1 //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the C++ related Decl classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTUnresolvedSet.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/LambdaCapture.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/ODRHash.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/IdentifierTable.h"
33 #include "clang/Basic/LLVM.h"
34 #include "clang/Basic/LangOptions.h"
35 #include "clang/Basic/OperatorKinds.h"
36 #include "clang/Basic/PartialDiagnostic.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/None.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51
52 using namespace clang;
53
54 //===----------------------------------------------------------------------===//
55 // Decl Allocation/Deallocation Method Implementations
56 //===----------------------------------------------------------------------===//
57
anchor()58 void AccessSpecDecl::anchor() {}
59
CreateDeserialized(ASTContext & C,unsigned ID)60 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
61 return new (C, ID) AccessSpecDecl(EmptyShell());
62 }
63
getFromExternalSource(ASTContext & C) const64 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
65 ExternalASTSource *Source = C.getExternalSource();
66 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
67 assert(Source && "getFromExternalSource with no external source");
68
69 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
70 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
71 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
72 Impl.Decls.setLazy(false);
73 }
74
DefinitionData(CXXRecordDecl * D)75 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
76 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
77 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
78 Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
79 HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
80 HasPrivateFields(false), HasProtectedFields(false),
81 HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
82 HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false),
83 HasUninitializedReferenceMember(false), HasUninitializedFields(false),
84 HasInheritedConstructor(false), HasInheritedDefaultConstructor(false),
85 HasInheritedAssignment(false),
86 NeedOverloadResolutionForCopyConstructor(false),
87 NeedOverloadResolutionForMoveConstructor(false),
88 NeedOverloadResolutionForCopyAssignment(false),
89 NeedOverloadResolutionForMoveAssignment(false),
90 NeedOverloadResolutionForDestructor(false),
91 DefaultedCopyConstructorIsDeleted(false),
92 DefaultedMoveConstructorIsDeleted(false),
93 DefaultedCopyAssignmentIsDeleted(false),
94 DefaultedMoveAssignmentIsDeleted(false),
95 DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
96 HasTrivialSpecialMembersForCall(SMF_All),
97 DeclaredNonTrivialSpecialMembers(0),
98 DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
99 HasConstexprNonCopyMoveConstructor(false),
100 HasDefaultedDefaultConstructor(false),
101 DefaultedDefaultConstructorIsConstexpr(true),
102 HasConstexprDefaultConstructor(false),
103 DefaultedDestructorIsConstexpr(true),
104 HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
105 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
106 ImplicitCopyConstructorCanHaveConstParamForVBase(true),
107 ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
108 ImplicitCopyAssignmentHasConstParam(true),
109 HasDeclaredCopyConstructorWithConstParam(false),
110 HasDeclaredCopyAssignmentWithConstParam(false),
111 IsAnyDestructorNoReturn(false), IsLambda(false),
112 IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
113 HasODRHash(false), Definition(D) {}
114
getBasesSlowCase() const115 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
116 return Bases.get(Definition->getASTContext().getExternalSource());
117 }
118
getVBasesSlowCase() const119 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
120 return VBases.get(Definition->getASTContext().getExternalSource());
121 }
122
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)123 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
124 DeclContext *DC, SourceLocation StartLoc,
125 SourceLocation IdLoc, IdentifierInfo *Id,
126 CXXRecordDecl *PrevDecl)
127 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
128 DefinitionData(PrevDecl ? PrevDecl->DefinitionData
129 : nullptr) {}
130
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)131 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
132 DeclContext *DC, SourceLocation StartLoc,
133 SourceLocation IdLoc, IdentifierInfo *Id,
134 CXXRecordDecl *PrevDecl,
135 bool DelayTypeCreation) {
136 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
137 PrevDecl);
138 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
139
140 // FIXME: DelayTypeCreation seems like such a hack
141 if (!DelayTypeCreation)
142 C.getTypeDeclType(R, PrevDecl);
143 return R;
144 }
145
146 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,unsigned DependencyKind,bool IsGeneric,LambdaCaptureDefault CaptureDefault)147 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
148 TypeSourceInfo *Info, SourceLocation Loc,
149 unsigned DependencyKind, bool IsGeneric,
150 LambdaCaptureDefault CaptureDefault) {
151 auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
152 nullptr, nullptr);
153 R->setBeingDefined(true);
154 R->DefinitionData = new (C) struct LambdaDefinitionData(
155 R, Info, DependencyKind, IsGeneric, CaptureDefault);
156 R->setMayHaveOutOfDateDef(false);
157 R->setImplicit(true);
158
159 C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
160 return R;
161 }
162
163 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)164 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
165 auto *R = new (C, ID) CXXRecordDecl(
166 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
167 nullptr, nullptr);
168 R->setMayHaveOutOfDateDef(false);
169 return R;
170 }
171
172 /// Determine whether a class has a repeated base class. This is intended for
173 /// use when determining if a class is standard-layout, so makes no attempt to
174 /// handle virtual bases.
hasRepeatedBaseClass(const CXXRecordDecl * StartRD)175 static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
176 llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
177 SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
178 while (!WorkList.empty()) {
179 const CXXRecordDecl *RD = WorkList.pop_back_val();
180 if (RD->getTypeForDecl()->isDependentType())
181 continue;
182 for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
183 if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
184 if (!SeenBaseTypes.insert(B).second)
185 return true;
186 WorkList.push_back(B);
187 }
188 }
189 }
190 return false;
191 }
192
193 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)194 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
195 unsigned NumBases) {
196 ASTContext &C = getASTContext();
197
198 if (!data().Bases.isOffset() && data().NumBases > 0)
199 C.Deallocate(data().getBases());
200
201 if (NumBases) {
202 if (!C.getLangOpts().CPlusPlus17) {
203 // C++ [dcl.init.aggr]p1:
204 // An aggregate is [...] a class with [...] no base classes [...].
205 data().Aggregate = false;
206 }
207
208 // C++ [class]p4:
209 // A POD-struct is an aggregate class...
