1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "Interp/Context.h" 36 #include "Interp/Frame.h" 37 #include "Interp/State.h" 38 #include "clang/AST/APValue.h" 39 #include "clang/AST/ASTContext.h" 40 #include "clang/AST/ASTDiagnostic.h" 41 #include "clang/AST/ASTLambda.h" 42 #include "clang/AST/Attr.h" 43 #include "clang/AST/CXXInheritance.h" 44 #include "clang/AST/CharUnits.h" 45 #include "clang/AST/CurrentSourceLocExprScope.h" 46 #include "clang/AST/Expr.h" 47 #include "clang/AST/OSLog.h" 48 #include "clang/AST/OptionalDiagnostic.h" 49 #include "clang/AST/RecordLayout.h" 50 #include "clang/AST/StmtVisitor.h" 51 #include "clang/AST/TypeLoc.h" 52 #include "clang/Basic/Builtins.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "llvm/ADT/APFixedPoint.h" 55 #include "llvm/ADT/Optional.h" 56 #include "llvm/ADT/SmallBitVector.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/SaveAndRestore.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <cstring> 61 #include <functional> 62 63 #define DEBUG_TYPE "exprconstant" 64 65 using namespace clang; 66 using llvm::APFixedPoint; 67 using llvm::APInt; 68 using llvm::APSInt; 69 using llvm::APFloat; 70 using llvm::FixedPointSemantics; 71 using llvm::Optional; 72 73 namespace { 74 struct LValue; 75 class CallStackFrame; 76 class EvalInfo; 77 78 using SourceLocExprScopeGuard = 79 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 80 81 static QualType getType(APValue::LValueBase B) { 82 return B.getType(); 83 } 84 85 /// Get an LValue path entry, which is known to not be an array index, as a 86 /// field declaration. 87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 89 } 90 /// Get an LValue path entry, which is known to not be an array index, as a 91 /// base class declaration. 92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 94 } 95 /// Determine whether this LValue path entry for a base class names a virtual 96 /// base class. 97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 98 return E.getAsBaseOrMember().getInt(); 99 } 100 101 /// Given an expression, determine the type used to store the result of 102 /// evaluating that expression. 103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 104 if (E->isPRValue()) 105 return E->getType(); 106 return Ctx.getLValueReferenceType(E->getType()); 107 } 108 109 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 111 if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) 112 return DirectCallee->getAttr<AllocSizeAttr>(); 113 if (const Decl *IndirectCallee = CE->getCalleeDecl()) 114 return IndirectCallee->getAttr<AllocSizeAttr>(); 115 return nullptr; 116 } 117 118 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 119 /// This will look through a single cast. 120 /// 121 /// Returns null if we couldn't unwrap a function with alloc_size. 122 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 123 if (!E->getType()->isPointerType()) 124 return nullptr; 125 126 E = E->IgnoreParens(); 127 // If we're doing a variable assignment from e.g. malloc(N), there will 128 // probably be a cast of some kind. In exotic cases, we might also see a 129 // top-level ExprWithCleanups. Ignore them either way. 130 if (const auto *FE = dyn_cast<FullExpr>(E)) 131 E = FE->getSubExpr()->IgnoreParens(); 132 133 if (const auto *Cast = dyn_cast<CastExpr>(E)) 134 E = Cast->getSubExpr()->IgnoreParens(); 135 136 if (const auto *CE = dyn_cast<CallExpr>(E)) 137 return getAllocSizeAttr(CE) ? CE : nullptr; 138 return nullptr; 139 } 140 141 /// Determines whether or not the given Base contains a call to a function 142 /// with the alloc_size attribute. 143 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 144 const auto *E = Base.dyn_cast<const Expr *>(); 145 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 146 } 147 148 /// Determines whether the given kind of constant expression is only ever 149 /// used for name mangling. If so, it's permitted to reference things that we 150 /// can't generate code for (in particular, dllimported functions). 151 static bool isForManglingOnly(ConstantExprKind Kind) { 152 switch (Kind) { 153 case ConstantExprKind::Normal: 154 case ConstantExprKind::ClassTemplateArgument: 155 case ConstantExprKind::ImmediateInvocation: 156 // Note that non-type template arguments of class type are emitted as 157 // template parameter objects. 158 return false; 159 160 case ConstantExprKind::NonClassTemplateArgument: 161 return true; 162 } 163 llvm_unreachable("unknown ConstantExprKind"); 164 } 165 166 static bool isTemplateArgument(ConstantExprKind Kind) { 167 switch (Kind) { 168 case ConstantExprKind::Normal: 169 case ConstantExprKind::ImmediateInvocation: 170 return false; 171 172 case ConstantExprKind::ClassTemplateArgument: 173 case ConstantExprKind::NonClassTemplateArgument: 174 return true; 175 } 176 llvm_unreachable("unknown ConstantExprKind"); 177 } 178 179 /// The bound to claim that an array of unknown bound has. 180 /// The value in MostDerivedArraySize is undefined in this case. So, set it 181 /// to an arbitrary value that's likely to loudly break things if it's used. 182 static const uint64_t AssumedSizeForUnsizedArray = 183 std::numeric_limits<uint64_t>::max() / 2; 184 185 /// Determines if an LValue with the given LValueBase will have an unsized 186 /// array in its designator. 187 /// Find the path length and type of the most-derived subobject in the given 188 /// path, and find the size of the containing array, if any. 189 static unsigned 190 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 191 ArrayRef<APValue::LValuePathEntry> Path, 192 uint64_t &ArraySize, QualType &Type, bool &IsArray, 193 bool &FirstEntryIsUnsizedArray) { 194 // This only accepts LValueBases from APValues, and APValues don't support 195 // arrays that lack size info. 196 assert(!isBaseAnAllocSizeCall(Base) && 197 "Unsized arrays shouldn't appear here"); 198 unsigned MostDerivedLength = 0; 199 Type = getType(Base); 200 201 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 202 if (Type->isArrayType()) { 203 const ArrayType *AT = Ctx.getAsArrayType(Type); 204 Type = AT->getElementType(); 205 MostDerivedLength = I + 1; 206 IsArray = true; 207 208 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 209 ArraySize = CAT->getSize().getZExtValue(); 210 } else { 211 assert(I == 0 && "unexpected unsized array designator"); 212 FirstEntryIsUnsizedArray = true; 213 ArraySize = AssumedSizeForUnsizedArray; 214 } 215 } else if (Type->isAnyComplexType()) { 216 const ComplexType *CT = Type->castAs<ComplexType>(); 217 Type = CT->getElementType(); 218 ArraySize = 2; 219 MostDerivedLength = I + 1; 220 IsArray = true; 221 } else if (const FieldDecl *FD = getAsField(Path[I])) { 222 Type = FD->getType(); 223 ArraySize = 0; 224 MostDerivedLength = I + 1; 225 IsArray = false; 226 } else { 227 // Path[I] describes a base class. 228 ArraySize = 0; 229 IsArray = false; 230 } 231 } 232 return MostDerivedLength; 233 } 234 235 /// A path from a glvalue to a subobject of that glvalue. 236 struct SubobjectDesignator { 237 /// True if the subobject was named in a manner not supported by C++11. Such 238 /// lvalues can still be folded, but they are not core constant expressions 239 /// and we cannot perform lvalue-to-rvalue conversions on them. 240 unsigned Invalid : 1; 241 242 /// Is this a pointer one past the end of an object? 243 unsigned IsOnePastTheEnd : 1; 244 245 /// Indicator of whether the first entry is an unsized array. 246 unsigned FirstEntryIsAnUnsizedArray : 1; 247 248 /// Indicator of whether the most-derived object is an array element. 249 unsigned MostDerivedIsArrayElement : 1; 250 251 /// The length of the path to the most-derived object of which this is a 252 /// subobject. 253 unsigned MostDerivedPathLength : 28; 254 255 /// The size of the array of which the most-derived object is an element. 256 /// This will always be 0 if the most-derived object is not an array 257 /// element. 0 is not an indicator of whether or not the most-derived object 258 /// is an array, however, because 0-length arrays are allowed. 259 /// 260 /// If the current array is an unsized array, the value of this is 261 /// undefined. 262 uint64_t MostDerivedArraySize; 263 264 /// The type of the most derived object referred to by this address. 265 QualType MostDerivedType; 266 267 typedef APValue::LValuePathEntry PathEntry; 268 269 /// The entries on the path from the glvalue to the designated subobject. 270 SmallVector<PathEntry, 8> Entries; 271 272 SubobjectDesignator() : Invalid(true) {} 273 274 explicit SubobjectDesignator(QualType T) 275 : Invalid(false), IsOnePastTheEnd(false), 276 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 277 MostDerivedPathLength(0), MostDerivedArraySize(0), 278 MostDerivedType(T) {} 279 280 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 281 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 282 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 283 MostDerivedPathLength(0), MostDerivedArraySize(0) { 284 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 285 if (!Invalid) { 286 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 287 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 288 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 289 if (V.getLValueBase()) { 290 bool IsArray = false; 291 bool FirstIsUnsizedArray = false; 292 MostDerivedPathLength = findMostDerivedSubobject( 293 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 294 MostDerivedType, IsArray, FirstIsUnsizedArray); 295 MostDerivedIsArrayElement = IsArray; 296 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 297 } 298 } 299 } 300 301 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 302 unsigned NewLength) { 303 if (Invalid) 304 return; 305 306 assert(Base && "cannot truncate path for null pointer"); 307 assert(NewLength <= Entries.size() && "not a truncation"); 308 309 if (NewLength == Entries.size()) 310 return; 311 Entries.resize(NewLength); 312 313 bool IsArray = false; 314 bool FirstIsUnsizedArray = false; 315 MostDerivedPathLength = findMostDerivedSubobject( 316 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 317 FirstIsUnsizedArray); 318 MostDerivedIsArrayElement = IsArray; 319 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 320 } 321 322 void setInvalid() { 323 Invalid = true; 324 Entries.clear(); 325 } 326 327 /// Determine whether the most derived subobject is an array without a 328 /// known bound. 329 bool isMostDerivedAnUnsizedArray() const { 330 assert(!Invalid && "Calling this makes no sense on invalid designators"); 331 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 332 } 333 334 /// Determine what the most derived array's size is. Results in an assertion 335 /// failure if the most derived array lacks a size. 336 uint64_t getMostDerivedArraySize() const { 337 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 338 return MostDerivedArraySize; 339 } 340 341 /// Determine whether this is a one-past-the-end pointer. 342 bool isOnePastTheEnd() const { 343 assert(!Invalid); 344 if (IsOnePastTheEnd) 345 return true; 346 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 347 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 348 MostDerivedArraySize) 349 return true; 350 return false; 351 } 352 353 /// Get the range of valid index adjustments in the form 354 /// {maximum value that can be subtracted from this pointer, 355 /// maximum value that can be added to this pointer} 356 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 357 if (Invalid || isMostDerivedAnUnsizedArray()) 358 return {0, 0}; 359 360 // [expr.add]p4: For the purposes of these operators, a pointer to a 361 // nonarray object behaves the same as a pointer to the first element of 362 // an array of length one with the type of the object as its element type. 363 bool IsArray = MostDerivedPathLength == Entries.size() && 364 MostDerivedIsArrayElement; 365 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 366 : (uint64_t)IsOnePastTheEnd; 367 uint64_t ArraySize = 368 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 369 return {ArrayIndex, ArraySize - ArrayIndex}; 370 } 371 372 /// Check that this refers to a valid subobject. 373 bool isValidSubobject() const { 374 if (Invalid) 375 return false; 376 return !isOnePastTheEnd(); 377 } 378 /// Check that this refers to a valid subobject, and if not, produce a 379 /// relevant diagnostic and set the designator as invalid. 380 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 381 382 /// Get the type of the designated object. 383 QualType getType(ASTContext &Ctx) const { 384 assert(!Invalid && "invalid designator has no subobject type"); 385 return MostDerivedPathLength == Entries.size() 386 ? MostDerivedType 387 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 388 } 389 390 /// Update this designator to refer to the first element within this array. 391 void addArrayUnchecked(const ConstantArrayType *CAT) { 392 Entries.push_back(PathEntry::ArrayIndex(0)); 393 394 // This is a most-derived object. 395 MostDerivedType = CAT->getElementType(); 396 MostDerivedIsArrayElement = true; 397 MostDerivedArraySize = CAT->getSize().getZExtValue(); 398 MostDerivedPathLength = Entries.size(); 399 } 400 /// Update this designator to refer to the first element within the array of 401 /// elements of type T. This is an array of unknown size. 402 void addUnsizedArrayUnchecked(QualType ElemTy) { 403 Entries.push_back(PathEntry::ArrayIndex(0)); 404 405 MostDerivedType = ElemTy; 406 MostDerivedIsArrayElement = true; 407 // The value in MostDerivedArraySize is undefined in this case. So, set it 408 // to an arbitrary value that's likely to loudly break things if it's 409 // used. 410 MostDerivedArraySize = AssumedSizeForUnsizedArray; 411 MostDerivedPathLength = Entries.size(); 412 } 413 /// Update this designator to refer to the given base or member of this 414 /// object. 415 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 416 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 417 418 // If this isn't a base class, it's a new most-derived object. 419 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 420 MostDerivedType = FD->getType(); 421 MostDerivedIsArrayElement = false; 422 MostDerivedArraySize = 0; 423 MostDerivedPathLength = Entries.size(); 424 } 425 } 426 /// Update this designator to refer to the given complex component. 427 void addComplexUnchecked(QualType EltTy, bool Imag) { 428 Entries.push_back(PathEntry::ArrayIndex(Imag)); 429 430 // This is technically a most-derived object, though in practice this 431 // is unlikely to matter. 432 MostDerivedType = EltTy; 433 MostDerivedIsArrayElement = true; 434 MostDerivedArraySize = 2; 435 MostDerivedPathLength = Entries.size(); 436 } 437 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 438 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 439 const APSInt &N); 440 /// Add N to the address of this subobject. 441 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 442 if (Invalid || !N) return; 443 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 444 if (isMostDerivedAnUnsizedArray()) { 445 diagnoseUnsizedArrayPointerArithmetic(Info, E); 446 // Can't verify -- trust that the user is doing the right thing (or if 447 // not, trust that the caller will catch the bad behavior). 448 // FIXME: Should we reject if this overflows, at least? 449 Entries.back() = PathEntry::ArrayIndex( 450 Entries.back().getAsArrayIndex() + TruncatedN); 451 return; 452 } 453 454 // [expr.add]p4: For the purposes of these operators, a pointer to a 455 // nonarray object behaves the same as a pointer to the first element of 456 // an array of length one with the type of the object as its element type. 457 bool IsArray = MostDerivedPathLength == Entries.size() && 458 MostDerivedIsArrayElement; 459 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 460 : (uint64_t)IsOnePastTheEnd; 461 uint64_t ArraySize = 462 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 463 464 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 465 // Calculate the actual index in a wide enough type, so we can include 466 // it in the note. 467 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 468 (llvm::APInt&)N += ArrayIndex; 469 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 470 diagnosePointerArithmetic(Info, E, N); 471 setInvalid(); 472 return; 473 } 474 475 ArrayIndex += TruncatedN; 476 assert(ArrayIndex <= ArraySize && 477 "bounds check succeeded for out-of-bounds index"); 478 479 if (IsArray) 480 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 481 else 482 IsOnePastTheEnd = (ArrayIndex != 0); 483 } 484 }; 485 486 /// A scope at the end of which an object can need to be destroyed. 487 enum class ScopeKind { 488 Block, 489 FullExpression, 490 Call 491 }; 492 493 /// A reference to a particular call and its arguments. 494 struct CallRef { 495 CallRef() : OrigCallee(), CallIndex(0), Version() {} 496 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) 497 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} 498 499 explicit operator bool() const { return OrigCallee; } 500 501 /// Get the parameter that the caller initialized, corresponding to the 502 /// given parameter in the callee. 503 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { 504 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) 505 : PVD; 506 } 507 508 /// The callee at the point where the arguments were evaluated. This might 509 /// be different from the actual callee (a different redeclaration, or a 510 /// virtual override), but this function's parameters are the ones that 511 /// appear in the parameter map. 512 const FunctionDecl *OrigCallee; 513 /// The call index of the frame that holds the argument values. 514 unsigned CallIndex; 515 /// The version of the parameters corresponding to this call. 516 unsigned Version; 517 }; 518 519 /// A stack frame in the constexpr call stack. 520 class CallStackFrame : public interp::Frame { 521 public: 522 EvalInfo &Info; 523 524 /// Parent - The caller of this stack frame. 525 CallStackFrame *Caller; 526 527 /// Callee - The function which was called. 528 const FunctionDecl *Callee; 529 530 /// This - The binding for the this pointer in this call, if any. 531 const LValue *This; 532 533 /// Information on how to find the arguments to this call. Our arguments 534 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a 535 /// key and this value as the version. 536 CallRef Arguments; 537 538 /// Source location information about the default argument or default 539 /// initializer expression we're evaluating, if any. 540 CurrentSourceLocExprScope CurSourceLocExprScope; 541 542 // Note that we intentionally use std::map here so that references to 543 // values are stable. 544 typedef std::pair<const void *, unsigned> MapKeyTy; 545 typedef std::map<MapKeyTy, APValue> MapTy; 546 /// Temporaries - Temporary lvalues materialized within this stack frame. 547 MapTy Temporaries; 548 549 /// CallLoc - The location of the call expression for this call. 550 SourceLocation CallLoc; 551 552 /// Index - The call index of this call. 553 unsigned Index; 554 555 /// The stack of integers for tracking version numbers for temporaries. 556 SmallVector<unsigned, 2> TempVersionStack = {1}; 557 unsigned CurTempVersion = TempVersionStack.back(); 558 559 unsigned getTempVersion() const { return TempVersionStack.back(); } 560 561 void pushTempVersion() { 562 TempVersionStack.push_back(++CurTempVersion); 563 } 564 565 void popTempVersion() { 566 TempVersionStack.pop_back(); 567 } 568 569 CallRef createCall(const FunctionDecl *Callee) { 570 return {Callee, Index, ++CurTempVersion}; 571 } 572 573 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 574 // on the overall stack usage of deeply-recursing constexpr evaluations. 575 // (We should cache this map rather than recomputing it repeatedly.) 576 // But let's try this and see how it goes; we can look into caching the map 577 // as a later change. 578 579 /// LambdaCaptureFields - Mapping from captured variables/this to 580 /// corresponding data members in the closure class. 581 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 582 FieldDecl *LambdaThisCaptureField; 583 584 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 585 const FunctionDecl *Callee, const LValue *This, 586 CallRef Arguments); 587 ~CallStackFrame(); 588 589 // Return the temporary for Key whose version number is Version. 590 APValue *getTemporary(const void *Key, unsigned Version) { 591 MapKeyTy KV(Key, Version); 592 auto LB = Temporaries.lower_bound(KV); 593 if (LB != Temporaries.end() && LB->first == KV) 594 return &LB->second; 595 // Pair (Key,Version) wasn't found in the map. Check that no elements 596 // in the map have 'Key' as their key. 597 assert((LB == Temporaries.end() || LB->first.first != Key) && 598 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && 599 "Element with key 'Key' found in map"); 600 return nullptr; 601 } 602 603 // Return the current temporary for Key in the map. 604 APValue *getCurrentTemporary(const void *Key) { 605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 607 return &std::prev(UB)->second; 608 return nullptr; 609 } 610 611 // Return the version number of the current temporary for Key. 612 unsigned getCurrentTemporaryVersion(const void *Key) const { 613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 615 return std::prev(UB)->first.second; 616 return 0; 617 } 618 619 /// Allocate storage for an object of type T in this stack frame. 620 /// Populates LV with a handle to the created object. Key identifies 621 /// the temporary within the stack frame, and must not be reused without 622 /// bumping the temporary version number. 623 template<typename KeyT> 624 APValue &createTemporary(const KeyT *Key, QualType T, 625 ScopeKind Scope, LValue &LV); 626 627 /// Allocate storage for a parameter of a function call made in this frame. 628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); 629 630 void describe(llvm::raw_ostream &OS) override; 631 632 Frame *getCaller() const override { return Caller; } 633 SourceLocation getCallLocation() const override { return CallLoc; } 634 const FunctionDecl *getCallee() const override { return Callee; } 635 636 bool isStdFunction() const { 637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 638 if (DC->isStdNamespace()) 639 return true; 640 return false; 641 } 642 643 private: 644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, 645 ScopeKind Scope); 646 }; 647 648 /// Temporarily override 'this'. 649 class ThisOverrideRAII { 650 public: 651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 652 : Frame(Frame), OldThis(Frame.This) { 653 if (Enable) 654 Frame.This = NewThis; 655 } 656 ~ThisOverrideRAII() { 657 Frame.This = OldThis; 658 } 659 private: 660 CallStackFrame &Frame; 661 const LValue *OldThis; 662 }; 663 } 664 665 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 666 const LValue &This, QualType ThisType); 667 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 668 APValue::LValueBase LVBase, APValue &Value, 669 QualType T); 670 671 namespace { 672 /// A cleanup, and a flag indicating whether it is lifetime-extended. 673 class Cleanup { 674 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; 675 APValue::LValueBase Base; 676 QualType T; 677 678 public: 679 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 680 ScopeKind Scope) 681 : Value(Val, Scope), Base(Base), T(T) {} 682 683 /// Determine whether this cleanup should be performed at the end of the 684 /// given kind of scope. 685 bool isDestroyedAtEndOf(ScopeKind K) const { 686 return (int)Value.getInt() >= (int)K; 687 } 688 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 689 if (RunDestructors) { 690 SourceLocation Loc; 691 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 692 Loc = VD->getLocation(); 693 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 694 Loc = E->getExprLoc(); 695 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 696 } 697 *Value.getPointer() = APValue(); 698 return true; 699 } 700 701 bool hasSideEffect() { 702 return T.isDestructedType(); 703 } 704 }; 705 706 /// A reference to an object whose construction we are currently evaluating. 707 struct ObjectUnderConstruction { 708 APValue::LValueBase Base; 709 ArrayRef<APValue::LValuePathEntry> Path; 710 friend bool operator==(const ObjectUnderConstruction &LHS, 711 const ObjectUnderConstruction &RHS) { 712 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 713 } 714 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 715 return llvm::hash_combine(Obj.Base, Obj.Path); 716 } 717 }; 718 enum class ConstructionPhase { 719 None, 720 Bases, 721 AfterBases, 722 AfterFields, 723 Destroying, 724 DestroyingBases 725 }; 726 } 727 728 namespace llvm { 729 template<> struct DenseMapInfo<ObjectUnderConstruction> { 730 using Base = DenseMapInfo<APValue::LValueBase>; 731 static ObjectUnderConstruction getEmptyKey() { 732 return {Base::getEmptyKey(), {}}; } 733 static ObjectUnderConstruction getTombstoneKey() { 734 return {Base::getTombstoneKey(), {}}; 735 } 736 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 737 return hash_value(Object); 738 } 739 static bool isEqual(const ObjectUnderConstruction &LHS, 740 const ObjectUnderConstruction &RHS) { 741 return LHS == RHS; 742 } 743 }; 744 } 745 746 namespace { 747 /// A dynamically-allocated heap object. 748 struct DynAlloc { 749 /// The value of this heap-allocated object. 750 APValue Value; 751 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 752 /// or a CallExpr (the latter is for direct calls to operator new inside 753 /// std::allocator<T>::allocate). 754 const Expr *AllocExpr = nullptr; 755 756 enum Kind { 757 New, 758 ArrayNew, 759 StdAllocator 760 }; 761 762 /// Get the kind of the allocation. This must match between allocation 763 /// and deallocation. 764 Kind getKind() const { 765 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 766 return NE->isArray() ? ArrayNew : New; 767 assert(isa<CallExpr>(AllocExpr)); 768 return StdAllocator; 769 } 770 }; 771 772 struct DynAllocOrder { 773 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 774 return L.getIndex() < R.getIndex(); 775 } 776 }; 777 778 /// EvalInfo - This is a private struct used by the evaluator to capture 779 /// information about a subexpression as it is folded. It retains information 780 /// about the AST context, but also maintains information about the folded 781 /// expression. 782 /// 783 /// If an expression could be evaluated, it is still possible it is not a C 784 /// "integer constant expression" or constant expression. If not, this struct 785 /// captures information about how and why not. 786 /// 787 /// One bit of information passed *into* the request for constant folding 788 /// indicates whether the subexpression is "evaluated" or not according to C 789 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 790 /// evaluate the expression regardless of what the RHS is, but C only allows 791 /// certain things in certain situations. 792 class EvalInfo : public interp::State { 793 public: 794 ASTContext &Ctx; 795 796 /// EvalStatus - Contains information about the evaluation. 797 Expr::EvalStatus &EvalStatus; 798 799 /// CurrentCall - The top of the constexpr call stack. 800 CallStackFrame *CurrentCall; 801 802 /// CallStackDepth - The number of calls in the call stack right now. 803 unsigned CallStackDepth; 804 805 /// NextCallIndex - The next call index to assign. 806 unsigned NextCallIndex; 807 808 /// StepsLeft - The remaining number of evaluation steps we're permitted 809 /// to perform. This is essentially a limit for the number of statements 810 /// we will evaluate. 811 unsigned StepsLeft; 812 813 /// Enable the experimental new constant interpreter. If an expression is 814 /// not supported by the interpreter, an error is triggered. 815 bool EnableNewConstInterp; 816 817 /// BottomFrame - The frame in which evaluation started. This must be 818 /// initialized after CurrentCall and CallStackDepth. 819 CallStackFrame BottomFrame; 820 821 /// A stack of values whose lifetimes end at the end of some surrounding 822 /// evaluation frame. 823 llvm::SmallVector<Cleanup, 16> CleanupStack; 824 825 /// EvaluatingDecl - This is the declaration whose initializer is being 826 /// evaluated, if any. 827 APValue::LValueBase EvaluatingDecl; 828 829 enum class EvaluatingDeclKind { 830 None, 831 /// We're evaluating the construction of EvaluatingDecl. 832 Ctor, 833 /// We're evaluating the destruction of EvaluatingDecl. 834 Dtor, 835 }; 836 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 837 838 /// EvaluatingDeclValue - This is the value being constructed for the 839 /// declaration whose initializer is being evaluated, if any. 840 APValue *EvaluatingDeclValue; 841 842 /// Set of objects that are currently being constructed. 843 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 844 ObjectsUnderConstruction; 845 846 /// Current heap allocations, along with the location where each was 847 /// allocated. We use std::map here because we need stable addresses 848 /// for the stored APValues. 849 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 850 851 /// The number of heap allocations performed so far in this evaluation. 852 unsigned NumHeapAllocs = 0; 853 854 struct EvaluatingConstructorRAII { 855 EvalInfo &EI; 856 ObjectUnderConstruction Object; 857 bool DidInsert; 858 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 859 bool HasBases) 860 : EI(EI), Object(Object) { 861 DidInsert = 862 EI.ObjectsUnderConstruction 863 .insert({Object, HasBases ? ConstructionPhase::Bases 864 : ConstructionPhase::AfterBases}) 865 .second; 866 } 867 void finishedConstructingBases() { 868 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 869 } 870 void finishedConstructingFields() { 871 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; 872 } 873 ~EvaluatingConstructorRAII() { 874 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 875 } 876 }; 877 878 struct EvaluatingDestructorRAII { 879 EvalInfo &EI; 880 ObjectUnderConstruction Object; 881 bool DidInsert; 882 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 883 : EI(EI), Object(Object) { 884 DidInsert = EI.ObjectsUnderConstruction 885 .insert({Object, ConstructionPhase::Destroying}) 886 .second; 887 } 888 void startedDestroyingBases() { 889 EI.ObjectsUnderConstruction[Object] = 890 ConstructionPhase::DestroyingBases; 891 } 892 ~EvaluatingDestructorRAII() { 893 if (DidInsert) 894 EI.ObjectsUnderConstruction.erase(Object); 895 } 896 }; 897 898 ConstructionPhase 899 isEvaluatingCtorDtor(APValue::LValueBase Base, 900 ArrayRef<APValue::LValuePathEntry> Path) { 901 return ObjectsUnderConstruction.lookup({Base, Path}); 902 } 903 904 /// If we're currently speculatively evaluating, the outermost call stack 905 /// depth at which we can mutate state, otherwise 0. 906 unsigned SpeculativeEvaluationDepth = 0; 907 908 /// The current array initialization index, if we're performing array 909 /// initialization. 910 uint64_t ArrayInitIndex = -1; 911 912 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 913 /// notes attached to it will also be stored, otherwise they will not be. 914 bool HasActiveDiagnostic; 915 916 /// Have we emitted a diagnostic explaining why we couldn't constant 917 /// fold (not just why it's not strictly a constant expression)? 918 bool HasFoldFailureDiagnostic; 919 920 /// Whether or not we're in a context where the front end requires a 921 /// constant value. 922 bool InConstantContext; 923 924 /// Whether we're checking that an expression is a potential constant 925 /// expression. If so, do not fail on constructs that could become constant 926 /// later on (such as a use of an undefined global). 927 bool CheckingPotentialConstantExpression = false; 928 929 /// Whether we're checking for an expression that has undefined behavior. 930 /// If so, we will produce warnings if we encounter an operation that is 931 /// always undefined. 932 /// 933 /// Note that we still need to evaluate the expression normally when this 934 /// is set; this is used when evaluating ICEs in C. 935 bool CheckingForUndefinedBehavior = false; 936 937 enum EvaluationMode { 938 /// Evaluate as a constant expression. Stop if we find that the expression 939 /// is not a constant expression. 940 EM_ConstantExpression, 941 942 /// Evaluate as a constant expression. Stop if we find that the expression 943 /// is not a constant expression. Some expressions can be retried in the 944 /// optimizer if we don't constant fold them here, but in an unevaluated 945 /// context we try to fold them immediately since the optimizer never 946 /// gets a chance to look at it. 947 EM_ConstantExpressionUnevaluated, 948 949 /// Fold the expression to a constant. Stop if we hit a side-effect that 950 /// we can't model. 951 EM_ConstantFold, 952 953 /// Evaluate in any way we know how. Don't worry about side-effects that 954 /// can't be modeled. 955 EM_IgnoreSideEffects, 956 } EvalMode; 957 958 /// Are we checking whether the expression is a potential constant 959 /// expression? 960 bool checkingPotentialConstantExpression() const override { 961 return CheckingPotentialConstantExpression; 962 } 963 964 /// Are we checking an expression for overflow? 965 // FIXME: We should check for any kind of undefined or suspicious behavior 966 // in such constructs, not just overflow. 967 bool checkingForUndefinedBehavior() const override { 968 return CheckingForUndefinedBehavior; 969 } 970 971 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 972 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 973 CallStackDepth(0), NextCallIndex(1), 974 StepsLeft(C.getLangOpts().ConstexprStepLimit), 975 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), 976 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()), 977 EvaluatingDecl((const ValueDecl *)nullptr), 978 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 979 HasFoldFailureDiagnostic(false), InConstantContext(false), 980 EvalMode(Mode) {} 981 982 ~EvalInfo() { 983 discardCleanups(); 984 } 985 986 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 987 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 988 EvaluatingDecl = Base; 989 IsEvaluatingDecl = EDK; 990 EvaluatingDeclValue = &Value; 991 } 992 993 bool CheckCallLimit(SourceLocation Loc) { 994 // Don't perform any constexpr calls (other than the call we're checking) 995 // when checking a potential constant expression. 996 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 997 return false; 998 if (NextCallIndex == 0) { 999 // NextCallIndex has wrapped around. 1000 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 1001 return false; 1002 } 1003 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 1004 return true; 1005 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 1006 << getLangOpts().ConstexprCallDepth; 1007 return false; 1008 } 1009 1010 std::pair<CallStackFrame *, unsigned> 1011 getCallFrameAndDepth(unsigned CallIndex) { 1012 assert(CallIndex && "no call index in getCallFrameAndDepth"); 1013 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 1014 // be null in this loop. 1015 unsigned Depth = CallStackDepth; 1016 CallStackFrame *Frame = CurrentCall; 1017 while (Frame->Index > CallIndex) { 1018 Frame = Frame->Caller; 1019 --Depth; 1020 } 1021 if (Frame->Index == CallIndex) 1022 return {Frame, Depth}; 1023 return {nullptr, 0}; 1024 } 1025 1026 bool nextStep(const Stmt *S) { 1027 if (!StepsLeft) { 1028 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 1029 return false; 1030 } 1031 --StepsLeft; 1032 return true; 1033 } 1034 1035 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 1036 1037 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) { 1038 Optional<DynAlloc*> Result; 1039 auto It = HeapAllocs.find(DA); 1040 if (It != HeapAllocs.end()) 1041 Result = &It->second; 1042 return Result; 1043 } 1044 1045 /// Get the allocated storage for the given parameter of the given call. 1046 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { 1047 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; 1048 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) 1049 : nullptr; 1050 } 1051 1052 /// Information about a stack frame for std::allocator<T>::[de]allocate. 1053 struct StdAllocatorCaller { 1054 unsigned FrameIndex; 1055 QualType ElemType; 1056 explicit operator bool() const { return FrameIndex != 0; }; 1057 }; 1058 1059 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1060 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1061 Call = Call->Caller) { 1062 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1063 if (!MD) 1064 continue; 1065 const IdentifierInfo *FnII = MD->getIdentifier(); 1066 if (!FnII || !FnII->isStr(FnName)) 1067 continue; 1068 1069 const auto *CTSD = 1070 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1071 if (!CTSD) 1072 continue; 1073 1074 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1075 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1076 if (CTSD->isInStdNamespace() && ClassII && 1077 ClassII->isStr("allocator") && TAL.size() >= 1 && 1078 TAL[0].getKind() == TemplateArgument::Type) 1079 return {Call->Index, TAL[0].getAsType()}; 1080 } 1081 1082 return {}; 1083 } 1084 1085 void performLifetimeExtension() { 1086 // Disable the cleanups for lifetime-extended temporaries. 1087 llvm::erase_if(CleanupStack, [](Cleanup &C) { 1088 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); 1089 }); 1090 } 1091 1092 /// Throw away any remaining cleanups at the end of evaluation. If any 1093 /// cleanups would have had a side-effect, note that as an unmodeled 1094 /// side-effect and return false. Otherwise, return true. 1095 bool discardCleanups() { 1096 for (Cleanup &C : CleanupStack) { 1097 if (C.hasSideEffect() && !noteSideEffect()) { 1098 CleanupStack.clear(); 1099 return false; 1100 } 1101 } 1102 CleanupStack.clear(); 1103 return true; 1104 } 1105 1106 private: 1107 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1108 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1109 1110 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1111 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1112 1113 void setFoldFailureDiagnostic(bool Flag) override { 1114 HasFoldFailureDiagnostic = Flag; 1115 } 1116 1117 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1118 1119 ASTContext &getCtx() const override { return Ctx; } 1120 1121 // If we have a prior diagnostic, it will be noting that the expression 1122 // isn't a constant expression. This diagnostic is more important, 1123 // unless we require this evaluation to produce a constant expression. 1124 // 1125 // FIXME: We might want to show both diagnostics to the user in 1126 // EM_ConstantFold mode. 1127 bool hasPriorDiagnostic() override { 1128 if (!EvalStatus.Diag->empty()) { 1129 switch (EvalMode) { 1130 case EM_ConstantFold: 1131 case EM_IgnoreSideEffects: 1132 if (!HasFoldFailureDiagnostic) 1133 break; 1134 // We've already failed to fold something. Keep that diagnostic. 1135 LLVM_FALLTHROUGH; 1136 case EM_ConstantExpression: 1137 case EM_ConstantExpressionUnevaluated: 1138 setActiveDiagnostic(false); 1139 return true; 1140 } 1141 } 1142 return false; 1143 } 1144 1145 unsigned getCallStackDepth() override { return CallStackDepth; } 1146 1147 public: 1148 /// Should we continue evaluation after encountering a side-effect that we 1149 /// couldn't model? 1150 bool keepEvaluatingAfterSideEffect() { 1151 switch (EvalMode) { 1152 case EM_IgnoreSideEffects: 1153 return true; 1154 1155 case EM_ConstantExpression: 1156 case EM_ConstantExpressionUnevaluated: 1157 case EM_ConstantFold: 1158 // By default, assume any side effect might be valid in some other 1159 // evaluation of this expression from a different context. 1160 return checkingPotentialConstantExpression() || 1161 checkingForUndefinedBehavior(); 1162 } 1163 llvm_unreachable("Missed EvalMode case"); 1164 } 1165 1166 /// Note that we have had a side-effect, and determine whether we should 1167 /// keep evaluating. 1168 bool noteSideEffect() { 1169 EvalStatus.HasSideEffects = true; 1170 return keepEvaluatingAfterSideEffect(); 1171 } 1172 1173 /// Should we continue evaluation after encountering undefined behavior? 1174 bool keepEvaluatingAfterUndefinedBehavior() { 1175 switch (EvalMode) { 1176 case EM_IgnoreSideEffects: 1177 case EM_ConstantFold: 1178 return true; 1179 1180 case EM_ConstantExpression: 1181 case EM_ConstantExpressionUnevaluated: 1182 return checkingForUndefinedBehavior(); 1183 } 1184 llvm_unreachable("Missed EvalMode case"); 1185 } 1186 1187 /// Note that we hit something that was technically undefined behavior, but 1188 /// that we can evaluate past it (such as signed overflow or floating-point 1189 /// division by zero.) 1190 bool noteUndefinedBehavior() override { 1191 EvalStatus.HasUndefinedBehavior = true; 1192 return keepEvaluatingAfterUndefinedBehavior(); 1193 } 1194 1195 /// Should we continue evaluation as much as possible after encountering a 1196 /// construct which can't be reduced to a value? 1197 bool keepEvaluatingAfterFailure() const override { 1198 if (!StepsLeft) 1199 return false; 1200 1201 switch (EvalMode) { 1202 case EM_ConstantExpression: 1203 case EM_ConstantExpressionUnevaluated: 1204 case EM_ConstantFold: 1205 case EM_IgnoreSideEffects: 1206 return checkingPotentialConstantExpression() || 1207 checkingForUndefinedBehavior(); 1208 } 1209 llvm_unreachable("Missed EvalMode case"); 1210 } 1211 1212 /// Notes that we failed to evaluate an expression that other expressions 1213 /// directly depend on, and determine if we should keep evaluating. This 1214 /// should only be called if we actually intend to keep evaluating. 1215 /// 1216 /// Call noteSideEffect() instead if we may be able to ignore the value that 1217 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1218 /// 1219 /// (Foo(), 1) // use noteSideEffect 1220 /// (Foo() || true) // use noteSideEffect 1221 /// Foo() + 1 // use noteFailure 1222 LLVM_NODISCARD bool noteFailure() { 1223 // Failure when evaluating some expression often means there is some 1224 // subexpression whose evaluation was skipped. Therefore, (because we 1225 // don't track whether we skipped an expression when unwinding after an 1226 // evaluation failure) every evaluation failure that bubbles up from a 1227 // subexpression implies that a side-effect has potentially happened. We 1228 // skip setting the HasSideEffects flag to true until we decide to 1229 // continue evaluating after that point, which happens here. 1230 bool KeepGoing = keepEvaluatingAfterFailure(); 1231 EvalStatus.HasSideEffects |= KeepGoing; 1232 return KeepGoing; 1233 } 1234 1235 class ArrayInitLoopIndex { 1236 EvalInfo &Info; 1237 uint64_t OuterIndex; 1238 1239 public: 1240 ArrayInitLoopIndex(EvalInfo &Info) 1241 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1242 Info.ArrayInitIndex = 0; 1243 } 1244 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1245 1246 operator uint64_t&() { return Info.ArrayInitIndex; } 1247 }; 1248 }; 1249 1250 /// Object used to treat all foldable expressions as constant expressions. 1251 struct FoldConstant { 1252 EvalInfo &Info; 1253 bool Enabled; 1254 bool HadNoPriorDiags; 1255 EvalInfo::EvaluationMode OldMode; 1256 1257 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1258 : Info(Info), 1259 Enabled(Enabled), 1260 HadNoPriorDiags(Info.EvalStatus.Diag && 1261 Info.EvalStatus.Diag->empty() && 1262 !Info.EvalStatus.HasSideEffects), 1263 OldMode(Info.EvalMode) { 1264 if (Enabled) 1265 Info.EvalMode = EvalInfo::EM_ConstantFold; 1266 } 1267 void keepDiagnostics() { Enabled = false; } 1268 ~FoldConstant() { 1269 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1270 !Info.EvalStatus.HasSideEffects) 1271 Info.EvalStatus.Diag->clear(); 1272 Info.EvalMode = OldMode; 1273 } 1274 }; 1275 1276 /// RAII object used to set the current evaluation mode to ignore 1277 /// side-effects. 1278 struct IgnoreSideEffectsRAII { 1279 EvalInfo &Info; 1280 EvalInfo::EvaluationMode OldMode; 1281 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1282 : Info(Info), OldMode(Info.EvalMode) { 1283 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1284 } 1285 1286 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1287 }; 1288 1289 /// RAII object used to optionally suppress diagnostics and side-effects from 1290 /// a speculative evaluation. 1291 class SpeculativeEvaluationRAII { 1292 EvalInfo *Info = nullptr; 1293 Expr::EvalStatus OldStatus; 1294 unsigned OldSpeculativeEvaluationDepth; 1295 1296 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1297 Info = Other.Info; 1298 OldStatus = Other.OldStatus; 1299 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1300 Other.Info = nullptr; 1301 } 1302 1303 void maybeRestoreState() { 1304 if (!Info) 1305 return; 1306 1307 Info->EvalStatus = OldStatus; 1308 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1309 } 1310 1311 public: 1312 SpeculativeEvaluationRAII() = default; 1313 1314 SpeculativeEvaluationRAII( 1315 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1316 : Info(&Info), OldStatus(Info.EvalStatus), 1317 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1318 Info.EvalStatus.Diag = NewDiag; 1319 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1320 } 1321 1322 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1323 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1324 moveFromAndCancel(std::move(Other)); 1325 } 1326 1327 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1328 maybeRestoreState(); 1329 moveFromAndCancel(std::move(Other)); 1330 return *this; 1331 } 1332 1333 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1334 }; 1335 1336 /// RAII object wrapping a full-expression or block scope, and handling 1337 /// the ending of the lifetime of temporaries created within it. 1338 template<ScopeKind Kind> 1339 class ScopeRAII { 1340 EvalInfo &Info; 1341 unsigned OldStackSize; 1342 public: 1343 ScopeRAII(EvalInfo &Info) 1344 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1345 // Push a new temporary version. This is needed to distinguish between 1346 // temporaries created in different iterations of a loop. 1347 Info.CurrentCall->pushTempVersion(); 1348 } 1349 bool destroy(bool RunDestructors = true) { 1350 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1351 OldStackSize = -1U; 1352 return OK; 1353 } 1354 ~ScopeRAII() { 1355 if (OldStackSize != -1U) 1356 destroy(false); 1357 // Body moved to a static method to encourage the compiler to inline away 1358 // instances of this class. 1359 Info.CurrentCall->popTempVersion(); 1360 } 1361 private: 1362 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1363 unsigned OldStackSize) { 1364 assert(OldStackSize <= Info.CleanupStack.size() && 1365 "running cleanups out of order?"); 1366 1367 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1368 // for a full-expression scope. 1369 bool Success = true; 1370 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1371 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { 1372 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1373 Success = false; 1374 break; 1375 } 1376 } 1377 } 1378 1379 // Compact any retained cleanups. 1380 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1381 if (Kind != ScopeKind::Block) 1382 NewEnd = 1383 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { 1384 return C.isDestroyedAtEndOf(Kind); 1385 }); 1386 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1387 return Success; 1388 } 1389 }; 1390 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; 1391 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; 1392 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; 1393 } 1394 1395 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1396 CheckSubobjectKind CSK) { 1397 if (Invalid) 1398 return false; 1399 if (isOnePastTheEnd()) { 1400 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1401 << CSK; 1402 setInvalid(); 1403 return false; 1404 } 1405 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1406 // must actually be at least one array element; even a VLA cannot have a 1407 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1408 return true; 1409 } 1410 1411 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1412 const Expr *E) { 1413 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1414 // Do not set the designator as invalid: we can represent this situation, 1415 // and correct handling of __builtin_object_size requires us to do so. 1416 } 1417 1418 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1419 const Expr *E, 1420 const APSInt &N) { 1421 // If we're complaining, we must be able to statically determine the size of 1422 // the most derived array. 1423 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1424 Info.CCEDiag(E, diag::note_constexpr_array_index) 1425 << N << /*array*/ 0 1426 << static_cast<unsigned>(getMostDerivedArraySize()); 1427 else 1428 Info.CCEDiag(E, diag::note_constexpr_array_index) 1429 << N << /*non-array*/ 1; 1430 setInvalid(); 1431 } 1432 1433 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 1434 const FunctionDecl *Callee, const LValue *This, 1435 CallRef Call) 1436 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1437 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) { 1438 Info.CurrentCall = this; 1439 ++Info.CallStackDepth; 1440 } 1441 1442 CallStackFrame::~CallStackFrame() { 1443 assert(Info.CurrentCall == this && "calls retired out of order"); 1444 --Info.CallStackDepth; 1445 Info.CurrentCall = Caller; 1446 } 1447 1448 static bool isRead(AccessKinds AK) { 1449 return AK == AK_Read || AK == AK_ReadObjectRepresentation; 1450 } 1451 1452 static bool isModification(AccessKinds AK) { 1453 switch (AK) { 1454 case AK_Read: 1455 case AK_ReadObjectRepresentation: 1456 case AK_MemberCall: 1457 case AK_DynamicCast: 1458 case AK_TypeId: 1459 return false; 1460 case AK_Assign: 1461 case AK_Increment: 1462 case AK_Decrement: 1463 case AK_Construct: 1464 case AK_Destroy: 1465 return true; 1466 } 1467 llvm_unreachable("unknown access kind"); 1468 } 1469 1470 static bool isAnyAccess(AccessKinds AK) { 1471 return isRead(AK) || isModification(AK); 1472 } 1473 1474 /// Is this an access per the C++ definition? 1475 static bool isFormalAccess(AccessKinds AK) { 1476 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; 1477 } 1478 1479 /// Is this kind of axcess valid on an indeterminate object value? 1480 static bool isValidIndeterminateAccess(AccessKinds AK) { 1481 switch (AK) { 1482 case AK_Read: 1483 case AK_Increment: 1484 case AK_Decrement: 1485 // These need the object's value. 1486 return false; 1487 1488 case AK_ReadObjectRepresentation: 1489 case AK_Assign: 1490 case AK_Construct: 1491 case AK_Destroy: 1492 // Construction and destruction don't need the value. 1493 return true; 1494 1495 case AK_MemberCall: 1496 case AK_DynamicCast: 1497 case AK_TypeId: 1498 // These aren't really meaningful on scalars. 1499 return true; 1500 } 1501 llvm_unreachable("unknown access kind"); 1502 } 1503 1504 namespace { 1505 struct ComplexValue { 1506 private: 1507 bool IsInt; 1508 1509 public: 1510 APSInt IntReal, IntImag; 1511 APFloat FloatReal, FloatImag; 1512 1513 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1514 1515 void makeComplexFloat() { IsInt = false; } 1516 bool isComplexFloat() const { return !IsInt; } 1517 APFloat &getComplexFloatReal() { return FloatReal; } 1518 APFloat &getComplexFloatImag() { return FloatImag; } 1519 1520 void makeComplexInt() { IsInt = true; } 1521 bool isComplexInt() const { return IsInt; } 1522 APSInt &getComplexIntReal() { return IntReal; } 1523 APSInt &getComplexIntImag() { return IntImag; } 1524 1525 void moveInto(APValue &v) const { 1526 if (isComplexFloat()) 1527 v = APValue(FloatReal, FloatImag); 1528 else 1529 v = APValue(IntReal, IntImag); 1530 } 1531 void setFrom(const APValue &v) { 1532 assert(v.isComplexFloat() || v.isComplexInt()); 1533 if (v.isComplexFloat()) { 1534 makeComplexFloat(); 1535 FloatReal = v.getComplexFloatReal(); 1536 FloatImag = v.getComplexFloatImag(); 1537 } else { 1538 makeComplexInt(); 1539 IntReal = v.getComplexIntReal(); 1540 IntImag = v.getComplexIntImag(); 1541 } 1542 } 1543 }; 1544 1545 struct LValue { 1546 APValue::LValueBase Base; 1547 CharUnits Offset; 1548 SubobjectDesignator Designator; 1549 bool IsNullPtr : 1; 1550 bool InvalidBase : 1; 1551 1552 const APValue::LValueBase getLValueBase() const { return Base; } 1553 CharUnits &getLValueOffset() { return Offset; } 1554 const CharUnits &getLValueOffset() const { return Offset; } 1555 SubobjectDesignator &getLValueDesignator() { return Designator; } 1556 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1557 bool isNullPointer() const { return IsNullPtr;} 1558 1559 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1560 unsigned getLValueVersion() const { return Base.getVersion(); } 1561 1562 void moveInto(APValue &V) const { 1563 if (Designator.Invalid) 1564 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1565 else { 1566 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1567 V = APValue(Base, Offset, Designator.Entries, 1568 Designator.IsOnePastTheEnd, IsNullPtr); 1569 } 1570 } 1571 void setFrom(ASTContext &Ctx, const APValue &V) { 1572 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1573 Base = V.getLValueBase(); 1574 Offset = V.getLValueOffset(); 1575 InvalidBase = false; 1576 Designator = SubobjectDesignator(Ctx, V); 1577 IsNullPtr = V.isNullPointer(); 1578 } 1579 1580 void set(APValue::LValueBase B, bool BInvalid = false) { 1581 #ifndef NDEBUG 1582 // We only allow a few types of invalid bases. Enforce that here. 1583 if (BInvalid) { 1584 const auto *E = B.get<const Expr *>(); 1585 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1586 "Unexpected type of invalid base"); 1587 } 1588 #endif 1589 1590 Base = B; 1591 Offset = CharUnits::fromQuantity(0); 1592 InvalidBase = BInvalid; 1593 Designator = SubobjectDesignator(getType(B)); 1594 IsNullPtr = false; 1595 } 1596 1597 void setNull(ASTContext &Ctx, QualType PointerTy) { 1598 Base = (const ValueDecl *)nullptr; 1599 Offset = 1600 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1601 InvalidBase = false; 1602 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1603 IsNullPtr = true; 1604 } 1605 1606 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1607 set(B, true); 1608 } 1609 1610 std::string toString(ASTContext &Ctx, QualType T) const { 1611 APValue Printable; 1612 moveInto(Printable); 1613 return Printable.getAsString(Ctx, T); 1614 } 1615 1616 private: 1617 // Check that this LValue is not based on a null pointer. If it is, produce 1618 // a diagnostic and mark the designator as invalid. 1619 template <typename GenDiagType> 1620 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1621 if (Designator.Invalid) 1622 return false; 1623 if (IsNullPtr) { 1624 GenDiag(); 1625 Designator.setInvalid(); 1626 return false; 1627 } 1628 return true; 1629 } 1630 1631 public: 1632 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1633 CheckSubobjectKind CSK) { 1634 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1635 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1636 }); 1637 } 1638 1639 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1640 AccessKinds AK) { 1641 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1642 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1643 }); 1644 } 1645 1646 // Check this LValue refers to an object. If not, set the designator to be 1647 // invalid and emit a diagnostic. 1648 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1649 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1650 Designator.checkSubobject(Info, E, CSK); 1651 } 1652 1653 void addDecl(EvalInfo &Info, const Expr *E, 1654 const Decl *D, bool Virtual = false) { 1655 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1656 Designator.addDeclUnchecked(D, Virtual); 1657 } 1658 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1659 if (!Designator.Entries.empty()) { 1660 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1661 Designator.setInvalid(); 1662 return; 1663 } 1664 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1665 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1666 Designator.FirstEntryIsAnUnsizedArray = true; 1667 Designator.addUnsizedArrayUnchecked(ElemTy); 1668 } 1669 } 1670 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1671 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1672 Designator.addArrayUnchecked(CAT); 1673 } 1674 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1675 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1676 Designator.addComplexUnchecked(EltTy, Imag); 1677 } 1678 void clearIsNullPointer() { 1679 IsNullPtr = false; 1680 } 1681 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1682 const APSInt &Index, CharUnits ElementSize) { 1683 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1684 // but we're not required to diagnose it and it's valid in C++.) 1685 if (!Index) 1686 return; 1687 1688 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1689 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1690 // offsets. 1691 uint64_t Offset64 = Offset.getQuantity(); 1692 uint64_t ElemSize64 = ElementSize.getQuantity(); 1693 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1694 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1695 1696 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1697 Designator.adjustIndex(Info, E, Index); 1698 clearIsNullPointer(); 1699 } 1700 void adjustOffset(CharUnits N) { 1701 Offset += N; 1702 if (N.getQuantity()) 1703 clearIsNullPointer(); 1704 } 1705 }; 1706 1707 struct MemberPtr { 1708 MemberPtr() {} 1709 explicit MemberPtr(const ValueDecl *Decl) 1710 : DeclAndIsDerivedMember(Decl, false) {} 1711 1712 /// The member or (direct or indirect) field referred to by this member 1713 /// pointer, or 0 if this is a null member pointer. 1714 const ValueDecl *getDecl() const { 1715 return DeclAndIsDerivedMember.getPointer(); 1716 } 1717 /// Is this actually a member of some type derived from the relevant class? 1718 bool isDerivedMember() const { 1719 return DeclAndIsDerivedMember.getInt(); 1720 } 1721 /// Get the class which the declaration actually lives in. 1722 const CXXRecordDecl *getContainingRecord() const { 1723 return cast<CXXRecordDecl>( 1724 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1725 } 1726 1727 void moveInto(APValue &V) const { 1728 V = APValue(getDecl(), isDerivedMember(), Path); 1729 } 1730 void setFrom(const APValue &V) { 1731 assert(V.isMemberPointer()); 1732 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1733 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1734 Path.clear(); 1735 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1736 Path.insert(Path.end(), P.begin(), P.end()); 1737 } 1738 1739 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1740 /// whether the member is a member of some class derived from the class type 1741 /// of the member pointer. 1742 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1743 /// Path - The path of base/derived classes from the member declaration's 1744 /// class (exclusive) to the class type of the member pointer (inclusive). 1745 SmallVector<const CXXRecordDecl*, 4> Path; 1746 1747 /// Perform a cast towards the class of the Decl (either up or down the 1748 /// hierarchy). 1749 bool castBack(const CXXRecordDecl *Class) { 1750 assert(!Path.empty()); 1751 const CXXRecordDecl *Expected; 1752 if (Path.size() >= 2) 1753 Expected = Path[Path.size() - 2]; 1754 else 1755 Expected = getContainingRecord(); 1756 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1757 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1758 // if B does not contain the original member and is not a base or 1759 // derived class of the class containing the original member, the result 1760 // of the cast is undefined. 1761 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1762 // (D::*). We consider that to be a language defect. 1763 return false; 1764 } 1765 Path.pop_back(); 1766 return true; 1767 } 1768 /// Perform a base-to-derived member pointer cast. 1769 bool castToDerived(const CXXRecordDecl *Derived) { 1770 if (!getDecl()) 1771 return true; 1772 if (!isDerivedMember()) { 1773 Path.push_back(Derived); 1774 return true; 1775 } 1776 if (!castBack(Derived)) 1777 return false; 1778 if (Path.empty()) 1779 DeclAndIsDerivedMember.setInt(false); 1780 return true; 1781 } 1782 /// Perform a derived-to-base member pointer cast. 1783 bool castToBase(const CXXRecordDecl *Base) { 1784 if (!getDecl()) 1785 return true; 1786 if (Path.empty()) 1787 DeclAndIsDerivedMember.setInt(true); 1788 if (isDerivedMember()) { 1789 Path.push_back(Base); 1790 return true; 1791 } 1792 return castBack(Base); 1793 } 1794 }; 1795 1796 /// Compare two member pointers, which are assumed to be of the same type. 1797 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1798 if (!LHS.getDecl() || !RHS.getDecl()) 1799 return !LHS.getDecl() && !RHS.getDecl(); 1800 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1801 return false; 1802 return LHS.Path == RHS.Path; 1803 } 1804 } 1805 1806 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1807 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1808 const LValue &This, const Expr *E, 1809 bool AllowNonLiteralTypes = false); 1810 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1811 bool InvalidBaseOK = false); 1812 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1813 bool InvalidBaseOK = false); 1814 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1815 EvalInfo &Info); 1816 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1817 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1818 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1819 EvalInfo &Info); 1820 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1821 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1822 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1823 EvalInfo &Info); 1824 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1825 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 1826 EvalInfo &Info); 1827 1828 /// Evaluate an integer or fixed point expression into an APResult. 1829 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1830 EvalInfo &Info); 1831 1832 /// Evaluate only a fixed point expression into an APResult. 1833 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1834 EvalInfo &Info); 1835 1836 //===----------------------------------------------------------------------===// 1837 // Misc utilities 1838 //===----------------------------------------------------------------------===// 1839 1840 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1841 /// preserving its value (by extending by up to one bit as needed). 1842 static void negateAsSigned(APSInt &Int) { 1843 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1844 Int = Int.extend(Int.getBitWidth() + 1); 1845 Int.setIsSigned(true); 1846 } 1847 Int = -Int; 1848 } 1849 1850 template<typename KeyT> 1851 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1852 ScopeKind Scope, LValue &LV) { 1853 unsigned Version = getTempVersion(); 1854 APValue::LValueBase Base(Key, Index, Version); 1855 LV.set(Base); 1856 return createLocal(Base, Key, T, Scope); 1857 } 1858 1859 /// Allocate storage for a parameter of a function call made in this frame. 1860 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, 1861 LValue &LV) { 1862 assert(Args.CallIndex == Index && "creating parameter in wrong frame"); 1863 APValue::LValueBase Base(PVD, Index, Args.Version); 1864 LV.set(Base); 1865 // We always destroy parameters at the end of the call, even if we'd allow 1866 // them to live to the end of the full-expression at runtime, in order to 1867 // give portable results and match other compilers. 1868 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); 1869 } 1870 1871 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, 1872 QualType T, ScopeKind Scope) { 1873 assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); 1874 unsigned Version = Base.getVersion(); 1875 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1876 assert(Result.isAbsent() && "local created multiple times"); 1877 1878 // If we're creating a local immediately in the operand of a speculative 1879 // evaluation, don't register a cleanup to be run outside the speculative 1880 // evaluation context, since we won't actually be able to initialize this 1881 // object. 1882 if (Index <= Info.SpeculativeEvaluationDepth) { 1883 if (T.isDestructedType()) 1884 Info.noteSideEffect(); 1885 } else { 1886 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); 1887 } 1888 return Result; 1889 } 1890 1891 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 1892 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 1893 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 1894 return nullptr; 1895 } 1896 1897 DynamicAllocLValue DA(NumHeapAllocs++); 1898 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 1899 auto Result = HeapAllocs.emplace(std::piecewise_construct, 1900 std::forward_as_tuple(DA), std::tuple<>()); 1901 assert(Result.second && "reused a heap alloc index?"); 1902 Result.first->second.AllocExpr = E; 1903 return &Result.first->second.Value; 1904 } 1905 1906 /// Produce a string describing the given constexpr call. 1907 void CallStackFrame::describe(raw_ostream &Out) { 1908 unsigned ArgIndex = 0; 1909 bool IsMemberCall = isa<CXXMethodDecl>(Callee) && 1910 !isa<CXXConstructorDecl>(Callee) && 1911 cast<CXXMethodDecl>(Callee)->isInstance(); 1912 1913 if (!IsMemberCall) 1914 Out << *Callee << '('; 1915 1916 if (This && IsMemberCall) { 1917 APValue Val; 1918 This->moveInto(Val); 1919 Val.printPretty(Out, Info.Ctx, 1920 This->Designator.MostDerivedType); 1921 // FIXME: Add parens around Val if needed. 1922 Out << "->" << *Callee << '('; 1923 IsMemberCall = false; 1924 } 1925 1926 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 1927 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 1928 if (ArgIndex > (unsigned)IsMemberCall) 1929 Out << ", "; 1930 1931 const ParmVarDecl *Param = *I; 1932 APValue *V = Info.getParamSlot(Arguments, Param); 1933 if (V) 1934 V->printPretty(Out, Info.Ctx, Param->getType()); 1935 else 1936 Out << "<...>"; 1937 1938 if (ArgIndex == 0 && IsMemberCall) 1939 Out << "->" << *Callee << '('; 1940 } 1941 1942 Out << ')'; 1943 } 1944 1945 /// Evaluate an expression to see if it had side-effects, and discard its 1946 /// result. 1947 /// \return \c true if the caller should keep evaluating. 1948 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 1949 assert(!E->isValueDependent()); 1950 APValue Scratch; 1951 if (!Evaluate(Scratch, Info, E)) 1952 // We don't need the value, but we might have skipped a side effect here. 1953 return Info.noteSideEffect(); 1954 return true; 1955 } 1956 1957 /// Should this call expression be treated as a constant? 1958 static bool IsConstantCall(const CallExpr *E) { 1959 unsigned Builtin = E->getBuiltinCallee(); 1960 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 1961 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 1962 Builtin == Builtin::BI__builtin_function_start); 1963 } 1964 1965 static bool IsGlobalLValue(APValue::LValueBase B) { 1966 // C++11 [expr.const]p3 An address constant expression is a prvalue core 1967 // constant expression of pointer type that evaluates to... 1968 1969 // ... a null pointer value, or a prvalue core constant expression of type 1970 // std::nullptr_t. 1971 if (!B) return true; 1972 1973 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 1974 // ... the address of an object with static storage duration, 1975 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1976 return VD->hasGlobalStorage(); 1977 if (isa<TemplateParamObjectDecl>(D)) 1978 return true; 1979 // ... the address of a function, 1980 // ... the address of a GUID [MS extension], 1981 return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D); 1982 } 1983 1984 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 1985 return true; 1986 1987 const Expr *E = B.get<const Expr*>(); 1988 switch (E->getStmtClass()) { 1989 default: 1990 return false; 1991 case Expr::CompoundLiteralExprClass: { 1992 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1993 return CLE->isFileScope() && CLE->isLValue(); 1994 } 1995 case Expr::MaterializeTemporaryExprClass: 1996 // A materialized temporary might have been lifetime-extended to static 1997 // storage duration. 1998 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 1999 // A string literal has static storage duration. 2000 case Expr::StringLiteralClass: 2001 case Expr::PredefinedExprClass: 2002 case Expr::ObjCStringLiteralClass: 2003 case Expr::ObjCEncodeExprClass: 2004 return true; 2005 case Expr::ObjCBoxedExprClass: 2006 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 2007 case Expr::CallExprClass: 2008 return IsConstantCall(cast<CallExpr>(E)); 2009 // For GCC compatibility, &&label has static storage duration. 2010 case Expr::AddrLabelExprClass: 2011 return true; 2012 // A Block literal expression may be used as the initialization value for 2013 // Block variables at global or local static scope. 2014 case Expr::BlockExprClass: 2015 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 2016 case Expr::ImplicitValueInitExprClass: 2017 // FIXME: 2018 // We can never form an lvalue with an implicit value initialization as its 2019 // base through expression evaluation, so these only appear in one case: the 2020 // implicit variable declaration we invent when checking whether a constexpr 2021 // constructor can produce a constant expression. We must assume that such 2022 // an expression might be a global lvalue. 