071 }
11072
11073 bool VisitCastExpr(const CastExpr *E);
11074 bool VisitUnaryOperator(const UnaryOperator *E);
11075 bool VisitBinaryOperator(const BinaryOperator *E);
11076 };
11077 } // end anonymous namespace
11078
11079 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11080 /// produce either the integer value or a pointer.
11081 ///
11082 /// GCC has a heinous extension which folds casts between pointer types and
11083 /// pointer-sized integral types. We support this by allowing the evaluation of
11084 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11085 /// Some simple arithmetic on such values is supported (they are treated much
11086 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)11087 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11088 EvalInfo &Info) {
11089 assert(!E->isValueDependent());
11090 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11091 return IntExprEvaluator(Info, Result).Visit(E);
11092 }
11093
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)11094 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11095 assert(!E->isValueDependent());
11096 APValue Val;
11097 if (!EvaluateIntegerOrLValue(E, Val, Info))
11098 return false;
11099 if (!Val.isInt()) {
11100 // FIXME: It would be better to produce the diagnostic for casting
11101 // a pointer to an integer.
11102 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11103 return false;
11104 }
11105 Result = Val.getInt();
11106 return true;
11107 }
11108
VisitSourceLocExpr(const SourceLocExpr * E)11109 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11110 APValue Evaluated = E->EvaluateInContext(
11111 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11112 return Success(Evaluated, E);
11113 }
11114
EvaluateFixedPoint(const Expr * E,APFixedPoint & Result,EvalInfo & Info)11115 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11116 EvalInfo &Info) {
11117 assert(!E->isValueDependent());
11118 if (E->getType()->isFixedPointType()) {
11119 APValue Val;
11120 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11121 return false;
11122 if (!Val.isFixedPoint())
11123 return false;
11124
11125 Result = Val.getFixedPoint();
11126 return true;
11127 }
11128 return false;
11129 }
11130
EvaluateFixedPointOrInteger(const Expr * E,APFixedPoint & Result,EvalInfo & Info)11131 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11132 EvalInfo &Info) {
11133 assert(!E->isValueDependent());
11134 if (E->getType()->isIntegerType()) {
11135 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11136 APSInt Val;
11137 if (!EvaluateInteger(E, Val, Info))
11138 return false;
11139 Result = APFixedPoint(Val, FXSema);
11140 return true;
11141 } else if (E->getType()->isFixedPointType()) {
11142 return EvaluateFixedPoint(E, Result, Info);
11143 }
11144 return false;
11145 }
11146
11147 /// Check whether the given declaration can be directly converted to an integral
11148 /// rvalue. If not, no diagnostic is produced; there are other things we can
11149 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)11150 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11151 // Enums are integer constant exprs.
11152 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11153 // Check for signedness/width mismatches between E type and ECD value.
11154 bool SameSign = (ECD->getInitVal().isSigned()
11155 == E->getType()->isSignedIntegerOrEnumerationType());
11156 bool SameWidth = (ECD->getInitVal().getBitWidth()
11157 == Info.Ctx.getIntWidth(E->getType()));
11158 if (SameSign && SameWidth)
11159 return Success(ECD->getInitVal(), E);
11160 else {
11161 // Get rid of mismatch (otherwise Success assertions will fail)
11162 // by computing a new value matching the type of E.
11163 llvm::APSInt Val = ECD->getInitVal();
11164 if (!SameSign)
11165 Val.setIsSigned(!ECD->getInitVal().isSigned());
11166 if (!SameWidth)
11167 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11168 return Success(Val, E);
11169 }
11170 }
11171 return false;
11172 }
11173
11174 /// Values returned by __builtin_classify_type, chosen to match the values
11175 /// produced by GCC's builtin.
11176 enum class GCCTypeClass {
11177 None = -1,
11178 Void = 0,
11179 Integer = 1,
11180 // GCC reserves 2 for character types, but instead classifies them as
11181 // integers.
11182 Enum = 3,
11183 Bool = 4,
11184 Pointer = 5,
11185 // GCC reserves 6 for references, but appears to never use it (because
11186 // expressions never have reference type, presumably).
11187 PointerToDataMember = 7,
11188 RealFloat = 8,
11189 Complex = 9,
11190 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11191 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11192 // GCC claims to reserve 11 for pointers to member functions, but *actually*
11193 // uses 12 for that purpose, same as for a class or struct. Maybe it
11194 // internally implements a pointer to member as a struct? Who knows.
11195 PointerToMemberFunction = 12, // Not a bug, see above.
11196 ClassOrStruct = 12,
11197 Union = 13,
11198 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11199 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11200 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11201 // literals.
11202 };
11203
11204 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11205 /// as GCC.
11206 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)11207 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11208 assert(!T->isDependentType() && "unexpected dependent type");
11209
11210 QualType CanTy = T.getCanonicalType();
11211 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11212
11213 switch (CanTy->getTypeClass()) {
11214 #define TYPE(ID, BASE)
11215 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11216 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11217 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11218 #include "clang/AST/TypeNodes.inc"
11219 case Type::Auto:
11220 case Type::DeducedTemplateSpecialization:
11221 llvm_unreachable("unexpected non-canonical or dependent type");
11222
11223 case Type::Builtin:
11224 switch (BT->getKind()) {
11225 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11226 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11227 case BuiltinType::ID: return GCCTypeClass::Integer;
11228 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11229 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11230 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11231 case BuiltinType::ID: break;
11232 #include "clang/AST/BuiltinTypes.def"
11233 case BuiltinType::Void:
11234 return GCCTypeClass::Void;
11235
11236 case BuiltinType::Bool:
11237 return GCCTypeClass::Bool;
11238
11239 case BuiltinType::Char_U:
11240 case BuiltinType::UChar:
11241 case BuiltinType::WChar_U:
11242 case BuiltinType::Char8:
11243 case BuiltinType::Char16:
11244 case BuiltinType::Char32:
11245 case BuiltinType::UShort:
11246 case BuiltinType::UInt:
11247 case BuiltinType::ULong:
11248 case BuiltinType::ULongLong:
11249 case BuiltinType::UInt128:
11250 return GCCTypeClass::Integer;
11251
11252 case BuiltinType::UShortAccum:
11253 case BuiltinType::UAccum:
11254 case BuiltinType::ULongAccum:
11255 case BuiltinType::UShortFract:
11256 case BuiltinType::UFract:
11257 case BuiltinType::ULongFract:
11258 case BuiltinType::SatUShortAccum:
11259 case BuiltinType::SatUAccum:
11260 case BuiltinType::SatULongAccum:
11261 case BuiltinType::SatUShortFract:
11262 case BuiltinType::SatUFract:
11263 case BuiltinType::SatULongFract:
11264 return GCCTypeClass::None;
11265
11266 case BuiltinType::NullPtr:
11267
11268 case BuiltinType::ObjCId:
11269 case BuiltinType::ObjCClass:
11270 case BuiltinType::ObjCSel:
11271 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11272 case BuiltinType::Id:
11273 #include "clang/Basic/OpenCLImageTypes.def"
11274 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11275 case BuiltinType::Id:
11276 #include "clang/Basic/OpenCLExtensionTypes.def"
11277 case BuiltinType::OCLSampler:
11278 case BuiltinType::OCLEvent:
11279 case BuiltinType::OCLClkEvent:
11280 case BuiltinType::OCLQueue:
11281 case BuiltinType::OCLReserveID:
11282 #define SVE_TYPE(Name, Id, SingletonId) \
11283 case BuiltinType::Id:
11284 #include "clang/Basic/AArch64SVEACLETypes.def"
11285 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11286 case BuiltinType::Id:
11287 #include "clang/Basic/PPCTypes.def"
11288 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11289 #include "clang/Basic/RISCVVTypes.def"
11290 return GCCTypeClass::None;
11291
11292 case BuiltinType::Dependent:
11293 llvm_unreachable("unexpected dependent type");
11294 };
11295 llvm_unreachable("unexpected placeholder type");
11296
11297 case Type::Enum:
11298 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11299
11300 case Type::Pointer:
11301 case Type::ConstantArray:
11302 case Type::VariableArray:
11303 case Type::IncompleteArray:
11304 case Type::FunctionNoProto:
11305 case Type::FunctionProto:
11306 return GCCTypeClass::Pointer;
11307
11308 case Type::MemberPointer:
11309 return CanTy->isMemberDataPointerType()
11310 ? GCCTypeClass::PointerToDataMember
11311 : GCCTypeClass::PointerToMemberFunction;
11312
11313 case Type::Complex:
11314 return GCCTypeClass::Complex;
11315
11316 case Type::Record:
11317 return CanTy->isUnionType() ? GCCTypeClass::Union
11318 : GCCTypeClass::ClassOrStruct;
11319
11320 case Type::Atomic:
11321 // GCC classifies _Atomic T the same as T.
11322 return EvaluateBuiltinClassifyType(
11323 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11324
11325 case Type::BlockPointer:
11326 case Type::Vector:
11327 case Type::ExtVector:
11328 case Type::ConstantMatrix:
11329 case Type::ObjCObject:
11330 case Type::ObjCInterface:
11331 case Type::ObjCObjectPointer:
11332 case Type::Pipe:
11333 case Type::BitInt:
11334 // GCC classifies vectors as None. We follow its lead and classify all
11335 // other types that don't fit into the regular classification the same way.
11336 return GCCTypeClass::None;
11337
11338 case Type::LValueReference:
11339 case Type::RValueReference:
11340 llvm_unreachable("invalid type for expression");
11341 }
11342
11343 llvm_unreachable("unexpected type class");
11344 }
11345
11346 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11347 /// as GCC.
11348 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)11349 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11350 // If no argument was supplied, default to None. This isn't
11351 // ideal, however it is what gcc does.
11352 if (E->getNumArgs() == 0)
11353 return GCCTypeClass::None;
11354
11355 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11356 // being an ICE, but still folds it to a constant using the type of the first
11357 // argument.
11358 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11359 }
11360
11361 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11362 /// __builtin_constant_p when applied to the given pointer.
11363 ///
11364 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11365 /// or it points to the first character of a string literal.
EvaluateBuiltinConstantPForLValue(const APValue & LV)11366 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11367 APValue::LValueBase Base = LV.getLValueBase();
11368 if (Base.isNull()) {
11369 // A null base is acceptable.
11370 return true;
11371 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11372 if (!isa<StringLiteral>(E))
11373 return false;
11374 return LV.getLValueOffset().isZero();
11375 } else if (Base.is<TypeInfoLValue>()) {
11376 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11377 // evaluate to true.
11378 return true;
11379 } else {
11380 // Any other base is not constant enough for GCC.
11381 return false;
11382 }
11383 }
11384
11385 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11386 /// GCC as we can manage.
EvaluateBuiltinConstantP(EvalInfo & Info,const Expr * Arg)11387 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11388 // This evaluation is not permitted to have side-effects, so evaluate it in
11389 // a speculative evaluation context.
11390 SpeculativeEvaluationRAII SpeculativeEval(Info);
11391
11392 // Constant-folding is always enabled for the operand of __builtin_constant_p
11393 // (even when the enclosing evaluation context otherwise requires a strict
11394 // language-specific constant expression).
11395 FoldConstant Fold(Info, true);
11396
11397 QualType ArgType = Arg->getType();
11398
11399 // __builtin_constant_p always has one operand. The rules which gcc follows
11400 // are not precisely documented, but are as follows:
11401 //
11402 // - If the operand is of integral, floating, complex or enumeration type,
11403 // and can be folded to a known value of that type, it returns 1.
11404 // - If the operand can be folded to a pointer to the first character
11405 // of a string literal (or such a pointer cast to an integral type)
11406 // or to a null pointer or an integer cast to a pointer, it returns 1.
11407 //
11408 // Otherwise, it returns 0.
11409 //
11410 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11411 // its support for this did not work prior to GCC 9 and is not yet well
11412 // understood.
11413 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11414 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11415 ArgType->isNullPtrType()) {
11416 APValue V;
11417 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11418 Fold.keepDiagnostics();
11419 return false;
11420 }
11421
11422 // For a pointer (possibly cast to integer), there are special rules.
11423 if (V.getKind() == APValue::LValue)
11424 return EvaluateBuiltinConstantPForLValue(V);
11425
11426 // Otherwise, any constant value is good enough.
11427 return V.hasValue();
11428 }
11429
11430 // Anything else isn't considered to be sufficiently constant.
11431 return false;
11432 }
11433
11434 /// Retrieves the "underlying object type" of the given expression,
11435 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)11436 static QualType getObjectType(APValue::LValueBase B) {
11437 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11438 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11439 return VD->getType();
11440 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11441 if (isa<CompoundLiteralExpr>(E))
11442 return E->getType();
11443 } else if (B.is<TypeInfoLValue>()) {
11444 return B.getTypeInfoType();
11445 } else if (B.is<DynamicAllocLValue>()) {
11446 return B.getDynamicAllocType();
11447 }
11448
11449 return QualType();
11450 }
11451
11452 /// A more selective version of E->IgnoreParenCasts for
11453 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11454 /// to change the type of E.
11455 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11456 ///
11457 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)11458 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11459 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11460
11461 auto *NoParens = E->IgnoreParens();
11462 auto *Cast = dyn_cast<CastExpr>(NoParens);
11463 if (Cast == nullptr)
11464 return NoParens;
11465
11466 // We only conservatively allow a few kinds of casts, because this code is
11467 // inherently a simple solution that seeks to support the common case.
11468 auto CastKind = Cast->getCastKind();
11469 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11470 CastKind != CK_AddressSpaceConversion)
11471 return NoParens;
11472
11473 auto *SubExpr = Cast->getSubExpr();
11474 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11475 return NoParens;
11476 return ignorePointerCastsAndParens(SubExpr);
11477 }
11478
11479 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11480 /// record layout. e.g.
11481 /// struct { struct { int a, b; } fst, snd; } obj;
11482 /// obj.fst // no
11483 /// obj.snd // yes
11484 /// obj.fst.a // no
11485 /// obj.fst.b // no
11486 /// obj.snd.a // no
11487 /// obj.snd.b // yes
11488 ///
11489 /// Please note: this function is specialized for how __builtin_object_size
11490 /// views "objects".
11491 ///
11492 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11493 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)11494 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11495 assert(!LVal.Designator.Invalid);
11496
11497 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11498 const RecordDecl *Parent = FD->getParent();
11499 Invalid = Parent->isInvalidDecl();
11500 if (Invalid || Parent->isUnion())
11501 return true;
11502 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11503 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11504 };
11505
11506 auto &Base = LVal.getLValueBase();
11507 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11508 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11509 bool Invalid;
11510 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11511 return Invalid;
11512 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11513 for (auto *FD : IFD->chain()) {
11514 bool Invalid;
11515 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11516 return Invalid;
11517 }
11518 }
11519 }
11520
11521 unsigned I = 0;
11522 QualType BaseType = getType(Base);
11523 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11524 // If we don't know the array bound, conservatively assume we're looking at
11525 // the final array element.
11526 ++I;
11527 if (BaseType->isIncompleteArrayType())
11528 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11529 else
11530 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11531 }
11532
11533 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11534 const auto &Entry = LVal.Designator.Entries[I];
11535 if (BaseType->isArrayType()) {
11536 // Because __builtin_object_size treats arrays as objects, we can ignore
11537 // the index iff this is the last array in the Designator.
11538 if (I + 1 == E)
11539 return true;
11540 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11541 uint64_t Index = Entry.getAsArrayIndex();
11542 if (Index + 1 != CAT->getSize())
11543 return false;
11544 BaseType = CAT->getElementType();
11545 } else if (BaseType->isAnyComplexType()) {
11546 const auto *CT = BaseType->castAs<ComplexType>();
11547 uint64_t Index = Entry.getAsArrayIndex();
11548 if (Index != 1)
11549 return false;
11550 BaseType = CT->getElementType();
11551 } else if (auto *FD = getAsField(Entry)) {
11552 bool Invalid;
11553 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11554 return Invalid;
11555 BaseType = FD->getType();
11556 } else {
11557 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11558 return false;
11559 }
11560 }
11561 return true;
11562 }
11563
11564 /// Tests to see if the LValue has a user-specified designator (that isn't
11565 /// necessarily valid). Note that this always returns 'true' if the LValue has
11566 /// an unsized array as its first designator entry, because there's currently no
11567 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)11568 static bool refersToCompleteObject(const LValue &LVal) {
11569 if (LVal.Designator.Invalid)
11570 return false;
11571
11572 if (!LVal.Designator.Entries.empty())
11573 return LVal.Designator.isMostDerivedAnUnsizedArray();
11574
11575 if (!LVal.InvalidBase)
11576 return true;
11577
11578 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11579 // the LValueBase.
11580 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11581 return !E || !isa<MemberExpr>(E);
11582 }
11583
11584 /// Attempts to detect a user writing into a piece of memory that's impossible
11585 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)11586 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11587 const SubobjectDesignator &Designator = LVal.Designator;
11588 // Notes:
11589 // - Users can only write off of the end when we have an invalid base. Invalid
11590 // bases imply we don't know where the memory came from.
11591 // - We used to be a bit more aggressive here; we'd only be conservative if
11592 // the array at the end was flexible, or if it had 0 or 1 elements. This
11593 // broke some common standard library extensions (PR30346), but was
11594 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11595 // with some sort of list. OTOH, it seems that GCC is always
11596 // conservative with the last element in structs (if it's an array), so our
11597 // current behavior is more compatible than an explicit list approach would
11598 // be.
11599 int StrictFlexArraysLevel = Ctx.getLangOpts().StrictFlexArrays;
11600 return LVal.InvalidBase &&
11601 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11602 Designator.MostDerivedIsArrayElement &&
11603 (Designator.isMostDerivedAnUnsizedArray() ||
11604 Designator.getMostDerivedArraySize() == 0 ||
11605 (Designator.getMostDerivedArraySize() == 1 &&
11606 StrictFlexArraysLevel < 2) ||
11607 StrictFlexArraysLevel == 0) &&
11608 isDesignatorAtObjectEnd(Ctx, LVal);
11609 }
11610
11611 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11612 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)11613 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11614 CharUnits &Result) {
11615 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11616 if (Int.ugt(CharUnitsMax))
11617 return false;
11618 Result = CharUnits::fromQuantity(Int.getZExtValue());
11619 return true;
11620 }
11621
11622 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11623 /// determine how many bytes exist from the beginning of the object to either
11624 /// the end of the current subobject, or the end of the object itself, depending
11625 /// on what the LValue looks like + the value of Type.
11626 ///
11627 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)11628 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11629 unsigned Type, const LValue &LVal,
11630 CharUnits &EndOffset) {
11631 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11632
11633 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11634 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11635 return false;
11636 return HandleSizeof(Info, ExprLoc, Ty, Result);
11637 };
11638
11639 // We want to evaluate the size of the entire object. This is a valid fallback
11640 // for when Type=1 and the designator is invalid, because we're asked for an
11641 // upper-bound.
11642 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11643 // Type=3 wants a lower bound, so we can't fall back to this.
11644 if (Type == 3 && !DetermineForCompleteObject)
11645 return false;
11646
11647 llvm::APInt APEndOffset;
11648 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11649 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11650 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11651
11652 if (LVal.InvalidBase)
11653 return false;
11654
11655 QualType BaseTy = getObjectType(LVal.getLValueBase());
11656 return CheckedHandleSizeof(BaseTy, EndOffset);
11657 }
11658
11659 // We want to evaluate the size of a subobject.
11660 const SubobjectDesignator &Designator = LVal.Designator;
11661
11662 // The following is a moderately common idiom in C:
11663 //
11664 // struct Foo { int a; char c[1]; };
11665 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11666 // strcpy(&F->c[0], Bar);
11667 //
11668 // In order to not break too much legacy code, we need to support it.
11669 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11670 // If we can resolve this to an alloc_size call, we can hand that back,
11671 // because we know for certain how many bytes there are to write to.
11672 llvm::APInt APEndOffset;
11673 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11674 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11675 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11676
11677 // If we cannot determine the size of the initial allocation, then we can't
11678 // given an accurate upper-bound. However, we are still able to give
11679 // conservative lower-bounds for Type=3.