210 data().PlainOldData = false;
211 }
212
213 // The set of seen virtual base types.
214 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
215
216 // The virtual bases of this class.
217 SmallVector<const CXXBaseSpecifier *, 8> VBases;
218
219 data().Bases = new(C) CXXBaseSpecifier [NumBases];
220 data().NumBases = NumBases;
221 for (unsigned i = 0; i < NumBases; ++i) {
222 data().getBases()[i] = *Bases[i];
223 // Keep track of inherited vbases for this base class.
224 const CXXBaseSpecifier *Base = Bases[i];
225 QualType BaseType = Base->getType();
226 // Skip dependent types; we can't do any checking on them now.
227 if (BaseType->isDependentType())
228 continue;
229 auto *BaseClassDecl =
230 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
231
232 // C++2a [class]p7:
233 // A standard-layout class is a class that:
234 // [...]
235 // -- has all non-static data members and bit-fields in the class and
236 // its base classes first declared in the same class
237 if (BaseClassDecl->data().HasBasesWithFields ||
238 !BaseClassDecl->field_empty()) {
239 if (data().HasBasesWithFields)
240 // Two bases have members or bit-fields: not standard-layout.
241 data().IsStandardLayout = false;
242 data().HasBasesWithFields = true;
243 }
244
245 // C++11 [class]p7:
246 // A standard-layout class is a class that:
247 // -- [...] has [...] at most one base class with non-static data
248 // members
249 if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
250 BaseClassDecl->hasDirectFields()) {
251 if (data().HasBasesWithNonStaticDataMembers)
252 data().IsCXX11StandardLayout = false;
253 data().HasBasesWithNonStaticDataMembers = true;
254 }
255
256 if (!BaseClassDecl->isEmpty()) {
257 // C++14 [meta.unary.prop]p4:
258 // T is a class type [...] with [...] no base class B for which
259 // is_empty<B>::value is false.
260 data().Empty = false;
261 }
262
263 // C++1z [dcl.init.agg]p1:
264 // An aggregate is a class with [...] no private or protected base classes
265 if (Base->getAccessSpecifier() != AS_public) {
266 data().Aggregate = false;
267
268 // C++20 [temp.param]p7:
269 // A structural type is [...] a literal class type with [...] all base
270 // classes [...] public
271 data().StructuralIfLiteral = false;
272 }
273
274 // C++ [class.virtual]p1:
275 // A class that declares or inherits a virtual function is called a
276 // polymorphic class.
277 if (BaseClassDecl->isPolymorphic()) {
278 data().Polymorphic = true;
279
280 // An aggregate is a class with [...] no virtual functions.
281 data().Aggregate = false;
282 }
283
284 // C++0x [class]p7:
285 // A standard-layout class is a class that: [...]
286 // -- has no non-standard-layout base classes
287 if (!BaseClassDecl->isStandardLayout())
288 data().IsStandardLayout = false;
289 if (!BaseClassDecl->isCXX11StandardLayout())
290 data().IsCXX11StandardLayout = false;
291
292 // Record if this base is the first non-literal field or base.
293 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
294 data().HasNonLiteralTypeFieldsOrBases = true;
295
296 // Now go through all virtual bases of this base and add them.
297 for (const auto &VBase : BaseClassDecl->vbases()) {
298 // Add this base if it's not already in the list.
299 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
300 VBases.push_back(&VBase);
301
302 // C++11 [class.copy]p8:
303 // The implicitly-declared copy constructor for a class X will have
304 // the form 'X::X(const X&)' if each [...] virtual base class B of X
305 // has a copy constructor whose first parameter is of type
306 // 'const B&' or 'const volatile B&' [...]
307 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
308 if (!VBaseDecl->hasCopyConstructorWithConstParam())
309 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
310
311 // C++1z [dcl.init.agg]p1:
312 // An aggregate is a class with [...] no virtual base classes
313 data().Aggregate = false;
314 }
315 }
316
317 if (Base->isVirtual()) {
318 // Add this base if it's not already in the list.
319 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
320 VBases.push_back(Base);
321
322 // C++14 [meta.unary.prop] is_empty:
323 // T is a class type, but not a union type, with ... no virtual base
324 // classes
325 data().Empty = false;
326
327 // C++1z [dcl.init.agg]p1:
328 // An aggregate is a class with [...] no virtual base classes
329 data().Aggregate = false;
330
331 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
332 // A [default constructor, copy/move constructor, or copy/move assignment
333 // operator for a class X] is trivial [...] if:
334 // -- class X has [...] no virtual base classes
335 data().HasTrivialSpecialMembers &= SMF_Destructor;
336 data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
337
338 // C++0x [class]p7:
339 // A standard-layout class is a class that: [...]
340 // -- has [...] no virtual base classes
341 data().IsStandardLayout = false;
342 data().IsCXX11StandardLayout = false;
343
344 // C++20 [dcl.constexpr]p3:
345 // In the definition of a constexpr function [...]
346 // -- if the function is a constructor or destructor,
347 // its class shall not have any virtual base classes
348 data().DefaultedDefaultConstructorIsConstexpr = false;
349 data().DefaultedDestructorIsConstexpr = false;
350
351 // C++1z [class.copy]p8:
352 // The implicitly-declared copy constructor for a class X will have
353 // the form 'X::X(const X&)' if each potentially constructed subobject
354 // has a copy constructor whose first parameter is of type
355 // 'const B&' or 'const volatile B&' [...]
356 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
357 data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
358 } else {
359 // C++ [class.ctor]p5:
360 // A default constructor is trivial [...] if:
361 // -- all the direct base classes of its class have trivial default
362 // constructors.
363 if (!BaseClassDecl->hasTrivialDefaultConstructor())
364 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
365
366 // C++0x [class.copy]p13:
367 // A copy/move constructor for class X is trivial if [...]
368 // [...]