2023 return true; 2024 } 2025 } 2026 2027 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 2028 return LVal.Base.dyn_cast<const ValueDecl*>(); 2029 } 2030 2031 static bool IsLiteralLValue(const LValue &Value) { 2032 if (Value.getLValueCallIndex()) 2033 return false; 2034 const Expr *E = Value.Base.dyn_cast<const Expr*>(); 2035 return E && !isa<MaterializeTemporaryExpr>(E); 2036 } 2037 2038 static bool IsWeakLValue(const LValue &Value) { 2039 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2040 return Decl && Decl->isWeak(); 2041 } 2042 2043 static bool isZeroSized(const LValue &Value) { 2044 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2045 if (Decl && isa<VarDecl>(Decl)) { 2046 QualType Ty = Decl->getType(); 2047 if (Ty->isArrayType()) 2048 return Ty->isIncompleteType() || 2049 Decl->getASTContext().getTypeSize(Ty) == 0; 2050 } 2051 return false; 2052 } 2053 2054 static bool HasSameBase(const LValue &A, const LValue &B) { 2055 if (!A.getLValueBase()) 2056 return !B.getLValueBase(); 2057 if (!B.getLValueBase()) 2058 return false; 2059 2060 if (A.getLValueBase().getOpaqueValue() != 2061 B.getLValueBase().getOpaqueValue()) 2062 return false; 2063 2064 return A.getLValueCallIndex() == B.getLValueCallIndex() && 2065 A.getLValueVersion() == B.getLValueVersion(); 2066 } 2067 2068 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 2069 assert(Base && "no location for a null lvalue"); 2070 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2071 2072 // For a parameter, find the corresponding call stack frame (if it still 2073 // exists), and point at the parameter of the function definition we actually 2074 // invoked. 2075 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { 2076 unsigned Idx = PVD->getFunctionScopeIndex(); 2077 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { 2078 if (F->Arguments.CallIndex == Base.getCallIndex() && 2079 F->Arguments.Version == Base.getVersion() && F->Callee && 2080 Idx < F->Callee->getNumParams()) { 2081 VD = F->Callee->getParamDecl(Idx); 2082 break; 2083 } 2084 } 2085 } 2086 2087 if (VD) 2088 Info.Note(VD->getLocation(), diag::note_declared_at); 2089 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 2090 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 2091 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 2092 // FIXME: Produce a note for dangling pointers too. 2093 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA)) 2094 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 2095 diag::note_constexpr_dynamic_alloc_here); 2096 } 2097 // We have no information to show for a typeid(T) object. 2098 } 2099 2100 enum class CheckEvaluationResultKind { 2101 ConstantExpression, 2102 FullyInitialized, 2103 }; 2104 2105 /// Materialized temporaries that we've already checked to determine if they're 2106 /// initializsed by a constant expression. 2107 using CheckedTemporaries = 2108 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 2109 2110 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2111 EvalInfo &Info, SourceLocation DiagLoc, 2112 QualType Type, const APValue &Value, 2113 ConstantExprKind Kind, 2114 SourceLocation SubobjectLoc, 2115 CheckedTemporaries &CheckedTemps); 2116 2117 /// Check that this reference or pointer core constant expression is a valid 2118 /// value for an address or reference constant expression. Return true if we 2119 /// can fold this expression, whether or not it's a constant expression. 2120 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2121 QualType Type, const LValue &LVal, 2122 ConstantExprKind Kind, 2123 CheckedTemporaries &CheckedTemps) { 2124 bool IsReferenceType = Type->isReferenceType(); 2125 2126 APValue::LValueBase Base = LVal.getLValueBase(); 2127 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2128 2129 const Expr *BaseE = Base.dyn_cast<const Expr *>(); 2130 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); 2131 2132 // Additional restrictions apply in a template argument. We only enforce the 2133 // C++20 restrictions here; additional syntactic and semantic restrictions 2134 // are applied elsewhere. 2135 if (isTemplateArgument(Kind)) { 2136 int InvalidBaseKind = -1; 2137 StringRef Ident; 2138 if (Base.is<TypeInfoLValue>()) 2139 InvalidBaseKind = 0; 2140 else if (isa_and_nonnull<StringLiteral>(BaseE)) 2141 InvalidBaseKind = 1; 2142 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || 2143 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) 2144 InvalidBaseKind = 2; 2145 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { 2146 InvalidBaseKind = 3; 2147 Ident = PE->getIdentKindName(); 2148 } 2149 2150 if (InvalidBaseKind != -1) { 2151 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) 2152 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind 2153 << Ident; 2154 return false; 2155 } 2156 } 2157 2158 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) { 2159 if (FD->isConsteval()) { 2160 Info.FFDiag(Loc, diag::note_consteval_address_accessible) 2161 << !Type->isAnyPointerType(); 2162 Info.Note(FD->getLocation(), diag::note_declared_at); 2163 return false; 2164 } 2165 } 2166 2167 // Check that the object is a global. Note that the fake 'this' object we 2168 // manufacture when checking potential constant expressions is conservatively 2169 // assumed to be global here. 2170 if (!IsGlobalLValue(Base)) { 2171 if (Info.getLangOpts().CPlusPlus11) { 2172 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2173 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2174 << IsReferenceType << !Designator.Entries.empty() 2175 << !!VD << VD; 2176 2177 auto *VarD = dyn_cast_or_null<VarDecl>(VD); 2178 if (VarD && VarD->isConstexpr()) { 2179 // Non-static local constexpr variables have unintuitive semantics: 2180 // constexpr int a = 1; 2181 // constexpr const int *p = &a; 2182 // ... is invalid because the address of 'a' is not constant. Suggest 2183 // adding a 'static' in this case. 2184 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) 2185 << VarD 2186 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); 2187 } else { 2188 NoteLValueLocation(Info, Base); 2189 } 2190 } else { 2191 Info.FFDiag(Loc); 2192 } 2193 // Don't allow references to temporaries to escape. 2194 return false; 2195 } 2196 assert((Info.checkingPotentialConstantExpression() || 2197 LVal.getLValueCallIndex() == 0) && 2198 "have call index for global lvalue"); 2199 2200 if (Base.is<DynamicAllocLValue>()) { 2201 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2202 << IsReferenceType << !Designator.Entries.empty(); 2203 NoteLValueLocation(Info, Base); 2204 return false; 2205 } 2206 2207 if (BaseVD) { 2208 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { 2209 // Check if this is a thread-local variable. 2210 if (Var->getTLSKind()) 2211 // FIXME: Diagnostic! 2212 return false; 2213 2214 // A dllimport variable never acts like a constant, unless we're 2215 // evaluating a value for use only in name mangling. 2216 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) 2217 // FIXME: Diagnostic! 2218 return false; 2219 } 2220 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { 2221 // __declspec(dllimport) must be handled very carefully: 2222 // We must never initialize an expression with the thunk in C++. 2223 // Doing otherwise would allow the same id-expression to yield 2224 // different addresses for the same function in different translation 2225 // units. However, this means that we must dynamically initialize the 2226 // expression with the contents of the import address table at runtime. 2227 // 2228 // The C language has no notion of ODR; furthermore, it has no notion of 2229 // dynamic initialization. This means that we are permitted to 2230 // perform initialization with the address of the thunk. 2231 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && 2232 FD->hasAttr<DLLImportAttr>()) 2233 // FIXME: Diagnostic! 2234 return false; 2235 } 2236 } else if (const auto *MTE = 2237 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { 2238 if (CheckedTemps.insert(MTE).second) { 2239 QualType TempType = getType(Base); 2240 if (TempType.isDestructedType()) { 2241 Info.FFDiag(MTE->getExprLoc(), 2242 diag::note_constexpr_unsupported_temporary_nontrivial_dtor) 2243 << TempType; 2244 return false; 2245 } 2246 2247 APValue *V = MTE->getOrCreateValue(false); 2248 assert(V && "evasluation result refers to uninitialised temporary"); 2249 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2250 Info, MTE->getExprLoc(), TempType, *V, 2251 Kind, SourceLocation(), CheckedTemps)) 2252 return false; 2253 } 2254 } 2255 2256 // Allow address constant expressions to be past-the-end pointers. This is 2257 // an extension: the standard requires them to point to an object. 2258 if (!IsReferenceType) 2259 return true; 2260 2261 // A reference constant expression must refer to an object. 2262 if (!Base) { 2263 // FIXME: diagnostic 2264 Info.CCEDiag(Loc); 2265 return true; 2266 } 2267 2268 // Does this refer one past the end of some object? 2269 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2270 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2271 << !Designator.Entries.empty() << !!BaseVD << BaseVD; 2272 NoteLValueLocation(Info, Base); 2273 } 2274 2275 return true; 2276 } 2277 2278 /// Member pointers are constant expressions unless they point to a 2279 /// non-virtual dllimport member function. 2280 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2281 SourceLocation Loc, 2282 QualType Type, 2283 const APValue &Value, 2284 ConstantExprKind Kind) { 2285 const ValueDecl *Member = Value.getMemberPointerDecl(); 2286 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2287 if (!FD) 2288 return true; 2289 if (FD->isConsteval()) { 2290 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; 2291 Info.Note(FD->getLocation(), diag::note_declared_at); 2292 return false; 2293 } 2294 return isForManglingOnly(Kind) || FD->isVirtual() || 2295 !FD->hasAttr<DLLImportAttr>(); 2296 } 2297 2298 /// Check that this core constant expression is of literal type, and if not, 2299 /// produce an appropriate diagnostic. 2300 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2301 const LValue *This = nullptr) { 2302 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) 2303 return true; 2304 2305 // C++1y: A constant initializer for an object o [...] may also invoke 2306 // constexpr constructors for o and its subobjects even if those objects 2307 // are of non-literal class types. 2308 // 2309 // C++11 missed this detail for aggregates, so classes like this: 2310 // struct foo_t { union { int i; volatile int j; } u; }; 2311 // are not (obviously) initializable like so: 2312 // __attribute__((__require_constant_initialization__)) 2313 // static const foo_t x = {{0}}; 2314 // because "i" is a subobject with non-literal initialization (due to the 2315 // volatile member of the union). See: 2316 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2317 // Therefore, we use the C++1y behavior. 2318 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2319 return true; 2320 2321 // Prvalue constant expressions must be of literal types. 2322 if (Info.getLangOpts().CPlusPlus11) 2323 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2324 << E->getType(); 2325 else 2326 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2327 return false; 2328 } 2329 2330 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2331 EvalInfo &Info, SourceLocation DiagLoc, 2332 QualType Type, const APValue &Value, 2333 ConstantExprKind Kind, 2334 SourceLocation SubobjectLoc, 2335 CheckedTemporaries &CheckedTemps) { 2336 if (!Value.hasValue()) { 2337 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2338 << true << Type; 2339 if (SubobjectLoc.isValid()) 2340 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here); 2341 return false; 2342 } 2343 2344 // We allow _Atomic(T) to be initialized from anything that T can be 2345 // initialized from. 2346 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2347 Type = AT->getValueType(); 2348 2349 // Core issue 1454: For a literal constant expression of array or class type, 2350 // each subobject of its value shall have been initialized by a constant 2351 // expression. 2352 if (Value.isArray()) { 2353 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2354 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2355 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2356 Value.getArrayInitializedElt(I), Kind, 2357 SubobjectLoc, CheckedTemps)) 2358 return false; 2359 } 2360 if (!Value.hasArrayFiller()) 2361 return true; 2362 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2363 Value.getArrayFiller(), Kind, SubobjectLoc, 2364 CheckedTemps); 2365 } 2366 if (Value.isUnion() && Value.getUnionField()) { 2367 return CheckEvaluationResult( 2368 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2369 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(), 2370 CheckedTemps); 2371 } 2372 if (Value.isStruct()) { 2373 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2374 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2375 unsigned BaseIndex = 0; 2376 for (const CXXBaseSpecifier &BS : CD->bases()) { 2377 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), 2378 Value.getStructBase(BaseIndex), Kind, 2379 BS.getBeginLoc(), CheckedTemps)) 2380 return false; 2381 ++BaseIndex; 2382 } 2383 } 2384 for (const auto *I : RD->fields()) { 2385 if (I->isUnnamedBitfield()) 2386 continue; 2387 2388 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2389 Value.getStructField(I->getFieldIndex()), 2390 Kind, I->getLocation(), CheckedTemps)) 2391 return false; 2392 } 2393 } 2394 2395 if (Value.isLValue() && 2396 CERK == CheckEvaluationResultKind::ConstantExpression) { 2397 LValue LVal; 2398 LVal.setFrom(Info.Ctx, Value); 2399 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, 2400 CheckedTemps); 2401 } 2402 2403 if (Value.isMemberPointer() && 2404 CERK == CheckEvaluationResultKind::ConstantExpression) 2405 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); 2406 2407 // Everything else is fine. 2408 return true; 2409 } 2410 2411 /// Check that this core constant expression value is a valid value for a 2412 /// constant expression. If not, report an appropriate diagnostic. Does not 2413 /// check that the expression is of literal type. 2414 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 2415 QualType Type, const APValue &Value, 2416 ConstantExprKind Kind) { 2417 // Nothing to check for a constant expression of type 'cv void'. 2418 if (Type->isVoidType()) 2419 return true; 2420 2421 CheckedTemporaries CheckedTemps; 2422 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2423 Info, DiagLoc, Type, Value, Kind, 2424 SourceLocation(), CheckedTemps); 2425 } 2426 2427 /// Check that this evaluated value is fully-initialized and can be loaded by 2428 /// an lvalue-to-rvalue conversion. 2429 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2430 QualType Type, const APValue &Value) { 2431 CheckedTemporaries CheckedTemps; 2432 return CheckEvaluationResult( 2433 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2434 ConstantExprKind::Normal, SourceLocation(), CheckedTemps); 2435 } 2436 2437 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2438 /// "the allocated storage is deallocated within the evaluation". 2439 static bool CheckMemoryLeaks(EvalInfo &Info) { 2440 if (!Info.HeapAllocs.empty()) { 2441 // We can still fold to a constant despite a compile-time memory leak, 2442 // so long as the heap allocation isn't referenced in the result (we check 2443 // that in CheckConstantExpression). 2444 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2445 diag::note_constexpr_memory_leak) 2446 << unsigned(Info.HeapAllocs.size() - 1); 2447 } 2448 return true; 2449 } 2450 2451 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2452 // A null base expression indicates a null pointer. These are always 2453 // evaluatable, and they are false unless the offset is zero. 2454 if (!Value.getLValueBase()) { 2455 Result = !Value.getLValueOffset().isZero(); 2456 return true; 2457 } 2458 2459 // We have a non-null base. These are generally known to be true, but if it's 2460 // a weak declaration it can be null at runtime. 2461 Result = true; 2462 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2463 return !Decl || !Decl->isWeak(); 2464 } 2465 2466 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2467 switch (Val.getKind()) { 2468 case APValue::None: 2469 case APValue::Indeterminate: 2470 return false; 2471 case APValue::Int: 2472 Result = Val.getInt().getBoolValue(); 2473 return true; 2474 case APValue::FixedPoint: 2475 Result = Val.getFixedPoint().getBoolValue(); 2476 return true; 2477 case APValue::Float: 2478 Result = !Val.getFloat().isZero(); 2479 return true; 2480 case APValue::ComplexInt: 2481 Result = Val.getComplexIntReal().getBoolValue() || 2482 Val.getComplexIntImag().getBoolValue(); 2483 return true; 2484 case APValue::ComplexFloat: 2485 Result = !Val.getComplexFloatReal().isZero() || 2486 !Val.getComplexFloatImag().isZero(); 2487 return true; 2488 case APValue::LValue: 2489 return EvalPointerValueAsBool(Val, Result); 2490 case APValue::MemberPointer: 2491 Result = Val.getMemberPointerDecl(); 2492 return true; 2493 case APValue::Vector: 2494 case APValue::Array: 2495 case APValue::Struct: 2496 case APValue::Union: 2497 case APValue::AddrLabelDiff: 2498 return false; 2499 } 2500 2501 llvm_unreachable("unknown APValue kind"); 2502 } 2503 2504 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2505 EvalInfo &Info) { 2506 assert(!E->isValueDependent()); 2507 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2508 APValue Val; 2509 if (!Evaluate(Val, Info, E)) 2510 return false; 2511 return HandleConversionToBool(Val, Result); 2512 } 2513 2514 template<typename T> 2515 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2516 const T &SrcValue, QualType DestType) { 2517 Info.CCEDiag(E, diag::note_constexpr_overflow) 2518 << SrcValue << DestType; 2519 return Info.noteUndefinedBehavior(); 2520 } 2521 2522 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2523 QualType SrcType, const APFloat &Value, 2524 QualType DestType, APSInt &Result) { 2525 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2526 // Determine whether we are converting to unsigned or signed. 2527 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2528 2529 Result = APSInt(DestWidth, !DestSigned); 2530 bool ignored; 2531 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2532 & APFloat::opInvalidOp) 2533 return HandleOverflow(Info, E, Value, DestType); 2534 return true; 2535 } 2536 2537 /// Get rounding mode used for evaluation of the specified expression. 2538 /// \param[out] DynamicRM Is set to true is the requested rounding mode is 2539 /// dynamic. 2540 /// If rounding mode is unknown at compile time, still try to evaluate the 2541 /// expression. If the result is exact, it does not depend on rounding mode. 2542 /// So return "tonearest" mode instead of "dynamic". 2543 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E, 2544 bool &DynamicRM) { 2545 llvm::RoundingMode RM = 2546 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); 2547 DynamicRM = (RM == llvm::RoundingMode::Dynamic); 2548 if (DynamicRM) 2549 RM = llvm::RoundingMode::NearestTiesToEven; 2550 return RM; 2551 } 2552 2553 /// Check if the given evaluation result is allowed for constant evaluation. 2554 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, 2555 APFloat::opStatus St) { 2556 // In a constant context, assume that any dynamic rounding mode or FP 2557 // exception state matches the default floating-point environment. 2558 if (Info.InConstantContext) 2559 return true; 2560 2561 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 2562 if ((St & APFloat::opInexact) && 2563 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { 2564 // Inexact result means that it depends on rounding mode. If the requested 2565 // mode is dynamic, the evaluation cannot be made in compile time. 2566 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); 2567 return false; 2568 } 2569 2570 if ((St != APFloat::opOK) && 2571 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || 2572 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore || 2573 FPO.getAllowFEnvAccess())) { 2574 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2575 return false; 2576 } 2577 2578 if ((St & APFloat::opStatus::opInvalidOp) && 2579 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) { 2580 // There is no usefully definable result. 2581 Info.FFDiag(E); 2582 return false; 2583 } 2584 2585 // FIXME: if: 2586 // - evaluation triggered other FP exception, and 2587 // - exception mode is not "ignore", and 2588 // - the expression being evaluated is not a part of global variable 2589 // initializer, 2590 // the evaluation probably need to be rejected. 2591 return true; 2592 } 2593 2594 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2595 QualType SrcType, QualType DestType, 2596 APFloat &Result) { 2597 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)); 2598 bool DynamicRM; 2599 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM); 2600 APFloat::opStatus St; 2601 APFloat Value = Result; 2602 bool ignored; 2603 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); 2604 return checkFloatingPointResult(Info, E, St); 2605 } 2606 2607 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2608 QualType DestType, QualType SrcType, 2609 const APSInt &Value) { 2610 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2611 // Figure out if this is a truncate, extend or noop cast. 2612 // If the input is signed, do a sign extend, noop, or truncate. 2613 APSInt Result = Value.extOrTrunc(DestWidth); 2614 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2615 if (DestType->isBooleanType()) 2616 Result = Value.getBoolValue(); 2617 return Result; 2618 } 2619 2620 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2621 const FPOptions FPO, 2622 QualType SrcType, const APSInt &Value, 2623 QualType DestType, APFloat &Result) { 2624 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2625 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), 2626 APFloat::rmNearestTiesToEven); 2627 if (!Info.InConstantContext && St != llvm::APFloatBase::opOK && 2628 FPO.isFPConstrained()) { 2629 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2630 return false; 2631 } 2632 return true; 2633 } 2634 2635 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2636 APValue &Value, const FieldDecl *FD) { 2637 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2638 2639 if (!Value.isInt()) { 2640 // Trying to store a pointer-cast-to-integer into a bitfield. 2641 // FIXME: In this case, we should provide the diagnostic for casting 2642 // a pointer to an integer. 2643 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2644 Info.FFDiag(E); 2645 return false; 2646 } 2647 2648 APSInt &Int = Value.getInt(); 2649 unsigned OldBitWidth = Int.getBitWidth(); 2650 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 2651 if (NewBitWidth < OldBitWidth) 2652 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2653 return true; 2654 } 2655 2656 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, 2657 llvm::APInt &Res) { 2658 APValue SVal; 2659 if (!Evaluate(SVal, Info, E)) 2660 return false; 2661 if (SVal.isInt()) { 2662 Res = SVal.getInt(); 2663 return true; 2664 } 2665 if (SVal.isFloat()) { 2666 Res = SVal.getFloat().bitcastToAPInt(); 2667 return true; 2668 } 2669 if (SVal.isVector()) { 2670 QualType VecTy = E->getType(); 2671 unsigned VecSize = Info.Ctx.getTypeSize(VecTy); 2672 QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); 2673 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 2674 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 2675 Res = llvm::APInt::getZero(VecSize); 2676 for (unsigned i = 0; i < SVal.getVectorLength(); i++) { 2677 APValue &Elt = SVal.getVectorElt(i); 2678 llvm::APInt EltAsInt; 2679 if (Elt.isInt()) { 2680 EltAsInt = Elt.getInt(); 2681 } else if (Elt.isFloat()) { 2682 EltAsInt = Elt.getFloat().bitcastToAPInt(); 2683 } else { 2684 // Don't try to handle vectors of anything other than int or float 2685 // (not sure if it's possible to hit this case). 2686 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2687 return false; 2688 } 2689 unsigned BaseEltSize = EltAsInt.getBitWidth(); 2690 if (BigEndian) 2691 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); 2692 else 2693 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); 2694 } 2695 return true; 2696 } 2697 // Give up if the input isn't an int, float, or vector. For example, we 2698 // reject "(v4i16)(intptr_t)&a". 2699 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2700 return false; 2701 } 2702 2703 /// Perform the given integer operation, which is known to need at most BitWidth 2704 /// bits, and check for overflow in the original type (if that type was not an 2705 /// unsigned type). 2706 template<typename Operation> 2707 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2708 const APSInt &LHS, const APSInt &RHS, 2709 unsigned BitWidth, Operation Op, 2710 APSInt &Result) { 2711 if (LHS.isUnsigned()) { 2712 Result = Op(LHS, RHS); 2713 return true; 2714 } 2715 2716 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2717 Result = Value.trunc(LHS.getBitWidth()); 2718 if (Result.extend(BitWidth) != Value) { 2719 if (Info.checkingForUndefinedBehavior()) 2720 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2721 diag::warn_integer_constant_overflow) 2722 << toString(Result, 10) << E->getType(); 2723 return HandleOverflow(Info, E, Value, E->getType()); 2724 } 2725 return true; 2726 } 2727 2728 /// Perform the given binary integer operation. 2729 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, 2730 BinaryOperatorKind Opcode, APSInt RHS, 2731 APSInt &Result) { 2732 switch (Opcode) { 2733 default: 2734 Info.FFDiag(E); 2735 return false; 2736 case BO_Mul: 2737 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2738 std::multiplies<APSInt>(), Result); 2739 case BO_Add: 2740 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2741 std::plus<APSInt>(), Result); 2742 case BO_Sub: 2743 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2744 std::minus<APSInt>(), Result); 2745 case BO_And: Result = LHS & RHS; return true; 2746 case BO_Xor: Result = LHS ^ RHS; return true; 2747 case BO_Or: Result = LHS | RHS; return true; 2748 case BO_Div: 2749 case BO_Rem: 2750 if (RHS == 0) { 2751 Info.FFDiag(E, diag::note_expr_divide_by_zero); 2752 return false; 2753 } 2754 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2755 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2756 // this operation and gives the two's complement result. 2757 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && 2758 LHS.isMinSignedValue()) 2759 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), 2760 E->getType()); 2761 return true; 2762 case BO_Shl: { 2763 if (Info.getLangOpts().OpenCL) 2764 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2765 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2766 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2767 RHS.isUnsigned()); 2768 else if (RHS.isSigned() && RHS.isNegative()) { 2769 // During constant-folding, a negative shift is an opposite shift. Such 2770 // a shift is not a constant expression. 2771 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2772 RHS = -RHS; 2773 goto shift_right; 2774 } 2775 shift_left: 2776 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2777 // the shifted type. 2778 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2779 if (SA != RHS) { 2780 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2781 << RHS << E->getType() << LHS.getBitWidth(); 2782 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { 2783 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2784 // operand, and must not overflow the corresponding unsigned type. 2785 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2786 // E1 x 2^E2 module 2^N. 2787 if (LHS.isNegative()) 2788 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 2789 else if (LHS.countLeadingZeros() < SA) 2790 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 2791 } 2792 Result = LHS << SA; 2793 return true; 2794 } 2795 case BO_Shr: { 2796 if (Info.getLangOpts().OpenCL) 2797 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2798 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2799 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2800 RHS.isUnsigned()); 2801 else if (RHS.isSigned() && RHS.isNegative()) { 2802 // During constant-folding, a negative shift is an opposite shift. Such a 2803 // shift is not a constant expression. 2804 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2805 RHS = -RHS; 2806 goto shift_left; 2807 } 2808 shift_right: 2809 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 2810 // shifted type. 2811 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2812 if (SA != RHS) 2813 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2814 << RHS << E->getType() << LHS.getBitWidth(); 2815 Result = LHS >> SA; 2816 return true; 2817 } 2818 2819 case BO_LT: Result = LHS < RHS; return true; 2820 case BO_GT: Result = LHS > RHS; return true; 2821 case BO_LE: Result = LHS <= RHS; return true; 2822 case BO_GE: Result = LHS >= RHS; return true; 2823 case BO_EQ: Result = LHS == RHS; return true; 2824 case BO_NE: Result = LHS != RHS; return true; 2825 case BO_Cmp: 2826 llvm_unreachable("BO_Cmp should be handled elsewhere"); 2827 } 2828 } 2829 2830 /// Perform the given binary floating-point operation, in-place, on LHS. 2831 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, 2832 APFloat &LHS, BinaryOperatorKind Opcode, 2833 const APFloat &RHS) { 2834 bool DynamicRM; 2835 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM); 2836 APFloat::opStatus St; 2837 switch (Opcode) { 2838 default: 2839 Info.FFDiag(E); 2840 return false; 2841 case BO_Mul: 2842 St = LHS.multiply(RHS, RM); 2843 break; 2844 case BO_Add: 2845 St = LHS.add(RHS, RM); 2846 break; 2847 case BO_Sub: 2848 St = LHS.subtract(RHS, RM); 2849 break; 2850 case BO_Div: 2851 // [expr.mul]p4: 2852 // If the second operand of / or % is zero the behavior is undefined. 2853 if (RHS.isZero()) 2854 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 2855 St = LHS.divide(RHS, RM); 2856 break; 2857 } 2858 2859 // [expr.pre]p4: 2860 // If during the evaluation of an expression, the result is not 2861 // mathematically defined [...], the behavior is undefined. 2862 // FIXME: C++ rules require us to not conform to IEEE 754 here. 2863 if (LHS.isNaN()) { 2864 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 2865 return Info.noteUndefinedBehavior(); 2866 } 2867 2868 return checkFloatingPointResult(Info, E, St); 2869 } 2870 2871 static bool handleLogicalOpForVector(const APInt &LHSValue, 2872 BinaryOperatorKind Opcode, 2873 const APInt &RHSValue, APInt &Result) { 2874 bool LHS = (LHSValue != 0); 2875 bool RHS = (RHSValue != 0); 2876 2877 if (Opcode == BO_LAnd) 2878 Result = LHS && RHS; 2879 else 2880 Result = LHS || RHS; 2881 return true; 2882 } 2883 static bool handleLogicalOpForVector(const APFloat &LHSValue, 2884 BinaryOperatorKind Opcode, 2885 const APFloat &RHSValue, APInt &Result) { 2886 bool LHS = !LHSValue.isZero(); 2887 bool RHS = !RHSValue.isZero(); 2888 2889 if (Opcode == BO_LAnd) 2890 Result = LHS && RHS; 2891 else 2892 Result = LHS || RHS; 2893 return true; 2894 } 2895 2896 static bool handleLogicalOpForVector(const APValue &LHSValue, 2897 BinaryOperatorKind Opcode, 2898 const APValue &RHSValue, APInt &Result) { 2899 // The result is always an int type, however operands match the first. 2900 if (LHSValue.getKind() == APValue::Int) 2901 return handleLogicalOpForVector(LHSValue.getInt(), Opcode, 2902 RHSValue.getInt(), Result); 2903 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 2904 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, 2905 RHSValue.getFloat(), Result); 2906 } 2907 2908 template <typename APTy> 2909 static bool 2910 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, 2911 const APTy &RHSValue, APInt &Result) { 2912 switch (Opcode) { 2913 default: 2914 llvm_unreachable("unsupported binary operator"); 2915 case BO_EQ: 2916 Result = (LHSValue == RHSValue); 2917 break; 2918 case BO_NE: 2919 Result = (LHSValue != RHSValue); 2920 break; 2921 case BO_LT: 2922 Result = (LHSValue < RHSValue); 2923 break; 2924 case BO_GT: 2925 Result = (LHSValue > RHSValue); 2926 break; 2927 case BO_LE: 2928 Result = (LHSValue <= RHSValue); 2929 break; 2930 case BO_GE: 2931 Result = (LHSValue >= RHSValue); 2932 break; 2933 } 2934 2935 // The boolean operations on these vector types use an instruction that 2936 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 2937 // to -1 to make sure that we produce the correct value. 2938 Result.negate(); 2939 2940 return true; 2941 } 2942 2943 static bool handleCompareOpForVector(const APValue &LHSValue, 2944 BinaryOperatorKind Opcode, 2945 const APValue &RHSValue, APInt &Result) { 2946 // The result is always an int type, however operands match the first. 2947 if (LHSValue.getKind() == APValue::Int) 2948 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, 2949 RHSValue.getInt(), Result); 2950 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 2951 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, 2952 RHSValue.getFloat(), Result); 2953 } 2954 2955 // Perform binary operations for vector types, in place on the LHS. 2956 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, 2957 BinaryOperatorKind Opcode, 2958 APValue &LHSValue, 2959 const APValue &RHSValue) { 2960 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && 2961 "Operation not supported on vector types"); 2962 2963 const auto *VT = E->getType()->castAs<VectorType>(); 2964 unsigned NumElements = VT->getNumElements(); 2965 QualType EltTy = VT->getElementType(); 2966 2967 // In the cases (typically C as I've observed) where we aren't evaluating 2968 // constexpr but are checking for cases where the LHS isn't yet evaluatable, 2969 // just give up. 2970 if (!LHSValue.isVector()) { 2971 assert(LHSValue.isLValue() && 2972 "A vector result that isn't a vector OR uncalculated LValue"); 2973 Info.FFDiag(E); 2974 return false; 2975 } 2976 2977 assert(LHSValue.getVectorLength() == NumElements && 2978 RHSValue.getVectorLength() == NumElements && "Different vector sizes"); 2979 2980 SmallVector<APValue, 4> ResultElements; 2981 2982 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { 2983 APValue LHSElt = LHSValue.getVectorElt(EltNum); 2984 APValue RHSElt = RHSValue.getVectorElt(EltNum); 2985 2986 if (EltTy->isIntegerType()) { 2987 APSInt EltResult{Info.Ctx.getIntWidth(EltTy), 2988 EltTy->isUnsignedIntegerType()}; 2989 bool Success = true; 2990 2991 if (BinaryOperator::isLogicalOp(Opcode)) 2992 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); 2993 else if (BinaryOperator::isComparisonOp(Opcode)) 2994 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); 2995 else 2996 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, 2997 RHSElt.getInt(), EltResult); 2998 2999 if (!Success) { 3000 Info.FFDiag(E); 3001 return false; 3002 } 3003 ResultElements.emplace_back(EltResult); 3004 3005 } else if (EltTy->isFloatingType()) { 3006 assert(LHSElt.getKind() == APValue::Float && 3007 RHSElt.getKind() == APValue::Float && 3008 "Mismatched LHS/RHS/Result Type"); 3009 APFloat LHSFloat = LHSElt.getFloat(); 3010 3011 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, 3012 RHSElt.getFloat())) { 3013 Info.FFDiag(E); 3014 return false; 3015 } 3016 3017 ResultElements.emplace_back(LHSFloat); 3018 } 3019 } 3020 3021 LHSValue = APValue(ResultElements.data(), ResultElements.size()); 3022 return true; 3023 } 3024 3025 /// Cast an lvalue referring to a base subobject to a derived class, by 3026 /// truncating the lvalue's path to the given length. 3027 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 3028 const RecordDecl *TruncatedType, 3029 unsigned TruncatedElements) { 3030 SubobjectDesignator &D = Result.Designator; 3031 3032 // Check we actually point to a derived class object. 3033 if (TruncatedElements == D.Entries.size()) 3034 return true; 3035 assert(TruncatedElements >= D.MostDerivedPathLength && 3036 "not casting to a derived class"); 3037 if (!Result.checkSubobject(Info, E, CSK_Derived)) 3038 return false; 3039 3040 // Truncate the path to the subobject, and remove any derived-to-base offsets. 3041 const RecordDecl *RD = TruncatedType; 3042 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 3043 if (RD->isInvalidDecl()) return false; 3044 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3045 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 3046 if (isVirtualBaseClass(D.Entries[I])) 3047 Result.Offset -= Layout.getVBaseClassOffset(Base); 3048 else 3049 Result.Offset -= Layout.getBaseClassOffset(Base); 3050 RD = Base; 3051 } 3052 D.Entries.resize(TruncatedElements); 3053 return true; 3054 } 3055 3056 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3057 const CXXRecordDecl *Derived, 3058 const CXXRecordDecl *Base, 3059 const ASTRecordLayout *RL = nullptr) { 3060 if (!RL) { 3061 if (Derived->isInvalidDecl()) return false; 3062 RL = &Info.Ctx.getASTRecordLayout(Derived); 3063 } 3064 3065 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 3066 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 3067 return true; 3068 } 3069 3070 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3071 const CXXRecordDecl *DerivedDecl, 3072 const CXXBaseSpecifier *Base) { 3073 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 3074 3075 if (!Base->isVirtual()) 3076 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 3077 3078 SubobjectDesignator &D = Obj.Designator; 3079 if (D.Invalid) 3080 return false; 3081 3082 // Extract most-derived object and corresponding type. 3083 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 3084 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 3085 return false; 3086 3087 // Find the virtual base class. 3088 if (DerivedDecl->isInvalidDecl()) return false; 3089 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 3090 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 3091 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 3092 return true; 3093 } 3094 3095 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 3096 QualType Type, LValue &Result) { 3097 for (CastExpr::path_const_iterator PathI = E->path_begin(), 3098 PathE = E->path_end(); 3099 PathI != PathE; ++PathI) { 3100 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 3101 *PathI)) 3102 return false; 3103 Type = (*PathI)->getType(); 3104 } 3105 return true; 3106 } 3107 3108 /// Cast an lvalue referring to a derived class to a known base subobject. 3109 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 3110 const CXXRecordDecl *DerivedRD, 3111 const CXXRecordDecl *BaseRD) { 3112 CXXBasePaths Paths(/*FindAmbiguities=*/false, 3113 /*RecordPaths=*/true, /*DetectVirtual=*/false); 3114 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 3115 llvm_unreachable("Class must be derived from the passed in base class!"); 3116 3117 for (CXXBasePathElement &Elem : Paths.front()) 3118 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 3119 return false; 3120 return true; 3121 } 3122 3123 /// Update LVal to refer to the given field, which must be a member of the type 3124 /// currently described by LVal. 3125 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 3126 const FieldDecl *FD, 3127 const ASTRecordLayout *RL = nullptr) { 3128 if (!RL) { 3129 if (FD->getParent()->isInvalidDecl()) return false; 3130 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 3131 } 3132 3133 unsigned I = FD->getFieldIndex(); 3134 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 3135 LVal.addDecl(Info, E, FD); 3136 return true; 3137 } 3138 3139 /// Update LVal to refer to the given indirect field. 3140 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 3141 LValue &LVal, 3142 const IndirectFieldDecl *IFD) { 3143 for (const auto *C : IFD->chain()) 3144 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 3145 return false; 3146 return true; 3147 } 3148 3149 /// Get the size of the given type in char units. 3150 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, 3151 QualType Type, CharUnits &Size) { 3152 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 3153 // extension. 3154 if (Type->isVoidType() || Type->isFunctionType()) { 3155 Size = CharUnits::One(); 3156 return true; 3157 } 3158 3159 if (Type->isDependentType()) { 3160 Info.FFDiag(Loc); 3161 return false; 3162 } 3163 3164 if (!Type->isConstantSizeType()) { 3165 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 3166 // FIXME: Better diagnostic. 3167 Info.FFDiag(Loc); 3168 return false; 3169 } 3170 3171 Size = Info.Ctx.getTypeSizeInChars(Type); 3172 return true; 3173 } 3174 3175 /// Update a pointer value to model pointer arithmetic. 3176 /// \param Info - Information about the ongoing evaluation. 3177 /// \param E - The expression being evaluated, for diagnostic purposes. 3178 /// \param LVal - The pointer value to be updated. 3179 /// \param EltTy - The pointee type represented by LVal. 3180 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 3181 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3182 LValue &LVal, QualType EltTy, 3183 APSInt Adjustment) { 3184 CharUnits SizeOfPointee; 3185 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 3186 return false; 3187 3188 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 3189 return true; 3190 } 3191 3192 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3193 LValue &LVal, QualType EltTy, 3194 int64_t Adjustment) { 3195 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 3196 APSInt::get(Adjustment)); 3197 } 3198 3199 /// Update an lvalue to refer to a component of a complex number. 3200 /// \param Info - Information about the ongoing evaluation. 3201 /// \param LVal - The lvalue to be updated. 3202 /// \param EltTy - The complex number's component type. 3203 /// \param Imag - False for the real component, true for the imaginary. 3204 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 3205 LValue &LVal, QualType EltTy, 3206 bool Imag) { 3207 if (Imag) { 3208 CharUnits SizeOfComponent; 3209 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 3210 return false; 3211 LVal.Offset += SizeOfComponent; 3212 } 3213 LVal.addComplex(Info, E, EltTy, Imag); 3214 return true; 3215 } 3216 3217 /// Try to evaluate the initializer for a variable declaration. 3218 /// 3219 /// \param Info Information about the ongoing evaluation. 3220 /// \param E An expression to be used when printing diagnostics. 3221 /// \param VD The variable whose initializer should be obtained. 3222 /// \param Version The version of the variable within the frame. 3223 /// \param Frame The frame in which the variable was created. Must be null 3224 /// if this variable is not local to the evaluation. 3225 /// \param Result Filled in with a pointer to the value of the variable. 3226 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 3227 const VarDecl *VD, CallStackFrame *Frame, 3228 unsigned Version, APValue *&Result) { 3229 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); 3230 3231 // If this is a local variable, dig out its value. 3232 if (Frame) { 3233 Result = Frame->getTemporary(VD, Version); 3234 if (Result) 3235 return true; 3236 3237 if (!isa<ParmVarDecl>(VD)) { 3238 // Assume variables referenced within a lambda's call operator that were 3239 // not declared within the call operator are captures and during checking 3240 // of a potential constant expression, assume they are unknown constant 3241 // expressions. 3242 assert(isLambdaCallOperator(Frame->Callee) && 3243 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 3244 "missing value for local variable"); 3245 if (Info.checkingPotentialConstantExpression()) 3246 return false; 3247 // FIXME: This diagnostic is bogus; we do support captures. Is this code 3248 // still reachable at all? 3249 Info.FFDiag(E->getBeginLoc(), 3250 diag::note_unimplemented_constexpr_lambda_feature_ast) 3251 << "captures not currently allowed"; 3252 return false; 3253 } 3254 } 3255 3256 // If we're currently evaluating the initializer of this declaration, use that 3257 // in-flight value. 3258 if (Info.EvaluatingDecl == Base) { 3259 Result = Info.EvaluatingDeclValue; 3260 return true; 3261 } 3262 3263 if (isa<ParmVarDecl>(VD)) { 3264 // Assume parameters of a potential constant expression are usable in 3265 // constant expressions. 3266 if (!Info.checkingPotentialConstantExpression() || 3267 !Info.CurrentCall->Callee || 3268 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 3269 if (Info.getLangOpts().CPlusPlus11) { 3270 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) 3271 << VD; 3272 NoteLValueLocation(Info, Base); 3273 } else { 3274 Info.FFDiag(E); 3275 } 3276 } 3277 return false; 3278 } 3279 3280 // Dig out the initializer, and use the declaration which it's attached to. 3281 // FIXME: We should eventually check whether the variable has a reachable 3282 // initializing declaration. 3283 const Expr *Init = VD->getAnyInitializer(VD); 3284 if (!Init) { 3285 // Don't diagnose during potential constant expression checking; an 3286 // initializer might be added later. 3287 if (!Info.checkingPotentialConstantExpression()) { 3288 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) 3289 << VD; 3290 NoteLValueLocation(Info, Base); 3291 } 3292 return false; 3293 } 3294 3295 if (Init->isValueDependent()) { 3296 // The DeclRefExpr is not value-dependent, but the variable it refers to 3297 // has a value-dependent initializer. This should only happen in 3298 // constant-folding cases, where the variable is not actually of a suitable 3299 // type for use in a constant expression (otherwise the DeclRefExpr would 3300 // have been value-dependent too), so diagnose that. 3301 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); 3302 if (!Info.checkingPotentialConstantExpression()) { 3303 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 3304 ? diag::note_constexpr_ltor_non_constexpr 3305 : diag::note_constexpr_ltor_non_integral, 1) 3306 << VD << VD->getType(); 3307 NoteLValueLocation(Info, Base); 3308 } 3309 return false; 3310 } 3311 3312 // Check that we can fold the initializer. In C++, we will have already done 3313 // this in the cases where it matters for conformance. 3314 if (!VD->evaluateValue()) { 3315 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3316 NoteLValueLocation(Info, Base); 3317 return false; 3318 } 3319 3320 // Check that the variable is actually usable in constant expressions. For a 3321 // const integral variable or a reference, we might have a non-constant 3322 // initializer that we can nonetheless evaluate the initializer for. Such 3323 // variables are not usable in constant expressions. In C++98, the 3324 // initializer also syntactically needs to be an ICE. 3325 // 3326 // FIXME: We don't diagnose cases that aren't potentially usable in constant 3327 // expressions here; doing so would regress diagnostics for things like 3328 // reading from a volatile constexpr variable. 3329 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && 3330 VD->mightBeUsableInConstantExpressions(Info.Ctx)) || 3331 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && 3332 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { 3333 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3334 NoteLValueLocation(Info, Base); 3335 } 3336 3337 // Never use the initializer of a weak variable, not even for constant 3338 // folding. We can't be sure that this is the definition that will be used. 3339 if (VD->isWeak()) { 3340 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; 3341 NoteLValueLocation(Info, Base); 3342 return false; 3343 } 3344 3345 Result = VD->getEvaluatedValue(); 3346 return true; 3347 } 3348 3349 /// Get the base index of the given base class within an APValue representing 3350 /// the given derived class. 3351 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 3352 const CXXRecordDecl *Base) { 3353 Base = Base->getCanonicalDecl(); 3354 unsigned Index = 0; 3355 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 3356 E = Derived->bases_end(); I != E; ++I, ++Index) { 3357 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 3358 return Index; 3359 } 3360 3361 llvm_unreachable("base class missing from derived class's bases list"); 3362 } 3363 3364 /// Extract the value of a character from a string literal. 3365 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 3366 uint64_t Index) { 3367 assert(!isa<SourceLocExpr>(Lit) && 3368 "SourceLocExpr should have already been converted to a StringLiteral"); 3369 3370 // FIXME: Support MakeStringConstant 3371 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 3372 std::string Str; 3373 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 3374 assert(Index <= Str.size() && "Index too large"); 3375 return APSInt::getUnsigned(Str.c_str()[Index]); 3376 } 3377 3378 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 3379 Lit = PE->getFunctionName(); 3380 const StringLiteral *S = cast<StringLiteral>(Lit); 3381 const ConstantArrayType *CAT = 3382 Info.Ctx.getAsConstantArrayType(S->getType()); 3383 assert(CAT && "string literal isn't an array"); 3384 QualType CharType = CAT->getElementType(); 3385 assert(CharType->isIntegerType() && "unexpected character type"); 3386 3387 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3388 CharType->isUnsignedIntegerType()); 3389 if (Index < S->getLength()) 3390 Value = S->getCodeUnit(Index); 3391 return Value; 3392 } 3393 3394 // Expand a string literal into an array of characters. 3395 // 3396 // FIXME: This is inefficient; we should probably introduce something similar 3397 // to the LLVM ConstantDataArray to make this cheaper. 3398 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 3399 APValue &Result, 3400 QualType AllocType = QualType()) { 3401 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 3402 AllocType.isNull() ? S->getType() : AllocType); 3403 assert(CAT && "string literal isn't an array"); 3404 QualType CharType = CAT->getElementType(); 3405 assert(CharType->isIntegerType() && "unexpected character type"); 3406 3407 unsigned Elts = CAT->getSize().getZExtValue(); 3408 Result = APValue(APValue::UninitArray(), 3409 std::min(S->getLength(), Elts), Elts); 3410 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 3411 CharType->isUnsignedIntegerType()); 3412 if (Result.hasArrayFiller()) 3413 Result.getArrayFiller() = APValue(Value); 3414 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 3415 Value = S->getCodeUnit(I); 3416 Result.getArrayInitializedElt(I) = APValue(Value); 3417 } 3418 } 3419 3420 // Expand an array so that it has more than Index filled elements. 3421 static void expandArray(APValue &Array, unsigned Index) { 3422 unsigned Size = Array.getArraySize(); 3423 assert(Index < Size); 3424 3425 // Always at least double the number of elements for which we store a value. 3426 unsigned OldElts = Array.getArrayInitializedElts(); 3427 unsigned NewElts = std::max(Index+1, OldElts * 2); 3428 NewElts = std::min(Size, std::max(NewElts, 8u)); 3429 3430 // Copy the data across. 3431 APValue NewValue(APValue::UninitArray(), NewElts, Size); 3432 for (unsigned I = 0; I != OldElts; ++I) 3433 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 3434 for (unsigned I = OldElts; I != NewElts; ++I) 3435 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3436 if (NewValue.hasArrayFiller()) 3437 NewValue.getArrayFiller() = Array.getArrayFiller(); 3438 Array.swap(NewValue); 3439 } 3440 3441 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3442 /// conversion. If it's of class type, we may assume that the copy operation 3443 /// is trivial. Note that this is never true for a union type with fields 3444 /// (because the copy always "reads" the active member) and always true for 3445 /// a non-class type. 3446 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); 3447 static bool isReadByLvalueToRvalueConversion(QualType T) { 3448 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3449 return !RD || isReadByLvalueToRvalueConversion(RD); 3450 } 3451 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { 3452 // FIXME: A trivial copy of a union copies the object representation, even if 3453 // the union is empty. 3454 if (RD->isUnion()) 3455 return !RD->field_empty(); 3456 if (RD->isEmpty()) 3457 return false; 3458 3459 for (auto *Field : RD->fields()) 3460 if (!Field->isUnnamedBitfield() && 3461 isReadByLvalueToRvalueConversion(Field->getType())) 3462 return true; 3463 3464 for (auto &BaseSpec : RD->bases()) 3465 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3466 return true; 3467 3468 return false; 3469 } 3470 3471 /// Diagnose an attempt to read from any unreadable field within the specified 3472 /// type, which might be a class type. 3473 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3474 QualType T) { 3475 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3476 if (!RD) 3477 return false; 3478 3479 if (!RD->hasMutableFields()) 3480 return false; 3481 3482 for (auto *Field : RD->fields()) { 3483 // If we're actually going to read this field in some way, then it can't 3484 // be mutable. If we're in a union, then assigning to a mutable field 3485 // (even an empty one) can change the active member, so that's not OK. 3486 // FIXME: Add core issue number for the union case. 3487 if (Field->isMutable() && 3488 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3489 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3490 Info.Note(Field->getLocation(), diag::note_declared_at); 3491 return true; 3492 } 3493 3494 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3495 return true; 3496 } 3497 3498 for (auto &BaseSpec : RD->bases()) 3499 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3500 return true; 3501 3502 // All mutable fields were empty, and thus not actually read. 3503 return false; 3504 } 3505 3506 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3507 APValue::LValueBase Base, 3508 bool MutableSubobject = false) { 3509 // A temporary or transient heap allocation we created. 3510 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) 3511 return true; 3512 3513 switch (Info.IsEvaluatingDecl) { 3514 case EvalInfo::EvaluatingDeclKind::None: 3515 return false; 3516 3517 case EvalInfo::EvaluatingDeclKind::Ctor: 3518 // The variable whose initializer we're evaluating. 3519 if (Info.EvaluatingDecl == Base) 3520 return true; 3521 3522 // A temporary lifetime-extended by the variable whose initializer we're 3523 // evaluating. 3524 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3525 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3526 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); 3527 return false; 3528 3529 case EvalInfo::EvaluatingDeclKind::Dtor: 3530 // C++2a [expr.const]p6: 3531 // [during constant destruction] the lifetime of a and its non-mutable 3532 // subobjects (but not its mutable subobjects) [are] considered to start 3533 // within e. 3534 if (MutableSubobject || Base != Info.EvaluatingDecl) 3535 return false; 3536 // FIXME: We can meaningfully extend this to cover non-const objects, but 3537 // we will need special handling: we should be able to access only 3538 // subobjects of such objects that are themselves declared const. 3539 QualType T = getType(Base); 3540 return T.isConstQualified() || T->isReferenceType(); 3541 } 3542 3543 llvm_unreachable("unknown evaluating decl kind"); 3544 } 3545 3546 namespace { 3547 /// A handle to a complete object (an object that is not a subobject of 3548 /// another object). 3549 struct CompleteObject { 3550 /// The identity of the object. 3551 APValue::LValueBase Base; 3552 /// The value of the complete object. 3553 APValue *Value; 3554 /// The type of the complete object. 3555 QualType Type; 3556 3557 CompleteObject() : Value(nullptr) {} 3558 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3559 : Base(Base), Value(Value), Type(Type) {} 3560 3561 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3562 // If this isn't a "real" access (eg, if it's just accessing the type 3563 // info), allow it. We assume the type doesn't change dynamically for 3564 // subobjects of constexpr objects (even though we'd hit UB here if it 3565 // did). FIXME: Is this right? 3566 if (!isAnyAccess(AK)) 3567 return true; 3568 3569 // In C++14 onwards, it is permitted to read a mutable member whose 3570 // lifetime began within the evaluation. 3571 // FIXME: Should we also allow this in C++11? 3572 if (!Info.getLangOpts().CPlusPlus14) 3573 return false; 3574 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3575 } 3576 3577 explicit operator bool() const { return !Type.isNull(); } 3578 }; 3579 } // end anonymous namespace 3580 3581 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3582 bool IsMutable = false) { 3583 // C++ [basic.type.qualifier]p1: 3584 // - A const object is an object of type const T or a non-mutable subobject 3585 // of a const object. 3586 if (ObjType.isConstQualified() && !IsMutable) 3587 SubobjType.addConst(); 3588 // - A volatile object is an object of type const T or a subobject of a 3589 // volatile object. 3590 if (ObjType.isVolatileQualified()) 3591 SubobjType.addVolatile(); 3592 return SubobjType; 3593 } 3594 3595 /// Find the designated sub-object of an rvalue. 3596 template<typename SubobjectHandler> 3597 typename SubobjectHandler::result_type 3598 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3599 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3600 if (Sub.Invalid) 3601 // A diagnostic will have already been produced. 3602 return handler.failed(); 3603 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3604 if (Info.getLangOpts().CPlusPlus11) 3605 Info.FFDiag(E, Sub.isOnePastTheEnd() 3606 ? diag::note_constexpr_access_past_end 3607 : diag::note_constexpr_access_unsized_array) 3608 << handler.AccessKind; 3609 else 3610 Info.FFDiag(E); 3611 return handler.failed(); 3612 } 3613 3614 APValue *O = Obj.Value; 3615 QualType ObjType = Obj.Type; 3616 const FieldDecl *LastField = nullptr; 3617 const FieldDecl *VolatileField = nullptr; 3618 3619 // Walk the designator's path to find the subobject. 3620 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3621 // Reading an indeterminate value is undefined, but assigning over one is OK. 3622 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3623 (O->isIndeterminate() && 3624 !isValidIndeterminateAccess(handler.AccessKind))) { 3625 if (!Info.checkingPotentialConstantExpression()) 3626 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3627 << handler.AccessKind << O->isIndeterminate(); 3628 return handler.failed(); 3629 } 3630 3631 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3632 // const and volatile semantics are not applied on an object under 3633 // {con,de}struction. 3634 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3635 ObjType->isRecordType() && 3636 Info.isEvaluatingCtorDtor( 3637 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), 3638 Sub.Entries.begin() + I)) != 3639 ConstructionPhase::None) { 3640 ObjType = Info.Ctx.getCanonicalType(ObjType); 3641 ObjType.removeLocalConst(); 3642 ObjType.removeLocalVolatile(); 3643 } 3644 3645 // If this is our last pass, check that the final object type is OK. 3646 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3647 // Accesses to volatile objects are prohibited. 3648 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3649 if (Info.getLangOpts().CPlusPlus) { 3650 int DiagKind; 3651 SourceLocation Loc; 3652 const NamedDecl *Decl = nullptr; 3653 if (VolatileField) { 3654 DiagKind = 2; 3655 Loc = VolatileField->getLocation(); 3656 Decl = VolatileField; 3657 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3658 DiagKind = 1; 3659 Loc = VD->getLocation(); 3660 Decl = VD; 3661 } else { 3662 DiagKind = 0; 3663 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3664 Loc = E->getExprLoc(); 3665 } 3666 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3667 << handler.AccessKind << DiagKind << Decl; 3668 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3669 } else { 3670 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3671 } 3672 return handler.failed(); 3673 } 3674 3675 // If we are reading an object of class type, there may still be more 3676 // things we need to check: if there are any mutable subobjects, we 3677 // cannot perform this read. (This only happens when performing a trivial 3678 // copy or assignment.) 3679 if (ObjType->isRecordType() && 3680 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3681 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3682 return handler.failed(); 3683 } 3684 3685 if (I == N) { 3686 if (!handler.found(*O, ObjType)) 3687 return false; 3688 3689 // If we modified a bit-field, truncate it to the right width. 3690 if (isModification(handler.AccessKind) && 3691 LastField && LastField->isBitField() && 3692 !truncateBitfieldValue(Info, E, *O, LastField)) 3693 return false; 3694 3695 return true; 3696 } 3697 3698 LastField = nullptr; 3699 if (ObjType->isArrayType()) { 3700 // Next subobject is an array element. 3701 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 3702 assert(CAT && "vla in literal type?"); 3703 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3704 if (CAT->getSize().ule(Index)) { 3705 // Note, it should not be possible to form a pointer with a valid 3706 // designator which points more than one past the end of the array. 3707 if (Info.getLangOpts().CPlusPlus11) 3708 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3709 << handler.AccessKind; 3710 else 3711 Info.FFDiag(E); 3712 return handler.failed(); 3713 } 3714 3715 ObjType = CAT->getElementType(); 3716 3717 if (O->getArrayInitializedElts() > Index) 3718 O = &O->getArrayInitializedElt(Index); 3719 else if (!isRead(handler.AccessKind)) { 3720 expandArray(*O, Index); 3721 O = &O->getArrayInitializedElt(Index); 3722 } else 3723 O = &O->getArrayFiller(); 3724 } else if (ObjType->isAnyComplexType()) { 3725 // Next subobject is a complex number. 3726 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 3727 if (Index > 1) { 3728 if (Info.getLangOpts().CPlusPlus11) 3729 Info.FFDiag(E, diag::note_constexpr_access_past_end) 3730 << handler.AccessKind; 3731 else 3732 Info.FFDiag(E); 3733 return handler.failed(); 3734 } 3735 3736 ObjType = getSubobjectType( 3737 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 3738 3739 assert(I == N - 1 && "extracting subobject of scalar?"); 3740 if (O->isComplexInt()) { 3741 return handler.found(Index ? O->getComplexIntImag() 3742 : O->getComplexIntReal(), ObjType); 3743 } else { 3744 assert(O->isComplexFloat()); 3745 return handler.found(Index ? O->getComplexFloatImag() 3746 : O->getComplexFloatReal(), ObjType); 3747 } 3748 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 3749 if (Field->isMutable() && 3750 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 3751 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 3752 << handler.AccessKind << Field; 3753 Info.Note(Field->getLocation(), diag::note_declared_at); 3754 return handler.failed(); 3755 } 3756 3757 // Next subobject is a class, struct or union field. 3758 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 3759 if (RD->isUnion()) { 3760 const FieldDecl *UnionField = O->getUnionField(); 3761 if (!UnionField || 3762 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 3763 if (I == N - 1 && handler.AccessKind == AK_Construct) { 3764 // Placement new onto an inactive union member makes it active. 3765 O->setUnion(Field, APValue()); 3766 } else { 3767 // FIXME: If O->getUnionValue() is absent, report that there's no 3768 // active union member rather than reporting the prior active union 3769 // member. We'll need to fix nullptr_t to not use APValue() as its 3770 // representation first. 3771 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 3772 << handler.AccessKind << Field << !UnionField << UnionField; 3773 return handler.failed(); 3774 } 3775 } 3776 O = &O->getUnionValue(); 3777 } else 3778 O = &O->getStructField(Field->getFieldIndex()); 3779 3780 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 3781 LastField = Field; 3782 if (Field->getType().isVolatileQualified()) 3783 VolatileField = Field; 3784 } else { 3785 // Next subobject is a base class. 3786 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 3787 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 3788 O = &O->getStructBase(getBaseIndex(Derived, Base)); 3789 3790 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 3791 } 3792 } 3793 } 3794 3795 namespace { 3796 struct ExtractSubobjectHandler { 3797 EvalInfo &Info; 3798 const Expr *E; 3799 APValue &Result; 3800 const AccessKinds AccessKind; 3801 3802 typedef bool result_type; 3803 bool failed() { return false; } 3804 bool found(APValue &Subobj, QualType SubobjType) { 3805 Result = Subobj; 3806 if (AccessKind == AK_ReadObjectRepresentation) 3807 return true; 3808 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 3809 } 3810 bool found(APSInt &Value, QualType SubobjType) { 3811 Result = APValue(Value); 3812 return true; 3813 } 3814 bool found(APFloat &Value, QualType SubobjType) { 3815 Result = APValue(Value); 3816 return true; 3817 } 3818 }; 3819 } // end anonymous namespace 3820 3821 /// Extract the designated sub-object of an rvalue. 3822 static bool extractSubobject(EvalInfo &Info, const Expr *E, 3823 const CompleteObject &Obj, 3824 const SubobjectDesignator &Sub, APValue &Result, 3825 AccessKinds AK = AK_Read) { 3826 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 3827 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 3828 return findSubobject(Info, E, Obj, Sub, Handler); 3829 } 3830 3831 namespace { 3832 struct ModifySubobjectHandler { 3833 EvalInfo &Info; 3834 APValue &NewVal; 3835 const Expr *E; 3836 3837 typedef bool result_type; 3838 static const AccessKinds AccessKind = AK_Assign; 3839 3840 bool checkConst(QualType QT) { 3841 // Assigning to a const object has undefined behavior. 3842 if (QT.isConstQualified()) { 3843 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 3844 return false; 3845 } 3846 return true; 3847 } 3848 3849 bool failed() { return false; } 3850 bool found(APValue &Subobj, QualType SubobjType) { 3851 if (!checkConst(SubobjType)) 3852 return false; 3853 // We've been given ownership of NewVal, so just swap it in. 3854 Subobj.swap(NewVal); 3855 return true; 3856 } 3857 bool found(APSInt &Value, QualType SubobjType) { 3858 if (!checkConst(SubobjType)) 3859 return false; 3860 if (!NewVal.isInt()) { 3861 // Maybe trying to write a cast pointer value into a complex? 3862 Info.FFDiag(E); 3863 return false; 3864 } 3865 Value = NewVal.getInt(); 3866 return true; 3867 } 3868 bool found(APFloat &Value, QualType SubobjType) { 3869 if (!checkConst(SubobjType)) 3870 return false; 3871 Value = NewVal.getFloat(); 3872 return true; 3873 } 3874 }; 3875 } // end anonymous namespace 3876 3877 const AccessKinds ModifySubobjectHandler::AccessKind; 3878 3879 /// Update the designated sub-object of an rvalue to the given value. 3880 static bool modifySubobject(EvalInfo &Info, const Expr *E, 3881 const CompleteObject &Obj, 3882 const SubobjectDesignator &Sub, 3883 APValue &NewVal) { 3884 ModifySubobjectHandler Handler = { Info, NewVal, E }; 3885 return findSubobject(Info, E, Obj, Sub, Handler); 3886 } 3887 3888 /// Find the position where two subobject designators diverge, or equivalently 3889 /// the length of the common initial subsequence. 3890 static unsigned FindDesignatorMismatch(QualType ObjType, 3891 const SubobjectDesignator &A, 3892 const SubobjectDesignator &B, 3893 bool &WasArrayIndex) { 3894 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 3895 for (/**/; I != N; ++I) { 3896 if (!ObjType.isNull() && 3897 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 3898 // Next subobject is an array element. 3899 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 3900 WasArrayIndex = true; 3901 return I; 3902 } 3903 if (ObjType->isAnyComplexType()) 3904 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 3905 else 3906 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 3907 } else { 3908 if (A.Entries[I].getAsBaseOrMember() != 3909 B.Entries[I].getAsBaseOrMember()) { 3910 WasArrayIndex = false; 3911 return I; 3912 } 3913 if (const FieldDecl *FD = getAsField(A.Entries[I])) 3914 // Next subobject is a field. 3915 ObjType = FD->getType(); 3916 else 3917 // Next subobject is a base class. 3918 ObjType = QualType(); 3919 } 3920 } 3921 WasArrayIndex = false; 3922 return I; 3923 } 3924 3925 /// Determine whether the given subobject designators refer to elements of the 3926 /// same array object. 3927 static bool AreElementsOfSameArray(QualType ObjType, 3928 const SubobjectDesignator &A, 3929 const SubobjectDesignator &B) { 3930 if (A.Entries.size() != B.Entries.size()) 3931 return false; 3932 3933 bool IsArray = A.MostDerivedIsArrayElement; 3934 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 3935 // A is a subobject of the array element. 3936 return false; 3937 3938 // If A (and B) designates an array element, the last entry will be the array 3939 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 3940 // of length 1' case, and the entire path must match. 3941 bool WasArrayIndex; 3942 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 3943 return CommonLength >= A.Entries.size() - IsArray; 3944 } 3945 3946 /// Find the complete object to which an LValue refers. 3947 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 3948 AccessKinds AK, const LValue &LVal, 3949 QualType LValType) { 3950 if (LVal.InvalidBase) { 3951 Info.FFDiag(E); 3952 return CompleteObject(); 3953 } 3954 3955 if (!LVal.Base) { 3956 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 3957 return CompleteObject(); 3958 } 3959 3960 CallStackFrame *Frame = nullptr; 3961 unsigned Depth = 0; 3962 if (LVal.getLValueCallIndex()) { 3963 std::tie(Frame, Depth) = 3964 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 3965 if (!Frame) { 3966 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 3967 << AK << LVal.Base.is<const ValueDecl*>(); 3968 NoteLValueLocation(Info, LVal.Base); 3969 return CompleteObject(); 3970 } 3971 } 3972 3973 bool IsAccess = isAnyAccess(AK); 3974 3975 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 3976 // is not a constant expression (even if the object is non-volatile). We also 3977 // apply this rule to C++98, in order to conform to the expected 'volatile' 3978 // semantics. 