11680 if (Type == 1)
11681 return false;
11682 }
11683
11684 CharUnits BytesPerElem;
11685 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11686 return false;
11687
11688 // According to the GCC documentation, we want the size of the subobject
11689 // denoted by the pointer. But that's not quite right -- what we actually
11690 // want is the size of the immediately-enclosing array, if there is one.
11691 int64_t ElemsRemaining;
11692 if (Designator.MostDerivedIsArrayElement &&
11693 Designator.Entries.size() == Designator.MostDerivedPathLength) {
11694 uint64_t ArraySize = Designator.getMostDerivedArraySize();
11695 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11696 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11697 } else {
11698 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11699 }
11700
11701 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11702 return true;
11703 }
11704
11705 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11706 /// returns true and stores the result in @p Size.
11707 ///
11708 /// If @p WasError is non-null, this will report whether the failure to evaluate
11709 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)11710 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11711 EvalInfo &Info, uint64_t &Size) {
11712 // Determine the denoted object.
11713 LValue LVal;
11714 {
11715 // The operand of __builtin_object_size is never evaluated for side-effects.
11716 // If there are any, but we can determine the pointed-to object anyway, then
11717 // ignore the side-effects.
11718 SpeculativeEvaluationRAII SpeculativeEval(Info);
11719 IgnoreSideEffectsRAII Fold(Info);
11720
11721 if (E->isGLValue()) {
11722 // It's possible for us to be given GLValues if we're called via
11723 // Expr::tryEvaluateObjectSize.
11724 APValue RVal;
11725 if (!EvaluateAsRValue(Info, E, RVal))
11726 return false;
11727 LVal.setFrom(Info.Ctx, RVal);
11728 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11729 /*InvalidBaseOK=*/true))
11730 return false;
11731 }
11732
11733 // If we point to before the start of the object, there are no accessible
11734 // bytes.
11735 if (LVal.getLValueOffset().isNegative()) {
11736 Size = 0;
11737 return true;
11738 }
11739
11740 CharUnits EndOffset;
11741 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11742 return false;
11743
11744 // If we've fallen outside of the end offset, just pretend there's nothing to
11745 // write to/read from.
11746 if (EndOffset <= LVal.getLValueOffset())
11747 Size = 0;
11748 else
11749 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11750 return true;
11751 }
11752
VisitCallExpr(const CallExpr * E)11753 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11754 if (unsigned BuiltinOp = E->getBuiltinCallee())
11755 return VisitBuiltinCallExpr(E, BuiltinOp);
11756
11757 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11758 }
11759
getBuiltinAlignArguments(const CallExpr * E,EvalInfo & Info,APValue & Val,APSInt & Alignment)11760 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11761 APValue &Val, APSInt &Alignment) {
11762 QualType SrcTy = E->getArg(0)->getType();
11763 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11764 return false;
11765 // Even though we are evaluating integer expressions we could get a pointer
11766 // argument for the __builtin_is_aligned() case.
11767 if (SrcTy->isPointerType()) {
11768 LValue Ptr;
11769 if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11770 return false;
11771 Ptr.moveInto(Val);
11772 } else if (!SrcTy->isIntegralOrEnumerationType()) {
11773 Info.FFDiag(E->getArg(0));
11774 return false;
11775 } else {
11776 APSInt SrcInt;
11777 if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11778 return false;
11779 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11780 "Bit widths must be the same");
11781 Val = APValue(SrcInt);
11782 }
11783 assert(Val.hasValue());
11784 return true;
11785 }
11786
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)11787 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11788 unsigned BuiltinOp) {
11789 switch (BuiltinOp) {
11790 default:
11791 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11792
11793 case Builtin::BI__builtin_dynamic_object_size:
11794 case Builtin::BI__builtin_object_size: {
11795 // The type was checked when we built the expression.
11796 unsigned Type =
11797 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11798 assert(Type <= 3 && "unexpected type");
11799
11800 uint64_t Size;
11801 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11802 return Success(Size, E);
11803
11804 if (E->getArg(0)->HasSideEffects(Info.Ctx))
11805 return Success((Type & 2) ? 0 : -1, E);
11806
11807 // Expression had no side effects, but we couldn't statically determine the
11808 // size of the referenced object.
11809 switch (Info.EvalMode) {
11810 case EvalInfo::EM_ConstantExpression:
11811 case EvalInfo::EM_ConstantFold:
11812 case EvalInfo::EM_IgnoreSideEffects:
11813 // Leave it to IR generation.
11814 return Error(E);
11815 case EvalInfo::EM_ConstantExpressionUnevaluated:
11816 // Reduce it to a constant now.
11817 return Success((Type & 2) ? 0 : -1, E);
11818 }
11819
11820 llvm_unreachable("unexpected EvalMode");
11821 }
11822
11823 case Builtin::BI__builtin_os_log_format_buffer_size: {
11824 analyze_os_log::OSLogBufferLayout Layout;
11825 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11826 return Success(Layout.size().getQuantity(), E);
11827 }
11828
11829 case Builtin::BI__builtin_is_aligned: {
11830 APValue Src;
11831 APSInt Alignment;
11832 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11833 return false;
11834 if (Src.isLValue()) {
11835 // If we evaluated a pointer, check the minimum known alignment.
11836 LValue Ptr;
11837 Ptr.setFrom(Info.Ctx, Src);
11838 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11839 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11840 // We can return true if the known alignment at the computed offset is
11841 // greater than the requested alignment.
11842 assert(PtrAlign.isPowerOfTwo());
11843 assert(Alignment.isPowerOf2());
11844 if (PtrAlign.getQuantity() >= Alignment)
11845 return Success(1, E);
11846 // If the alignment is not known to be sufficient, some cases could still
11847 // be aligned at run time. However, if the requested alignment is less or
11848 // equal to the base alignment and the offset is not aligned, we know that
11849 // the run-time value can never be aligned.
11850 if (BaseAlignment.getQuantity() >= Alignment &&
11851 PtrAlign.getQuantity() < Alignment)
11852 return Success(0, E);
11853 // Otherwise we can't infer whether the value is sufficiently aligned.
11854 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11855 // in cases where we can't fully evaluate the pointer.
11856 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11857 << Alignment;
11858 return false;
11859 }
11860 assert(Src.isInt());
11861 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11862 }
11863 case Builtin::BI__builtin_align_up: {
11864 APValue Src;
11865 APSInt Alignment;
11866 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11867 return false;
11868 if (!Src.isInt())
11869 return Error(E);
11870 APSInt AlignedVal =
11871 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11872 Src.getInt().isUnsigned());
11873 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11874 return Success(AlignedVal, E);
11875 }
11876 case Builtin::BI__builtin_align_down: {
11877 APValue Src;
11878 APSInt Alignment;
11879 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11880 return false;
11881 if (!Src.isInt())
11882 return Error(E);
11883 APSInt AlignedVal =
11884 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11885 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11886 return Success(AlignedVal, E);
11887 }
11888
11889 case Builtin::BI__builtin_bitreverse8:
11890 case Builtin::BI__builtin_bitreverse16:
11891 case Builtin::BI__builtin_bitreverse32:
11892 case Builtin::BI__builtin_bitreverse64: {
11893 APSInt Val;
11894 if (!EvaluateInteger(E->getArg(0), Val, Info))
11895 return false;
11896
11897 return Success(Val.reverseBits(), E);
11898 }
11899
11900 case Builtin::BI__builtin_bswap16:
11901 case Builtin::BI__builtin_bswap32:
11902 case Builtin::BI__builtin_bswap64: {
11903 APSInt Val;
11904 if (!EvaluateInteger(E->getArg(0), Val, Info))
11905 return false;
11906
11907 return Success(Val.byteSwap(), E);
11908 }
11909
11910 case Builtin::BI__builtin_classify_type:
11911 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11912
11913 case Builtin::BI__builtin_clrsb:
11914 case Builtin::BI__builtin_clrsbl:
11915 case Builtin::BI__builtin_clrsbll: {
11916 APSInt Val;
11917 if (!EvaluateInteger(E->getArg(0), Val, Info))
11918 return false;
11919
11920 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11921 }
11922
11923 case Builtin::BI__builtin_clz:
11924 case Builtin::BI__builtin_clzl:
11925 case Builtin::BI__builtin_clzll:
11926 case Builtin::BI__builtin_clzs: {
11927 APSInt Val;
11928 if (!EvaluateInteger(E->getArg(0), Val, Info))
11929 return false;
11930 if (!Val)
11931 return Error(E);
11932
11933 return Success(Val.countLeadingZeros(), E);
11934 }
11935
11936 case Builtin::BI__builtin_constant_p: {
11937 const Expr *Arg = E->getArg(0);
11938 if (EvaluateBuiltinConstantP(Info, Arg))
11939 return Success(true, E);
11940 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11941 // Outside a constant context, eagerly evaluate to false in the presence
11942 // of side-effects in order to avoid -Wunsequenced false-positives in
11943 // a branch on __builtin_constant_p(expr).
11944 return Success(false, E);
11945 }
11946 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11947 return false;
11948 }
11949
11950 case Builtin::BI__builtin_is_constant_evaluated: {
11951 const auto *Callee = Info.CurrentCall->getCallee();
11952 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11953 (Info.CallStackDepth == 1 ||
11954 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11955 Callee->getIdentifier() &&
11956 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11957 // FIXME: Find a better way to avoid duplicated diagnostics.
11958 if (Info.EvalStatus.Diag)
11959 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11960 : Info.CurrentCall->CallLoc,
11961 diag::warn_is_constant_evaluated_always_true_constexpr)
11962 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11963 : "std::is_constant_evaluated");
11964 }
11965
11966 return Success(Info.InConstantContext, E);
11967 }
11968
11969 case Builtin::BI__builtin_ctz:
11970 case Builtin::BI__builtin_ctzl:
11971 case Builtin::BI__builtin_ctzll:
11972 case Builtin::BI__builtin_ctzs: {
11973 APSInt Val;
11974 if (!EvaluateInteger(E->getArg(0), Val, Info))
11975 return false;
11976 if (!Val)
11977 return Error(E);
11978
11979 return Success(Val.countTrailingZeros(), E);
11980 }
11981
11982 case Builtin::BI__builtin_eh_return_data_regno: {
11983 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11984 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11985 return Success(Operand, E);
11986 }
11987
11988 case Builtin::BI__builtin_expect:
11989 case Builtin::BI__builtin_expect_with_probability:
11990 return Visit(E->getArg(0));
11991
11992 case Builtin::BI__builtin_ffs:
11993 case Builtin::BI__builtin_ffsl:
11994 case Builtin::BI__builtin_ffsll: {
11995 APSInt Val;
11996 if (!EvaluateInteger(E->getArg(0), Val, Info))
11997 return false;
11998
11999 unsigned N = Val.countTrailingZeros();
12000 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12001 }
12002
12003 case Builtin::BI__builtin_fpclassify: {
12004 APFloat Val(0.0);
12005 if (!EvaluateFloat(E->getArg(5), Val, Info))
12006 return false;
12007 unsigned Arg;
12008 switch (Val.getCategory()) {
12009 case APFloat::fcNaN: Arg = 0; break;
12010 case APFloat::fcInfinity: Arg = 1; break;
12011 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12012 case APFloat::fcZero: Arg = 4; break;
12013 }
12014 return Visit(E->getArg(Arg));
12015 }
12016
12017 case Builtin::BI__builtin_isinf_sign: {
12018 APFloat Val(0.0);
12019 return EvaluateFloat(E->getArg(0), Val, Info) &&
12020 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12021 }
12022
12023 case Builtin::BI__builtin_isinf: {
12024 APFloat Val(0.0);
12025 return EvaluateFloat(E->getArg(0), Val, Info) &&
12026 Success(Val.isInfinity() ? 1 : 0, E);
12027 }
12028
12029 case Builtin::BI__builtin_isfinite: {
12030 APFloat Val(0.0);
12031 return EvaluateFloat(E->getArg(0), Val, Info) &&
12032 Success(Val.isFinite() ? 1 : 0, E);
12033 }
12034
12035 case Builtin::BI__builtin_isnan: {
12036 APFloat Val(0.0);
12037 return EvaluateFloat(E->getArg(0), Val, Info) &&
12038 Success(Val.isNaN() ? 1 : 0, E);
12039 }
12040
12041 case Builtin::BI__builtin_isnormal: {
12042 APFloat Val(0.0);
12043 return EvaluateFloat(E->getArg(0), Val, Info) &&
12044 Success(Val.isNormal() ? 1 : 0, E);
12045 }
12046
12047 case Builtin::BI__builtin_parity:
12048 case Builtin::BI__builtin_parityl:
12049 case Builtin::BI__builtin_parityll: {
12050 APSInt Val;
12051 if (!EvaluateInteger(E->getArg(0), Val, Info))
12052 return false;
12053
12054 return Success(Val.countPopulation() % 2, E);
12055 }
12056
12057 case Builtin::BI__builtin_popcount:
12058 case Builtin::BI__builtin_popcountl:
12059 case Builtin::BI__builtin_popcountll: {
12060 APSInt Val;
12061 if (!EvaluateInteger(E->getArg(0), Val, Info))
12062 return false;
12063
12064 return Success(Val.countPopulation(), E);
12065 }
12066
12067 case Builtin::BI__builtin_rotateleft8:
12068 case Builtin::BI__builtin_rotateleft16:
12069 case Builtin::BI__builtin_rotateleft32:
12070 case Builtin::BI__builtin_rotateleft64:
12071 case Builtin::BI_rotl8: // Microsoft variants of rotate right
12072 case Builtin::BI_rotl16:
12073 case Builtin::BI_rotl:
12074 case Builtin::BI_lrotl:
12075 case Builtin::BI_rotl64: {
12076 APSInt Val, Amt;
12077 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12078 !EvaluateInteger(E->getArg(1), Amt, Info))
12079 return false;
12080
12081 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12082 }
12083
12084 case Builtin::BI__builtin_rotateright8:
12085 case Builtin::BI__builtin_rotateright16:
12086 case Builtin::BI__builtin_rotateright32:
12087 case Builtin::BI__builtin_rotateright64:
12088 case Builtin::BI_rotr8: // Microsoft variants of rotate right
12089 case Builtin::BI_rotr16:
12090 case Builtin::BI_rotr:
12091 case Builtin::BI_lrotr:
12092 case Builtin::BI_rotr64: {
12093 APSInt Val, Amt;
12094 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12095 !EvaluateInteger(E->getArg(1), Amt, Info))
12096 return false;
12097
12098 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12099 }
12100
12101 case Builtin::BIstrlen:
12102 case Builtin::BIwcslen:
12103 // A call to strlen is not a constant expression.
12104 if (Info.getLangOpts().CPlusPlus11)
12105 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12106 << /*isConstexpr*/0 << /*isConstructor*/0
12107 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12108 else
12109 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12110 LLVM_FALLTHROUGH;
12111 case Builtin::BI__builtin_strlen:
12112 case Builtin::BI__builtin_wcslen: {
12113 // As an extension, we support __builtin_strlen() as a constant expression,
12114 // and support folding strlen() to a constant.
12115 uint64_t StrLen;
12116 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12117 return Success(StrLen, E);
12118 return false;
12119 }
12120
12121 case Builtin::BIstrcmp:
12122 case Builtin::BIwcscmp:
12123 case Builtin::BIstrncmp:
12124 case Builtin::BIwcsncmp:
12125 case Builtin::BImemcmp:
12126 case Builtin::BIbcmp:
12127 case Builtin::BIwmemcmp:
12128 // A call to strlen is not a constant expression.
12129 if (Info.getLangOpts().CPlusPlus11)
12130 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12131 << /*isConstexpr*/0 << /*isConstructor*/0
12132 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12133 else
12134 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12135 LLVM_FALLTHROUGH;
12136 case Builtin::BI__builtin_strcmp:
12137 case Builtin::BI__builtin_wcscmp:
12138 case Builtin::BI__builtin_strncmp:
12139 case Builtin::BI__builtin_wcsncmp:
12140 case Builtin::BI__builtin_memcmp:
12141 case Builtin::BI__builtin_bcmp:
12142 case Builtin::BI__builtin_wmemcmp: {
12143 LValue String1, String2;
12144 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12145 !EvaluatePointer(E->getArg(1), String2, Info))
12146 return false;
12147
12148 uint64_t MaxLength = uint64_t(-1);
12149 if (BuiltinOp != Builtin::BIstrcmp &&
12150 BuiltinOp != Builtin::BIwcscmp &&
12151 BuiltinOp != Builtin::BI__builtin_strcmp &&
12152 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12153 APSInt N;
12154 if (!EvaluateInteger(E->getArg(2), N, Info))
12155 return false;
12156 MaxLength = N.getExtValue();
12157 }
12158
12159 // Empty substrings compare equal by definition.
12160 if (MaxLength == 0u)
12161 return Success(0, E);
12162
12163 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12164 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12165 String1.Designator.Invalid || String2.Designator.Invalid)
12166 return false;
12167
12168 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12169 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12170
12171 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12172 BuiltinOp == Builtin::BIbcmp ||
12173 BuiltinOp == Builtin::BI__builtin_memcmp ||
12174 BuiltinOp == Builtin::BI__builtin_bcmp;
12175
12176 assert(IsRawByte ||
12177 (Info.Ctx.hasSameUnqualifiedType(
12178 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12179 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12180
12181 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12182 // 'char8_t', but no other types.
12183 if (IsRawByte &&
12184 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12185 // FIXME: Consider using our bit_cast implementation to support this.
12186 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12187 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
12188 << CharTy1 << CharTy2;
12189 return false;
12190 }
12191
12192 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12193 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12194 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12195 Char1.isInt() && Char2.isInt();
12196 };
12197 const auto &AdvanceElems = [&] {
12198 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12199 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12200 };
12201
12202 bool StopAtNull =
12203 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12204 BuiltinOp != Builtin::BIwmemcmp &&
12205 BuiltinOp != Builtin::BI__builtin_memcmp &&
12206 BuiltinOp != Builtin::BI__builtin_bcmp &&
12207 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12208 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12209 BuiltinOp == Builtin::BIwcsncmp ||
12210 BuiltinOp == Builtin::BIwmemcmp ||
12211 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12212 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12213 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12214
12215 for (; MaxLength; --MaxLength) {
12216 APValue Char1, Char2;
12217 if (!ReadCurElems(Char1, Char2))
12218 return false;
12219 if (Char1.getInt().ne(Char2.getInt())) {
12220 if (IsWide) // wmemcmp compares with wchar_t signedness.
12221 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12222 // memcmp always compares unsigned chars.
12223 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12224 }
12225 if (StopAtNull && !Char1.getInt())
12226 return Success(0, E);
12227 assert(!(StopAtNull && !Char2.getInt()));
12228 if (!AdvanceElems())
12229 return false;
12230 }
12231 // We hit the strncmp / memcmp limit.
12232 return Success(0, E);
12233 }
12234
12235 case Builtin::BI__atomic_always_lock_free:
12236 case Builtin::BI__atomic_is_lock_free:
12237 case Builtin::BI__c11_atomic_is_lock_free: {
12238 APSInt SizeVal;
12239 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12240 return false;
12241
12242 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12243 // of two less than or equal to the maximum inline atomic width, we know it
12244 // is lock-free. If the size isn't a power of two, or greater than the
12245 // maximum alignment where we promote atomics, we know it is not lock-free
12246 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12247 // the answer can only be determined at runtime; for example, 16-byte
12248 // atomics have lock-free implementations on some, but not all,
12249 // x86-64 processors.
12250
12251 // Check power-of-two.
12252 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12253 if (Size.isPowerOfTwo()) {
12254 // Check against inlining width.
12255 unsigned InlineWidthBits =
12256 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12257 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12258 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12259 Size == CharUnits::One() ||
12260 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12261 Expr::NPC_NeverValueDependent))
12262 // OK, we will inline appropriately-aligned operations of this size,
12263 // and _Atomic(T) is appropriately-aligned.
12264 return Success(1, E);
12265
12266 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12267 castAs<PointerType>()->getPointeeType();
12268 if (!PointeeType->isIncompleteType() &&
12269 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12270 // OK, we will inline operations on this object.