369 // -- the constructor selected to copy/move each direct base class
370 // subobject is trivial, and
371 if (!BaseClassDecl->hasTrivialCopyConstructor())
372 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
373
374 if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
375 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
376
377 // If the base class doesn't have a simple move constructor, we'll eagerly
378 // declare it and perform overload resolution to determine which function
379 // it actually calls. If it does have a simple move constructor, this
380 // check is correct.
381 if (!BaseClassDecl->hasTrivialMoveConstructor())
382 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
383
384 if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
385 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
386
387 // C++0x [class.copy]p27:
388 // A copy/move assignment operator for class X is trivial if [...]
389 // [...]
390 // -- the assignment operator selected to copy/move each direct base
391 // class subobject is trivial, and
392 if (!BaseClassDecl->hasTrivialCopyAssignment())
393 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
394 // If the base class doesn't have a simple move assignment, we'll eagerly
395 // declare it and perform overload resolution to determine which function
396 // it actually calls. If it does have a simple move assignment, this
397 // check is correct.
398 if (!BaseClassDecl->hasTrivialMoveAssignment())
399 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
400
401 // C++11 [class.ctor]p6:
402 // If that user-written default constructor would satisfy the
403 // requirements of a constexpr constructor, the implicitly-defined
404 // default constructor is constexpr.
405 if (!BaseClassDecl->hasConstexprDefaultConstructor())
406 data().DefaultedDefaultConstructorIsConstexpr = false;
407
408 // C++1z [class.copy]p8:
409 // The implicitly-declared copy constructor for a class X will have
410 // the form 'X::X(const X&)' if each potentially constructed subobject
411 // has a copy constructor whose first parameter is of type
412 // 'const B&' or 'const volatile B&' [...]
413 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
414 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
415 }
416
417 // C++ [class.ctor]p3:
418 // A destructor is trivial if all the direct base classes of its class
419 // have trivial destructors.
420 if (!BaseClassDecl->hasTrivialDestructor())
421 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
422
423 if (!BaseClassDecl->hasTrivialDestructorForCall())
424 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
425
426 if (!BaseClassDecl->hasIrrelevantDestructor())
427 data().HasIrrelevantDestructor = false;
428
429 if (BaseClassDecl->isAnyDestructorNoReturn())
430 data().IsAnyDestructorNoReturn = true;
431
432 // C++11 [class.copy]p18:
433 // The implicitly-declared copy assignment operator for a class X will
434 // have the form 'X& X::operator=(const X&)' if each direct base class B
435 // of X has a copy assignment operator whose parameter is of type 'const
436 // B&', 'const volatile B&', or 'B' [...]
437 if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
438 data().ImplicitCopyAssignmentHasConstParam = false;
439
440 // A class has an Objective-C object member if... or any of its bases
441 // has an Objective-C object member.
442 if (BaseClassDecl->hasObjectMember())
443 setHasObjectMember(true);
444
445 if (BaseClassDecl->hasVolatileMember())
446 setHasVolatileMember(true);
447
448 if (BaseClassDecl->getArgPassingRestrictions() ==
449 RecordDecl::APK_CanNeverPassInRegs)
450 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
451
452 // Keep track of the presence of mutable fields.
453 if (BaseClassDecl->hasMutableFields())
454 data().HasMutableFields = true;
455
456 if (BaseClassDecl->hasUninitializedReferenceMember())
457 data().HasUninitializedReferenceMember = true;
458
459 if (!BaseClassDecl->allowConstDefaultInit())
460 data().HasUninitializedFields = true;
461
462 addedClassSubobject(BaseClassDecl);
463 }
464
465 // C++2a [class]p7:
466 // A class S is a standard-layout class if it:
467 // -- has at most one base class subobject of any given type
468 //
469 // Note that we only need to check this for classes with more than one base
470 // class. If there's only one base class, and it's standard layout, then
471 // we know there are no repeated base classes.
472 if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
473 data().IsStandardLayout = false;
474
475 if (VBases.empty()) {
476 data().IsParsingBaseSpecifiers = false;
477 return;
478 }
479
480 // Create base specifier for any direct or indirect virtual bases.
481 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
482 data().NumVBases = VBases.size();
483 for (int I = 0, E = VBases.size(); I != E; ++I) {
484 QualType Type = VBases[I]->getType();
485 if (!Type->isDependentType())
486 addedClassSubobject(Type->getAsCXXRecordDecl());
487 data().getVBases()[I] = *VBases[I];
488 }
489
490 data().IsParsingBaseSpecifiers = false;
491 }
492
getODRHash() const493 unsigned CXXRecordDecl::getODRHash() const {
494 assert(hasDefinition() && "ODRHash only for records with definitions");
495
496 // Previously calculated hash is stored in DefinitionData.
497 if (DefinitionData->HasODRHash)
498 return DefinitionData->ODRHash;
499
500 // Only calculate hash on first call of getODRHash per record.
501 ODRHash Hash;
502 Hash.AddCXXRecordDecl(getDefinition());
503 DefinitionData->HasODRHash = true;
504 DefinitionData->ODRHash = Hash.CalculateHash();
505
506 return DefinitionData->ODRHash;
507 }
508
addedClassSubobject(CXXRecordDecl * Subobj)509 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
510 // C++11 [class.copy]p11:
511 // A defaulted copy/move constructor for a class X is defined as
512 // deleted if X has:
513 // -- a direct or virtual base class B that cannot be copied/moved [...]
514 // -- a non-static data member of class type M (or array thereof)
515 // that cannot be copied or moved [...]
516 if (!Subobj->hasSimpleCopyConstructor())
517 data().NeedOverloadResolutionForCopyConstructor = true;
518 if (!Subobj->hasSimpleMoveConstructor())
519 data().NeedOverloadResolutionForMoveConstructor = true;
520
521 // C++11 [class.copy]p23:
522 // A defaulted copy/move assignment operator for a class X is defined as
523 // deleted if X has:
524 // -- a direct or virtual base class B that cannot be copied/moved [...]
525 // -- a non-static data member of class type M (or array thereof)
526 // that cannot be copied or moved [...]