3979 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 3980 if (Info.getLangOpts().CPlusPlus) 3981 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 3982 << AK << LValType; 3983 else 3984 Info.FFDiag(E); 3985 return CompleteObject(); 3986 } 3987 3988 // Compute value storage location and type of base object. 3989 APValue *BaseVal = nullptr; 3990 QualType BaseType = getType(LVal.Base); 3991 3992 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && 3993 lifetimeStartedInEvaluation(Info, LVal.Base)) { 3994 // This is the object whose initializer we're evaluating, so its lifetime 3995 // started in the current evaluation. 3996 BaseVal = Info.EvaluatingDeclValue; 3997 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { 3998 // Allow reading from a GUID declaration. 3999 if (auto *GD = dyn_cast<MSGuidDecl>(D)) { 4000 if (isModification(AK)) { 4001 // All the remaining cases do not permit modification of the object. 4002 Info.FFDiag(E, diag::note_constexpr_modify_global); 4003 return CompleteObject(); 4004 } 4005 APValue &V = GD->getAsAPValue(); 4006 if (V.isAbsent()) { 4007 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 4008 << GD->getType(); 4009 return CompleteObject(); 4010 } 4011 return CompleteObject(LVal.Base, &V, GD->getType()); 4012 } 4013 4014 // Allow reading from template parameter objects. 4015 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 4016 if (isModification(AK)) { 4017 Info.FFDiag(E, diag::note_constexpr_modify_global); 4018 return CompleteObject(); 4019 } 4020 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), 4021 TPO->getType()); 4022 } 4023 4024 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 4025 // In C++11, constexpr, non-volatile variables initialized with constant 4026 // expressions are constant expressions too. Inside constexpr functions, 4027 // parameters are constant expressions even if they're non-const. 4028 // In C++1y, objects local to a constant expression (those with a Frame) are 4029 // both readable and writable inside constant expressions. 4030 // In C, such things can also be folded, although they are not ICEs. 4031 const VarDecl *VD = dyn_cast<VarDecl>(D); 4032 if (VD) { 4033 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 4034 VD = VDef; 4035 } 4036 if (!VD || VD->isInvalidDecl()) { 4037 Info.FFDiag(E); 4038 return CompleteObject(); 4039 } 4040 4041 bool IsConstant = BaseType.isConstant(Info.Ctx); 4042 4043 // Unless we're looking at a local variable or argument in a constexpr call, 4044 // the variable we're reading must be const. 4045 if (!Frame) { 4046 if (IsAccess && isa<ParmVarDecl>(VD)) { 4047 // Access of a parameter that's not associated with a frame isn't going 4048 // to work out, but we can leave it to evaluateVarDeclInit to provide a 4049 // suitable diagnostic. 4050 } else if (Info.getLangOpts().CPlusPlus14 && 4051 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4052 // OK, we can read and modify an object if we're in the process of 4053 // evaluating its initializer, because its lifetime began in this 4054 // evaluation. 4055 } else if (isModification(AK)) { 4056 // All the remaining cases do not permit modification of the object. 4057 Info.FFDiag(E, diag::note_constexpr_modify_global); 4058 return CompleteObject(); 4059 } else if (VD->isConstexpr()) { 4060 // OK, we can read this variable. 4061 } else if (BaseType->isIntegralOrEnumerationType()) { 4062 if (!IsConstant) { 4063 if (!IsAccess) 4064 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4065 if (Info.getLangOpts().CPlusPlus) { 4066 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 4067 Info.Note(VD->getLocation(), diag::note_declared_at); 4068 } else { 4069 Info.FFDiag(E); 4070 } 4071 return CompleteObject(); 4072 } 4073 } else if (!IsAccess) { 4074 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4075 } else if (IsConstant && Info.checkingPotentialConstantExpression() && 4076 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { 4077 // This variable might end up being constexpr. Don't diagnose it yet. 4078 } else if (IsConstant) { 4079 // Keep evaluating to see what we can do. In particular, we support 4080 // folding of const floating-point types, in order to make static const 4081 // data members of such types (supported as an extension) more useful. 4082 if (Info.getLangOpts().CPlusPlus) { 4083 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 4084 ? diag::note_constexpr_ltor_non_constexpr 4085 : diag::note_constexpr_ltor_non_integral, 1) 4086 << VD << BaseType; 4087 Info.Note(VD->getLocation(), diag::note_declared_at); 4088 } else { 4089 Info.CCEDiag(E); 4090 } 4091 } else { 4092 // Never allow reading a non-const value. 4093 if (Info.getLangOpts().CPlusPlus) { 4094 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 4095 ? diag::note_constexpr_ltor_non_constexpr 4096 : diag::note_constexpr_ltor_non_integral, 1) 4097 << VD << BaseType; 4098 Info.Note(VD->getLocation(), diag::note_declared_at); 4099 } else { 4100 Info.FFDiag(E); 4101 } 4102 return CompleteObject(); 4103 } 4104 } 4105 4106 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) 4107 return CompleteObject(); 4108 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 4109 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA); 4110 if (!Alloc) { 4111 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 4112 return CompleteObject(); 4113 } 4114 return CompleteObject(LVal.Base, &(*Alloc)->Value, 4115 LVal.Base.getDynamicAllocType()); 4116 } else { 4117 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4118 4119 if (!Frame) { 4120 if (const MaterializeTemporaryExpr *MTE = 4121 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 4122 assert(MTE->getStorageDuration() == SD_Static && 4123 "should have a frame for a non-global materialized temporary"); 4124 4125 // C++20 [expr.const]p4: [DR2126] 4126 // An object or reference is usable in constant expressions if it is 4127 // - a temporary object of non-volatile const-qualified literal type 4128 // whose lifetime is extended to that of a variable that is usable 4129 // in constant expressions 4130 // 4131 // C++20 [expr.const]p5: 4132 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 4133 // - a non-volatile glvalue that refers to an object that is usable 4134 // in constant expressions, or 4135 // - a non-volatile glvalue of literal type that refers to a 4136 // non-volatile object whose lifetime began within the evaluation 4137 // of E; 4138 // 4139 // C++11 misses the 'began within the evaluation of e' check and 4140 // instead allows all temporaries, including things like: 4141 // int &&r = 1; 4142 // int x = ++r; 4143 // constexpr int k = r; 4144 // Therefore we use the C++14-onwards rules in C++11 too. 4145 // 4146 // Note that temporaries whose lifetimes began while evaluating a 4147 // variable's constructor are not usable while evaluating the 4148 // corresponding destructor, not even if they're of const-qualified 4149 // types. 4150 if (!MTE->isUsableInConstantExpressions(Info.Ctx) && 4151 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 4152 if (!IsAccess) 4153 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4154 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 4155 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 4156 return CompleteObject(); 4157 } 4158 4159 BaseVal = MTE->getOrCreateValue(false); 4160 assert(BaseVal && "got reference to unevaluated temporary"); 4161 } else { 4162 if (!IsAccess) 4163 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4164 APValue Val; 4165 LVal.moveInto(Val); 4166 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 4167 << AK 4168 << Val.getAsString(Info.Ctx, 4169 Info.Ctx.getLValueReferenceType(LValType)); 4170 NoteLValueLocation(Info, LVal.Base); 4171 return CompleteObject(); 4172 } 4173 } else { 4174 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 4175 assert(BaseVal && "missing value for temporary"); 4176 } 4177 } 4178 4179 // In C++14, we can't safely access any mutable state when we might be 4180 // evaluating after an unmodeled side effect. Parameters are modeled as state 4181 // in the caller, but aren't visible once the call returns, so they can be 4182 // modified in a speculatively-evaluated call. 4183 // 4184 // FIXME: Not all local state is mutable. Allow local constant subobjects 4185 // to be read here (but take care with 'mutable' fields). 4186 unsigned VisibleDepth = Depth; 4187 if (llvm::isa_and_nonnull<ParmVarDecl>( 4188 LVal.Base.dyn_cast<const ValueDecl *>())) 4189 ++VisibleDepth; 4190 if ((Frame && Info.getLangOpts().CPlusPlus14 && 4191 Info.EvalStatus.HasSideEffects) || 4192 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) 4193 return CompleteObject(); 4194 4195 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 4196 } 4197 4198 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 4199 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 4200 /// glvalue referred to by an entity of reference type. 4201 /// 4202 /// \param Info - Information about the ongoing evaluation. 4203 /// \param Conv - The expression for which we are performing the conversion. 4204 /// Used for diagnostics. 4205 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 4206 /// case of a non-class type). 4207 /// \param LVal - The glvalue on which we are attempting to perform this action. 4208 /// \param RVal - The produced value will be placed here. 4209 /// \param WantObjectRepresentation - If true, we're looking for the object 4210 /// representation rather than the value, and in particular, 4211 /// there is no requirement that the result be fully initialized. 4212 static bool 4213 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 4214 const LValue &LVal, APValue &RVal, 4215 bool WantObjectRepresentation = false) { 4216 if (LVal.Designator.Invalid) 4217 return false; 4218 4219 // Check for special cases where there is no existing APValue to look at. 4220 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4221 4222 AccessKinds AK = 4223 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 4224 4225 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 4226 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 4227 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 4228 // initializer until now for such expressions. Such an expression can't be 4229 // an ICE in C, so this only matters for fold. 4230 if (Type.isVolatileQualified()) { 4231 Info.FFDiag(Conv); 4232 return false; 4233 } 4234 APValue Lit; 4235 if (!Evaluate(Lit, Info, CLE->getInitializer())) 4236 return false; 4237 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 4238 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 4239 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 4240 // Special-case character extraction so we don't have to construct an 4241 // APValue for the whole string. 4242 assert(LVal.Designator.Entries.size() <= 1 && 4243 "Can only read characters from string literals"); 4244 if (LVal.Designator.Entries.empty()) { 4245 // Fail for now for LValue to RValue conversion of an array. 4246 // (This shouldn't show up in C/C++, but it could be triggered by a 4247 // weird EvaluateAsRValue call from a tool.) 4248 Info.FFDiag(Conv); 4249 return false; 4250 } 4251 if (LVal.Designator.isOnePastTheEnd()) { 4252 if (Info.getLangOpts().CPlusPlus11) 4253 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 4254 else 4255 Info.FFDiag(Conv); 4256 return false; 4257 } 4258 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 4259 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 4260 return true; 4261 } 4262 } 4263 4264 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 4265 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 4266 } 4267 4268 /// Perform an assignment of Val to LVal. Takes ownership of Val. 4269 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 4270 QualType LValType, APValue &Val) { 4271 if (LVal.Designator.Invalid) 4272 return false; 4273 4274 if (!Info.getLangOpts().CPlusPlus14) { 4275 Info.FFDiag(E); 4276 return false; 4277 } 4278 4279 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4280 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 4281 } 4282 4283 namespace { 4284 struct CompoundAssignSubobjectHandler { 4285 EvalInfo &Info; 4286 const CompoundAssignOperator *E; 4287 QualType PromotedLHSType; 4288 BinaryOperatorKind Opcode; 4289 const APValue &RHS; 4290 4291 static const AccessKinds AccessKind = AK_Assign; 4292 4293 typedef bool result_type; 4294 4295 bool checkConst(QualType QT) { 4296 // Assigning to a const object has undefined behavior. 4297 if (QT.isConstQualified()) { 4298 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4299 return false; 4300 } 4301 return true; 4302 } 4303 4304 bool failed() { return false; } 4305 bool found(APValue &Subobj, QualType SubobjType) { 4306 switch (Subobj.getKind()) { 4307 case APValue::Int: 4308 return found(Subobj.getInt(), SubobjType); 4309 case APValue::Float: 4310 return found(Subobj.getFloat(), SubobjType); 4311 case APValue::ComplexInt: 4312 case APValue::ComplexFloat: 4313 // FIXME: Implement complex compound assignment. 4314 Info.FFDiag(E); 4315 return false; 4316 case APValue::LValue: 4317 return foundPointer(Subobj, SubobjType); 4318 case APValue::Vector: 4319 return foundVector(Subobj, SubobjType); 4320 default: 4321 // FIXME: can this happen? 4322 Info.FFDiag(E); 4323 return false; 4324 } 4325 } 4326 4327 bool foundVector(APValue &Value, QualType SubobjType) { 4328 if (!checkConst(SubobjType)) 4329 return false; 4330 4331 if (!SubobjType->isVectorType()) { 4332 Info.FFDiag(E); 4333 return false; 4334 } 4335 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); 4336 } 4337 4338 bool found(APSInt &Value, QualType SubobjType) { 4339 if (!checkConst(SubobjType)) 4340 return false; 4341 4342 if (!SubobjType->isIntegerType()) { 4343 // We don't support compound assignment on integer-cast-to-pointer 4344 // values. 4345 Info.FFDiag(E); 4346 return false; 4347 } 4348 4349 if (RHS.isInt()) { 4350 APSInt LHS = 4351 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 4352 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 4353 return false; 4354 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 4355 return true; 4356 } else if (RHS.isFloat()) { 4357 const FPOptions FPO = E->getFPFeaturesInEffect( 4358 Info.Ctx.getLangOpts()); 4359 APFloat FValue(0.0); 4360 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, 4361 PromotedLHSType, FValue) && 4362 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 4363 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 4364 Value); 4365 } 4366 4367 Info.FFDiag(E); 4368 return false; 4369 } 4370 bool found(APFloat &Value, QualType SubobjType) { 4371 return checkConst(SubobjType) && 4372 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 4373 Value) && 4374 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 4375 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 4376 } 4377 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4378 if (!checkConst(SubobjType)) 4379 return false; 4380 4381 QualType PointeeType; 4382 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4383 PointeeType = PT->getPointeeType(); 4384 4385 if (PointeeType.isNull() || !RHS.isInt() || 4386 (Opcode != BO_Add && Opcode != BO_Sub)) { 4387 Info.FFDiag(E); 4388 return false; 4389 } 4390 4391 APSInt Offset = RHS.getInt(); 4392 if (Opcode == BO_Sub) 4393 negateAsSigned(Offset); 4394 4395 LValue LVal; 4396 LVal.setFrom(Info.Ctx, Subobj); 4397 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 4398 return false; 4399 LVal.moveInto(Subobj); 4400 return true; 4401 } 4402 }; 4403 } // end anonymous namespace 4404 4405 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 4406 4407 /// Perform a compound assignment of LVal <op>= RVal. 4408 static bool handleCompoundAssignment(EvalInfo &Info, 4409 const CompoundAssignOperator *E, 4410 const LValue &LVal, QualType LValType, 4411 QualType PromotedLValType, 4412 BinaryOperatorKind Opcode, 4413 const APValue &RVal) { 4414 if (LVal.Designator.Invalid) 4415 return false; 4416 4417 if (!Info.getLangOpts().CPlusPlus14) { 4418 Info.FFDiag(E); 4419 return false; 4420 } 4421 4422 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4423 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 4424 RVal }; 4425 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4426 } 4427 4428 namespace { 4429 struct IncDecSubobjectHandler { 4430 EvalInfo &Info; 4431 const UnaryOperator *E; 4432 AccessKinds AccessKind; 4433 APValue *Old; 4434 4435 typedef bool result_type; 4436 4437 bool checkConst(QualType QT) { 4438 // Assigning to a const object has undefined behavior. 4439 if (QT.isConstQualified()) { 4440 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4441 return false; 4442 } 4443 return true; 4444 } 4445 4446 bool failed() { return false; } 4447 bool found(APValue &Subobj, QualType SubobjType) { 4448 // Stash the old value. Also clear Old, so we don't clobber it later 4449 // if we're post-incrementing a complex. 4450 if (Old) { 4451 *Old = Subobj; 4452 Old = nullptr; 4453 } 4454 4455 switch (Subobj.getKind()) { 4456 case APValue::Int: 4457 return found(Subobj.getInt(), SubobjType); 4458 case APValue::Float: 4459 return found(Subobj.getFloat(), SubobjType); 4460 case APValue::ComplexInt: 4461 return found(Subobj.getComplexIntReal(), 4462 SubobjType->castAs<ComplexType>()->getElementType() 4463 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4464 case APValue::ComplexFloat: 4465 return found(Subobj.getComplexFloatReal(), 4466 SubobjType->castAs<ComplexType>()->getElementType() 4467 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4468 case APValue::LValue: 4469 return foundPointer(Subobj, SubobjType); 4470 default: 4471 // FIXME: can this happen? 4472 Info.FFDiag(E); 4473 return false; 4474 } 4475 } 4476 bool found(APSInt &Value, QualType SubobjType) { 4477 if (!checkConst(SubobjType)) 4478 return false; 4479 4480 if (!SubobjType->isIntegerType()) { 4481 // We don't support increment / decrement on integer-cast-to-pointer 4482 // values. 4483 Info.FFDiag(E); 4484 return false; 4485 } 4486 4487 if (Old) *Old = APValue(Value); 4488 4489 // bool arithmetic promotes to int, and the conversion back to bool 4490 // doesn't reduce mod 2^n, so special-case it. 4491 if (SubobjType->isBooleanType()) { 4492 if (AccessKind == AK_Increment) 4493 Value = 1; 4494 else 4495 Value = !Value; 4496 return true; 4497 } 4498 4499 bool WasNegative = Value.isNegative(); 4500 if (AccessKind == AK_Increment) { 4501 ++Value; 4502 4503 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4504 APSInt ActualValue(Value, /*IsUnsigned*/true); 4505 return HandleOverflow(Info, E, ActualValue, SubobjType); 4506 } 4507 } else { 4508 --Value; 4509 4510 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4511 unsigned BitWidth = Value.getBitWidth(); 4512 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4513 ActualValue.setBit(BitWidth); 4514 return HandleOverflow(Info, E, ActualValue, SubobjType); 4515 } 4516 } 4517 return true; 4518 } 4519 bool found(APFloat &Value, QualType SubobjType) { 4520 if (!checkConst(SubobjType)) 4521 return false; 4522 4523 if (Old) *Old = APValue(Value); 4524 4525 APFloat One(Value.getSemantics(), 1); 4526 if (AccessKind == AK_Increment) 4527 Value.add(One, APFloat::rmNearestTiesToEven); 4528 else 4529 Value.subtract(One, APFloat::rmNearestTiesToEven); 4530 return true; 4531 } 4532 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4533 if (!checkConst(SubobjType)) 4534 return false; 4535 4536 QualType PointeeType; 4537 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4538 PointeeType = PT->getPointeeType(); 4539 else { 4540 Info.FFDiag(E); 4541 return false; 4542 } 4543 4544 LValue LVal; 4545 LVal.setFrom(Info.Ctx, Subobj); 4546 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4547 AccessKind == AK_Increment ? 1 : -1)) 4548 return false; 4549 LVal.moveInto(Subobj); 4550 return true; 4551 } 4552 }; 4553 } // end anonymous namespace 4554 4555 /// Perform an increment or decrement on LVal. 4556 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4557 QualType LValType, bool IsIncrement, APValue *Old) { 4558 if (LVal.Designator.Invalid) 4559 return false; 4560 4561 if (!Info.getLangOpts().CPlusPlus14) { 4562 Info.FFDiag(E); 4563 return false; 4564 } 4565 4566 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4567 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4568 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4569 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4570 } 4571 4572 /// Build an lvalue for the object argument of a member function call. 4573 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4574 LValue &This) { 4575 if (Object->getType()->isPointerType() && Object->isPRValue()) 4576 return EvaluatePointer(Object, This, Info); 4577 4578 if (Object->isGLValue()) 4579 return EvaluateLValue(Object, This, Info); 4580 4581 if (Object->getType()->isLiteralType(Info.Ctx)) 4582 return EvaluateTemporary(Object, This, Info); 4583 4584 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4585 return false; 4586 } 4587 4588 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4589 /// lvalue referring to the result. 4590 /// 4591 /// \param Info - Information about the ongoing evaluation. 4592 /// \param LV - An lvalue referring to the base of the member pointer. 4593 /// \param RHS - The member pointer expression. 4594 /// \param IncludeMember - Specifies whether the member itself is included in 4595 /// the resulting LValue subobject designator. This is not possible when 4596 /// creating a bound member function. 4597 /// \return The field or method declaration to which the member pointer refers, 4598 /// or 0 if evaluation fails. 4599 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4600 QualType LVType, 4601 LValue &LV, 4602 const Expr *RHS, 4603 bool IncludeMember = true) { 4604 MemberPtr MemPtr; 4605 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4606 return nullptr; 4607 4608 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4609 // member value, the behavior is undefined. 4610 if (!MemPtr.getDecl()) { 4611 // FIXME: Specific diagnostic. 4612 Info.FFDiag(RHS); 4613 return nullptr; 4614 } 4615 4616 if (MemPtr.isDerivedMember()) { 4617 // This is a member of some derived class. Truncate LV appropriately. 4618 // The end of the derived-to-base path for the base object must match the 4619 // derived-to-base path for the member pointer. 4620 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 4621 LV.Designator.Entries.size()) { 4622 Info.FFDiag(RHS); 4623 return nullptr; 4624 } 4625 unsigned PathLengthToMember = 4626 LV.Designator.Entries.size() - MemPtr.Path.size(); 4627 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 4628 const CXXRecordDecl *LVDecl = getAsBaseClass( 4629 LV.Designator.Entries[PathLengthToMember + I]); 4630 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 4631 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 4632 Info.FFDiag(RHS); 4633 return nullptr; 4634 } 4635 } 4636 4637 // Truncate the lvalue to the appropriate derived class. 4638 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 4639 PathLengthToMember)) 4640 return nullptr; 4641 } else if (!MemPtr.Path.empty()) { 4642 // Extend the LValue path with the member pointer's path. 4643 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 4644 MemPtr.Path.size() + IncludeMember); 4645 4646 // Walk down to the appropriate base class. 4647 if (const PointerType *PT = LVType->getAs<PointerType>()) 4648 LVType = PT->getPointeeType(); 4649 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 4650 assert(RD && "member pointer access on non-class-type expression"); 4651 // The first class in the path is that of the lvalue. 4652 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 4653 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 4654 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 4655 return nullptr; 4656 RD = Base; 4657 } 4658 // Finally cast to the class containing the member. 4659 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 4660 MemPtr.getContainingRecord())) 4661 return nullptr; 4662 } 4663 4664 // Add the member. Note that we cannot build bound member functions here. 4665 if (IncludeMember) { 4666 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 4667 if (!HandleLValueMember(Info, RHS, LV, FD)) 4668 return nullptr; 4669 } else if (const IndirectFieldDecl *IFD = 4670 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 4671 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 4672 return nullptr; 4673 } else { 4674 llvm_unreachable("can't construct reference to bound member function"); 4675 } 4676 } 4677 4678 return MemPtr.getDecl(); 4679 } 4680 4681 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4682 const BinaryOperator *BO, 4683 LValue &LV, 4684 bool IncludeMember = true) { 4685 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 4686 4687 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 4688 if (Info.noteFailure()) { 4689 MemberPtr MemPtr; 4690 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 4691 } 4692 return nullptr; 4693 } 4694 4695 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 4696 BO->getRHS(), IncludeMember); 4697 } 4698 4699 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 4700 /// the provided lvalue, which currently refers to the base object. 4701 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 4702 LValue &Result) { 4703 SubobjectDesignator &D = Result.Designator; 4704 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 4705 return false; 4706 4707 QualType TargetQT = E->getType(); 4708 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 4709 TargetQT = PT->getPointeeType(); 4710 4711 // Check this cast lands within the final derived-to-base subobject path. 4712 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 4713 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4714 << D.MostDerivedType << TargetQT; 4715 return false; 4716 } 4717 4718 // Check the type of the final cast. We don't need to check the path, 4719 // since a cast can only be formed if the path is unique. 4720 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 4721 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 4722 const CXXRecordDecl *FinalType; 4723 if (NewEntriesSize == D.MostDerivedPathLength) 4724 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 4725 else 4726 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 4727 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 4728 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 4729 << D.MostDerivedType << TargetQT; 4730 return false; 4731 } 4732 4733 // Truncate the lvalue to the appropriate derived class. 4734 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 4735 } 4736 4737 /// Get the value to use for a default-initialized object of type T. 4738 /// Return false if it encounters something invalid. 4739 static bool getDefaultInitValue(QualType T, APValue &Result) { 4740 bool Success = true; 4741 if (auto *RD = T->getAsCXXRecordDecl()) { 4742 if (RD->isInvalidDecl()) { 4743 Result = APValue(); 4744 return false; 4745 } 4746 if (RD->isUnion()) { 4747 Result = APValue((const FieldDecl *)nullptr); 4748 return true; 4749 } 4750 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 4751 std::distance(RD->field_begin(), RD->field_end())); 4752 4753 unsigned Index = 0; 4754 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 4755 End = RD->bases_end(); 4756 I != End; ++I, ++Index) 4757 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index)); 4758 4759 for (const auto *I : RD->fields()) { 4760 if (I->isUnnamedBitfield()) 4761 continue; 4762 Success &= getDefaultInitValue(I->getType(), 4763 Result.getStructField(I->getFieldIndex())); 4764 } 4765 return Success; 4766 } 4767 4768 if (auto *AT = 4769 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 4770 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); 4771 if (Result.hasArrayFiller()) 4772 Success &= 4773 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); 4774 4775 return Success; 4776 } 4777 4778 Result = APValue::IndeterminateValue(); 4779 return true; 4780 } 4781 4782 namespace { 4783 enum EvalStmtResult { 4784 /// Evaluation failed. 4785 ESR_Failed, 4786 /// Hit a 'return' statement. 4787 ESR_Returned, 4788 /// Evaluation succeeded. 4789 ESR_Succeeded, 4790 /// Hit a 'continue' statement. 4791 ESR_Continue, 4792 /// Hit a 'break' statement. 4793 ESR_Break, 4794 /// Still scanning for 'case' or 'default' statement. 4795 ESR_CaseNotFound 4796 }; 4797 } 4798 4799 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 4800 // We don't need to evaluate the initializer for a static local. 4801 if (!VD->hasLocalStorage()) 4802 return true; 4803 4804 LValue Result; 4805 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), 4806 ScopeKind::Block, Result); 4807 4808 const Expr *InitE = VD->getInit(); 4809 if (!InitE) { 4810 if (VD->getType()->isDependentType()) 4811 return Info.noteSideEffect(); 4812 return getDefaultInitValue(VD->getType(), Val); 4813 } 4814 if (InitE->isValueDependent()) 4815 return false; 4816 4817 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 4818 // Wipe out any partially-computed value, to allow tracking that this 4819 // evaluation failed. 4820 Val = APValue(); 4821 return false; 4822 } 4823 4824 return true; 4825 } 4826 4827 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 4828 bool OK = true; 4829 4830 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 4831 OK &= EvaluateVarDecl(Info, VD); 4832 4833 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 4834 for (auto *BD : DD->bindings()) 4835 if (auto *VD = BD->getHoldingVar()) 4836 OK &= EvaluateDecl(Info, VD); 4837 4838 return OK; 4839 } 4840 4841 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { 4842 assert(E->isValueDependent()); 4843 if (Info.noteSideEffect()) 4844 return true; 4845 assert(E->containsErrors() && "valid value-dependent expression should never " 4846 "reach invalid code path."); 4847 return false; 4848 } 4849 4850 /// Evaluate a condition (either a variable declaration or an expression). 4851 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 4852 const Expr *Cond, bool &Result) { 4853 if (Cond->isValueDependent()) 4854 return false; 4855 FullExpressionRAII Scope(Info); 4856 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 4857 return false; 4858 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 4859 return false; 4860 return Scope.destroy(); 4861 } 4862 4863 namespace { 4864 /// A location where the result (returned value) of evaluating a 4865 /// statement should be stored. 4866 struct StmtResult { 4867 /// The APValue that should be filled in with the returned value. 4868 APValue &Value; 4869 /// The location containing the result, if any (used to support RVO). 4870 const LValue *Slot; 4871 }; 4872 4873 struct TempVersionRAII { 4874 CallStackFrame &Frame; 4875 4876 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 4877 Frame.pushTempVersion(); 4878 } 4879 4880 ~TempVersionRAII() { 4881 Frame.popTempVersion(); 4882 } 4883 }; 4884 4885 } 4886 4887 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4888 const Stmt *S, 4889 const SwitchCase *SC = nullptr); 4890 4891 /// Evaluate the body of a loop, and translate the result as appropriate. 4892 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 4893 const Stmt *Body, 4894 const SwitchCase *Case = nullptr) { 4895 BlockScopeRAII Scope(Info); 4896 4897 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 4898 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4899 ESR = ESR_Failed; 4900 4901 switch (ESR) { 4902 case ESR_Break: 4903 return ESR_Succeeded; 4904 case ESR_Succeeded: 4905 case ESR_Continue: 4906 return ESR_Continue; 4907 case ESR_Failed: 4908 case ESR_Returned: 4909 case ESR_CaseNotFound: 4910 return ESR; 4911 } 4912 llvm_unreachable("Invalid EvalStmtResult!"); 4913 } 4914 4915 /// Evaluate a switch statement. 4916 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 4917 const SwitchStmt *SS) { 4918 BlockScopeRAII Scope(Info); 4919 4920 // Evaluate the switch condition. 4921 APSInt Value; 4922 { 4923 if (const Stmt *Init = SS->getInit()) { 4924 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 4925 if (ESR != ESR_Succeeded) { 4926 if (ESR != ESR_Failed && !Scope.destroy()) 4927 ESR = ESR_Failed; 4928 return ESR; 4929 } 4930 } 4931 4932 FullExpressionRAII CondScope(Info); 4933 if (SS->getConditionVariable() && 4934 !EvaluateDecl(Info, SS->getConditionVariable())) 4935 return ESR_Failed; 4936 if (SS->getCond()->isValueDependent()) { 4937 if (!EvaluateDependentExpr(SS->getCond(), Info)) 4938 return ESR_Failed; 4939 } else { 4940 if (!EvaluateInteger(SS->getCond(), Value, Info)) 4941 return ESR_Failed; 4942 } 4943 if (!CondScope.destroy()) 4944 return ESR_Failed; 4945 } 4946 4947 // Find the switch case corresponding to the value of the condition. 4948 // FIXME: Cache this lookup. 4949 const SwitchCase *Found = nullptr; 4950 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 4951 SC = SC->getNextSwitchCase()) { 4952 if (isa<DefaultStmt>(SC)) { 4953 Found = SC; 4954 continue; 4955 } 4956 4957 const CaseStmt *CS = cast<CaseStmt>(SC); 4958 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 4959 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 4960 : LHS; 4961 if (LHS <= Value && Value <= RHS) { 4962 Found = SC; 4963 break; 4964 } 4965 } 4966 4967 if (!Found) 4968 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 4969 4970 // Search the switch body for the switch case and evaluate it from there. 4971 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 4972 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 4973 return ESR_Failed; 4974 4975 switch (ESR) { 4976 case ESR_Break: 4977 return ESR_Succeeded; 4978 case ESR_Succeeded: 4979 case ESR_Continue: 4980 case ESR_Failed: 4981 case ESR_Returned: 4982 return ESR; 4983 case ESR_CaseNotFound: 4984 // This can only happen if the switch case is nested within a statement 4985 // expression. We have no intention of supporting that. 4986 Info.FFDiag(Found->getBeginLoc(), 4987 diag::note_constexpr_stmt_expr_unsupported); 4988 return ESR_Failed; 4989 } 4990 llvm_unreachable("Invalid EvalStmtResult!"); 4991 } 4992 4993 // Evaluate a statement. 4994 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 4995 const Stmt *S, const SwitchCase *Case) { 4996 if (!Info.nextStep(S)) 4997 return ESR_Failed; 4998 4999 // If we're hunting down a 'case' or 'default' label, recurse through 5000 // substatements until we hit the label. 5001 if (Case) { 5002 switch (S->getStmtClass()) { 5003 case Stmt::CompoundStmtClass: 5004 // FIXME: Precompute which substatement of a compound statement we 5005 // would jump to, and go straight there rather than performing a 5006 // linear scan each time. 5007 case Stmt::LabelStmtClass: 5008 case Stmt::AttributedStmtClass: 5009 case Stmt::DoStmtClass: 5010 break; 5011 5012 case Stmt::CaseStmtClass: 5013 case Stmt::DefaultStmtClass: 5014 if (Case == S) 5015 Case = nullptr; 5016 break; 5017 5018 case Stmt::IfStmtClass: { 5019 // FIXME: Precompute which side of an 'if' we would jump to, and go 5020 // straight there rather than scanning both sides. 5021 const IfStmt *IS = cast<IfStmt>(S); 5022 5023 // Wrap the evaluation in a block scope, in case it's a DeclStmt 5024 // preceded by our switch label. 5025 BlockScopeRAII Scope(Info); 5026 5027 // Step into the init statement in case it brings an (uninitialized) 5028 // variable into scope. 5029 if (const Stmt *Init = IS->getInit()) { 5030 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5031 if (ESR != ESR_CaseNotFound) { 5032 assert(ESR != ESR_Succeeded); 5033 return ESR; 5034 } 5035 } 5036 5037 // Condition variable must be initialized if it exists. 5038 // FIXME: We can skip evaluating the body if there's a condition 5039 // variable, as there can't be any case labels within it. 5040 // (The same is true for 'for' statements.) 5041 5042 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 5043 if (ESR == ESR_Failed) 5044 return ESR; 5045 if (ESR != ESR_CaseNotFound) 5046 return Scope.destroy() ? ESR : ESR_Failed; 5047 if (!IS->getElse()) 5048 return ESR_CaseNotFound; 5049 5050 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 5051 if (ESR == ESR_Failed) 5052 return ESR; 5053 if (ESR != ESR_CaseNotFound) 5054 return Scope.destroy() ? ESR : ESR_Failed; 5055 return ESR_CaseNotFound; 5056 } 5057 5058 case Stmt::WhileStmtClass: { 5059 EvalStmtResult ESR = 5060 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 5061 if (ESR != ESR_Continue) 5062 return ESR; 5063 break; 5064 } 5065 5066 case Stmt::ForStmtClass: { 5067 const ForStmt *FS = cast<ForStmt>(S); 5068 BlockScopeRAII Scope(Info); 5069 5070 // Step into the init statement in case it brings an (uninitialized) 5071 // variable into scope. 5072 if (const Stmt *Init = FS->getInit()) { 5073 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5074 if (ESR != ESR_CaseNotFound) { 5075 assert(ESR != ESR_Succeeded); 5076 return ESR; 5077 } 5078 } 5079 5080 EvalStmtResult ESR = 5081 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 5082 if (ESR != ESR_Continue) 5083 return ESR; 5084 if (const auto *Inc = FS->getInc()) { 5085 if (Inc->isValueDependent()) { 5086 if (!EvaluateDependentExpr(Inc, Info)) 5087 return ESR_Failed; 5088 } else { 5089 FullExpressionRAII IncScope(Info); 5090 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5091 return ESR_Failed; 5092 } 5093 } 5094 break; 5095 } 5096 5097 case Stmt::DeclStmtClass: { 5098 // Start the lifetime of any uninitialized variables we encounter. They 5099 // might be used by the selected branch of the switch. 5100 const DeclStmt *DS = cast<DeclStmt>(S); 5101 for (const auto *D : DS->decls()) { 5102 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5103 if (VD->hasLocalStorage() && !VD->getInit()) 5104 if (!EvaluateVarDecl(Info, VD)) 5105 return ESR_Failed; 5106 // FIXME: If the variable has initialization that can't be jumped 5107 // over, bail out of any immediately-surrounding compound-statement 5108 // too. There can't be any case labels here. 5109 } 5110 } 5111 return ESR_CaseNotFound; 5112 } 5113 5114 default: 5115 return ESR_CaseNotFound; 5116 } 5117 } 5118 5119 switch (S->getStmtClass()) { 5120 default: 5121 if (const Expr *E = dyn_cast<Expr>(S)) { 5122 if (E->isValueDependent()) { 5123 if (!EvaluateDependentExpr(E, Info)) 5124 return ESR_Failed; 5125 } else { 5126 // Don't bother evaluating beyond an expression-statement which couldn't 5127 // be evaluated. 5128 // FIXME: Do we need the FullExpressionRAII object here? 5129 // VisitExprWithCleanups should create one when necessary. 5130 FullExpressionRAII Scope(Info); 5131 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 5132 return ESR_Failed; 5133 } 5134 return ESR_Succeeded; 5135 } 5136 5137 Info.FFDiag(S->getBeginLoc()); 5138 return ESR_Failed; 5139 5140 case Stmt::NullStmtClass: 5141 return ESR_Succeeded; 5142 5143 case Stmt::DeclStmtClass: { 5144 const DeclStmt *DS = cast<DeclStmt>(S); 5145 for (const auto *D : DS->decls()) { 5146 // Each declaration initialization is its own full-expression. 5147 FullExpressionRAII Scope(Info); 5148 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 5149 return ESR_Failed; 5150 if (!Scope.destroy()) 5151 return ESR_Failed; 5152 } 5153 return ESR_Succeeded; 5154 } 5155 5156 case Stmt::ReturnStmtClass: { 5157 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 5158 FullExpressionRAII Scope(Info); 5159 if (RetExpr && RetExpr->isValueDependent()) { 5160 EvaluateDependentExpr(RetExpr, Info); 5161 // We know we returned, but we don't know what the value is. 5162 return ESR_Failed; 5163 } 5164 if (RetExpr && 5165 !(Result.Slot 5166 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 5167 : Evaluate(Result.Value, Info, RetExpr))) 5168 return ESR_Failed; 5169 return Scope.destroy() ? ESR_Returned : ESR_Failed; 5170 } 5171 5172 case Stmt::CompoundStmtClass: { 5173 BlockScopeRAII Scope(Info); 5174 5175 const CompoundStmt *CS = cast<CompoundStmt>(S); 5176 for (const auto *BI : CS->body()) { 5177 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 5178 if (ESR == ESR_Succeeded) 5179 Case = nullptr; 5180 else if (ESR != ESR_CaseNotFound) { 5181 if (ESR != ESR_Failed && !Scope.destroy()) 5182 return ESR_Failed; 5183 return ESR; 5184 } 5185 } 5186 if (Case) 5187 return ESR_CaseNotFound; 5188 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5189 } 5190 5191 case Stmt::IfStmtClass: { 5192 const IfStmt *IS = cast<IfStmt>(S); 5193 5194 // Evaluate the condition, as either a var decl or as an expression. 5195 BlockScopeRAII Scope(Info); 5196 if (const Stmt *Init = IS->getInit()) { 5197 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5198 if (ESR != ESR_Succeeded) { 5199 if (ESR != ESR_Failed && !Scope.destroy()) 5200 return ESR_Failed; 5201 return ESR; 5202 } 5203 } 5204 bool Cond; 5205 if (IS->isConsteval()) 5206 Cond = IS->isNonNegatedConsteval(); 5207 else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), 5208 Cond)) 5209 return ESR_Failed; 5210 5211 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 5212 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 5213 if (ESR != ESR_Succeeded) { 5214 if (ESR != ESR_Failed && !Scope.destroy()) 5215 return ESR_Failed; 5216 return ESR; 5217 } 5218 } 5219 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5220 } 5221 5222 case Stmt::WhileStmtClass: { 5223 const WhileStmt *WS = cast<WhileStmt>(S); 5224 while (true) { 5225 BlockScopeRAII Scope(Info); 5226 bool Continue; 5227 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 5228 Continue)) 5229 return ESR_Failed; 5230 if (!Continue) 5231 break; 5232 5233 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 5234 if (ESR != ESR_Continue) { 5235 if (ESR != ESR_Failed && !Scope.destroy()) 5236 return ESR_Failed; 5237 return ESR; 5238 } 5239 if (!Scope.destroy()) 5240 return ESR_Failed; 5241 } 5242 return ESR_Succeeded; 5243 } 5244 5245 case Stmt::DoStmtClass: { 5246 const DoStmt *DS = cast<DoStmt>(S); 5247 bool Continue; 5248 do { 5249 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 5250 if (ESR != ESR_Continue) 5251 return ESR; 5252 Case = nullptr; 5253 5254 if (DS->getCond()->isValueDependent()) { 5255 EvaluateDependentExpr(DS->getCond(), Info); 5256 // Bailout as we don't know whether to keep going or terminate the loop. 5257 return ESR_Failed; 5258 } 5259 FullExpressionRAII CondScope(Info); 5260 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 5261 !CondScope.destroy()) 5262 return ESR_Failed; 5263 } while (Continue); 5264 return ESR_Succeeded; 5265 } 5266 5267 case Stmt::ForStmtClass: { 5268 const ForStmt *FS = cast<ForStmt>(S); 5269 BlockScopeRAII ForScope(Info); 5270 if (FS->getInit()) { 5271 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5272 if (ESR != ESR_Succeeded) { 5273 if (ESR != ESR_Failed && !ForScope.destroy()) 5274 return ESR_Failed; 5275 return ESR; 5276 } 5277 } 5278 while (true) { 5279 BlockScopeRAII IterScope(Info); 5280 bool Continue = true; 5281 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 5282 FS->getCond(), Continue)) 5283 return ESR_Failed; 5284 if (!Continue) 5285 break; 5286 5287 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5288 if (ESR != ESR_Continue) { 5289 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 5290 return ESR_Failed; 5291 return ESR; 5292 } 5293 5294 if (const auto *Inc = FS->getInc()) { 5295 if (Inc->isValueDependent()) { 5296 if (!EvaluateDependentExpr(Inc, Info)) 5297 return ESR_Failed; 5298 } else { 5299 FullExpressionRAII IncScope(Info); 5300 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5301 return ESR_Failed; 5302 } 5303 } 5304 5305 if (!IterScope.destroy()) 5306 return ESR_Failed; 5307 } 5308 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 5309 } 5310 5311 case Stmt::CXXForRangeStmtClass: { 5312 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 5313 BlockScopeRAII Scope(Info); 5314 5315 // Evaluate the init-statement if present. 5316 if (FS->getInit()) { 5317 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5318 if (ESR != ESR_Succeeded) { 5319 if (ESR != ESR_Failed && !Scope.destroy()) 5320 return ESR_Failed; 5321 return ESR; 5322 } 5323 } 5324 5325 // Initialize the __range variable. 5326 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 5327 if (ESR != ESR_Succeeded) { 5328 if (ESR != ESR_Failed && !Scope.destroy()) 5329 return ESR_Failed; 5330 return ESR; 5331 } 5332 5333 // In error-recovery cases it's possible to get here even if we failed to 5334 // synthesize the __begin and __end variables. 5335 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) 5336 return ESR_Failed; 5337 5338 // Create the __begin and __end iterators. 5339 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 5340 if (ESR != ESR_Succeeded) { 5341 if (ESR != ESR_Failed && !Scope.destroy()) 5342 return ESR_Failed; 5343 return ESR; 5344 } 5345 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 5346 if (ESR != ESR_Succeeded) { 5347 if (ESR != ESR_Failed && !Scope.destroy()) 5348 return ESR_Failed; 5349 return ESR; 5350 } 5351 5352 while (true) { 5353 // Condition: __begin != __end. 5354 { 5355 if (FS->getCond()->isValueDependent()) { 5356 EvaluateDependentExpr(FS->getCond(), Info); 5357 // We don't know whether to keep going or terminate the loop. 5358 return ESR_Failed; 5359 } 5360 bool Continue = true; 5361 FullExpressionRAII CondExpr(Info); 5362 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 5363 return ESR_Failed; 5364 if (!Continue) 5365 break; 5366 } 5367 5368 // User's variable declaration, initialized by *__begin. 5369 BlockScopeRAII InnerScope(Info); 5370 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 5371 if (ESR != ESR_Succeeded) { 5372 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5373 return ESR_Failed; 5374 return ESR; 5375 } 5376 5377 // Loop body. 5378 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5379 if (ESR != ESR_Continue) { 5380 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5381 return ESR_Failed; 5382 return ESR; 5383 } 5384 if (FS->getInc()->isValueDependent()) { 5385 if (!EvaluateDependentExpr(FS->getInc(), Info)) 5386 return ESR_Failed; 5387 } else { 5388 // Increment: ++__begin 5389 if (!EvaluateIgnoredValue(Info, FS->getInc())) 5390 return ESR_Failed; 5391 } 5392 5393 if (!InnerScope.destroy()) 5394 return ESR_Failed; 5395 } 5396 5397 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5398 } 5399 5400 case Stmt::SwitchStmtClass: 5401 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 5402 5403 case Stmt::ContinueStmtClass: 5404 return ESR_Continue; 5405 5406 case Stmt::BreakStmtClass: 5407 return ESR_Break; 5408 5409 case Stmt::LabelStmtClass: 5410 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 5411 5412 case Stmt::AttributedStmtClass: 5413 // As a general principle, C++11 attributes can be ignored without 5414 // any semantic impact. 5415 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), 5416 Case); 5417 5418 case Stmt::CaseStmtClass: 5419 case Stmt::DefaultStmtClass: 5420 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 5421 case Stmt::CXXTryStmtClass: 5422 // Evaluate try blocks by evaluating all sub statements. 5423 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 5424 } 5425 } 5426 5427 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 5428 /// default constructor. If so, we'll fold it whether or not it's marked as 5429 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 5430 /// so we need special handling. 5431 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 5432 const CXXConstructorDecl *CD, 5433 bool IsValueInitialization) { 5434 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 5435 return false; 5436 5437 // Value-initialization does not call a trivial default constructor, so such a 5438 // call is a core constant expression whether or not the constructor is 5439 // constexpr. 5440 if (!CD->isConstexpr() && !IsValueInitialization) { 5441 if (Info.getLangOpts().CPlusPlus11) { 5442 // FIXME: If DiagDecl is an implicitly-declared special member function, 5443 // we should be much more explicit about why it's not constexpr. 5444 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 5445 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 5446 Info.Note(CD->getLocation(), diag::note_declared_at); 5447 } else { 5448 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 5449 } 5450 } 5451 return true; 5452 } 5453 5454 /// CheckConstexprFunction - Check that a function can be called in a constant 5455 /// expression. 5456 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 5457 const FunctionDecl *Declaration, 5458 const FunctionDecl *Definition, 5459 const Stmt *Body) { 5460 // Potential constant expressions can contain calls to declared, but not yet 5461 // defined, constexpr functions. 5462 if (Info.checkingPotentialConstantExpression() && !Definition && 5463 Declaration->isConstexpr()) 5464 return false; 5465 5466 // Bail out if the function declaration itself is invalid. We will 5467 // have produced a relevant diagnostic while parsing it, so just 5468 // note the problematic sub-expression. 5469 if (Declaration->isInvalidDecl()) { 5470 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5471 return false; 5472 } 5473 5474 // DR1872: An instantiated virtual constexpr function can't be called in a 5475 // constant expression (prior to C++20). We can still constant-fold such a 5476 // call. 5477 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && 5478 cast<CXXMethodDecl>(Declaration)->isVirtual()) 5479 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 5480 5481 if (Definition && Definition->isInvalidDecl()) { 5482 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5483 return false; 5484 } 5485 5486 // Can we evaluate this function call? 5487 if (Definition && Definition->isConstexpr() && Body) 5488 return true; 5489 5490 if (Info.getLangOpts().CPlusPlus11) { 5491 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 5492 5493 // If this function is not constexpr because it is an inherited 5494 // non-constexpr constructor, diagnose that directly. 5495 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 5496 if (CD && CD->isInheritingConstructor()) { 5497 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 5498 if (!Inherited->isConstexpr()) 5499 DiagDecl = CD = Inherited; 5500 } 5501 5502 // FIXME: If DiagDecl is an implicitly-declared special member function 5503 // or an inheriting constructor, we should be much more explicit about why 5504 // it's not constexpr. 5505 if (CD && CD->isInheritingConstructor()) 5506 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 5507 << CD->getInheritedConstructor().getConstructor()->getParent(); 5508 else 5509 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 5510 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 5511 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 5512 } else { 5513 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5514 } 5515 return false; 5516 } 5517 5518 namespace { 5519 struct CheckDynamicTypeHandler { 5520 AccessKinds AccessKind; 5521 typedef bool result_type; 5522 bool failed() { return false; } 5523 bool found(APValue &Subobj, QualType SubobjType) { return true; } 5524 bool found(APSInt &Value, QualType SubobjType) { return true; } 5525 bool found(APFloat &Value, QualType SubobjType) { return true; } 5526 }; 5527 } // end anonymous namespace 5528 5529 /// Check that we can access the notional vptr of an object / determine its 5530 /// dynamic type. 5531 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 5532 AccessKinds AK, bool Polymorphic) { 5533 if (This.Designator.Invalid) 5534 return false; 5535 5536 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 5537 5538 if (!Obj) 5539 return false; 5540 5541 if (!Obj.Value) { 5542 // The object is not usable in constant expressions, so we can't inspect 5543 // its value to see if it's in-lifetime or what the active union members 5544 // are. We can still check for a one-past-the-end lvalue. 5545 if (This.Designator.isOnePastTheEnd() || 5546 This.Designator.isMostDerivedAnUnsizedArray()) { 5547 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 5548 ? diag::note_constexpr_access_past_end 5549 : diag::note_constexpr_access_unsized_array) 5550 << AK; 5551 return false; 5552 } else if (Polymorphic) { 5553 // Conservatively refuse to perform a polymorphic operation if we would 5554 // not be able to read a notional 'vptr' value. 5555 APValue Val; 5556 This.moveInto(Val); 5557 QualType StarThisType = 5558 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 5559 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 5560 << AK << Val.getAsString(Info.Ctx, StarThisType); 5561 return false; 5562 } 5563 return true; 5564 } 5565 5566 CheckDynamicTypeHandler Handler{AK}; 5567 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 5568 } 5569 5570 /// Check that the pointee of the 'this' pointer in a member function call is 5571 /// either within its lifetime or in its period of construction or destruction. 5572 static bool 5573 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 5574 const LValue &This, 5575 const CXXMethodDecl *NamedMember) { 5576 return checkDynamicType( 5577 Info, E, This, 5578 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 5579 } 5580 5581 struct DynamicType { 5582 /// The dynamic class type of the object. 5583 const CXXRecordDecl *Type; 5584 /// The corresponding path length in the lvalue. 5585 unsigned PathLength; 5586 }; 5587 5588 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 5589 unsigned PathLength) { 5590 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 5591 Designator.Entries.size() && "invalid path length"); 5592 return (PathLength == Designator.MostDerivedPathLength) 5593 ? Designator.MostDerivedType->getAsCXXRecordDecl() 5594 : getAsBaseClass(Designator.Entries[PathLength - 1]); 5595 } 5596 5597 /// Determine the dynamic type of an object. 5598 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E, 5599 LValue &This, AccessKinds AK) { 5600 // If we don't have an lvalue denoting an object of class type, there is no 5601 // meaningful dynamic type. (We consider objects of non-class type to have no 5602 // dynamic type.) 5603 if (!checkDynamicType(Info, E, This, AK, true)) 5604 return None; 5605 5606 // Refuse to compute a dynamic type in the presence of virtual bases. This 5607 // shouldn't happen other than in constant-folding situations, since literal 5608 // types can't have virtual bases. 5609 // 5610 // Note that consumers of DynamicType assume that the type has no virtual 5611 // bases, and will need modifications if this restriction is relaxed. 5612 const CXXRecordDecl *Class = 5613 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 5614 if (!Class || Class->getNumVBases()) { 5615 Info.FFDiag(E); 5616 return None; 5617 } 5618 5619 // FIXME: For very deep class hierarchies, it might be beneficial to use a 5620 // binary search here instead. But the overwhelmingly common case is that 5621 // we're not in the middle of a constructor, so it probably doesn't matter 5622 // in practice. 5623 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 5624 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 5625 PathLength <= Path.size(); ++PathLength) { 5626 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 5627 Path.slice(0, PathLength))) { 5628 case ConstructionPhase::Bases: 5629 case ConstructionPhase::DestroyingBases: 5630 // We're constructing or destroying a base class. This is not the dynamic 5631 // type. 5632 break; 5633 5634 case ConstructionPhase::None: 5635 case ConstructionPhase::AfterBases: 5636 case ConstructionPhase::AfterFields: 5637 case ConstructionPhase::Destroying: 5638 // We've finished constructing the base classes and not yet started 5639 // destroying them again, so this is the dynamic type. 5640 return DynamicType{getBaseClassType(This.Designator, PathLength), 5641 PathLength}; 5642 } 5643 } 5644 5645 // CWG issue 1517: we're constructing a base class of the object described by 5646 // 'This', so that object has not yet begun its period of construction and 5647 // any polymorphic operation on it results in undefined behavior. 5648 Info.FFDiag(E); 5649 return None; 5650 } 5651 5652 /// Perform virtual dispatch. 5653 static const CXXMethodDecl *HandleVirtualDispatch( 5654 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 5655 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 5656 Optional<DynamicType> DynType = ComputeDynamicType( 5657 Info, E, This, 5658 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 5659 if (!DynType) 5660 return nullptr; 5661 5662 // Find the final overrider. It must be declared in one of the classes on the 5663 // path from the dynamic type to the static type. 5664 // FIXME: If we ever allow literal types to have virtual base classes, that 5665 // won't be true. 5666 const CXXMethodDecl *Callee = Found; 5667 unsigned PathLength = DynType->PathLength; 5668 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 5669 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 5670 const CXXMethodDecl *Overrider = 5671 Found->getCorrespondingMethodDeclaredInClass(Class, false); 5672 if (Overrider) { 5673 Callee = Overrider; 5674 break; 5675 } 5676 } 5677 5678 // C++2a [class.abstract]p6: 5679 // the effect of making a virtual call to a pure virtual function [...] is 5680 // undefined 5681 if (Callee->isPure()) { 5682 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 5683 Info.Note(Callee->getLocation(), diag::note_declared_at); 5684 return nullptr; 5685 } 5686 5687 // If necessary, walk the rest of the path to determine the sequence of 5688 // covariant adjustment steps to apply. 5689 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 5690 Found->getReturnType())) { 5691 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 5692 for (unsigned CovariantPathLength = PathLength + 1; 5693 CovariantPathLength != This.Designator.Entries.size(); 5694 ++CovariantPathLength) { 5695 const CXXRecordDecl *NextClass = 5696 getBaseClassType(This.Designator, CovariantPathLength); 5697 const CXXMethodDecl *Next = 5698 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 5699 if (Next && !Info.Ctx.hasSameUnqualifiedType( 5700 Next->getReturnType(), CovariantAdjustmentPath.back())) 5701 CovariantAdjustmentPath.push_back(Next->getReturnType()); 5702 } 5703 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 5704 CovariantAdjustmentPath.back())) 5705 CovariantAdjustmentPath.push_back(Found->getReturnType()); 5706 } 5707 5708 // Perform 'this' adjustment. 5709 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 5710 return nullptr; 5711 5712 return Callee; 5713 } 5714 5715 /// Perform the adjustment from a value returned by a virtual function to 5716 /// a value of the statically expected type, which may be a pointer or 5717 /// reference to a base class of the returned type. 5718 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 5719 APValue &Result, 5720 ArrayRef<QualType> Path) { 5721 assert(Result.isLValue() && 5722 "unexpected kind of APValue for covariant return"); 5723 if (Result.isNullPointer()) 5724 return true; 5725 5726 LValue LVal; 5727 LVal.setFrom(Info.Ctx, Result); 5728 5729 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 5730 for (unsigned I = 1; I != Path.size(); ++I) { 5731 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 5732 assert(OldClass && NewClass && "unexpected kind of covariant return"); 5733 if (OldClass != NewClass && 5734 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 5735 return false; 5736 OldClass = NewClass; 5737 } 5738 5739 LVal.moveInto(Result); 5740 return true; 5741 } 5742 5743 /// Determine whether \p Base, which is known to be a direct base class of 5744 /// \p Derived, is a public base class. 5745 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 5746 const CXXRecordDecl *Base) { 5747 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 5748 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 5749 if (BaseClass && declaresSameEntity(BaseClass, Base)) 5750 return BaseSpec.getAccessSpecifier() == AS_public; 5751 } 5752 llvm_unreachable("Base is not a direct base of Derived"); 5753 } 5754 5755 /// Apply the given dynamic cast operation on the provided lvalue. 5756 /// 5757 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 5758 /// to find a suitable target subobject. 5759 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 5760 LValue &Ptr) { 5761 // We can't do anything with a non-symbolic pointer value. 5762 SubobjectDesignator &D = Ptr.Designator; 5763 if (D.Invalid) 5764 return false; 5765 5766 // C++ [expr.dynamic.cast]p6: 5767 // If v is a null pointer value, the result is a null pointer value. 5768 if (Ptr.isNullPointer() && !E->isGLValue()) 5769 return true; 5770 5771 // For all the other cases, we need the pointer to point to an object within 5772 // its lifetime / period of construction / destruction, and we need to know 5773 // its dynamic type. 5774 Optional<DynamicType> DynType = 5775 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 5776 if (!DynType) 5777 return false; 5778 5779 // C++ [expr.dynamic.cast]p7: 5780 // If T is "pointer to cv void", then the result is a pointer to the most 5781 // derived object 5782 if (E->getType()->isVoidPointerType()) 5783 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 5784 5785 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 5786 assert(C && "dynamic_cast target is not void pointer nor class"); 5787 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 5788 5789 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 5790 // C++ [expr.dynamic.cast]p9: 5791 if (!E->isGLValue()) { 5792 // The value of a failed cast to pointer type is the null pointer value 5793 // of the required result type. 5794 Ptr.setNull(Info.Ctx, E->getType()); 5795 return true; 5796 } 5797 5798 // A failed cast to reference type throws [...] std::bad_cast. 5799 unsigned DiagKind; 5800 if (!Paths && (declaresSameEntity(DynType->Type, C) || 5801 DynType->Type->isDerivedFrom(C))) 5802 DiagKind = 0; 5803 else if (!Paths || Paths->begin() == Paths->end()) 5804 DiagKind = 1; 5805 else if (Paths->isAmbiguous(CQT)) 5806 DiagKind = 2; 5807 else { 5808 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 5809 DiagKind = 3; 5810 } 5811 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 5812 << DiagKind << Ptr.Designator.getType(Info.Ctx) 5813 << Info.Ctx.getRecordType(DynType->Type) 5814 << E->getType().getUnqualifiedType(); 5815 return false; 5816 }; 5817 5818 // Runtime check, phase 1: 5819 // Walk from the base subobject towards the derived object looking for the 5820 // target type. 5821 for (int PathLength = Ptr.Designator.Entries.size(); 5822 PathLength >= (int)DynType->PathLength; --PathLength) { 5823 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 5824 if (declaresSameEntity(Class, C)) 5825 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 5826 // We can only walk across public inheritance edges. 5827 if (PathLength > (int)DynType->PathLength && 5828 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 5829 Class)) 5830 return RuntimeCheckFailed(nullptr); 5831 } 5832 5833 // Runtime check, phase 2: 5834 // Search the dynamic type for an unambiguous public base of type C. 5835 CXXBasePaths Paths(/*FindAmbiguities=*/true, 5836 /*RecordPaths=*/true, /*DetectVirtual=*/false); 5837 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 5838 Paths.front().Access == AS_public) { 5839 // Downcast to the dynamic type... 5840 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 5841 return false; 5842 // ... then upcast to the chosen base class subobject. 5843 for (CXXBasePathElement &Elem : Paths.front()) 5844 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 5845 return false; 5846 return true; 5847 } 5848 5849 // Otherwise, the runtime check fails. 5850 return RuntimeCheckFailed(&Paths); 5851 } 5852 5853 namespace { 5854 struct StartLifetimeOfUnionMemberHandler { 5855 EvalInfo &Info; 5856 const Expr *LHSExpr; 5857 const FieldDecl *Field; 5858 bool DuringInit; 5859 bool Failed = false; 5860 static const AccessKinds AccessKind = AK_Assign; 5861 5862 typedef bool result_type; 5863 bool failed() { return Failed; } 5864 bool found(APValue &Subobj, QualType SubobjType) { 5865 // We are supposed to perform no initialization but begin the lifetime of 5866 // the object. We interpret that as meaning to do what default 5867 // initialization of the object would do if all constructors involved were 5868 // trivial: 5869 // * All base, non-variant member, and array element subobjects' lifetimes 5870 // begin 5871 // * No variant members' lifetimes begin 5872 // * All scalar subobjects whose lifetimes begin have indeterminate values 5873 assert(SubobjType->isUnionType()); 5874 if (declaresSameEntity(Subobj.getUnionField(), Field)) { 5875 // This union member is already active. If it's also in-lifetime, there's 5876 // nothing to do. 5877 if (Subobj.getUnionValue().hasValue()) 5878 return true; 5879 } else if (DuringInit) { 5880 // We're currently in the process of initializing a different union 5881 // member. If we carried on, that initialization would attempt to 5882 // store to an inactive union member, resulting in undefined behavior. 5883 Info.FFDiag(LHSExpr, 5884 diag::note_constexpr_union_member_change_during_init); 5885 return false; 5886 } 5887 APValue Result; 5888 Failed = !getDefaultInitValue(Field->getType(), Result); 5889 Subobj.setUnion(Field, Result); 5890 return true; 5891 } 5892 bool found(APSInt &Value, QualType SubobjType) { 5893 llvm_unreachable("wrong value kind for union object"); 5894 } 5895 bool found(APFloat &Value, QualType SubobjType) { 5896 llvm_unreachable("wrong value kind for union object"); 5897 } 5898 }; 5899 } // end anonymous namespace 5900 5901 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 5902 5903 /// Handle a builtin simple-assignment or a call to a trivial assignment 5904 /// operator whose left-hand side might involve a union member access. If it 5905 /// does, implicitly start the lifetime of any accessed union elements per 5906 /// C++20 [class.union]5. 5907 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr, 5908 const LValue &LHS) { 5909 if (LHS.InvalidBase || LHS.Designator.Invalid) 5910 return false; 5911 5912 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 5913 // C++ [class.union]p5: 5914 // define the set S(E) of subexpressions of E as follows: 5915 unsigned PathLength = LHS.Designator.Entries.size(); 5916 for (const Expr *E = LHSExpr; E != nullptr;) { 5917 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 5918 if (auto *ME = dyn_cast<MemberExpr>(E)) { 5919 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 5920 // Note that we can't implicitly start the lifetime of a reference, 5921 // so we don't need to proceed any further if we reach one. 5922 if (!FD || FD->getType()->isReferenceType()) 5923 break; 5924 5925 // ... and also contains A.B if B names a union member ... 5926 if (FD->getParent()->isUnion()) { 5927 // ... of a non-class, non-array type, or of a class type with a 5928 // trivial default constructor that is not deleted, or an array of 5929 // such types. 5930 auto *RD = 5931 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 5932 if (!RD || RD->hasTrivialDefaultConstructor()) 5933 UnionPathLengths.push_back({PathLength - 1, FD}); 5934 } 5935 5936 E = ME->getBase(); 5937 --PathLength; 5938 assert(declaresSameEntity(FD, 5939 LHS.Designator.Entries[PathLength] 5940 .getAsBaseOrMember().getPointer())); 5941 5942 // -- If E is of the form A[B] and is interpreted as a built-in array 5943 // subscripting operator, S(E) is [S(the array operand, if any)]. 5944 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 5945 // Step over an ArrayToPointerDecay implicit cast. 5946 auto *Base = ASE->getBase()->IgnoreImplicit(); 5947 if (!Base->getType()->isArrayType()) 5948 break; 5949 5950 E = Base; 5951 --PathLength; 5952 5953 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5954 // Step over a derived-to-base conversion. 5955 E = ICE->getSubExpr(); 5956 if (ICE->getCastKind() == CK_NoOp) 5957 continue; 5958 if (ICE->getCastKind() != CK_DerivedToBase && 5959 ICE->getCastKind() != CK_UncheckedDerivedToBase) 5960 break; 5961 // Walk path backwards as we walk up from the base to the derived class. 5962 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 5963 --PathLength; 5964 (void)Elt; 5965 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 5966 LHS.Designator.Entries[PathLength] 5967 .getAsBaseOrMember().getPointer())); 5968 } 5969 5970 // -- Otherwise, S(E) is empty. 5971 } else { 5972 break; 5973 } 5974 } 5975 5976 // Common case: no unions' lifetimes are started. 5977 if (UnionPathLengths.empty()) 5978 return true; 5979 5980 // if modification of X [would access an inactive union member], an object 5981 // of the type of X is implicitly created 5982 CompleteObject Obj = 5983 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 5984 if (!Obj) 5985 return false; 5986 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 5987 llvm::reverse(UnionPathLengths)) { 5988 // Form a designator for the union object. 5989 SubobjectDesignator D = LHS.Designator; 5990 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 5991 5992 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == 5993 ConstructionPhase::AfterBases; 5994 StartLifetimeOfUnionMemberHandler StartLifetime{ 5995 Info, LHSExpr, LengthAndField.second, DuringInit}; 5996 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 5997 return false; 5998 } 5999 6000 return true; 6001 } 6002 6003 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, 6004 CallRef Call, EvalInfo &Info, 6005 bool NonNull = false) { 6006 LValue LV; 6007 // Create the parameter slot and register its destruction. For a vararg 6008 // argument, create a temporary. 