12271 return Success(1, E);
12272 }
12273 }
12274 }
12275
12276 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12277 Success(0, E) : Error(E);
12278 }
12279 case Builtin::BI__builtin_add_overflow:
12280 case Builtin::BI__builtin_sub_overflow:
12281 case Builtin::BI__builtin_mul_overflow:
12282 case Builtin::BI__builtin_sadd_overflow:
12283 case Builtin::BI__builtin_uadd_overflow:
12284 case Builtin::BI__builtin_uaddl_overflow:
12285 case Builtin::BI__builtin_uaddll_overflow:
12286 case Builtin::BI__builtin_usub_overflow:
12287 case Builtin::BI__builtin_usubl_overflow:
12288 case Builtin::BI__builtin_usubll_overflow:
12289 case Builtin::BI__builtin_umul_overflow:
12290 case Builtin::BI__builtin_umull_overflow:
12291 case Builtin::BI__builtin_umulll_overflow:
12292 case Builtin::BI__builtin_saddl_overflow:
12293 case Builtin::BI__builtin_saddll_overflow:
12294 case Builtin::BI__builtin_ssub_overflow:
12295 case Builtin::BI__builtin_ssubl_overflow:
12296 case Builtin::BI__builtin_ssubll_overflow:
12297 case Builtin::BI__builtin_smul_overflow:
12298 case Builtin::BI__builtin_smull_overflow:
12299 case Builtin::BI__builtin_smulll_overflow: {
12300 LValue ResultLValue;
12301 APSInt LHS, RHS;
12302
12303 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12304 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12305 !EvaluateInteger(E->getArg(1), RHS, Info) ||
12306 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12307 return false;
12308
12309 APSInt Result;
12310 bool DidOverflow = false;
12311
12312 // If the types don't have to match, enlarge all 3 to the largest of them.
12313 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12314 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12315 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12316 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12317 ResultType->isSignedIntegerOrEnumerationType();
12318 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12319 ResultType->isSignedIntegerOrEnumerationType();
12320 uint64_t LHSSize = LHS.getBitWidth();
12321 uint64_t RHSSize = RHS.getBitWidth();
12322 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12323 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12324
12325 // Add an additional bit if the signedness isn't uniformly agreed to. We
12326 // could do this ONLY if there is a signed and an unsigned that both have
12327 // MaxBits, but the code to check that is pretty nasty. The issue will be
12328 // caught in the shrink-to-result later anyway.
12329 if (IsSigned && !AllSigned)
12330 ++MaxBits;
12331
12332 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12333 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12334 Result = APSInt(MaxBits, !IsSigned);
12335 }
12336
12337 // Find largest int.
12338 switch (BuiltinOp) {
12339 default:
12340 llvm_unreachable("Invalid value for BuiltinOp");
12341 case Builtin::BI__builtin_add_overflow:
12342 case Builtin::BI__builtin_sadd_overflow:
12343 case Builtin::BI__builtin_saddl_overflow:
12344 case Builtin::BI__builtin_saddll_overflow:
12345 case Builtin::BI__builtin_uadd_overflow:
12346 case Builtin::BI__builtin_uaddl_overflow:
12347 case Builtin::BI__builtin_uaddll_overflow:
12348 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12349 : LHS.uadd_ov(RHS, DidOverflow);
12350 break;
12351 case Builtin::BI__builtin_sub_overflow:
12352 case Builtin::BI__builtin_ssub_overflow:
12353 case Builtin::BI__builtin_ssubl_overflow:
12354 case Builtin::BI__builtin_ssubll_overflow:
12355 case Builtin::BI__builtin_usub_overflow:
12356 case Builtin::BI__builtin_usubl_overflow:
12357 case Builtin::BI__builtin_usubll_overflow:
12358 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12359 : LHS.usub_ov(RHS, DidOverflow);
12360 break;
12361 case Builtin::BI__builtin_mul_overflow:
12362 case Builtin::BI__builtin_smul_overflow:
12363 case Builtin::BI__builtin_smull_overflow:
12364 case Builtin::BI__builtin_smulll_overflow:
12365 case Builtin::BI__builtin_umul_overflow:
12366 case Builtin::BI__builtin_umull_overflow:
12367 case Builtin::BI__builtin_umulll_overflow:
12368 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12369 : LHS.umul_ov(RHS, DidOverflow);
12370 break;
12371 }
12372
12373 // In the case where multiple sizes are allowed, truncate and see if
12374 // the values are the same.
12375 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12376 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12377 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12378 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12379 // since it will give us the behavior of a TruncOrSelf in the case where
12380 // its parameter <= its size. We previously set Result to be at least the
12381 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12382 // will work exactly like TruncOrSelf.
12383 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12384 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12385
12386 if (!APSInt::isSameValue(Temp, Result))
12387 DidOverflow = true;
12388 Result = Temp;
12389 }
12390
12391 APValue APV{Result};
12392 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12393 return false;
12394 return Success(DidOverflow, E);
12395 }
12396 }
12397 }
12398
12399 /// Determine whether this is a pointer past the end of the complete
12400 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)12401 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12402 const LValue &LV) {
12403 // A null pointer can be viewed as being "past the end" but we don't
12404 // choose to look at it that way here.
12405 if (!LV.getLValueBase())
12406 return false;
12407
12408 // If the designator is valid and refers to a subobject, we're not pointing
12409 // past the end.
12410 if (!LV.getLValueDesignator().Invalid &&
12411 !LV.getLValueDesignator().isOnePastTheEnd())
12412 return false;
12413
12414 // A pointer to an incomplete type might be past-the-end if the type's size is
12415 // zero. We cannot tell because the type is incomplete.
12416 QualType Ty = getType(LV.getLValueBase());
12417 if (Ty->isIncompleteType())
12418 return true;
12419
12420 // We're a past-the-end pointer if we point to the byte after the object,
12421 // no matter what our type or path is.
12422 auto Size = Ctx.getTypeSizeInChars(Ty);
12423 return LV.getLValueOffset() == Size;
12424 }
12425
12426 namespace {
12427
12428 /// Data recursive integer evaluator of certain binary operators.
12429 ///
12430 /// We use a data recursive algorithm for binary operators so that we are able
12431 /// to handle extreme cases of chained binary operators without causing stack
12432 /// overflow.
12433 class DataRecursiveIntBinOpEvaluator {
12434 struct EvalResult {
12435 APValue Val;
12436 bool Failed;
12437
EvalResult__anon7a1fdcea2811::DataRecursiveIntBinOpEvaluator::EvalResult12438 EvalResult() : Failed(false) { }
12439
swap__anon7a1fdcea2811::DataRecursiveIntBinOpEvaluator::EvalResult12440 void swap(EvalResult &RHS) {
12441 Val.swap(RHS.Val);
12442 Failed = RHS.Failed;
12443 RHS.Failed = false;
12444 }
12445 };
12446
12447 struct Job {
12448 const Expr *E;
12449 EvalResult LHSResult; // meaningful only for binary operator expression.
12450 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12451
12452 Job() = default;
12453 Job(Job &&) = default;
12454
startSpeculativeEval__anon7a1fdcea2811::DataRecursiveIntBinOpEvaluator::Job12455 void startSpeculativeEval(EvalInfo &Info) {
12456 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12457 }
12458
12459 private:
12460 SpeculativeEvaluationRAII SpecEvalRAII;
12461 };
12462
12463 SmallVector<Job, 16> Queue;
12464
12465 IntExprEvaluator &IntEval;
12466 EvalInfo &Info;
12467 APValue &FinalResult;
12468
12469 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)12470 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12471 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12472
12473 /// True if \param E is a binary operator that we are going to handle
12474 /// data recursively.
12475 /// We handle binary operators that are comma, logical, or that have operands
12476 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)12477 static bool shouldEnqueue(const BinaryOperator *E) {
12478 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12479 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12480 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12481 E->getRHS()->getType()->isIntegralOrEnumerationType());
12482 }
12483
Traverse(const BinaryOperator * E)12484 bool Traverse(const BinaryOperator *E) {
12485 enqueue(E);
12486 EvalResult PrevResult;
12487 while (!Queue.empty())
12488 process(PrevResult);
12489
12490 if (PrevResult.Failed) return false;
12491
12492 FinalResult.swap(PrevResult.Val);
12493 return true;
12494 }
12495
12496 private:
Success(uint64_t Value,const Expr * E,APValue & Result)12497 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12498 return IntEval.Success(Value, E, Result);
12499 }
Success(const APSInt & Value,const Expr * E,APValue & Result)12500 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12501 return IntEval.Success(Value, E, Result);
12502 }
Error(const Expr * E)12503 bool Error(const Expr *E) {
12504 return IntEval.Error(E);
12505 }
Error(const Expr * E,diag::kind D)12506 bool Error(const Expr *E, diag::kind D) {
12507 return IntEval.Error(E, D);
12508 }
12509
CCEDiag(const Expr * E,diag::kind D)12510 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12511 return Info.CCEDiag(E, D);
12512 }
12513
12514 // Returns true if visiting the RHS is necessary, false otherwise.
12515 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12516 bool &SuppressRHSDiags);
12517
12518 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12519 const BinaryOperator *E, APValue &Result);
12520
EvaluateExpr(const Expr * E,EvalResult & Result)12521 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12522 Result.Failed = !Evaluate(Result.Val, Info, E);
12523 if (Result.Failed)
12524 Result.Val = APValue();
12525 }
12526
12527 void process(EvalResult &Result);
12528
enqueue(const Expr * E)12529 void enqueue(const Expr *E) {
12530 E = E->IgnoreParens();
12531 Queue.resize(Queue.size()+1);
12532 Queue.back().E = E;
12533 Queue.back().Kind = Job::AnyExprKind;
12534 }
12535 };
12536
12537 }
12538
12539 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)12540 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12541 bool &SuppressRHSDiags) {
12542 if (E->getOpcode() == BO_Comma) {
12543 // Ignore LHS but note if we could not evaluate it.
12544 if (LHSResult.Failed)
12545 return Info.noteSideEffect();
12546 return true;
12547 }
12548
12549 if (E->isLogicalOp()) {
12550 bool LHSAsBool;
12551 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12552 // We were able to evaluate the LHS, see if we can get away with not
12553 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12554 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12555 Success(LHSAsBool, E, LHSResult.Val);
12556 return false; // Ignore RHS
12557 }
12558 } else {
12559 LHSResult.Failed = true;
12560
12561 // Since we weren't able to evaluate the left hand side, it
12562 // might have had side effects.
12563 if (!Info.noteSideEffect())
12564 return false;
12565
12566 // We can't evaluate the LHS; however, sometimes the result
12567 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12568 // Don't ignore RHS and suppress diagnostics from this arm.
12569 SuppressRHSDiags = true;
12570 }
12571
12572 return true;
12573 }
12574
12575 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12576 E->getRHS()->getType()->isIntegralOrEnumerationType());
12577
12578 if (LHSResult.Failed && !Info.noteFailure())
12579 return false; // Ignore RHS;
12580
12581 return true;
12582 }
12583
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)12584 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12585 bool IsSub) {
12586 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12587 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12588 // offsets.
12589 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12590 CharUnits &Offset = LVal.getLValueOffset();
12591 uint64_t Offset64 = Offset.getQuantity();
12592 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12593 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12594 : Offset64 + Index64);
12595 }
12596
12597 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)12598 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12599 const BinaryOperator *E, APValue &Result) {
12600 if (E->getOpcode() == BO_Comma) {
12601 if (RHSResult.Failed)
12602 return false;
12603 Result = RHSResult.Val;
12604 return true;
12605 }
12606
12607 if (E->isLogicalOp()) {
12608 bool lhsResult, rhsResult;
12609 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12610 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12611
12612 if (LHSIsOK) {
12613 if (RHSIsOK) {
12614 if (E->getOpcode() == BO_LOr)
12615 return Success(lhsResult || rhsResult, E, Result);
12616 else
12617 return Success(lhsResult && rhsResult, E, Result);
12618 }
12619 } else {
12620 if (RHSIsOK) {
12621 // We can't evaluate the LHS; however, sometimes the result
12622 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12623 if (rhsResult == (E->getOpcode() == BO_LOr))
12624 return Success(rhsResult, E, Result);
12625 }
12626 }
12627
12628 return false;
12629 }
12630
12631 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12632 E->getRHS()->getType()->isIntegralOrEnumerationType());
12633
12634 if (LHSResult.Failed || RHSResult.Failed)
12635 return false;
12636
12637 const APValue &LHSVal = LHSResult.Val;
12638 const APValue &RHSVal = RHSResult.Val;
12639
12640 // Handle cases like (unsigned long)&a + 4.
12641 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12642 Result = LHSVal;
12643 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12644 return true;
12645 }
12646
12647 // Handle cases like 4 + (unsigned long)&a
12648 if (E->getOpcode() == BO_Add &&
12649 RHSVal.isLValue() && LHSVal.isInt()) {
12650 Result = RHSVal;
12651 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12652 return true;
12653 }
12654
12655 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12656 // Handle (intptr_t)&&A - (intptr_t)&&B.
12657 if (!LHSVal.getLValueOffset().isZero() ||
12658 !RHSVal.getLValueOffset().isZero())
12659 return false;
12660 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12661 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12662 if (!LHSExpr || !RHSExpr)
12663 return false;
12664 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12665 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12666 if (!LHSAddrExpr || !RHSAddrExpr)
12667 return false;
12668 // Make sure both labels come from the same function.
12669 if (LHSAddrExpr->getLabel()->getDeclContext() !=
12670 RHSAddrExpr->getLabel()->getDeclContext())
12671 return false;
12672 Result = APValue(LHSAddrExpr, RHSAddrExpr);
12673 return true;
12674 }
12675
12676 // All the remaining cases expect both operands to be an integer
12677 if (!LHSVal.isInt() || !RHSVal.isInt())
12678 return Error(E);
12679
12680 // Set up the width and signedness manually, in case it can't be deduced
12681 // from the operation we're performing.
12682 // FIXME: Don't do this in the cases where we can deduce it.
12683 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12684 E->getType()->isUnsignedIntegerOrEnumerationType());
12685 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12686 RHSVal.getInt(), Value))
12687 return false;
12688 return Success(Value, E, Result);
12689 }
12690
process(EvalResult & Result)12691 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12692 Job &job = Queue.back();
12693
12694 switch (job.Kind) {
12695 case Job::AnyExprKind: {
12696 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12697 if (shouldEnqueue(Bop)) {
12698 job.Kind = Job::BinOpKind;
12699 enqueue(Bop->getLHS());
12700 return;
12701 }
12702 }
12703
12704 EvaluateExpr(job.E, Result);
12705 Queue.pop_back();
12706 return;
12707 }
12708
12709 case Job::BinOpKind: {
12710 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12711 bool SuppressRHSDiags = false;
12712 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12713 Queue.pop_back();
12714 return;
12715 }
12716 if (SuppressRHSDiags)
12717 job.startSpeculativeEval(Info);
12718 job.LHSResult.swap(Result);
12719 job.Kind = Job::BinOpVisitedLHSKind;
12720 enqueue(Bop->getRHS());
12721 return;
12722 }
12723
12724 case Job::BinOpVisitedLHSKind: {
12725 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12726 EvalResult RHS;
12727 RHS.swap(Result);
12728 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12729 Queue.pop_back();
12730 return;
12731 }
12732 }
12733
12734 llvm_unreachable("Invalid Job::Kind!");
12735 }
12736
12737 namespace {
12738 enum class CmpResult {
12739 Unequal,
12740 Less,
12741 Equal,
12742 Greater,
12743 Unordered,
12744 };
12745 }
12746
12747 template <class SuccessCB, class AfterCB>
12748 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)12749 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12750 SuccessCB &&Success, AfterCB &&DoAfter) {
12751 assert(!E->isValueDependent());
12752 assert(E->isComparisonOp() && "expected comparison operator");
12753 assert((E->getOpcode() == BO_Cmp ||
12754 E->getType()->isIntegralOrEnumerationType()) &&
12755 "unsupported binary expression evaluation");
12756 auto Error = [&](const Expr *E) {
12757 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12758 return false;
12759 };
12760
12761 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12762 bool IsEquality = E->isEqualityOp();
12763
12764 QualType LHSTy = E->getLHS()->getType();
12765 QualType RHSTy = E->getRHS()->getType();
12766
12767 if (LHSTy->isIntegralOrEnumerationType() &&
12768 RHSTy->isIntegralOrEnumerationType()) {
12769 APSInt LHS, RHS;
12770 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12771 if (!LHSOK && !Info.noteFailure())
12772 return false;
12773 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12774 return false;
12775 if (LHS < RHS)
12776 return Success(CmpResult::Less, E);
12777 if (LHS > RHS)
12778 return Success(CmpResult::Greater, E);
12779 return Success(CmpResult::Equal, E);
12780 }
12781
12782 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12783 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12784 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12785
12786 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12787 if (!LHSOK && !Info.noteFailure())
12788 return false;
12789 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12790 return false;
12791 if (LHSFX < RHSFX)
12792 return Success(CmpResult::Less, E);
12793 if (LHSFX > RHSFX)
12794 return Success(CmpResult::Greater, E);
12795 return Success(CmpResult::Equal, E);
12796 }
12797
12798 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12799 ComplexValue LHS, RHS;
12800 bool LHSOK;
12801 if (E->isAssignmentOp()) {
12802 LValue LV;
12803 EvaluateLValue(E->getLHS(), LV, Info);
12804 LHSOK = false;
12805 } else if (LHSTy->isRealFloatingType()) {
12806 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12807 if (LHSOK) {
12808 LHS.makeComplexFloat();
12809 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12810 }
12811 } else {
12812 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12813 }
12814 if (!LHSOK && !Info.noteFailure())
12815 return false;
12816
12817 if (E->getRHS()->getType()->isRealFloatingType()) {
12818 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12819 return false;
12820 RHS.makeComplexFloat();
12821 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12822 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12823 return false;
12824
12825 if (LHS.isComplexFloat()) {
12826 APFloat::cmpResult CR_r =
12827 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12828 APFloat::cmpResult CR_i =
12829 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12830 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12831 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12832 } else {
12833 assert(IsEquality && "invalid complex comparison");
12834 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12835 LHS.getComplexIntImag() == RHS.getComplexIntImag();
12836 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12837 }
12838 }
12839
12840 if (LHSTy->isRealFloatingType() &&
12841 RHSTy->isRealFloatingType()) {
12842 APFloat RHS(0.0), LHS(0.0);
12843
12844 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12845 if (!LHSOK && !Info.noteFailure())
12846 return false;
12847
12848 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12849 return false;
12850
12851 assert(E->isComparisonOp() && "Invalid binary operator!");
12852 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12853 if (!Info.InConstantContext &&
12854 APFloatCmpResult == APFloat::cmpUnordered &&
12855 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12856 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12857 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12858 return false;
12859 }
12860 auto GetCmpRes = [&]() {
12861 switch (APFloatCmpResult) {
12862 case APFloat::cmpEqual:
12863 return CmpResult::Equal;
12864 case APFloat::cmpLessThan:
12865 return CmpResult::Less;
12866 case APFloat::cmpGreaterThan:
12867 return CmpResult::Greater;
12868 case APFloat::cmpUnordered:
12869 return CmpResult::Unordered;
12870 }
12871 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12872 };
12873 return Success(GetCmpRes(), E);
12874 }
12875
12876 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12877 LValue LHSValue, RHSValue;
12878
12879 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12880 if (!LHSOK && !Info.noteFailure())
12881 return false;
12882
12883 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12884 return false;
12885
12886 // Reject differing bases from the normal codepath; we special-case
12887 // comparisons to null.
12888 if (!HasSameBase(LHSValue, RHSValue)) {
12889 // Inequalities and subtractions between unrelated pointers have
12890 // unspecified or undefined behavior.
12891 if (!IsEquality) {
12892 Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12893 return false;
12894 }
12895 // A constant address may compare equal to the address of a symbol.
12896 // The one exception is that address of an object cannot compare equal
12897 // to a null pointer constant.
12898 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12899 (!RHSValue.Base && !RHSValue.Offset.isZero()))
12900 return Error(E);
12901 // It's implementation-defined whether distinct literals will have
12902 // distinct addresses. In clang, the result of such a comparison is
12903 // unspecified, so it is not a constant expression. However, we do know
12904 // that the address of a literal will be non-null.
12905 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12906 LHSValue.Base && RHSValue.Base)
12907 return Error(E);
12908 // We can't tell whether weak symbols will end up pointing to the same
12909 // object.
12910 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12911 return Error(E);
12912 // We can't compare the address of the start of one object with the
12913 // past-the-end address of another object, per C++ DR1652.