527 if (!Subobj->hasSimpleCopyAssignment())
528 data().NeedOverloadResolutionForCopyAssignment = true;
529 if (!Subobj->hasSimpleMoveAssignment())
530 data().NeedOverloadResolutionForMoveAssignment = true;
531
532 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
533 // A defaulted [ctor or dtor] for a class X is defined as
534 // deleted if X has:
535 // -- any direct or virtual base class [...] has a type with a destructor
536 // that is deleted or inaccessible from the defaulted [ctor or dtor].
537 // -- any non-static data member has a type with a destructor
538 // that is deleted or inaccessible from the defaulted [ctor or dtor].
539 if (!Subobj->hasSimpleDestructor()) {
540 data().NeedOverloadResolutionForCopyConstructor = true;
541 data().NeedOverloadResolutionForMoveConstructor = true;
542 data().NeedOverloadResolutionForDestructor = true;
543 }
544
545 // C++2a [dcl.constexpr]p4:
546 // The definition of a constexpr destructor [shall] satisfy the
547 // following requirement:
548 // -- for every subobject of class type or (possibly multi-dimensional)
549 // array thereof, that class type shall have a constexpr destructor
550 if (!Subobj->hasConstexprDestructor())
551 data().DefaultedDestructorIsConstexpr = false;
552
553 // C++20 [temp.param]p7:
554 // A structural type is [...] a literal class type [for which] the types
555 // of all base classes and non-static data members are structural types or
556 // (possibly multi-dimensional) array thereof
557 if (!Subobj->data().StructuralIfLiteral)
558 data().StructuralIfLiteral = false;
559 }
560
hasConstexprDestructor() const561 bool CXXRecordDecl::hasConstexprDestructor() const {
562 auto *Dtor = getDestructor();
563 return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
564 }
565
hasAnyDependentBases() const566 bool CXXRecordDecl::hasAnyDependentBases() const {
567 if (!isDependentContext())
568 return false;
569
570 return !forallBases([](const CXXRecordDecl *) { return true; });
571 }
572
isTriviallyCopyable() const573 bool CXXRecordDecl::isTriviallyCopyable() const {
574 // C++0x [class]p5:
575 // A trivially copyable class is a class that:
576 // -- has no non-trivial copy constructors,
577 if (hasNonTrivialCopyConstructor()) return false;
578 // -- has no non-trivial move constructors,
579 if (hasNonTrivialMoveConstructor()) return false;
580 // -- has no non-trivial copy assignment operators,
581 if (hasNonTrivialCopyAssignment()) return false;
582 // -- has no non-trivial move assignment operators, and
583 if (hasNonTrivialMoveAssignment()) return false;
584 // -- has a trivial destructor.
585 if (!hasTrivialDestructor()) return false;
586
587 return true;
588 }
589
markedVirtualFunctionPure()590 void CXXRecordDecl::markedVirtualFunctionPure() {
591 // C++ [class.abstract]p2:
592 // A class is abstract if it has at least one pure virtual function.
593 data().Abstract = true;
594 }
595
hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext & Ctx,const CXXRecordDecl * XFirst)596 bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
597 ASTContext &Ctx, const CXXRecordDecl *XFirst) {
598 if (!getNumBases())
599 return false;
600
601 llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
602 llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
603 SmallVector<const CXXRecordDecl*, 8> WorkList;
604
605 // Visit a type that we have determined is an element of M(S).
606 auto Visit = [&](const CXXRecordDecl *RD) -> bool {
607 RD = RD->getCanonicalDecl();
608
609 // C++2a [class]p8:
610 // A class S is a standard-layout class if it [...] has no element of the
611 // set M(S) of types as a base class.
612 //
613 // If we find a subobject of an empty type, it might also be a base class,
614 // so we'll need to walk the base classes to check.
615 if (!RD->data().HasBasesWithFields) {
616 // Walk the bases the first time, stopping if we find the type. Build a
617 // set of them so we don't need to walk them again.
618 if (Bases.empty()) {
619 bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
620 Base = Base->getCanonicalDecl();
621 if (RD == Base)
622 return false;
623 Bases.insert(Base);
624 return true;
625 });
626 if (RDIsBase)
627 return true;
628 } else {
629 if (Bases.count(RD))
630 return true;
631 }
632 }
633
634 if (M.insert(RD).second)
635 WorkList.push_back(RD);
636 return false;
637 };
638
639 if (Visit(XFirst))
640 return true;
641
642 while (!WorkList.empty()) {
643 const CXXRecordDecl *X = WorkList.pop_back_val();
644
645 // FIXME: We don't check the bases of X. That matches the standard, but
646 // that sure looks like a wording bug.
647
648 // -- If X is a non-union class type with a non-static data member
649 // [recurse to each field] that is either of zero size or is the
650 // first non-static data member of X
651 // -- If X is a union type, [recurse to union members]
652 bool IsFirstField = true;
653 for (auto *FD : X->fields()) {
654 // FIXME: Should we really care about the type of the first non-static
655 // data member of a non-union if there are preceding unnamed bit-fields?
656 if (FD->isUnnamedBitfield())
657 continue;
658
659 if (!IsFirstField && !FD->isZeroSize(Ctx))
660 continue;
661
662 // -- If X is n array type, [visit the element type]
663 QualType T = Ctx.getBaseElementType(FD->getType());
664 if (auto *RD = T->getAsCXXRecordDecl())
665 if (Visit(RD))
666 return true;
667
668 if (!X->isUnion())
669 IsFirstField = false;
670 }
671 }
672
673 return false;
674 }
675
lambdaIsDefaultConstructibleAndAssignable() const676 bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
677 assert(isLambda() && "not a lambda");
678
679 // C++2a [expr.prim.lambda.capture]p11:
680 // The closure type associated with a lambda-expression has no default
681 // constructor if the lambda-expression has a lambda-capture and a
682 // defaulted default constructor otherwise. It has a deleted copy
683 // assignment operator if the lambda-expression has a lambda-capture and
684 // defaulted copy and move assignment operators otherwise.