6009 // FIXME: For calling conventions that destroy parameters in the callee, 6010 // should we consider performing destruction when the function returns 6011 // instead? 6012 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) 6013 : Info.CurrentCall->createTemporary(Arg, Arg->getType(), 6014 ScopeKind::Call, LV); 6015 if (!EvaluateInPlace(V, Info, LV, Arg)) 6016 return false; 6017 6018 // Passing a null pointer to an __attribute__((nonnull)) parameter results in 6019 // undefined behavior, so is non-constant. 6020 if (NonNull && V.isLValue() && V.isNullPointer()) { 6021 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); 6022 return false; 6023 } 6024 6025 return true; 6026 } 6027 6028 /// Evaluate the arguments to a function call. 6029 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, 6030 EvalInfo &Info, const FunctionDecl *Callee, 6031 bool RightToLeft = false) { 6032 bool Success = true; 6033 llvm::SmallBitVector ForbiddenNullArgs; 6034 if (Callee->hasAttr<NonNullAttr>()) { 6035 ForbiddenNullArgs.resize(Args.size()); 6036 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 6037 if (!Attr->args_size()) { 6038 ForbiddenNullArgs.set(); 6039 break; 6040 } else 6041 for (auto Idx : Attr->args()) { 6042 unsigned ASTIdx = Idx.getASTIndex(); 6043 if (ASTIdx >= Args.size()) 6044 continue; 6045 ForbiddenNullArgs[ASTIdx] = true; 6046 } 6047 } 6048 } 6049 for (unsigned I = 0; I < Args.size(); I++) { 6050 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; 6051 const ParmVarDecl *PVD = 6052 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; 6053 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; 6054 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { 6055 // If we're checking for a potential constant expression, evaluate all 6056 // initializers even if some of them fail. 6057 if (!Info.noteFailure()) 6058 return false; 6059 Success = false; 6060 } 6061 } 6062 return Success; 6063 } 6064 6065 /// Perform a trivial copy from Param, which is the parameter of a copy or move 6066 /// constructor or assignment operator. 6067 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, 6068 const Expr *E, APValue &Result, 6069 bool CopyObjectRepresentation) { 6070 // Find the reference argument. 6071 CallStackFrame *Frame = Info.CurrentCall; 6072 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); 6073 if (!RefValue) { 6074 Info.FFDiag(E); 6075 return false; 6076 } 6077 6078 // Copy out the contents of the RHS object. 6079 LValue RefLValue; 6080 RefLValue.setFrom(Info.Ctx, *RefValue); 6081 return handleLValueToRValueConversion( 6082 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, 6083 CopyObjectRepresentation); 6084 } 6085 6086 /// Evaluate a function call. 6087 static bool HandleFunctionCall(SourceLocation CallLoc, 6088 const FunctionDecl *Callee, const LValue *This, 6089 ArrayRef<const Expr *> Args, CallRef Call, 6090 const Stmt *Body, EvalInfo &Info, 6091 APValue &Result, const LValue *ResultSlot) { 6092 if (!Info.CheckCallLimit(CallLoc)) 6093 return false; 6094 6095 CallStackFrame Frame(Info, CallLoc, Callee, This, Call); 6096 6097 // For a trivial copy or move assignment, perform an APValue copy. This is 6098 // essential for unions, where the operations performed by the assignment 6099 // operator cannot be represented as statements. 6100 // 6101 // Skip this for non-union classes with no fields; in that case, the defaulted 6102 // copy/move does not actually read the object. 6103 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 6104 if (MD && MD->isDefaulted() && 6105 (MD->getParent()->isUnion() || 6106 (MD->isTrivial() && 6107 isReadByLvalueToRvalueConversion(MD->getParent())))) { 6108 assert(This && 6109 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 6110 APValue RHSValue; 6111 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, 6112 MD->getParent()->isUnion())) 6113 return false; 6114 if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() && 6115 !HandleUnionActiveMemberChange(Info, Args[0], *This)) 6116 return false; 6117 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 6118 RHSValue)) 6119 return false; 6120 This->moveInto(Result); 6121 return true; 6122 } else if (MD && isLambdaCallOperator(MD)) { 6123 // We're in a lambda; determine the lambda capture field maps unless we're 6124 // just constexpr checking a lambda's call operator. constexpr checking is 6125 // done before the captures have been added to the closure object (unless 6126 // we're inferring constexpr-ness), so we don't have access to them in this 6127 // case. But since we don't need the captures to constexpr check, we can 6128 // just ignore them. 6129 if (!Info.checkingPotentialConstantExpression()) 6130 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 6131 Frame.LambdaThisCaptureField); 6132 } 6133 6134 StmtResult Ret = {Result, ResultSlot}; 6135 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 6136 if (ESR == ESR_Succeeded) { 6137 if (Callee->getReturnType()->isVoidType()) 6138 return true; 6139 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 6140 } 6141 return ESR == ESR_Returned; 6142 } 6143 6144 /// Evaluate a constructor call. 6145 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6146 CallRef Call, 6147 const CXXConstructorDecl *Definition, 6148 EvalInfo &Info, APValue &Result) { 6149 SourceLocation CallLoc = E->getExprLoc(); 6150 if (!Info.CheckCallLimit(CallLoc)) 6151 return false; 6152 6153 const CXXRecordDecl *RD = Definition->getParent(); 6154 if (RD->getNumVBases()) { 6155 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6156 return false; 6157 } 6158 6159 EvalInfo::EvaluatingConstructorRAII EvalObj( 6160 Info, 6161 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 6162 RD->getNumBases()); 6163 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call); 6164 6165 // FIXME: Creating an APValue just to hold a nonexistent return value is 6166 // wasteful. 6167 APValue RetVal; 6168 StmtResult Ret = {RetVal, nullptr}; 6169 6170 // If it's a delegating constructor, delegate. 6171 if (Definition->isDelegatingConstructor()) { 6172 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 6173 if ((*I)->getInit()->isValueDependent()) { 6174 if (!EvaluateDependentExpr((*I)->getInit(), Info)) 6175 return false; 6176 } else { 6177 FullExpressionRAII InitScope(Info); 6178 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 6179 !InitScope.destroy()) 6180 return false; 6181 } 6182 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 6183 } 6184 6185 // For a trivial copy or move constructor, perform an APValue copy. This is 6186 // essential for unions (or classes with anonymous union members), where the 6187 // operations performed by the constructor cannot be represented by 6188 // ctor-initializers. 6189 // 6190 // Skip this for empty non-union classes; we should not perform an 6191 // lvalue-to-rvalue conversion on them because their copy constructor does not 6192 // actually read them. 6193 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 6194 (Definition->getParent()->isUnion() || 6195 (Definition->isTrivial() && 6196 isReadByLvalueToRvalueConversion(Definition->getParent())))) { 6197 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, 6198 Definition->getParent()->isUnion()); 6199 } 6200 6201 // Reserve space for the struct members. 6202 if (!Result.hasValue()) { 6203 if (!RD->isUnion()) 6204 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 6205 std::distance(RD->field_begin(), RD->field_end())); 6206 else 6207 // A union starts with no active member. 6208 Result = APValue((const FieldDecl*)nullptr); 6209 } 6210 6211 if (RD->isInvalidDecl()) return false; 6212 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6213 6214 // A scope for temporaries lifetime-extended by reference members. 6215 BlockScopeRAII LifetimeExtendedScope(Info); 6216 6217 bool Success = true; 6218 unsigned BasesSeen = 0; 6219 #ifndef NDEBUG 6220 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 6221 #endif 6222 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 6223 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 6224 // We might be initializing the same field again if this is an indirect 6225 // field initialization. 6226 if (FieldIt == RD->field_end() || 6227 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 6228 assert(Indirect && "fields out of order?"); 6229 return; 6230 } 6231 6232 // Default-initialize any fields with no explicit initializer. 6233 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 6234 assert(FieldIt != RD->field_end() && "missing field?"); 6235 if (!FieldIt->isUnnamedBitfield()) 6236 Success &= getDefaultInitValue( 6237 FieldIt->getType(), 6238 Result.getStructField(FieldIt->getFieldIndex())); 6239 } 6240 ++FieldIt; 6241 }; 6242 for (const auto *I : Definition->inits()) { 6243 LValue Subobject = This; 6244 LValue SubobjectParent = This; 6245 APValue *Value = &Result; 6246 6247 // Determine the subobject to initialize. 6248 FieldDecl *FD = nullptr; 6249 if (I->isBaseInitializer()) { 6250 QualType BaseType(I->getBaseClass(), 0); 6251 #ifndef NDEBUG 6252 // Non-virtual base classes are initialized in the order in the class 6253 // definition. We have already checked for virtual base classes. 6254 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 6255 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && 6256 "base class initializers not in expected order"); 6257 ++BaseIt; 6258 #endif 6259 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 6260 BaseType->getAsCXXRecordDecl(), &Layout)) 6261 return false; 6262 Value = &Result.getStructBase(BasesSeen++); 6263 } else if ((FD = I->getMember())) { 6264 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 6265 return false; 6266 if (RD->isUnion()) { 6267 Result = APValue(FD); 6268 Value = &Result.getUnionValue(); 6269 } else { 6270 SkipToField(FD, false); 6271 Value = &Result.getStructField(FD->getFieldIndex()); 6272 } 6273 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 6274 // Walk the indirect field decl's chain to find the object to initialize, 6275 // and make sure we've initialized every step along it. 6276 auto IndirectFieldChain = IFD->chain(); 6277 for (auto *C : IndirectFieldChain) { 6278 FD = cast<FieldDecl>(C); 6279 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 6280 // Switch the union field if it differs. This happens if we had 6281 // preceding zero-initialization, and we're now initializing a union 6282 // subobject other than the first. 6283 // FIXME: In this case, the values of the other subobjects are 6284 // specified, since zero-initialization sets all padding bits to zero. 6285 if (!Value->hasValue() || 6286 (Value->isUnion() && Value->getUnionField() != FD)) { 6287 if (CD->isUnion()) 6288 *Value = APValue(FD); 6289 else 6290 // FIXME: This immediately starts the lifetime of all members of 6291 // an anonymous struct. It would be preferable to strictly start 6292 // member lifetime in initialization order. 6293 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); 6294 } 6295 // Store Subobject as its parent before updating it for the last element 6296 // in the chain. 6297 if (C == IndirectFieldChain.back()) 6298 SubobjectParent = Subobject; 6299 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 6300 return false; 6301 if (CD->isUnion()) 6302 Value = &Value->getUnionValue(); 6303 else { 6304 if (C == IndirectFieldChain.front() && !RD->isUnion()) 6305 SkipToField(FD, true); 6306 Value = &Value->getStructField(FD->getFieldIndex()); 6307 } 6308 } 6309 } else { 6310 llvm_unreachable("unknown base initializer kind"); 6311 } 6312 6313 // Need to override This for implicit field initializers as in this case 6314 // This refers to innermost anonymous struct/union containing initializer, 6315 // not to currently constructed class. 6316 const Expr *Init = I->getInit(); 6317 if (Init->isValueDependent()) { 6318 if (!EvaluateDependentExpr(Init, Info)) 6319 return false; 6320 } else { 6321 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 6322 isa<CXXDefaultInitExpr>(Init)); 6323 FullExpressionRAII InitScope(Info); 6324 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 6325 (FD && FD->isBitField() && 6326 !truncateBitfieldValue(Info, Init, *Value, FD))) { 6327 // If we're checking for a potential constant expression, evaluate all 6328 // initializers even if some of them fail. 6329 if (!Info.noteFailure()) 6330 return false; 6331 Success = false; 6332 } 6333 } 6334 6335 // This is the point at which the dynamic type of the object becomes this 6336 // class type. 6337 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 6338 EvalObj.finishedConstructingBases(); 6339 } 6340 6341 // Default-initialize any remaining fields. 6342 if (!RD->isUnion()) { 6343 for (; FieldIt != RD->field_end(); ++FieldIt) { 6344 if (!FieldIt->isUnnamedBitfield()) 6345 Success &= getDefaultInitValue( 6346 FieldIt->getType(), 6347 Result.getStructField(FieldIt->getFieldIndex())); 6348 } 6349 } 6350 6351 EvalObj.finishedConstructingFields(); 6352 6353 return Success && 6354 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 6355 LifetimeExtendedScope.destroy(); 6356 } 6357 6358 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6359 ArrayRef<const Expr*> Args, 6360 const CXXConstructorDecl *Definition, 6361 EvalInfo &Info, APValue &Result) { 6362 CallScopeRAII CallScope(Info); 6363 CallRef Call = Info.CurrentCall->createCall(Definition); 6364 if (!EvaluateArgs(Args, Call, Info, Definition)) 6365 return false; 6366 6367 return HandleConstructorCall(E, This, Call, Definition, Info, Result) && 6368 CallScope.destroy(); 6369 } 6370 6371 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc, 6372 const LValue &This, APValue &Value, 6373 QualType T) { 6374 // Objects can only be destroyed while they're within their lifetimes. 6375 // FIXME: We have no representation for whether an object of type nullptr_t 6376 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 6377 // as indeterminate instead? 6378 if (Value.isAbsent() && !T->isNullPtrType()) { 6379 APValue Printable; 6380 This.moveInto(Printable); 6381 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime) 6382 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 6383 return false; 6384 } 6385 6386 // Invent an expression for location purposes. 6387 // FIXME: We shouldn't need to do this. 6388 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue); 6389 6390 // For arrays, destroy elements right-to-left. 6391 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 6392 uint64_t Size = CAT->getSize().getZExtValue(); 6393 QualType ElemT = CAT->getElementType(); 6394 6395 LValue ElemLV = This; 6396 ElemLV.addArray(Info, &LocE, CAT); 6397 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 6398 return false; 6399 6400 // Ensure that we have actual array elements available to destroy; the 6401 // destructors might mutate the value, so we can't run them on the array 6402 // filler. 6403 if (Size && Size > Value.getArrayInitializedElts()) 6404 expandArray(Value, Value.getArraySize() - 1); 6405 6406 for (; Size != 0; --Size) { 6407 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 6408 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 6409 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT)) 6410 return false; 6411 } 6412 6413 // End the lifetime of this array now. 6414 Value = APValue(); 6415 return true; 6416 } 6417 6418 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6419 if (!RD) { 6420 if (T.isDestructedType()) { 6421 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T; 6422 return false; 6423 } 6424 6425 Value = APValue(); 6426 return true; 6427 } 6428 6429 if (RD->getNumVBases()) { 6430 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6431 return false; 6432 } 6433 6434 const CXXDestructorDecl *DD = RD->getDestructor(); 6435 if (!DD && !RD->hasTrivialDestructor()) { 6436 Info.FFDiag(CallLoc); 6437 return false; 6438 } 6439 6440 if (!DD || DD->isTrivial() || 6441 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 6442 // A trivial destructor just ends the lifetime of the object. Check for 6443 // this case before checking for a body, because we might not bother 6444 // building a body for a trivial destructor. Note that it doesn't matter 6445 // whether the destructor is constexpr in this case; all trivial 6446 // destructors are constexpr. 6447 // 6448 // If an anonymous union would be destroyed, some enclosing destructor must 6449 // have been explicitly defined, and the anonymous union destruction should 6450 // have no effect. 6451 Value = APValue(); 6452 return true; 6453 } 6454 6455 if (!Info.CheckCallLimit(CallLoc)) 6456 return false; 6457 6458 const FunctionDecl *Definition = nullptr; 6459 const Stmt *Body = DD->getBody(Definition); 6460 6461 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body)) 6462 return false; 6463 6464 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef()); 6465 6466 // We're now in the period of destruction of this object. 6467 unsigned BasesLeft = RD->getNumBases(); 6468 EvalInfo::EvaluatingDestructorRAII EvalObj( 6469 Info, 6470 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 6471 if (!EvalObj.DidInsert) { 6472 // C++2a [class.dtor]p19: 6473 // the behavior is undefined if the destructor is invoked for an object 6474 // whose lifetime has ended 6475 // (Note that formally the lifetime ends when the period of destruction 6476 // begins, even though certain uses of the object remain valid until the 6477 // period of destruction ends.) 6478 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy); 6479 return false; 6480 } 6481 6482 // FIXME: Creating an APValue just to hold a nonexistent return value is 6483 // wasteful. 6484 APValue RetVal; 6485 StmtResult Ret = {RetVal, nullptr}; 6486 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 6487 return false; 6488 6489 // A union destructor does not implicitly destroy its members. 6490 if (RD->isUnion()) 6491 return true; 6492 6493 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6494 6495 // We don't have a good way to iterate fields in reverse, so collect all the 6496 // fields first and then walk them backwards. 6497 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end()); 6498 for (const FieldDecl *FD : llvm::reverse(Fields)) { 6499 if (FD->isUnnamedBitfield()) 6500 continue; 6501 6502 LValue Subobject = This; 6503 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 6504 return false; 6505 6506 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 6507 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6508 FD->getType())) 6509 return false; 6510 } 6511 6512 if (BasesLeft != 0) 6513 EvalObj.startedDestroyingBases(); 6514 6515 // Destroy base classes in reverse order. 6516 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 6517 --BasesLeft; 6518 6519 QualType BaseType = Base.getType(); 6520 LValue Subobject = This; 6521 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 6522 BaseType->getAsCXXRecordDecl(), &Layout)) 6523 return false; 6524 6525 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 6526 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, 6527 BaseType)) 6528 return false; 6529 } 6530 assert(BasesLeft == 0 && "NumBases was wrong?"); 6531 6532 // The period of destruction ends now. The object is gone. 6533 Value = APValue(); 6534 return true; 6535 } 6536 6537 namespace { 6538 struct DestroyObjectHandler { 6539 EvalInfo &Info; 6540 const Expr *E; 6541 const LValue &This; 6542 const AccessKinds AccessKind; 6543 6544 typedef bool result_type; 6545 bool failed() { return false; } 6546 bool found(APValue &Subobj, QualType SubobjType) { 6547 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj, 6548 SubobjType); 6549 } 6550 bool found(APSInt &Value, QualType SubobjType) { 6551 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6552 return false; 6553 } 6554 bool found(APFloat &Value, QualType SubobjType) { 6555 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 6556 return false; 6557 } 6558 }; 6559 } 6560 6561 /// Perform a destructor or pseudo-destructor call on the given object, which 6562 /// might in general not be a complete object. 6563 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 6564 const LValue &This, QualType ThisType) { 6565 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 6566 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 6567 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 6568 } 6569 6570 /// Destroy and end the lifetime of the given complete object. 6571 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 6572 APValue::LValueBase LVBase, APValue &Value, 6573 QualType T) { 6574 // If we've had an unmodeled side-effect, we can't rely on mutable state 6575 // (such as the object we're about to destroy) being correct. 6576 if (Info.EvalStatus.HasSideEffects) 6577 return false; 6578 6579 LValue LV; 6580 LV.set({LVBase}); 6581 return HandleDestructionImpl(Info, Loc, LV, Value, T); 6582 } 6583 6584 /// Perform a call to 'perator new' or to `__builtin_operator_new'. 6585 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 6586 LValue &Result) { 6587 if (Info.checkingPotentialConstantExpression() || 6588 Info.SpeculativeEvaluationDepth) 6589 return false; 6590 6591 // This is permitted only within a call to std::allocator<T>::allocate. 6592 auto Caller = Info.getStdAllocatorCaller("allocate"); 6593 if (!Caller) { 6594 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 6595 ? diag::note_constexpr_new_untyped 6596 : diag::note_constexpr_new); 6597 return false; 6598 } 6599 6600 QualType ElemType = Caller.ElemType; 6601 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 6602 Info.FFDiag(E->getExprLoc(), 6603 diag::note_constexpr_new_not_complete_object_type) 6604 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 6605 return false; 6606 } 6607 6608 APSInt ByteSize; 6609 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 6610 return false; 6611 bool IsNothrow = false; 6612 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 6613 EvaluateIgnoredValue(Info, E->getArg(I)); 6614 IsNothrow |= E->getType()->isNothrowT(); 6615 } 6616 6617 CharUnits ElemSize; 6618 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 6619 return false; 6620 APInt Size, Remainder; 6621 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 6622 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 6623 if (Remainder != 0) { 6624 // This likely indicates a bug in the implementation of 'std::allocator'. 6625 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 6626 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 6627 return false; 6628 } 6629 6630 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 6631 if (IsNothrow) { 6632 Result.setNull(Info.Ctx, E->getType()); 6633 return true; 6634 } 6635 6636 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true); 6637 return false; 6638 } 6639 6640 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr, 6641 ArrayType::Normal, 0); 6642 APValue *Val = Info.createHeapAlloc(E, AllocType, Result); 6643 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 6644 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 6645 return true; 6646 } 6647 6648 static bool hasVirtualDestructor(QualType T) { 6649 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6650 if (CXXDestructorDecl *DD = RD->getDestructor()) 6651 return DD->isVirtual(); 6652 return false; 6653 } 6654 6655 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 6656 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 6657 if (CXXDestructorDecl *DD = RD->getDestructor()) 6658 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 6659 return nullptr; 6660 } 6661 6662 /// Check that the given object is a suitable pointer to a heap allocation that 6663 /// still exists and is of the right kind for the purpose of a deletion. 6664 /// 6665 /// On success, returns the heap allocation to deallocate. On failure, produces 6666 /// a diagnostic and returns None. 6667 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 6668 const LValue &Pointer, 6669 DynAlloc::Kind DeallocKind) { 6670 auto PointerAsString = [&] { 6671 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 6672 }; 6673 6674 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 6675 if (!DA) { 6676 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 6677 << PointerAsString(); 6678 if (Pointer.Base) 6679 NoteLValueLocation(Info, Pointer.Base); 6680 return None; 6681 } 6682 6683 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 6684 if (!Alloc) { 6685 Info.FFDiag(E, diag::note_constexpr_double_delete); 6686 return None; 6687 } 6688 6689 QualType AllocType = Pointer.Base.getDynamicAllocType(); 6690 if (DeallocKind != (*Alloc)->getKind()) { 6691 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 6692 << DeallocKind << (*Alloc)->getKind() << AllocType; 6693 NoteLValueLocation(Info, Pointer.Base); 6694 return None; 6695 } 6696 6697 bool Subobject = false; 6698 if (DeallocKind == DynAlloc::New) { 6699 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 6700 Pointer.Designator.isOnePastTheEnd(); 6701 } else { 6702 Subobject = Pointer.Designator.Entries.size() != 1 || 6703 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 6704 } 6705 if (Subobject) { 6706 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 6707 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 6708 return None; 6709 } 6710 6711 return Alloc; 6712 } 6713 6714 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 6715 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 6716 if (Info.checkingPotentialConstantExpression() || 6717 Info.SpeculativeEvaluationDepth) 6718 return false; 6719 6720 // This is permitted only within a call to std::allocator<T>::deallocate. 6721 if (!Info.getStdAllocatorCaller("deallocate")) { 6722 Info.FFDiag(E->getExprLoc()); 6723 return true; 6724 } 6725 6726 LValue Pointer; 6727 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 6728 return false; 6729 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 6730 EvaluateIgnoredValue(Info, E->getArg(I)); 6731 6732 if (Pointer.Designator.Invalid) 6733 return false; 6734 6735 // Deleting a null pointer would have no effect, but it's not permitted by 6736 // std::allocator<T>::deallocate's contract. 6737 if (Pointer.isNullPointer()) { 6738 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); 6739 return true; 6740 } 6741 6742 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 6743 return false; 6744 6745 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 6746 return true; 6747 } 6748 6749 //===----------------------------------------------------------------------===// 6750 // Generic Evaluation 6751 //===----------------------------------------------------------------------===// 6752 namespace { 6753 6754 class BitCastBuffer { 6755 // FIXME: We're going to need bit-level granularity when we support 6756 // bit-fields. 6757 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 6758 // we don't support a host or target where that is the case. Still, we should 6759 // use a more generic type in case we ever do. 6760 SmallVector<Optional<unsigned char>, 32> Bytes; 6761 6762 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 6763 "Need at least 8 bit unsigned char"); 6764 6765 bool TargetIsLittleEndian; 6766 6767 public: 6768 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 6769 : Bytes(Width.getQuantity()), 6770 TargetIsLittleEndian(TargetIsLittleEndian) {} 6771 6772 LLVM_NODISCARD 6773 bool readObject(CharUnits Offset, CharUnits Width, 6774 SmallVectorImpl<unsigned char> &Output) const { 6775 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 6776 // If a byte of an integer is uninitialized, then the whole integer is 6777 // uninitialized. 6778 if (!Bytes[I.getQuantity()]) 6779 return false; 6780 Output.push_back(*Bytes[I.getQuantity()]); 6781 } 6782 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6783 std::reverse(Output.begin(), Output.end()); 6784 return true; 6785 } 6786 6787 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 6788 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 6789 std::reverse(Input.begin(), Input.end()); 6790 6791 size_t Index = 0; 6792 for (unsigned char Byte : Input) { 6793 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 6794 Bytes[Offset.getQuantity() + Index] = Byte; 6795 ++Index; 6796 } 6797 } 6798 6799 size_t size() { return Bytes.size(); } 6800 }; 6801 6802 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 6803 /// target would represent the value at runtime. 6804 class APValueToBufferConverter { 6805 EvalInfo &Info; 6806 BitCastBuffer Buffer; 6807 const CastExpr *BCE; 6808 6809 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 6810 const CastExpr *BCE) 6811 : Info(Info), 6812 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 6813 BCE(BCE) {} 6814 6815 bool visit(const APValue &Val, QualType Ty) { 6816 return visit(Val, Ty, CharUnits::fromQuantity(0)); 6817 } 6818 6819 // Write out Val with type Ty into Buffer starting at Offset. 6820 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 6821 assert((size_t)Offset.getQuantity() <= Buffer.size()); 6822 6823 // As a special case, nullptr_t has an indeterminate value. 6824 if (Ty->isNullPtrType()) 6825 return true; 6826 6827 // Dig through Src to find the byte at SrcOffset. 6828 switch (Val.getKind()) { 6829 case APValue::Indeterminate: 6830 case APValue::None: 6831 return true; 6832 6833 case APValue::Int: 6834 return visitInt(Val.getInt(), Ty, Offset); 6835 case APValue::Float: 6836 return visitFloat(Val.getFloat(), Ty, Offset); 6837 case APValue::Array: 6838 return visitArray(Val, Ty, Offset); 6839 case APValue::Struct: 6840 return visitRecord(Val, Ty, Offset); 6841 6842 case APValue::ComplexInt: 6843 case APValue::ComplexFloat: 6844 case APValue::Vector: 6845 case APValue::FixedPoint: 6846 // FIXME: We should support these. 6847 6848 case APValue::Union: 6849 case APValue::MemberPointer: 6850 case APValue::AddrLabelDiff: { 6851 Info.FFDiag(BCE->getBeginLoc(), 6852 diag::note_constexpr_bit_cast_unsupported_type) 6853 << Ty; 6854 return false; 6855 } 6856 6857 case APValue::LValue: 6858 llvm_unreachable("LValue subobject in bit_cast?"); 6859 } 6860 llvm_unreachable("Unhandled APValue::ValueKind"); 6861 } 6862 6863 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 6864 const RecordDecl *RD = Ty->getAsRecordDecl(); 6865 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6866 6867 // Visit the base classes. 6868 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 6869 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 6870 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 6871 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 6872 6873 if (!visitRecord(Val.getStructBase(I), BS.getType(), 6874 Layout.getBaseClassOffset(BaseDecl) + Offset)) 6875 return false; 6876 } 6877 } 6878 6879 // Visit the fields. 6880 unsigned FieldIdx = 0; 6881 for (FieldDecl *FD : RD->fields()) { 6882 if (FD->isBitField()) { 6883 Info.FFDiag(BCE->getBeginLoc(), 6884 diag::note_constexpr_bit_cast_unsupported_bitfield); 6885 return false; 6886 } 6887 6888 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 6889 6890 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 6891 "only bit-fields can have sub-char alignment"); 6892 CharUnits FieldOffset = 6893 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 6894 QualType FieldTy = FD->getType(); 6895 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 6896 return false; 6897 ++FieldIdx; 6898 } 6899 6900 return true; 6901 } 6902 6903 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 6904 const auto *CAT = 6905 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 6906 if (!CAT) 6907 return false; 6908 6909 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 6910 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 6911 unsigned ArraySize = Val.getArraySize(); 6912 // First, initialize the initialized elements. 6913 for (unsigned I = 0; I != NumInitializedElts; ++I) { 6914 const APValue &SubObj = Val.getArrayInitializedElt(I); 6915 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 6916 return false; 6917 } 6918 6919 // Next, initialize the rest of the array using the filler. 6920 if (Val.hasArrayFiller()) { 6921 const APValue &Filler = Val.getArrayFiller(); 6922 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 6923 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 6924 return false; 6925 } 6926 } 6927 6928 return true; 6929 } 6930 6931 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 6932 APSInt AdjustedVal = Val; 6933 unsigned Width = AdjustedVal.getBitWidth(); 6934 if (Ty->isBooleanType()) { 6935 Width = Info.Ctx.getTypeSize(Ty); 6936 AdjustedVal = AdjustedVal.extend(Width); 6937 } 6938 6939 SmallVector<unsigned char, 8> Bytes(Width / 8); 6940 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); 6941 Buffer.writeObject(Offset, Bytes); 6942 return true; 6943 } 6944 6945 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 6946 APSInt AsInt(Val.bitcastToAPInt()); 6947 return visitInt(AsInt, Ty, Offset); 6948 } 6949 6950 public: 6951 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src, 6952 const CastExpr *BCE) { 6953 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 6954 APValueToBufferConverter Converter(Info, DstSize, BCE); 6955 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 6956 return None; 6957 return Converter.Buffer; 6958 } 6959 }; 6960 6961 /// Write an BitCastBuffer into an APValue. 6962 class BufferToAPValueConverter { 6963 EvalInfo &Info; 6964 const BitCastBuffer &Buffer; 6965 const CastExpr *BCE; 6966 6967 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 6968 const CastExpr *BCE) 6969 : Info(Info), Buffer(Buffer), BCE(BCE) {} 6970 6971 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 6972 // with an invalid type, so anything left is a deficiency on our part (FIXME). 6973 // Ideally this will be unreachable. 6974 llvm::NoneType unsupportedType(QualType Ty) { 6975 Info.FFDiag(BCE->getBeginLoc(), 6976 diag::note_constexpr_bit_cast_unsupported_type) 6977 << Ty; 6978 return None; 6979 } 6980 6981 llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) { 6982 Info.FFDiag(BCE->getBeginLoc(), 6983 diag::note_constexpr_bit_cast_unrepresentable_value) 6984 << Ty << toString(Val, /*Radix=*/10); 6985 return None; 6986 } 6987 6988 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 6989 const EnumType *EnumSugar = nullptr) { 6990 if (T->isNullPtrType()) { 6991 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 6992 return APValue((Expr *)nullptr, 6993 /*Offset=*/CharUnits::fromQuantity(NullValue), 6994 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 6995 } 6996 6997 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 6998 6999 // Work around floating point types that contain unused padding bytes. This 7000 // is really just `long double` on x86, which is the only fundamental type 7001 // with padding bytes. 7002 if (T->isRealFloatingType()) { 7003 const llvm::fltSemantics &Semantics = 7004 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7005 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); 7006 assert(NumBits % 8 == 0); 7007 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); 7008 if (NumBytes != SizeOf) 7009 SizeOf = NumBytes; 7010 } 7011 7012 SmallVector<uint8_t, 8> Bytes; 7013 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 7014 // If this is std::byte or unsigned char, then its okay to store an 7015 // indeterminate value. 7016 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 7017 bool IsUChar = 7018 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 7019 T->isSpecificBuiltinType(BuiltinType::Char_U)); 7020 if (!IsStdByte && !IsUChar) { 7021 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 7022 Info.FFDiag(BCE->getExprLoc(), 7023 diag::note_constexpr_bit_cast_indet_dest) 7024 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 7025 return None; 7026 } 7027 7028 return APValue::IndeterminateValue(); 7029 } 7030 7031 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 7032 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 7033 7034 if (T->isIntegralOrEnumerationType()) { 7035 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 7036 7037 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); 7038 if (IntWidth != Val.getBitWidth()) { 7039 APSInt Truncated = Val.trunc(IntWidth); 7040 if (Truncated.extend(Val.getBitWidth()) != Val) 7041 return unrepresentableValue(QualType(T, 0), Val); 7042 Val = Truncated; 7043 } 7044 7045 return APValue(Val); 7046 } 7047 7048 if (T->isRealFloatingType()) { 7049 const llvm::fltSemantics &Semantics = 7050 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7051 return APValue(APFloat(Semantics, Val)); 7052 } 7053 7054 return unsupportedType(QualType(T, 0)); 7055 } 7056 7057 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 7058 const RecordDecl *RD = RTy->getAsRecordDecl(); 7059 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7060 7061 unsigned NumBases = 0; 7062 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7063 NumBases = CXXRD->getNumBases(); 7064 7065 APValue ResultVal(APValue::UninitStruct(), NumBases, 7066 std::distance(RD->field_begin(), RD->field_end())); 7067 7068 // Visit the base classes. 7069 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7070 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7071 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7072 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7073 if (BaseDecl->isEmpty() || 7074 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) 7075 continue; 7076 7077 Optional<APValue> SubObj = visitType( 7078 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 7079 if (!SubObj) 7080 return None; 7081 ResultVal.getStructBase(I) = *SubObj; 7082 } 7083 } 7084 7085 // Visit the fields. 7086 unsigned FieldIdx = 0; 7087 for (FieldDecl *FD : RD->fields()) { 7088 // FIXME: We don't currently support bit-fields. A lot of the logic for 7089 // this is in CodeGen, so we need to factor it around. 7090 if (FD->isBitField()) { 7091 Info.FFDiag(BCE->getBeginLoc(), 7092 diag::note_constexpr_bit_cast_unsupported_bitfield); 7093 return None; 7094 } 7095 7096 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7097 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 7098 7099 CharUnits FieldOffset = 7100 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 7101 Offset; 7102 QualType FieldTy = FD->getType(); 7103 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 7104 if (!SubObj) 7105 return None; 7106 ResultVal.getStructField(FieldIdx) = *SubObj; 7107 ++FieldIdx; 7108 } 7109 7110 return ResultVal; 7111 } 7112 7113 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 7114 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 7115 assert(!RepresentationType.isNull() && 7116 "enum forward decl should be caught by Sema"); 7117 const auto *AsBuiltin = 7118 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 7119 // Recurse into the underlying type. Treat std::byte transparently as 7120 // unsigned char. 7121 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 7122 } 7123 7124 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 7125 size_t Size = Ty->getSize().getLimitedValue(); 7126 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 7127 7128 APValue ArrayValue(APValue::UninitArray(), Size, Size); 7129 for (size_t I = 0; I != Size; ++I) { 7130 Optional<APValue> ElementValue = 7131 visitType(Ty->getElementType(), Offset + I * ElementWidth); 7132 if (!ElementValue) 7133 return None; 7134 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 7135 } 7136 7137 return ArrayValue; 7138 } 7139 7140 Optional<APValue> visit(const Type *Ty, CharUnits Offset) { 7141 return unsupportedType(QualType(Ty, 0)); 7142 } 7143 7144 Optional<APValue> visitType(QualType Ty, CharUnits Offset) { 7145 QualType Can = Ty.getCanonicalType(); 7146 7147 switch (Can->getTypeClass()) { 7148 #define TYPE(Class, Base) \ 7149 case Type::Class: \ 7150 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 7151 #define ABSTRACT_TYPE(Class, Base) 7152 #define NON_CANONICAL_TYPE(Class, Base) \ 7153 case Type::Class: \ 7154 llvm_unreachable("non-canonical type should be impossible!"); 7155 #define DEPENDENT_TYPE(Class, Base) \ 7156 case Type::Class: \ 7157 llvm_unreachable( \ 7158 "dependent types aren't supported in the constant evaluator!"); 7159 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 7160 case Type::Class: \ 7161 llvm_unreachable("either dependent or not canonical!"); 7162 #include "clang/AST/TypeNodes.inc" 7163 } 7164 llvm_unreachable("Unhandled Type::TypeClass"); 7165 } 7166 7167 public: 7168 // Pull out a full value of type DstType. 7169 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 7170 const CastExpr *BCE) { 7171 BufferToAPValueConverter Converter(Info, Buffer, BCE); 7172 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 7173 } 7174 }; 7175 7176 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 7177 QualType Ty, EvalInfo *Info, 7178 const ASTContext &Ctx, 7179 bool CheckingDest) { 7180 Ty = Ty.getCanonicalType(); 7181 7182 auto diag = [&](int Reason) { 7183 if (Info) 7184 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 7185 << CheckingDest << (Reason == 4) << Reason; 7186 return false; 7187 }; 7188 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 7189 if (Info) 7190 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 7191 << NoteTy << Construct << Ty; 7192 return false; 7193 }; 7194 7195 if (Ty->isUnionType()) 7196 return diag(0); 7197 if (Ty->isPointerType()) 7198 return diag(1); 7199 if (Ty->isMemberPointerType()) 7200 return diag(2); 7201 if (Ty.isVolatileQualified()) 7202 return diag(3); 7203 7204 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 7205 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 7206 for (CXXBaseSpecifier &BS : CXXRD->bases()) 7207 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 7208 CheckingDest)) 7209 return note(1, BS.getType(), BS.getBeginLoc()); 7210 } 7211 for (FieldDecl *FD : Record->fields()) { 7212 if (FD->getType()->isReferenceType()) 7213 return diag(4); 7214 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 7215 CheckingDest)) 7216 return note(0, FD->getType(), FD->getBeginLoc()); 7217 } 7218 } 7219 7220 if (Ty->isArrayType() && 7221 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 7222 Info, Ctx, CheckingDest)) 7223 return false; 7224 7225 return true; 7226 } 7227 7228 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 7229 const ASTContext &Ctx, 7230 const CastExpr *BCE) { 7231 bool DestOK = checkBitCastConstexprEligibilityType( 7232 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 7233 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 7234 BCE->getBeginLoc(), 7235 BCE->getSubExpr()->getType(), Info, Ctx, false); 7236 return SourceOK; 7237 } 7238 7239 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7240 APValue &SourceValue, 7241 const CastExpr *BCE) { 7242 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7243 "no host or target supports non 8-bit chars"); 7244 assert(SourceValue.isLValue() && 7245 "LValueToRValueBitcast requires an lvalue operand!"); 7246 7247 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 7248 return false; 7249 7250 LValue SourceLValue; 7251 APValue SourceRValue; 7252 SourceLValue.setFrom(Info.Ctx, SourceValue); 7253 if (!handleLValueToRValueConversion( 7254 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 7255 SourceRValue, /*WantObjectRepresentation=*/true)) 7256 return false; 7257 7258 // Read out SourceValue into a char buffer. 7259 Optional<BitCastBuffer> Buffer = 7260 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 7261 if (!Buffer) 7262 return false; 7263 7264 // Write out the buffer into a new APValue. 7265 Optional<APValue> MaybeDestValue = 7266 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 7267 if (!MaybeDestValue) 7268 return false; 7269 7270 DestValue = std::move(*MaybeDestValue); 7271 return true; 7272 } 7273 7274 template <class Derived> 7275 class ExprEvaluatorBase 7276 : public ConstStmtVisitor<Derived, bool> { 7277 private: 7278 Derived &getDerived() { return static_cast<Derived&>(*this); } 7279 bool DerivedSuccess(const APValue &V, const Expr *E) { 7280 return getDerived().Success(V, E); 7281 } 7282 bool DerivedZeroInitialization(const Expr *E) { 7283 return getDerived().ZeroInitialization(E); 7284 } 7285 7286 // Check whether a conditional operator with a non-constant condition is a 7287 // potential constant expression. If neither arm is a potential constant 7288 // expression, then the conditional operator is not either. 7289 template<typename ConditionalOperator> 7290 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 7291 assert(Info.checkingPotentialConstantExpression()); 7292 7293 // Speculatively evaluate both arms. 7294 SmallVector<PartialDiagnosticAt, 8> Diag; 7295 { 7296 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7297 StmtVisitorTy::Visit(E->getFalseExpr()); 7298 if (Diag.empty()) 7299 return; 7300 } 7301 7302 { 7303 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7304 Diag.clear(); 7305 StmtVisitorTy::Visit(E->getTrueExpr()); 7306 if (Diag.empty()) 7307 return; 7308 } 7309 7310 Error(E, diag::note_constexpr_conditional_never_const); 7311 } 7312 7313 7314 template<typename ConditionalOperator> 7315 bool HandleConditionalOperator(const ConditionalOperator *E) { 7316 bool BoolResult; 7317 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 7318 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 7319 CheckPotentialConstantConditional(E); 7320 return false; 7321 } 7322 if (Info.noteFailure()) { 7323 StmtVisitorTy::Visit(E->getTrueExpr()); 7324 StmtVisitorTy::Visit(E->getFalseExpr()); 7325 } 7326 return false; 7327 } 7328 7329 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 7330 return StmtVisitorTy::Visit(EvalExpr); 7331 } 7332 7333 protected: 7334 EvalInfo &Info; 7335 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 7336 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 7337 7338 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 7339 return Info.CCEDiag(E, D); 7340 } 7341 7342 bool ZeroInitialization(const Expr *E) { return Error(E); } 7343 7344 public: 7345 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 7346 7347 EvalInfo &getEvalInfo() { return Info; } 7348 7349 /// Report an evaluation error. This should only be called when an error is 7350 /// first discovered. When propagating an error, just return false. 7351 bool Error(const Expr *E, diag::kind D) { 7352 Info.FFDiag(E, D); 7353 return false; 7354 } 7355 bool Error(const Expr *E) { 7356 return Error(E, diag::note_invalid_subexpr_in_const_expr); 7357 } 7358 7359 bool VisitStmt(const Stmt *) { 7360 llvm_unreachable("Expression evaluator should not be called on stmts"); 7361 } 7362 bool VisitExpr(const Expr *E) { 7363 return Error(E); 7364 } 7365 7366 bool VisitConstantExpr(const ConstantExpr *E) { 7367 if (E->hasAPValueResult()) 7368 return DerivedSuccess(E->getAPValueResult(), E); 7369 7370 return StmtVisitorTy::Visit(E->getSubExpr()); 7371 } 7372 7373 bool VisitParenExpr(const ParenExpr *E) 7374 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7375 bool VisitUnaryExtension(const UnaryOperator *E) 7376 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7377 bool VisitUnaryPlus(const UnaryOperator *E) 7378 { return StmtVisitorTy::Visit(E->getSubExpr()); } 7379 bool VisitChooseExpr(const ChooseExpr *E) 7380 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 7381 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 7382 { return StmtVisitorTy::Visit(E->getResultExpr()); } 7383 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 7384 { return StmtVisitorTy::Visit(E->getReplacement()); } 7385 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 7386 TempVersionRAII RAII(*Info.CurrentCall); 7387 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7388 return StmtVisitorTy::Visit(E->getExpr()); 7389 } 7390 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 7391 TempVersionRAII RAII(*Info.CurrentCall); 7392 // The initializer may not have been parsed yet, or might be erroneous. 7393 if (!E->getExpr()) 7394 return Error(E); 7395 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 7396 return StmtVisitorTy::Visit(E->getExpr()); 7397 } 7398 7399 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 7400 FullExpressionRAII Scope(Info); 7401 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 7402 } 7403 7404 // Temporaries are registered when created, so we don't care about 7405 // CXXBindTemporaryExpr. 7406 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 7407 return StmtVisitorTy::Visit(E->getSubExpr()); 7408 } 7409 7410 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 7411 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 7412 return static_cast<Derived*>(this)->VisitCastExpr(E); 7413 } 7414 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 7415 if (!Info.Ctx.getLangOpts().CPlusPlus20) 7416 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 7417 return static_cast<Derived*>(this)->VisitCastExpr(E); 7418 } 7419 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 7420 return static_cast<Derived*>(this)->VisitCastExpr(E); 7421 } 7422 7423 bool VisitBinaryOperator(const BinaryOperator *E) { 7424 switch (E->getOpcode()) { 7425 default: 7426 return Error(E); 7427 7428 case BO_Comma: 7429 VisitIgnoredValue(E->getLHS()); 7430 return StmtVisitorTy::Visit(E->getRHS()); 7431 7432 case BO_PtrMemD: 7433 case BO_PtrMemI: { 7434 LValue Obj; 7435 if (!HandleMemberPointerAccess(Info, E, Obj)) 7436 return false; 7437 APValue Result; 7438 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 7439 return false; 7440 return DerivedSuccess(Result, E); 7441 } 7442 } 7443 } 7444 7445 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 7446 return StmtVisitorTy::Visit(E->getSemanticForm()); 7447 } 7448 7449 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 7450 // Evaluate and cache the common expression. We treat it as a temporary, 7451 // even though it's not quite the same thing. 7452 LValue CommonLV; 7453 if (!Evaluate(Info.CurrentCall->createTemporary( 7454 E->getOpaqueValue(), 7455 getStorageType(Info.Ctx, E->getOpaqueValue()), 7456 ScopeKind::FullExpression, CommonLV), 7457 Info, E->getCommon())) 7458 return false; 7459 7460 return HandleConditionalOperator(E); 7461 } 7462 7463 bool VisitConditionalOperator(const ConditionalOperator *E) { 7464 bool IsBcpCall = false; 7465 // If the condition (ignoring parens) is a __builtin_constant_p call, 7466 // the result is a constant expression if it can be folded without 7467 // side-effects. This is an important GNU extension. See GCC PR38377 7468 // for discussion. 7469 if (const CallExpr *CallCE = 7470 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 7471 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 7472 IsBcpCall = true; 7473 7474 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 7475 // constant expression; we can't check whether it's potentially foldable. 7476 // FIXME: We should instead treat __builtin_constant_p as non-constant if 7477 // it would return 'false' in this mode. 7478 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 7479 return false; 7480 7481 FoldConstant Fold(Info, IsBcpCall); 7482 if (!HandleConditionalOperator(E)) { 7483 Fold.keepDiagnostics(); 7484 return false; 7485 } 7486 7487 return true; 7488 } 7489 7490 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 7491 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) 7492 return DerivedSuccess(*Value, E); 7493 7494 const Expr *Source = E->getSourceExpr(); 7495 if (!Source) 7496 return Error(E); 7497 if (Source == E) { 7498 assert(0 && "OpaqueValueExpr recursively refers to itself"); 7499 return Error(E); 7500 } 7501 return StmtVisitorTy::Visit(Source); 7502 } 7503 7504 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 7505 for (const Expr *SemE : E->semantics()) { 7506 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 7507 // FIXME: We can't handle the case where an OpaqueValueExpr is also the 7508 // result expression: there could be two different LValues that would 7509 // refer to the same object in that case, and we can't model that. 7510 if (SemE == E->getResultExpr()) 7511 return Error(E); 7512 7513 // Unique OVEs get evaluated if and when we encounter them when 7514 // emitting the rest of the semantic form, rather than eagerly. 7515 if (OVE->isUnique()) 7516 continue; 7517 7518 LValue LV; 7519 if (!Evaluate(Info.CurrentCall->createTemporary( 7520 OVE, getStorageType(Info.Ctx, OVE), 7521 ScopeKind::FullExpression, LV), 7522 Info, OVE->getSourceExpr())) 7523 return false; 7524 } else if (SemE == E->getResultExpr()) { 7525 if (!StmtVisitorTy::Visit(SemE)) 7526 return false; 7527 } else { 7528 if (!EvaluateIgnoredValue(Info, SemE)) 7529 return false; 7530 } 7531 } 7532 return true; 7533 } 7534 7535 bool VisitCallExpr(const CallExpr *E) { 7536 APValue Result; 7537 if (!handleCallExpr(E, Result, nullptr)) 7538 return false; 7539 return DerivedSuccess(Result, E); 7540 } 7541 7542 bool handleCallExpr(const CallExpr *E, APValue &Result, 7543 const LValue *ResultSlot) { 7544 CallScopeRAII CallScope(Info); 7545 7546 const Expr *Callee = E->getCallee()->IgnoreParens(); 7547 QualType CalleeType = Callee->getType(); 7548 7549 const FunctionDecl *FD = nullptr; 7550 LValue *This = nullptr, ThisVal; 7551 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 7552 bool HasQualifier = false; 7553 7554 CallRef Call; 7555 7556 // Extract function decl and 'this' pointer from the callee. 7557 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 7558 const CXXMethodDecl *Member = nullptr; 7559 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 7560 // Explicit bound member calls, such as x.f() or p->g(); 7561 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 7562 return false; 7563 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 7564 if (!Member) 7565 return Error(Callee); 7566 This = &ThisVal; 7567 HasQualifier = ME->hasQualifier(); 7568 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 7569 // Indirect bound member calls ('.*' or '->*'). 7570 const ValueDecl *D = 7571 HandleMemberPointerAccess(Info, BE, ThisVal, false); 7572 if (!D) 7573 return false; 7574 Member = dyn_cast<CXXMethodDecl>(D); 7575 if (!Member) 7576 return Error(Callee); 7577 This = &ThisVal; 7578 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 7579 if (!Info.getLangOpts().CPlusPlus20) 7580 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 7581 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && 7582 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); 7583 } else 7584 return Error(Callee); 7585 FD = Member; 7586 } else if (CalleeType->isFunctionPointerType()) { 7587 LValue CalleeLV; 7588 if (!EvaluatePointer(Callee, CalleeLV, Info)) 7589 return false; 7590 7591 if (!CalleeLV.getLValueOffset().isZero()) 7592 return Error(Callee); 7593 FD = dyn_cast_or_null<FunctionDecl>( 7594 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); 7595 if (!FD) 7596 return Error(Callee); 7597 // Don't call function pointers which have been cast to some other type. 7598 // Per DR (no number yet), the caller and callee can differ in noexcept. 7599 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 7600 CalleeType->getPointeeType(), FD->getType())) { 7601 return Error(E); 7602 } 7603 7604 // For an (overloaded) assignment expression, evaluate the RHS before the 7605 // LHS. 7606 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 7607 if (OCE && OCE->isAssignmentOp()) { 7608 assert(Args.size() == 2 && "wrong number of arguments in assignment"); 7609 Call = Info.CurrentCall->createCall(FD); 7610 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call, 7611 Info, FD, /*RightToLeft=*/true)) 7612 return false; 7613 } 7614 7615 // Overloaded operator calls to member functions are represented as normal 7616 // calls with '*this' as the first argument. 7617 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 7618 if (MD && !MD->isStatic()) { 7619 // FIXME: When selecting an implicit conversion for an overloaded 7620 // operator delete, we sometimes try to evaluate calls to conversion 7621 // operators without a 'this' parameter! 7622 if (Args.empty()) 7623 return Error(E); 7624 7625 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 7626 return false; 7627 This = &ThisVal; 7628 Args = Args.slice(1); 7629 } else if (MD && MD->isLambdaStaticInvoker()) { 7630 // Map the static invoker for the lambda back to the call operator. 7631 // Conveniently, we don't have to slice out the 'this' argument (as is 7632 // being done for the non-static case), since a static member function 7633 // doesn't have an implicit argument passed in. 7634 const CXXRecordDecl *ClosureClass = MD->getParent(); 7635 assert( 7636 ClosureClass->captures_begin() == ClosureClass->captures_end() && 7637 "Number of captures must be zero for conversion to function-ptr"); 7638 7639 const CXXMethodDecl *LambdaCallOp = 7640 ClosureClass->getLambdaCallOperator(); 7641 7642 // Set 'FD', the function that will be called below, to the call 7643 // operator. If the closure object represents a generic lambda, find 7644 // the corresponding specialization of the call operator. 7645 7646 if (ClosureClass->isGenericLambda()) { 7647 assert(MD->isFunctionTemplateSpecialization() && 7648 "A generic lambda's static-invoker function must be a " 7649 "template specialization"); 7650 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 7651 FunctionTemplateDecl *CallOpTemplate = 7652 LambdaCallOp->getDescribedFunctionTemplate(); 7653 void *InsertPos = nullptr; 7654 FunctionDecl *CorrespondingCallOpSpecialization = 7655 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 7656 assert(CorrespondingCallOpSpecialization && 7657 "We must always have a function call operator specialization " 7658 "that corresponds to our static invoker specialization"); 7659 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 7660 } else 7661 FD = LambdaCallOp; 7662 } else if (FD->isReplaceableGlobalAllocationFunction()) { 7663 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 7664 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 7665 LValue Ptr; 7666 if (!HandleOperatorNewCall(Info, E, Ptr)) 7667 return false; 7668 Ptr.moveInto(Result); 7669 return CallScope.destroy(); 7670 } else { 7671 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); 7672 } 7673 } 7674 } else 7675 return Error(E); 7676 7677 // Evaluate the arguments now if we've not already done so. 7678 if (!Call) { 7679 Call = Info.CurrentCall->createCall(FD); 7680 if (!EvaluateArgs(Args, Call, Info, FD)) 7681 return false; 7682 } 7683 7684 SmallVector<QualType, 4> CovariantAdjustmentPath; 7685 if (This) { 7686 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 7687 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 7688 // Perform virtual dispatch, if necessary. 7689 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 7690 CovariantAdjustmentPath); 7691 if (!FD) 7692 return false; 7693 } else { 7694 // Check that the 'this' pointer points to an object of the right type. 7695 // FIXME: If this is an assignment operator call, we may need to change 7696 // the active union member before we check this. 7697 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 7698 return false; 7699 } 7700 } 7701 7702 // Destructor calls are different enough that they have their own codepath. 7703 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 7704 assert(This && "no 'this' pointer for destructor call"); 7705 return HandleDestruction(Info, E, *This, 7706 Info.Ctx.getRecordType(DD->getParent())) && 7707 CallScope.destroy(); 7708 } 7709 7710 const FunctionDecl *Definition = nullptr; 7711 Stmt *Body = FD->getBody(Definition); 7712 7713 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 7714 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call, 7715 Body, Info, Result, ResultSlot)) 7716 return false; 7717 7718 if (!CovariantAdjustmentPath.empty() && 7719 !HandleCovariantReturnAdjustment(Info, E, Result, 7720 CovariantAdjustmentPath)) 7721 return false; 7722 7723 return CallScope.destroy(); 7724 } 7725 7726 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 7727 return StmtVisitorTy::Visit(E->getInitializer()); 7728 } 7729 bool VisitInitListExpr(const InitListExpr *E) { 7730 if (E->getNumInits() == 0) 7731 return DerivedZeroInitialization(E); 7732 if (E->getNumInits() == 1) 7733 return StmtVisitorTy::Visit(E->getInit(0)); 7734 return Error(E); 7735 } 7736 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 7737 return DerivedZeroInitialization(E); 7738 } 7739 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 7740 return DerivedZeroInitialization(E); 7741 } 7742 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 7743 return DerivedZeroInitialization(E); 7744 } 7745 7746 /// A member expression where the object is a prvalue is itself a prvalue. 7747 bool VisitMemberExpr(const MemberExpr *E) { 7748 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 7749 "missing temporary materialization conversion"); 7750 assert(!E->isArrow() && "missing call to bound member function?"); 7751 7752 APValue Val; 7753 if (!Evaluate(Val, Info, E->getBase())) 7754 return false; 7755 7756 QualType BaseTy = E->getBase()->getType(); 7757 7758 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 7759 if (!FD) return Error(E); 7760 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 7761 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7762 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7763 7764 // Note: there is no lvalue base here. But this case should only ever 7765 // happen in C or in C++98, where we cannot be evaluating a constexpr 7766 // constructor, which is the only case the base matters. 7767 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 7768 SubobjectDesignator Designator(BaseTy); 7769 Designator.addDeclUnchecked(FD); 7770 7771 APValue Result; 7772 return extractSubobject(Info, E, Obj, Designator, Result) && 7773 DerivedSuccess(Result, E); 7774 } 7775 7776 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { 7777 APValue Val; 7778 if (!Evaluate(Val, Info, E->getBase())) 7779 return false; 7780 7781 if (Val.isVector()) { 7782 SmallVector<uint32_t, 4> Indices; 7783 E->getEncodedElementAccess(Indices); 7784 if (Indices.size() == 1) { 7785 // Return scalar. 7786 return DerivedSuccess(Val.getVectorElt(Indices[0]), E); 7787 } else { 7788 // Construct new APValue vector. 7789 SmallVector<APValue, 4> Elts; 7790 for (unsigned I = 0; I < Indices.size(); ++I) { 7791 Elts.push_back(Val.getVectorElt(Indices[I])); 7792 } 7793 APValue VecResult(Elts.data(), Indices.size()); 7794 return DerivedSuccess(VecResult, E); 7795 } 7796 } 7797 7798 return false; 7799 } 7800 7801 bool VisitCastExpr(const CastExpr *E) { 7802 switch (E->getCastKind()) { 7803 default: 7804 break; 7805 7806 case CK_AtomicToNonAtomic: { 7807 APValue AtomicVal; 7808 // This does not need to be done in place even for class/array types: 7809 // atomic-to-non-atomic conversion implies copying the object 7810 // representation. 7811 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 7812 return false; 7813 return DerivedSuccess(AtomicVal, E); 7814 } 7815 7816 case CK_NoOp: 7817 case CK_UserDefinedConversion: 7818 return StmtVisitorTy::Visit(E->getSubExpr()); 7819 7820 case CK_LValueToRValue: { 7821 LValue LVal; 7822 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 7823 return false; 7824 APValue RVal; 7825 // Note, we use the subexpression's type in order to retain cv-qualifiers. 7826 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 7827 LVal, RVal)) 7828 return false; 7829 return DerivedSuccess(RVal, E); 7830 } 7831 case CK_LValueToRValueBitCast: { 7832 APValue DestValue, SourceValue; 7833 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 7834 return false; 7835 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 7836 return false; 7837 return DerivedSuccess(DestValue, E); 7838 } 7839 7840 case CK_AddressSpaceConversion: { 7841 APValue Value; 7842 if (!Evaluate(Value, Info, E->getSubExpr())) 7843 return false; 7844 return DerivedSuccess(Value, E); 7845 } 7846 } 7847 7848 return Error(E); 7849 } 7850 7851 bool VisitUnaryPostInc(const UnaryOperator *UO) { 7852 return VisitUnaryPostIncDec(UO); 7853 } 7854 bool VisitUnaryPostDec(const UnaryOperator *UO) { 7855 return VisitUnaryPostIncDec(UO); 7856 } 7857 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 7858 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 7859 return Error(UO); 7860 7861 LValue LVal; 7862 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 7863 return false; 7864 APValue RVal; 7865 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 7866 UO->isIncrementOp(), &RVal)) 7867 return false; 7868 return DerivedSuccess(RVal, UO); 7869 } 7870 7871 bool VisitStmtExpr(const StmtExpr *E) { 7872 // We will have checked the full-expressions inside the statement expression 7873 // when they were completed, and don't need to check them again now. 7874 llvm::SaveAndRestore<bool> NotCheckingForUB( 7875 Info.CheckingForUndefinedBehavior, false); 7876 7877 const CompoundStmt *CS = E->getSubStmt(); 7878 if (CS->body_empty()) 7879 return true; 7880 7881 BlockScopeRAII Scope(Info); 7882 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 7883 BE = CS->body_end(); 7884 /**/; ++BI) { 7885 if (BI + 1 == BE) { 7886 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 7887 if (!FinalExpr) { 7888 Info.FFDiag((*BI)->getBeginLoc(), 7889 diag::note_constexpr_stmt_expr_unsupported); 7890 return false; 7891 } 7892 return this->Visit(FinalExpr) && Scope.destroy(); 7893 } 7894 7895 APValue ReturnValue; 7896 StmtResult Result = { ReturnValue, nullptr }; 7897 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 7898 if (ESR != ESR_Succeeded) { 7899 // FIXME: If the statement-expression terminated due to 'return', 7900 // 'break', or 'continue', it would be nice to propagate that to 7901 // the outer statement evaluation rather than bailing out. 7902 if (ESR != ESR_Failed) 7903 Info.FFDiag((*BI)->getBeginLoc(), 7904 diag::note_constexpr_stmt_expr_unsupported); 7905 return false; 7906 } 7907 } 7908 7909 llvm_unreachable("Return from function from the loop above."); 7910 } 7911 7912 /// Visit a value which is evaluated, but whose value is ignored. 7913 void VisitIgnoredValue(const Expr *E) { 7914 EvaluateIgnoredValue(Info, E); 7915 } 7916 7917 /// Potentially visit a MemberExpr's base expression. 7918 void VisitIgnoredBaseExpression(const Expr *E) { 7919 // While MSVC doesn't evaluate the base expression, it does diagnose the 7920 // presence of side-effecting behavior. 7921 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 7922 return; 7923 VisitIgnoredValue(E); 7924 } 7925 }; 7926 7927 } // namespace 7928 7929 //===----------------------------------------------------------------------===// 7930 // Common base class for lvalue and temporary evaluation. 7931 //===----------------------------------------------------------------------===// 7932 namespace { 7933 template<class Derived> 7934 class LValueExprEvaluatorBase 7935 : public ExprEvaluatorBase<Derived> { 7936 protected: 7937 LValue &Result; 7938 bool InvalidBaseOK; 7939 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 7940 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 7941 7942 bool Success(APValue::LValueBase B) { 7943 Result.set(B); 7944 return true; 7945 } 7946 7947 bool evaluatePointer(const Expr *E, LValue &Result) { 7948 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 7949 } 7950 7951 public: 7952 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 7953 : ExprEvaluatorBaseTy(Info), Result(Result), 7954 InvalidBaseOK(InvalidBaseOK) {} 7955 7956 bool Success(const APValue &V, const Expr *E) { 7957 Result.setFrom(this->Info.Ctx, V); 7958 return true; 7959 } 7960 7961 bool VisitMemberExpr(const MemberExpr *E) { 7962 // Handle non-static data members. 7963 QualType BaseTy; 7964 bool EvalOK; 7965 if (E->isArrow()) { 7966 EvalOK = evaluatePointer(E->getBase(), Result); 7967 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 7968 } else if (E->getBase()->isPRValue()) { 7969 assert(E->getBase()->getType()->isRecordType()); 7970 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 7971 BaseTy = E->getBase()->getType(); 7972 } else { 7973 EvalOK = this->Visit(E->getBase()); 7974 BaseTy = E->getBase()->getType(); 7975 } 7976 if (!EvalOK) { 7977 if (!InvalidBaseOK) 7978 return false; 7979 Result.setInvalid(E); 7980 return true; 7981 } 7982 7983 const ValueDecl *MD = E->getMemberDecl(); 7984 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 7985 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 7986 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 7987 (void)BaseTy; 7988 if (!HandleLValueMember(this->Info, E, Result, FD)) 7989 return false; 7990 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 7991 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 7992 return false; 7993 } else 7994 return this->Error(E); 7995 7996 if (MD->getType()->isReferenceType()) { 7997 APValue RefValue; 7998 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 7999 RefValue)) 8000 return false; 8001 return Success(RefValue, E); 8002 } 8003 return true; 8004 } 8005 8006 bool VisitBinaryOperator(const BinaryOperator *E) { 8007 switch (E->getOpcode()) { 8008 default: 8009 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8010 8011 case BO_PtrMemD: 8012 case BO_PtrMemI: 8013 return HandleMemberPointerAccess(this->Info, E, Result); 8014 } 8015 } 8016 8017 bool VisitCastExpr(const CastExpr *E) { 8018 switch (E->getCastKind()) { 8019 default: 8020 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8021 8022 case CK_DerivedToBase: 8023 case CK_UncheckedDerivedToBase: 8024 if (!this->Visit(E->getSubExpr())) 8025 return false; 8026 8027 // Now figure out the necessary offset to add to the base LV to get from 8028 // the derived class to the base class. 