12914 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12915 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12916 (RHSValue.Base && RHSValue.Offset.isZero() &&
12917 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12918 return Error(E);
12919 // We can't tell whether an object is at the same address as another
12920 // zero sized object.
12921 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12922 (LHSValue.Base && isZeroSized(RHSValue)))
12923 return Error(E);
12924 return Success(CmpResult::Unequal, E);
12925 }
12926
12927 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12928 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12929
12930 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12931 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12932
12933 // C++11 [expr.rel]p3:
12934 // Pointers to void (after pointer conversions) can be compared, with a
12935 // result defined as follows: If both pointers represent the same
12936 // address or are both the null pointer value, the result is true if the
12937 // operator is <= or >= and false otherwise; otherwise the result is
12938 // unspecified.
12939 // We interpret this as applying to pointers to *cv* void.
12940 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12941 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12942
12943 // C++11 [expr.rel]p2:
12944 // - If two pointers point to non-static data members of the same object,
12945 // or to subobjects or array elements fo such members, recursively, the
12946 // pointer to the later declared member compares greater provided the
12947 // two members have the same access control and provided their class is
12948 // not a union.
12949 // [...]
12950 // - Otherwise pointer comparisons are unspecified.
12951 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12952 bool WasArrayIndex;
12953 unsigned Mismatch = FindDesignatorMismatch(
12954 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12955 // At the point where the designators diverge, the comparison has a
12956 // specified value if:
12957 // - we are comparing array indices
12958 // - we are comparing fields of a union, or fields with the same access
12959 // Otherwise, the result is unspecified and thus the comparison is not a
12960 // constant expression.
12961 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12962 Mismatch < RHSDesignator.Entries.size()) {
12963 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12964 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12965 if (!LF && !RF)
12966 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12967 else if (!LF)
12968 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12969 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12970 << RF->getParent() << RF;
12971 else if (!RF)
12972 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12973 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12974 << LF->getParent() << LF;
12975 else if (!LF->getParent()->isUnion() &&
12976 LF->getAccess() != RF->getAccess())
12977 Info.CCEDiag(E,
12978 diag::note_constexpr_pointer_comparison_differing_access)
12979 << LF << LF->getAccess() << RF << RF->getAccess()
12980 << LF->getParent();
12981 }
12982 }
12983
12984 // The comparison here must be unsigned, and performed with the same
12985 // width as the pointer.
12986 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12987 uint64_t CompareLHS = LHSOffset.getQuantity();
12988 uint64_t CompareRHS = RHSOffset.getQuantity();
12989 assert(PtrSize <= 64 && "Unexpected pointer width");
12990 uint64_t Mask = ~0ULL >> (64 - PtrSize);
12991 CompareLHS &= Mask;
12992 CompareRHS &= Mask;
12993
12994 // If there is a base and this is a relational operator, we can only
12995 // compare pointers within the object in question; otherwise, the result
12996 // depends on where the object is located in memory.
12997 if (!LHSValue.Base.isNull() && IsRelational) {
12998 QualType BaseTy = getType(LHSValue.Base);
12999 if (BaseTy->isIncompleteType())
13000 return Error(E);
13001 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13002 uint64_t OffsetLimit = Size.getQuantity();
13003 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13004 return Error(E);
13005 }
13006
13007 if (CompareLHS < CompareRHS)
13008 return Success(CmpResult::Less, E);
13009 if (CompareLHS > CompareRHS)
13010 return Success(CmpResult::Greater, E);
13011 return Success(CmpResult::Equal, E);
13012 }
13013
13014 if (LHSTy->isMemberPointerType()) {
13015 assert(IsEquality && "unexpected member pointer operation");
13016 assert(RHSTy->isMemberPointerType() && "invalid comparison");
13017
13018 MemberPtr LHSValue, RHSValue;
13019
13020 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13021 if (!LHSOK && !Info.noteFailure())
13022 return false;
13023
13024 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13025 return false;
13026
13027 // C++11 [expr.eq]p2:
13028 // If both operands are null, they compare equal. Otherwise if only one is
13029 // null, they compare unequal.
13030 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13031 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13032 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13033 }
13034
13035 // Otherwise if either is a pointer to a virtual member function, the
13036 // result is unspecified.
13037 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13038 if (MD->isVirtual())
13039 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13040 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13041 if (MD->isVirtual())
13042 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13043
13044 // Otherwise they compare equal if and only if they would refer to the
13045 // same member of the same most derived object or the same subobject if
13046 // they were dereferenced with a hypothetical object of the associated
13047 // class type.
13048 bool Equal = LHSValue == RHSValue;
13049 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13050 }
13051
13052 if (LHSTy->isNullPtrType()) {
13053 assert(E->isComparisonOp() && "unexpected nullptr operation");
13054 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13055 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13056 // are compared, the result is true of the operator is <=, >= or ==, and
13057 // false otherwise.
13058 return Success(CmpResult::Equal, E);
13059 }
13060
13061 return DoAfter();
13062 }
13063
VisitBinCmp(const BinaryOperator * E)13064 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13065 if (!CheckLiteralType(Info, E))
13066 return false;
13067
13068 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13069 ComparisonCategoryResult CCR;
13070 switch (CR) {
13071 case CmpResult::Unequal:
13072 llvm_unreachable("should never produce Unequal for three-way comparison");
13073 case CmpResult::Less:
13074 CCR = ComparisonCategoryResult::Less;
13075 break;
13076 case CmpResult::Equal:
13077 CCR = ComparisonCategoryResult::Equal;
13078 break;
13079 case CmpResult::Greater:
13080 CCR = ComparisonCategoryResult::Greater;
13081 break;
13082 case CmpResult::Unordered:
13083 CCR = ComparisonCategoryResult::Unordered;
13084 break;
13085 }
13086 // Evaluation succeeded. Lookup the information for the comparison category
13087 // type and fetch the VarDecl for the result.
13088 const ComparisonCategoryInfo &CmpInfo =
13089 Info.Ctx.CompCategories.getInfoForType(E->getType());
13090 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13091 // Check and evaluate the result as a constant expression.
13092 LValue LV;
13093 LV.set(VD);
13094 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13095 return false;
13096 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13097 ConstantExprKind::Normal);
13098 };
13099 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13100 return ExprEvaluatorBaseTy::VisitBinCmp(E);
13101 });
13102 }
13103
VisitBinaryOperator(const BinaryOperator * E)13104 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13105 // We don't support assignment in C. C++ assignments don't get here because
13106 // assignment is an lvalue in C++.
13107 if (E->isAssignmentOp()) {
13108 Error(E);
13109 if (!Info.noteFailure())
13110 return false;
13111 }
13112
13113 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13114 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13115
13116 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13117 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13118 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13119
13120 if (E->isComparisonOp()) {
13121 // Evaluate builtin binary comparisons by evaluating them as three-way
13122 // comparisons and then translating the result.
13123 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13124 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13125 "should only produce Unequal for equality comparisons");
13126 bool IsEqual = CR == CmpResult::Equal,
13127 IsLess = CR == CmpResult::Less,
13128 IsGreater = CR == CmpResult::Greater;
13129 auto Op = E->getOpcode();
13130 switch (Op) {
13131 default:
13132 llvm_unreachable("unsupported binary operator");
13133 case BO_EQ:
13134 case BO_NE:
13135 return Success(IsEqual == (Op == BO_EQ), E);
13136 case BO_LT:
13137 return Success(IsLess, E);
13138 case BO_GT:
13139 return Success(IsGreater, E);
13140 case BO_LE:
13141 return Success(IsEqual || IsLess, E);
13142 case BO_GE:
13143 return Success(IsEqual || IsGreater, E);
13144 }
13145 };
13146 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13147 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13148 });
13149 }
13150
13151 QualType LHSTy = E->getLHS()->getType();
13152 QualType RHSTy = E->getRHS()->getType();
13153
13154 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13155 E->getOpcode() == BO_Sub) {
13156 LValue LHSValue, RHSValue;
13157
13158 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13159 if (!LHSOK && !Info.noteFailure())
13160 return false;
13161
13162 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13163 return false;
13164
13165 // Reject differing bases from the normal codepath; we special-case
13166 // comparisons to null.
13167 if (!HasSameBase(LHSValue, RHSValue)) {
13168 // Handle &&A - &&B.
13169 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13170 return Error(E);
13171 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13172 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13173 if (!LHSExpr || !RHSExpr)
13174 return Error(E);
13175 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13176 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13177 if (!LHSAddrExpr || !RHSAddrExpr)
13178 return Error(E);
13179 // Make sure both labels come from the same function.
13180 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13181 RHSAddrExpr->getLabel()->getDeclContext())
13182 return Error(E);
13183 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13184 }
13185 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13186 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13187
13188 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13189 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13190
13191 // C++11 [expr.add]p6:
13192 // Unless both pointers point to elements of the same array object, or
13193 // one past the last element of the array object, the behavior is
13194 // undefined.
13195 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13196 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13197 RHSDesignator))
13198 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13199
13200 QualType Type = E->getLHS()->getType();
13201 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13202
13203 CharUnits ElementSize;
13204 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13205 return false;
13206
13207 // As an extension, a type may have zero size (empty struct or union in
13208 // C, array of zero length). Pointer subtraction in such cases has
13209 // undefined behavior, so is not constant.
13210 if (ElementSize.isZero()) {
13211 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13212 << ElementType;
13213 return false;
13214 }
13215
13216 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13217 // and produce incorrect results when it overflows. Such behavior
13218 // appears to be non-conforming, but is common, so perhaps we should
13219 // assume the standard intended for such cases to be undefined behavior
13220 // and check for them.
13221
13222 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13223 // overflow in the final conversion to ptrdiff_t.
13224 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13225 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13226 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13227 false);
13228 APSInt TrueResult = (LHS - RHS) / ElemSize;
13229 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13230
13231 if (Result.extend(65) != TrueResult &&
13232 !HandleOverflow(Info, E, TrueResult, E->getType()))
13233 return false;
13234 return Success(Result, E);
13235 }
13236
13237 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13238 }
13239
13240 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13241 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)13242 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13243 const UnaryExprOrTypeTraitExpr *E) {
13244 switch(E->getKind()) {
13245 case UETT_PreferredAlignOf:
13246 case UETT_AlignOf: {
13247 if (E->isArgumentType())
13248 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13249 E);
13250 else
13251 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13252 E);
13253 }
13254
13255 case UETT_VecStep: {
13256 QualType Ty = E->getTypeOfArgument();
13257
13258 if (Ty->isVectorType()) {
13259 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13260
13261 // The vec_step built-in functions that take a 3-component
13262 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13263 if (n == 3)
13264 n = 4;
13265
13266 return Success(n, E);
13267 } else
13268 return Success(1, E);
13269 }
13270
13271 case UETT_SizeOf: {
13272 QualType SrcTy = E->getTypeOfArgument();
13273 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13274 // the result is the size of the referenced type."
13275 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13276 SrcTy = Ref->getPointeeType();
13277
13278 CharUnits Sizeof;
13279 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13280 return false;
13281 return Success(Sizeof, E);
13282 }
13283 case UETT_OpenMPRequiredSimdAlign:
13284 assert(E->isArgumentType());
13285 return Success(
13286 Info.Ctx.toCharUnitsFromBits(
13287 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13288 .getQuantity(),
13289 E);
13290 }
13291
13292 llvm_unreachable("unknown expr/type trait");
13293 }
13294
VisitOffsetOfExpr(const OffsetOfExpr * OOE)13295 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13296 CharUnits Result;
13297 unsigned n = OOE->getNumComponents();
13298 if (n == 0)
13299 return Error(OOE);
13300 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13301 for (unsigned i = 0; i != n; ++i) {
13302 OffsetOfNode ON = OOE->getComponent(i);
13303 switch (ON.getKind()) {
13304 case OffsetOfNode::Array: {
13305 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13306 APSInt IdxResult;
13307 if (!EvaluateInteger(Idx, IdxResult, Info))
13308 return false;
13309 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13310 if (!AT)
13311 return Error(OOE);
13312 CurrentType = AT->getElementType();
13313 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13314 Result += IdxResult.getSExtValue() * ElementSize;
13315 break;
13316 }
13317
13318 case OffsetOfNode::Field: {
13319 FieldDecl *MemberDecl = ON.getField();
13320 const RecordType *RT = CurrentType->getAs<RecordType>();
13321 if (!RT)
13322 return Error(OOE);
13323 RecordDecl *RD = RT->getDecl();
13324 if (RD->isInvalidDecl()) return false;
13325 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13326 unsigned i = MemberDecl->getFieldIndex();
13327 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13328 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13329 CurrentType = MemberDecl->getType().getNonReferenceType();
13330 break;
13331 }
13332
13333 case OffsetOfNode::Identifier:
13334 llvm_unreachable("dependent __builtin_offsetof");
13335
13336 case OffsetOfNode::Base: {
13337 CXXBaseSpecifier *BaseSpec = ON.getBase();
13338 if (BaseSpec->isVirtual())
13339 return Error(OOE);
13340
13341 // Find the layout of the class whose base we are looking into.
13342 const RecordType *RT = CurrentType->getAs<RecordType>();
13343 if (!RT)
13344 return Error(OOE);
13345 RecordDecl *RD = RT->getDecl();
13346 if (RD->isInvalidDecl()) return false;
13347 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13348
13349 // Find the base class itself.
13350 CurrentType = BaseSpec->getType();
13351 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13352 if (!BaseRT)
13353 return Error(OOE);
13354
13355 // Add the offset to the base.
13356 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13357 break;
13358 }
13359 }
13360 }
13361 return Success(Result, OOE);
13362 }
13363
VisitUnaryOperator(const UnaryOperator * E)13364 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13365 switch (E->getOpcode()) {
13366 default:
13367 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13368 // See C99 6.6p3.
13369 return Error(E);
13370 case UO_Extension:
13371 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13372 // If so, we could clear the diagnostic ID.
13373 return Visit(E->getSubExpr());
13374 case UO_Plus:
13375 // The result is just the value.
13376 return Visit(E->getSubExpr());
13377 case UO_Minus: {
13378 if (!Visit(E->getSubExpr()))
13379 return false;
13380 if (!Result.isInt()) return Error(E);
13381 const APSInt &Value = Result.getInt();
13382 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13383 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13384 E->getType()))
13385 return false;
13386 return Success(-Value, E);
13387 }
13388 case UO_Not: {
13389 if (!Visit(E->getSubExpr()))
13390 return false;
13391 if (!Result.isInt()) return Error(E);
13392 return Success(~Result.getInt(), E);
13393 }
13394 case UO_LNot: {
13395 bool bres;
13396 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13397 return false;
13398 return Success(!bres, E);
13399 }
13400 }
13401 }
13402
13403 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13404 /// result type is integer.
VisitCastExpr(const CastExpr * E)13405 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13406 const Expr *SubExpr = E->getSubExpr();
13407 QualType DestType = E->getType();
13408 QualType SrcType = SubExpr->getType();
13409
13410 switch (E->getCastKind()) {
13411 case CK_BaseToDerived:
13412 case CK_DerivedToBase:
13413 case CK_UncheckedDerivedToBase:
13414 case CK_Dynamic:
13415 case CK_ToUnion:
13416 case CK_ArrayToPointerDecay:
13417 case CK_FunctionToPointerDecay:
13418 case CK_NullToPointer:
13419 case CK_NullToMemberPointer:
13420 case CK_BaseToDerivedMemberPointer:
13421 case CK_DerivedToBaseMemberPointer:
13422 case CK_ReinterpretMemberPointer:
13423 case CK_ConstructorConversion:
13424 case CK_IntegralToPointer:
13425 case CK_ToVoid:
13426 case CK_VectorSplat:
13427 case CK_IntegralToFloating:
13428 case CK_FloatingCast:
13429 case CK_CPointerToObjCPointerCast:
13430 case CK_BlockPointerToObjCPointerCast:
13431 case CK_AnyPointerToBlockPointerCast:
13432 case CK_ObjCObjectLValueCast:
13433 case CK_FloatingRealToComplex:
13434 case CK_FloatingComplexToReal:
13435 case CK_FloatingComplexCast:
13436 case CK_FloatingComplexToIntegralComplex:
13437 case CK_IntegralRealToComplex:
13438 case CK_IntegralComplexCast:
13439 case CK_IntegralComplexToFloatingComplex:
13440 case CK_BuiltinFnToFnPtr:
13441 case CK_ZeroToOCLOpaqueType:
13442 case CK_NonAtomicToAtomic:
13443 case CK_AddressSpaceConversion:
13444 case CK_IntToOCLSampler:
13445 case CK_FloatingToFixedPoint:
13446 case CK_FixedPointToFloating:
13447 case CK_FixedPointCast:
13448 case CK_IntegralToFixedPoint:
13449 case CK_MatrixCast:
13450 llvm_unreachable("invalid cast kind for integral value");
13451
13452 case CK_BitCast:
13453 case CK_Dependent:
13454 case CK_LValueBitCast:
13455 case CK_ARCProduceObject:
13456 case CK_ARCConsumeObject:
13457 case CK_ARCReclaimReturnedObject:
13458 case CK_ARCExtendBlockObject:
13459 case CK_CopyAndAutoreleaseBlockObject:
13460 return Error(E);
13461
13462 case CK_UserDefinedConversion:
13463 case CK_LValueToRValue:
13464 case CK_AtomicToNonAtomic:
13465 case CK_NoOp:
13466 case CK_LValueToRValueBitCast:
13467 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13468
13469 case CK_MemberPointerToBoolean:
13470 case CK_PointerToBoolean:
13471 case CK_IntegralToBoolean:
13472 case CK_FloatingToBoolean:
13473 case CK_BooleanToSignedIntegral:
13474 case CK_FloatingComplexToBoolean:
13475 case CK_IntegralComplexToBoolean: {
13476 bool BoolResult;
13477 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13478 return false;
13479 uint64_t IntResult = BoolResult;
13480 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13481 IntResult = (uint64_t)-1;
13482 return Success(IntResult, E);
13483 }
13484
13485 case CK_FixedPointToIntegral: {
13486 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13487 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13488 return false;
13489 bool Overflowed;
13490 llvm::APSInt Result = Src.convertToInt(
13491 Info.Ctx.getIntWidth(DestType),
13492 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13493 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13494 return false;
13495 return Success(Result, E);
13496 }
13497
13498 case CK_FixedPointToBoolean: {
13499 // Unsigned padding does not affect this.
13500 APValue Val;
13501 if (!Evaluate(Val, Info, SubExpr))
13502 return false;
13503 return Success(Val.getFixedPoint().getBoolValue(), E);
13504 }
13505
13506 case CK_IntegralCast: {
13507 if (!Visit(SubExpr))
13508 return false;
13509
13510 if (!Result.isInt()) {
13511 // Allow casts of address-of-label differences if they are no-ops
13512 // or narrowing. (The narrowing case isn't actually guaranteed to
13513 // be constant-evaluatable except in some narrow cases which are hard
13514 // to detect here. We let it through on the assumption the user knows
13515 // what they are doing.)
13516 if (Result.isAddrLabelDiff())
13517 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13518 // Only allow casts of lvalues if they are lossless.
13519 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13520 }
13521
13522 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13523 Result.getInt()), E);
13524 }
13525
13526 case CK_PointerToIntegral: {
13527 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13528
13529 LValue LV;
13530 if (!EvaluatePointer(SubExpr, LV, Info))
13531 return false;
13532
13533 if (LV.getLValueBase()) {
13534 // Only allow based lvalue casts if they are lossless.
13535 // FIXME: Allow a larger integer size than the pointer size, and allow
13536 // narrowing back down to pointer width in subsequent integral casts.
13537 // FIXME: Check integer type's active bits, not its type size.