685 //
686 // C++17 [expr.prim.lambda]p21:
687 // The closure type associated with a lambda-expression has no default
688 // constructor and a deleted copy assignment operator.
689 if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
690 return false;
691 return getASTContext().getLangOpts().CPlusPlus20;
692 }
693
addedMember(Decl * D)694 void CXXRecordDecl::addedMember(Decl *D) {
695 if (!D->isImplicit() &&
696 !isa<FieldDecl>(D) &&
697 !isa<IndirectFieldDecl>(D) &&
698 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
699 cast<TagDecl>(D)->getTagKind() == TTK_Interface))
700 data().HasOnlyCMembers = false;
701
702 // Ignore friends and invalid declarations.
703 if (D->getFriendObjectKind() || D->isInvalidDecl())
704 return;
705
706 auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
707 if (FunTmpl)
708 D = FunTmpl->getTemplatedDecl();
709
710 // FIXME: Pass NamedDecl* to addedMember?
711 Decl *DUnderlying = D;
712 if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
713 DUnderlying = ND->getUnderlyingDecl();
714 if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
715 DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
716 }
717
718 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
719 if (Method->isVirtual()) {
720 // C++ [dcl.init.aggr]p1:
721 // An aggregate is an array or a class with [...] no virtual functions.
722 data().Aggregate = false;
723
724 // C++ [class]p4:
725 // A POD-struct is an aggregate class...
726 data().PlainOldData = false;
727
728 // C++14 [meta.unary.prop]p4:
729 // T is a class type [...] with [...] no virtual member functions...
730 data().Empty = false;
731
732 // C++ [class.virtual]p1:
733 // A class that declares or inherits a virtual function is called a
734 // polymorphic class.
735 data().Polymorphic = true;
736
737 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
738 // A [default constructor, copy/move constructor, or copy/move
739 // assignment operator for a class X] is trivial [...] if:
740 // -- class X has no virtual functions [...]
741 data().HasTrivialSpecialMembers &= SMF_Destructor;
742 data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
743
744 // C++0x [class]p7:
745 // A standard-layout class is a class that: [...]
746 // -- has no virtual functions
747 data().IsStandardLayout = false;
748 data().IsCXX11StandardLayout = false;
749 }
750 }
751
752 // Notify the listener if an implicit member was added after the definition
753 // was completed.
754 if (!isBeingDefined() && D->isImplicit())
755 if (ASTMutationListener *L = getASTMutationListener())
756 L->AddedCXXImplicitMember(data().Definition, D);
757
758 // The kind of special member this declaration is, if any.
759 unsigned SMKind = 0;
760
761 // Handle constructors.
762 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
763 if (Constructor->isInheritingConstructor()) {
764 // Ignore constructor shadow declarations. They are lazily created and
765 // so shouldn't affect any properties of the class.
766 } else {
767 if (!Constructor->isImplicit()) {
768 // Note that we have a user-declared constructor.
769 data().UserDeclaredConstructor = true;
770
771 // C++ [class]p4:
772 // A POD-struct is an aggregate class [...]
773 // Since the POD bit is meant to be C++03 POD-ness, clear it even if
774 // the type is technically an aggregate in C++0x since it wouldn't be
775 // in 03.
776 data().PlainOldData = false;
777 }
778
779 if (Constructor->isDefaultConstructor()) {
780 SMKind |= SMF_DefaultConstructor;
781
782 if (Constructor->isUserProvided())
783 data().UserProvidedDefaultConstructor = true;
784 if (Constructor->isConstexpr())
785 data().HasConstexprDefaultConstructor = true;
786 if (Constructor->isDefaulted())
787 data().HasDefaultedDefaultConstructor = true;
788 }
789
790 if (!FunTmpl) {
791 unsigned Quals;
792 if (Constructor->isCopyConstructor(Quals)) {
793 SMKind |= SMF_CopyConstructor;
794
795 if (Quals & Qualifiers::Const)
796 data().HasDeclaredCopyConstructorWithConstParam = true;
797 } else if (Constructor->isMoveConstructor())
798 SMKind |= SMF_MoveConstructor;
799 }
800
801 // C++11 [dcl.init.aggr]p1: DR1518
802 // An aggregate is an array or a class with no user-provided [or]
803 // explicit [...] constructors
804 // C++20 [dcl.init.aggr]p1:
805 // An aggregate is an array or a class with no user-declared [...]
806 // constructors
807 if (getASTContext().getLangOpts().CPlusPlus20
808 ? !Constructor->isImplicit()
809 : (Constructor->isUserProvided() || Constructor->isExplicit()))
810 data().Aggregate = false;
811 }
812 }
813
814 // Handle constructors, including those inherited from base classes.
815 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
816 // Record if we see any constexpr constructors which are neither copy
817 // nor move constructors.
818 // C++1z [basic.types]p10:
819 // [...] has at least one constexpr constructor or constructor template
820 // (possibly inherited from a base class) that is not a copy or move
821 // constructor [...]
822 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
823 data().HasConstexprNonCopyMoveConstructor = true;
824 if (!isa<CXXConstructorDecl>(D) && Constructor->isDefaultConstructor())
825 data().HasInheritedDefaultConstructor = true;
826 }
827
828 // Handle member functions.
829 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
830 if (isa<CXXDestructorDecl>(D))
831 SMKind |= SMF_Destructor;
832
833 if (Method->isCopyAssignmentOperator()) {
834 SMKind |= SMF_CopyAssignment;
835
836 const auto *ParamTy =
837 Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
838 if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
839 data().HasDeclaredCopyAssignmentWithConstParam = true;
840 }
841
842 if (Method->isMoveAssignmentOperator())
843 SMKind |= SMF_MoveAssignment;
844
845 // Keep the list of conversion functions up-to-date.
846 if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
847 // FIXME: We use the 'unsafe' accessor for the access specifier here,
848 // because Sema may not have set it yet. That's really just a misdesign
849 // in Sema. However, LLDB *will* have set the access specifier correctly,
850 // and adds declarations after the class is technically completed,
851 // so completeDefinition()'s overriding of the access specifiers doesn't
852 // work.