8029 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 8030 Result); 8031 } 8032 } 8033 }; 8034 } 8035 8036 //===----------------------------------------------------------------------===// 8037 // LValue Evaluation 8038 // 8039 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 8040 // function designators (in C), decl references to void objects (in C), and 8041 // temporaries (if building with -Wno-address-of-temporary). 8042 // 8043 // LValue evaluation produces values comprising a base expression of one of the 8044 // following types: 8045 // - Declarations 8046 // * VarDecl 8047 // * FunctionDecl 8048 // - Literals 8049 // * CompoundLiteralExpr in C (and in global scope in C++) 8050 // * StringLiteral 8051 // * PredefinedExpr 8052 // * ObjCStringLiteralExpr 8053 // * ObjCEncodeExpr 8054 // * AddrLabelExpr 8055 // * BlockExpr 8056 // * CallExpr for a MakeStringConstant builtin 8057 // - typeid(T) expressions, as TypeInfoLValues 8058 // - Locals and temporaries 8059 // * MaterializeTemporaryExpr 8060 // * Any Expr, with a CallIndex indicating the function in which the temporary 8061 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 8062 // from the AST (FIXME). 8063 // * A MaterializeTemporaryExpr that has static storage duration, with no 8064 // CallIndex, for a lifetime-extended temporary. 8065 // * The ConstantExpr that is currently being evaluated during evaluation of an 8066 // immediate invocation. 8067 // plus an offset in bytes. 8068 //===----------------------------------------------------------------------===// 8069 namespace { 8070 class LValueExprEvaluator 8071 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 8072 public: 8073 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 8074 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 8075 8076 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 8077 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 8078 8079 bool VisitDeclRefExpr(const DeclRefExpr *E); 8080 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 8081 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 8082 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 8083 bool VisitMemberExpr(const MemberExpr *E); 8084 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } 8085 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 8086 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 8087 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 8088 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 8089 bool VisitUnaryDeref(const UnaryOperator *E); 8090 bool VisitUnaryReal(const UnaryOperator *E); 8091 bool VisitUnaryImag(const UnaryOperator *E); 8092 bool VisitUnaryPreInc(const UnaryOperator *UO) { 8093 return VisitUnaryPreIncDec(UO); 8094 } 8095 bool VisitUnaryPreDec(const UnaryOperator *UO) { 8096 return VisitUnaryPreIncDec(UO); 8097 } 8098 bool VisitBinAssign(const BinaryOperator *BO); 8099 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 8100 8101 bool VisitCastExpr(const CastExpr *E) { 8102 switch (E->getCastKind()) { 8103 default: 8104 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 8105 8106 case CK_LValueBitCast: 8107 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8108 if (!Visit(E->getSubExpr())) 8109 return false; 8110 Result.Designator.setInvalid(); 8111 return true; 8112 8113 case CK_BaseToDerived: 8114 if (!Visit(E->getSubExpr())) 8115 return false; 8116 return HandleBaseToDerivedCast(Info, E, Result); 8117 8118 case CK_Dynamic: 8119 if (!Visit(E->getSubExpr())) 8120 return false; 8121 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8122 } 8123 } 8124 }; 8125 } // end anonymous namespace 8126 8127 /// Evaluate an expression as an lvalue. This can be legitimately called on 8128 /// expressions which are not glvalues, in three cases: 8129 /// * function designators in C, and 8130 /// * "extern void" objects 8131 /// * @selector() expressions in Objective-C 8132 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 8133 bool InvalidBaseOK) { 8134 assert(!E->isValueDependent()); 8135 assert(E->isGLValue() || E->getType()->isFunctionType() || 8136 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); 8137 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8138 } 8139 8140 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 8141 const NamedDecl *D = E->getDecl(); 8142 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D)) 8143 return Success(cast<ValueDecl>(D)); 8144 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 8145 return VisitVarDecl(E, VD); 8146 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) 8147 return Visit(BD->getBinding()); 8148 return Error(E); 8149 } 8150 8151 8152 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 8153 8154 // If we are within a lambda's call operator, check whether the 'VD' referred 8155 // to within 'E' actually represents a lambda-capture that maps to a 8156 // data-member/field within the closure object, and if so, evaluate to the 8157 // field or what the field refers to. 8158 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 8159 isa<DeclRefExpr>(E) && 8160 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 8161 // We don't always have a complete capture-map when checking or inferring if 8162 // the function call operator meets the requirements of a constexpr function 8163 // - but we don't need to evaluate the captures to determine constexprness 8164 // (dcl.constexpr C++17). 8165 if (Info.checkingPotentialConstantExpression()) 8166 return false; 8167 8168 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 8169 // Start with 'Result' referring to the complete closure object... 8170 Result = *Info.CurrentCall->This; 8171 // ... then update it to refer to the field of the closure object 8172 // that represents the capture. 8173 if (!HandleLValueMember(Info, E, Result, FD)) 8174 return false; 8175 // And if the field is of reference type, update 'Result' to refer to what 8176 // the field refers to. 8177 if (FD->getType()->isReferenceType()) { 8178 APValue RVal; 8179 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, 8180 RVal)) 8181 return false; 8182 Result.setFrom(Info.Ctx, RVal); 8183 } 8184 return true; 8185 } 8186 } 8187 8188 CallStackFrame *Frame = nullptr; 8189 unsigned Version = 0; 8190 if (VD->hasLocalStorage()) { 8191 // Only if a local variable was declared in the function currently being 8192 // evaluated, do we expect to be able to find its value in the current 8193 // frame. (Otherwise it was likely declared in an enclosing context and 8194 // could either have a valid evaluatable value (for e.g. a constexpr 8195 // variable) or be ill-formed (and trigger an appropriate evaluation 8196 // diagnostic)). 8197 CallStackFrame *CurrFrame = Info.CurrentCall; 8198 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { 8199 // Function parameters are stored in some caller's frame. (Usually the 8200 // immediate caller, but for an inherited constructor they may be more 8201 // distant.) 8202 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { 8203 if (CurrFrame->Arguments) { 8204 VD = CurrFrame->Arguments.getOrigParam(PVD); 8205 Frame = 8206 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; 8207 Version = CurrFrame->Arguments.Version; 8208 } 8209 } else { 8210 Frame = CurrFrame; 8211 Version = CurrFrame->getCurrentTemporaryVersion(VD); 8212 } 8213 } 8214 } 8215 8216 if (!VD->getType()->isReferenceType()) { 8217 if (Frame) { 8218 Result.set({VD, Frame->Index, Version}); 8219 return true; 8220 } 8221 return Success(VD); 8222 } 8223 8224 if (!Info.getLangOpts().CPlusPlus11) { 8225 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) 8226 << VD << VD->getType(); 8227 Info.Note(VD->getLocation(), diag::note_declared_at); 8228 } 8229 8230 APValue *V; 8231 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) 8232 return false; 8233 if (!V->hasValue()) { 8234 // FIXME: Is it possible for V to be indeterminate here? If so, we should 8235 // adjust the diagnostic to say that. 8236 if (!Info.checkingPotentialConstantExpression()) 8237 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 8238 return false; 8239 } 8240 return Success(*V, E); 8241 } 8242 8243 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 8244 const MaterializeTemporaryExpr *E) { 8245 // Walk through the expression to find the materialized temporary itself. 8246 SmallVector<const Expr *, 2> CommaLHSs; 8247 SmallVector<SubobjectAdjustment, 2> Adjustments; 8248 const Expr *Inner = 8249 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 8250 8251 // If we passed any comma operators, evaluate their LHSs. 8252 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 8253 if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) 8254 return false; 8255 8256 // A materialized temporary with static storage duration can appear within the 8257 // result of a constant expression evaluation, so we need to preserve its 8258 // value for use outside this evaluation. 8259 APValue *Value; 8260 if (E->getStorageDuration() == SD_Static) { 8261 // FIXME: What about SD_Thread? 8262 Value = E->getOrCreateValue(true); 8263 *Value = APValue(); 8264 Result.set(E); 8265 } else { 8266 Value = &Info.CurrentCall->createTemporary( 8267 E, E->getType(), 8268 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression 8269 : ScopeKind::Block, 8270 Result); 8271 } 8272 8273 QualType Type = Inner->getType(); 8274 8275 // Materialize the temporary itself. 8276 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 8277 *Value = APValue(); 8278 return false; 8279 } 8280 8281 // Adjust our lvalue to refer to the desired subobject. 8282 for (unsigned I = Adjustments.size(); I != 0; /**/) { 8283 --I; 8284 switch (Adjustments[I].Kind) { 8285 case SubobjectAdjustment::DerivedToBaseAdjustment: 8286 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 8287 Type, Result)) 8288 return false; 8289 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 8290 break; 8291 8292 case SubobjectAdjustment::FieldAdjustment: 8293 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 8294 return false; 8295 Type = Adjustments[I].Field->getType(); 8296 break; 8297 8298 case SubobjectAdjustment::MemberPointerAdjustment: 8299 if (!HandleMemberPointerAccess(this->Info, Type, Result, 8300 Adjustments[I].Ptr.RHS)) 8301 return false; 8302 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 8303 break; 8304 } 8305 } 8306 8307 return true; 8308 } 8309 8310 bool 8311 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8312 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 8313 "lvalue compound literal in c++?"); 8314 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 8315 // only see this when folding in C, so there's no standard to follow here. 8316 return Success(E); 8317 } 8318 8319 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 8320 TypeInfoLValue TypeInfo; 8321 8322 if (!E->isPotentiallyEvaluated()) { 8323 if (E->isTypeOperand()) 8324 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 8325 else 8326 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 8327 } else { 8328 if (!Info.Ctx.getLangOpts().CPlusPlus20) { 8329 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 8330 << E->getExprOperand()->getType() 8331 << E->getExprOperand()->getSourceRange(); 8332 } 8333 8334 if (!Visit(E->getExprOperand())) 8335 return false; 8336 8337 Optional<DynamicType> DynType = 8338 ComputeDynamicType(Info, E, Result, AK_TypeId); 8339 if (!DynType) 8340 return false; 8341 8342 TypeInfo = 8343 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 8344 } 8345 8346 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 8347 } 8348 8349 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 8350 return Success(E->getGuidDecl()); 8351 } 8352 8353 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 8354 // Handle static data members. 8355 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 8356 VisitIgnoredBaseExpression(E->getBase()); 8357 return VisitVarDecl(E, VD); 8358 } 8359 8360 // Handle static member functions. 8361 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 8362 if (MD->isStatic()) { 8363 VisitIgnoredBaseExpression(E->getBase()); 8364 return Success(MD); 8365 } 8366 } 8367 8368 // Handle non-static data members. 8369 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 8370 } 8371 8372 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 8373 // FIXME: Deal with vectors as array subscript bases. 8374 if (E->getBase()->getType()->isVectorType()) 8375 return Error(E); 8376 8377 APSInt Index; 8378 bool Success = true; 8379 8380 // C++17's rules require us to evaluate the LHS first, regardless of which 8381 // side is the base. 8382 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { 8383 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) 8384 : !EvaluateInteger(SubExpr, Index, Info)) { 8385 if (!Info.noteFailure()) 8386 return false; 8387 Success = false; 8388 } 8389 } 8390 8391 return Success && 8392 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 8393 } 8394 8395 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 8396 return evaluatePointer(E->getSubExpr(), Result); 8397 } 8398 8399 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 8400 if (!Visit(E->getSubExpr())) 8401 return false; 8402 // __real is a no-op on scalar lvalues. 8403 if (E->getSubExpr()->getType()->isAnyComplexType()) 8404 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 8405 return true; 8406 } 8407 8408 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 8409 assert(E->getSubExpr()->getType()->isAnyComplexType() && 8410 "lvalue __imag__ on scalar?"); 8411 if (!Visit(E->getSubExpr())) 8412 return false; 8413 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 8414 return true; 8415 } 8416 8417 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 8418 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8419 return Error(UO); 8420 8421 if (!this->Visit(UO->getSubExpr())) 8422 return false; 8423 8424 return handleIncDec( 8425 this->Info, UO, Result, UO->getSubExpr()->getType(), 8426 UO->isIncrementOp(), nullptr); 8427 } 8428 8429 bool LValueExprEvaluator::VisitCompoundAssignOperator( 8430 const CompoundAssignOperator *CAO) { 8431 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8432 return Error(CAO); 8433 8434 bool Success = true; 8435 8436 // C++17 onwards require that we evaluate the RHS first. 8437 APValue RHS; 8438 if (!Evaluate(RHS, this->Info, CAO->getRHS())) { 8439 if (!Info.noteFailure()) 8440 return false; 8441 Success = false; 8442 } 8443 8444 // The overall lvalue result is the result of evaluating the LHS. 8445 if (!this->Visit(CAO->getLHS()) || !Success) 8446 return false; 8447 8448 return handleCompoundAssignment( 8449 this->Info, CAO, 8450 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 8451 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 8452 } 8453 8454 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 8455 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8456 return Error(E); 8457 8458 bool Success = true; 8459 8460 // C++17 onwards require that we evaluate the RHS first. 8461 APValue NewVal; 8462 if (!Evaluate(NewVal, this->Info, E->getRHS())) { 8463 if (!Info.noteFailure()) 8464 return false; 8465 Success = false; 8466 } 8467 8468 if (!this->Visit(E->getLHS()) || !Success) 8469 return false; 8470 8471 if (Info.getLangOpts().CPlusPlus20 && 8472 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 8473 return false; 8474 8475 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 8476 NewVal); 8477 } 8478 8479 //===----------------------------------------------------------------------===// 8480 // Pointer Evaluation 8481 //===----------------------------------------------------------------------===// 8482 8483 /// Attempts to compute the number of bytes available at the pointer 8484 /// returned by a function with the alloc_size attribute. Returns true if we 8485 /// were successful. Places an unsigned number into `Result`. 8486 /// 8487 /// This expects the given CallExpr to be a call to a function with an 8488 /// alloc_size attribute. 8489 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8490 const CallExpr *Call, 8491 llvm::APInt &Result) { 8492 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 8493 8494 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 8495 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 8496 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 8497 if (Call->getNumArgs() <= SizeArgNo) 8498 return false; 8499 8500 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 8501 Expr::EvalResult ExprResult; 8502 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 8503 return false; 8504 Into = ExprResult.Val.getInt(); 8505 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 8506 return false; 8507 Into = Into.zextOrSelf(BitsInSizeT); 8508 return true; 8509 }; 8510 8511 APSInt SizeOfElem; 8512 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 8513 return false; 8514 8515 if (!AllocSize->getNumElemsParam().isValid()) { 8516 Result = std::move(SizeOfElem); 8517 return true; 8518 } 8519 8520 APSInt NumberOfElems; 8521 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 8522 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 8523 return false; 8524 8525 bool Overflow; 8526 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 8527 if (Overflow) 8528 return false; 8529 8530 Result = std::move(BytesAvailable); 8531 return true; 8532 } 8533 8534 /// Convenience function. LVal's base must be a call to an alloc_size 8535 /// function. 8536 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 8537 const LValue &LVal, 8538 llvm::APInt &Result) { 8539 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 8540 "Can't get the size of a non alloc_size function"); 8541 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 8542 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 8543 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 8544 } 8545 8546 /// Attempts to evaluate the given LValueBase as the result of a call to 8547 /// a function with the alloc_size attribute. If it was possible to do so, this 8548 /// function will return true, make Result's Base point to said function call, 8549 /// and mark Result's Base as invalid. 8550 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 8551 LValue &Result) { 8552 if (Base.isNull()) 8553 return false; 8554 8555 // Because we do no form of static analysis, we only support const variables. 8556 // 8557 // Additionally, we can't support parameters, nor can we support static 8558 // variables (in the latter case, use-before-assign isn't UB; in the former, 8559 // we have no clue what they'll be assigned to). 8560 const auto *VD = 8561 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 8562 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 8563 return false; 8564 8565 const Expr *Init = VD->getAnyInitializer(); 8566 if (!Init) 8567 return false; 8568 8569 const Expr *E = Init->IgnoreParens(); 8570 if (!tryUnwrapAllocSizeCall(E)) 8571 return false; 8572 8573 // Store E instead of E unwrapped so that the type of the LValue's base is 8574 // what the user wanted. 8575 Result.setInvalid(E); 8576 8577 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 8578 Result.addUnsizedArray(Info, E, Pointee); 8579 return true; 8580 } 8581 8582 namespace { 8583 class PointerExprEvaluator 8584 : public ExprEvaluatorBase<PointerExprEvaluator> { 8585 LValue &Result; 8586 bool InvalidBaseOK; 8587 8588 bool Success(const Expr *E) { 8589 Result.set(E); 8590 return true; 8591 } 8592 8593 bool evaluateLValue(const Expr *E, LValue &Result) { 8594 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 8595 } 8596 8597 bool evaluatePointer(const Expr *E, LValue &Result) { 8598 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 8599 } 8600 8601 bool visitNonBuiltinCallExpr(const CallExpr *E); 8602 public: 8603 8604 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 8605 : ExprEvaluatorBaseTy(info), Result(Result), 8606 InvalidBaseOK(InvalidBaseOK) {} 8607 8608 bool Success(const APValue &V, const Expr *E) { 8609 Result.setFrom(Info.Ctx, V); 8610 return true; 8611 } 8612 bool ZeroInitialization(const Expr *E) { 8613 Result.setNull(Info.Ctx, E->getType()); 8614 return true; 8615 } 8616 8617 bool VisitBinaryOperator(const BinaryOperator *E); 8618 bool VisitCastExpr(const CastExpr* E); 8619 bool VisitUnaryAddrOf(const UnaryOperator *E); 8620 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 8621 { return Success(E); } 8622 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 8623 if (E->isExpressibleAsConstantInitializer()) 8624 return Success(E); 8625 if (Info.noteFailure()) 8626 EvaluateIgnoredValue(Info, E->getSubExpr()); 8627 return Error(E); 8628 } 8629 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 8630 { return Success(E); } 8631 bool VisitCallExpr(const CallExpr *E); 8632 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 8633 bool VisitBlockExpr(const BlockExpr *E) { 8634 if (!E->getBlockDecl()->hasCaptures()) 8635 return Success(E); 8636 return Error(E); 8637 } 8638 bool VisitCXXThisExpr(const CXXThisExpr *E) { 8639 // Can't look at 'this' when checking a potential constant expression. 8640 if (Info.checkingPotentialConstantExpression()) 8641 return false; 8642 if (!Info.CurrentCall->This) { 8643 if (Info.getLangOpts().CPlusPlus11) 8644 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 8645 else 8646 Info.FFDiag(E); 8647 return false; 8648 } 8649 Result = *Info.CurrentCall->This; 8650 // If we are inside a lambda's call operator, the 'this' expression refers 8651 // to the enclosing '*this' object (either by value or reference) which is 8652 // either copied into the closure object's field that represents the '*this' 8653 // or refers to '*this'. 8654 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 8655 // Ensure we actually have captured 'this'. (an error will have 8656 // been previously reported if not). 8657 if (!Info.CurrentCall->LambdaThisCaptureField) 8658 return false; 8659 8660 // Update 'Result' to refer to the data member/field of the closure object 8661 // that represents the '*this' capture. 8662 if (!HandleLValueMember(Info, E, Result, 8663 Info.CurrentCall->LambdaThisCaptureField)) 8664 return false; 8665 // If we captured '*this' by reference, replace the field with its referent. 8666 if (Info.CurrentCall->LambdaThisCaptureField->getType() 8667 ->isPointerType()) { 8668 APValue RVal; 8669 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, 8670 RVal)) 8671 return false; 8672 8673 Result.setFrom(Info.Ctx, RVal); 8674 } 8675 } 8676 return true; 8677 } 8678 8679 bool VisitCXXNewExpr(const CXXNewExpr *E); 8680 8681 bool VisitSourceLocExpr(const SourceLocExpr *E) { 8682 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?"); 8683 APValue LValResult = E->EvaluateInContext( 8684 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 8685 Result.setFrom(Info.Ctx, LValResult); 8686 return true; 8687 } 8688 8689 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { 8690 std::string ResultStr = E->ComputeName(Info.Ctx); 8691 8692 QualType CharTy = Info.Ctx.CharTy.withConst(); 8693 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), 8694 ResultStr.size() + 1); 8695 QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr, 8696 ArrayType::Normal, 0); 8697 8698 StringLiteral *SL = 8699 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii, 8700 /*Pascal*/ false, ArrayTy, E->getLocation()); 8701 8702 evaluateLValue(SL, Result); 8703 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); 8704 return true; 8705 } 8706 8707 // FIXME: Missing: @protocol, @selector 8708 }; 8709 } // end anonymous namespace 8710 8711 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 8712 bool InvalidBaseOK) { 8713 assert(!E->isValueDependent()); 8714 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 8715 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8716 } 8717 8718 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 8719 if (E->getOpcode() != BO_Add && 8720 E->getOpcode() != BO_Sub) 8721 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8722 8723 const Expr *PExp = E->getLHS(); 8724 const Expr *IExp = E->getRHS(); 8725 if (IExp->getType()->isPointerType()) 8726 std::swap(PExp, IExp); 8727 8728 bool EvalPtrOK = evaluatePointer(PExp, Result); 8729 if (!EvalPtrOK && !Info.noteFailure()) 8730 return false; 8731 8732 llvm::APSInt Offset; 8733 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 8734 return false; 8735 8736 if (E->getOpcode() == BO_Sub) 8737 negateAsSigned(Offset); 8738 8739 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 8740 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 8741 } 8742 8743 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 8744 return evaluateLValue(E->getSubExpr(), Result); 8745 } 8746 8747 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 8748 const Expr *SubExpr = E->getSubExpr(); 8749 8750 switch (E->getCastKind()) { 8751 default: 8752 break; 8753 case CK_BitCast: 8754 case CK_CPointerToObjCPointerCast: 8755 case CK_BlockPointerToObjCPointerCast: 8756 case CK_AnyPointerToBlockPointerCast: 8757 case CK_AddressSpaceConversion: 8758 if (!Visit(SubExpr)) 8759 return false; 8760 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 8761 // permitted in constant expressions in C++11. Bitcasts from cv void* are 8762 // also static_casts, but we disallow them as a resolution to DR1312. 8763 if (!E->getType()->isVoidPointerType()) { 8764 if (!Result.InvalidBase && !Result.Designator.Invalid && 8765 !Result.IsNullPtr && 8766 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), 8767 E->getType()->getPointeeType()) && 8768 Info.getStdAllocatorCaller("allocate")) { 8769 // Inside a call to std::allocator::allocate and friends, we permit 8770 // casting from void* back to cv1 T* for a pointer that points to a 8771 // cv2 T. 8772 } else { 8773 Result.Designator.setInvalid(); 8774 if (SubExpr->getType()->isVoidPointerType()) 8775 CCEDiag(E, diag::note_constexpr_invalid_cast) 8776 << 3 << SubExpr->getType(); 8777 else 8778 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8779 } 8780 } 8781 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 8782 ZeroInitialization(E); 8783 return true; 8784 8785 case CK_DerivedToBase: 8786 case CK_UncheckedDerivedToBase: 8787 if (!evaluatePointer(E->getSubExpr(), Result)) 8788 return false; 8789 if (!Result.Base && Result.Offset.isZero()) 8790 return true; 8791 8792 // Now figure out the necessary offset to add to the base LV to get from 8793 // the derived class to the base class. 8794 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 8795 castAs<PointerType>()->getPointeeType(), 8796 Result); 8797 8798 case CK_BaseToDerived: 8799 if (!Visit(E->getSubExpr())) 8800 return false; 8801 if (!Result.Base && Result.Offset.isZero()) 8802 return true; 8803 return HandleBaseToDerivedCast(Info, E, Result); 8804 8805 case CK_Dynamic: 8806 if (!Visit(E->getSubExpr())) 8807 return false; 8808 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8809 8810 case CK_NullToPointer: 8811 VisitIgnoredValue(E->getSubExpr()); 8812 return ZeroInitialization(E); 8813 8814 case CK_IntegralToPointer: { 8815 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 8816 8817 APValue Value; 8818 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 8819 break; 8820 8821 if (Value.isInt()) { 8822 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 8823 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 8824 Result.Base = (Expr*)nullptr; 8825 Result.InvalidBase = false; 8826 Result.Offset = CharUnits::fromQuantity(N); 8827 Result.Designator.setInvalid(); 8828 Result.IsNullPtr = false; 8829 return true; 8830 } else { 8831 // Cast is of an lvalue, no need to change value. 8832 Result.setFrom(Info.Ctx, Value); 8833 return true; 8834 } 8835 } 8836 8837 case CK_ArrayToPointerDecay: { 8838 if (SubExpr->isGLValue()) { 8839 if (!evaluateLValue(SubExpr, Result)) 8840 return false; 8841 } else { 8842 APValue &Value = Info.CurrentCall->createTemporary( 8843 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); 8844 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 8845 return false; 8846 } 8847 // The result is a pointer to the first element of the array. 8848 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 8849 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 8850 Result.addArray(Info, E, CAT); 8851 else 8852 Result.addUnsizedArray(Info, E, AT->getElementType()); 8853 return true; 8854 } 8855 8856 case CK_FunctionToPointerDecay: 8857 return evaluateLValue(SubExpr, Result); 8858 8859 case CK_LValueToRValue: { 8860 LValue LVal; 8861 if (!evaluateLValue(E->getSubExpr(), LVal)) 8862 return false; 8863 8864 APValue RVal; 8865 // Note, we use the subexpression's type in order to retain cv-qualifiers. 8866 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 8867 LVal, RVal)) 8868 return InvalidBaseOK && 8869 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 8870 return Success(RVal, E); 8871 } 8872 } 8873 8874 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8875 } 8876 8877 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, 8878 UnaryExprOrTypeTrait ExprKind) { 8879 // C++ [expr.alignof]p3: 8880 // When alignof is applied to a reference type, the result is the 8881 // alignment of the referenced type. 8882 if (const ReferenceType *Ref = T->getAs<ReferenceType>()) 8883 T = Ref->getPointeeType(); 8884 8885 if (T.getQualifiers().hasUnaligned()) 8886 return CharUnits::One(); 8887 8888 const bool AlignOfReturnsPreferred = 8889 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 8890 8891 // __alignof is defined to return the preferred alignment. 8892 // Before 8, clang returned the preferred alignment for alignof and _Alignof 8893 // as well. 8894 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 8895 return Info.Ctx.toCharUnitsFromBits( 8896 Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); 8897 // alignof and _Alignof are defined to return the ABI alignment. 8898 else if (ExprKind == UETT_AlignOf) 8899 return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); 8900 else 8901 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 8902 } 8903 8904 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, 8905 UnaryExprOrTypeTrait ExprKind) { 8906 E = E->IgnoreParens(); 8907 8908 // The kinds of expressions that we have special-case logic here for 8909 // should be kept up to date with the special checks for those 8910 // expressions in Sema. 8911 8912 // alignof decl is always accepted, even if it doesn't make sense: we default 8913 // to 1 in those cases. 8914 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 8915 return Info.Ctx.getDeclAlign(DRE->getDecl(), 8916 /*RefAsPointee*/true); 8917 8918 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 8919 return Info.Ctx.getDeclAlign(ME->getMemberDecl(), 8920 /*RefAsPointee*/true); 8921 8922 return GetAlignOfType(Info, E->getType(), ExprKind); 8923 } 8924 8925 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { 8926 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) 8927 return Info.Ctx.getDeclAlign(VD); 8928 if (const auto *E = Value.Base.dyn_cast<const Expr *>()) 8929 return GetAlignOfExpr(Info, E, UETT_AlignOf); 8930 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf); 8931 } 8932 8933 /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, 8934 /// __builtin_is_aligned and __builtin_assume_aligned. 8935 static bool getAlignmentArgument(const Expr *E, QualType ForType, 8936 EvalInfo &Info, APSInt &Alignment) { 8937 if (!EvaluateInteger(E, Alignment, Info)) 8938 return false; 8939 if (Alignment < 0 || !Alignment.isPowerOf2()) { 8940 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; 8941 return false; 8942 } 8943 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); 8944 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); 8945 if (APSInt::compareValues(Alignment, MaxValue) > 0) { 8946 Info.FFDiag(E, diag::note_constexpr_alignment_too_big) 8947 << MaxValue << ForType << Alignment; 8948 return false; 8949 } 8950 // Ensure both alignment and source value have the same bit width so that we 8951 // don't assert when computing the resulting value. 8952 APSInt ExtAlignment = 8953 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); 8954 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && 8955 "Alignment should not be changed by ext/trunc"); 8956 Alignment = ExtAlignment; 8957 assert(Alignment.getBitWidth() == SrcWidth); 8958 return true; 8959 } 8960 8961 // To be clear: this happily visits unsupported builtins. Better name welcomed. 8962 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 8963 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 8964 return true; 8965 8966 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 8967 return false; 8968 8969 Result.setInvalid(E); 8970 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 8971 Result.addUnsizedArray(Info, E, PointeeTy); 8972 return true; 8973 } 8974 8975 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 8976 if (IsConstantCall(E)) 8977 return Success(E); 8978 8979 if (unsigned BuiltinOp = E->getBuiltinCallee()) 8980 return VisitBuiltinCallExpr(E, BuiltinOp); 8981 8982 return visitNonBuiltinCallExpr(E); 8983 } 8984 8985 // Determine if T is a character type for which we guarantee that 8986 // sizeof(T) == 1. 8987 static bool isOneByteCharacterType(QualType T) { 8988 return T->isCharType() || T->isChar8Type(); 8989 } 8990 8991 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 8992 unsigned BuiltinOp) { 8993 switch (BuiltinOp) { 8994 case Builtin::BI__builtin_addressof: 8995 return evaluateLValue(E->getArg(0), Result); 8996 case Builtin::BI__builtin_assume_aligned: { 8997 // We need to be very careful here because: if the pointer does not have the 8998 // asserted alignment, then the behavior is undefined, and undefined 8999 // behavior is non-constant. 9000 if (!evaluatePointer(E->getArg(0), Result)) 9001 return false; 9002 9003 LValue OffsetResult(Result); 9004 APSInt Alignment; 9005 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9006 Alignment)) 9007 return false; 9008 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 9009 9010 if (E->getNumArgs() > 2) { 9011 APSInt Offset; 9012 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 9013 return false; 9014 9015 int64_t AdditionalOffset = -Offset.getZExtValue(); 9016 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 9017 } 9018 9019 // If there is a base object, then it must have the correct alignment. 9020 if (OffsetResult.Base) { 9021 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); 9022 9023 if (BaseAlignment < Align) { 9024 Result.Designator.setInvalid(); 9025 // FIXME: Add support to Diagnostic for long / long long. 9026 CCEDiag(E->getArg(0), 9027 diag::note_constexpr_baa_insufficient_alignment) << 0 9028 << (unsigned)BaseAlignment.getQuantity() 9029 << (unsigned)Align.getQuantity(); 9030 return false; 9031 } 9032 } 9033 9034 // The offset must also have the correct alignment. 9035 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 9036 Result.Designator.setInvalid(); 9037 9038 (OffsetResult.Base 9039 ? CCEDiag(E->getArg(0), 9040 diag::note_constexpr_baa_insufficient_alignment) << 1 9041 : CCEDiag(E->getArg(0), 9042 diag::note_constexpr_baa_value_insufficient_alignment)) 9043 << (int)OffsetResult.Offset.getQuantity() 9044 << (unsigned)Align.getQuantity(); 9045 return false; 9046 } 9047 9048 return true; 9049 } 9050 case Builtin::BI__builtin_align_up: 9051 case Builtin::BI__builtin_align_down: { 9052 if (!evaluatePointer(E->getArg(0), Result)) 9053 return false; 9054 APSInt Alignment; 9055 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9056 Alignment)) 9057 return false; 9058 CharUnits BaseAlignment = getBaseAlignment(Info, Result); 9059 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); 9060 // For align_up/align_down, we can return the same value if the alignment 9061 // is known to be greater or equal to the requested value. 9062 if (PtrAlign.getQuantity() >= Alignment) 9063 return true; 9064 9065 // The alignment could be greater than the minimum at run-time, so we cannot 9066 // infer much about the resulting pointer value. One case is possible: 9067 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we 9068 // can infer the correct index if the requested alignment is smaller than 9069 // the base alignment so we can perform the computation on the offset. 9070 if (BaseAlignment.getQuantity() >= Alignment) { 9071 assert(Alignment.getBitWidth() <= 64 && 9072 "Cannot handle > 64-bit address-space"); 9073 uint64_t Alignment64 = Alignment.getZExtValue(); 9074 CharUnits NewOffset = CharUnits::fromQuantity( 9075 BuiltinOp == Builtin::BI__builtin_align_down 9076 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) 9077 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); 9078 Result.adjustOffset(NewOffset - Result.Offset); 9079 // TODO: diagnose out-of-bounds values/only allow for arrays? 9080 return true; 9081 } 9082 // Otherwise, we cannot constant-evaluate the result. 9083 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) 9084 << Alignment; 9085 return false; 9086 } 9087 case Builtin::BI__builtin_operator_new: 9088 return HandleOperatorNewCall(Info, E, Result); 9089 case Builtin::BI__builtin_launder: 9090 return evaluatePointer(E->getArg(0), Result); 9091 case Builtin::BIstrchr: 9092 case Builtin::BIwcschr: 9093 case Builtin::BImemchr: 9094 case Builtin::BIwmemchr: 9095 if (Info.getLangOpts().CPlusPlus11) 9096 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9097 << /*isConstexpr*/0 << /*isConstructor*/0 9098 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 9099 else 9100 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9101 LLVM_FALLTHROUGH; 9102 case Builtin::BI__builtin_strchr: 9103 case Builtin::BI__builtin_wcschr: 9104 case Builtin::BI__builtin_memchr: 9105 case Builtin::BI__builtin_char_memchr: 9106 case Builtin::BI__builtin_wmemchr: { 9107 if (!Visit(E->getArg(0))) 9108 return false; 9109 APSInt Desired; 9110 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 9111 return false; 9112 uint64_t MaxLength = uint64_t(-1); 9113 if (BuiltinOp != Builtin::BIstrchr && 9114 BuiltinOp != Builtin::BIwcschr && 9115 BuiltinOp != Builtin::BI__builtin_strchr && 9116 BuiltinOp != Builtin::BI__builtin_wcschr) { 9117 APSInt N; 9118 if (!EvaluateInteger(E->getArg(2), N, Info)) 9119 return false; 9120 MaxLength = N.getExtValue(); 9121 } 9122 // We cannot find the value if there are no candidates to match against. 9123 if (MaxLength == 0u) 9124 return ZeroInitialization(E); 9125 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 9126 Result.Designator.Invalid) 9127 return false; 9128 QualType CharTy = Result.Designator.getType(Info.Ctx); 9129 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 9130 BuiltinOp == Builtin::BI__builtin_memchr; 9131 assert(IsRawByte || 9132 Info.Ctx.hasSameUnqualifiedType( 9133 CharTy, E->getArg(0)->getType()->getPointeeType())); 9134 // Pointers to const void may point to objects of incomplete type. 9135 if (IsRawByte && CharTy->isIncompleteType()) { 9136 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 9137 return false; 9138 } 9139 // Give up on byte-oriented matching against multibyte elements. 9140 // FIXME: We can compare the bytes in the correct order. 9141 if (IsRawByte && !isOneByteCharacterType(CharTy)) { 9142 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) 9143 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'") 9144 << CharTy; 9145 return false; 9146 } 9147 // Figure out what value we're actually looking for (after converting to 9148 // the corresponding unsigned type if necessary). 9149 uint64_t DesiredVal; 9150 bool StopAtNull = false; 9151 switch (BuiltinOp) { 9152 case Builtin::BIstrchr: 9153 case Builtin::BI__builtin_strchr: 9154 // strchr compares directly to the passed integer, and therefore 9155 // always fails if given an int that is not a char. 9156 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 9157 E->getArg(1)->getType(), 9158 Desired), 9159 Desired)) 9160 return ZeroInitialization(E); 9161 StopAtNull = true; 9162 LLVM_FALLTHROUGH; 9163 case Builtin::BImemchr: 9164 case Builtin::BI__builtin_memchr: 9165 case Builtin::BI__builtin_char_memchr: 9166 // memchr compares by converting both sides to unsigned char. That's also 9167 // correct for strchr if we get this far (to cope with plain char being 9168 // unsigned in the strchr case). 9169 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 9170 break; 9171 9172 case Builtin::BIwcschr: 9173 case Builtin::BI__builtin_wcschr: 9174 StopAtNull = true; 9175 LLVM_FALLTHROUGH; 9176 case Builtin::BIwmemchr: 9177 case Builtin::BI__builtin_wmemchr: 9178 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 9179 DesiredVal = Desired.getZExtValue(); 9180 break; 9181 } 9182 9183 for (; MaxLength; --MaxLength) { 9184 APValue Char; 9185 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 9186 !Char.isInt()) 9187 return false; 9188 if (Char.getInt().getZExtValue() == DesiredVal) 9189 return true; 9190 if (StopAtNull && !Char.getInt()) 9191 break; 9192 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 9193 return false; 9194 } 9195 // Not found: return nullptr. 9196 return ZeroInitialization(E); 9197 } 9198 9199 case Builtin::BImemcpy: 9200 case Builtin::BImemmove: 9201 case Builtin::BIwmemcpy: 9202 case Builtin::BIwmemmove: 9203 if (Info.getLangOpts().CPlusPlus11) 9204 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9205 << /*isConstexpr*/0 << /*isConstructor*/0 9206 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 9207 else 9208 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9209 LLVM_FALLTHROUGH; 9210 case Builtin::BI__builtin_memcpy: 9211 case Builtin::BI__builtin_memmove: 9212 case Builtin::BI__builtin_wmemcpy: 9213 case Builtin::BI__builtin_wmemmove: { 9214 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 9215 BuiltinOp == Builtin::BIwmemmove || 9216 BuiltinOp == Builtin::BI__builtin_wmemcpy || 9217 BuiltinOp == Builtin::BI__builtin_wmemmove; 9218 bool Move = BuiltinOp == Builtin::BImemmove || 9219 BuiltinOp == Builtin::BIwmemmove || 9220 BuiltinOp == Builtin::BI__builtin_memmove || 9221 BuiltinOp == Builtin::BI__builtin_wmemmove; 9222 9223 // The result of mem* is the first argument. 9224 if (!Visit(E->getArg(0))) 9225 return false; 9226 LValue Dest = Result; 9227 9228 LValue Src; 9229 if (!EvaluatePointer(E->getArg(1), Src, Info)) 9230 return false; 9231 9232 APSInt N; 9233 if (!EvaluateInteger(E->getArg(2), N, Info)) 9234 return false; 9235 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 9236 9237 // If the size is zero, we treat this as always being a valid no-op. 9238 // (Even if one of the src and dest pointers is null.) 9239 if (!N) 9240 return true; 9241 9242 // Otherwise, if either of the operands is null, we can't proceed. Don't 9243 // try to determine the type of the copied objects, because there aren't 9244 // any. 9245 if (!Src.Base || !Dest.Base) { 9246 APValue Val; 9247 (!Src.Base ? Src : Dest).moveInto(Val); 9248 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 9249 << Move << WChar << !!Src.Base 9250 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 9251 return false; 9252 } 9253 if (Src.Designator.Invalid || Dest.Designator.Invalid) 9254 return false; 9255 9256 // We require that Src and Dest are both pointers to arrays of 9257 // trivially-copyable type. (For the wide version, the designator will be 9258 // invalid if the designated object is not a wchar_t.) 9259 QualType T = Dest.Designator.getType(Info.Ctx); 9260 QualType SrcT = Src.Designator.getType(Info.Ctx); 9261 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 9262 // FIXME: Consider using our bit_cast implementation to support this. 9263 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 9264 return false; 9265 } 9266 if (T->isIncompleteType()) { 9267 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 9268 return false; 9269 } 9270 if (!T.isTriviallyCopyableType(Info.Ctx)) { 9271 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 9272 return false; 9273 } 9274 9275 // Figure out how many T's we're copying. 9276 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 9277 if (!WChar) { 9278 uint64_t Remainder; 9279 llvm::APInt OrigN = N; 9280 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 9281 if (Remainder) { 9282 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9283 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) 9284 << (unsigned)TSize; 9285 return false; 9286 } 9287 } 9288 9289 // Check that the copying will remain within the arrays, just so that we 9290 // can give a more meaningful diagnostic. This implicitly also checks that 9291 // N fits into 64 bits. 9292 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 9293 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 9294 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 9295 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 9296 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 9297 << toString(N, 10, /*Signed*/false); 9298 return false; 9299 } 9300 uint64_t NElems = N.getZExtValue(); 9301 uint64_t NBytes = NElems * TSize; 9302 9303 // Check for overlap. 9304 int Direction = 1; 9305 if (HasSameBase(Src, Dest)) { 9306 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 9307 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 9308 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 9309 // Dest is inside the source region. 9310 if (!Move) { 9311 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9312 return false; 9313 } 9314 // For memmove and friends, copy backwards. 9315 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 9316 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 9317 return false; 9318 Direction = -1; 9319 } else if (!Move && SrcOffset >= DestOffset && 9320 SrcOffset - DestOffset < NBytes) { 9321 // Src is inside the destination region for memcpy: invalid. 9322 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 9323 return false; 9324 } 9325 } 9326 9327 while (true) { 9328 APValue Val; 9329 // FIXME: Set WantObjectRepresentation to true if we're copying a 9330 // char-like type? 9331 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 9332 !handleAssignment(Info, E, Dest, T, Val)) 9333 return false; 9334 // Do not iterate past the last element; if we're copying backwards, that 9335 // might take us off the start of the array. 9336 if (--NElems == 0) 9337 return true; 9338 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 9339 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 9340 return false; 9341 } 9342 } 9343 9344 default: 9345 break; 9346 } 9347 9348 return visitNonBuiltinCallExpr(E); 9349 } 9350 9351 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 9352 APValue &Result, const InitListExpr *ILE, 9353 QualType AllocType); 9354 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 9355 APValue &Result, 9356 const CXXConstructExpr *CCE, 9357 QualType AllocType); 9358 9359 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 9360 if (!Info.getLangOpts().CPlusPlus20) 9361 Info.CCEDiag(E, diag::note_constexpr_new); 9362 9363 // We cannot speculatively evaluate a delete expression. 9364 if (Info.SpeculativeEvaluationDepth) 9365 return false; 9366 9367 FunctionDecl *OperatorNew = E->getOperatorNew(); 9368 9369 bool IsNothrow = false; 9370 bool IsPlacement = false; 9371 if (OperatorNew->isReservedGlobalPlacementOperator() && 9372 Info.CurrentCall->isStdFunction() && !E->isArray()) { 9373 // FIXME Support array placement new. 9374 assert(E->getNumPlacementArgs() == 1); 9375 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 9376 return false; 9377 if (Result.Designator.Invalid) 9378 return false; 9379 IsPlacement = true; 9380 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 9381 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 9382 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 9383 return false; 9384 } else if (E->getNumPlacementArgs()) { 9385 // The only new-placement list we support is of the form (std::nothrow). 9386 // 9387 // FIXME: There is no restriction on this, but it's not clear that any 9388 // other form makes any sense. We get here for cases such as: 9389 // 9390 // new (std::align_val_t{N}) X(int) 9391 // 9392 // (which should presumably be valid only if N is a multiple of 9393 // alignof(int), and in any case can't be deallocated unless N is 9394 // alignof(X) and X has new-extended alignment). 9395 if (E->getNumPlacementArgs() != 1 || 9396 !E->getPlacementArg(0)->getType()->isNothrowT()) 9397 return Error(E, diag::note_constexpr_new_placement); 9398 9399 LValue Nothrow; 9400 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 9401 return false; 9402 IsNothrow = true; 9403 } 9404 9405 const Expr *Init = E->getInitializer(); 9406 const InitListExpr *ResizedArrayILE = nullptr; 9407 const CXXConstructExpr *ResizedArrayCCE = nullptr; 9408 bool ValueInit = false; 9409 9410 QualType AllocType = E->getAllocatedType(); 9411 if (Optional<const Expr*> ArraySize = E->getArraySize()) { 9412 const Expr *Stripped = *ArraySize; 9413 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 9414 Stripped = ICE->getSubExpr()) 9415 if (ICE->getCastKind() != CK_NoOp && 9416 ICE->getCastKind() != CK_IntegralCast) 9417 break; 9418 9419 llvm::APSInt ArrayBound; 9420 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 9421 return false; 9422 9423 // C++ [expr.new]p9: 9424 // The expression is erroneous if: 9425 // -- [...] its value before converting to size_t [or] applying the 9426 // second standard conversion sequence is less than zero 9427 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 9428 if (IsNothrow) 9429 return ZeroInitialization(E); 9430 9431 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 9432 << ArrayBound << (*ArraySize)->getSourceRange(); 9433 return false; 9434 } 9435 9436 // -- its value is such that the size of the allocated object would 9437 // exceed the implementation-defined limit 9438 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType, 9439 ArrayBound) > 9440 ConstantArrayType::getMaxSizeBits(Info.Ctx)) { 9441 if (IsNothrow) 9442 return ZeroInitialization(E); 9443 9444 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large) 9445 << ArrayBound << (*ArraySize)->getSourceRange(); 9446 return false; 9447 } 9448 9449 // -- the new-initializer is a braced-init-list and the number of 9450 // array elements for which initializers are provided [...] 9451 // exceeds the number of elements to initialize 9452 if (!Init) { 9453 // No initialization is performed. 9454 } else if (isa<CXXScalarValueInitExpr>(Init) || 9455 isa<ImplicitValueInitExpr>(Init)) { 9456 ValueInit = true; 9457 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 9458 ResizedArrayCCE = CCE; 9459 } else { 9460 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 9461 assert(CAT && "unexpected type for array initializer"); 9462 9463 unsigned Bits = 9464 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); 9465 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits); 9466 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits); 9467 if (InitBound.ugt(AllocBound)) { 9468 if (IsNothrow) 9469 return ZeroInitialization(E); 9470 9471 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 9472 << toString(AllocBound, 10, /*Signed=*/false) 9473 << toString(InitBound, 10, /*Signed=*/false) 9474 << (*ArraySize)->getSourceRange(); 9475 return false; 9476 } 9477 9478 // If the sizes differ, we must have an initializer list, and we need 9479 // special handling for this case when we initialize. 9480 if (InitBound != AllocBound) 9481 ResizedArrayILE = cast<InitListExpr>(Init); 9482 } 9483 9484 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 9485 ArrayType::Normal, 0); 9486 } else { 9487 assert(!AllocType->isArrayType() && 9488 "array allocation with non-array new"); 9489 } 9490 9491 APValue *Val; 9492 if (IsPlacement) { 9493 AccessKinds AK = AK_Construct; 9494 struct FindObjectHandler { 9495 EvalInfo &Info; 9496 const Expr *E; 9497 QualType AllocType; 9498 const AccessKinds AccessKind; 9499 APValue *Value; 9500 9501 typedef bool result_type; 9502 bool failed() { return false; } 9503 bool found(APValue &Subobj, QualType SubobjType) { 9504 // FIXME: Reject the cases where [basic.life]p8 would not permit the 9505 // old name of the object to be used to name the new object. 9506 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { 9507 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << 9508 SubobjType << AllocType; 9509 return false; 9510 } 9511 Value = &Subobj; 9512 return true; 9513 } 9514 bool found(APSInt &Value, QualType SubobjType) { 9515 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9516 return false; 9517 } 9518 bool found(APFloat &Value, QualType SubobjType) { 9519 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 9520 return false; 9521 } 9522 } Handler = {Info, E, AllocType, AK, nullptr}; 9523 9524 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 9525 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 9526 return false; 9527 9528 Val = Handler.Value; 9529 9530 // [basic.life]p1: 9531 // The lifetime of an object o of type T ends when [...] the storage 9532 // which the object occupies is [...] reused by an object that is not 9533 // nested within o (6.6.2). 9534 *Val = APValue(); 9535 } else { 9536 // Perform the allocation and obtain a pointer to the resulting object. 9537 Val = Info.createHeapAlloc(E, AllocType, Result); 9538 if (!Val) 9539 return false; 9540 } 9541 9542 if (ValueInit) { 9543 ImplicitValueInitExpr VIE(AllocType); 9544 if (!EvaluateInPlace(*Val, Info, Result, &VIE)) 9545 return false; 9546 } else if (ResizedArrayILE) { 9547 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 9548 AllocType)) 9549 return false; 9550 } else if (ResizedArrayCCE) { 9551 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, 9552 AllocType)) 9553 return false; 9554 } else if (Init) { 9555 if (!EvaluateInPlace(*Val, Info, Result, Init)) 9556 return false; 9557 } else if (!getDefaultInitValue(AllocType, *Val)) { 9558 return false; 9559 } 9560 9561 // Array new returns a pointer to the first element, not a pointer to the 9562 // array. 9563 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 9564 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 9565 9566 return true; 9567 } 9568 //===----------------------------------------------------------------------===// 9569 // Member Pointer Evaluation 9570 //===----------------------------------------------------------------------===// 9571 9572 namespace { 9573 class MemberPointerExprEvaluator 9574 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 9575 MemberPtr &Result; 9576 9577 bool Success(const ValueDecl *D) { 9578 Result = MemberPtr(D); 9579 return true; 9580 } 9581 public: 9582 9583 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 9584 : ExprEvaluatorBaseTy(Info), Result(Result) {} 9585 9586 bool Success(const APValue &V, const Expr *E) { 9587 Result.setFrom(V); 9588 return true; 9589 } 9590 bool ZeroInitialization(const Expr *E) { 9591 return Success((const ValueDecl*)nullptr); 9592 } 9593 9594 bool VisitCastExpr(const CastExpr *E); 9595 bool VisitUnaryAddrOf(const UnaryOperator *E); 9596 }; 9597 } // end anonymous namespace 9598 9599 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 9600 EvalInfo &Info) { 9601 assert(!E->isValueDependent()); 9602 assert(E->isPRValue() && E->getType()->isMemberPointerType()); 9603 return MemberPointerExprEvaluator(Info, Result).Visit(E); 9604 } 9605 9606 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 9607 switch (E->getCastKind()) { 9608 default: 9609 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9610 9611 case CK_NullToMemberPointer: 9612 VisitIgnoredValue(E->getSubExpr()); 9613 return ZeroInitialization(E); 9614 9615 case CK_BaseToDerivedMemberPointer: { 9616 if (!Visit(E->getSubExpr())) 9617 return false; 9618 if (E->path_empty()) 9619 return true; 9620 // Base-to-derived member pointer casts store the path in derived-to-base 9621 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 9622 // the wrong end of the derived->base arc, so stagger the path by one class. 9623 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 9624 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 9625 PathI != PathE; ++PathI) { 9626 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9627 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 9628 if (!Result.castToDerived(Derived)) 9629 return Error(E); 9630 } 9631 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 9632 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 9633 return Error(E); 9634 return true; 9635 } 9636 9637 case CK_DerivedToBaseMemberPointer: 9638 if (!Visit(E->getSubExpr())) 9639 return false; 9640 for (CastExpr::path_const_iterator PathI = E->path_begin(), 9641 PathE = E->path_end(); PathI != PathE; ++PathI) { 9642 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 9643 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 9644 if (!Result.castToBase(Base)) 9645 return Error(E); 9646 } 9647 return true; 9648 } 9649 } 9650 9651 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 9652 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 9653 // member can be formed. 9654 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 9655 } 9656 9657 //===----------------------------------------------------------------------===// 9658 // Record Evaluation 9659 //===----------------------------------------------------------------------===// 9660 9661 namespace { 9662 class RecordExprEvaluator 9663 : public ExprEvaluatorBase<RecordExprEvaluator> { 9664 const LValue &This; 9665 APValue &Result; 9666 public: 9667 9668 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 9669 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 9670 9671 bool Success(const APValue &V, const Expr *E) { 9672 Result = V; 9673 return true; 9674 } 9675 bool ZeroInitialization(const Expr *E) { 9676 return ZeroInitialization(E, E->getType()); 9677 } 9678 bool ZeroInitialization(const Expr *E, QualType T); 9679 9680 bool VisitCallExpr(const CallExpr *E) { 9681 return handleCallExpr(E, Result, &This); 9682 } 9683 bool VisitCastExpr(const CastExpr *E); 9684 bool VisitInitListExpr(const InitListExpr *E); 9685 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 9686 return VisitCXXConstructExpr(E, E->getType()); 9687 } 9688 bool VisitLambdaExpr(const LambdaExpr *E); 9689 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 9690 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 9691 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 9692 bool VisitBinCmp(const BinaryOperator *E); 9693 }; 9694 } 9695 9696 /// Perform zero-initialization on an object of non-union class type. 9697 /// C++11 [dcl.init]p5: 9698 /// To zero-initialize an object or reference of type T means: 9699 /// [...] 9700 /// -- if T is a (possibly cv-qualified) non-union class type, 9701 /// each non-static data member and each base-class subobject is 9702 /// zero-initialized 9703 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 9704 const RecordDecl *RD, 9705 const LValue &This, APValue &Result) { 9706 assert(!RD->isUnion() && "Expected non-union class type"); 9707 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 9708 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 9709 std::distance(RD->field_begin(), RD->field_end())); 9710 9711 if (RD->isInvalidDecl()) return false; 9712 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 9713 9714 if (CD) { 9715 unsigned Index = 0; 9716 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 9717 End = CD->bases_end(); I != End; ++I, ++Index) { 9718 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 9719 LValue Subobject = This; 9720 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 9721 return false; 9722 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 9723 Result.getStructBase(Index))) 9724 return false; 9725 } 9726 } 9727 9728 for (const auto *I : RD->fields()) { 9729 // -- if T is a reference type, no initialization is performed. 9730 if (I->isUnnamedBitfield() || I->getType()->isReferenceType()) 9731 continue; 9732 9733 LValue Subobject = This; 9734 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 9735 return false; 9736 9737 ImplicitValueInitExpr VIE(I->getType()); 9738 if (!EvaluateInPlace( 9739 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 9740 return false; 9741 } 9742 9743 return true; 9744 } 9745 9746 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 9747 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 9748 if (RD->isInvalidDecl()) return false; 9749 if (RD->isUnion()) { 9750 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 9751 // object's first non-static named data member is zero-initialized 9752 RecordDecl::field_iterator I = RD->field_begin(); 9753 while (I != RD->field_end() && (*I)->isUnnamedBitfield()) 9754 ++I; 9755 if (I == RD->field_end()) { 9756 Result = APValue((const FieldDecl*)nullptr); 9757 return true; 9758 } 9759 9760 LValue Subobject = This; 9761 if (!HandleLValueMember(Info, E, Subobject, *I)) 9762 return false; 9763 Result = APValue(*I); 9764 ImplicitValueInitExpr VIE(I->getType()); 9765 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 9766 } 9767 9768 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 9769 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 9770 return false; 9771 } 9772 9773 return HandleClassZeroInitialization(Info, E, RD, This, Result); 9774 } 9775 9776 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 9777 switch (E->getCastKind()) { 9778 default: 9779 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9780 9781 case CK_ConstructorConversion: 9782 return Visit(E->getSubExpr()); 9783 9784 case CK_DerivedToBase: 9785 case CK_UncheckedDerivedToBase: { 9786 APValue DerivedObject; 9787 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 9788 return false; 9789 if (!DerivedObject.isStruct()) 9790 return Error(E->getSubExpr()); 9791 9792 // Derived-to-base rvalue conversion: just slice off the derived part. 9793 APValue *Value = &DerivedObject; 9794 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 9795 for (CastExpr::path_const_iterator PathI = E->path_begin(), 9796 PathE = E->path_end(); PathI != PathE; ++PathI) { 9797 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 9798 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 9799 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 9800 RD = Base; 9801 } 9802 Result = *Value; 9803 return true; 9804 } 9805 } 9806 } 9807 9808 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 9809 if (E->isTransparent()) 9810 return Visit(E->getInit(0)); 9811 9812 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); 9813 if (RD->isInvalidDecl()) return false; 9814 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 9815 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 9816 9817 EvalInfo::EvaluatingConstructorRAII EvalObj( 9818 Info, 9819 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 9820 CXXRD && CXXRD->getNumBases()); 9821 9822 if (RD->isUnion()) { 9823 const FieldDecl *Field = E->getInitializedFieldInUnion(); 9824 Result = APValue(Field); 9825 if (!Field) 9826 return true; 9827 9828 // If the initializer list for a union does not contain any elements, the 9829 // first element of the union is value-initialized. 9830 // FIXME: The element should be initialized from an initializer list. 9831 // Is this difference ever observable for initializer lists which 9832 // we don't build? 9833 ImplicitValueInitExpr VIE(Field->getType()); 9834 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; 9835 9836 LValue Subobject = This; 9837 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 9838 return false; 9839 9840 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 9841 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 9842 isa<CXXDefaultInitExpr>(InitExpr)); 9843 9844 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { 9845 if (Field->isBitField()) 9846 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), 9847 Field); 9848 return true; 9849 } 9850 9851 return false; 9852 } 9853 9854 if (!Result.hasValue()) 9855 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 9856 std::distance(RD->field_begin(), RD->field_end())); 9857 unsigned ElementNo = 0; 9858 bool Success = true; 9859 9860 // Initialize base classes. 9861 if (CXXRD && CXXRD->getNumBases()) { 9862 for (const auto &Base : CXXRD->bases()) { 9863 assert(ElementNo < E->getNumInits() && "missing init for base class"); 9864 const Expr *Init = E->getInit(ElementNo); 9865 9866 LValue Subobject = This; 9867 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 9868 return false; 9869 9870 APValue &FieldVal = Result.getStructBase(ElementNo); 9871 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 9872 if (!Info.noteFailure()) 9873 return false; 9874 Success = false; 9875 } 9876 ++ElementNo; 9877 } 9878 9879 EvalObj.finishedConstructingBases(); 9880 } 9881 9882 // Initialize members. 9883 for (const auto *Field : RD->fields()) { 9884 // Anonymous bit-fields are not considered members of the class for 9885 // purposes of aggregate initialization. 9886 if (Field->isUnnamedBitfield()) 9887 continue; 9888 9889 LValue Subobject = This; 9890 9891 bool HaveInit = ElementNo < E->getNumInits(); 9892 9893 // FIXME: Diagnostics here should point to the end of the initializer 9894 // list, not the start. 9895 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, 9896 Subobject, Field, &Layout)) 9897 return false; 9898 9899 // Perform an implicit value-initialization for members beyond the end of 9900 // the initializer list. 9901 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 9902 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; 9903 9904 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 9905 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 9906 isa<CXXDefaultInitExpr>(Init)); 9907 9908 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 9909 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 9910 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 9911 FieldVal, Field))) { 9912 if (!Info.noteFailure()) 9913 return false; 9914 Success = false; 9915 } 9916 } 9917 9918 EvalObj.finishedConstructingFields(); 9919 9920 return Success; 9921 } 9922 9923 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 9924 QualType T) { 9925 // Note that E's type is not necessarily the type of our class here; we might 9926 // be initializing an array element instead. 9927 const CXXConstructorDecl *FD = E->getConstructor(); 9928 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 9929 9930 bool ZeroInit = E->requiresZeroInitialization(); 9931 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 9932 // If we've already performed zero-initialization, we're already done. 9933 if (Result.hasValue()) 9934 return true; 9935 9936 if (ZeroInit) 9937 return ZeroInitialization(E, T); 9938 9939 return getDefaultInitValue(T, Result); 9940 } 9941 9942 const FunctionDecl *Definition = nullptr; 9943 auto Body = FD->getBody(Definition); 9944 9945 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9946 return false; 9947 9948 // Avoid materializing a temporary for an elidable copy/move constructor. 9949 if (E->isElidable() && !ZeroInit) { 9950 // FIXME: This only handles the simplest case, where the source object 9951 // is passed directly as the first argument to the constructor. 9952 // This should also handle stepping though implicit casts and 9953 // and conversion sequences which involve two steps, with a 9954 // conversion operator followed by a converting constructor. 9955 const Expr *SrcObj = E->getArg(0); 9956 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); 9957 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 9958 if (const MaterializeTemporaryExpr *ME = 9959 dyn_cast<MaterializeTemporaryExpr>(SrcObj)) 9960 return Visit(ME->getSubExpr()); 9961 } 9962 9963 if (ZeroInit && !ZeroInitialization(E, T)) 9964 return false; 9965 9966 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 9967 return HandleConstructorCall(E, This, Args, 9968 cast<CXXConstructorDecl>(Definition), Info, 9969 Result); 9970 } 9971 9972 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 9973 const CXXInheritedCtorInitExpr *E) { 9974 if (!Info.CurrentCall) { 9975 assert(Info.checkingPotentialConstantExpression()); 9976 return false; 9977 } 9978 9979 const CXXConstructorDecl *FD = E->getConstructor(); 9980 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 9981 return false; 9982 9983 const FunctionDecl *Definition = nullptr; 9984 auto Body = FD->getBody(Definition); 9985 9986 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 9987 return false; 9988 9989 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 9990 cast<CXXConstructorDecl>(Definition), Info, 9991 Result); 9992 } 9993 9994 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 9995 const CXXStdInitializerListExpr *E) { 9996 const ConstantArrayType *ArrayType = 9997 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 9998 9999 LValue Array; 10000 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 10001 return false; 10002 10003 // Get a pointer to the first element of the array. 10004 Array.addArray(Info, E, ArrayType); 10005 10006 auto InvalidType = [&] { 10007 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 10008 << E->getType(); 10009 return false; 10010 }; 10011 10012 // FIXME: Perform the checks on the field types in SemaInit. 10013 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 10014 RecordDecl::field_iterator Field = Record->field_begin(); 10015 if (Field == Record->field_end()) 10016 return InvalidType(); 10017 10018 // Start pointer. 10019 if (!Field->getType()->isPointerType() || 10020 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10021 ArrayType->getElementType())) 10022 return InvalidType(); 10023 10024 // FIXME: What if the initializer_list type has base classes, etc? 10025 Result = APValue(APValue::UninitStruct(), 0, 2); 10026 Array.moveInto(Result.getStructField(0)); 10027 10028 if (++Field == Record->field_end()) 10029 return InvalidType(); 10030 10031 if (Field->getType()->isPointerType() && 10032 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10033 ArrayType->getElementType())) { 10034 // End pointer. 