13538 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13539 return Error(E);
13540
13541 LV.Designator.setInvalid();
13542 LV.moveInto(Result);
13543 return true;
13544 }
13545
13546 APSInt AsInt;
13547 APValue V;
13548 LV.moveInto(V);
13549 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13550 llvm_unreachable("Can't cast this!");
13551
13552 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13553 }
13554
13555 case CK_IntegralComplexToReal: {
13556 ComplexValue C;
13557 if (!EvaluateComplex(SubExpr, C, Info))
13558 return false;
13559 return Success(C.getComplexIntReal(), E);
13560 }
13561
13562 case CK_FloatingToIntegral: {
13563 APFloat F(0.0);
13564 if (!EvaluateFloat(SubExpr, F, Info))
13565 return false;
13566
13567 APSInt Value;
13568 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13569 return false;
13570 return Success(Value, E);
13571 }
13572 }
13573
13574 llvm_unreachable("unknown cast resulting in integral value");
13575 }
13576
VisitUnaryReal(const UnaryOperator * E)13577 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13578 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13579 ComplexValue LV;
13580 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13581 return false;
13582 if (!LV.isComplexInt())
13583 return Error(E);
13584 return Success(LV.getComplexIntReal(), E);
13585 }
13586
13587 return Visit(E->getSubExpr());
13588 }
13589
VisitUnaryImag(const UnaryOperator * E)13590 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13591 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13592 ComplexValue LV;
13593 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13594 return false;
13595 if (!LV.isComplexInt())
13596 return Error(E);
13597 return Success(LV.getComplexIntImag(), E);
13598 }
13599
13600 VisitIgnoredValue(E->getSubExpr());
13601 return Success(0, E);
13602 }
13603
VisitSizeOfPackExpr(const SizeOfPackExpr * E)13604 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13605 return Success(E->getPackLength(), E);
13606 }
13607
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)13608 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13609 return Success(E->getValue(), E);
13610 }
13611
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)13612 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13613 const ConceptSpecializationExpr *E) {
13614 return Success(E->isSatisfied(), E);
13615 }
13616
VisitRequiresExpr(const RequiresExpr * E)13617 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13618 return Success(E->isSatisfied(), E);
13619 }
13620
VisitUnaryOperator(const UnaryOperator * E)13621 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13622 switch (E->getOpcode()) {
13623 default:
13624 // Invalid unary operators
13625 return Error(E);
13626 case UO_Plus:
13627 // The result is just the value.
13628 return Visit(E->getSubExpr());
13629 case UO_Minus: {
13630 if (!Visit(E->getSubExpr())) return false;
13631 if (!Result.isFixedPoint())
13632 return Error(E);
13633 bool Overflowed;
13634 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13635 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13636 return false;
13637 return Success(Negated, E);
13638 }
13639 case UO_LNot: {
13640 bool bres;
13641 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13642 return false;
13643 return Success(!bres, E);
13644 }
13645 }
13646 }
13647
VisitCastExpr(const CastExpr * E)13648 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13649 const Expr *SubExpr = E->getSubExpr();
13650 QualType DestType = E->getType();
13651 assert(DestType->isFixedPointType() &&
13652 "Expected destination type to be a fixed point type");
13653 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13654
13655 switch (E->getCastKind()) {
13656 case CK_FixedPointCast: {
13657 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13658 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13659 return false;
13660 bool Overflowed;
13661 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13662 if (Overflowed) {
13663 if (Info.checkingForUndefinedBehavior())
13664 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13665 diag::warn_fixedpoint_constant_overflow)
13666 << Result.toString() << E->getType();
13667 if (!HandleOverflow(Info, E, Result, E->getType()))
13668 return false;
13669 }
13670 return Success(Result, E);
13671 }
13672 case CK_IntegralToFixedPoint: {
13673 APSInt Src;
13674 if (!EvaluateInteger(SubExpr, Src, Info))
13675 return false;
13676
13677 bool Overflowed;
13678 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13679 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13680
13681 if (Overflowed) {
13682 if (Info.checkingForUndefinedBehavior())
13683 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13684 diag::warn_fixedpoint_constant_overflow)
13685 << IntResult.toString() << E->getType();
13686 if (!HandleOverflow(Info, E, IntResult, E->getType()))
13687 return false;
13688 }
13689
13690 return Success(IntResult, E);
13691 }
13692 case CK_FloatingToFixedPoint: {
13693 APFloat Src(0.0);
13694 if (!EvaluateFloat(SubExpr, Src, Info))
13695 return false;
13696
13697 bool Overflowed;
13698 APFixedPoint Result = APFixedPoint::getFromFloatValue(
13699 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13700
13701 if (Overflowed) {
13702 if (Info.checkingForUndefinedBehavior())
13703 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13704 diag::warn_fixedpoint_constant_overflow)
13705 << Result.toString() << E->getType();
13706 if (!HandleOverflow(Info, E, Result, E->getType()))
13707 return false;
13708 }
13709
13710 return Success(Result, E);
13711 }
13712 case CK_NoOp:
13713 case CK_LValueToRValue:
13714 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13715 default:
13716 return Error(E);
13717 }
13718 }
13719
VisitBinaryOperator(const BinaryOperator * E)13720 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13721 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13722 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13723
13724 const Expr *LHS = E->getLHS();
13725 const Expr *RHS = E->getRHS();
13726 FixedPointSemantics ResultFXSema =
13727 Info.Ctx.getFixedPointSemantics(E->getType());
13728
13729 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13730 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13731 return false;
13732 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13733 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13734 return false;
13735
13736 bool OpOverflow = false, ConversionOverflow = false;
13737 APFixedPoint Result(LHSFX.getSemantics());
13738 switch (E->getOpcode()) {
13739 case BO_Add: {
13740 Result = LHSFX.add(RHSFX, &OpOverflow)
13741 .convert(ResultFXSema, &ConversionOverflow);
13742 break;
13743 }
13744 case BO_Sub: {
13745 Result = LHSFX.sub(RHSFX, &OpOverflow)
13746 .convert(ResultFXSema, &ConversionOverflow);
13747 break;
13748 }
13749 case BO_Mul: {
13750 Result = LHSFX.mul(RHSFX, &OpOverflow)
13751 .convert(ResultFXSema, &ConversionOverflow);
13752 break;
13753 }
13754 case BO_Div: {
13755 if (RHSFX.getValue() == 0) {
13756 Info.FFDiag(E, diag::note_expr_divide_by_zero);
13757 return false;
13758 }
13759 Result = LHSFX.div(RHSFX, &OpOverflow)
13760 .convert(ResultFXSema, &ConversionOverflow);
13761 break;
13762 }
13763 case BO_Shl:
13764 case BO_Shr: {
13765 FixedPointSemantics LHSSema = LHSFX.getSemantics();
13766 llvm::APSInt RHSVal = RHSFX.getValue();
13767
13768 unsigned ShiftBW =
13769 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13770 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13771 // Embedded-C 4.1.6.2.2:
13772 // The right operand must be nonnegative and less than the total number
13773 // of (nonpadding) bits of the fixed-point operand ...
13774 if (RHSVal.isNegative())
13775 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13776 else if (Amt != RHSVal)
13777 Info.CCEDiag(E, diag::note_constexpr_large_shift)
13778 << RHSVal << E->getType() << ShiftBW;
13779
13780 if (E->getOpcode() == BO_Shl)
13781 Result = LHSFX.shl(Amt, &OpOverflow);
13782 else
13783 Result = LHSFX.shr(Amt, &OpOverflow);
13784 break;
13785 }
13786 default:
13787 return false;
13788 }
13789 if (OpOverflow || ConversionOverflow) {
13790 if (Info.checkingForUndefinedBehavior())
13791 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13792 diag::warn_fixedpoint_constant_overflow)
13793 << Result.toString() << E->getType();
13794 if (!HandleOverflow(Info, E, Result, E->getType()))
13795 return false;
13796 }
13797 return Success(Result, E);
13798 }
13799
13800 //===----------------------------------------------------------------------===//
13801 // Float Evaluation
13802 //===----------------------------------------------------------------------===//
13803
13804 namespace {
13805 class FloatExprEvaluator
13806 : public ExprEvaluatorBase<FloatExprEvaluator> {
13807 APFloat &Result;
13808 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)13809 FloatExprEvaluator(EvalInfo &info, APFloat &result)
13810 : ExprEvaluatorBaseTy(info), Result(result) {}
13811
Success(const APValue & V,const Expr * e)13812 bool Success(const APValue &V, const Expr *e) {
13813 Result = V.getFloat();
13814 return true;
13815 }
13816
ZeroInitialization(const Expr * E)13817 bool ZeroInitialization(const Expr *E) {
13818 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13819 return true;
13820 }
13821
13822 bool VisitCallExpr(const CallExpr *E);
13823
13824 bool VisitUnaryOperator(const UnaryOperator *E);
13825 bool VisitBinaryOperator(const BinaryOperator *E);
13826 bool VisitFloatingLiteral(const FloatingLiteral *E);
13827 bool VisitCastExpr(const CastExpr *E);
13828
13829 bool VisitUnaryReal(const UnaryOperator *E);
13830 bool VisitUnaryImag(const UnaryOperator *E);
13831
13832 // FIXME: Missing: array subscript of vector, member of vector
13833 };
13834 } // end anonymous namespace
13835
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)13836 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13837 assert(!E->isValueDependent());
13838 assert(E->isPRValue() && E->getType()->isRealFloatingType());
13839 return FloatExprEvaluator(Info, Result).Visit(E);
13840 }
13841
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)13842 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13843 QualType ResultTy,
13844 const Expr *Arg,
13845 bool SNaN,
13846 llvm::APFloat &Result) {
13847 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13848 if (!S) return false;
13849
13850 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13851
13852 llvm::APInt fill;
13853
13854 // Treat empty strings as if they were zero.
13855 if (S->getString().empty())
13856 fill = llvm::APInt(32, 0);
13857 else if (S->getString().getAsInteger(0, fill))
13858 return false;
13859
13860 if (Context.getTargetInfo().isNan2008()) {
13861 if (SNaN)
13862 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13863 else
13864 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13865 } else {
13866 // Prior to IEEE 754-2008, architectures were allowed to choose whether
13867 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13868 // a different encoding to what became a standard in 2008, and for pre-
13869 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13870 // sNaN. This is now known as "legacy NaN" encoding.
13871 if (SNaN)
13872 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13873 else
13874 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13875 }
13876
13877 return true;
13878 }
13879
VisitCallExpr(const CallExpr * E)13880 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13881 switch (E->getBuiltinCallee()) {
13882 default:
13883 return ExprEvaluatorBaseTy::VisitCallExpr(E);
13884
13885 case Builtin::BI__builtin_huge_val:
13886 case Builtin::BI__builtin_huge_valf:
13887 case Builtin::BI__builtin_huge_vall:
13888 case Builtin::BI__builtin_huge_valf16:
13889 case Builtin::BI__builtin_huge_valf128:
13890 case Builtin::BI__builtin_inf:
13891 case Builtin::BI__builtin_inff:
13892 case Builtin::BI__builtin_infl:
13893 case Builtin::BI__builtin_inff16:
13894 case Builtin::BI__builtin_inff128: {
13895 const llvm::fltSemantics &Sem =
13896 Info.Ctx.getFloatTypeSemantics(E->getType());
13897 Result = llvm::APFloat::getInf(Sem);
13898 return true;
13899 }
13900
13901 case Builtin::BI__builtin_nans:
13902 case Builtin::BI__builtin_nansf:
13903 case Builtin::BI__builtin_nansl:
13904 case Builtin::BI__builtin_nansf16:
13905 case Builtin::BI__builtin_nansf128:
13906 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13907 true, Result))
13908 return Error(E);
13909 return true;
13910
13911 case Builtin::BI__builtin_nan:
13912 case Builtin::BI__builtin_nanf:
13913 case Builtin::BI__builtin_nanl:
13914 case Builtin::BI__builtin_nanf16:
13915 case Builtin::BI__builtin_nanf128:
13916 // If this is __builtin_nan() turn this into a nan, otherwise we
13917 // can't constant fold it.
13918 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13919 false, Result))
13920 return Error(E);
13921 return true;
13922
13923 case Builtin::BI__builtin_fabs:
13924 case Builtin::BI__builtin_fabsf:
13925 case Builtin::BI__builtin_fabsl:
13926 case Builtin::BI__builtin_fabsf128:
13927 // The C standard says "fabs raises no floating-point exceptions,
13928 // even if x is a signaling NaN. The returned value is independent of
13929 // the current rounding direction mode." Therefore constant folding can
13930 // proceed without regard to the floating point settings.
13931 // Reference, WG14 N2478 F.10.4.3
13932 if (!EvaluateFloat(E->getArg(0), Result, Info))
13933 return false;
13934
13935 if (Result.isNegative())
13936 Result.changeSign();
13937 return true;
13938
13939 case Builtin::BI__arithmetic_fence:
13940 return EvaluateFloat(E->getArg(0), Result, Info);
13941
13942 // FIXME: Builtin::BI__builtin_powi
13943 // FIXME: Builtin::BI__builtin_powif
13944 // FIXME: Builtin::BI__builtin_powil
13945
13946 case Builtin::BI__builtin_copysign:
13947 case Builtin::BI__builtin_copysignf:
13948 case Builtin::BI__builtin_copysignl:
13949 case Builtin::BI__builtin_copysignf128: {
13950 APFloat RHS(0.);
13951 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13952 !EvaluateFloat(E->getArg(1), RHS, Info))
13953 return false;
13954 Result.copySign(RHS);
13955 return true;
13956 }
13957 }
13958 }
13959
VisitUnaryReal(const UnaryOperator * E)13960 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13961 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13962 ComplexValue CV;
13963 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13964 return false;
13965 Result = CV.FloatReal;
13966 return true;
13967 }
13968
13969 return Visit(E->getSubExpr());
13970 }
13971
VisitUnaryImag(const UnaryOperator * E)13972 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13973 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13974 ComplexValue CV;
13975 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13976 return false;
13977 Result = CV.FloatImag;
13978 return true;
13979 }
13980
13981 VisitIgnoredValue(E->getSubExpr());
13982 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13983 Result = llvm::APFloat::getZero(Sem);
13984 return true;
13985 }
13986
VisitUnaryOperator(const UnaryOperator * E)13987 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13988 switch (E->getOpcode()) {
13989 default: return Error(E);
13990 case UO_Plus:
13991 return EvaluateFloat(E->getSubExpr(), Result, Info);
13992 case UO_Minus:
13993 // In C standard, WG14 N2478 F.3 p4
13994 // "the unary - raises no floating point exceptions,
13995 // even if the operand is signalling."
13996 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13997 return false;
13998 Result.changeSign();
13999 return true;
14000 }
14001 }
14002
VisitBinaryOperator(const BinaryOperator * E)14003 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14004 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14005 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14006
14007 APFloat RHS(0.0);
14008 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14009 if (!LHSOK && !Info.noteFailure())
14010 return false;
14011 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14012 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14013 }
14014
VisitFloatingLiteral(const FloatingLiteral * E)14015 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14016 Result = E->getValue();
14017 return true;
14018 }
14019
VisitCastExpr(const CastExpr * E)14020 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14021 const Expr* SubExpr = E->getSubExpr();
14022
14023 switch (E->getCastKind()) {
14024 default:
14025 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14026
14027 case CK_IntegralToFloating: {
14028 APSInt IntResult;
14029 const FPOptions FPO = E->getFPFeaturesInEffect(
14030 Info.Ctx.getLangOpts());
14031 return EvaluateInteger(SubExpr, IntResult, Info) &&
14032 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14033 IntResult, E->getType(), Result);
14034 }
14035
14036 case CK_FixedPointToFloating: {
14037 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14038 if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14039 return false;
14040 Result =
14041 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14042 return true;
14043 }
14044
14045 case CK_FloatingCast: {
14046 if (!Visit(SubExpr))
14047 return false;
14048 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14049 Result);
14050 }
14051
14052 case CK_FloatingComplexToReal: {
14053 ComplexValue V;
14054 if (!EvaluateComplex(SubExpr, V, Info))
14055 return false;
14056 Result = V.getComplexFloatReal();
14057 return true;
14058 }
14059 }
14060 }
14061
14062 //===----------------------------------------------------------------------===//
14063 // Complex Evaluation (for float and integer)
14064 //===----------------------------------------------------------------------===//
14065
14066 namespace {
14067 class ComplexExprEvaluator
14068 : public ExprEvaluatorBase<ComplexExprEvaluator> {
14069 ComplexValue &Result;
14070
14071 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)14072 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14073 : ExprEvaluatorBaseTy(info), Result(Result) {}
14074
Success(const APValue & V,const Expr * e)14075 bool Success(const APValue &V, const Expr *e) {
14076 Result.setFrom(V);
14077 return true;
14078 }
14079
14080 bool ZeroInitialization(const Expr *E);
14081
14082 //===--------------------------------------------------------------------===//
14083 // Visitor Methods
14084 //===--------------------------------------------------------------------===//
14085
14086 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14087 bool VisitCastExpr(const CastExpr *E);
14088 bool VisitBinaryOperator(const BinaryOperator *E);
14089 bool VisitUnaryOperator(const UnaryOperator *E);
14090 bool VisitInitListExpr(const InitListExpr *E);
14091 bool VisitCallExpr(const CallExpr *E);
14092 };
14093 } // end anonymous namespace
14094
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)14095 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14096 EvalInfo &Info) {
14097 assert(!E->isValueDependent());
14098 assert(E->isPRValue() && E->getType()->isAnyComplexType());
14099 return ComplexExprEvaluator(Info, Result).Visit(E);
14100 }
14101
ZeroInitialization(const Expr * E)14102 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14103 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14104 if (ElemTy->isRealFloatingType()) {
14105 Result.makeComplexFloat();
14106 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14107 Result.FloatReal = Zero;
14108 Result.FloatImag = Zero;
14109 } else {
14110 Result.makeComplexInt();
14111 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14112 Result.IntReal = Zero;
14113 Result.IntImag = Zero;
14114 }
14115 return true;
14116 }
14117
VisitImaginaryLiteral(const ImaginaryLiteral * E)14118 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14119 const Expr* SubExpr = E->getSubExpr();
14120
14121 if (SubExpr->getType()->isRealFloatingType()) {
14122 Result.makeComplexFloat();
14123 APFloat &Imag = Result.FloatImag;
14124 if (!EvaluateFloat(SubExpr, Imag, Info))
14125 return false;
14126
14127 Result.FloatReal = APFloat(Imag.getSemantics());
14128 return true;
14129 } else {
14130 assert(SubExpr->getType()->isIntegerType() &&
14131 "Unexpected imaginary literal.");
14132
14133 Result.makeComplexInt();
14134 APSInt &Imag = Result.IntImag;
14135 if (!EvaluateInteger(SubExpr, Imag, Info))
14136 return false;
14137
14138 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14139 return true;
14140 }
14141 }
14142
VisitCastExpr(const CastExpr * E)14143 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14144
14145 switch (E->getCastKind()) {
14146 case CK_BitCast:
14147 case CK_BaseToDerived:
14148 case CK_DerivedToBase:
14149 case CK_UncheckedDerivedToBase:
14150 case CK_Dynamic:
14151 case CK_ToUnion:
14152 case CK_ArrayToPointerDecay:
14153 case CK_FunctionToPointerDecay:
14154 case CK_NullToPointer:
14155 case CK_NullToMemberPointer:
14156 case CK_BaseToDerivedMemberPointer:
14157 case CK_DerivedToBaseMemberPointer:
14158 case CK_MemberPointerToBoolean:
14159 case CK_ReinterpretMemberPointer:
14160 case CK_ConstructorConversion:
14161 case CK_IntegralToPointer:
14162 case CK_PointerToIntegral:
14163 case CK_PointerToBoolean:
14164 case CK_ToVoid:
14165 case CK_VectorSplat:
14166 case CK_IntegralCast:
14167 case CK_BooleanToSignedIntegral:
14168 case CK_IntegralToBoolean:
14169 case CK_IntegralToFloating:
14170 case CK_FloatingToIntegral:
14171 case CK_FloatingToBoolean:
14172 case CK_FloatingCast:
14173 case CK_CPointerToObjCPointerCast:
14174 case CK_BlockPointerToObjCPointerCast:
14175 case CK_AnyPointerToBlockPointerCast:
14176 case CK_ObjCObjectLValueCast:
14177 case CK_FloatingComplexToReal:
14178 case CK_FloatingComplexToBoolean:
14179 case CK_IntegralComplexToReal:
14180 case CK_IntegralComplexToBoolean:
14181 case CK_ARCProduceObject:
14182 case CK_ARCConsumeObject:
14183 case CK_ARCReclaimReturnedObject:
14184 case CK_ARCExtendBlockObject:
14185 case CK_CopyAndAutoreleaseBlockObject:
14186 case CK_BuiltinFnToFnPtr:
14187 case CK_ZeroToOCLOpaqueType:
14188 case CK_NonAtomicToAtomic:
14189 case CK_AddressSpaceConversion:
14190 case CK_IntToOCLSampler:
14191 case CK_FloatingToFixedPoint:
14192 case CK_FixedPointToFloating:
14193 case CK_FixedPointCast:
14194 case CK_FixedPointToBoolean:
14195 case CK_FixedPointToIntegral:
14196 case CK_IntegralToFixedPoint:
14197 case CK_MatrixCast:
14198 llvm_unreachable("invalid cast kind for complex value");
14199
14200 case CK_LValueToRValue:
14201 case CK_AtomicToNonAtomic:
14202 case CK_NoOp:
14203 case CK_LValueToRValueBitCast:
14204 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14205
14206 case CK_Dependent:
14207 case CK_LValueBitCast:
14208 case CK_UserDefinedConversion:
14209 return Error(E);
14210
14211 case CK_FloatingRealToComplex: {
14212 APFloat &Real = Result.FloatReal;
14213 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14214 return false;
14215
14216 Result.makeComplexFloat();
14217 Result.FloatImag = APFloat(Real.getSemantics());
14218 return true;
14219 }
14220
14221 case CK_FloatingComplexCast: {
14222 if (!Visit(E->getSubExpr()))
14223 return false;
14224
14225 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14226 QualType From
14227 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14228
14229 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14230 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14231 }
14232
14233 case CK_FloatingComplexToIntegralComplex: {
14234 if (!Visit(E->getSubExpr()))
14235 return false;
14236
14237 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14238 QualType From
14239 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14240 Result.makeComplexInt();
14241 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14242 To, Result.IntReal) &&
14243 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14244 To, Result.IntImag);
14245 }
14246
14247 case CK_IntegralRealToComplex: {
14248 APSInt &Real = Result.IntReal;
14249 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14250 return false;
14251
14252 Result.makeComplexInt();
14253 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14254 return true;
14255 }
14256
14257 case CK_IntegralComplexCast: {
14258 if (!Visit(E->getSubExpr()))
14259 return false;
14260
14261 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14262 QualType From
14263 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14264
14265 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14266 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14267 return true;
14268 }
14269
14270 case CK_IntegralComplexToFloatingComplex: {
14271 if (!Visit(E->getSubExpr()))
14272 return false;
14273
14274 const FPOptions FPO = E->getFPFeaturesInEffect(
14275 Info.Ctx.getLangOpts());
14276 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14277 QualType From
14278 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14279 Result.makeComplexFloat();
14280 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14281 To, Result.FloatReal) &&
14282 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14283 To, Result.FloatImag);
14284 }
14285 }
14286
14287 llvm_unreachable("unknown cast resulting in complex value");
14288 }
14289
VisitBinaryOperator(const BinaryOperator * E)14290 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14291 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14292 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14293
14294 // Track whether the LHS or RHS is real at the type system level. When this is
14295 // the case we can simplify our evaluation strategy.