853 AccessSpecifier AS = Conversion->getAccessUnsafe();
854
855 if (Conversion->getPrimaryTemplate()) {
856 // We don't record specializations.
857 } else {
858 ASTContext &Ctx = getASTContext();
859 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
860 NamedDecl *Primary =
861 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
862 if (Primary->getPreviousDecl())
863 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
864 Primary, AS);
865 else
866 Conversions.addDecl(Ctx, Primary, AS);
867 }
868 }
869
870 if (SMKind) {
871 // If this is the first declaration of a special member, we no longer have
872 // an implicit trivial special member.
873 data().HasTrivialSpecialMembers &=
874 data().DeclaredSpecialMembers | ~SMKind;
875 data().HasTrivialSpecialMembersForCall &=
876 data().DeclaredSpecialMembers | ~SMKind;
877
878 // Note when we have declared a declared special member, and suppress the
879 // implicit declaration of this special member.
880 data().DeclaredSpecialMembers |= SMKind;
881 if (!Method->isImplicit()) {
882 data().UserDeclaredSpecialMembers |= SMKind;
883
884 // C++03 [class]p4:
885 // A POD-struct is an aggregate class that has [...] no user-defined
886 // copy assignment operator and no user-defined destructor.
887 //
888 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
889 // aggregates could not have any constructors, clear it even for an
890 // explicitly defaulted or deleted constructor.
891 // type is technically an aggregate in C++0x since it wouldn't be in 03.
892 //
893 // Also, a user-declared move assignment operator makes a class non-POD.
894 // This is an extension in C++03.
895 data().PlainOldData = false;
896 }
897 // We delay updating destructor relevant properties until
898 // addedSelectedDestructor.
899 // FIXME: Defer this for the other special member functions as well.
900 if (!Method->isIneligibleOrNotSelected()) {
901 addedEligibleSpecialMemberFunction(Method, SMKind);
902 }
903 }
904
905 return;
906 }
907
908 // Handle non-static data members.
909 if (const auto *Field = dyn_cast<FieldDecl>(D)) {
910 ASTContext &Context = getASTContext();
911
912 // C++2a [class]p7:
913 // A standard-layout class is a class that:
914 // [...]
915 // -- has all non-static data members and bit-fields in the class and
916 // its base classes first declared in the same class
917 if (data().HasBasesWithFields)
918 data().IsStandardLayout = false;
919
920 // C++ [class.bit]p2:
921 // A declaration for a bit-field that omits the identifier declares an
922 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
923 // initialized.
924 if (Field->isUnnamedBitfield()) {
925 // C++ [meta.unary.prop]p4: [LWG2358]
926 // T is a class type [...] with [...] no unnamed bit-fields of non-zero
927 // length
928 if (data().Empty && !Field->isZeroLengthBitField(Context) &&
929 Context.getLangOpts().getClangABICompat() >
930 LangOptions::ClangABI::Ver6)
931 data().Empty = false;
932 return;
933 }
934
935 // C++11 [class]p7:
936 // A standard-layout class is a class that:
937 // -- either has no non-static data members in the most derived class
938 // [...] or has no base classes with non-static data members
939 if (data().HasBasesWithNonStaticDataMembers)
940 data().IsCXX11StandardLayout = false;
941
942 // C++ [dcl.init.aggr]p1:
943 // An aggregate is an array or a class (clause 9) with [...] no
944 // private or protected non-static data members (clause 11).
945 //
946 // A POD must be an aggregate.
947 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
948 data().Aggregate = false;
949 data().PlainOldData = false;
950
951 // C++20 [temp.param]p7:
952 // A structural type is [...] a literal class type [for which] all
953 // non-static data members are public
954 data().StructuralIfLiteral = false;
955 }
956
957 // Track whether this is the first field. We use this when checking
958 // whether the class is standard-layout below.
959 bool IsFirstField = !data().HasPrivateFields &&
960 !data().HasProtectedFields && !data().HasPublicFields;
961
962 // C++0x [class]p7:
963 // A standard-layout class is a class that:
964 // [...]
965 // -- has the same access control for all non-static data members,
966 switch (D->getAccess()) {
967 case AS_private: data().HasPrivateFields = true; break;
968 case AS_protected: data().HasProtectedFields = true; break;
969 case AS_public: data().HasPublicFields = true; break;
970 case AS_none: llvm_unreachable("Invalid access specifier");
971 };
972 if ((data().HasPrivateFields + data().HasProtectedFields +
973 data().HasPublicFields) > 1) {
974 data().IsStandardLayout = false;
975 data().IsCXX11StandardLayout = false;
976 }
977
978 // Keep track of the presence of mutable fields.
979 if (Field->isMutable()) {
980 data().HasMutableFields = true;
981
982 // C++20 [temp.param]p7:
983 // A structural type is [...] a literal class type [for which] all
984 // non-static data members are public
985 data().StructuralIfLiteral = false;
986 }
987
988 // C++11 [class.union]p8, DR1460:
989 // If X is a union, a non-static data member of X that is not an anonymous
990 // union is a variant member of X.
991 if (isUnion() && !Field->isAnonymousStructOrUnion())
992 data().HasVariantMembers = true;
993
994 // C++0x [class]p9:
995 // A POD struct is a class that is both a trivial class and a
996 // standard-layout class, and has no non-static data members of type
997 // non-POD struct, non-POD union (or array of such types).
998 //
999 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
1000 // that does not explicitly have no lifetime makes the class a non-POD.
1001 QualType T = Context.getBaseElementType(Field->getType());
1002 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
1003 if (T.hasNonTrivialObjCLifetime()) {
1004 // Objective-C Automatic Reference Counting:
1005 // If a class has a non-static data member of Objective-C pointer
1006 // type (or array thereof), it is a non-POD type and its
1007 // default constructor (if any), copy constructor, move constructor,
1008 // copy assignment operator, move assignment operator, and destructor are
1009 // non-trivial.