10035 if (!HandleLValueArrayAdjustment(Info, E, Array, 10036 ArrayType->getElementType(), 10037 ArrayType->getSize().getZExtValue())) 10038 return false; 10039 Array.moveInto(Result.getStructField(1)); 10040 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) 10041 // Length. 10042 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 10043 else 10044 return InvalidType(); 10045 10046 if (++Field != Record->field_end()) 10047 return InvalidType(); 10048 10049 return true; 10050 } 10051 10052 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 10053 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 10054 if (ClosureClass->isInvalidDecl()) 10055 return false; 10056 10057 const size_t NumFields = 10058 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 10059 10060 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 10061 E->capture_init_end()) && 10062 "The number of lambda capture initializers should equal the number of " 10063 "fields within the closure type"); 10064 10065 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 10066 // Iterate through all the lambda's closure object's fields and initialize 10067 // them. 10068 auto *CaptureInitIt = E->capture_init_begin(); 10069 const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); 10070 bool Success = true; 10071 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); 10072 for (const auto *Field : ClosureClass->fields()) { 10073 assert(CaptureInitIt != E->capture_init_end()); 10074 // Get the initializer for this field 10075 Expr *const CurFieldInit = *CaptureInitIt++; 10076 10077 // If there is no initializer, either this is a VLA or an error has 10078 // occurred. 10079 if (!CurFieldInit) 10080 return Error(E); 10081 10082 LValue Subobject = This; 10083 10084 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) 10085 return false; 10086 10087 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10088 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { 10089 if (!Info.keepEvaluatingAfterFailure()) 10090 return false; 10091 Success = false; 10092 } 10093 ++CaptureIt; 10094 } 10095 return Success; 10096 } 10097 10098 static bool EvaluateRecord(const Expr *E, const LValue &This, 10099 APValue &Result, EvalInfo &Info) { 10100 assert(!E->isValueDependent()); 10101 assert(E->isPRValue() && E->getType()->isRecordType() && 10102 "can't evaluate expression as a record rvalue"); 10103 return RecordExprEvaluator(Info, This, Result).Visit(E); 10104 } 10105 10106 //===----------------------------------------------------------------------===// 10107 // Temporary Evaluation 10108 // 10109 // Temporaries are represented in the AST as rvalues, but generally behave like 10110 // lvalues. The full-object of which the temporary is a subobject is implicitly 10111 // materialized so that a reference can bind to it. 10112 //===----------------------------------------------------------------------===// 10113 namespace { 10114 class TemporaryExprEvaluator 10115 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 10116 public: 10117 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 10118 LValueExprEvaluatorBaseTy(Info, Result, false) {} 10119 10120 /// Visit an expression which constructs the value of this temporary. 10121 bool VisitConstructExpr(const Expr *E) { 10122 APValue &Value = Info.CurrentCall->createTemporary( 10123 E, E->getType(), ScopeKind::FullExpression, Result); 10124 return EvaluateInPlace(Value, Info, Result, E); 10125 } 10126 10127 bool VisitCastExpr(const CastExpr *E) { 10128 switch (E->getCastKind()) { 10129 default: 10130 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 10131 10132 case CK_ConstructorConversion: 10133 return VisitConstructExpr(E->getSubExpr()); 10134 } 10135 } 10136 bool VisitInitListExpr(const InitListExpr *E) { 10137 return VisitConstructExpr(E); 10138 } 10139 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10140 return VisitConstructExpr(E); 10141 } 10142 bool VisitCallExpr(const CallExpr *E) { 10143 return VisitConstructExpr(E); 10144 } 10145 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 10146 return VisitConstructExpr(E); 10147 } 10148 bool VisitLambdaExpr(const LambdaExpr *E) { 10149 return VisitConstructExpr(E); 10150 } 10151 }; 10152 } // end anonymous namespace 10153 10154 /// Evaluate an expression of record type as a temporary. 10155 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 10156 assert(!E->isValueDependent()); 10157 assert(E->isPRValue() && E->getType()->isRecordType()); 10158 return TemporaryExprEvaluator(Info, Result).Visit(E); 10159 } 10160 10161 //===----------------------------------------------------------------------===// 10162 // Vector Evaluation 10163 //===----------------------------------------------------------------------===// 10164 10165 namespace { 10166 class VectorExprEvaluator 10167 : public ExprEvaluatorBase<VectorExprEvaluator> { 10168 APValue &Result; 10169 public: 10170 10171 VectorExprEvaluator(EvalInfo &info, APValue &Result) 10172 : ExprEvaluatorBaseTy(info), Result(Result) {} 10173 10174 bool Success(ArrayRef<APValue> V, const Expr *E) { 10175 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 10176 // FIXME: remove this APValue copy. 10177 Result = APValue(V.data(), V.size()); 10178 return true; 10179 } 10180 bool Success(const APValue &V, const Expr *E) { 10181 assert(V.isVector()); 10182 Result = V; 10183 return true; 10184 } 10185 bool ZeroInitialization(const Expr *E); 10186 10187 bool VisitUnaryReal(const UnaryOperator *E) 10188 { return Visit(E->getSubExpr()); } 10189 bool VisitCastExpr(const CastExpr* E); 10190 bool VisitInitListExpr(const InitListExpr *E); 10191 bool VisitUnaryImag(const UnaryOperator *E); 10192 bool VisitBinaryOperator(const BinaryOperator *E); 10193 bool VisitUnaryOperator(const UnaryOperator *E); 10194 // FIXME: Missing: conditional operator (for GNU 10195 // conditional select), shufflevector, ExtVectorElementExpr 10196 }; 10197 } // end anonymous namespace 10198 10199 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 10200 assert(E->isPRValue() && E->getType()->isVectorType() && 10201 "not a vector prvalue"); 10202 return VectorExprEvaluator(Info, Result).Visit(E); 10203 } 10204 10205 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 10206 const VectorType *VTy = E->getType()->castAs<VectorType>(); 10207 unsigned NElts = VTy->getNumElements(); 10208 10209 const Expr *SE = E->getSubExpr(); 10210 QualType SETy = SE->getType(); 10211 10212 switch (E->getCastKind()) { 10213 case CK_VectorSplat: { 10214 APValue Val = APValue(); 10215 if (SETy->isIntegerType()) { 10216 APSInt IntResult; 10217 if (!EvaluateInteger(SE, IntResult, Info)) 10218 return false; 10219 Val = APValue(std::move(IntResult)); 10220 } else if (SETy->isRealFloatingType()) { 10221 APFloat FloatResult(0.0); 10222 if (!EvaluateFloat(SE, FloatResult, Info)) 10223 return false; 10224 Val = APValue(std::move(FloatResult)); 10225 } else { 10226 return Error(E); 10227 } 10228 10229 // Splat and create vector APValue. 10230 SmallVector<APValue, 4> Elts(NElts, Val); 10231 return Success(Elts, E); 10232 } 10233 case CK_BitCast: { 10234 // Evaluate the operand into an APInt we can extract from. 10235 llvm::APInt SValInt; 10236 if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) 10237 return false; 10238 // Extract the elements 10239 QualType EltTy = VTy->getElementType(); 10240 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 10241 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 10242 SmallVector<APValue, 4> Elts; 10243 if (EltTy->isRealFloatingType()) { 10244 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); 10245 unsigned FloatEltSize = EltSize; 10246 if (&Sem == &APFloat::x87DoubleExtended()) 10247 FloatEltSize = 80; 10248 for (unsigned i = 0; i < NElts; i++) { 10249 llvm::APInt Elt; 10250 if (BigEndian) 10251 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); 10252 else 10253 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); 10254 Elts.push_back(APValue(APFloat(Sem, Elt))); 10255 } 10256 } else if (EltTy->isIntegerType()) { 10257 for (unsigned i = 0; i < NElts; i++) { 10258 llvm::APInt Elt; 10259 if (BigEndian) 10260 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); 10261 else 10262 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); 10263 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType()))); 10264 } 10265 } else { 10266 return Error(E); 10267 } 10268 return Success(Elts, E); 10269 } 10270 default: 10271 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10272 } 10273 } 10274 10275 bool 10276 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10277 const VectorType *VT = E->getType()->castAs<VectorType>(); 10278 unsigned NumInits = E->getNumInits(); 10279 unsigned NumElements = VT->getNumElements(); 10280 10281 QualType EltTy = VT->getElementType(); 10282 SmallVector<APValue, 4> Elements; 10283 10284 // The number of initializers can be less than the number of 10285 // vector elements. For OpenCL, this can be due to nested vector 10286 // initialization. For GCC compatibility, missing trailing elements 10287 // should be initialized with zeroes. 10288 unsigned CountInits = 0, CountElts = 0; 10289 while (CountElts < NumElements) { 10290 // Handle nested vector initialization. 10291 if (CountInits < NumInits 10292 && E->getInit(CountInits)->getType()->isVectorType()) { 10293 APValue v; 10294 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 10295 return Error(E); 10296 unsigned vlen = v.getVectorLength(); 10297 for (unsigned j = 0; j < vlen; j++) 10298 Elements.push_back(v.getVectorElt(j)); 10299 CountElts += vlen; 10300 } else if (EltTy->isIntegerType()) { 10301 llvm::APSInt sInt(32); 10302 if (CountInits < NumInits) { 10303 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 10304 return false; 10305 } else // trailing integer zero. 10306 sInt = Info.Ctx.MakeIntValue(0, EltTy); 10307 Elements.push_back(APValue(sInt)); 10308 CountElts++; 10309 } else { 10310 llvm::APFloat f(0.0); 10311 if (CountInits < NumInits) { 10312 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 10313 return false; 10314 } else // trailing float zero. 10315 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 10316 Elements.push_back(APValue(f)); 10317 CountElts++; 10318 } 10319 CountInits++; 10320 } 10321 return Success(Elements, E); 10322 } 10323 10324 bool 10325 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 10326 const auto *VT = E->getType()->castAs<VectorType>(); 10327 QualType EltTy = VT->getElementType(); 10328 APValue ZeroElement; 10329 if (EltTy->isIntegerType()) 10330 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 10331 else 10332 ZeroElement = 10333 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 10334 10335 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 10336 return Success(Elements, E); 10337 } 10338 10339 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 10340 VisitIgnoredValue(E->getSubExpr()); 10341 return ZeroInitialization(E); 10342 } 10343 10344 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 10345 BinaryOperatorKind Op = E->getOpcode(); 10346 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && 10347 "Operation not supported on vector types"); 10348 10349 if (Op == BO_Comma) 10350 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 10351 10352 Expr *LHS = E->getLHS(); 10353 Expr *RHS = E->getRHS(); 10354 10355 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && 10356 "Must both be vector types"); 10357 // Checking JUST the types are the same would be fine, except shifts don't 10358 // need to have their types be the same (since you always shift by an int). 10359 assert(LHS->getType()->castAs<VectorType>()->getNumElements() == 10360 E->getType()->castAs<VectorType>()->getNumElements() && 10361 RHS->getType()->castAs<VectorType>()->getNumElements() == 10362 E->getType()->castAs<VectorType>()->getNumElements() && 10363 "All operands must be the same size."); 10364 10365 APValue LHSValue; 10366 APValue RHSValue; 10367 bool LHSOK = Evaluate(LHSValue, Info, LHS); 10368 if (!LHSOK && !Info.noteFailure()) 10369 return false; 10370 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) 10371 return false; 10372 10373 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) 10374 return false; 10375 10376 return Success(LHSValue, E); 10377 } 10378 10379 static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, 10380 QualType ResultTy, 10381 UnaryOperatorKind Op, 10382 APValue Elt) { 10383 switch (Op) { 10384 case UO_Plus: 10385 // Nothing to do here. 10386 return Elt; 10387 case UO_Minus: 10388 if (Elt.getKind() == APValue::Int) { 10389 Elt.getInt().negate(); 10390 } else { 10391 assert(Elt.getKind() == APValue::Float && 10392 "Vector can only be int or float type"); 10393 Elt.getFloat().changeSign(); 10394 } 10395 return Elt; 10396 case UO_Not: 10397 // This is only valid for integral types anyway, so we don't have to handle 10398 // float here. 10399 assert(Elt.getKind() == APValue::Int && 10400 "Vector operator ~ can only be int"); 10401 Elt.getInt().flipAllBits(); 10402 return Elt; 10403 case UO_LNot: { 10404 if (Elt.getKind() == APValue::Int) { 10405 Elt.getInt() = !Elt.getInt(); 10406 // operator ! on vectors returns -1 for 'truth', so negate it. 10407 Elt.getInt().negate(); 10408 return Elt; 10409 } 10410 assert(Elt.getKind() == APValue::Float && 10411 "Vector can only be int or float type"); 10412 // Float types result in an int of the same size, but -1 for true, or 0 for 10413 // false. 10414 APSInt EltResult{Ctx.getIntWidth(ResultTy), 10415 ResultTy->isUnsignedIntegerType()}; 10416 if (Elt.getFloat().isZero()) 10417 EltResult.setAllBits(); 10418 else 10419 EltResult.clearAllBits(); 10420 10421 return APValue{EltResult}; 10422 } 10423 default: 10424 // FIXME: Implement the rest of the unary operators. 10425 return llvm::None; 10426 } 10427 } 10428 10429 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 10430 Expr *SubExpr = E->getSubExpr(); 10431 const auto *VD = SubExpr->getType()->castAs<VectorType>(); 10432 // This result element type differs in the case of negating a floating point 10433 // vector, since the result type is the a vector of the equivilant sized 10434 // integer. 10435 const QualType ResultEltTy = VD->getElementType(); 10436 UnaryOperatorKind Op = E->getOpcode(); 10437 10438 APValue SubExprValue; 10439 if (!Evaluate(SubExprValue, Info, SubExpr)) 10440 return false; 10441 10442 // FIXME: This vector evaluator someday needs to be changed to be LValue 10443 // aware/keep LValue information around, rather than dealing with just vector 10444 // types directly. Until then, we cannot handle cases where the operand to 10445 // these unary operators is an LValue. The only case I've been able to see 10446 // cause this is operator++ assigning to a member expression (only valid in 10447 // altivec compilations) in C mode, so this shouldn't limit us too much. 10448 if (SubExprValue.isLValue()) 10449 return false; 10450 10451 assert(SubExprValue.getVectorLength() == VD->getNumElements() && 10452 "Vector length doesn't match type?"); 10453 10454 SmallVector<APValue, 4> ResultElements; 10455 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { 10456 llvm::Optional<APValue> Elt = handleVectorUnaryOperator( 10457 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); 10458 if (!Elt) 10459 return false; 10460 ResultElements.push_back(*Elt); 10461 } 10462 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 10463 } 10464 10465 //===----------------------------------------------------------------------===// 10466 // Array Evaluation 10467 //===----------------------------------------------------------------------===// 10468 10469 namespace { 10470 class ArrayExprEvaluator 10471 : public ExprEvaluatorBase<ArrayExprEvaluator> { 10472 const LValue &This; 10473 APValue &Result; 10474 public: 10475 10476 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 10477 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 10478 10479 bool Success(const APValue &V, const Expr *E) { 10480 assert(V.isArray() && "expected array"); 10481 Result = V; 10482 return true; 10483 } 10484 10485 bool ZeroInitialization(const Expr *E) { 10486 const ConstantArrayType *CAT = 10487 Info.Ctx.getAsConstantArrayType(E->getType()); 10488 if (!CAT) { 10489 if (E->getType()->isIncompleteArrayType()) { 10490 // We can be asked to zero-initialize a flexible array member; this 10491 // is represented as an ImplicitValueInitExpr of incomplete array 10492 // type. In this case, the array has zero elements. 10493 Result = APValue(APValue::UninitArray(), 0, 0); 10494 return true; 10495 } 10496 // FIXME: We could handle VLAs here. 10497 return Error(E); 10498 } 10499 10500 Result = APValue(APValue::UninitArray(), 0, 10501 CAT->getSize().getZExtValue()); 10502 if (!Result.hasArrayFiller()) 10503 return true; 10504 10505 // Zero-initialize all elements. 10506 LValue Subobject = This; 10507 Subobject.addArray(Info, E, CAT); 10508 ImplicitValueInitExpr VIE(CAT->getElementType()); 10509 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 10510 } 10511 10512 bool VisitCallExpr(const CallExpr *E) { 10513 return handleCallExpr(E, Result, &This); 10514 } 10515 bool VisitInitListExpr(const InitListExpr *E, 10516 QualType AllocType = QualType()); 10517 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 10518 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 10519 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 10520 const LValue &Subobject, 10521 APValue *Value, QualType Type); 10522 bool VisitStringLiteral(const StringLiteral *E, 10523 QualType AllocType = QualType()) { 10524 expandStringLiteral(Info, E, Result, AllocType); 10525 return true; 10526 } 10527 }; 10528 } // end anonymous namespace 10529 10530 static bool EvaluateArray(const Expr *E, const LValue &This, 10531 APValue &Result, EvalInfo &Info) { 10532 assert(!E->isValueDependent()); 10533 assert(E->isPRValue() && E->getType()->isArrayType() && 10534 "not an array prvalue"); 10535 return ArrayExprEvaluator(Info, This, Result).Visit(E); 10536 } 10537 10538 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 10539 APValue &Result, const InitListExpr *ILE, 10540 QualType AllocType) { 10541 assert(!ILE->isValueDependent()); 10542 assert(ILE->isPRValue() && ILE->getType()->isArrayType() && 10543 "not an array prvalue"); 10544 return ArrayExprEvaluator(Info, This, Result) 10545 .VisitInitListExpr(ILE, AllocType); 10546 } 10547 10548 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 10549 APValue &Result, 10550 const CXXConstructExpr *CCE, 10551 QualType AllocType) { 10552 assert(!CCE->isValueDependent()); 10553 assert(CCE->isPRValue() && CCE->getType()->isArrayType() && 10554 "not an array prvalue"); 10555 return ArrayExprEvaluator(Info, This, Result) 10556 .VisitCXXConstructExpr(CCE, This, &Result, AllocType); 10557 } 10558 10559 // Return true iff the given array filler may depend on the element index. 10560 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 10561 // For now, just allow non-class value-initialization and initialization 10562 // lists comprised of them. 10563 if (isa<ImplicitValueInitExpr>(FillerExpr)) 10564 return false; 10565 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 10566 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 10567 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 10568 return true; 10569 } 10570 return false; 10571 } 10572 return true; 10573 } 10574 10575 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 10576 QualType AllocType) { 10577 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 10578 AllocType.isNull() ? E->getType() : AllocType); 10579 if (!CAT) 10580 return Error(E); 10581 10582 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 10583 // an appropriately-typed string literal enclosed in braces. 10584 if (E->isStringLiteralInit()) { 10585 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); 10586 // FIXME: Support ObjCEncodeExpr here once we support it in 10587 // ArrayExprEvaluator generally. 10588 if (!SL) 10589 return Error(E); 10590 return VisitStringLiteral(SL, AllocType); 10591 } 10592 // Any other transparent list init will need proper handling of the 10593 // AllocType; we can't just recurse to the inner initializer. 10594 assert(!E->isTransparent() && 10595 "transparent array list initialization is not string literal init?"); 10596 10597 bool Success = true; 10598 10599 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 10600 "zero-initialized array shouldn't have any initialized elts"); 10601 APValue Filler; 10602 if (Result.isArray() && Result.hasArrayFiller()) 10603 Filler = Result.getArrayFiller(); 10604 10605 unsigned NumEltsToInit = E->getNumInits(); 10606 unsigned NumElts = CAT->getSize().getZExtValue(); 10607 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; 10608 10609 // If the initializer might depend on the array index, run it for each 10610 // array element. 10611 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) 10612 NumEltsToInit = NumElts; 10613 10614 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 10615 << NumEltsToInit << ".\n"); 10616 10617 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 10618 10619 // If the array was previously zero-initialized, preserve the 10620 // zero-initialized values. 10621 if (Filler.hasValue()) { 10622 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 10623 Result.getArrayInitializedElt(I) = Filler; 10624 if (Result.hasArrayFiller()) 10625 Result.getArrayFiller() = Filler; 10626 } 10627 10628 LValue Subobject = This; 10629 Subobject.addArray(Info, E, CAT); 10630 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 10631 const Expr *Init = 10632 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; 10633 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10634 Info, Subobject, Init) || 10635 !HandleLValueArrayAdjustment(Info, Init, Subobject, 10636 CAT->getElementType(), 1)) { 10637 if (!Info.noteFailure()) 10638 return false; 10639 Success = false; 10640 } 10641 } 10642 10643 if (!Result.hasArrayFiller()) 10644 return Success; 10645 10646 // If we get here, we have a trivial filler, which we can just evaluate 10647 // once and splat over the rest of the array elements. 10648 assert(FillerExpr && "no array filler for incomplete init list"); 10649 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 10650 FillerExpr) && Success; 10651 } 10652 10653 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 10654 LValue CommonLV; 10655 if (E->getCommonExpr() && 10656 !Evaluate(Info.CurrentCall->createTemporary( 10657 E->getCommonExpr(), 10658 getStorageType(Info.Ctx, E->getCommonExpr()), 10659 ScopeKind::FullExpression, CommonLV), 10660 Info, E->getCommonExpr()->getSourceExpr())) 10661 return false; 10662 10663 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 10664 10665 uint64_t Elements = CAT->getSize().getZExtValue(); 10666 Result = APValue(APValue::UninitArray(), Elements, Elements); 10667 10668 LValue Subobject = This; 10669 Subobject.addArray(Info, E, CAT); 10670 10671 bool Success = true; 10672 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 10673 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 10674 Info, Subobject, E->getSubExpr()) || 10675 !HandleLValueArrayAdjustment(Info, E, Subobject, 10676 CAT->getElementType(), 1)) { 10677 if (!Info.noteFailure()) 10678 return false; 10679 Success = false; 10680 } 10681 } 10682 10683 return Success; 10684 } 10685 10686 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 10687 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 10688 } 10689 10690 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10691 const LValue &Subobject, 10692 APValue *Value, 10693 QualType Type) { 10694 bool HadZeroInit = Value->hasValue(); 10695 10696 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 10697 unsigned FinalSize = CAT->getSize().getZExtValue(); 10698 10699 // Preserve the array filler if we had prior zero-initialization. 10700 APValue Filler = 10701 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 10702 : APValue(); 10703 10704 *Value = APValue(APValue::UninitArray(), 0, FinalSize); 10705 if (FinalSize == 0) 10706 return true; 10707 10708 LValue ArrayElt = Subobject; 10709 ArrayElt.addArray(Info, E, CAT); 10710 // We do the whole initialization in two passes, first for just one element, 10711 // then for the whole array. It's possible we may find out we can't do const 10712 // init in the first pass, in which case we avoid allocating a potentially 10713 // large array. We don't do more passes because expanding array requires 10714 // copying the data, which is wasteful. 10715 for (const unsigned N : {1u, FinalSize}) { 10716 unsigned OldElts = Value->getArrayInitializedElts(); 10717 if (OldElts == N) 10718 break; 10719 10720 // Expand the array to appropriate size. 10721 APValue NewValue(APValue::UninitArray(), N, FinalSize); 10722 for (unsigned I = 0; I < OldElts; ++I) 10723 NewValue.getArrayInitializedElt(I).swap( 10724 Value->getArrayInitializedElt(I)); 10725 Value->swap(NewValue); 10726 10727 if (HadZeroInit) 10728 for (unsigned I = OldElts; I < N; ++I) 10729 Value->getArrayInitializedElt(I) = Filler; 10730 10731 // Initialize the elements. 10732 for (unsigned I = OldElts; I < N; ++I) { 10733 if (!VisitCXXConstructExpr(E, ArrayElt, 10734 &Value->getArrayInitializedElt(I), 10735 CAT->getElementType()) || 10736 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 10737 CAT->getElementType(), 1)) 10738 return false; 10739 // When checking for const initilization any diagnostic is considered 10740 // an error. 10741 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && 10742 !Info.keepEvaluatingAfterFailure()) 10743 return false; 10744 } 10745 } 10746 10747 return true; 10748 } 10749 10750 if (!Type->isRecordType()) 10751 return Error(E); 10752 10753 return RecordExprEvaluator(Info, Subobject, *Value) 10754 .VisitCXXConstructExpr(E, Type); 10755 } 10756 10757 //===----------------------------------------------------------------------===// 10758 // Integer Evaluation 10759 // 10760 // As a GNU extension, we support casting pointers to sufficiently-wide integer 10761 // types and back in constant folding. Integer values are thus represented 10762 // either as an integer-valued APValue, or as an lvalue-valued APValue. 10763 //===----------------------------------------------------------------------===// 10764 10765 namespace { 10766 class IntExprEvaluator 10767 : public ExprEvaluatorBase<IntExprEvaluator> { 10768 APValue &Result; 10769 public: 10770 IntExprEvaluator(EvalInfo &info, APValue &result) 10771 : ExprEvaluatorBaseTy(info), Result(result) {} 10772 10773 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 10774 assert(E->getType()->isIntegralOrEnumerationType() && 10775 "Invalid evaluation result."); 10776 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 10777 "Invalid evaluation result."); 10778 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 10779 "Invalid evaluation result."); 10780 Result = APValue(SI); 10781 return true; 10782 } 10783 bool Success(const llvm::APSInt &SI, const Expr *E) { 10784 return Success(SI, E, Result); 10785 } 10786 10787 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 10788 assert(E->getType()->isIntegralOrEnumerationType() && 10789 "Invalid evaluation result."); 10790 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 10791 "Invalid evaluation result."); 10792 Result = APValue(APSInt(I)); 10793 Result.getInt().setIsUnsigned( 10794 E->getType()->isUnsignedIntegerOrEnumerationType()); 10795 return true; 10796 } 10797 bool Success(const llvm::APInt &I, const Expr *E) { 10798 return Success(I, E, Result); 10799 } 10800 10801 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 10802 assert(E->getType()->isIntegralOrEnumerationType() && 10803 "Invalid evaluation result."); 10804 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 10805 return true; 10806 } 10807 bool Success(uint64_t Value, const Expr *E) { 10808 return Success(Value, E, Result); 10809 } 10810 10811 bool Success(CharUnits Size, const Expr *E) { 10812 return Success(Size.getQuantity(), E); 10813 } 10814 10815 bool Success(const APValue &V, const Expr *E) { 10816 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { 10817 Result = V; 10818 return true; 10819 } 10820 return Success(V.getInt(), E); 10821 } 10822 10823 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 10824 10825 //===--------------------------------------------------------------------===// 10826 // Visitor Methods 10827 //===--------------------------------------------------------------------===// 10828 10829 bool VisitIntegerLiteral(const IntegerLiteral *E) { 10830 return Success(E->getValue(), E); 10831 } 10832 bool VisitCharacterLiteral(const CharacterLiteral *E) { 10833 return Success(E->getValue(), E); 10834 } 10835 10836 bool CheckReferencedDecl(const Expr *E, const Decl *D); 10837 bool VisitDeclRefExpr(const DeclRefExpr *E) { 10838 if (CheckReferencedDecl(E, E->getDecl())) 10839 return true; 10840 10841 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 10842 } 10843 bool VisitMemberExpr(const MemberExpr *E) { 10844 if (CheckReferencedDecl(E, E->getMemberDecl())) { 10845 VisitIgnoredBaseExpression(E->getBase()); 10846 return true; 10847 } 10848 10849 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 10850 } 10851 10852 bool VisitCallExpr(const CallExpr *E); 10853 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 10854 bool VisitBinaryOperator(const BinaryOperator *E); 10855 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 10856 bool VisitUnaryOperator(const UnaryOperator *E); 10857 10858 bool VisitCastExpr(const CastExpr* E); 10859 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 10860 10861 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 10862 return Success(E->getValue(), E); 10863 } 10864 10865 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 10866 return Success(E->getValue(), E); 10867 } 10868 10869 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 10870 if (Info.ArrayInitIndex == uint64_t(-1)) { 10871 // We were asked to evaluate this subexpression independent of the 10872 // enclosing ArrayInitLoopExpr. We can't do that. 10873 Info.FFDiag(E); 10874 return false; 10875 } 10876 return Success(Info.ArrayInitIndex, E); 10877 } 10878 10879 // Note, GNU defines __null as an integer, not a pointer. 10880 bool VisitGNUNullExpr(const GNUNullExpr *E) { 10881 return ZeroInitialization(E); 10882 } 10883 10884 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 10885 return Success(E->getValue(), E); 10886 } 10887 10888 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 10889 return Success(E->getValue(), E); 10890 } 10891 10892 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 10893 return Success(E->getValue(), E); 10894 } 10895 10896 bool VisitUnaryReal(const UnaryOperator *E); 10897 bool VisitUnaryImag(const UnaryOperator *E); 10898 10899 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 10900 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 10901 bool VisitSourceLocExpr(const SourceLocExpr *E); 10902 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 10903 bool VisitRequiresExpr(const RequiresExpr *E); 10904 // FIXME: Missing: array subscript of vector, member of vector 10905 }; 10906 10907 class FixedPointExprEvaluator 10908 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 10909 APValue &Result; 10910 10911 public: 10912 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 10913 : ExprEvaluatorBaseTy(info), Result(result) {} 10914 10915 bool Success(const llvm::APInt &I, const Expr *E) { 10916 return Success( 10917 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 10918 } 10919 10920 bool Success(uint64_t Value, const Expr *E) { 10921 return Success( 10922 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 10923 } 10924 10925 bool Success(const APValue &V, const Expr *E) { 10926 return Success(V.getFixedPoint(), E); 10927 } 10928 10929 bool Success(const APFixedPoint &V, const Expr *E) { 10930 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 10931 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 10932 "Invalid evaluation result."); 10933 Result = APValue(V); 10934 return true; 10935 } 10936 10937 //===--------------------------------------------------------------------===// 10938 // Visitor Methods 10939 //===--------------------------------------------------------------------===// 10940 10941 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 10942 return Success(E->getValue(), E); 10943 } 10944 10945 bool VisitCastExpr(const CastExpr *E); 10946 bool VisitUnaryOperator(const UnaryOperator *E); 10947 bool VisitBinaryOperator(const BinaryOperator *E); 10948 }; 10949 } // end anonymous namespace 10950 10951 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 10952 /// produce either the integer value or a pointer. 10953 /// 10954 /// GCC has a heinous extension which folds casts between pointer types and 10955 /// pointer-sized integral types. We support this by allowing the evaluation of 10956 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 10957 /// Some simple arithmetic on such values is supported (they are treated much 10958 /// like char*). 10959 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 10960 EvalInfo &Info) { 10961 assert(!E->isValueDependent()); 10962 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); 10963 return IntExprEvaluator(Info, Result).Visit(E); 10964 } 10965 10966 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 10967 assert(!E->isValueDependent()); 10968 APValue Val; 10969 if (!EvaluateIntegerOrLValue(E, Val, Info)) 10970 return false; 10971 if (!Val.isInt()) { 10972 // FIXME: It would be better to produce the diagnostic for casting 10973 // a pointer to an integer. 10974 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 10975 return false; 10976 } 10977 Result = Val.getInt(); 10978 return true; 10979 } 10980 10981 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 10982 APValue Evaluated = E->EvaluateInContext( 10983 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 10984 return Success(Evaluated, E); 10985 } 10986 10987 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 10988 EvalInfo &Info) { 10989 assert(!E->isValueDependent()); 10990 if (E->getType()->isFixedPointType()) { 10991 APValue Val; 10992 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 10993 return false; 10994 if (!Val.isFixedPoint()) 10995 return false; 10996 10997 Result = Val.getFixedPoint(); 10998 return true; 10999 } 11000 return false; 11001 } 11002 11003 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 11004 EvalInfo &Info) { 11005 assert(!E->isValueDependent()); 11006 if (E->getType()->isIntegerType()) { 11007 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 11008 APSInt Val; 11009 if (!EvaluateInteger(E, Val, Info)) 11010 return false; 11011 Result = APFixedPoint(Val, FXSema); 11012 return true; 11013 } else if (E->getType()->isFixedPointType()) { 11014 return EvaluateFixedPoint(E, Result, Info); 11015 } 11016 return false; 11017 } 11018 11019 /// Check whether the given declaration can be directly converted to an integral 11020 /// rvalue. If not, no diagnostic is produced; there are other things we can 11021 /// try. 11022 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 11023 // Enums are integer constant exprs. 11024 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 11025 // Check for signedness/width mismatches between E type and ECD value. 11026 bool SameSign = (ECD->getInitVal().isSigned() 11027 == E->getType()->isSignedIntegerOrEnumerationType()); 11028 bool SameWidth = (ECD->getInitVal().getBitWidth() 11029 == Info.Ctx.getIntWidth(E->getType())); 11030 if (SameSign && SameWidth) 11031 return Success(ECD->getInitVal(), E); 11032 else { 11033 // Get rid of mismatch (otherwise Success assertions will fail) 11034 // by computing a new value matching the type of E. 11035 llvm::APSInt Val = ECD->getInitVal(); 11036 if (!SameSign) 11037 Val.setIsSigned(!ECD->getInitVal().isSigned()); 11038 if (!SameWidth) 11039 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 11040 return Success(Val, E); 11041 } 11042 } 11043 return false; 11044 } 11045 11046 /// Values returned by __builtin_classify_type, chosen to match the values 11047 /// produced by GCC's builtin. 11048 enum class GCCTypeClass { 11049 None = -1, 11050 Void = 0, 11051 Integer = 1, 11052 // GCC reserves 2 for character types, but instead classifies them as 11053 // integers. 11054 Enum = 3, 11055 Bool = 4, 11056 Pointer = 5, 11057 // GCC reserves 6 for references, but appears to never use it (because 11058 // expressions never have reference type, presumably). 11059 PointerToDataMember = 7, 11060 RealFloat = 8, 11061 Complex = 9, 11062 // GCC reserves 10 for functions, but does not use it since GCC version 6 due 11063 // to decay to pointer. (Prior to version 6 it was only used in C++ mode). 11064 // GCC claims to reserve 11 for pointers to member functions, but *actually* 11065 // uses 12 for that purpose, same as for a class or struct. Maybe it 11066 // internally implements a pointer to member as a struct? Who knows. 11067 PointerToMemberFunction = 12, // Not a bug, see above. 11068 ClassOrStruct = 12, 11069 Union = 13, 11070 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to 11071 // decay to pointer. (Prior to version 6 it was only used in C++ mode). 11072 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string 11073 // literals. 11074 }; 11075 11076 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 11077 /// as GCC. 11078 static GCCTypeClass 11079 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { 11080 assert(!T->isDependentType() && "unexpected dependent type"); 11081 11082 QualType CanTy = T.getCanonicalType(); 11083 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); 11084 11085 switch (CanTy->getTypeClass()) { 11086 #define TYPE(ID, BASE) 11087 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 11088 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 11089 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 11090 #include "clang/AST/TypeNodes.inc" 11091 case Type::Auto: 11092 case Type::DeducedTemplateSpecialization: 11093 llvm_unreachable("unexpected non-canonical or dependent type"); 11094 11095 case Type::Builtin: 11096 switch (BT->getKind()) { 11097 #define BUILTIN_TYPE(ID, SINGLETON_ID) 11098 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 11099 case BuiltinType::ID: return GCCTypeClass::Integer; 11100 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 11101 case BuiltinType::ID: return GCCTypeClass::RealFloat; 11102 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 11103 case BuiltinType::ID: break; 11104 #include "clang/AST/BuiltinTypes.def" 11105 case BuiltinType::Void: 11106 return GCCTypeClass::Void; 11107 11108 case BuiltinType::Bool: 11109 return GCCTypeClass::Bool; 11110 11111 case BuiltinType::Char_U: 11112 case BuiltinType::UChar: 11113 case BuiltinType::WChar_U: 11114 case BuiltinType::Char8: 11115 case BuiltinType::Char16: 11116 case BuiltinType::Char32: 11117 case BuiltinType::UShort: 11118 case BuiltinType::UInt: 11119 case BuiltinType::ULong: 11120 case BuiltinType::ULongLong: 11121 case BuiltinType::UInt128: 11122 return GCCTypeClass::Integer; 11123 11124 case BuiltinType::UShortAccum: 11125 case BuiltinType::UAccum: 11126 case BuiltinType::ULongAccum: 11127 case BuiltinType::UShortFract: 11128 case BuiltinType::UFract: 11129 case BuiltinType::ULongFract: 11130 case BuiltinType::SatUShortAccum: 11131 case BuiltinType::SatUAccum: 11132 case BuiltinType::SatULongAccum: 11133 case BuiltinType::SatUShortFract: 11134 case BuiltinType::SatUFract: 11135 case BuiltinType::SatULongFract: 11136 return GCCTypeClass::None; 11137 11138 case BuiltinType::NullPtr: 11139 11140 case BuiltinType::ObjCId: 11141 case BuiltinType::ObjCClass: 11142 case BuiltinType::ObjCSel: 11143 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 11144 case BuiltinType::Id: 11145 #include "clang/Basic/OpenCLImageTypes.def" 11146 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 11147 case BuiltinType::Id: 11148 #include "clang/Basic/OpenCLExtensionTypes.def" 11149 case BuiltinType::OCLSampler: 11150 case BuiltinType::OCLEvent: 11151 case BuiltinType::OCLClkEvent: 11152 case BuiltinType::OCLQueue: 11153 case BuiltinType::OCLReserveID: 11154 #define SVE_TYPE(Name, Id, SingletonId) \ 11155 case BuiltinType::Id: 11156 #include "clang/Basic/AArch64SVEACLETypes.def" 11157 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 11158 case BuiltinType::Id: 11159 #include "clang/Basic/PPCTypes.def" 11160 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 11161 #include "clang/Basic/RISCVVTypes.def" 11162 return GCCTypeClass::None; 11163 11164 case BuiltinType::Dependent: 11165 llvm_unreachable("unexpected dependent type"); 11166 }; 11167 llvm_unreachable("unexpected placeholder type"); 11168 11169 case Type::Enum: 11170 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 11171 11172 case Type::Pointer: 11173 case Type::ConstantArray: 11174 case Type::VariableArray: 11175 case Type::IncompleteArray: 11176 case Type::FunctionNoProto: 11177 case Type::FunctionProto: 11178 return GCCTypeClass::Pointer; 11179 11180 case Type::MemberPointer: 11181 return CanTy->isMemberDataPointerType() 11182 ? GCCTypeClass::PointerToDataMember 11183 : GCCTypeClass::PointerToMemberFunction; 11184 11185 case Type::Complex: 11186 return GCCTypeClass::Complex; 11187 11188 case Type::Record: 11189 return CanTy->isUnionType() ? GCCTypeClass::Union 11190 : GCCTypeClass::ClassOrStruct; 11191 11192 case Type::Atomic: 11193 // GCC classifies _Atomic T the same as T. 11194 return EvaluateBuiltinClassifyType( 11195 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 11196 11197 case Type::BlockPointer: 11198 case Type::Vector: 11199 case Type::ExtVector: 11200 case Type::ConstantMatrix: 11201 case Type::ObjCObject: 11202 case Type::ObjCInterface: 11203 case Type::ObjCObjectPointer: 11204 case Type::Pipe: 11205 case Type::BitInt: 11206 // GCC classifies vectors as None. We follow its lead and classify all 11207 // other types that don't fit into the regular classification the same way. 11208 return GCCTypeClass::None; 11209 11210 case Type::LValueReference: 11211 case Type::RValueReference: 11212 llvm_unreachable("invalid type for expression"); 11213 } 11214 11215 llvm_unreachable("unexpected type class"); 11216 } 11217 11218 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 11219 /// as GCC. 11220 static GCCTypeClass 11221 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 11222 // If no argument was supplied, default to None. This isn't 11223 // ideal, however it is what gcc does. 11224 if (E->getNumArgs() == 0) 11225 return GCCTypeClass::None; 11226 11227 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 11228 // being an ICE, but still folds it to a constant using the type of the first 11229 // argument. 11230 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 11231 } 11232 11233 /// EvaluateBuiltinConstantPForLValue - Determine the result of 11234 /// __builtin_constant_p when applied to the given pointer. 11235 /// 11236 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 11237 /// or it points to the first character of a string literal. 11238 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 11239 APValue::LValueBase Base = LV.getLValueBase(); 11240 if (Base.isNull()) { 11241 // A null base is acceptable. 11242 return true; 11243 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 11244 if (!isa<StringLiteral>(E)) 11245 return false; 11246 return LV.getLValueOffset().isZero(); 11247 } else if (Base.is<TypeInfoLValue>()) { 11248 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 11249 // evaluate to true. 11250 return true; 11251 } else { 11252 // Any other base is not constant enough for GCC. 11253 return false; 11254 } 11255 } 11256 11257 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 11258 /// GCC as we can manage. 11259 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 11260 // This evaluation is not permitted to have side-effects, so evaluate it in 11261 // a speculative evaluation context. 11262 SpeculativeEvaluationRAII SpeculativeEval(Info); 11263 11264 // Constant-folding is always enabled for the operand of __builtin_constant_p 11265 // (even when the enclosing evaluation context otherwise requires a strict 11266 // language-specific constant expression). 11267 FoldConstant Fold(Info, true); 11268 11269 QualType ArgType = Arg->getType(); 11270 11271 // __builtin_constant_p always has one operand. The rules which gcc follows 11272 // are not precisely documented, but are as follows: 11273 // 11274 // - If the operand is of integral, floating, complex or enumeration type, 11275 // and can be folded to a known value of that type, it returns 1. 11276 // - If the operand can be folded to a pointer to the first character 11277 // of a string literal (or such a pointer cast to an integral type) 11278 // or to a null pointer or an integer cast to a pointer, it returns 1. 11279 // 11280 // Otherwise, it returns 0. 11281 // 11282 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 11283 // its support for this did not work prior to GCC 9 and is not yet well 11284 // understood. 11285 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 11286 ArgType->isAnyComplexType() || ArgType->isPointerType() || 11287 ArgType->isNullPtrType()) { 11288 APValue V; 11289 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { 11290 Fold.keepDiagnostics(); 11291 return false; 11292 } 11293 11294 // For a pointer (possibly cast to integer), there are special rules. 11295 if (V.getKind() == APValue::LValue) 11296 return EvaluateBuiltinConstantPForLValue(V); 11297 11298 // Otherwise, any constant value is good enough. 11299 return V.hasValue(); 11300 } 11301 11302 // Anything else isn't considered to be sufficiently constant. 11303 return false; 11304 } 11305 11306 /// Retrieves the "underlying object type" of the given expression, 11307 /// as used by __builtin_object_size. 11308 static QualType getObjectType(APValue::LValueBase B) { 11309 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 11310 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 11311 return VD->getType(); 11312 } else if (const Expr *E = B.dyn_cast<const Expr*>()) { 11313 if (isa<CompoundLiteralExpr>(E)) 11314 return E->getType(); 11315 } else if (B.is<TypeInfoLValue>()) { 11316 return B.getTypeInfoType(); 11317 } else if (B.is<DynamicAllocLValue>()) { 11318 return B.getDynamicAllocType(); 11319 } 11320 11321 return QualType(); 11322 } 11323 11324 /// A more selective version of E->IgnoreParenCasts for 11325 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 11326 /// to change the type of E. 11327 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 11328 /// 11329 /// Always returns an RValue with a pointer representation. 11330 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 11331 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 11332 11333 auto *NoParens = E->IgnoreParens(); 11334 auto *Cast = dyn_cast<CastExpr>(NoParens); 11335 if (Cast == nullptr) 11336 return NoParens; 11337 11338 // We only conservatively allow a few kinds of casts, because this code is 11339 // inherently a simple solution that seeks to support the common case. 11340 auto CastKind = Cast->getCastKind(); 11341 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 11342 CastKind != CK_AddressSpaceConversion) 11343 return NoParens; 11344 11345 auto *SubExpr = Cast->getSubExpr(); 11346 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) 11347 return NoParens; 11348 return ignorePointerCastsAndParens(SubExpr); 11349 } 11350 11351 /// Checks to see if the given LValue's Designator is at the end of the LValue's 11352 /// record layout. e.g. 11353 /// struct { struct { int a, b; } fst, snd; } obj; 11354 /// obj.fst // no 11355 /// obj.snd // yes 11356 /// obj.fst.a // no 11357 /// obj.fst.b // no 11358 /// obj.snd.a // no 11359 /// obj.snd.b // yes 11360 /// 11361 /// Please note: this function is specialized for how __builtin_object_size 11362 /// views "objects". 11363 /// 11364 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 11365 /// correct result, it will always return true. 11366 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 11367 assert(!LVal.Designator.Invalid); 11368 11369 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 11370 const RecordDecl *Parent = FD->getParent(); 11371 Invalid = Parent->isInvalidDecl(); 11372 if (Invalid || Parent->isUnion()) 11373 return true; 11374 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 11375 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 11376 }; 11377 11378 auto &Base = LVal.getLValueBase(); 11379 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 11380 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 11381 bool Invalid; 11382 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11383 return Invalid; 11384 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 11385 for (auto *FD : IFD->chain()) { 11386 bool Invalid; 11387 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 11388 return Invalid; 11389 } 11390 } 11391 } 11392 11393 unsigned I = 0; 11394 QualType BaseType = getType(Base); 11395 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 11396 // If we don't know the array bound, conservatively assume we're looking at 11397 // the final array element. 11398 ++I; 11399 if (BaseType->isIncompleteArrayType()) 11400 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 11401 else 11402 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 11403 } 11404 11405 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 11406 const auto &Entry = LVal.Designator.Entries[I]; 11407 if (BaseType->isArrayType()) { 11408 // Because __builtin_object_size treats arrays as objects, we can ignore 11409 // the index iff this is the last array in the Designator. 11410 if (I + 1 == E) 11411 return true; 11412 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 11413 uint64_t Index = Entry.getAsArrayIndex(); 11414 if (Index + 1 != CAT->getSize()) 11415 return false; 11416 BaseType = CAT->getElementType(); 11417 } else if (BaseType->isAnyComplexType()) { 11418 const auto *CT = BaseType->castAs<ComplexType>(); 11419 uint64_t Index = Entry.getAsArrayIndex(); 11420 if (Index != 1) 11421 return false; 11422 BaseType = CT->getElementType(); 11423 } else if (auto *FD = getAsField(Entry)) { 11424 bool Invalid; 11425 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 11426 return Invalid; 11427 BaseType = FD->getType(); 11428 } else { 11429 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 11430 return false; 11431 } 11432 } 11433 return true; 11434 } 11435 11436 /// Tests to see if the LValue has a user-specified designator (that isn't 11437 /// necessarily valid). Note that this always returns 'true' if the LValue has 11438 /// an unsized array as its first designator entry, because there's currently no 11439 /// way to tell if the user typed *foo or foo[0]. 11440 static bool refersToCompleteObject(const LValue &LVal) { 11441 if (LVal.Designator.Invalid) 11442 return false; 11443 11444 if (!LVal.Designator.Entries.empty()) 11445 return LVal.Designator.isMostDerivedAnUnsizedArray(); 11446 11447 if (!LVal.InvalidBase) 11448 return true; 11449 11450 // If `E` is a MemberExpr, then the first part of the designator is hiding in 11451 // the LValueBase. 11452 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 11453 return !E || !isa<MemberExpr>(E); 11454 } 11455 11456 /// Attempts to detect a user writing into a piece of memory that's impossible 11457 /// to figure out the size of by just using types. 11458 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 11459 const SubobjectDesignator &Designator = LVal.Designator; 11460 // Notes: 11461 // - Users can only write off of the end when we have an invalid base. Invalid 11462 // bases imply we don't know where the memory came from. 11463 // - We used to be a bit more aggressive here; we'd only be conservative if 11464 // the array at the end was flexible, or if it had 0 or 1 elements. This 11465 // broke some common standard library extensions (PR30346), but was 11466 // otherwise seemingly fine. It may be useful to reintroduce this behavior 11467 // with some sort of list. OTOH, it seems that GCC is always 11468 // conservative with the last element in structs (if it's an array), so our 11469 // current behavior is more compatible than an explicit list approach would 11470 // be. 11471 return LVal.InvalidBase && 11472 Designator.Entries.size() == Designator.MostDerivedPathLength && 11473 Designator.MostDerivedIsArrayElement && 11474 isDesignatorAtObjectEnd(Ctx, LVal); 11475 } 11476 11477 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 11478 /// Fails if the conversion would cause loss of precision. 11479 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 11480 CharUnits &Result) { 11481 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 11482 if (Int.ugt(CharUnitsMax)) 11483 return false; 11484 Result = CharUnits::fromQuantity(Int.getZExtValue()); 11485 return true; 11486 } 11487 11488 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 11489 /// determine how many bytes exist from the beginning of the object to either 11490 /// the end of the current subobject, or the end of the object itself, depending 11491 /// on what the LValue looks like + the value of Type. 11492 /// 11493 /// If this returns false, the value of Result is undefined. 11494 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 11495 unsigned Type, const LValue &LVal, 11496 CharUnits &EndOffset) { 11497 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 11498 11499 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 11500 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 11501 return false; 11502 return HandleSizeof(Info, ExprLoc, Ty, Result); 11503 }; 11504 11505 // We want to evaluate the size of the entire object. This is a valid fallback 11506 // for when Type=1 and the designator is invalid, because we're asked for an 11507 // upper-bound. 11508 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 11509 // Type=3 wants a lower bound, so we can't fall back to this. 11510 if (Type == 3 && !DetermineForCompleteObject) 11511 return false; 11512 11513 llvm::APInt APEndOffset; 11514 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11515 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11516 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11517 11518 if (LVal.InvalidBase) 11519 return false; 11520 11521 QualType BaseTy = getObjectType(LVal.getLValueBase()); 11522 return CheckedHandleSizeof(BaseTy, EndOffset); 11523 } 11524 11525 // We want to evaluate the size of a subobject. 11526 const SubobjectDesignator &Designator = LVal.Designator; 11527 11528 // The following is a moderately common idiom in C: 11529 // 11530 // struct Foo { int a; char c[1]; }; 11531 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 11532 // strcpy(&F->c[0], Bar); 11533 // 11534 // In order to not break too much legacy code, we need to support it. 11535 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 11536 // If we can resolve this to an alloc_size call, we can hand that back, 11537 // because we know for certain how many bytes there are to write to. 11538 llvm::APInt APEndOffset; 11539 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 11540 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 11541 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 11542 11543 // If we cannot determine the size of the initial allocation, then we can't 11544 // given an accurate upper-bound. However, we are still able to give 11545 // conservative lower-bounds for Type=3. 11546 if (Type == 1) 11547 return false; 11548 } 11549 11550 CharUnits BytesPerElem; 11551 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 11552 return false; 11553 11554 // According to the GCC documentation, we want the size of the subobject 11555 // denoted by the pointer. But that's not quite right -- what we actually 11556 // want is the size of the immediately-enclosing array, if there is one. 11557 int64_t ElemsRemaining; 11558 if (Designator.MostDerivedIsArrayElement && 11559 Designator.Entries.size() == Designator.MostDerivedPathLength) { 11560 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 11561 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 11562 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 11563 } else { 11564 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 11565 } 11566 11567 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 11568 return true; 11569 } 11570 11571 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 11572 /// returns true and stores the result in @p Size. 11573 /// 11574 /// If @p WasError is non-null, this will report whether the failure to evaluate 11575 /// is to be treated as an Error in IntExprEvaluator. 11576 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 11577 EvalInfo &Info, uint64_t &Size) { 11578 // Determine the denoted object. 11579 LValue LVal; 11580 { 11581 // The operand of __builtin_object_size is never evaluated for side-effects. 11582 // If there are any, but we can determine the pointed-to object anyway, then 11583 // ignore the side-effects. 11584 SpeculativeEvaluationRAII SpeculativeEval(Info); 11585 IgnoreSideEffectsRAII Fold(Info); 11586 11587 if (E->isGLValue()) { 11588 // It's possible for us to be given GLValues if we're called via 11589 // Expr::tryEvaluateObjectSize. 11590 APValue RVal; 11591 if (!EvaluateAsRValue(Info, E, RVal)) 11592 return false; 11593 LVal.setFrom(Info.Ctx, RVal); 11594 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 11595 /*InvalidBaseOK=*/true)) 11596 return false; 11597 } 11598 11599 // If we point to before the start of the object, there are no accessible 11600 // bytes. 11601 if (LVal.getLValueOffset().isNegative()) { 11602 Size = 0; 11603 return true; 11604 } 11605 11606 CharUnits EndOffset; 11607 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 11608 return false; 11609 11610 // If we've fallen outside of the end offset, just pretend there's nothing to 11611 // write to/read from. 11612 if (EndOffset <= LVal.getLValueOffset()) 11613 Size = 0; 11614 else 11615 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 11616 return true; 11617 } 11618 11619 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 11620 if (unsigned BuiltinOp = E->getBuiltinCallee()) 11621 return VisitBuiltinCallExpr(E, BuiltinOp); 11622 11623 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11624 } 11625 11626 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, 11627 APValue &Val, APSInt &Alignment) { 11628 QualType SrcTy = E->getArg(0)->getType(); 11629 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) 11630 return false; 11631 // Even though we are evaluating integer expressions we could get a pointer 11632 // argument for the __builtin_is_aligned() case. 11633 if (SrcTy->isPointerType()) { 11634 LValue Ptr; 11635 if (!EvaluatePointer(E->getArg(0), Ptr, Info)) 11636 return false; 11637 Ptr.moveInto(Val); 11638 } else if (!SrcTy->isIntegralOrEnumerationType()) { 11639 Info.FFDiag(E->getArg(0)); 11640 return false; 11641 } else { 11642 APSInt SrcInt; 11643 if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) 11644 return false; 11645 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && 11646 "Bit widths must be the same"); 11647 Val = APValue(SrcInt); 11648 } 11649 assert(Val.hasValue()); 11650 return true; 11651 } 11652 11653 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 11654 unsigned BuiltinOp) { 11655 switch (BuiltinOp) { 11656 default: 11657 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11658 11659 case Builtin::BI__builtin_dynamic_object_size: 11660 case Builtin::BI__builtin_object_size: { 11661 // The type was checked when we built the expression. 11662 unsigned Type = 11663 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 11664 assert(Type <= 3 && "unexpected type"); 11665 11666 uint64_t Size; 11667 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 11668 return Success(Size, E); 11669 11670 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 11671 return Success((Type & 2) ? 0 : -1, E); 11672 11673 // Expression had no side effects, but we couldn't statically determine the 11674 // size of the referenced object. 11675 switch (Info.EvalMode) { 11676 case EvalInfo::EM_ConstantExpression: 11677 case EvalInfo::EM_ConstantFold: 11678 case EvalInfo::EM_IgnoreSideEffects: 11679 // Leave it to IR generation. 11680 return Error(E); 11681 case EvalInfo::EM_ConstantExpressionUnevaluated: 11682 // Reduce it to a constant now. 11683 return Success((Type & 2) ? 0 : -1, E); 11684 } 11685 11686 llvm_unreachable("unexpected EvalMode"); 11687 } 11688 11689 case Builtin::BI__builtin_os_log_format_buffer_size: { 11690 analyze_os_log::OSLogBufferLayout Layout; 11691 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 11692 return Success(Layout.size().getQuantity(), E); 11693 } 11694 11695 case Builtin::BI__builtin_is_aligned: { 11696 APValue Src; 11697 APSInt Alignment; 11698 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11699 return false; 11700 if (Src.isLValue()) { 11701 // If we evaluated a pointer, check the minimum known alignment. 11702 LValue Ptr; 11703 Ptr.setFrom(Info.Ctx, Src); 11704 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); 11705 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); 11706 // We can return true if the known alignment at the computed offset is 11707 // greater than the requested alignment. 11708 assert(PtrAlign.isPowerOfTwo()); 11709 assert(Alignment.isPowerOf2()); 11710 if (PtrAlign.getQuantity() >= Alignment) 11711 return Success(1, E); 11712 // If the alignment is not known to be sufficient, some cases could still 11713 // be aligned at run time. However, if the requested alignment is less or 11714 // equal to the base alignment and the offset is not aligned, we know that 11715 // the run-time value can never be aligned. 11716 if (BaseAlignment.getQuantity() >= Alignment && 11717 PtrAlign.getQuantity() < Alignment) 11718 return Success(0, E); 11719 // Otherwise we can't infer whether the value is sufficiently aligned. 11720 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) 11721 // in cases where we can't fully evaluate the pointer. 11722 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) 11723 << Alignment; 11724 return false; 11725 } 11726 assert(Src.isInt()); 11727 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); 11728 } 11729 case Builtin::BI__builtin_align_up: { 11730 APValue Src; 11731 APSInt Alignment; 11732 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11733 return false; 11734 if (!Src.isInt()) 11735 return Error(E); 11736 APSInt AlignedVal = 11737 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), 11738 Src.getInt().isUnsigned()); 11739 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 11740 return Success(AlignedVal, E); 11741 } 11742 case Builtin::BI__builtin_align_down: { 11743 APValue Src; 11744 APSInt Alignment; 11745 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 11746 return false; 11747 if (!Src.isInt()) 11748 return Error(E); 11749 APSInt AlignedVal = 11750 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); 11751 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 11752 return Success(AlignedVal, E); 11753 } 11754 11755 case Builtin::BI__builtin_bitreverse8: 11756 case Builtin::BI__builtin_bitreverse16: 11757 case Builtin::BI__builtin_bitreverse32: 11758 case Builtin::BI__builtin_bitreverse64: { 11759 APSInt Val; 11760 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11761 return false; 11762 11763 return Success(Val.reverseBits(), E); 11764 } 11765 11766 case Builtin::BI__builtin_bswap16: 11767 case Builtin::BI__builtin_bswap32: 11768 case Builtin::BI__builtin_bswap64: { 11769 APSInt Val; 11770 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11771 return false; 11772 11773 return Success(Val.byteSwap(), E); 11774 } 11775 11776 case Builtin::BI__builtin_classify_type: 11777 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 11778 11779 case Builtin::BI__builtin_clrsb: 11780 case Builtin::BI__builtin_clrsbl: 11781 case Builtin::BI__builtin_clrsbll: { 11782 APSInt Val; 11783 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11784 return false; 11785 11786 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E); 11787 } 11788 11789 case Builtin::BI__builtin_clz: 11790 case Builtin::BI__builtin_clzl: 11791 case Builtin::BI__builtin_clzll: 11792 case Builtin::BI__builtin_clzs: { 11793 APSInt Val; 11794 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11795 return false; 11796 if (!Val) 11797 return Error(E); 11798 11799 return Success(Val.countLeadingZeros(), E); 11800 } 11801 11802 case Builtin::BI__builtin_constant_p: { 11803 const Expr *Arg = E->getArg(0); 11804 if (EvaluateBuiltinConstantP(Info, Arg)) 11805 return Success(true, E); 11806 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 11807 // Outside a constant context, eagerly evaluate to false in the presence 11808 // of side-effects in order to avoid -Wunsequenced false-positives in 11809 // a branch on __builtin_constant_p(expr). 11810 return Success(false, E); 11811 } 11812 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 11813 return false; 11814 } 11815 11816 case Builtin::BI__builtin_is_constant_evaluated: { 11817 const auto *Callee = Info.CurrentCall->getCallee(); 11818 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && 11819 (Info.CallStackDepth == 1 || 11820 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && 11821 Callee->getIdentifier() && 11822 Callee->getIdentifier()->isStr("is_constant_evaluated")))) { 11823 // FIXME: Find a better way to avoid duplicated diagnostics. 11824 if (Info.EvalStatus.Diag) 11825 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc() 11826 : Info.CurrentCall->CallLoc, 11827 diag::warn_is_constant_evaluated_always_true_constexpr) 11828 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" 11829 : "std::is_constant_evaluated"); 11830 } 11831 11832 return Success(Info.InConstantContext, E); 11833 } 11834 11835 case Builtin::BI__builtin_ctz: 11836 case Builtin::BI__builtin_ctzl: 11837 case Builtin::BI__builtin_ctzll: 11838 case Builtin::BI__builtin_ctzs: { 11839 APSInt Val; 11840 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11841 return false; 11842 if (!Val) 11843 return Error(E); 11844 11845 return Success(Val.countTrailingZeros(), E); 11846 } 11847 11848 case Builtin::BI__builtin_eh_return_data_regno: { 11849 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 11850 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 11851 return Success(Operand, E); 11852 } 11853 11854 case Builtin::BI__builtin_expect: 11855 case Builtin::BI__builtin_expect_with_probability: 11856 return Visit(E->getArg(0)); 11857 11858 case Builtin::BI__builtin_ffs: 11859 case Builtin::BI__builtin_ffsl: 11860 case Builtin::BI__builtin_ffsll: { 11861 APSInt Val; 11862 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11863 return false; 11864 11865 unsigned N = Val.countTrailingZeros(); 11866 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 11867 } 11868 11869 case Builtin::BI__builtin_fpclassify: { 11870 APFloat Val(0.0); 11871 if (!EvaluateFloat(E->getArg(5), Val, Info)) 11872 return false; 11873 unsigned Arg; 11874 switch (Val.getCategory()) { 11875 case APFloat::fcNaN: Arg = 0; break; 11876 case APFloat::fcInfinity: Arg = 1; break; 11877 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 11878 case APFloat::fcZero: Arg = 4; break; 11879 } 11880 return Visit(E->getArg(Arg)); 11881 } 11882 11883 case Builtin::BI__builtin_isinf_sign: { 11884 APFloat Val(0.0); 11885 return EvaluateFloat(E->getArg(0), Val, Info) && 11886 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 11887 } 11888 11889 case Builtin::BI__builtin_isinf: { 11890 APFloat Val(0.0); 11891 return EvaluateFloat(E->getArg(0), Val, Info) && 11892 Success(Val.isInfinity() ? 1 : 0, E); 11893 } 11894 11895 case Builtin::BI__builtin_isfinite: { 11896 APFloat Val(0.0); 11897 return EvaluateFloat(E->getArg(0), Val, Info) && 11898 Success(Val.isFinite() ? 1 : 0, E); 11899 } 11900 11901 case Builtin::BI__builtin_isnan: { 11902 APFloat Val(0.0); 11903 return EvaluateFloat(E->getArg(0), Val, Info) && 11904 Success(Val.isNaN() ? 1 : 0, E); 11905 } 11906 11907 case Builtin::BI__builtin_isnormal: { 11908 APFloat Val(0.0); 11909 return EvaluateFloat(E->getArg(0), Val, Info) && 11910 Success(Val.isNormal() ? 1 : 0, E); 11911 } 11912 11913 case Builtin::BI__builtin_parity: 11914 case Builtin::BI__builtin_parityl: 11915 case Builtin::BI__builtin_parityll: { 11916 APSInt Val; 11917 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11918 return false; 11919 11920 return Success(Val.countPopulation() % 2, E); 11921 } 11922 11923 case Builtin::BI__builtin_popcount: 11924 case Builtin::BI__builtin_popcountl: 11925 case Builtin::BI__builtin_popcountll: { 11926 APSInt Val; 11927 if (!EvaluateInteger(E->getArg(0), Val, Info)) 11928 return false; 11929 11930 return Success(Val.countPopulation(), E); 11931 } 11932 11933 case Builtin::BI__builtin_rotateleft8: 11934 case Builtin::BI__builtin_rotateleft16: 11935 case Builtin::BI__builtin_rotateleft32: 11936 case Builtin::BI__builtin_rotateleft64: 11937 case Builtin::BI_rotl8: // Microsoft variants of rotate right 11938 case Builtin::BI_rotl16: 11939 case Builtin::BI_rotl: 11940 case Builtin::BI_lrotl: 11941 case Builtin::BI_rotl64: { 11942 APSInt Val, Amt; 11943 if (!EvaluateInteger(E->getArg(0), Val, Info) || 11944 !EvaluateInteger(E->getArg(1), Amt, Info)) 11945 return false; 11946 11947 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); 11948 } 11949 11950 case Builtin::BI__builtin_rotateright8: 11951 case Builtin::BI__builtin_rotateright16: 11952 case Builtin::BI__builtin_rotateright32: 11953 case Builtin::BI__builtin_rotateright64: 11954 case Builtin::BI_rotr8: // Microsoft variants of rotate right 11955 case Builtin::BI_rotr16: 11956 case Builtin::BI_rotr: 11957 case Builtin::BI_lrotr: 11958 case Builtin::BI_rotr64: { 11959 APSInt Val, Amt; 11960 if (!EvaluateInteger(E->getArg(0), Val, Info) || 11961 !EvaluateInteger(E->getArg(1), Amt, Info)) 11962 return false; 11963 11964 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); 11965 } 11966 11967 case Builtin::BIstrlen: 11968 case Builtin::BIwcslen: 11969 // A call to strlen is not a constant expression. 