14296 bool LHSReal = false, RHSReal = false;
14297
14298 bool LHSOK;
14299 if (E->getLHS()->getType()->isRealFloatingType()) {
14300 LHSReal = true;
14301 APFloat &Real = Result.FloatReal;
14302 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14303 if (LHSOK) {
14304 Result.makeComplexFloat();
14305 Result.FloatImag = APFloat(Real.getSemantics());
14306 }
14307 } else {
14308 LHSOK = Visit(E->getLHS());
14309 }
14310 if (!LHSOK && !Info.noteFailure())
14311 return false;
14312
14313 ComplexValue RHS;
14314 if (E->getRHS()->getType()->isRealFloatingType()) {
14315 RHSReal = true;
14316 APFloat &Real = RHS.FloatReal;
14317 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14318 return false;
14319 RHS.makeComplexFloat();
14320 RHS.FloatImag = APFloat(Real.getSemantics());
14321 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14322 return false;
14323
14324 assert(!(LHSReal && RHSReal) &&
14325 "Cannot have both operands of a complex operation be real.");
14326 switch (E->getOpcode()) {
14327 default: return Error(E);
14328 case BO_Add:
14329 if (Result.isComplexFloat()) {
14330 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14331 APFloat::rmNearestTiesToEven);
14332 if (LHSReal)
14333 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14334 else if (!RHSReal)
14335 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14336 APFloat::rmNearestTiesToEven);
14337 } else {
14338 Result.getComplexIntReal() += RHS.getComplexIntReal();
14339 Result.getComplexIntImag() += RHS.getComplexIntImag();
14340 }
14341 break;
14342 case BO_Sub:
14343 if (Result.isComplexFloat()) {
14344 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14345 APFloat::rmNearestTiesToEven);
14346 if (LHSReal) {
14347 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14348 Result.getComplexFloatImag().changeSign();
14349 } else if (!RHSReal) {
14350 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14351 APFloat::rmNearestTiesToEven);
14352 }
14353 } else {
14354 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14355 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14356 }
14357 break;
14358 case BO_Mul:
14359 if (Result.isComplexFloat()) {
14360 // This is an implementation of complex multiplication according to the
14361 // constraints laid out in C11 Annex G. The implementation uses the
14362 // following naming scheme:
14363 // (a + ib) * (c + id)
14364 ComplexValue LHS = Result;
14365 APFloat &A = LHS.getComplexFloatReal();
14366 APFloat &B = LHS.getComplexFloatImag();
14367 APFloat &C = RHS.getComplexFloatReal();
14368 APFloat &D = RHS.getComplexFloatImag();
14369 APFloat &ResR = Result.getComplexFloatReal();
14370 APFloat &ResI = Result.getComplexFloatImag();
14371 if (LHSReal) {
14372 assert(!RHSReal && "Cannot have two real operands for a complex op!");
14373 ResR = A * C;
14374 ResI = A * D;
14375 } else if (RHSReal) {
14376 ResR = C * A;
14377 ResI = C * B;
14378 } else {
14379 // In the fully general case, we need to handle NaNs and infinities
14380 // robustly.
14381 APFloat AC = A * C;
14382 APFloat BD = B * D;
14383 APFloat AD = A * D;
14384 APFloat BC = B * C;
14385 ResR = AC - BD;
14386 ResI = AD + BC;
14387 if (ResR.isNaN() && ResI.isNaN()) {
14388 bool Recalc = false;
14389 if (A.isInfinity() || B.isInfinity()) {
14390 A = APFloat::copySign(
14391 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14392 B = APFloat::copySign(
14393 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14394 if (C.isNaN())
14395 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14396 if (D.isNaN())
14397 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14398 Recalc = true;
14399 }
14400 if (C.isInfinity() || D.isInfinity()) {
14401 C = APFloat::copySign(
14402 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14403 D = APFloat::copySign(
14404 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14405 if (A.isNaN())
14406 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14407 if (B.isNaN())
14408 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14409 Recalc = true;
14410 }
14411 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14412 AD.isInfinity() || BC.isInfinity())) {
14413 if (A.isNaN())
14414 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14415 if (B.isNaN())
14416 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14417 if (C.isNaN())
14418 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14419 if (D.isNaN())
14420 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14421 Recalc = true;
14422 }
14423 if (Recalc) {
14424 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14425 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14426 }
14427 }
14428 }
14429 } else {
14430 ComplexValue LHS = Result;
14431 Result.getComplexIntReal() =
14432 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14433 LHS.getComplexIntImag() * RHS.getComplexIntImag());
14434 Result.getComplexIntImag() =
14435 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14436 LHS.getComplexIntImag() * RHS.getComplexIntReal());
14437 }
14438 break;
14439 case BO_Div:
14440 if (Result.isComplexFloat()) {
14441 // This is an implementation of complex division according to the
14442 // constraints laid out in C11 Annex G. The implementation uses the
14443 // following naming scheme:
14444 // (a + ib) / (c + id)
14445 ComplexValue LHS = Result;
14446 APFloat &A = LHS.getComplexFloatReal();
14447 APFloat &B = LHS.getComplexFloatImag();
14448 APFloat &C = RHS.getComplexFloatReal();
14449 APFloat &D = RHS.getComplexFloatImag();
14450 APFloat &ResR = Result.getComplexFloatReal();
14451 APFloat &ResI = Result.getComplexFloatImag();
14452 if (RHSReal) {
14453 ResR = A / C;
14454 ResI = B / C;
14455 } else {
14456 if (LHSReal) {
14457 // No real optimizations we can do here, stub out with zero.
14458 B = APFloat::getZero(A.getSemantics());
14459 }
14460 int DenomLogB = 0;
14461 APFloat MaxCD = maxnum(abs(C), abs(D));
14462 if (MaxCD.isFinite()) {
14463 DenomLogB = ilogb(MaxCD);
14464 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14465 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14466 }
14467 APFloat Denom = C * C + D * D;
14468 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14469 APFloat::rmNearestTiesToEven);
14470 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14471 APFloat::rmNearestTiesToEven);
14472 if (ResR.isNaN() && ResI.isNaN()) {
14473 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14474 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14475 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14476 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14477 D.isFinite()) {
14478 A = APFloat::copySign(
14479 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14480 B = APFloat::copySign(
14481 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14482 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14483 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14484 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14485 C = APFloat::copySign(
14486 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14487 D = APFloat::copySign(
14488 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14489 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14490 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14491 }
14492 }
14493 }
14494 } else {
14495 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14496 return Error(E, diag::note_expr_divide_by_zero);
14497
14498 ComplexValue LHS = Result;
14499 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14500 RHS.getComplexIntImag() * RHS.getComplexIntImag();
14501 Result.getComplexIntReal() =
14502 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14503 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14504 Result.getComplexIntImag() =
14505 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14506 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14507 }
14508 break;
14509 }
14510
14511 return true;
14512 }
14513
VisitUnaryOperator(const UnaryOperator * E)14514 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14515 // Get the operand value into 'Result'.
14516 if (!Visit(E->getSubExpr()))
14517 return false;
14518
14519 switch (E->getOpcode()) {
14520 default:
14521 return Error(E);
14522 case UO_Extension:
14523 return true;
14524 case UO_Plus:
14525 // The result is always just the subexpr.
14526 return true;
14527 case UO_Minus:
14528 if (Result.isComplexFloat()) {
14529 Result.getComplexFloatReal().changeSign();
14530 Result.getComplexFloatImag().changeSign();
14531 }
14532 else {
14533 Result.getComplexIntReal() = -Result.getComplexIntReal();
14534 Result.getComplexIntImag() = -Result.getComplexIntImag();
14535 }
14536 return true;
14537 case UO_Not:
14538 if (Result.isComplexFloat())
14539 Result.getComplexFloatImag().changeSign();
14540 else
14541 Result.getComplexIntImag() = -Result.getComplexIntImag();
14542 return true;
14543 }
14544 }
14545
VisitInitListExpr(const InitListExpr * E)14546 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14547 if (E->getNumInits() == 2) {
14548 if (E->getType()->isComplexType()) {
14549 Result.makeComplexFloat();
14550 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14551 return false;
14552 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14553 return false;
14554 } else {
14555 Result.makeComplexInt();
14556 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14557 return false;
14558 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14559 return false;
14560 }
14561 return true;
14562 }
14563 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14564 }
14565
VisitCallExpr(const CallExpr * E)14566 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14567 switch (E->getBuiltinCallee()) {
14568 case Builtin::BI__builtin_complex:
14569 Result.makeComplexFloat();
14570 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14571 return false;
14572 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14573 return false;
14574 return true;
14575
14576 default:
14577 break;
14578 }
14579
14580 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14581 }
14582
14583 //===----------------------------------------------------------------------===//
14584 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14585 // implicit conversion.
14586 //===----------------------------------------------------------------------===//
14587
14588 namespace {
14589 class AtomicExprEvaluator :
14590 public ExprEvaluatorBase<AtomicExprEvaluator> {
14591 const LValue *This;
14592 APValue &Result;
14593 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)14594 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14595 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14596
Success(const APValue & V,const Expr * E)14597 bool Success(const APValue &V, const Expr *E) {
14598 Result = V;
14599 return true;
14600 }
14601
ZeroInitialization(const Expr * E)14602 bool ZeroInitialization(const Expr *E) {
14603 ImplicitValueInitExpr VIE(
14604 E->getType()->castAs<AtomicType>()->getValueType());
14605 // For atomic-qualified class (and array) types in C++, initialize the
14606 // _Atomic-wrapped subobject directly, in-place.
14607 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14608 : Evaluate(Result, Info, &VIE);
14609 }
14610
VisitCastExpr(const CastExpr * E)14611 bool VisitCastExpr(const CastExpr *E) {
14612 switch (E->getCastKind()) {
14613 default:
14614 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14615 case CK_NonAtomicToAtomic:
14616 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14617 : Evaluate(Result, Info, E->getSubExpr());
14618 }
14619 }
14620 };
14621 } // end anonymous namespace
14622
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)14623 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14624 EvalInfo &Info) {
14625 assert(!E->isValueDependent());
14626 assert(E->isPRValue() && E->getType()->isAtomicType());
14627 return AtomicExprEvaluator(Info, This, Result).Visit(E);
14628 }
14629
14630 //===----------------------------------------------------------------------===//
14631 // Void expression evaluation, primarily for a cast to void on the LHS of a
14632 // comma operator
14633 //===----------------------------------------------------------------------===//
14634
14635 namespace {
14636 class VoidExprEvaluator
14637 : public ExprEvaluatorBase<VoidExprEvaluator> {
14638 public:
VoidExprEvaluator(EvalInfo & Info)14639 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14640
Success(const APValue & V,const Expr * e)14641 bool Success(const APValue &V, const Expr *e) { return true; }
14642
ZeroInitialization(const Expr * E)14643 bool ZeroInitialization(const Expr *E) { return true; }
14644
VisitCastExpr(const CastExpr * E)14645 bool VisitCastExpr(const CastExpr *E) {
14646 switch (E->getCastKind()) {
14647 default:
14648 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14649 case CK_ToVoid:
14650 VisitIgnoredValue(E->getSubExpr());
14651 return true;
14652 }
14653 }
14654
VisitCallExpr(const CallExpr * E)14655 bool VisitCallExpr(const CallExpr *E) {
14656 switch (E->getBuiltinCallee()) {
14657 case Builtin::BI__assume:
14658 case Builtin::BI__builtin_assume:
14659 // The argument is not evaluated!
14660 return true;
14661
14662 case Builtin::BI__builtin_operator_delete:
14663 return HandleOperatorDeleteCall(Info, E);
14664
14665 default:
14666 break;
14667 }
14668
14669 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14670 }
14671
14672 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14673 };
14674 } // end anonymous namespace
14675
VisitCXXDeleteExpr(const CXXDeleteExpr * E)14676 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14677 // We cannot speculatively evaluate a delete expression.
14678 if (Info.SpeculativeEvaluationDepth)
14679 return false;
14680
14681 FunctionDecl *OperatorDelete = E->getOperatorDelete();
14682 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14683 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14684 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14685 return false;
14686 }
14687
14688 const Expr *Arg = E->getArgument();
14689
14690 LValue Pointer;
14691 if (!EvaluatePointer(Arg, Pointer, Info))
14692 return false;
14693 if (Pointer.Designator.Invalid)
14694 return false;
14695
14696 // Deleting a null pointer has no effect.
14697 if (Pointer.isNullPointer()) {
14698 // This is the only case where we need to produce an extension warning:
14699 // the only other way we can succeed is if we find a dynamic allocation,
14700 // and we will have warned when we allocated it in that case.
14701 if (!Info.getLangOpts().CPlusPlus20)
14702 Info.CCEDiag(E, diag::note_constexpr_new);
14703 return true;
14704 }
14705
14706 Optional<DynAlloc *> Alloc = CheckDeleteKind(
14707 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14708 if (!Alloc)
14709 return false;
14710 QualType AllocType = Pointer.Base.getDynamicAllocType();
14711
14712 // For the non-array case, the designator must be empty if the static type
14713 // does not have a virtual destructor.
14714 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14715 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14716 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14717 << Arg->getType()->getPointeeType() << AllocType;
14718 return false;
14719 }
14720
14721 // For a class type with a virtual destructor, the selected operator delete
14722 // is the one looked up when building the destructor.
14723 if (!E->isArrayForm() && !E->isGlobalDelete()) {
14724 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14725 if (VirtualDelete &&
14726 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14727 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14728 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14729 return false;
14730 }
14731 }
14732
14733 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14734 (*Alloc)->Value, AllocType))
14735 return false;
14736
14737 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14738 // The element was already erased. This means the destructor call also
14739 // deleted the object.
14740 // FIXME: This probably results in undefined behavior before we get this
14741 // far, and should be diagnosed elsewhere first.
14742 Info.FFDiag(E, diag::note_constexpr_double_delete);
14743 return false;
14744 }
14745
14746 return true;
14747 }
14748
EvaluateVoid(const Expr * E,EvalInfo & Info)14749 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14750 assert(!E->isValueDependent());
14751 assert(E->isPRValue() && E->getType()->isVoidType());
14752 return VoidExprEvaluator(Info).Visit(E);
14753 }
14754
14755 //===----------------------------------------------------------------------===//
14756 // Top level Expr::EvaluateAsRValue method.
14757 //===----------------------------------------------------------------------===//
14758
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)14759 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14760 assert(!E->isValueDependent());
14761 // In C, function designators are not lvalues, but we evaluate them as if they
14762 // are.
14763 QualType T = E->getType();
14764 if (E->isGLValue() || T->isFunctionType()) {
14765 LValue LV;
14766 if (!EvaluateLValue(E, LV, Info))
14767 return false;
14768 LV.moveInto(Result);
14769 } else if (T->isVectorType()) {
14770 if (!EvaluateVector(E, Result, Info))
14771 return false;
14772 } else if (T->isIntegralOrEnumerationType()) {
14773 if (!IntExprEvaluator(Info, Result).Visit(E))
14774 return false;
14775 } else if (T->hasPointerRepresentation()) {
14776 LValue LV;
14777 if (!EvaluatePointer(E, LV, Info))
14778 return false;
14779 LV.moveInto(Result);
14780 } else if (T->isRealFloatingType()) {
14781 llvm::APFloat F(0.0);
14782 if (!EvaluateFloat(E, F, Info))
14783 return false;
14784 Result = APValue(F);
14785 } else if (T->isAnyComplexType()) {
14786 ComplexValue C;
14787 if (!EvaluateComplex(E, C, Info))
14788 return false;
14789 C.moveInto(Result);
14790 } else if (T->isFixedPointType()) {
14791 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14792 } else if (T->isMemberPointerType()) {
14793 MemberPtr P;
14794 if (!EvaluateMemberPointer(E, P, Info))
14795 return false;
14796 P.moveInto(Result);
14797 return true;
14798 } else if (T->isArrayType()) {
14799 LValue LV;
14800 APValue &Value =
14801 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14802 if (!EvaluateArray(E, LV, Value, Info))
14803 return false;
14804 Result = Value;
14805 } else if (T->isRecordType()) {
14806 LValue LV;
14807 APValue &Value =
14808 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14809 if (!EvaluateRecord(E, LV, Value, Info))
14810 return false;
14811 Result = Value;
14812 } else if (T->isVoidType()) {
14813 if (!Info.getLangOpts().CPlusPlus11)
14814 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14815 << E->getType();
14816 if (!EvaluateVoid(E, Info))
14817 return false;
14818 } else if (T->isAtomicType()) {
14819 QualType Unqual = T.getAtomicUnqualifiedType();
14820 if (Unqual->isArrayType() || Unqual->isRecordType()) {
14821 LValue LV;
14822 APValue &Value = Info.CurrentCall->createTemporary(
14823 E, Unqual, ScopeKind::FullExpression, LV);
14824 if (!EvaluateAtomic(E, &LV, Value, Info))
14825 return false;
14826 } else {
14827 if (!EvaluateAtomic(E, nullptr, Result, Info))
14828 return false;
14829 }
14830 } else if (Info.getLangOpts().CPlusPlus11) {
14831 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14832 return false;
14833 } else {
14834 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14835 return false;
14836 }
14837
14838 return true;
14839 }
14840
14841 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14842 /// cases, the in-place evaluation is essential, since later initializers for
14843 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)14844 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14845 const Expr *E, bool AllowNonLiteralTypes) {
14846 assert(!E->isValueDependent());
14847
14848 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14849 return false;
14850
14851 if (E->isPRValue()) {
14852 // Evaluate arrays and record types in-place, so that later initializers can
14853 // refer to earlier-initialized members of the object.