1010 setHasObjectMember(true);
1011 struct DefinitionData &Data = data();
1012 Data.PlainOldData = false;
1013 Data.HasTrivialSpecialMembers = 0;
1014
1015 // __strong or __weak fields do not make special functions non-trivial
1016 // for the purpose of calls.
1017 Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
1018 if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
1019 data().HasTrivialSpecialMembersForCall = 0;
1020
1021 // Structs with __weak fields should never be passed directly.
1022 if (LT == Qualifiers::OCL_Weak)
1023 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1024
1025 Data.HasIrrelevantDestructor = false;
1026
1027 if (isUnion()) {
1028 data().DefaultedCopyConstructorIsDeleted = true;
1029 data().DefaultedMoveConstructorIsDeleted = true;
1030 data().DefaultedCopyAssignmentIsDeleted = true;
1031 data().DefaultedMoveAssignmentIsDeleted = true;
1032 data().DefaultedDestructorIsDeleted = true;
1033 data().NeedOverloadResolutionForCopyConstructor = true;
1034 data().NeedOverloadResolutionForMoveConstructor = true;
1035 data().NeedOverloadResolutionForCopyAssignment = true;
1036 data().NeedOverloadResolutionForMoveAssignment = true;
1037 data().NeedOverloadResolutionForDestructor = true;
1038 }
1039 } else if (!Context.getLangOpts().ObjCAutoRefCount) {
1040 setHasObjectMember(true);
1041 }
1042 } else if (!T.isCXX98PODType(Context))
1043 data().PlainOldData = false;
1044
1045 if (T->isReferenceType()) {
1046 if (!Field->hasInClassInitializer())
1047 data().HasUninitializedReferenceMember = true;
1048
1049 // C++0x [class]p7:
1050 // A standard-layout class is a class that:
1051 // -- has no non-static data members of type [...] reference,
1052 data().IsStandardLayout = false;
1053 data().IsCXX11StandardLayout = false;
1054
1055 // C++1z [class.copy.ctor]p10:
1056 // A defaulted copy constructor for a class X is defined as deleted if X has:
1057 // -- a non-static data member of rvalue reference type
1058 if (T->isRValueReferenceType())
1059 data().DefaultedCopyConstructorIsDeleted = true;
1060 }
1061
1062 if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1063 if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1064 if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1065 data().HasUninitializedFields = true;
1066 } else {
1067 data().HasUninitializedFields = true;
1068 }
1069 }
1070
1071 // Record if this field is the first non-literal or volatile field or base.
1072 if (!T->isLiteralType(Context) || T.isVolatileQualified())
1073 data().HasNonLiteralTypeFieldsOrBases = true;
1074
1075 if (Field->hasInClassInitializer() ||
1076 (Field->isAnonymousStructOrUnion() &&
1077 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1078 data().HasInClassInitializer = true;
1079
1080 // C++11 [class]p5:
1081 // A default constructor is trivial if [...] no non-static data member
1082 // of its class has a brace-or-equal-initializer.
1083 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1084
1085 // C++11 [dcl.init.aggr]p1:
1086 // An aggregate is a [...] class with [...] no
1087 // brace-or-equal-initializers for non-static data members.
1088 //
1089 // This rule was removed in C++14.
1090 if (!getASTContext().getLangOpts().CPlusPlus14)
1091 data().Aggregate = false;
1092
1093 // C++11 [class]p10:
1094 // A POD struct is [...] a trivial class.
1095 data().PlainOldData = false;
1096 }
1097
1098 // C++11 [class.copy]p23:
1099 // A defaulted copy/move assignment operator for a class X is defined
1100 // as deleted if X has:
1101 // -- a non-static data member of reference type
1102 if (T->isReferenceType()) {
1103 data().DefaultedCopyAssignmentIsDeleted = true;
1104 data().DefaultedMoveAssignmentIsDeleted = true;
1105 }
1106
1107 // Bitfields of length 0 are also zero-sized, but we already bailed out for
1108 // those because they are always unnamed.
1109 bool IsZeroSize = Field->isZeroSize(Context);
1110
1111 if (const auto *RecordTy = T->getAs<RecordType>()) {
1112 auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1113 if (FieldRec->getDefinition()) {
1114 addedClassSubobject(FieldRec);
1115
1116 // We may need to perform overload resolution to determine whether a
1117 // field can be moved if it's const or volatile qualified.
1118 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1119 // We need to care about 'const' for the copy constructor because an
1120 // implicit copy constructor might be declared with a non-const
1121 // parameter.
1122 data().NeedOverloadResolutionForCopyConstructor = true;
1123 data().NeedOverloadResolutionForMoveConstructor = true;
1124 data().NeedOverloadResolutionForCopyAssignment = true;
1125 data().NeedOverloadResolutionForMoveAssignment = true;
1126 }
1127
1128 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1129 // A defaulted [special member] for a class X is defined as
1130 // deleted if:
1131 // -- X is a union-like class that has a variant member with a
1132 // non-trivial [corresponding special member]
1133 if (isUnion()) {
1134 if (FieldRec->hasNonTrivialCopyConstructor())
1135 data().DefaultedCopyConstructorIsDeleted = true;
1136 if (FieldRec->hasNonTrivialMoveConstructor())
1137 data().DefaultedMoveConstructorIsDeleted = true;
1138 if (FieldRec->hasNonTrivialCopyAssignment())
1139 data().DefaultedCopyAssignmentIsDeleted = true;
1140 if (FieldRec->hasNonTrivialMoveAssignment())
1141 data().DefaultedMoveAssignmentIsDeleted = true;
1142 if (FieldRec->hasNonTrivialDestructor())
1143 data().DefaultedDestructorIsDeleted = true;
1144 }
1145
1146 // For an anonymous union member, our overload resolution will perform
1147 // overload resolution for its members.