11970 if (Info.getLangOpts().CPlusPlus11) 11971 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 11972 << /*isConstexpr*/0 << /*isConstructor*/0 11973 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 11974 else 11975 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 11976 LLVM_FALLTHROUGH; 11977 case Builtin::BI__builtin_strlen: 11978 case Builtin::BI__builtin_wcslen: { 11979 // As an extension, we support __builtin_strlen() as a constant expression, 11980 // and support folding strlen() to a constant. 11981 uint64_t StrLen; 11982 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) 11983 return Success(StrLen, E); 11984 return false; 11985 } 11986 11987 case Builtin::BIstrcmp: 11988 case Builtin::BIwcscmp: 11989 case Builtin::BIstrncmp: 11990 case Builtin::BIwcsncmp: 11991 case Builtin::BImemcmp: 11992 case Builtin::BIbcmp: 11993 case Builtin::BIwmemcmp: 11994 // A call to strlen is not a constant expression. 11995 if (Info.getLangOpts().CPlusPlus11) 11996 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 11997 << /*isConstexpr*/0 << /*isConstructor*/0 11998 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); 11999 else 12000 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 12001 LLVM_FALLTHROUGH; 12002 case Builtin::BI__builtin_strcmp: 12003 case Builtin::BI__builtin_wcscmp: 12004 case Builtin::BI__builtin_strncmp: 12005 case Builtin::BI__builtin_wcsncmp: 12006 case Builtin::BI__builtin_memcmp: 12007 case Builtin::BI__builtin_bcmp: 12008 case Builtin::BI__builtin_wmemcmp: { 12009 LValue String1, String2; 12010 if (!EvaluatePointer(E->getArg(0), String1, Info) || 12011 !EvaluatePointer(E->getArg(1), String2, Info)) 12012 return false; 12013 12014 uint64_t MaxLength = uint64_t(-1); 12015 if (BuiltinOp != Builtin::BIstrcmp && 12016 BuiltinOp != Builtin::BIwcscmp && 12017 BuiltinOp != Builtin::BI__builtin_strcmp && 12018 BuiltinOp != Builtin::BI__builtin_wcscmp) { 12019 APSInt N; 12020 if (!EvaluateInteger(E->getArg(2), N, Info)) 12021 return false; 12022 MaxLength = N.getExtValue(); 12023 } 12024 12025 // Empty substrings compare equal by definition. 12026 if (MaxLength == 0u) 12027 return Success(0, E); 12028 12029 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 12030 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 12031 String1.Designator.Invalid || String2.Designator.Invalid) 12032 return false; 12033 12034 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 12035 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 12036 12037 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 12038 BuiltinOp == Builtin::BIbcmp || 12039 BuiltinOp == Builtin::BI__builtin_memcmp || 12040 BuiltinOp == Builtin::BI__builtin_bcmp; 12041 12042 assert(IsRawByte || 12043 (Info.Ctx.hasSameUnqualifiedType( 12044 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 12045 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 12046 12047 // For memcmp, allow comparing any arrays of '[[un]signed] char' or 12048 // 'char8_t', but no other types. 12049 if (IsRawByte && 12050 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { 12051 // FIXME: Consider using our bit_cast implementation to support this. 12052 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) 12053 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'") 12054 << CharTy1 << CharTy2; 12055 return false; 12056 } 12057 12058 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 12059 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 12060 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 12061 Char1.isInt() && Char2.isInt(); 12062 }; 12063 const auto &AdvanceElems = [&] { 12064 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 12065 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 12066 }; 12067 12068 bool StopAtNull = 12069 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 12070 BuiltinOp != Builtin::BIwmemcmp && 12071 BuiltinOp != Builtin::BI__builtin_memcmp && 12072 BuiltinOp != Builtin::BI__builtin_bcmp && 12073 BuiltinOp != Builtin::BI__builtin_wmemcmp); 12074 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 12075 BuiltinOp == Builtin::BIwcsncmp || 12076 BuiltinOp == Builtin::BIwmemcmp || 12077 BuiltinOp == Builtin::BI__builtin_wcscmp || 12078 BuiltinOp == Builtin::BI__builtin_wcsncmp || 12079 BuiltinOp == Builtin::BI__builtin_wmemcmp; 12080 12081 for (; MaxLength; --MaxLength) { 12082 APValue Char1, Char2; 12083 if (!ReadCurElems(Char1, Char2)) 12084 return false; 12085 if (Char1.getInt().ne(Char2.getInt())) { 12086 if (IsWide) // wmemcmp compares with wchar_t signedness. 12087 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 12088 // memcmp always compares unsigned chars. 12089 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 12090 } 12091 if (StopAtNull && !Char1.getInt()) 12092 return Success(0, E); 12093 assert(!(StopAtNull && !Char2.getInt())); 12094 if (!AdvanceElems()) 12095 return false; 12096 } 12097 // We hit the strncmp / memcmp limit. 12098 return Success(0, E); 12099 } 12100 12101 case Builtin::BI__atomic_always_lock_free: 12102 case Builtin::BI__atomic_is_lock_free: 12103 case Builtin::BI__c11_atomic_is_lock_free: { 12104 APSInt SizeVal; 12105 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 12106 return false; 12107 12108 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 12109 // of two less than or equal to the maximum inline atomic width, we know it 12110 // is lock-free. If the size isn't a power of two, or greater than the 12111 // maximum alignment where we promote atomics, we know it is not lock-free 12112 // (at least not in the sense of atomic_is_lock_free). Otherwise, 12113 // the answer can only be determined at runtime; for example, 16-byte 12114 // atomics have lock-free implementations on some, but not all, 12115 // x86-64 processors. 12116 12117 // Check power-of-two. 12118 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 12119 if (Size.isPowerOfTwo()) { 12120 // Check against inlining width. 12121 unsigned InlineWidthBits = 12122 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 12123 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 12124 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 12125 Size == CharUnits::One() || 12126 E->getArg(1)->isNullPointerConstant(Info.Ctx, 12127 Expr::NPC_NeverValueDependent)) 12128 // OK, we will inline appropriately-aligned operations of this size, 12129 // and _Atomic(T) is appropriately-aligned. 12130 return Success(1, E); 12131 12132 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> 12133 castAs<PointerType>()->getPointeeType(); 12134 if (!PointeeType->isIncompleteType() && 12135 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 12136 // OK, we will inline operations on this object. 12137 return Success(1, E); 12138 } 12139 } 12140 } 12141 12142 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 12143 Success(0, E) : Error(E); 12144 } 12145 case Builtin::BI__builtin_add_overflow: 12146 case Builtin::BI__builtin_sub_overflow: 12147 case Builtin::BI__builtin_mul_overflow: 12148 case Builtin::BI__builtin_sadd_overflow: 12149 case Builtin::BI__builtin_uadd_overflow: 12150 case Builtin::BI__builtin_uaddl_overflow: 12151 case Builtin::BI__builtin_uaddll_overflow: 12152 case Builtin::BI__builtin_usub_overflow: 12153 case Builtin::BI__builtin_usubl_overflow: 12154 case Builtin::BI__builtin_usubll_overflow: 12155 case Builtin::BI__builtin_umul_overflow: 12156 case Builtin::BI__builtin_umull_overflow: 12157 case Builtin::BI__builtin_umulll_overflow: 12158 case Builtin::BI__builtin_saddl_overflow: 12159 case Builtin::BI__builtin_saddll_overflow: 12160 case Builtin::BI__builtin_ssub_overflow: 12161 case Builtin::BI__builtin_ssubl_overflow: 12162 case Builtin::BI__builtin_ssubll_overflow: 12163 case Builtin::BI__builtin_smul_overflow: 12164 case Builtin::BI__builtin_smull_overflow: 12165 case Builtin::BI__builtin_smulll_overflow: { 12166 LValue ResultLValue; 12167 APSInt LHS, RHS; 12168 12169 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 12170 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 12171 !EvaluateInteger(E->getArg(1), RHS, Info) || 12172 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 12173 return false; 12174 12175 APSInt Result; 12176 bool DidOverflow = false; 12177 12178 // If the types don't have to match, enlarge all 3 to the largest of them. 12179 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12180 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12181 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12182 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 12183 ResultType->isSignedIntegerOrEnumerationType(); 12184 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 12185 ResultType->isSignedIntegerOrEnumerationType(); 12186 uint64_t LHSSize = LHS.getBitWidth(); 12187 uint64_t RHSSize = RHS.getBitWidth(); 12188 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 12189 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 12190 12191 // Add an additional bit if the signedness isn't uniformly agreed to. We 12192 // could do this ONLY if there is a signed and an unsigned that both have 12193 // MaxBits, but the code to check that is pretty nasty. The issue will be 12194 // caught in the shrink-to-result later anyway. 12195 if (IsSigned && !AllSigned) 12196 ++MaxBits; 12197 12198 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 12199 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 12200 Result = APSInt(MaxBits, !IsSigned); 12201 } 12202 12203 // Find largest int. 12204 switch (BuiltinOp) { 12205 default: 12206 llvm_unreachable("Invalid value for BuiltinOp"); 12207 case Builtin::BI__builtin_add_overflow: 12208 case Builtin::BI__builtin_sadd_overflow: 12209 case Builtin::BI__builtin_saddl_overflow: 12210 case Builtin::BI__builtin_saddll_overflow: 12211 case Builtin::BI__builtin_uadd_overflow: 12212 case Builtin::BI__builtin_uaddl_overflow: 12213 case Builtin::BI__builtin_uaddll_overflow: 12214 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 12215 : LHS.uadd_ov(RHS, DidOverflow); 12216 break; 12217 case Builtin::BI__builtin_sub_overflow: 12218 case Builtin::BI__builtin_ssub_overflow: 12219 case Builtin::BI__builtin_ssubl_overflow: 12220 case Builtin::BI__builtin_ssubll_overflow: 12221 case Builtin::BI__builtin_usub_overflow: 12222 case Builtin::BI__builtin_usubl_overflow: 12223 case Builtin::BI__builtin_usubll_overflow: 12224 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 12225 : LHS.usub_ov(RHS, DidOverflow); 12226 break; 12227 case Builtin::BI__builtin_mul_overflow: 12228 case Builtin::BI__builtin_smul_overflow: 12229 case Builtin::BI__builtin_smull_overflow: 12230 case Builtin::BI__builtin_smulll_overflow: 12231 case Builtin::BI__builtin_umul_overflow: 12232 case Builtin::BI__builtin_umull_overflow: 12233 case Builtin::BI__builtin_umulll_overflow: 12234 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 12235 : LHS.umul_ov(RHS, DidOverflow); 12236 break; 12237 } 12238 12239 // In the case where multiple sizes are allowed, truncate and see if 12240 // the values are the same. 12241 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 12242 BuiltinOp == Builtin::BI__builtin_sub_overflow || 12243 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 12244 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 12245 // since it will give us the behavior of a TruncOrSelf in the case where 12246 // its parameter <= its size. We previously set Result to be at least the 12247 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 12248 // will work exactly like TruncOrSelf. 12249 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 12250 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 12251 12252 if (!APSInt::isSameValue(Temp, Result)) 12253 DidOverflow = true; 12254 Result = Temp; 12255 } 12256 12257 APValue APV{Result}; 12258 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 12259 return false; 12260 return Success(DidOverflow, E); 12261 } 12262 } 12263 } 12264 12265 /// Determine whether this is a pointer past the end of the complete 12266 /// object referred to by the lvalue. 12267 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 12268 const LValue &LV) { 12269 // A null pointer can be viewed as being "past the end" but we don't 12270 // choose to look at it that way here. 12271 if (!LV.getLValueBase()) 12272 return false; 12273 12274 // If the designator is valid and refers to a subobject, we're not pointing 12275 // past the end. 12276 if (!LV.getLValueDesignator().Invalid && 12277 !LV.getLValueDesignator().isOnePastTheEnd()) 12278 return false; 12279 12280 // A pointer to an incomplete type might be past-the-end if the type's size is 12281 // zero. We cannot tell because the type is incomplete. 12282 QualType Ty = getType(LV.getLValueBase()); 12283 if (Ty->isIncompleteType()) 12284 return true; 12285 12286 // We're a past-the-end pointer if we point to the byte after the object, 12287 // no matter what our type or path is. 12288 auto Size = Ctx.getTypeSizeInChars(Ty); 12289 return LV.getLValueOffset() == Size; 12290 } 12291 12292 namespace { 12293 12294 /// Data recursive integer evaluator of certain binary operators. 12295 /// 12296 /// We use a data recursive algorithm for binary operators so that we are able 12297 /// to handle extreme cases of chained binary operators without causing stack 12298 /// overflow. 12299 class DataRecursiveIntBinOpEvaluator { 12300 struct EvalResult { 12301 APValue Val; 12302 bool Failed; 12303 12304 EvalResult() : Failed(false) { } 12305 12306 void swap(EvalResult &RHS) { 12307 Val.swap(RHS.Val); 12308 Failed = RHS.Failed; 12309 RHS.Failed = false; 12310 } 12311 }; 12312 12313 struct Job { 12314 const Expr *E; 12315 EvalResult LHSResult; // meaningful only for binary operator expression. 12316 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 12317 12318 Job() = default; 12319 Job(Job &&) = default; 12320 12321 void startSpeculativeEval(EvalInfo &Info) { 12322 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 12323 } 12324 12325 private: 12326 SpeculativeEvaluationRAII SpecEvalRAII; 12327 }; 12328 12329 SmallVector<Job, 16> Queue; 12330 12331 IntExprEvaluator &IntEval; 12332 EvalInfo &Info; 12333 APValue &FinalResult; 12334 12335 public: 12336 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 12337 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 12338 12339 /// True if \param E is a binary operator that we are going to handle 12340 /// data recursively. 12341 /// We handle binary operators that are comma, logical, or that have operands 12342 /// with integral or enumeration type. 12343 static bool shouldEnqueue(const BinaryOperator *E) { 12344 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 12345 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && 12346 E->getLHS()->getType()->isIntegralOrEnumerationType() && 12347 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12348 } 12349 12350 bool Traverse(const BinaryOperator *E) { 12351 enqueue(E); 12352 EvalResult PrevResult; 12353 while (!Queue.empty()) 12354 process(PrevResult); 12355 12356 if (PrevResult.Failed) return false; 12357 12358 FinalResult.swap(PrevResult.Val); 12359 return true; 12360 } 12361 12362 private: 12363 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 12364 return IntEval.Success(Value, E, Result); 12365 } 12366 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 12367 return IntEval.Success(Value, E, Result); 12368 } 12369 bool Error(const Expr *E) { 12370 return IntEval.Error(E); 12371 } 12372 bool Error(const Expr *E, diag::kind D) { 12373 return IntEval.Error(E, D); 12374 } 12375 12376 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 12377 return Info.CCEDiag(E, D); 12378 } 12379 12380 // Returns true if visiting the RHS is necessary, false otherwise. 12381 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12382 bool &SuppressRHSDiags); 12383 12384 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12385 const BinaryOperator *E, APValue &Result); 12386 12387 void EvaluateExpr(const Expr *E, EvalResult &Result) { 12388 Result.Failed = !Evaluate(Result.Val, Info, E); 12389 if (Result.Failed) 12390 Result.Val = APValue(); 12391 } 12392 12393 void process(EvalResult &Result); 12394 12395 void enqueue(const Expr *E) { 12396 E = E->IgnoreParens(); 12397 Queue.resize(Queue.size()+1); 12398 Queue.back().E = E; 12399 Queue.back().Kind = Job::AnyExprKind; 12400 } 12401 }; 12402 12403 } 12404 12405 bool DataRecursiveIntBinOpEvaluator:: 12406 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 12407 bool &SuppressRHSDiags) { 12408 if (E->getOpcode() == BO_Comma) { 12409 // Ignore LHS but note if we could not evaluate it. 12410 if (LHSResult.Failed) 12411 return Info.noteSideEffect(); 12412 return true; 12413 } 12414 12415 if (E->isLogicalOp()) { 12416 bool LHSAsBool; 12417 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 12418 // We were able to evaluate the LHS, see if we can get away with not 12419 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 12420 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 12421 Success(LHSAsBool, E, LHSResult.Val); 12422 return false; // Ignore RHS 12423 } 12424 } else { 12425 LHSResult.Failed = true; 12426 12427 // Since we weren't able to evaluate the left hand side, it 12428 // might have had side effects. 12429 if (!Info.noteSideEffect()) 12430 return false; 12431 12432 // We can't evaluate the LHS; however, sometimes the result 12433 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12434 // Don't ignore RHS and suppress diagnostics from this arm. 12435 SuppressRHSDiags = true; 12436 } 12437 12438 return true; 12439 } 12440 12441 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12442 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12443 12444 if (LHSResult.Failed && !Info.noteFailure()) 12445 return false; // Ignore RHS; 12446 12447 return true; 12448 } 12449 12450 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 12451 bool IsSub) { 12452 // Compute the new offset in the appropriate width, wrapping at 64 bits. 12453 // FIXME: When compiling for a 32-bit target, we should use 32-bit 12454 // offsets. 12455 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 12456 CharUnits &Offset = LVal.getLValueOffset(); 12457 uint64_t Offset64 = Offset.getQuantity(); 12458 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 12459 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 12460 : Offset64 + Index64); 12461 } 12462 12463 bool DataRecursiveIntBinOpEvaluator:: 12464 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 12465 const BinaryOperator *E, APValue &Result) { 12466 if (E->getOpcode() == BO_Comma) { 12467 if (RHSResult.Failed) 12468 return false; 12469 Result = RHSResult.Val; 12470 return true; 12471 } 12472 12473 if (E->isLogicalOp()) { 12474 bool lhsResult, rhsResult; 12475 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 12476 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 12477 12478 if (LHSIsOK) { 12479 if (RHSIsOK) { 12480 if (E->getOpcode() == BO_LOr) 12481 return Success(lhsResult || rhsResult, E, Result); 12482 else 12483 return Success(lhsResult && rhsResult, E, Result); 12484 } 12485 } else { 12486 if (RHSIsOK) { 12487 // We can't evaluate the LHS; however, sometimes the result 12488 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 12489 if (rhsResult == (E->getOpcode() == BO_LOr)) 12490 return Success(rhsResult, E, Result); 12491 } 12492 } 12493 12494 return false; 12495 } 12496 12497 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 12498 E->getRHS()->getType()->isIntegralOrEnumerationType()); 12499 12500 if (LHSResult.Failed || RHSResult.Failed) 12501 return false; 12502 12503 const APValue &LHSVal = LHSResult.Val; 12504 const APValue &RHSVal = RHSResult.Val; 12505 12506 // Handle cases like (unsigned long)&a + 4. 12507 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 12508 Result = LHSVal; 12509 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 12510 return true; 12511 } 12512 12513 // Handle cases like 4 + (unsigned long)&a 12514 if (E->getOpcode() == BO_Add && 12515 RHSVal.isLValue() && LHSVal.isInt()) { 12516 Result = RHSVal; 12517 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 12518 return true; 12519 } 12520 12521 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 12522 // Handle (intptr_t)&&A - (intptr_t)&&B. 12523 if (!LHSVal.getLValueOffset().isZero() || 12524 !RHSVal.getLValueOffset().isZero()) 12525 return false; 12526 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 12527 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 12528 if (!LHSExpr || !RHSExpr) 12529 return false; 12530 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 12531 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 12532 if (!LHSAddrExpr || !RHSAddrExpr) 12533 return false; 12534 // Make sure both labels come from the same function. 12535 if (LHSAddrExpr->getLabel()->getDeclContext() != 12536 RHSAddrExpr->getLabel()->getDeclContext()) 12537 return false; 12538 Result = APValue(LHSAddrExpr, RHSAddrExpr); 12539 return true; 12540 } 12541 12542 // All the remaining cases expect both operands to be an integer 12543 if (!LHSVal.isInt() || !RHSVal.isInt()) 12544 return Error(E); 12545 12546 // Set up the width and signedness manually, in case it can't be deduced 12547 // from the operation we're performing. 12548 // FIXME: Don't do this in the cases where we can deduce it. 12549 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 12550 E->getType()->isUnsignedIntegerOrEnumerationType()); 12551 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 12552 RHSVal.getInt(), Value)) 12553 return false; 12554 return Success(Value, E, Result); 12555 } 12556 12557 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 12558 Job &job = Queue.back(); 12559 12560 switch (job.Kind) { 12561 case Job::AnyExprKind: { 12562 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 12563 if (shouldEnqueue(Bop)) { 12564 job.Kind = Job::BinOpKind; 12565 enqueue(Bop->getLHS()); 12566 return; 12567 } 12568 } 12569 12570 EvaluateExpr(job.E, Result); 12571 Queue.pop_back(); 12572 return; 12573 } 12574 12575 case Job::BinOpKind: { 12576 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12577 bool SuppressRHSDiags = false; 12578 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 12579 Queue.pop_back(); 12580 return; 12581 } 12582 if (SuppressRHSDiags) 12583 job.startSpeculativeEval(Info); 12584 job.LHSResult.swap(Result); 12585 job.Kind = Job::BinOpVisitedLHSKind; 12586 enqueue(Bop->getRHS()); 12587 return; 12588 } 12589 12590 case Job::BinOpVisitedLHSKind: { 12591 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 12592 EvalResult RHS; 12593 RHS.swap(Result); 12594 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 12595 Queue.pop_back(); 12596 return; 12597 } 12598 } 12599 12600 llvm_unreachable("Invalid Job::Kind!"); 12601 } 12602 12603 namespace { 12604 enum class CmpResult { 12605 Unequal, 12606 Less, 12607 Equal, 12608 Greater, 12609 Unordered, 12610 }; 12611 } 12612 12613 template <class SuccessCB, class AfterCB> 12614 static bool 12615 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 12616 SuccessCB &&Success, AfterCB &&DoAfter) { 12617 assert(!E->isValueDependent()); 12618 assert(E->isComparisonOp() && "expected comparison operator"); 12619 assert((E->getOpcode() == BO_Cmp || 12620 E->getType()->isIntegralOrEnumerationType()) && 12621 "unsupported binary expression evaluation"); 12622 auto Error = [&](const Expr *E) { 12623 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12624 return false; 12625 }; 12626 12627 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; 12628 bool IsEquality = E->isEqualityOp(); 12629 12630 QualType LHSTy = E->getLHS()->getType(); 12631 QualType RHSTy = E->getRHS()->getType(); 12632 12633 if (LHSTy->isIntegralOrEnumerationType() && 12634 RHSTy->isIntegralOrEnumerationType()) { 12635 APSInt LHS, RHS; 12636 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 12637 if (!LHSOK && !Info.noteFailure()) 12638 return false; 12639 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 12640 return false; 12641 if (LHS < RHS) 12642 return Success(CmpResult::Less, E); 12643 if (LHS > RHS) 12644 return Success(CmpResult::Greater, E); 12645 return Success(CmpResult::Equal, E); 12646 } 12647 12648 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 12649 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 12650 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 12651 12652 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 12653 if (!LHSOK && !Info.noteFailure()) 12654 return false; 12655 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 12656 return false; 12657 if (LHSFX < RHSFX) 12658 return Success(CmpResult::Less, E); 12659 if (LHSFX > RHSFX) 12660 return Success(CmpResult::Greater, E); 12661 return Success(CmpResult::Equal, E); 12662 } 12663 12664 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 12665 ComplexValue LHS, RHS; 12666 bool LHSOK; 12667 if (E->isAssignmentOp()) { 12668 LValue LV; 12669 EvaluateLValue(E->getLHS(), LV, Info); 12670 LHSOK = false; 12671 } else if (LHSTy->isRealFloatingType()) { 12672 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 12673 if (LHSOK) { 12674 LHS.makeComplexFloat(); 12675 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 12676 } 12677 } else { 12678 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 12679 } 12680 if (!LHSOK && !Info.noteFailure()) 12681 return false; 12682 12683 if (E->getRHS()->getType()->isRealFloatingType()) { 12684 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 12685 return false; 12686 RHS.makeComplexFloat(); 12687 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 12688 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 12689 return false; 12690 12691 if (LHS.isComplexFloat()) { 12692 APFloat::cmpResult CR_r = 12693 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 12694 APFloat::cmpResult CR_i = 12695 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 12696 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 12697 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 12698 } else { 12699 assert(IsEquality && "invalid complex comparison"); 12700 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 12701 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 12702 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 12703 } 12704 } 12705 12706 if (LHSTy->isRealFloatingType() && 12707 RHSTy->isRealFloatingType()) { 12708 APFloat RHS(0.0), LHS(0.0); 12709 12710 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 12711 if (!LHSOK && !Info.noteFailure()) 12712 return false; 12713 12714 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 12715 return false; 12716 12717 assert(E->isComparisonOp() && "Invalid binary operator!"); 12718 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); 12719 if (!Info.InConstantContext && 12720 APFloatCmpResult == APFloat::cmpUnordered && 12721 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { 12722 // Note: Compares may raise invalid in some cases involving NaN or sNaN. 12723 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 12724 return false; 12725 } 12726 auto GetCmpRes = [&]() { 12727 switch (APFloatCmpResult) { 12728 case APFloat::cmpEqual: 12729 return CmpResult::Equal; 12730 case APFloat::cmpLessThan: 12731 return CmpResult::Less; 12732 case APFloat::cmpGreaterThan: 12733 return CmpResult::Greater; 12734 case APFloat::cmpUnordered: 12735 return CmpResult::Unordered; 12736 } 12737 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 12738 }; 12739 return Success(GetCmpRes(), E); 12740 } 12741 12742 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 12743 LValue LHSValue, RHSValue; 12744 12745 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 12746 if (!LHSOK && !Info.noteFailure()) 12747 return false; 12748 12749 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 12750 return false; 12751 12752 // Reject differing bases from the normal codepath; we special-case 12753 // comparisons to null. 12754 if (!HasSameBase(LHSValue, RHSValue)) { 12755 // Inequalities and subtractions between unrelated pointers have 12756 // unspecified or undefined behavior. 12757 if (!IsEquality) { 12758 Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified); 12759 return false; 12760 } 12761 // A constant address may compare equal to the address of a symbol. 12762 // The one exception is that address of an object cannot compare equal 12763 // to a null pointer constant. 12764 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 12765 (!RHSValue.Base && !RHSValue.Offset.isZero())) 12766 return Error(E); 12767 // It's implementation-defined whether distinct literals will have 12768 // distinct addresses. In clang, the result of such a comparison is 12769 // unspecified, so it is not a constant expression. However, we do know 12770 // that the address of a literal will be non-null. 12771 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && 12772 LHSValue.Base && RHSValue.Base) 12773 return Error(E); 12774 // We can't tell whether weak symbols will end up pointing to the same 12775 // object. 12776 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 12777 return Error(E); 12778 // We can't compare the address of the start of one object with the 12779 // past-the-end address of another object, per C++ DR1652. 12780 if ((LHSValue.Base && LHSValue.Offset.isZero() && 12781 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || 12782 (RHSValue.Base && RHSValue.Offset.isZero() && 12783 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) 12784 return Error(E); 12785 // We can't tell whether an object is at the same address as another 12786 // zero sized object. 12787 if ((RHSValue.Base && isZeroSized(LHSValue)) || 12788 (LHSValue.Base && isZeroSized(RHSValue))) 12789 return Error(E); 12790 return Success(CmpResult::Unequal, E); 12791 } 12792 12793 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 12794 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 12795 12796 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 12797 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 12798 12799 // C++11 [expr.rel]p3: 12800 // Pointers to void (after pointer conversions) can be compared, with a 12801 // result defined as follows: If both pointers represent the same 12802 // address or are both the null pointer value, the result is true if the 12803 // operator is <= or >= and false otherwise; otherwise the result is 12804 // unspecified. 12805 // We interpret this as applying to pointers to *cv* void. 12806 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) 12807 Info.CCEDiag(E, diag::note_constexpr_void_comparison); 12808 12809 // C++11 [expr.rel]p2: 12810 // - If two pointers point to non-static data members of the same object, 12811 // or to subobjects or array elements fo such members, recursively, the 12812 // pointer to the later declared member compares greater provided the 12813 // two members have the same access control and provided their class is 12814 // not a union. 12815 // [...] 12816 // - Otherwise pointer comparisons are unspecified. 12817 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 12818 bool WasArrayIndex; 12819 unsigned Mismatch = FindDesignatorMismatch( 12820 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 12821 // At the point where the designators diverge, the comparison has a 12822 // specified value if: 12823 // - we are comparing array indices 12824 // - we are comparing fields of a union, or fields with the same access 12825 // Otherwise, the result is unspecified and thus the comparison is not a 12826 // constant expression. 12827 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 12828 Mismatch < RHSDesignator.Entries.size()) { 12829 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 12830 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 12831 if (!LF && !RF) 12832 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 12833 else if (!LF) 12834 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 12835 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 12836 << RF->getParent() << RF; 12837 else if (!RF) 12838 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 12839 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 12840 << LF->getParent() << LF; 12841 else if (!LF->getParent()->isUnion() && 12842 LF->getAccess() != RF->getAccess()) 12843 Info.CCEDiag(E, 12844 diag::note_constexpr_pointer_comparison_differing_access) 12845 << LF << LF->getAccess() << RF << RF->getAccess() 12846 << LF->getParent(); 12847 } 12848 } 12849 12850 // The comparison here must be unsigned, and performed with the same 12851 // width as the pointer. 12852 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 12853 uint64_t CompareLHS = LHSOffset.getQuantity(); 12854 uint64_t CompareRHS = RHSOffset.getQuantity(); 12855 assert(PtrSize <= 64 && "Unexpected pointer width"); 12856 uint64_t Mask = ~0ULL >> (64 - PtrSize); 12857 CompareLHS &= Mask; 12858 CompareRHS &= Mask; 12859 12860 // If there is a base and this is a relational operator, we can only 12861 // compare pointers within the object in question; otherwise, the result 12862 // depends on where the object is located in memory. 12863 if (!LHSValue.Base.isNull() && IsRelational) { 12864 QualType BaseTy = getType(LHSValue.Base); 12865 if (BaseTy->isIncompleteType()) 12866 return Error(E); 12867 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 12868 uint64_t OffsetLimit = Size.getQuantity(); 12869 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 12870 return Error(E); 12871 } 12872 12873 if (CompareLHS < CompareRHS) 12874 return Success(CmpResult::Less, E); 12875 if (CompareLHS > CompareRHS) 12876 return Success(CmpResult::Greater, E); 12877 return Success(CmpResult::Equal, E); 12878 } 12879 12880 if (LHSTy->isMemberPointerType()) { 12881 assert(IsEquality && "unexpected member pointer operation"); 12882 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 12883 12884 MemberPtr LHSValue, RHSValue; 12885 12886 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 12887 if (!LHSOK && !Info.noteFailure()) 12888 return false; 12889 12890 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 12891 return false; 12892 12893 // C++11 [expr.eq]p2: 12894 // If both operands are null, they compare equal. Otherwise if only one is 12895 // null, they compare unequal. 12896 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 12897 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 12898 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 12899 } 12900 12901 // Otherwise if either is a pointer to a virtual member function, the 12902 // result is unspecified. 12903 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 12904 if (MD->isVirtual()) 12905 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 12906 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 12907 if (MD->isVirtual()) 12908 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 12909 12910 // Otherwise they compare equal if and only if they would refer to the 12911 // same member of the same most derived object or the same subobject if 12912 // they were dereferenced with a hypothetical object of the associated 12913 // class type. 12914 bool Equal = LHSValue == RHSValue; 12915 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 12916 } 12917 12918 if (LHSTy->isNullPtrType()) { 12919 assert(E->isComparisonOp() && "unexpected nullptr operation"); 12920 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 12921 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 12922 // are compared, the result is true of the operator is <=, >= or ==, and 12923 // false otherwise. 12924 return Success(CmpResult::Equal, E); 12925 } 12926 12927 return DoAfter(); 12928 } 12929 12930 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 12931 if (!CheckLiteralType(Info, E)) 12932 return false; 12933 12934 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 12935 ComparisonCategoryResult CCR; 12936 switch (CR) { 12937 case CmpResult::Unequal: 12938 llvm_unreachable("should never produce Unequal for three-way comparison"); 12939 case CmpResult::Less: 12940 CCR = ComparisonCategoryResult::Less; 12941 break; 12942 case CmpResult::Equal: 12943 CCR = ComparisonCategoryResult::Equal; 12944 break; 12945 case CmpResult::Greater: 12946 CCR = ComparisonCategoryResult::Greater; 12947 break; 12948 case CmpResult::Unordered: 12949 CCR = ComparisonCategoryResult::Unordered; 12950 break; 12951 } 12952 // Evaluation succeeded. Lookup the information for the comparison category 12953 // type and fetch the VarDecl for the result. 12954 const ComparisonCategoryInfo &CmpInfo = 12955 Info.Ctx.CompCategories.getInfoForType(E->getType()); 12956 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; 12957 // Check and evaluate the result as a constant expression. 12958 LValue LV; 12959 LV.set(VD); 12960 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 12961 return false; 12962 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 12963 ConstantExprKind::Normal); 12964 }; 12965 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 12966 return ExprEvaluatorBaseTy::VisitBinCmp(E); 12967 }); 12968 } 12969 12970 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 12971 // We don't support assignment in C. C++ assignments don't get here because 12972 // assignment is an lvalue in C++. 12973 if (E->isAssignmentOp()) { 12974 Error(E); 12975 if (!Info.noteFailure()) 12976 return false; 12977 } 12978 12979 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 12980 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 12981 12982 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 12983 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 12984 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 12985 12986 if (E->isComparisonOp()) { 12987 // Evaluate builtin binary comparisons by evaluating them as three-way 12988 // comparisons and then translating the result. 12989 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 12990 assert((CR != CmpResult::Unequal || E->isEqualityOp()) && 12991 "should only produce Unequal for equality comparisons"); 12992 bool IsEqual = CR == CmpResult::Equal, 12993 IsLess = CR == CmpResult::Less, 12994 IsGreater = CR == CmpResult::Greater; 12995 auto Op = E->getOpcode(); 12996 switch (Op) { 12997 default: 12998 llvm_unreachable("unsupported binary operator"); 12999 case BO_EQ: 13000 case BO_NE: 13001 return Success(IsEqual == (Op == BO_EQ), E); 13002 case BO_LT: 13003 return Success(IsLess, E); 13004 case BO_GT: 13005 return Success(IsGreater, E); 13006 case BO_LE: 13007 return Success(IsEqual || IsLess, E); 13008 case BO_GE: 13009 return Success(IsEqual || IsGreater, E); 13010 } 13011 }; 13012 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 13013 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13014 }); 13015 } 13016 13017 QualType LHSTy = E->getLHS()->getType(); 13018 QualType RHSTy = E->getRHS()->getType(); 13019 13020 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 13021 E->getOpcode() == BO_Sub) { 13022 LValue LHSValue, RHSValue; 13023 13024 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 13025 if (!LHSOK && !Info.noteFailure()) 13026 return false; 13027 13028 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 13029 return false; 13030 13031 // Reject differing bases from the normal codepath; we special-case 13032 // comparisons to null. 13033 if (!HasSameBase(LHSValue, RHSValue)) { 13034 // Handle &&A - &&B. 13035 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 13036 return Error(E); 13037 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 13038 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 13039 if (!LHSExpr || !RHSExpr) 13040 return Error(E); 13041 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 13042 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 13043 if (!LHSAddrExpr || !RHSAddrExpr) 13044 return Error(E); 13045 // Make sure both labels come from the same function. 13046 if (LHSAddrExpr->getLabel()->getDeclContext() != 13047 RHSAddrExpr->getLabel()->getDeclContext()) 13048 return Error(E); 13049 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 13050 } 13051 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 13052 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 13053 13054 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 13055 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 13056 13057 // C++11 [expr.add]p6: 13058 // Unless both pointers point to elements of the same array object, or 13059 // one past the last element of the array object, the behavior is 13060 // undefined. 13061 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 13062 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 13063 RHSDesignator)) 13064 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 13065 13066 QualType Type = E->getLHS()->getType(); 13067 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 13068 13069 CharUnits ElementSize; 13070 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 13071 return false; 13072 13073 // As an extension, a type may have zero size (empty struct or union in 13074 // C, array of zero length). Pointer subtraction in such cases has 13075 // undefined behavior, so is not constant. 13076 if (ElementSize.isZero()) { 13077 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 13078 << ElementType; 13079 return false; 13080 } 13081 13082 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 13083 // and produce incorrect results when it overflows. Such behavior 13084 // appears to be non-conforming, but is common, so perhaps we should 13085 // assume the standard intended for such cases to be undefined behavior 13086 // and check for them. 13087 13088 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 13089 // overflow in the final conversion to ptrdiff_t. 13090 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 13091 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 13092 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 13093 false); 13094 APSInt TrueResult = (LHS - RHS) / ElemSize; 13095 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 13096 13097 if (Result.extend(65) != TrueResult && 13098 !HandleOverflow(Info, E, TrueResult, E->getType())) 13099 return false; 13100 return Success(Result, E); 13101 } 13102 13103 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13104 } 13105 13106 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 13107 /// a result as the expression's type. 13108 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 13109 const UnaryExprOrTypeTraitExpr *E) { 13110 switch(E->getKind()) { 13111 case UETT_PreferredAlignOf: 13112 case UETT_AlignOf: { 13113 if (E->isArgumentType()) 13114 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), 13115 E); 13116 else 13117 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), 13118 E); 13119 } 13120 13121 case UETT_VecStep: { 13122 QualType Ty = E->getTypeOfArgument(); 13123 13124 if (Ty->isVectorType()) { 13125 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 13126 13127 // The vec_step built-in functions that take a 3-component 13128 // vector return 4. (OpenCL 1.1 spec 6.11.12) 13129 if (n == 3) 13130 n = 4; 13131 13132 return Success(n, E); 13133 } else 13134 return Success(1, E); 13135 } 13136 13137 case UETT_SizeOf: { 13138 QualType SrcTy = E->getTypeOfArgument(); 13139 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 13140 // the result is the size of the referenced type." 13141 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 13142 SrcTy = Ref->getPointeeType(); 13143 13144 CharUnits Sizeof; 13145 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) 13146 return false; 13147 return Success(Sizeof, E); 13148 } 13149 case UETT_OpenMPRequiredSimdAlign: 13150 assert(E->isArgumentType()); 13151 return Success( 13152 Info.Ctx.toCharUnitsFromBits( 13153 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 13154 .getQuantity(), 13155 E); 13156 } 13157 13158 llvm_unreachable("unknown expr/type trait"); 13159 } 13160 13161 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 13162 CharUnits Result; 13163 unsigned n = OOE->getNumComponents(); 13164 if (n == 0) 13165 return Error(OOE); 13166 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 13167 for (unsigned i = 0; i != n; ++i) { 13168 OffsetOfNode ON = OOE->getComponent(i); 13169 switch (ON.getKind()) { 13170 case OffsetOfNode::Array: { 13171 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 13172 APSInt IdxResult; 13173 if (!EvaluateInteger(Idx, IdxResult, Info)) 13174 return false; 13175 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 13176 if (!AT) 13177 return Error(OOE); 13178 CurrentType = AT->getElementType(); 13179 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 13180 Result += IdxResult.getSExtValue() * ElementSize; 13181 break; 13182 } 13183 13184 case OffsetOfNode::Field: { 13185 FieldDecl *MemberDecl = ON.getField(); 13186 const RecordType *RT = CurrentType->getAs<RecordType>(); 13187 if (!RT) 13188 return Error(OOE); 13189 RecordDecl *RD = RT->getDecl(); 13190 if (RD->isInvalidDecl()) return false; 13191 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13192 unsigned i = MemberDecl->getFieldIndex(); 13193 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 13194 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 13195 CurrentType = MemberDecl->getType().getNonReferenceType(); 13196 break; 13197 } 13198 13199 case OffsetOfNode::Identifier: 13200 llvm_unreachable("dependent __builtin_offsetof"); 13201 13202 case OffsetOfNode::Base: { 13203 CXXBaseSpecifier *BaseSpec = ON.getBase(); 13204 if (BaseSpec->isVirtual()) 13205 return Error(OOE); 13206 13207 // Find the layout of the class whose base we are looking into. 13208 const RecordType *RT = CurrentType->getAs<RecordType>(); 13209 if (!RT) 13210 return Error(OOE); 13211 RecordDecl *RD = RT->getDecl(); 13212 if (RD->isInvalidDecl()) return false; 13213 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 13214 13215 // Find the base class itself. 13216 CurrentType = BaseSpec->getType(); 13217 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 13218 if (!BaseRT) 13219 return Error(OOE); 13220 13221 // Add the offset to the base. 13222 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 13223 break; 13224 } 13225 } 13226 } 13227 return Success(Result, OOE); 13228 } 13229 13230 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13231 switch (E->getOpcode()) { 13232 default: 13233 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 13234 // See C99 6.6p3. 13235 return Error(E); 13236 case UO_Extension: 13237 // FIXME: Should extension allow i-c-e extension expressions in its scope? 13238 // If so, we could clear the diagnostic ID. 13239 return Visit(E->getSubExpr()); 13240 case UO_Plus: 13241 // The result is just the value. 13242 return Visit(E->getSubExpr()); 13243 case UO_Minus: { 13244 if (!Visit(E->getSubExpr())) 13245 return false; 13246 if (!Result.isInt()) return Error(E); 13247 const APSInt &Value = Result.getInt(); 13248 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && 13249 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 13250 E->getType())) 13251 return false; 13252 return Success(-Value, E); 13253 } 13254 case UO_Not: { 13255 if (!Visit(E->getSubExpr())) 13256 return false; 13257 if (!Result.isInt()) return Error(E); 13258 return Success(~Result.getInt(), E); 13259 } 13260 case UO_LNot: { 13261 bool bres; 13262 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13263 return false; 13264 return Success(!bres, E); 13265 } 13266 } 13267 } 13268 13269 /// HandleCast - This is used to evaluate implicit or explicit casts where the 13270 /// result type is integer. 13271 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 13272 const Expr *SubExpr = E->getSubExpr(); 13273 QualType DestType = E->getType(); 13274 QualType SrcType = SubExpr->getType(); 13275 13276 switch (E->getCastKind()) { 13277 case CK_BaseToDerived: 13278 case CK_DerivedToBase: 13279 case CK_UncheckedDerivedToBase: 13280 case CK_Dynamic: 13281 case CK_ToUnion: 13282 case CK_ArrayToPointerDecay: 13283 case CK_FunctionToPointerDecay: 13284 case CK_NullToPointer: 13285 case CK_NullToMemberPointer: 13286 case CK_BaseToDerivedMemberPointer: 13287 case CK_DerivedToBaseMemberPointer: 13288 case CK_ReinterpretMemberPointer: 13289 case CK_ConstructorConversion: 13290 case CK_IntegralToPointer: 13291 case CK_ToVoid: 13292 case CK_VectorSplat: 13293 case CK_IntegralToFloating: 13294 case CK_FloatingCast: 13295 case CK_CPointerToObjCPointerCast: 13296 case CK_BlockPointerToObjCPointerCast: 13297 case CK_AnyPointerToBlockPointerCast: 13298 case CK_ObjCObjectLValueCast: 13299 case CK_FloatingRealToComplex: 13300 case CK_FloatingComplexToReal: 13301 case CK_FloatingComplexCast: 13302 case CK_FloatingComplexToIntegralComplex: 13303 case CK_IntegralRealToComplex: 13304 case CK_IntegralComplexCast: 13305 case CK_IntegralComplexToFloatingComplex: 13306 case CK_BuiltinFnToFnPtr: 13307 case CK_ZeroToOCLOpaqueType: 13308 case CK_NonAtomicToAtomic: 13309 case CK_AddressSpaceConversion: 13310 case CK_IntToOCLSampler: 13311 case CK_FloatingToFixedPoint: 13312 case CK_FixedPointToFloating: 13313 case CK_FixedPointCast: 13314 case CK_IntegralToFixedPoint: 13315 case CK_MatrixCast: 13316 llvm_unreachable("invalid cast kind for integral value"); 13317 13318 case CK_BitCast: 13319 case CK_Dependent: 13320 case CK_LValueBitCast: 13321 case CK_ARCProduceObject: 13322 case CK_ARCConsumeObject: 13323 case CK_ARCReclaimReturnedObject: 13324 case CK_ARCExtendBlockObject: 13325 case CK_CopyAndAutoreleaseBlockObject: 13326 return Error(E); 13327 13328 case CK_UserDefinedConversion: 13329 case CK_LValueToRValue: 13330 case CK_AtomicToNonAtomic: 13331 case CK_NoOp: 13332 case CK_LValueToRValueBitCast: 13333 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13334 13335 case CK_MemberPointerToBoolean: 13336 case CK_PointerToBoolean: 13337 case CK_IntegralToBoolean: 13338 case CK_FloatingToBoolean: 13339 case CK_BooleanToSignedIntegral: 13340 case CK_FloatingComplexToBoolean: 13341 case CK_IntegralComplexToBoolean: { 13342 bool BoolResult; 13343 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 13344 return false; 13345 uint64_t IntResult = BoolResult; 13346 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 13347 IntResult = (uint64_t)-1; 13348 return Success(IntResult, E); 13349 } 13350 13351 case CK_FixedPointToIntegral: { 13352 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 13353 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13354 return false; 13355 bool Overflowed; 13356 llvm::APSInt Result = Src.convertToInt( 13357 Info.Ctx.getIntWidth(DestType), 13358 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 13359 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 13360 return false; 13361 return Success(Result, E); 13362 } 13363 13364 case CK_FixedPointToBoolean: { 13365 // Unsigned padding does not affect this. 13366 APValue Val; 13367 if (!Evaluate(Val, Info, SubExpr)) 13368 return false; 13369 return Success(Val.getFixedPoint().getBoolValue(), E); 13370 } 13371 13372 case CK_IntegralCast: { 13373 if (!Visit(SubExpr)) 13374 return false; 13375 13376 if (!Result.isInt()) { 13377 // Allow casts of address-of-label differences if they are no-ops 13378 // or narrowing. (The narrowing case isn't actually guaranteed to 13379 // be constant-evaluatable except in some narrow cases which are hard 13380 // to detect here. We let it through on the assumption the user knows 13381 // what they are doing.) 13382 if (Result.isAddrLabelDiff()) 13383 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 13384 // Only allow casts of lvalues if they are lossless. 13385 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 13386 } 13387 13388 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 13389 Result.getInt()), E); 13390 } 13391 13392 case CK_PointerToIntegral: { 13393 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 13394 13395 LValue LV; 13396 if (!EvaluatePointer(SubExpr, LV, Info)) 13397 return false; 13398 13399 if (LV.getLValueBase()) { 13400 // Only allow based lvalue casts if they are lossless. 13401 // FIXME: Allow a larger integer size than the pointer size, and allow 13402 // narrowing back down to pointer width in subsequent integral casts. 13403 // FIXME: Check integer type's active bits, not its type size. 13404 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 13405 return Error(E); 13406 13407 LV.Designator.setInvalid(); 13408 LV.moveInto(Result); 13409 return true; 13410 } 13411 13412 APSInt AsInt; 13413 APValue V; 13414 LV.moveInto(V); 13415 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 13416 llvm_unreachable("Can't cast this!"); 13417 13418 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 13419 } 13420 13421 case CK_IntegralComplexToReal: { 13422 ComplexValue C; 13423 if (!EvaluateComplex(SubExpr, C, Info)) 13424 return false; 13425 return Success(C.getComplexIntReal(), E); 13426 } 13427 13428 case CK_FloatingToIntegral: { 13429 APFloat F(0.0); 13430 if (!EvaluateFloat(SubExpr, F, Info)) 13431 return false; 13432 13433 APSInt Value; 13434 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 13435 return false; 13436 return Success(Value, E); 13437 } 13438 } 13439 13440 llvm_unreachable("unknown cast resulting in integral value"); 13441 } 13442 13443 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 13444 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13445 ComplexValue LV; 13446 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13447 return false; 13448 if (!LV.isComplexInt()) 13449 return Error(E); 13450 return Success(LV.getComplexIntReal(), E); 13451 } 13452 13453 return Visit(E->getSubExpr()); 13454 } 13455 13456 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 13457 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 13458 ComplexValue LV; 13459 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 13460 return false; 13461 if (!LV.isComplexInt()) 13462 return Error(E); 13463 return Success(LV.getComplexIntImag(), E); 13464 } 13465 13466 VisitIgnoredValue(E->getSubExpr()); 13467 return Success(0, E); 13468 } 13469 13470 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 13471 return Success(E->getPackLength(), E); 13472 } 13473 13474 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 13475 return Success(E->getValue(), E); 13476 } 13477 13478 bool IntExprEvaluator::VisitConceptSpecializationExpr( 13479 const ConceptSpecializationExpr *E) { 13480 return Success(E->isSatisfied(), E); 13481 } 13482 13483 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { 13484 return Success(E->isSatisfied(), E); 13485 } 13486 13487 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13488 switch (E->getOpcode()) { 13489 default: 13490 // Invalid unary operators 13491 return Error(E); 13492 case UO_Plus: 13493 // The result is just the value. 13494 return Visit(E->getSubExpr()); 13495 case UO_Minus: { 13496 if (!Visit(E->getSubExpr())) return false; 13497 if (!Result.isFixedPoint()) 13498 return Error(E); 13499 bool Overflowed; 13500 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 13501 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 13502 return false; 13503 return Success(Negated, E); 13504 } 13505 case UO_LNot: { 13506 bool bres; 13507 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 13508 return false; 13509 return Success(!bres, E); 13510 } 13511 } 13512 } 13513 13514 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 13515 const Expr *SubExpr = E->getSubExpr(); 13516 QualType DestType = E->getType(); 13517 assert(DestType->isFixedPointType() && 13518 "Expected destination type to be a fixed point type"); 13519 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 13520 13521 switch (E->getCastKind()) { 13522 case CK_FixedPointCast: { 13523 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 13524 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 13525 return false; 13526 bool Overflowed; 13527 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 13528 if (Overflowed) { 13529 if (Info.checkingForUndefinedBehavior()) 13530 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13531 diag::warn_fixedpoint_constant_overflow) 13532 << Result.toString() << E->getType(); 13533 if (!HandleOverflow(Info, E, Result, E->getType())) 13534 return false; 13535 } 13536 return Success(Result, E); 13537 } 13538 case CK_IntegralToFixedPoint: { 13539 APSInt Src; 13540 if (!EvaluateInteger(SubExpr, Src, Info)) 13541 return false; 13542 13543 bool Overflowed; 13544 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 13545 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13546 13547 if (Overflowed) { 13548 if (Info.checkingForUndefinedBehavior()) 13549 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13550 diag::warn_fixedpoint_constant_overflow) 13551 << IntResult.toString() << E->getType(); 13552 if (!HandleOverflow(Info, E, IntResult, E->getType())) 13553 return false; 13554 } 13555 13556 return Success(IntResult, E); 13557 } 13558 case CK_FloatingToFixedPoint: { 13559 APFloat Src(0.0); 13560 if (!EvaluateFloat(SubExpr, Src, Info)) 13561 return false; 13562 13563 bool Overflowed; 13564 APFixedPoint Result = APFixedPoint::getFromFloatValue( 13565 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 13566 13567 if (Overflowed) { 13568 if (Info.checkingForUndefinedBehavior()) 13569 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13570 diag::warn_fixedpoint_constant_overflow) 13571 << Result.toString() << E->getType(); 13572 if (!HandleOverflow(Info, E, Result, E->getType())) 13573 return false; 13574 } 13575 13576 return Success(Result, E); 13577 } 13578 case CK_NoOp: 13579 case CK_LValueToRValue: 13580 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13581 default: 13582 return Error(E); 13583 } 13584 } 13585 13586 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13587 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 13588 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13589 13590 const Expr *LHS = E->getLHS(); 13591 const Expr *RHS = E->getRHS(); 13592 FixedPointSemantics ResultFXSema = 13593 Info.Ctx.getFixedPointSemantics(E->getType()); 13594 13595 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 13596 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 13597 return false; 13598 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 13599 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 13600 return false; 13601 13602 bool OpOverflow = false, ConversionOverflow = false; 13603 APFixedPoint Result(LHSFX.getSemantics()); 13604 switch (E->getOpcode()) { 13605 case BO_Add: { 13606 Result = LHSFX.add(RHSFX, &OpOverflow) 13607 .convert(ResultFXSema, &ConversionOverflow); 13608 break; 13609 } 13610 case BO_Sub: { 13611 Result = LHSFX.sub(RHSFX, &OpOverflow) 13612 .convert(ResultFXSema, &ConversionOverflow); 13613 break; 13614 } 13615 case BO_Mul: { 13616 Result = LHSFX.mul(RHSFX, &OpOverflow) 13617 .convert(ResultFXSema, &ConversionOverflow); 13618 break; 13619 } 13620 case BO_Div: { 13621 if (RHSFX.getValue() == 0) { 13622 Info.FFDiag(E, diag::note_expr_divide_by_zero); 13623 return false; 13624 } 13625 Result = LHSFX.div(RHSFX, &OpOverflow) 13626 .convert(ResultFXSema, &ConversionOverflow); 13627 break; 13628 } 13629 case BO_Shl: 13630 case BO_Shr: { 13631 FixedPointSemantics LHSSema = LHSFX.getSemantics(); 13632 llvm::APSInt RHSVal = RHSFX.getValue(); 13633 13634 unsigned ShiftBW = 13635 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); 13636 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); 13637 // Embedded-C 4.1.6.2.2: 13638 // The right operand must be nonnegative and less than the total number 13639 // of (nonpadding) bits of the fixed-point operand ... 13640 if (RHSVal.isNegative()) 13641 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; 13642 else if (Amt != RHSVal) 13643 Info.CCEDiag(E, diag::note_constexpr_large_shift) 13644 << RHSVal << E->getType() << ShiftBW; 13645 13646 if (E->getOpcode() == BO_Shl) 13647 Result = LHSFX.shl(Amt, &OpOverflow); 13648 else 13649 Result = LHSFX.shr(Amt, &OpOverflow); 13650 break; 13651 } 13652 default: 13653 return false; 13654 } 13655 if (OpOverflow || ConversionOverflow) { 13656 if (Info.checkingForUndefinedBehavior()) 13657 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 13658 diag::warn_fixedpoint_constant_overflow) 13659 << Result.toString() << E->getType(); 13660 if (!HandleOverflow(Info, E, Result, E->getType())) 13661 return false; 13662 } 13663 return Success(Result, E); 13664 } 13665 13666 //===----------------------------------------------------------------------===// 13667 // Float Evaluation 13668 //===----------------------------------------------------------------------===// 13669 13670 namespace { 13671 class FloatExprEvaluator 13672 : public ExprEvaluatorBase<FloatExprEvaluator> { 13673 APFloat &Result; 13674 public: 13675 FloatExprEvaluator(EvalInfo &info, APFloat &result) 13676 : ExprEvaluatorBaseTy(info), Result(result) {} 13677 13678 bool Success(const APValue &V, const Expr *e) { 13679 Result = V.getFloat(); 13680 return true; 13681 } 13682 13683 bool ZeroInitialization(const Expr *E) { 13684 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 13685 return true; 13686 } 13687 13688 bool VisitCallExpr(const CallExpr *E); 13689 13690 bool VisitUnaryOperator(const UnaryOperator *E); 13691 bool VisitBinaryOperator(const BinaryOperator *E); 13692 bool VisitFloatingLiteral(const FloatingLiteral *E); 13693 bool VisitCastExpr(const CastExpr *E); 13694 13695 bool VisitUnaryReal(const UnaryOperator *E); 13696 bool VisitUnaryImag(const UnaryOperator *E); 13697 13698 // FIXME: Missing: array subscript of vector, member of vector 13699 }; 13700 } // end anonymous namespace 13701 13702 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 13703 assert(!E->isValueDependent()); 13704 assert(E->isPRValue() && E->getType()->isRealFloatingType()); 13705 return FloatExprEvaluator(Info, Result).Visit(E); 13706 } 13707 13708 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 13709 QualType ResultTy, 13710 const Expr *Arg, 13711 bool SNaN, 13712 llvm::APFloat &Result) { 13713 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 13714 if (!S) return false; 13715 13716 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 13717 13718 llvm::APInt fill; 13719 13720 // Treat empty strings as if they were zero. 13721 if (S->getString().empty()) 13722 fill = llvm::APInt(32, 0); 13723 else if (S->getString().getAsInteger(0, fill)) 13724 return false; 13725 13726 if (Context.getTargetInfo().isNan2008()) { 13727 if (SNaN) 13728 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 13729 else 13730 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 13731 } else { 13732 // Prior to IEEE 754-2008, architectures were allowed to choose whether 13733 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 13734 // a different encoding to what became a standard in 2008, and for pre- 13735 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 13736 // sNaN. This is now known as "legacy NaN" encoding. 13737 if (SNaN) 13738 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 13739 else 13740 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 13741 } 13742 13743 return true; 13744 } 13745 13746 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 13747 switch (E->getBuiltinCallee()) { 13748 default: 13749 return ExprEvaluatorBaseTy::VisitCallExpr(E); 13750 13751 case Builtin::BI__builtin_huge_val: 13752 case Builtin::BI__builtin_huge_valf: 13753 case Builtin::BI__builtin_huge_vall: 13754 case Builtin::BI__builtin_huge_valf128: 13755 case Builtin::BI__builtin_inf: 13756 case Builtin::BI__builtin_inff: 13757 case Builtin::BI__builtin_infl: 13758 case Builtin::BI__builtin_inff128: { 13759 const llvm::fltSemantics &Sem = 13760 Info.Ctx.getFloatTypeSemantics(E->getType()); 13761 Result = llvm::APFloat::getInf(Sem); 13762 return true; 13763 } 13764 13765 case Builtin::BI__builtin_nans: 13766 case Builtin::BI__builtin_nansf: 13767 case Builtin::BI__builtin_nansl: 13768 case Builtin::BI__builtin_nansf128: 13769 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 13770 true, Result)) 13771 return Error(E); 13772 return true; 13773 13774 case Builtin::BI__builtin_nan: 13775 case Builtin::BI__builtin_nanf: 13776 case Builtin::BI__builtin_nanl: 13777 case Builtin::BI__builtin_nanf128: 13778 // If this is __builtin_nan() turn this into a nan, otherwise we 13779 // can't constant fold it. 13780 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 13781 false, Result)) 13782 return Error(E); 13783 return true; 13784 13785 case Builtin::BI__builtin_fabs: 13786 case Builtin::BI__builtin_fabsf: 13787 case Builtin::BI__builtin_fabsl: 13788 case Builtin::BI__builtin_fabsf128: 13789 // The C standard says "fabs raises no floating-point exceptions, 13790 // even if x is a signaling NaN. The returned value is independent of 13791 // the current rounding direction mode." Therefore constant folding can 13792 // proceed without regard to the floating point settings. 13793 // Reference, WG14 N2478 F.10.4.3 13794 if (!EvaluateFloat(E->getArg(0), Result, Info)) 13795 return false; 13796 13797 if (Result.isNegative()) 13798 Result.changeSign(); 13799 return true; 13800 13801 case Builtin::BI__arithmetic_fence: 13802 return EvaluateFloat(E->getArg(0), Result, Info); 13803 13804 // FIXME: Builtin::BI__builtin_powi 13805 // FIXME: Builtin::BI__builtin_powif 13806 // FIXME: Builtin::BI__builtin_powil 13807 13808 case Builtin::BI__builtin_copysign: 13809 case Builtin::BI__builtin_copysignf: 13810 case Builtin::BI__builtin_copysignl: 13811 case Builtin::BI__builtin_copysignf128: { 13812 APFloat RHS(0.); 13813 if (!EvaluateFloat(E->getArg(0), Result, Info) || 13814 !EvaluateFloat(E->getArg(1), RHS, Info)) 13815 return false; 13816 Result.copySign(RHS); 13817 return true; 13818 } 13819 } 13820 } 13821 13822 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 13823 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13824 ComplexValue CV; 13825 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 13826 return false; 13827 Result = CV.FloatReal; 13828 return true; 13829 } 13830 13831 return Visit(E->getSubExpr()); 13832 } 13833 13834 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 13835 if (E->getSubExpr()->getType()->isAnyComplexType()) { 13836 ComplexValue CV; 13837 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 13838 return false; 13839 Result = CV.FloatImag; 13840 return true; 13841 } 13842 13843 VisitIgnoredValue(E->getSubExpr()); 13844 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 13845 Result = llvm::APFloat::getZero(Sem); 13846 return true; 13847 } 13848 13849 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 13850 switch (E->getOpcode()) { 13851 default: return Error(E); 13852 case UO_Plus: 13853 return EvaluateFloat(E->getSubExpr(), Result, Info); 13854 case UO_Minus: 13855 // In C standard, WG14 N2478 F.3 p4 13856 // "the unary - raises no floating point exceptions, 13857 // even if the operand is signalling." 