14854 QualType T = E->getType();
14855 if (T->isArrayType())
14856 return EvaluateArray(E, This, Result, Info);
14857 else if (T->isRecordType())
14858 return EvaluateRecord(E, This, Result, Info);
14859 else if (T->isAtomicType()) {
14860 QualType Unqual = T.getAtomicUnqualifiedType();
14861 if (Unqual->isArrayType() || Unqual->isRecordType())
14862 return EvaluateAtomic(E, &This, Result, Info);
14863 }
14864 }
14865
14866 // For any other type, in-place evaluation is unimportant.
14867 return Evaluate(Result, Info, E);
14868 }
14869
14870 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14871 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)14872 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14873 assert(!E->isValueDependent());
14874 if (Info.EnableNewConstInterp) {
14875 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14876 return false;
14877 } else {
14878 if (E->getType().isNull())
14879 return false;
14880
14881 if (!CheckLiteralType(Info, E))
14882 return false;
14883
14884 if (!::Evaluate(Result, Info, E))
14885 return false;
14886
14887 if (E->isGLValue()) {
14888 LValue LV;
14889 LV.setFrom(Info.Ctx, Result);
14890 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14891 return false;
14892 }
14893 }
14894
14895 // Check this core constant expression is a constant expression.
14896 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14897 ConstantExprKind::Normal) &&
14898 CheckMemoryLeaks(Info);
14899 }
14900
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)14901 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14902 const ASTContext &Ctx, bool &IsConst) {
14903 // Fast-path evaluations of integer literals, since we sometimes see files
14904 // containing vast quantities of these.
14905 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14906 Result.Val = APValue(APSInt(L->getValue(),
14907 L->getType()->isUnsignedIntegerType()));
14908 IsConst = true;
14909 return true;
14910 }
14911
14912 // This case should be rare, but we need to check it before we check on
14913 // the type below.
14914 if (Exp->getType().isNull()) {
14915 IsConst = false;
14916 return true;
14917 }
14918
14919 // FIXME: Evaluating values of large array and record types can cause
14920 // performance problems. Only do so in C++11 for now.
14921 if (Exp->isPRValue() &&
14922 (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
14923 !Ctx.getLangOpts().CPlusPlus11) {
14924 IsConst = false;
14925 return true;
14926 }
14927 return false;
14928 }
14929
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)14930 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14931 Expr::SideEffectsKind SEK) {
14932 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14933 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14934 }
14935
EvaluateAsRValue(const Expr * E,Expr::EvalResult & Result,const ASTContext & Ctx,EvalInfo & Info)14936 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14937 const ASTContext &Ctx, EvalInfo &Info) {
14938 assert(!E->isValueDependent());
14939 bool IsConst;
14940 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14941 return IsConst;
14942
14943 return EvaluateAsRValue(Info, E, Result.Val);
14944 }
14945
EvaluateAsInt(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14946 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14947 const ASTContext &Ctx,
14948 Expr::SideEffectsKind AllowSideEffects,
14949 EvalInfo &Info) {
14950 assert(!E->isValueDependent());
14951 if (!E->getType()->isIntegralOrEnumerationType())
14952 return false;
14953
14954 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14955 !ExprResult.Val.isInt() ||
14956 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14957 return false;
14958
14959 return true;
14960 }
14961
EvaluateAsFixedPoint(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14962 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14963 const ASTContext &Ctx,
14964 Expr::SideEffectsKind AllowSideEffects,
14965 EvalInfo &Info) {
14966 assert(!E->isValueDependent());
14967 if (!E->getType()->isFixedPointType())
14968 return false;
14969
14970 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14971 return false;
14972
14973 if (!ExprResult.Val.isFixedPoint() ||
14974 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14975 return false;
14976
14977 return true;
14978 }
14979
14980 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14981 /// any crazy technique (that has nothing to do with language standards) that
14982 /// we want to. If this function returns true, it returns the folded constant
14983 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14984 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14985 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14986 bool InConstantContext) const {
14987 assert(!isValueDependent() &&
14988 "Expression evaluator can't be called on a dependent expression.");
14989 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14990 Info.InConstantContext = InConstantContext;
14991 return ::EvaluateAsRValue(this, Result, Ctx, Info);
14992 }
14993
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx,bool InConstantContext) const14994 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14995 bool InConstantContext) const {
14996 assert(!isValueDependent() &&
14997 "Expression evaluator can't be called on a dependent expression.");
14998 EvalResult Scratch;
14999 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15000 HandleConversionToBool(Scratch.Val, Result);
15001 }
15002
EvaluateAsInt(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15003 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15004 SideEffectsKind AllowSideEffects,
15005 bool InConstantContext) const {
15006 assert(!isValueDependent() &&
15007 "Expression evaluator can't be called on a dependent expression.");
15008 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15009 Info.InConstantContext = InConstantContext;
15010 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15011 }
15012
EvaluateAsFixedPoint(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15013 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15014 SideEffectsKind AllowSideEffects,
15015 bool InConstantContext) const {
15016 assert(!isValueDependent() &&
15017 "Expression evaluator can't be called on a dependent expression.");
15018 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15019 Info.InConstantContext = InConstantContext;
15020 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15021 }
15022
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15023 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15024 SideEffectsKind AllowSideEffects,
15025 bool InConstantContext) const {
15026 assert(!isValueDependent() &&
15027 "Expression evaluator can't be called on a dependent expression.");
15028
15029 if (!getType()->isRealFloatingType())
15030 return false;
15031
15032 EvalResult ExprResult;
15033 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15034 !ExprResult.Val.isFloat() ||
15035 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15036 return false;
15037
15038 Result = ExprResult.Val.getFloat();
15039 return true;
15040 }
15041
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const15042 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15043 bool InConstantContext) const {
15044 assert(!isValueDependent() &&
15045 "Expression evaluator can't be called on a dependent expression.");
15046
15047 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15048 Info.InConstantContext = InConstantContext;
15049 LValue LV;
15050 CheckedTemporaries CheckedTemps;
15051 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15052 Result.HasSideEffects ||
15053 !CheckLValueConstantExpression(Info, getExprLoc(),
15054 Ctx.getLValueReferenceType(getType()), LV,
15055 ConstantExprKind::Normal, CheckedTemps))
15056 return false;
15057
15058 LV.moveInto(Result.Val);
15059 return true;
15060 }
15061
EvaluateDestruction(const ASTContext & Ctx,APValue::LValueBase Base,APValue DestroyedValue,QualType Type,SourceLocation Loc,Expr::EvalStatus & EStatus,bool IsConstantDestruction)15062 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15063 APValue DestroyedValue, QualType Type,
15064 SourceLocation Loc, Expr::EvalStatus &EStatus,
15065 bool IsConstantDestruction) {
15066 EvalInfo Info(Ctx, EStatus,
15067 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15068 : EvalInfo::EM_ConstantFold);
15069 Info.setEvaluatingDecl(Base, DestroyedValue,
15070 EvalInfo::EvaluatingDeclKind::Dtor);
15071 Info.InConstantContext = IsConstantDestruction;
15072
15073 LValue LVal;
15074 LVal.set(Base);
15075
15076 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15077 EStatus.HasSideEffects)
15078 return false;
15079
15080 if (!Info.discardCleanups())
15081 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15082
15083 return true;
15084 }
15085
EvaluateAsConstantExpr(EvalResult & Result,const ASTContext & Ctx,ConstantExprKind Kind) const15086 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15087 ConstantExprKind Kind) const {
15088 assert(!isValueDependent() &&
15089 "Expression evaluator can't be called on a dependent expression.");
15090
15091 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15092 EvalInfo Info(Ctx, Result, EM);
15093 Info.InConstantContext = true;
15094
15095 // The type of the object we're initializing is 'const T' for a class NTTP.
15096 QualType T = getType();
15097 if (Kind == ConstantExprKind::ClassTemplateArgument)
15098 T.addConst();
15099
15100 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15101 // represent the result of the evaluation. CheckConstantExpression ensures
15102 // this doesn't escape.
15103 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15104 APValue::LValueBase Base(&BaseMTE);
15105
15106 Info.setEvaluatingDecl(Base, Result.Val);
15107 LValue LVal;
15108 LVal.set(Base);
15109
15110 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
15111 return false;
15112
15113 if (!Info.discardCleanups())
15114 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15115
15116 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15117 Result.Val, Kind))
15118 return false;
15119 if (!CheckMemoryLeaks(Info))
15120 return false;
15121
15122 // If this is a class template argument, it's required to have constant
15123 // destruction too.
15124 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15125 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15126 true) ||
15127 Result.HasSideEffects)) {
15128 // FIXME: Prefix a note to indicate that the problem is lack of constant
15129 // destruction.
15130 return false;
15131 }
15132
15133 return true;
15134 }
15135
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const15136 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15137 const VarDecl *VD,
15138 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15139 bool IsConstantInitialization) const {
15140 assert(!isValueDependent() &&
15141 "Expression evaluator can't be called on a dependent expression.");
15142
15143 // FIXME: Evaluating initializers for large array and record types can cause
15144 // performance problems. Only do so in C++11 for now.
15145 if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15146 !Ctx.getLangOpts().CPlusPlus11)
15147 return false;
15148
15149 Expr::EvalStatus EStatus;
15150 EStatus.Diag = &Notes;
15151
15152 EvalInfo Info(Ctx, EStatus,
15153 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
15154 ? EvalInfo::EM_ConstantExpression
15155 : EvalInfo::EM_ConstantFold);
15156 Info.setEvaluatingDecl(VD, Value);
15157 Info.InConstantContext = IsConstantInitialization;
15158
15159 SourceLocation DeclLoc = VD->getLocation();
15160 QualType DeclTy = VD->getType();
15161
15162 if (Info.EnableNewConstInterp) {
15163 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15164 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15165 return false;
15166 } else {
15167 LValue LVal;
15168 LVal.set(VD);
15169
15170 if (!EvaluateInPlace(Value, Info, LVal, this,
15171 /*AllowNonLiteralTypes=*/true) ||
15172 EStatus.HasSideEffects)
15173 return false;
15174
15175 // At this point, any lifetime-extended temporaries are completely
15176 // initialized.
15177 Info.performLifetimeExtension();
15178
15179 if (!Info.discardCleanups())
15180 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15181 }
15182 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15183 ConstantExprKind::Normal) &&
15184 CheckMemoryLeaks(Info);
15185 }
15186
evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> & Notes) const15187 bool VarDecl::evaluateDestruction(
15188 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15189 Expr::EvalStatus EStatus;
15190 EStatus.Diag = &Notes;
15191
15192 // Only treat the destruction as constant destruction if we formally have
15193 // constant initialization (or are usable in a constant expression).
15194 bool IsConstantDestruction = hasConstantInitialization();
15195
15196 // Make a copy of the value for the destructor to mutate, if we know it.
15197 // Otherwise, treat the value as default-initialized; if the destructor works
15198 // anyway, then the destruction is constant (and must be essentially empty).
15199 APValue DestroyedValue;
15200 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15201 DestroyedValue = *getEvaluatedValue();
15202 else if (!getDefaultInitValue(getType(), DestroyedValue))
15203 return false;
15204
15205 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15206 getType(), getLocation(), EStatus,
15207 IsConstantDestruction) ||
15208 EStatus.HasSideEffects)
15209 return false;
15210
15211 ensureEvaluatedStmt()->HasConstantDestruction = true;
15212 return true;
15213 }
15214
15215 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15216 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const15217 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15218 assert(!isValueDependent() &&
15219 "Expression evaluator can't be called on a dependent expression.");
15220
15221 EvalResult Result;
15222 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15223 !hasUnacceptableSideEffect(Result, SEK);
15224 }
15225
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const15226 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15227 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15228 assert(!isValueDependent() &&
15229 "Expression evaluator can't be called on a dependent expression.");
15230
15231 EvalResult EVResult;
15232 EVResult.Diag = Diag;
15233 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15234 Info.InConstantContext = true;
15235
15236 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15237 (void)Result;
15238 assert(Result && "Could not evaluate expression");
15239 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15240
15241 return EVResult.Val.getInt();
15242 }
15243
EvaluateKnownConstIntCheckOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const15244 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15245 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15246 assert(!isValueDependent() &&
15247 "Expression evaluator can't be called on a dependent expression.");
15248
15249 EvalResult EVResult;
15250 EVResult.Diag = Diag;
15251 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15252 Info.InConstantContext = true;
15253 Info.CheckingForUndefinedBehavior = true;
15254
15255 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15256 (void)Result;
15257 assert(Result && "Could not evaluate expression");
15258 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15259
15260 return EVResult.Val.getInt();
15261 }
15262
EvaluateForOverflow(const ASTContext & Ctx) const15263 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15264 assert(!isValueDependent() &&
15265 "Expression evaluator can't be called on a dependent expression.");
15266
15267 bool IsConst;
15268 EvalResult EVResult;
15269 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15270 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15271 Info.CheckingForUndefinedBehavior = true;
15272 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15273 }
15274 }
15275
isGlobalLValue() const15276 bool Expr::EvalResult::isGlobalLValue() const {
15277 assert(Val.isLValue());
15278 return IsGlobalLValue(Val.getLValueBase());
15279 }
15280
15281 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15282 /// an integer constant expression.
15283
15284 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15285 /// comma, etc
15286
15287 // CheckICE - This function does the fundamental ICE checking: the returned
15288 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15289 // and a (possibly null) SourceLocation indicating the location of the problem.
15290 //
15291 // Note that to reduce code duplication, this helper does no evaluation
15292 // itself; the caller checks whether the expression is evaluatable, and
15293 // in the rare cases where CheckICE actually cares about the evaluated
15294 // value, it calls into Evaluate.
15295
15296 namespace {
15297
15298 enum ICEKind {
15299 /// This expression is an ICE.
15300 IK_ICE,
15301 /// This expression is not an ICE, but if it isn't evaluated, it's
15302 /// a legal subexpression for an ICE. This return value is used to handle
15303 /// the comma operator in C99 mode, and non-constant subexpressions.
15304 IK_ICEIfUnevaluated,
15305 /// This expression is not an ICE, and is not a legal subexpression for one.
15306 IK_NotICE
15307 };
15308
15309 struct ICEDiag {
15310 ICEKind Kind;
15311 SourceLocation Loc;
15312
ICEDiag__anon7a1fdcea3511::ICEDiag15313 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15314 };
15315
15316 }
15317
NoDiag()15318 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15319
Worst(ICEDiag A,ICEDiag B)15320 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15321
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)15322 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15323 Expr::EvalResult EVResult;
15324 Expr::EvalStatus Status;
15325 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15326
15327 Info.InConstantContext = true;
15328 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15329 !EVResult.Val.isInt())
15330 return ICEDiag(IK_NotICE, E->getBeginLoc());
15331
15332 return NoDiag();
15333 }
15334
CheckICE(const Expr * E,const ASTContext & Ctx)15335 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15336 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15337 if (!E->getType()->isIntegralOrEnumerationType())
15338 return ICEDiag(IK_NotICE, E->getBeginLoc());
15339
15340 switch (E->getStmtClass()) {
15341 #define ABSTRACT_STMT(Node)
15342 #define STMT(Node, Base) case Expr::Node##Class:
15343 #define EXPR(Node, Base)
15344 #include "clang/AST/StmtNodes.inc"
15345 case Expr::PredefinedExprClass:
15346 case Expr::FloatingLiteralClass:
15347 case Expr::ImaginaryLiteralClass:
15348 case Expr::StringLiteralClass:
15349 case Expr::ArraySubscriptExprClass:
15350 case Expr::MatrixSubscriptExprClass:
15351 case Expr::OMPArraySectionExprClass:
15352 case Expr::OMPArrayShapingExprClass:
15353 case Expr::OMPIteratorExprClass:
15354 case Expr::MemberExprClass:
15355 case Expr::CompoundAssignOperatorClass:
15356 case Expr::CompoundLiteralExprClass:
15357 case Expr::ExtVectorElementExprClass:
15358 case Expr::DesignatedInitExprClass:
15359 case Expr::ArrayInitLoopExprClass:
15360 case Expr::ArrayInitIndexExprClass:
15361 case Expr::NoInitExprClass:
15362 case Expr::DesignatedInitUpdateExprClass:
15363 case Expr::ImplicitValueInitExprClass:
15364 case Expr::ParenListExprClass:
15365 case Expr::VAArgExprClass:
15366 case Expr::AddrLabelExprClass:
15367 case Expr::StmtExprClass:
15368 case Expr::CXXMemberCallExprClass:
15369 case Expr::CUDAKernelCallExprClass:
15370 case Expr::CXXAddrspaceCastExprClass:
15371 case Expr::CXXDynamicCastExprClass:
15372 case Expr::CXXTypeidExprClass:
15373 case Expr::CXXUuidofExprClass:
15374 case Expr::MSPropertyRefExprClass:
15375 case Expr::MSPropertySubscriptExprClass:
15376 case Expr::CXXNullPtrLiteralExprClass:
15377 case Expr::UserDefinedLiteralClass:
15378 case Expr::CXXThisExprClass:
15379 case Expr::CXXThrowExprClass:
15380 case Expr::CXXNewExprClass:
15381 case Expr::CXXDeleteExprClass:
15382 case Expr::CXXPseudoDestructorExprClass:
15383 case Expr::UnresolvedLookupExprClass:
15384 case Expr::TypoExprClass:
15385 case Expr::RecoveryExprClass:
15386 case Expr::DependentScopeDeclRefExprClass:
15387 case Expr::CXXConstructExprClass:
15388 case Expr::CXXInheritedCtorInitExprClass:
15389 case Expr::CXXStdInitializerListExprClass:
15390 case Expr::CXXBindTemporaryExprClass:
15391 case Expr::ExprWithCleanupsClass:
15392 case Expr::CXXTemporaryObjectExprClass:
15393 case Expr::CXXUnresolvedConstructExprClass:
15394 case Expr::CXXDependentScopeMemberExprClass:
15395 case Expr::UnresolvedMemberExprClass:
15396 case Expr::ObjCStringLiteralClass:
15397 case Expr::ObjCBoxedExprClass:
15398 case Expr::ObjCArrayLiteralClass:
15399 case Expr::ObjCDictionaryLiteralClass:
15400 case Expr::ObjCEncodeExprClass:
15401 case Expr::ObjCMessageExprClass:
15402 case Expr::ObjCSelectorExprClass:
15403 case Expr::ObjCProtocolExprClass:
15404 case Expr::ObjCIvarRefExprClass:
15405 case Expr::ObjCPropertyRefExprClass:
15406 case Expr::ObjCSubscriptRefExprClass:
15407 case Expr::ObjCIsaExprClass:
15408 case Expr::ObjCAvailabilityCheckExprClass:
15409 case Expr::ShuffleVectorExprClass:
15410 case Expr::ConvertVectorExprClass:
15411 case Expr::BlockExprClass:
15412 case Expr::NoStmtClass:
15413 case Expr::OpaqueValueExprClass:
15414 case Expr::PackExpansionExprClass:
15415 case Expr::SubstNonTypeTemplateParmPackExprClass:
15416 case Expr::FunctionParmPackExprClass:
15417 case Expr::AsTypeExprClass:
15418 case Expr::ObjCIndirectCopyRestoreExprClass:
15419 case Expr::MaterializeTemporaryExprClass:
15420 case Expr::PseudoObjectExprClass:
15421 case Expr::AtomicExprClass:
15422 case Expr::LambdaExprClass:
15423 case Expr::CXXFoldExprClass:
15424 case Expr::CoawaitExprClass:
15425 case Expr::DependentCoawaitExprClass:
15426 case Expr::CoyieldExprClass:
15427 case Expr::SYCLUniqueStableNameExprClass:
15428 return ICEDiag(IK_NotICE, E->getBeginLoc());
15429
15430 case Expr::InitListExprClass: {
15431 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15432 // form "T x = { a };" is equivalent to "T x = a;".
15433 // Unless we're initializing a reference, T is a scalar as it is known to be
15434 // of integral or enumeration type.