13858 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 13859 return false; 13860 Result.changeSign(); 13861 return true; 13862 } 13863 } 13864 13865 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 13866 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 13867 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 13868 13869 APFloat RHS(0.0); 13870 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 13871 if (!LHSOK && !Info.noteFailure()) 13872 return false; 13873 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 13874 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 13875 } 13876 13877 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 13878 Result = E->getValue(); 13879 return true; 13880 } 13881 13882 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 13883 const Expr* SubExpr = E->getSubExpr(); 13884 13885 switch (E->getCastKind()) { 13886 default: 13887 return ExprEvaluatorBaseTy::VisitCastExpr(E); 13888 13889 case CK_IntegralToFloating: { 13890 APSInt IntResult; 13891 const FPOptions FPO = E->getFPFeaturesInEffect( 13892 Info.Ctx.getLangOpts()); 13893 return EvaluateInteger(SubExpr, IntResult, Info) && 13894 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), 13895 IntResult, E->getType(), Result); 13896 } 13897 13898 case CK_FixedPointToFloating: { 13899 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 13900 if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) 13901 return false; 13902 Result = 13903 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); 13904 return true; 13905 } 13906 13907 case CK_FloatingCast: { 13908 if (!Visit(SubExpr)) 13909 return false; 13910 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 13911 Result); 13912 } 13913 13914 case CK_FloatingComplexToReal: { 13915 ComplexValue V; 13916 if (!EvaluateComplex(SubExpr, V, Info)) 13917 return false; 13918 Result = V.getComplexFloatReal(); 13919 return true; 13920 } 13921 } 13922 } 13923 13924 //===----------------------------------------------------------------------===// 13925 // Complex Evaluation (for float and integer) 13926 //===----------------------------------------------------------------------===// 13927 13928 namespace { 13929 class ComplexExprEvaluator 13930 : public ExprEvaluatorBase<ComplexExprEvaluator> { 13931 ComplexValue &Result; 13932 13933 public: 13934 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 13935 : ExprEvaluatorBaseTy(info), Result(Result) {} 13936 13937 bool Success(const APValue &V, const Expr *e) { 13938 Result.setFrom(V); 13939 return true; 13940 } 13941 13942 bool ZeroInitialization(const Expr *E); 13943 13944 //===--------------------------------------------------------------------===// 13945 // Visitor Methods 13946 //===--------------------------------------------------------------------===// 13947 13948 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 13949 bool VisitCastExpr(const CastExpr *E); 13950 bool VisitBinaryOperator(const BinaryOperator *E); 13951 bool VisitUnaryOperator(const UnaryOperator *E); 13952 bool VisitInitListExpr(const InitListExpr *E); 13953 bool VisitCallExpr(const CallExpr *E); 13954 }; 13955 } // end anonymous namespace 13956 13957 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 13958 EvalInfo &Info) { 13959 assert(!E->isValueDependent()); 13960 assert(E->isPRValue() && E->getType()->isAnyComplexType()); 13961 return ComplexExprEvaluator(Info, Result).Visit(E); 13962 } 13963 13964 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 13965 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 13966 if (ElemTy->isRealFloatingType()) { 13967 Result.makeComplexFloat(); 13968 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 13969 Result.FloatReal = Zero; 13970 Result.FloatImag = Zero; 13971 } else { 13972 Result.makeComplexInt(); 13973 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 13974 Result.IntReal = Zero; 13975 Result.IntImag = Zero; 13976 } 13977 return true; 13978 } 13979 13980 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 13981 const Expr* SubExpr = E->getSubExpr(); 13982 13983 if (SubExpr->getType()->isRealFloatingType()) { 13984 Result.makeComplexFloat(); 13985 APFloat &Imag = Result.FloatImag; 13986 if (!EvaluateFloat(SubExpr, Imag, Info)) 13987 return false; 13988 13989 Result.FloatReal = APFloat(Imag.getSemantics()); 13990 return true; 13991 } else { 13992 assert(SubExpr->getType()->isIntegerType() && 13993 "Unexpected imaginary literal."); 13994 13995 Result.makeComplexInt(); 13996 APSInt &Imag = Result.IntImag; 13997 if (!EvaluateInteger(SubExpr, Imag, Info)) 13998 return false; 13999 14000 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 14001 return true; 14002 } 14003 } 14004 14005 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 14006 14007 switch (E->getCastKind()) { 14008 case CK_BitCast: 14009 case CK_BaseToDerived: 14010 case CK_DerivedToBase: 14011 case CK_UncheckedDerivedToBase: 14012 case CK_Dynamic: 14013 case CK_ToUnion: 14014 case CK_ArrayToPointerDecay: 14015 case CK_FunctionToPointerDecay: 14016 case CK_NullToPointer: 14017 case CK_NullToMemberPointer: 14018 case CK_BaseToDerivedMemberPointer: 14019 case CK_DerivedToBaseMemberPointer: 14020 case CK_MemberPointerToBoolean: 14021 case CK_ReinterpretMemberPointer: 14022 case CK_ConstructorConversion: 14023 case CK_IntegralToPointer: 14024 case CK_PointerToIntegral: 14025 case CK_PointerToBoolean: 14026 case CK_ToVoid: 14027 case CK_VectorSplat: 14028 case CK_IntegralCast: 14029 case CK_BooleanToSignedIntegral: 14030 case CK_IntegralToBoolean: 14031 case CK_IntegralToFloating: 14032 case CK_FloatingToIntegral: 14033 case CK_FloatingToBoolean: 14034 case CK_FloatingCast: 14035 case CK_CPointerToObjCPointerCast: 14036 case CK_BlockPointerToObjCPointerCast: 14037 case CK_AnyPointerToBlockPointerCast: 14038 case CK_ObjCObjectLValueCast: 14039 case CK_FloatingComplexToReal: 14040 case CK_FloatingComplexToBoolean: 14041 case CK_IntegralComplexToReal: 14042 case CK_IntegralComplexToBoolean: 14043 case CK_ARCProduceObject: 14044 case CK_ARCConsumeObject: 14045 case CK_ARCReclaimReturnedObject: 14046 case CK_ARCExtendBlockObject: 14047 case CK_CopyAndAutoreleaseBlockObject: 14048 case CK_BuiltinFnToFnPtr: 14049 case CK_ZeroToOCLOpaqueType: 14050 case CK_NonAtomicToAtomic: 14051 case CK_AddressSpaceConversion: 14052 case CK_IntToOCLSampler: 14053 case CK_FloatingToFixedPoint: 14054 case CK_FixedPointToFloating: 14055 case CK_FixedPointCast: 14056 case CK_FixedPointToBoolean: 14057 case CK_FixedPointToIntegral: 14058 case CK_IntegralToFixedPoint: 14059 case CK_MatrixCast: 14060 llvm_unreachable("invalid cast kind for complex value"); 14061 14062 case CK_LValueToRValue: 14063 case CK_AtomicToNonAtomic: 14064 case CK_NoOp: 14065 case CK_LValueToRValueBitCast: 14066 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14067 14068 case CK_Dependent: 14069 case CK_LValueBitCast: 14070 case CK_UserDefinedConversion: 14071 return Error(E); 14072 14073 case CK_FloatingRealToComplex: { 14074 APFloat &Real = Result.FloatReal; 14075 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 14076 return false; 14077 14078 Result.makeComplexFloat(); 14079 Result.FloatImag = APFloat(Real.getSemantics()); 14080 return true; 14081 } 14082 14083 case CK_FloatingComplexCast: { 14084 if (!Visit(E->getSubExpr())) 14085 return false; 14086 14087 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14088 QualType From 14089 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14090 14091 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 14092 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 14093 } 14094 14095 case CK_FloatingComplexToIntegralComplex: { 14096 if (!Visit(E->getSubExpr())) 14097 return false; 14098 14099 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14100 QualType From 14101 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14102 Result.makeComplexInt(); 14103 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 14104 To, Result.IntReal) && 14105 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 14106 To, Result.IntImag); 14107 } 14108 14109 case CK_IntegralRealToComplex: { 14110 APSInt &Real = Result.IntReal; 14111 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 14112 return false; 14113 14114 Result.makeComplexInt(); 14115 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 14116 return true; 14117 } 14118 14119 case CK_IntegralComplexCast: { 14120 if (!Visit(E->getSubExpr())) 14121 return false; 14122 14123 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14124 QualType From 14125 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14126 14127 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 14128 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 14129 return true; 14130 } 14131 14132 case CK_IntegralComplexToFloatingComplex: { 14133 if (!Visit(E->getSubExpr())) 14134 return false; 14135 14136 const FPOptions FPO = E->getFPFeaturesInEffect( 14137 Info.Ctx.getLangOpts()); 14138 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 14139 QualType From 14140 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 14141 Result.makeComplexFloat(); 14142 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, 14143 To, Result.FloatReal) && 14144 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, 14145 To, Result.FloatImag); 14146 } 14147 } 14148 14149 llvm_unreachable("unknown cast resulting in complex value"); 14150 } 14151 14152 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14153 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 14154 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14155 14156 // Track whether the LHS or RHS is real at the type system level. When this is 14157 // the case we can simplify our evaluation strategy. 14158 bool LHSReal = false, RHSReal = false; 14159 14160 bool LHSOK; 14161 if (E->getLHS()->getType()->isRealFloatingType()) { 14162 LHSReal = true; 14163 APFloat &Real = Result.FloatReal; 14164 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 14165 if (LHSOK) { 14166 Result.makeComplexFloat(); 14167 Result.FloatImag = APFloat(Real.getSemantics()); 14168 } 14169 } else { 14170 LHSOK = Visit(E->getLHS()); 14171 } 14172 if (!LHSOK && !Info.noteFailure()) 14173 return false; 14174 14175 ComplexValue RHS; 14176 if (E->getRHS()->getType()->isRealFloatingType()) { 14177 RHSReal = true; 14178 APFloat &Real = RHS.FloatReal; 14179 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 14180 return false; 14181 RHS.makeComplexFloat(); 14182 RHS.FloatImag = APFloat(Real.getSemantics()); 14183 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 14184 return false; 14185 14186 assert(!(LHSReal && RHSReal) && 14187 "Cannot have both operands of a complex operation be real."); 14188 switch (E->getOpcode()) { 14189 default: return Error(E); 14190 case BO_Add: 14191 if (Result.isComplexFloat()) { 14192 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 14193 APFloat::rmNearestTiesToEven); 14194 if (LHSReal) 14195 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14196 else if (!RHSReal) 14197 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 14198 APFloat::rmNearestTiesToEven); 14199 } else { 14200 Result.getComplexIntReal() += RHS.getComplexIntReal(); 14201 Result.getComplexIntImag() += RHS.getComplexIntImag(); 14202 } 14203 break; 14204 case BO_Sub: 14205 if (Result.isComplexFloat()) { 14206 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 14207 APFloat::rmNearestTiesToEven); 14208 if (LHSReal) { 14209 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 14210 Result.getComplexFloatImag().changeSign(); 14211 } else if (!RHSReal) { 14212 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 14213 APFloat::rmNearestTiesToEven); 14214 } 14215 } else { 14216 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 14217 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 14218 } 14219 break; 14220 case BO_Mul: 14221 if (Result.isComplexFloat()) { 14222 // This is an implementation of complex multiplication according to the 14223 // constraints laid out in C11 Annex G. The implementation uses the 14224 // following naming scheme: 14225 // (a + ib) * (c + id) 14226 ComplexValue LHS = Result; 14227 APFloat &A = LHS.getComplexFloatReal(); 14228 APFloat &B = LHS.getComplexFloatImag(); 14229 APFloat &C = RHS.getComplexFloatReal(); 14230 APFloat &D = RHS.getComplexFloatImag(); 14231 APFloat &ResR = Result.getComplexFloatReal(); 14232 APFloat &ResI = Result.getComplexFloatImag(); 14233 if (LHSReal) { 14234 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 14235 ResR = A * C; 14236 ResI = A * D; 14237 } else if (RHSReal) { 14238 ResR = C * A; 14239 ResI = C * B; 14240 } else { 14241 // In the fully general case, we need to handle NaNs and infinities 14242 // robustly. 14243 APFloat AC = A * C; 14244 APFloat BD = B * D; 14245 APFloat AD = A * D; 14246 APFloat BC = B * C; 14247 ResR = AC - BD; 14248 ResI = AD + BC; 14249 if (ResR.isNaN() && ResI.isNaN()) { 14250 bool Recalc = false; 14251 if (A.isInfinity() || B.isInfinity()) { 14252 A = APFloat::copySign( 14253 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14254 B = APFloat::copySign( 14255 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14256 if (C.isNaN()) 14257 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14258 if (D.isNaN()) 14259 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14260 Recalc = true; 14261 } 14262 if (C.isInfinity() || D.isInfinity()) { 14263 C = APFloat::copySign( 14264 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14265 D = APFloat::copySign( 14266 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14267 if (A.isNaN()) 14268 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14269 if (B.isNaN()) 14270 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14271 Recalc = true; 14272 } 14273 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || 14274 AD.isInfinity() || BC.isInfinity())) { 14275 if (A.isNaN()) 14276 A = APFloat::copySign(APFloat(A.getSemantics()), A); 14277 if (B.isNaN()) 14278 B = APFloat::copySign(APFloat(B.getSemantics()), B); 14279 if (C.isNaN()) 14280 C = APFloat::copySign(APFloat(C.getSemantics()), C); 14281 if (D.isNaN()) 14282 D = APFloat::copySign(APFloat(D.getSemantics()), D); 14283 Recalc = true; 14284 } 14285 if (Recalc) { 14286 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 14287 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 14288 } 14289 } 14290 } 14291 } else { 14292 ComplexValue LHS = Result; 14293 Result.getComplexIntReal() = 14294 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 14295 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 14296 Result.getComplexIntImag() = 14297 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 14298 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 14299 } 14300 break; 14301 case BO_Div: 14302 if (Result.isComplexFloat()) { 14303 // This is an implementation of complex division according to the 14304 // constraints laid out in C11 Annex G. The implementation uses the 14305 // following naming scheme: 14306 // (a + ib) / (c + id) 14307 ComplexValue LHS = Result; 14308 APFloat &A = LHS.getComplexFloatReal(); 14309 APFloat &B = LHS.getComplexFloatImag(); 14310 APFloat &C = RHS.getComplexFloatReal(); 14311 APFloat &D = RHS.getComplexFloatImag(); 14312 APFloat &ResR = Result.getComplexFloatReal(); 14313 APFloat &ResI = Result.getComplexFloatImag(); 14314 if (RHSReal) { 14315 ResR = A / C; 14316 ResI = B / C; 14317 } else { 14318 if (LHSReal) { 14319 // No real optimizations we can do here, stub out with zero. 14320 B = APFloat::getZero(A.getSemantics()); 14321 } 14322 int DenomLogB = 0; 14323 APFloat MaxCD = maxnum(abs(C), abs(D)); 14324 if (MaxCD.isFinite()) { 14325 DenomLogB = ilogb(MaxCD); 14326 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 14327 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 14328 } 14329 APFloat Denom = C * C + D * D; 14330 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, 14331 APFloat::rmNearestTiesToEven); 14332 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, 14333 APFloat::rmNearestTiesToEven); 14334 if (ResR.isNaN() && ResI.isNaN()) { 14335 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 14336 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 14337 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 14338 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 14339 D.isFinite()) { 14340 A = APFloat::copySign( 14341 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 14342 B = APFloat::copySign( 14343 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 14344 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 14345 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 14346 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 14347 C = APFloat::copySign( 14348 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 14349 D = APFloat::copySign( 14350 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 14351 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 14352 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 14353 } 14354 } 14355 } 14356 } else { 14357 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) 14358 return Error(E, diag::note_expr_divide_by_zero); 14359 14360 ComplexValue LHS = Result; 14361 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 14362 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 14363 Result.getComplexIntReal() = 14364 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 14365 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 14366 Result.getComplexIntImag() = 14367 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 14368 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 14369 } 14370 break; 14371 } 14372 14373 return true; 14374 } 14375 14376 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14377 // Get the operand value into 'Result'. 14378 if (!Visit(E->getSubExpr())) 14379 return false; 14380 14381 switch (E->getOpcode()) { 14382 default: 14383 return Error(E); 14384 case UO_Extension: 14385 return true; 14386 case UO_Plus: 14387 // The result is always just the subexpr. 14388 return true; 14389 case UO_Minus: 14390 if (Result.isComplexFloat()) { 14391 Result.getComplexFloatReal().changeSign(); 14392 Result.getComplexFloatImag().changeSign(); 14393 } 14394 else { 14395 Result.getComplexIntReal() = -Result.getComplexIntReal(); 14396 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14397 } 14398 return true; 14399 case UO_Not: 14400 if (Result.isComplexFloat()) 14401 Result.getComplexFloatImag().changeSign(); 14402 else 14403 Result.getComplexIntImag() = -Result.getComplexIntImag(); 14404 return true; 14405 } 14406 } 14407 14408 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 14409 if (E->getNumInits() == 2) { 14410 if (E->getType()->isComplexType()) { 14411 Result.makeComplexFloat(); 14412 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 14413 return false; 14414 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 14415 return false; 14416 } else { 14417 Result.makeComplexInt(); 14418 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 14419 return false; 14420 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 14421 return false; 14422 } 14423 return true; 14424 } 14425 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 14426 } 14427 14428 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { 14429 switch (E->getBuiltinCallee()) { 14430 case Builtin::BI__builtin_complex: 14431 Result.makeComplexFloat(); 14432 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) 14433 return false; 14434 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) 14435 return false; 14436 return true; 14437 14438 default: 14439 break; 14440 } 14441 14442 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14443 } 14444 14445 //===----------------------------------------------------------------------===// 14446 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 14447 // implicit conversion. 14448 //===----------------------------------------------------------------------===// 14449 14450 namespace { 14451 class AtomicExprEvaluator : 14452 public ExprEvaluatorBase<AtomicExprEvaluator> { 14453 const LValue *This; 14454 APValue &Result; 14455 public: 14456 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 14457 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 14458 14459 bool Success(const APValue &V, const Expr *E) { 14460 Result = V; 14461 return true; 14462 } 14463 14464 bool ZeroInitialization(const Expr *E) { 14465 ImplicitValueInitExpr VIE( 14466 E->getType()->castAs<AtomicType>()->getValueType()); 14467 // For atomic-qualified class (and array) types in C++, initialize the 14468 // _Atomic-wrapped subobject directly, in-place. 14469 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 14470 : Evaluate(Result, Info, &VIE); 14471 } 14472 14473 bool VisitCastExpr(const CastExpr *E) { 14474 switch (E->getCastKind()) { 14475 default: 14476 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14477 case CK_NonAtomicToAtomic: 14478 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 14479 : Evaluate(Result, Info, E->getSubExpr()); 14480 } 14481 } 14482 }; 14483 } // end anonymous namespace 14484 14485 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 14486 EvalInfo &Info) { 14487 assert(!E->isValueDependent()); 14488 assert(E->isPRValue() && E->getType()->isAtomicType()); 14489 return AtomicExprEvaluator(Info, This, Result).Visit(E); 14490 } 14491 14492 //===----------------------------------------------------------------------===// 14493 // Void expression evaluation, primarily for a cast to void on the LHS of a 14494 // comma operator 14495 //===----------------------------------------------------------------------===// 14496 14497 namespace { 14498 class VoidExprEvaluator 14499 : public ExprEvaluatorBase<VoidExprEvaluator> { 14500 public: 14501 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 14502 14503 bool Success(const APValue &V, const Expr *e) { return true; } 14504 14505 bool ZeroInitialization(const Expr *E) { return true; } 14506 14507 bool VisitCastExpr(const CastExpr *E) { 14508 switch (E->getCastKind()) { 14509 default: 14510 return ExprEvaluatorBaseTy::VisitCastExpr(E); 14511 case CK_ToVoid: 14512 VisitIgnoredValue(E->getSubExpr()); 14513 return true; 14514 } 14515 } 14516 14517 bool VisitCallExpr(const CallExpr *E) { 14518 switch (E->getBuiltinCallee()) { 14519 case Builtin::BI__assume: 14520 case Builtin::BI__builtin_assume: 14521 // The argument is not evaluated! 14522 return true; 14523 14524 case Builtin::BI__builtin_operator_delete: 14525 return HandleOperatorDeleteCall(Info, E); 14526 14527 default: 14528 break; 14529 } 14530 14531 return ExprEvaluatorBaseTy::VisitCallExpr(E); 14532 } 14533 14534 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 14535 }; 14536 } // end anonymous namespace 14537 14538 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 14539 // We cannot speculatively evaluate a delete expression. 14540 if (Info.SpeculativeEvaluationDepth) 14541 return false; 14542 14543 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 14544 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 14545 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 14546 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 14547 return false; 14548 } 14549 14550 const Expr *Arg = E->getArgument(); 14551 14552 LValue Pointer; 14553 if (!EvaluatePointer(Arg, Pointer, Info)) 14554 return false; 14555 if (Pointer.Designator.Invalid) 14556 return false; 14557 14558 // Deleting a null pointer has no effect. 14559 if (Pointer.isNullPointer()) { 14560 // This is the only case where we need to produce an extension warning: 14561 // the only other way we can succeed is if we find a dynamic allocation, 14562 // and we will have warned when we allocated it in that case. 14563 if (!Info.getLangOpts().CPlusPlus20) 14564 Info.CCEDiag(E, diag::note_constexpr_new); 14565 return true; 14566 } 14567 14568 Optional<DynAlloc *> Alloc = CheckDeleteKind( 14569 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 14570 if (!Alloc) 14571 return false; 14572 QualType AllocType = Pointer.Base.getDynamicAllocType(); 14573 14574 // For the non-array case, the designator must be empty if the static type 14575 // does not have a virtual destructor. 14576 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 14577 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 14578 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 14579 << Arg->getType()->getPointeeType() << AllocType; 14580 return false; 14581 } 14582 14583 // For a class type with a virtual destructor, the selected operator delete 14584 // is the one looked up when building the destructor. 14585 if (!E->isArrayForm() && !E->isGlobalDelete()) { 14586 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 14587 if (VirtualDelete && 14588 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 14589 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 14590 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 14591 return false; 14592 } 14593 } 14594 14595 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 14596 (*Alloc)->Value, AllocType)) 14597 return false; 14598 14599 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 14600 // The element was already erased. This means the destructor call also 14601 // deleted the object. 14602 // FIXME: This probably results in undefined behavior before we get this 14603 // far, and should be diagnosed elsewhere first. 14604 Info.FFDiag(E, diag::note_constexpr_double_delete); 14605 return false; 14606 } 14607 14608 return true; 14609 } 14610 14611 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 14612 assert(!E->isValueDependent()); 14613 assert(E->isPRValue() && E->getType()->isVoidType()); 14614 return VoidExprEvaluator(Info).Visit(E); 14615 } 14616 14617 //===----------------------------------------------------------------------===// 14618 // Top level Expr::EvaluateAsRValue method. 14619 //===----------------------------------------------------------------------===// 14620 14621 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 14622 assert(!E->isValueDependent()); 14623 // In C, function designators are not lvalues, but we evaluate them as if they 14624 // are. 14625 QualType T = E->getType(); 14626 if (E->isGLValue() || T->isFunctionType()) { 14627 LValue LV; 14628 if (!EvaluateLValue(E, LV, Info)) 14629 return false; 14630 LV.moveInto(Result); 14631 } else if (T->isVectorType()) { 14632 if (!EvaluateVector(E, Result, Info)) 14633 return false; 14634 } else if (T->isIntegralOrEnumerationType()) { 14635 if (!IntExprEvaluator(Info, Result).Visit(E)) 14636 return false; 14637 } else if (T->hasPointerRepresentation()) { 14638 LValue LV; 14639 if (!EvaluatePointer(E, LV, Info)) 14640 return false; 14641 LV.moveInto(Result); 14642 } else if (T->isRealFloatingType()) { 14643 llvm::APFloat F(0.0); 14644 if (!EvaluateFloat(E, F, Info)) 14645 return false; 14646 Result = APValue(F); 14647 } else if (T->isAnyComplexType()) { 14648 ComplexValue C; 14649 if (!EvaluateComplex(E, C, Info)) 14650 return false; 14651 C.moveInto(Result); 14652 } else if (T->isFixedPointType()) { 14653 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 14654 } else if (T->isMemberPointerType()) { 14655 MemberPtr P; 14656 if (!EvaluateMemberPointer(E, P, Info)) 14657 return false; 14658 P.moveInto(Result); 14659 return true; 14660 } else if (T->isArrayType()) { 14661 LValue LV; 14662 APValue &Value = 14663 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 14664 if (!EvaluateArray(E, LV, Value, Info)) 14665 return false; 14666 Result = Value; 14667 } else if (T->isRecordType()) { 14668 LValue LV; 14669 APValue &Value = 14670 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 14671 if (!EvaluateRecord(E, LV, Value, Info)) 14672 return false; 14673 Result = Value; 14674 } else if (T->isVoidType()) { 14675 if (!Info.getLangOpts().CPlusPlus11) 14676 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 14677 << E->getType(); 14678 if (!EvaluateVoid(E, Info)) 14679 return false; 14680 } else if (T->isAtomicType()) { 14681 QualType Unqual = T.getAtomicUnqualifiedType(); 14682 if (Unqual->isArrayType() || Unqual->isRecordType()) { 14683 LValue LV; 14684 APValue &Value = Info.CurrentCall->createTemporary( 14685 E, Unqual, ScopeKind::FullExpression, LV); 14686 if (!EvaluateAtomic(E, &LV, Value, Info)) 14687 return false; 14688 } else { 14689 if (!EvaluateAtomic(E, nullptr, Result, Info)) 14690 return false; 14691 } 14692 } else if (Info.getLangOpts().CPlusPlus11) { 14693 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 14694 return false; 14695 } else { 14696 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 14697 return false; 14698 } 14699 14700 return true; 14701 } 14702 14703 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 14704 /// cases, the in-place evaluation is essential, since later initializers for 14705 /// an object can indirectly refer to subobjects which were initialized earlier. 14706 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 14707 const Expr *E, bool AllowNonLiteralTypes) { 14708 assert(!E->isValueDependent()); 14709 14710 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 14711 return false; 14712 14713 if (E->isPRValue()) { 14714 // Evaluate arrays and record types in-place, so that later initializers can 14715 // refer to earlier-initialized members of the object. 14716 QualType T = E->getType(); 14717 if (T->isArrayType()) 14718 return EvaluateArray(E, This, Result, Info); 14719 else if (T->isRecordType()) 14720 return EvaluateRecord(E, This, Result, Info); 14721 else if (T->isAtomicType()) { 14722 QualType Unqual = T.getAtomicUnqualifiedType(); 14723 if (Unqual->isArrayType() || Unqual->isRecordType()) 14724 return EvaluateAtomic(E, &This, Result, Info); 14725 } 14726 } 14727 14728 // For any other type, in-place evaluation is unimportant. 14729 return Evaluate(Result, Info, E); 14730 } 14731 14732 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 14733 /// lvalue-to-rvalue cast if it is an lvalue. 14734 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 14735 assert(!E->isValueDependent()); 14736 if (Info.EnableNewConstInterp) { 14737 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) 14738 return false; 14739 } else { 14740 if (E->getType().isNull()) 14741 return false; 14742 14743 if (!CheckLiteralType(Info, E)) 14744 return false; 14745 14746 if (!::Evaluate(Result, Info, E)) 14747 return false; 14748 14749 if (E->isGLValue()) { 14750 LValue LV; 14751 LV.setFrom(Info.Ctx, Result); 14752 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 14753 return false; 14754 } 14755 } 14756 14757 // Check this core constant expression is a constant expression. 14758 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 14759 ConstantExprKind::Normal) && 14760 CheckMemoryLeaks(Info); 14761 } 14762 14763 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 14764 const ASTContext &Ctx, bool &IsConst) { 14765 // Fast-path evaluations of integer literals, since we sometimes see files 14766 // containing vast quantities of these. 14767 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 14768 Result.Val = APValue(APSInt(L->getValue(), 14769 L->getType()->isUnsignedIntegerType())); 14770 IsConst = true; 14771 return true; 14772 } 14773 14774 // This case should be rare, but we need to check it before we check on 14775 // the type below. 14776 if (Exp->getType().isNull()) { 14777 IsConst = false; 14778 return true; 14779 } 14780 14781 // FIXME: Evaluating values of large array and record types can cause 14782 // performance problems. Only do so in C++11 for now. 14783 if (Exp->isPRValue() && 14784 (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) && 14785 !Ctx.getLangOpts().CPlusPlus11) { 14786 IsConst = false; 14787 return true; 14788 } 14789 return false; 14790 } 14791 14792 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 14793 Expr::SideEffectsKind SEK) { 14794 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 14795 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 14796 } 14797 14798 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 14799 const ASTContext &Ctx, EvalInfo &Info) { 14800 assert(!E->isValueDependent()); 14801 bool IsConst; 14802 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 14803 return IsConst; 14804 14805 return EvaluateAsRValue(Info, E, Result.Val); 14806 } 14807 14808 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 14809 const ASTContext &Ctx, 14810 Expr::SideEffectsKind AllowSideEffects, 14811 EvalInfo &Info) { 14812 assert(!E->isValueDependent()); 14813 if (!E->getType()->isIntegralOrEnumerationType()) 14814 return false; 14815 14816 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 14817 !ExprResult.Val.isInt() || 14818 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14819 return false; 14820 14821 return true; 14822 } 14823 14824 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 14825 const ASTContext &Ctx, 14826 Expr::SideEffectsKind AllowSideEffects, 14827 EvalInfo &Info) { 14828 assert(!E->isValueDependent()); 14829 if (!E->getType()->isFixedPointType()) 14830 return false; 14831 14832 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 14833 return false; 14834 14835 if (!ExprResult.Val.isFixedPoint() || 14836 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14837 return false; 14838 14839 return true; 14840 } 14841 14842 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 14843 /// any crazy technique (that has nothing to do with language standards) that 14844 /// we want to. If this function returns true, it returns the folded constant 14845 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 14846 /// will be applied to the result. 14847 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 14848 bool InConstantContext) const { 14849 assert(!isValueDependent() && 14850 "Expression evaluator can't be called on a dependent expression."); 14851 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14852 Info.InConstantContext = InConstantContext; 14853 return ::EvaluateAsRValue(this, Result, Ctx, Info); 14854 } 14855 14856 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 14857 bool InConstantContext) const { 14858 assert(!isValueDependent() && 14859 "Expression evaluator can't be called on a dependent expression."); 14860 EvalResult Scratch; 14861 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 14862 HandleConversionToBool(Scratch.Val, Result); 14863 } 14864 14865 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 14866 SideEffectsKind AllowSideEffects, 14867 bool InConstantContext) const { 14868 assert(!isValueDependent() && 14869 "Expression evaluator can't be called on a dependent expression."); 14870 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14871 Info.InConstantContext = InConstantContext; 14872 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 14873 } 14874 14875 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 14876 SideEffectsKind AllowSideEffects, 14877 bool InConstantContext) const { 14878 assert(!isValueDependent() && 14879 "Expression evaluator can't be called on a dependent expression."); 14880 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 14881 Info.InConstantContext = InConstantContext; 14882 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 14883 } 14884 14885 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 14886 SideEffectsKind AllowSideEffects, 14887 bool InConstantContext) const { 14888 assert(!isValueDependent() && 14889 "Expression evaluator can't be called on a dependent expression."); 14890 14891 if (!getType()->isRealFloatingType()) 14892 return false; 14893 14894 EvalResult ExprResult; 14895 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 14896 !ExprResult.Val.isFloat() || 14897 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 14898 return false; 14899 14900 Result = ExprResult.Val.getFloat(); 14901 return true; 14902 } 14903 14904 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 14905 bool InConstantContext) const { 14906 assert(!isValueDependent() && 14907 "Expression evaluator can't be called on a dependent expression."); 14908 14909 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 14910 Info.InConstantContext = InConstantContext; 14911 LValue LV; 14912 CheckedTemporaries CheckedTemps; 14913 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 14914 Result.HasSideEffects || 14915 !CheckLValueConstantExpression(Info, getExprLoc(), 14916 Ctx.getLValueReferenceType(getType()), LV, 14917 ConstantExprKind::Normal, CheckedTemps)) 14918 return false; 14919 14920 LV.moveInto(Result.Val); 14921 return true; 14922 } 14923 14924 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, 14925 APValue DestroyedValue, QualType Type, 14926 SourceLocation Loc, Expr::EvalStatus &EStatus, 14927 bool IsConstantDestruction) { 14928 EvalInfo Info(Ctx, EStatus, 14929 IsConstantDestruction ? EvalInfo::EM_ConstantExpression 14930 : EvalInfo::EM_ConstantFold); 14931 Info.setEvaluatingDecl(Base, DestroyedValue, 14932 EvalInfo::EvaluatingDeclKind::Dtor); 14933 Info.InConstantContext = IsConstantDestruction; 14934 14935 LValue LVal; 14936 LVal.set(Base); 14937 14938 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || 14939 EStatus.HasSideEffects) 14940 return false; 14941 14942 if (!Info.discardCleanups()) 14943 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 14944 14945 return true; 14946 } 14947 14948 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, 14949 ConstantExprKind Kind) const { 14950 assert(!isValueDependent() && 14951 "Expression evaluator can't be called on a dependent expression."); 14952 14953 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 14954 EvalInfo Info(Ctx, Result, EM); 14955 Info.InConstantContext = true; 14956 14957 // The type of the object we're initializing is 'const T' for a class NTTP. 14958 QualType T = getType(); 14959 if (Kind == ConstantExprKind::ClassTemplateArgument) 14960 T.addConst(); 14961 14962 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to 14963 // represent the result of the evaluation. CheckConstantExpression ensures 14964 // this doesn't escape. 14965 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); 14966 APValue::LValueBase Base(&BaseMTE); 14967 14968 Info.setEvaluatingDecl(Base, Result.Val); 14969 LValue LVal; 14970 LVal.set(Base); 14971 14972 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects) 14973 return false; 14974 14975 if (!Info.discardCleanups()) 14976 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 14977 14978 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 14979 Result.Val, Kind)) 14980 return false; 14981 if (!CheckMemoryLeaks(Info)) 14982 return false; 14983 14984 // If this is a class template argument, it's required to have constant 14985 // destruction too. 14986 if (Kind == ConstantExprKind::ClassTemplateArgument && 14987 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, 14988 true) || 14989 Result.HasSideEffects)) { 14990 // FIXME: Prefix a note to indicate that the problem is lack of constant 14991 // destruction. 14992 return false; 14993 } 14994 14995 return true; 14996 } 14997 14998 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 14999 const VarDecl *VD, 15000 SmallVectorImpl<PartialDiagnosticAt> &Notes, 15001 bool IsConstantInitialization) const { 15002 assert(!isValueDependent() && 15003 "Expression evaluator can't be called on a dependent expression."); 15004 15005 // FIXME: Evaluating initializers for large array and record types can cause 15006 // performance problems. Only do so in C++11 for now. 15007 if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) && 15008 !Ctx.getLangOpts().CPlusPlus11) 15009 return false; 15010 15011 Expr::EvalStatus EStatus; 15012 EStatus.Diag = &Notes; 15013 15014 EvalInfo Info(Ctx, EStatus, 15015 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11) 15016 ? EvalInfo::EM_ConstantExpression 15017 : EvalInfo::EM_ConstantFold); 15018 Info.setEvaluatingDecl(VD, Value); 15019 Info.InConstantContext = IsConstantInitialization; 15020 15021 SourceLocation DeclLoc = VD->getLocation(); 15022 QualType DeclTy = VD->getType(); 15023 15024 if (Info.EnableNewConstInterp) { 15025 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 15026 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) 15027 return false; 15028 } else { 15029 LValue LVal; 15030 LVal.set(VD); 15031 15032 if (!EvaluateInPlace(Value, Info, LVal, this, 15033 /*AllowNonLiteralTypes=*/true) || 15034 EStatus.HasSideEffects) 15035 return false; 15036 15037 // At this point, any lifetime-extended temporaries are completely 15038 // initialized. 15039 Info.performLifetimeExtension(); 15040 15041 if (!Info.discardCleanups()) 15042 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 15043 } 15044 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 15045 ConstantExprKind::Normal) && 15046 CheckMemoryLeaks(Info); 15047 } 15048 15049 bool VarDecl::evaluateDestruction( 15050 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 15051 Expr::EvalStatus EStatus; 15052 EStatus.Diag = &Notes; 15053 15054 // Only treat the destruction as constant destruction if we formally have 15055 // constant initialization (or are usable in a constant expression). 15056 bool IsConstantDestruction = hasConstantInitialization(); 15057 15058 // Make a copy of the value for the destructor to mutate, if we know it. 15059 // Otherwise, treat the value as default-initialized; if the destructor works 15060 // anyway, then the destruction is constant (and must be essentially empty). 15061 APValue DestroyedValue; 15062 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) 15063 DestroyedValue = *getEvaluatedValue(); 15064 else if (!getDefaultInitValue(getType(), DestroyedValue)) 15065 return false; 15066 15067 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), 15068 getType(), getLocation(), EStatus, 15069 IsConstantDestruction) || 15070 EStatus.HasSideEffects) 15071 return false; 15072 15073 ensureEvaluatedStmt()->HasConstantDestruction = true; 15074 return true; 15075 } 15076 15077 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 15078 /// constant folded, but discard the result. 15079 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 15080 assert(!isValueDependent() && 15081 "Expression evaluator can't be called on a dependent expression."); 15082 15083 EvalResult Result; 15084 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 15085 !hasUnacceptableSideEffect(Result, SEK); 15086 } 15087 15088 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 15089 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 15090 assert(!isValueDependent() && 15091 "Expression evaluator can't be called on a dependent expression."); 15092 15093 EvalResult EVResult; 15094 EVResult.Diag = Diag; 15095 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15096 Info.InConstantContext = true; 15097 15098 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 15099 (void)Result; 15100 assert(Result && "Could not evaluate expression"); 15101 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 15102 15103 return EVResult.Val.getInt(); 15104 } 15105 15106 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 15107 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 15108 assert(!isValueDependent() && 15109 "Expression evaluator can't be called on a dependent expression."); 15110 15111 EvalResult EVResult; 15112 EVResult.Diag = Diag; 15113 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15114 Info.InConstantContext = true; 15115 Info.CheckingForUndefinedBehavior = true; 15116 15117 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 15118 (void)Result; 15119 assert(Result && "Could not evaluate expression"); 15120 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 15121 15122 return EVResult.Val.getInt(); 15123 } 15124 15125 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 15126 assert(!isValueDependent() && 15127 "Expression evaluator can't be called on a dependent expression."); 15128 15129 bool IsConst; 15130 EvalResult EVResult; 15131 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 15132 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 15133 Info.CheckingForUndefinedBehavior = true; 15134 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 15135 } 15136 } 15137 15138 bool Expr::EvalResult::isGlobalLValue() const { 15139 assert(Val.isLValue()); 15140 return IsGlobalLValue(Val.getLValueBase()); 15141 } 15142 15143 /// isIntegerConstantExpr - this recursive routine will test if an expression is 15144 /// an integer constant expression. 15145 15146 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 15147 /// comma, etc 15148 15149 // CheckICE - This function does the fundamental ICE checking: the returned 15150 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 15151 // and a (possibly null) SourceLocation indicating the location of the problem. 15152 // 15153 // Note that to reduce code duplication, this helper does no evaluation 15154 // itself; the caller checks whether the expression is evaluatable, and 15155 // in the rare cases where CheckICE actually cares about the evaluated 15156 // value, it calls into Evaluate. 15157 15158 namespace { 15159 15160 enum ICEKind { 15161 /// This expression is an ICE. 15162 IK_ICE, 15163 /// This expression is not an ICE, but if it isn't evaluated, it's 15164 /// a legal subexpression for an ICE. This return value is used to handle 15165 /// the comma operator in C99 mode, and non-constant subexpressions. 15166 IK_ICEIfUnevaluated, 15167 /// This expression is not an ICE, and is not a legal subexpression for one. 15168 IK_NotICE 15169 }; 15170 15171 struct ICEDiag { 15172 ICEKind Kind; 15173 SourceLocation Loc; 15174 15175 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 15176 }; 15177 15178 } 15179 15180 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 15181 15182 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 15183 15184 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 15185 Expr::EvalResult EVResult; 15186 Expr::EvalStatus Status; 15187 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 15188 15189 Info.InConstantContext = true; 15190 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 15191 !EVResult.Val.isInt()) 15192 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15193 15194 return NoDiag(); 15195 } 15196 15197 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 15198 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 15199 if (!E->getType()->isIntegralOrEnumerationType()) 15200 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15201 15202 switch (E->getStmtClass()) { 15203 #define ABSTRACT_STMT(Node) 15204 #define STMT(Node, Base) case Expr::Node##Class: 15205 #define EXPR(Node, Base) 15206 #include "clang/AST/StmtNodes.inc" 15207 case Expr::PredefinedExprClass: 15208 case Expr::FloatingLiteralClass: 15209 case Expr::ImaginaryLiteralClass: 15210 case Expr::StringLiteralClass: 15211 case Expr::ArraySubscriptExprClass: 15212 case Expr::MatrixSubscriptExprClass: 15213 case Expr::OMPArraySectionExprClass: 15214 case Expr::OMPArrayShapingExprClass: 15215 case Expr::OMPIteratorExprClass: 15216 case Expr::MemberExprClass: 15217 case Expr::CompoundAssignOperatorClass: 15218 case Expr::CompoundLiteralExprClass: 15219 case Expr::ExtVectorElementExprClass: 15220 case Expr::DesignatedInitExprClass: 15221 case Expr::ArrayInitLoopExprClass: 15222 case Expr::ArrayInitIndexExprClass: 15223 case Expr::NoInitExprClass: 15224 case Expr::DesignatedInitUpdateExprClass: 15225 case Expr::ImplicitValueInitExprClass: 15226 case Expr::ParenListExprClass: 15227 case Expr::VAArgExprClass: 15228 case Expr::AddrLabelExprClass: 15229 case Expr::StmtExprClass: 15230 case Expr::CXXMemberCallExprClass: 15231 case Expr::CUDAKernelCallExprClass: 15232 case Expr::CXXAddrspaceCastExprClass: 15233 case Expr::CXXDynamicCastExprClass: 15234 case Expr::CXXTypeidExprClass: 15235 case Expr::CXXUuidofExprClass: 15236 case Expr::MSPropertyRefExprClass: 15237 case Expr::MSPropertySubscriptExprClass: 15238 case Expr::CXXNullPtrLiteralExprClass: 15239 case Expr::UserDefinedLiteralClass: 15240 case Expr::CXXThisExprClass: 15241 case Expr::CXXThrowExprClass: 15242 case Expr::CXXNewExprClass: 15243 case Expr::CXXDeleteExprClass: 15244 case Expr::CXXPseudoDestructorExprClass: 15245 case Expr::UnresolvedLookupExprClass: 15246 case Expr::TypoExprClass: 15247 case Expr::RecoveryExprClass: 15248 case Expr::DependentScopeDeclRefExprClass: 15249 case Expr::CXXConstructExprClass: 15250 case Expr::CXXInheritedCtorInitExprClass: 15251 case Expr::CXXStdInitializerListExprClass: 15252 case Expr::CXXBindTemporaryExprClass: 15253 case Expr::ExprWithCleanupsClass: 15254 case Expr::CXXTemporaryObjectExprClass: 15255 case Expr::CXXUnresolvedConstructExprClass: 15256 case Expr::CXXDependentScopeMemberExprClass: 15257 case Expr::UnresolvedMemberExprClass: 15258 case Expr::ObjCStringLiteralClass: 15259 case Expr::ObjCBoxedExprClass: 15260 case Expr::ObjCArrayLiteralClass: 15261 case Expr::ObjCDictionaryLiteralClass: 15262 case Expr::ObjCEncodeExprClass: 15263 case Expr::ObjCMessageExprClass: 15264 case Expr::ObjCSelectorExprClass: 15265 case Expr::ObjCProtocolExprClass: 15266 case Expr::ObjCIvarRefExprClass: 15267 case Expr::ObjCPropertyRefExprClass: 15268 case Expr::ObjCSubscriptRefExprClass: 15269 case Expr::ObjCIsaExprClass: 15270 case Expr::ObjCAvailabilityCheckExprClass: 15271 case Expr::ShuffleVectorExprClass: 15272 case Expr::ConvertVectorExprClass: 15273 case Expr::BlockExprClass: 15274 case Expr::NoStmtClass: 15275 case Expr::OpaqueValueExprClass: 15276 case Expr::PackExpansionExprClass: 15277 case Expr::SubstNonTypeTemplateParmPackExprClass: 15278 case Expr::FunctionParmPackExprClass: 15279 case Expr::AsTypeExprClass: 15280 case Expr::ObjCIndirectCopyRestoreExprClass: 15281 case Expr::MaterializeTemporaryExprClass: 15282 case Expr::PseudoObjectExprClass: 15283 case Expr::AtomicExprClass: 15284 case Expr::LambdaExprClass: 15285 case Expr::CXXFoldExprClass: 15286 case Expr::CoawaitExprClass: 15287 case Expr::DependentCoawaitExprClass: 15288 case Expr::CoyieldExprClass: 15289 case Expr::SYCLUniqueStableNameExprClass: 15290 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15291 15292 case Expr::InitListExprClass: { 15293 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 15294 // form "T x = { a };" is equivalent to "T x = a;". 15295 // Unless we're initializing a reference, T is a scalar as it is known to be 15296 // of integral or enumeration type. 15297 if (E->isPRValue()) 15298 if (cast<InitListExpr>(E)->getNumInits() == 1) 15299 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 15300 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15301 } 15302 15303 case Expr::SizeOfPackExprClass: 15304 case Expr::GNUNullExprClass: 15305 case Expr::SourceLocExprClass: 15306 return NoDiag(); 15307 15308 case Expr::SubstNonTypeTemplateParmExprClass: 15309 return 15310 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 15311 15312 case Expr::ConstantExprClass: 15313 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 15314 15315 case Expr::ParenExprClass: 15316 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 15317 case Expr::GenericSelectionExprClass: 15318 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 15319 case Expr::IntegerLiteralClass: 15320 case Expr::FixedPointLiteralClass: 15321 case Expr::CharacterLiteralClass: 15322 case Expr::ObjCBoolLiteralExprClass: 15323 case Expr::CXXBoolLiteralExprClass: 15324 case Expr::CXXScalarValueInitExprClass: 15325 case Expr::TypeTraitExprClass: 15326 case Expr::ConceptSpecializationExprClass: 15327 case Expr::RequiresExprClass: 15328 case Expr::ArrayTypeTraitExprClass: 15329 case Expr::ExpressionTraitExprClass: 15330 case Expr::CXXNoexceptExprClass: 15331 return NoDiag(); 15332 case Expr::CallExprClass: 15333 case Expr::CXXOperatorCallExprClass: { 15334 // C99 6.6/3 allows function calls within unevaluated subexpressions of 15335 // constant expressions, but they can never be ICEs because an ICE cannot 15336 // contain an operand of (pointer to) function type. 15337 const CallExpr *CE = cast<CallExpr>(E); 15338 if (CE->getBuiltinCallee()) 15339 return CheckEvalInICE(E, Ctx); 15340 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15341 } 15342 case Expr::CXXRewrittenBinaryOperatorClass: 15343 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 15344 Ctx); 15345 case Expr::DeclRefExprClass: { 15346 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 15347 if (isa<EnumConstantDecl>(D)) 15348 return NoDiag(); 15349 15350 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified 15351 // integer variables in constant expressions: 15352 // 15353 // C++ 7.1.5.1p2 15354 // A variable of non-volatile const-qualified integral or enumeration 15355 // type initialized by an ICE can be used in ICEs. 15356 // 15357 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In 15358 // that mode, use of reference variables should not be allowed. 15359 const VarDecl *VD = dyn_cast<VarDecl>(D); 15360 if (VD && VD->isUsableInConstantExpressions(Ctx) && 15361 !VD->getType()->isReferenceType()) 15362 return NoDiag(); 15363 15364 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15365 } 15366 case Expr::UnaryOperatorClass: { 15367 const UnaryOperator *Exp = cast<UnaryOperator>(E); 15368 switch (Exp->getOpcode()) { 15369 case UO_PostInc: 15370 case UO_PostDec: 15371 case UO_PreInc: 15372 case UO_PreDec: 15373 case UO_AddrOf: 15374 case UO_Deref: 15375 case UO_Coawait: 15376 // C99 6.6/3 allows increment and decrement within unevaluated 15377 // subexpressions of constant expressions, but they can never be ICEs 15378 // because an ICE cannot contain an lvalue operand. 15379 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15380 case UO_Extension: 15381 case UO_LNot: 15382 case UO_Plus: 15383 case UO_Minus: 15384 case UO_Not: 15385 case UO_Real: 15386 case UO_Imag: 15387 return CheckICE(Exp->getSubExpr(), Ctx); 15388 } 15389 llvm_unreachable("invalid unary operator class"); 15390 } 15391 case Expr::OffsetOfExprClass: { 15392 // Note that per C99, offsetof must be an ICE. And AFAIK, using 15393 // EvaluateAsRValue matches the proposed gcc behavior for cases like 15394 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 15395 // compliance: we should warn earlier for offsetof expressions with 15396 // array subscripts that aren't ICEs, and if the array subscripts 15397 // are ICEs, the value of the offsetof must be an integer constant. 15398 return CheckEvalInICE(E, Ctx); 15399 } 15400 case Expr::UnaryExprOrTypeTraitExprClass: { 15401 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 15402 if ((Exp->getKind() == UETT_SizeOf) && 15403 Exp->getTypeOfArgument()->isVariableArrayType()) 15404 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15405 return NoDiag(); 15406 } 15407 case Expr::BinaryOperatorClass: { 15408 const BinaryOperator *Exp = cast<BinaryOperator>(E); 15409 switch (Exp->getOpcode()) { 15410 case BO_PtrMemD: 15411 case BO_PtrMemI: 15412 case BO_Assign: 15413 case BO_MulAssign: 15414 case BO_DivAssign: 15415 case BO_RemAssign: 15416 case BO_AddAssign: 15417 case BO_SubAssign: 15418 case BO_ShlAssign: 15419 case BO_ShrAssign: 15420 case BO_AndAssign: 15421 case BO_XorAssign: 15422 case BO_OrAssign: 15423 // C99 6.6/3 allows assignments within unevaluated subexpressions of 15424 // constant expressions, but they can never be ICEs because an ICE cannot 15425 // contain an lvalue operand. 15426 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15427 15428 case BO_Mul: 15429 case BO_Div: 15430 case BO_Rem: 15431 case BO_Add: 15432 case BO_Sub: 15433 case BO_Shl: 15434 case BO_Shr: 15435 case BO_LT: 15436 case BO_GT: 15437 case BO_LE: 15438 case BO_GE: 15439 case BO_EQ: 15440 case BO_NE: 15441 case BO_And: 15442 case BO_Xor: 15443 case BO_Or: 15444 case BO_Comma: 15445 case BO_Cmp: { 15446 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15447 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15448 if (Exp->getOpcode() == BO_Div || 15449 Exp->getOpcode() == BO_Rem) { 15450 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 15451 // we don't evaluate one. 15452 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 15453 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 15454 if (REval == 0) 15455 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15456 if (REval.isSigned() && REval.isAllOnes()) { 15457 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 15458 if (LEval.isMinSignedValue()) 15459 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15460 } 15461 } 15462 } 15463 if (Exp->getOpcode() == BO_Comma) { 15464 if (Ctx.getLangOpts().C99) { 15465 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 15466 // if it isn't evaluated. 15467 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 15468 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 15469 } else { 15470 // In both C89 and C++, commas in ICEs are illegal. 15471 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15472 } 15473 } 15474 return Worst(LHSResult, RHSResult); 15475 } 15476 case BO_LAnd: 15477 case BO_LOr: { 15478 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 15479 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 15480 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 15481 // Rare case where the RHS has a comma "side-effect"; we need 15482 // to actually check the condition to see whether the side 15483 // with the comma is evaluated. 15484 if ((Exp->getOpcode() == BO_LAnd) != 15485 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 15486 return RHSResult; 15487 return NoDiag(); 15488 } 15489 15490 return Worst(LHSResult, RHSResult); 15491 } 15492 } 15493 llvm_unreachable("invalid binary operator kind"); 15494 } 15495 case Expr::ImplicitCastExprClass: 15496 case Expr::CStyleCastExprClass: 15497 case Expr::CXXFunctionalCastExprClass: 15498 case Expr::CXXStaticCastExprClass: 15499 case Expr::CXXReinterpretCastExprClass: 15500 case Expr::CXXConstCastExprClass: 15501 case Expr::ObjCBridgedCastExprClass: { 15502 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 15503 if (isa<ExplicitCastExpr>(E)) { 15504 if (const FloatingLiteral *FL 15505 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 15506 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 15507 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 15508 APSInt IgnoredVal(DestWidth, !DestSigned); 15509 bool Ignored; 15510 // If the value does not fit in the destination type, the behavior is 15511 // undefined, so we are not required to treat it as a constant 15512 // expression. 15513 if (FL->getValue().convertToInteger(IgnoredVal, 15514 llvm::APFloat::rmTowardZero, 15515 &Ignored) & APFloat::opInvalidOp) 15516 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15517 return NoDiag(); 15518 } 15519 } 15520 switch (cast<CastExpr>(E)->getCastKind()) { 15521 case CK_LValueToRValue: 15522 case CK_AtomicToNonAtomic: 15523 case CK_NonAtomicToAtomic: 15524 case CK_NoOp: 15525 case CK_IntegralToBoolean: 15526 case CK_IntegralCast: 15527 return CheckICE(SubExpr, Ctx); 15528 default: 15529 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15530 } 15531 } 15532 case Expr::BinaryConditionalOperatorClass: { 15533 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 15534 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 15535 if (CommonResult.Kind == IK_NotICE) return CommonResult; 15536 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 15537 if (FalseResult.Kind == IK_NotICE) return FalseResult; 15538 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 15539 if (FalseResult.Kind == IK_ICEIfUnevaluated && 15540 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 15541 return FalseResult; 15542 } 15543 case Expr::ConditionalOperatorClass: { 15544 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 15545 // If the condition (ignoring parens) is a __builtin_constant_p call, 15546 // then only the true side is actually considered in an integer constant 15547 // expression, and it is fully evaluated. This is an important GNU 15548 // extension. See GCC PR38377 for discussion. 15549 if (const CallExpr *CallCE 15550 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 15551 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 15552 return CheckEvalInICE(E, Ctx); 15553 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 15554 if (CondResult.Kind == IK_NotICE) 15555 return CondResult; 15556 15557 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 15558 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 15559 15560 if (TrueResult.Kind == IK_NotICE) 15561 return TrueResult; 15562 if (FalseResult.Kind == IK_NotICE) 15563 return FalseResult; 15564 if (CondResult.Kind == IK_ICEIfUnevaluated) 15565 return CondResult; 15566 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 15567 return NoDiag(); 15568 // Rare case where the diagnostics depend on which side is evaluated 15569 // Note that if we get here, CondResult is 0, and at least one of 15570 // TrueResult and FalseResult is non-zero. 15571 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 15572 return FalseResult; 15573 return TrueResult; 15574 } 15575 case Expr::CXXDefaultArgExprClass: 15576 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 15577 case Expr::CXXDefaultInitExprClass: 15578 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 15579 case Expr::ChooseExprClass: { 15580 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 15581 } 15582 case Expr::BuiltinBitCastExprClass: { 15583 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 15584 return ICEDiag(IK_NotICE, E->getBeginLoc()); 15585 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 15586 } 15587 } 15588 15589 llvm_unreachable("Invalid StmtClass!"); 15590 } 15591 15592 /// Evaluate an expression as a C++11 integral constant expression. 15593 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 15594 const Expr *E, 15595 llvm::APSInt *Value, 15596 SourceLocation *Loc) { 15597 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 15598 if (Loc) *Loc = E->getExprLoc(); 15599 return false; 15600 } 15601 15602 APValue Result; 15603 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 15604 return false; 15605 15606 if (!Result.isInt()) { 15607 if (Loc) *Loc = E->getExprLoc(); 15608 return false; 15609 } 15610 15611 if (Value) *Value = Result.getInt(); 15612 return true; 15613 } 15614 15615 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 15616 SourceLocation *Loc) const { 15617 assert(!isValueDependent() && 15618 "Expression evaluator can't be called on a dependent expression."); 15619 15620 if (Ctx.getLangOpts().CPlusPlus11) 15621 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 15622 15623 ICEDiag D = CheckICE(this, Ctx); 15624 if (D.Kind != IK_ICE) { 15625 if (Loc) *Loc = D.Loc; 15626 return false; 15627 } 15628 return true; 15629 } 15630 15631 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx, 15632 SourceLocation *Loc, 15633 bool isEvaluated) const { 15634 if (isValueDependent()) { 15635 // Expression evaluator can't succeed on a dependent expression. 15636 return None; 15637 } 15638 15639 APSInt Value; 15640 15641 if (Ctx.getLangOpts().CPlusPlus11) { 15642 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) 15643 return Value; 15644 return None; 15645 } 15646 15647 if (!isIntegerConstantExpr(Ctx, Loc)) 15648 return None; 15649 15650 // The only possible side-effects here are due to UB discovered in the 15651 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 15652 // required to treat the expression as an ICE, so we produce the folded 15653 // value. 15654 EvalResult ExprResult; 15655 Expr::EvalStatus Status; 15656 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 15657 Info.InConstantContext = true; 15658 15659 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 15660 llvm_unreachable("ICE cannot be evaluated!"); 15661 15662 return ExprResult.Val.getInt(); 15663 } 15664 15665 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 15666 assert(!isValueDependent() && 15667 "Expression evaluator can't be called on a dependent expression."); 15668 15669 return CheckICE(this, Ctx).Kind == IK_ICE; 15670 } 15671 15672 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 15673 SourceLocation *Loc) const { 15674 assert(!isValueDependent() && 15675 "Expression evaluator can't be called on a dependent expression."); 15676 15677 // We support this checking in C++98 mode in order to diagnose compatibility 15678 // issues. 15679 assert(Ctx.getLangOpts().CPlusPlus); 15680 15681 // Build evaluation settings. 15682 Expr::EvalStatus Status; 15683 SmallVector<PartialDiagnosticAt, 8> Diags; 15684 Status.Diag = &Diags; 15685 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 15686 15687 APValue Scratch; 15688 bool IsConstExpr = 15689 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 15690 // FIXME: We don't produce a diagnostic for this, but the callers that 15691 // call us on arbitrary full-expressions should generally not care. 15692 Info.discardCleanups() && !Status.HasSideEffects; 15693 15694 if (!Diags.empty()) { 15695 IsConstExpr = false; 15696 if (Loc) *Loc = Diags[0].first; 15697 } else if (!IsConstExpr) { 15698 // FIXME: This shouldn't happen. 15699 if (Loc) *Loc = getExprLoc(); 15700 } 15701 15702 return IsConstExpr; 15703 } 15704 15705 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 15706 const FunctionDecl *Callee, 15707 ArrayRef<const Expr*> Args, 15708 const Expr *This) const { 15709 assert(!isValueDependent() && 15710 "Expression evaluator can't be called on a dependent expression."); 15711 15712 Expr::EvalStatus Status; 15713 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 15714 Info.InConstantContext = true; 15715 15716 LValue ThisVal; 15717 const LValue *ThisPtr = nullptr; 15718 if (This) { 15719 #ifndef NDEBUG 15720 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 15721 assert(MD && "Don't provide `this` for non-methods."); 15722 assert(!MD->isStatic() && "Don't provide `this` for static methods."); 15723 #endif 15724 if (!This->isValueDependent() && 15725 EvaluateObjectArgument(Info, This, ThisVal) && 15726 !Info.EvalStatus.HasSideEffects) 15727 ThisPtr = &ThisVal; 15728 15729 // Ignore any side-effects from a failed evaluation. This is safe because 15730 // they can't interfere with any other argument evaluation. 15731 Info.EvalStatus.HasSideEffects = false; 15732 } 15733 15734 CallRef Call = Info.CurrentCall->createCall(Callee); 15735 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 15736 I != E; ++I) { 15737 unsigned Idx = I - Args.begin(); 15738 if (Idx >= Callee->getNumParams()) 15739 break; 15740 const ParmVarDecl *PVD = Callee->getParamDecl(Idx); 15741 if ((*I)->isValueDependent() || 15742 !EvaluateCallArg(PVD, *I, Call, Info) || 15743 Info.EvalStatus.HasSideEffects) { 15744 // If evaluation fails, throw away the argument entirely. 15745 if (APValue *Slot = Info.getParamSlot(Call, PVD)) 15746 *Slot = APValue(); 15747 } 15748 15749 // Ignore any side-effects from a failed evaluation. This is safe because 15750 // they can't interfere with any other argument evaluation. 15751 Info.EvalStatus.HasSideEffects = false; 15752 } 15753 15754 // Parameter cleanups happen in the caller and are not part of this 15755 // evaluation. 15756 Info.discardCleanups(); 15757 Info.EvalStatus.HasSideEffects = false; 15758 15759 // Build fake call to Callee. 15760 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call); 15761 // FIXME: Missing ExprWithCleanups in enable_if conditions? 15762 FullExpressionRAII Scope(Info); 15763 return Evaluate(Value, Info, this) && Scope.destroy() && 15764 !Info.EvalStatus.HasSideEffects; 15765 } 15766 15767 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 15768 SmallVectorImpl< 15769 PartialDiagnosticAt> &Diags) { 15770 // FIXME: It would be useful to check constexpr function templates, but at the 15771 // moment the constant expression evaluator cannot cope with the non-rigorous 15772 // ASTs which we build for dependent expressions. 15773 if (FD->isDependentContext()) 15774 return true; 15775 15776 Expr::EvalStatus Status; 15777 Status.Diag = &Diags; 15778 15779 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 15780 Info.InConstantContext = true; 15781 Info.CheckingPotentialConstantExpression = true; 15782 15783 // The constexpr VM attempts to compile all methods to bytecode here. 15784 if (Info.EnableNewConstInterp) { 15785 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); 15786 return Diags.empty(); 15787 } 15788 15789 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 15790 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 15791 15792 // Fabricate an arbitrary expression on the stack and pretend that it 15793 // is a temporary being used as the 'this' pointer. 15794 LValue This; 15795 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 15796 This.set({&VIE, Info.CurrentCall->Index}); 15797 15798 ArrayRef<const Expr*> Args; 15799 15800 APValue Scratch; 15801 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 15802 // Evaluate the call as a constant initializer, to allow the construction 15803 // of objects of non-literal types. 15804 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 15805 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 15806 } else { 15807 SourceLocation Loc = FD->getLocation(); 15808 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, 15809 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr); 15810 } 15811 15812 return Diags.empty(); 15813 } 15814 15815 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 15816 const FunctionDecl *FD, 15817 SmallVectorImpl< 15818 PartialDiagnosticAt> &Diags) { 15819 assert(!E->isValueDependent() && 15820 "Expression evaluator can't be called on a dependent expression."); 15821 15822 Expr::EvalStatus Status; 15823 Status.Diag = &Diags; 15824 15825 EvalInfo Info(FD->getASTContext(), Status, 15826 EvalInfo::EM_ConstantExpressionUnevaluated); 15827 Info.InConstantContext = true; 15828 Info.CheckingPotentialConstantExpression = true; 15829 15830 // Fabricate a call stack frame to give the arguments a plausible cover story. 15831 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef()); 15832 15833 APValue ResultScratch; 15834 Evaluate(ResultScratch, Info, E); 15835 return Diags.empty(); 15836 } 15837 15838 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 15839 unsigned Type) const { 15840 if (!getType()->isPointerType()) 15841 return false; 15842 15843 Expr::EvalStatus Status; 15844 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 15845 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 15846 } 15847 15848 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 15849 EvalInfo &Info) { 15850 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) 15851 return false; 15852 15853 LValue String; 15854 15855 if (!EvaluatePointer(E, String, Info)) 15856 return false; 15857 15858 QualType CharTy = E->getType()->getPointeeType(); 15859 15860 // Fast path: if it's a string literal, search the string value. 15861 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 15862 String.getLValueBase().dyn_cast<const Expr *>())) { 15863 StringRef Str = S->getBytes(); 15864 int64_t Off = String.Offset.getQuantity(); 15865 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 15866 S->getCharByteWidth() == 1 && 15867 // FIXME: Add fast-path for wchar_t too. 15868 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 15869 Str = Str.substr(Off); 15870 15871 StringRef::size_type Pos = Str.find(0); 15872 if (Pos != StringRef::npos) 15873 Str = Str.substr(0, Pos); 15874 15875 Result = Str.size(); 15876 return true; 15877 } 15878 15879 // Fall through to slow path. 15880 } 15881 15882 // Slow path: scan the bytes of the string looking for the terminating 0. 15883 for (uint64_t Strlen = 0; /**/; ++Strlen) { 15884 APValue Char; 15885 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 15886 !Char.isInt()) 15887 return false; 15888 if (!Char.getInt()) { 15889 Result = Strlen; 15890 return true; 15891 } 15892 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 15893 return false; 15894 } 15895 } 15896 15897 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { 15898 Expr::EvalStatus Status; 15899 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 15900 return EvaluateBuiltinStrLen(this, Result, Info); 15901 } 15902