15435 if (E->isPRValue())
15436 if (cast<InitListExpr>(E)->getNumInits() == 1)
15437 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15438 return ICEDiag(IK_NotICE, E->getBeginLoc());
15439 }
15440
15441 case Expr::SizeOfPackExprClass:
15442 case Expr::GNUNullExprClass:
15443 case Expr::SourceLocExprClass:
15444 return NoDiag();
15445
15446 case Expr::SubstNonTypeTemplateParmExprClass:
15447 return
15448 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15449
15450 case Expr::ConstantExprClass:
15451 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15452
15453 case Expr::ParenExprClass:
15454 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15455 case Expr::GenericSelectionExprClass:
15456 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15457 case Expr::IntegerLiteralClass:
15458 case Expr::FixedPointLiteralClass:
15459 case Expr::CharacterLiteralClass:
15460 case Expr::ObjCBoolLiteralExprClass:
15461 case Expr::CXXBoolLiteralExprClass:
15462 case Expr::CXXScalarValueInitExprClass:
15463 case Expr::TypeTraitExprClass:
15464 case Expr::ConceptSpecializationExprClass:
15465 case Expr::RequiresExprClass:
15466 case Expr::ArrayTypeTraitExprClass:
15467 case Expr::ExpressionTraitExprClass:
15468 case Expr::CXXNoexceptExprClass:
15469 return NoDiag();
15470 case Expr::CallExprClass:
15471 case Expr::CXXOperatorCallExprClass: {
15472 // C99 6.6/3 allows function calls within unevaluated subexpressions of
15473 // constant expressions, but they can never be ICEs because an ICE cannot
15474 // contain an operand of (pointer to) function type.
15475 const CallExpr *CE = cast<CallExpr>(E);
15476 if (CE->getBuiltinCallee())
15477 return CheckEvalInICE(E, Ctx);
15478 return ICEDiag(IK_NotICE, E->getBeginLoc());
15479 }
15480 case Expr::CXXRewrittenBinaryOperatorClass:
15481 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15482 Ctx);
15483 case Expr::DeclRefExprClass: {
15484 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15485 if (isa<EnumConstantDecl>(D))
15486 return NoDiag();
15487
15488 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15489 // integer variables in constant expressions:
15490 //
15491 // C++ 7.1.5.1p2
15492 // A variable of non-volatile const-qualified integral or enumeration
15493 // type initialized by an ICE can be used in ICEs.
15494 //
15495 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15496 // that mode, use of reference variables should not be allowed.
15497 const VarDecl *VD = dyn_cast<VarDecl>(D);
15498 if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15499 !VD->getType()->isReferenceType())
15500 return NoDiag();
15501
15502 return ICEDiag(IK_NotICE, E->getBeginLoc());
15503 }
15504 case Expr::UnaryOperatorClass: {
15505 const UnaryOperator *Exp = cast<UnaryOperator>(E);
15506 switch (Exp->getOpcode()) {
15507 case UO_PostInc:
15508 case UO_PostDec:
15509 case UO_PreInc:
15510 case UO_PreDec:
15511 case UO_AddrOf:
15512 case UO_Deref:
15513 case UO_Coawait:
15514 // C99 6.6/3 allows increment and decrement within unevaluated
15515 // subexpressions of constant expressions, but they can never be ICEs
15516 // because an ICE cannot contain an lvalue operand.
15517 return ICEDiag(IK_NotICE, E->getBeginLoc());
15518 case UO_Extension:
15519 case UO_LNot:
15520 case UO_Plus:
15521 case UO_Minus:
15522 case UO_Not:
15523 case UO_Real:
15524 case UO_Imag:
15525 return CheckICE(Exp->getSubExpr(), Ctx);
15526 }
15527 llvm_unreachable("invalid unary operator class");
15528 }
15529 case Expr::OffsetOfExprClass: {
15530 // Note that per C99, offsetof must be an ICE. And AFAIK, using
15531 // EvaluateAsRValue matches the proposed gcc behavior for cases like
15532 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
15533 // compliance: we should warn earlier for offsetof expressions with
15534 // array subscripts that aren't ICEs, and if the array subscripts
15535 // are ICEs, the value of the offsetof must be an integer constant.
15536 return CheckEvalInICE(E, Ctx);
15537 }
15538 case Expr::UnaryExprOrTypeTraitExprClass: {
15539 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15540 if ((Exp->getKind() == UETT_SizeOf) &&
15541 Exp->getTypeOfArgument()->isVariableArrayType())
15542 return ICEDiag(IK_NotICE, E->getBeginLoc());
15543 return NoDiag();
15544 }
15545 case Expr::BinaryOperatorClass: {
15546 const BinaryOperator *Exp = cast<BinaryOperator>(E);
15547 switch (Exp->getOpcode()) {
15548 case BO_PtrMemD:
15549 case BO_PtrMemI:
15550 case BO_Assign:
15551 case BO_MulAssign:
15552 case BO_DivAssign:
15553 case BO_RemAssign:
15554 case BO_AddAssign:
15555 case BO_SubAssign:
15556 case BO_ShlAssign:
15557 case BO_ShrAssign:
15558 case BO_AndAssign:
15559 case BO_XorAssign:
15560 case BO_OrAssign:
15561 // C99 6.6/3 allows assignments within unevaluated subexpressions of
15562 // constant expressions, but they can never be ICEs because an ICE cannot
15563 // contain an lvalue operand.
15564 return ICEDiag(IK_NotICE, E->getBeginLoc());
15565
15566 case BO_Mul:
15567 case BO_Div:
15568 case BO_Rem:
15569 case BO_Add:
15570 case BO_Sub:
15571 case BO_Shl:
15572 case BO_Shr:
15573 case BO_LT:
15574 case BO_GT:
15575 case BO_LE:
15576 case BO_GE:
15577 case BO_EQ:
15578 case BO_NE:
15579 case BO_And:
15580 case BO_Xor:
15581 case BO_Or:
15582 case BO_Comma:
15583 case BO_Cmp: {
15584 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15585 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15586 if (Exp->getOpcode() == BO_Div ||
15587 Exp->getOpcode() == BO_Rem) {
15588 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15589 // we don't evaluate one.
15590 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15591 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15592 if (REval == 0)
15593 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15594 if (REval.isSigned() && REval.isAllOnes()) {
15595 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15596 if (LEval.isMinSignedValue())
15597 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15598 }
15599 }
15600 }
15601 if (Exp->getOpcode() == BO_Comma) {
15602 if (Ctx.getLangOpts().C99) {
15603 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15604 // if it isn't evaluated.
15605 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15606 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15607 } else {
15608 // In both C89 and C++, commas in ICEs are illegal.
15609 return ICEDiag(IK_NotICE, E->getBeginLoc());
15610 }
15611 }
15612 return Worst(LHSResult, RHSResult);
15613 }
15614 case BO_LAnd:
15615 case BO_LOr: {
15616 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15617 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15618 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15619 // Rare case where the RHS has a comma "side-effect"; we need
15620 // to actually check the condition to see whether the side
15621 // with the comma is evaluated.
15622 if ((Exp->getOpcode() == BO_LAnd) !=
15623 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15624 return RHSResult;
15625 return NoDiag();
15626 }
15627
15628 return Worst(LHSResult, RHSResult);
15629 }
15630 }
15631 llvm_unreachable("invalid binary operator kind");
15632 }
15633 case Expr::ImplicitCastExprClass:
15634 case Expr::CStyleCastExprClass:
15635 case Expr::CXXFunctionalCastExprClass:
15636 case Expr::CXXStaticCastExprClass:
15637 case Expr::CXXReinterpretCastExprClass:
15638 case Expr::CXXConstCastExprClass:
15639 case Expr::ObjCBridgedCastExprClass: {
15640 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15641 if (isa<ExplicitCastExpr>(E)) {
15642 if (const FloatingLiteral *FL
15643 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15644 unsigned DestWidth = Ctx.getIntWidth(E->getType());
15645 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15646 APSInt IgnoredVal(DestWidth, !DestSigned);
15647 bool Ignored;
15648 // If the value does not fit in the destination type, the behavior is
15649 // undefined, so we are not required to treat it as a constant
15650 // expression.
15651 if (FL->getValue().convertToInteger(IgnoredVal,
15652 llvm::APFloat::rmTowardZero,
15653 &Ignored) & APFloat::opInvalidOp)
15654 return ICEDiag(IK_NotICE, E->getBeginLoc());
15655 return NoDiag();
15656 }
15657 }
15658 switch (cast<CastExpr>(E)->getCastKind()) {
15659 case CK_LValueToRValue:
15660 case CK_AtomicToNonAtomic:
15661 case CK_NonAtomicToAtomic:
15662 case CK_NoOp:
15663 case CK_IntegralToBoolean:
15664 case CK_IntegralCast:
15665 return CheckICE(SubExpr, Ctx);
15666 default:
15667 return ICEDiag(IK_NotICE, E->getBeginLoc());
15668 }
15669 }
15670 case Expr::BinaryConditionalOperatorClass: {
15671 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15672 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15673 if (CommonResult.Kind == IK_NotICE) return CommonResult;
15674 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15675 if (FalseResult.Kind == IK_NotICE) return FalseResult;
15676 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15677 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15678 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15679 return FalseResult;
15680 }
15681 case Expr::ConditionalOperatorClass: {
15682 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15683 // If the condition (ignoring parens) is a __builtin_constant_p call,
15684 // then only the true side is actually considered in an integer constant
15685 // expression, and it is fully evaluated. This is an important GNU
15686 // extension. See GCC PR38377 for discussion.
15687 if (const CallExpr *CallCE
15688 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15689 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15690 return CheckEvalInICE(E, Ctx);
15691 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15692 if (CondResult.Kind == IK_NotICE)
15693 return CondResult;
15694
15695 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15696 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15697
15698 if (TrueResult.Kind == IK_NotICE)
15699 return TrueResult;
15700 if (FalseResult.Kind == IK_NotICE)
15701 return FalseResult;
15702 if (CondResult.Kind == IK_ICEIfUnevaluated)
15703 return CondResult;
15704 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15705 return NoDiag();
15706 // Rare case where the diagnostics depend on which side is evaluated
15707 // Note that if we get here, CondResult is 0, and at least one of
15708 // TrueResult and FalseResult is non-zero.
15709 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15710 return FalseResult;
15711 return TrueResult;
15712 }
15713 case Expr::CXXDefaultArgExprClass:
15714 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15715 case Expr::CXXDefaultInitExprClass:
15716 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15717 case Expr::ChooseExprClass: {
15718 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15719 }
15720 case Expr::BuiltinBitCastExprClass: {
15721 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15722 return ICEDiag(IK_NotICE, E->getBeginLoc());
15723 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15724 }
15725 }
15726
15727 llvm_unreachable("Invalid StmtClass!");
15728 }
15729
15730 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)15731 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15732 const Expr *E,
15733 llvm::APSInt *Value,
15734 SourceLocation *Loc) {
15735 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15736 if (Loc) *Loc = E->getExprLoc();
15737 return false;
15738 }
15739
15740 APValue Result;
15741 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15742 return false;
15743
15744 if (!Result.isInt()) {
15745 if (Loc) *Loc = E->getExprLoc();
15746 return false;
15747 }
15748
15749 if (Value) *Value = Result.getInt();
15750 return true;
15751 }
15752
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const15753 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15754 SourceLocation *Loc) const {
15755 assert(!isValueDependent() &&
15756 "Expression evaluator can't be called on a dependent expression.");
15757
15758 if (Ctx.getLangOpts().CPlusPlus11)
15759 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15760
15761 ICEDiag D = CheckICE(this, Ctx);
15762 if (D.Kind != IK_ICE) {
15763 if (Loc) *Loc = D.Loc;
15764 return false;
15765 }
15766 return true;
15767 }
15768
getIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const15769 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15770 SourceLocation *Loc,
15771 bool isEvaluated) const {
15772 if (isValueDependent()) {
15773 // Expression evaluator can't succeed on a dependent expression.
15774 return None;
15775 }
15776
15777 APSInt Value;
15778
15779 if (Ctx.getLangOpts().CPlusPlus11) {
15780 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15781 return Value;
15782 return None;
15783 }
15784
15785 if (!isIntegerConstantExpr(Ctx, Loc))
15786 return None;
15787
15788 // The only possible side-effects here are due to UB discovered in the
15789 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15790 // required to treat the expression as an ICE, so we produce the folded
15791 // value.
15792 EvalResult ExprResult;
15793 Expr::EvalStatus Status;
15794 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15795 Info.InConstantContext = true;
15796
15797 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15798 llvm_unreachable("ICE cannot be evaluated!");
15799
15800 return ExprResult.Val.getInt();
15801 }
15802
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const15803 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15804 assert(!isValueDependent() &&
15805 "Expression evaluator can't be called on a dependent expression.");
15806
15807 return CheckICE(this, Ctx).Kind == IK_ICE;
15808 }
15809
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const15810 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15811 SourceLocation *Loc) const {
15812 assert(!isValueDependent() &&
15813 "Expression evaluator can't be called on a dependent expression.");
15814
15815 // We support this checking in C++98 mode in order to diagnose compatibility
15816 // issues.
15817 assert(Ctx.getLangOpts().CPlusPlus);
15818
15819 // Build evaluation settings.
15820 Expr::EvalStatus Status;
15821 SmallVector<PartialDiagnosticAt, 8> Diags;
15822 Status.Diag = &Diags;
15823 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15824
15825 APValue Scratch;
15826 bool IsConstExpr =
15827 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15828 // FIXME: We don't produce a diagnostic for this, but the callers that
15829 // call us on arbitrary full-expressions should generally not care.
15830 Info.discardCleanups() && !Status.HasSideEffects;
15831
15832 if (!Diags.empty()) {
15833 IsConstExpr = false;
15834 if (Loc) *Loc = Diags[0].first;
15835 } else if (!IsConstExpr) {
15836 // FIXME: This shouldn't happen.
15837 if (Loc) *Loc = getExprLoc();
15838 }
15839
15840 return IsConstExpr;
15841 }
15842
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const15843 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15844 const FunctionDecl *Callee,
15845 ArrayRef<const Expr*> Args,
15846 const Expr *This) const {
15847 assert(!isValueDependent() &&
15848 "Expression evaluator can't be called on a dependent expression.");
15849
15850 Expr::EvalStatus Status;
15851 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15852 Info.InConstantContext = true;
15853
15854 LValue ThisVal;
15855 const LValue *ThisPtr = nullptr;
15856 if (This) {
15857 #ifndef NDEBUG
15858 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15859 assert(MD && "Don't provide `this` for non-methods.");
15860 assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15861 #endif
15862 if (!This->isValueDependent() &&
15863 EvaluateObjectArgument(Info, This, ThisVal) &&
15864 !Info.EvalStatus.HasSideEffects)
15865 ThisPtr = &ThisVal;
15866
15867 // Ignore any side-effects from a failed evaluation. This is safe because
15868 // they can't interfere with any other argument evaluation.
15869 Info.EvalStatus.HasSideEffects = false;
15870 }
15871
15872 CallRef Call = Info.CurrentCall->createCall(Callee);
15873 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15874 I != E; ++I) {
15875 unsigned Idx = I - Args.begin();
15876 if (Idx >= Callee->getNumParams())
15877 break;
15878 const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15879 if ((*I)->isValueDependent() ||
15880 !EvaluateCallArg(PVD, *I, Call, Info) ||
15881 Info.EvalStatus.HasSideEffects) {
15882 // If evaluation fails, throw away the argument entirely.
15883 if (APValue *Slot = Info.getParamSlot(Call, PVD))
15884 *Slot = APValue();
15885 }
15886
15887 // Ignore any side-effects from a failed evaluation. This is safe because
15888 // they can't interfere with any other argument evaluation.
15889 Info.EvalStatus.HasSideEffects = false;
15890 }
15891
15892 // Parameter cleanups happen in the caller and are not part of this
15893 // evaluation.
15894 Info.discardCleanups();
15895 Info.EvalStatus.HasSideEffects = false;
15896
15897 // Build fake call to Callee.
15898 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15899 // FIXME: Missing ExprWithCleanups in enable_if conditions?
15900 FullExpressionRAII Scope(Info);
15901 return Evaluate(Value, Info, this) && Scope.destroy() &&
15902 !Info.EvalStatus.HasSideEffects;
15903 }
15904
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15905 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15906 SmallVectorImpl<
15907 PartialDiagnosticAt> &Diags) {
15908 // FIXME: It would be useful to check constexpr function templates, but at the
15909 // moment the constant expression evaluator cannot cope with the non-rigorous
15910 // ASTs which we build for dependent expressions.
15911 if (FD->isDependentContext())
15912 return true;
15913
15914 Expr::EvalStatus Status;
15915 Status.Diag = &Diags;
15916
15917 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15918 Info.InConstantContext = true;
15919 Info.CheckingPotentialConstantExpression = true;
15920
15921 // The constexpr VM attempts to compile all methods to bytecode here.
15922 if (Info.EnableNewConstInterp) {
15923 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15924 return Diags.empty();
15925 }
15926
15927 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15928 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15929
15930 // Fabricate an arbitrary expression on the stack and pretend that it
15931 // is a temporary being used as the 'this' pointer.
15932 LValue This;
15933 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15934 This.set({&VIE, Info.CurrentCall->Index});
15935
15936 ArrayRef<const Expr*> Args;
15937
15938 APValue Scratch;
15939 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15940 // Evaluate the call as a constant initializer, to allow the construction
15941 // of objects of non-literal types.
15942 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15943 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15944 } else {
15945 SourceLocation Loc = FD->getLocation();
15946 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15947 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15948 }
15949
15950 return Diags.empty();
15951 }
15952
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15953 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15954 const FunctionDecl *FD,
15955 SmallVectorImpl<
15956 PartialDiagnosticAt> &Diags) {
15957 assert(!E->isValueDependent() &&
15958 "Expression evaluator can't be called on a dependent expression.");
15959
15960 Expr::EvalStatus Status;
15961 Status.Diag = &Diags;
15962
15963 EvalInfo Info(FD->getASTContext(), Status,
15964 EvalInfo::EM_ConstantExpressionUnevaluated);
15965 Info.InConstantContext = true;
15966 Info.CheckingPotentialConstantExpression = true;
15967
15968 // Fabricate a call stack frame to give the arguments a plausible cover story.
15969 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15970
15971 APValue ResultScratch;
15972 Evaluate(ResultScratch, Info, E);
15973 return Diags.empty();
15974 }
15975
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const15976 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15977 unsigned Type) const {
15978 if (!getType()->isPointerType())
15979 return false;
15980
15981 Expr::EvalStatus Status;
15982 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15983 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15984 }
15985
EvaluateBuiltinStrLen(const Expr * E,uint64_t & Result,EvalInfo & Info)15986 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
15987 EvalInfo &Info) {
15988 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
15989 return false;
15990
15991 LValue String;
15992
15993 if (!EvaluatePointer(E, String, Info))
15994 return false;
15995
15996 QualType CharTy = E->getType()->getPointeeType();
15997
15998 // Fast path: if it's a string literal, search the string value.
15999 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16000 String.getLValueBase().dyn_cast<const Expr *>())) {
16001 StringRef Str = S->getBytes();
16002 int64_t Off = String.Offset.getQuantity();
16003 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16004 S->getCharByteWidth() == 1 &&
16005 // FIXME: Add fast-path for wchar_t too.
16006 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16007 Str = Str.substr(Off);
16008
16009 StringRef::size_type Pos = Str.find(0);
16010 if (Pos != StringRef::npos)
16011 Str = Str.substr(0, Pos);
16012
16013 Result = Str.size();
16014 return true;
16015 }
16016
16017 // Fall through to slow path.
16018 }
16019
16020 // Slow path: scan the bytes of the string looking for the terminating 0.
16021 for (uint64_t Strlen = 0; /**/; ++Strlen) {
16022 APValue Char;
16023 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16024 !Char.isInt())
16025 return false;
16026 if (!Char.getInt()) {
16027 Result = Strlen;
16028 return true;
16029 }
16030 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16031 return false;
16032 }
16033 }
16034
tryEvaluateStrLen(uint64_t & Result,ASTContext & Ctx) const16035 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16036 Expr::EvalStatus Status;
16037 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16038 return EvaluateBuiltinStrLen(this, Result, Info);
16039 }
16040