1148 if (Field->isAnonymousStructOrUnion()) {
1149 data().NeedOverloadResolutionForCopyConstructor |=
1150 FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1151 data().NeedOverloadResolutionForMoveConstructor |=
1152 FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1153 data().NeedOverloadResolutionForCopyAssignment |=
1154 FieldRec->data().NeedOverloadResolutionForCopyAssignment;
1155 data().NeedOverloadResolutionForMoveAssignment |=
1156 FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1157 data().NeedOverloadResolutionForDestructor |=
1158 FieldRec->data().NeedOverloadResolutionForDestructor;
1159 }
1160
1161 // C++0x [class.ctor]p5:
1162 // A default constructor is trivial [...] if:
1163 // -- for all the non-static data members of its class that are of
1164 // class type (or array thereof), each such class has a trivial
1165 // default constructor.
1166 if (!FieldRec->hasTrivialDefaultConstructor())
1167 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1168
1169 // C++0x [class.copy]p13:
1170 // A copy/move constructor for class X is trivial if [...]
1171 // [...]
1172 // -- for each non-static data member of X that is of class type (or
1173 // an array thereof), the constructor selected to copy/move that
1174 // member is trivial;
1175 if (!FieldRec->hasTrivialCopyConstructor())
1176 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1177
1178 if (!FieldRec->hasTrivialCopyConstructorForCall())
1179 data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1180
1181 // If the field doesn't have a simple move constructor, we'll eagerly
1182 // declare the move constructor for this class and we'll decide whether
1183 // it's trivial then.
1184 if (!FieldRec->hasTrivialMoveConstructor())
1185 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1186
1187 if (!FieldRec->hasTrivialMoveConstructorForCall())
1188 data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1189
1190 // C++0x [class.copy]p27:
1191 // A copy/move assignment operator for class X is trivial if [...]
1192 // [...]
1193 // -- for each non-static data member of X that is of class type (or
1194 // an array thereof), the assignment operator selected to
1195 // copy/move that member is trivial;
1196 if (!FieldRec->hasTrivialCopyAssignment())
1197 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1198 // If the field doesn't have a simple move assignment, we'll eagerly
1199 // declare the move assignment for this class and we'll decide whether
1200 // it's trivial then.
1201 if (!FieldRec->hasTrivialMoveAssignment())
1202 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1203
1204 if (!FieldRec->hasTrivialDestructor())
1205 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1206 if (!FieldRec->hasTrivialDestructorForCall())
1207 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1208 if (!FieldRec->hasIrrelevantDestructor())
1209 data().HasIrrelevantDestructor = false;
1210 if (FieldRec->isAnyDestructorNoReturn())
1211 data().IsAnyDestructorNoReturn = true;
1212 if (FieldRec->hasObjectMember())
1213 setHasObjectMember(true);
1214 if (FieldRec->hasVolatileMember())
1215 setHasVolatileMember(true);
1216 if (FieldRec->getArgPassingRestrictions() ==
1217 RecordDecl::APK_CanNeverPassInRegs)
1218 setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1219
1220 // C++0x [class]p7:
1221 // A standard-layout class is a class that:
1222 // -- has no non-static data members of type non-standard-layout
1223 // class (or array of such types) [...]
1224 if (!FieldRec->isStandardLayout())
1225 data().IsStandardLayout = false;
1226 if (!FieldRec->isCXX11StandardLayout())
1227 data().IsCXX11StandardLayout = false;
1228
1229 // C++2a [class]p7:
1230 // A standard-layout class is a class that:
1231 // [...]
1232 // -- has no element of the set M(S) of types as a base class.
1233 if (data().IsStandardLayout &&
1234 (isUnion() || IsFirstField || IsZeroSize) &&
1235 hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1236 data().IsStandardLayout = false;
1237
1238 // C++11 [class]p7:
1239 // A standard-layout class is a class that:
1240 // -- has no base classes of the same type as the first non-static
1241 // data member
1242 if (data().IsCXX11StandardLayout && IsFirstField) {
1243 // FIXME: We should check all base classes here, not just direct
1244 // base classes.
1245 for (const auto &BI : bases()) {
1246 if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1247 data().IsCXX11StandardLayout = false;
1248 break;
1249 }
1250 }
1251 }
1252
1253 // Keep track of the presence of mutable fields.
1254 if (FieldRec->hasMutableFields())
1255 data().HasMutableFields = true;
1256
1257 if (Field->isMutable()) {
1258 // Our copy constructor/assignment might call something other than
1259 // the subobject's copy constructor/assignment if it's mutable and of
1260 // class type.
1261 data().NeedOverloadResolutionForCopyConstructor = true;
1262 data().NeedOverloadResolutionForCopyAssignment = true;
1263 }
1264
1265 // C++11 [class.copy]p13:
1266 // If the implicitly-defined constructor would satisfy the
1267 // requirements of a constexpr constructor, the implicitly-defined
1268 // constructor is constexpr.
1269 // C++11 [dcl.constexpr]p4:
1270 // -- every constructor involved in initializing non-static data
1271 // members [...] shall be a constexpr constructor
1272 if (!Field->hasInClassInitializer() &&
1273 !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1274 // The standard requires any in-class initializer to be a constant
1275 // expression. We consider this to be a defect.
1276 data().DefaultedDefaultConstructorIsConstexpr = false;
1277
1278 // C++11 [class.copy]p8:
1279 // The implicitly-declared copy constructor for a class X will have
1280 // the form 'X::X(const X&)' if each potentially constructed subobject
1281 // of a class type M (or array thereof) has a copy constructor whose
1282 // first parameter is of type 'const M&' or 'const volatile M&'.
1283 if (!FieldRec->hasCopyConstructorWithConstParam())
1284 data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1285
1286 // C++11 [class.copy]p18:
1287 // The implicitly-declared copy assignment oeprator for a class X will
1288 // have the form 'X& X::operator=(const X&)' if [...] for all the
1289 // non-static data members of X that are of a class type M (or array
1290 // thereof), each such class type has a copy assignment operator whose
1291 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
1292 if (!FieldRec->hasCopyAssignmentWithConstParam())
1293 data().ImplicitCopyAssignmentHasConstParam = false;
1294
1295 if (FieldRec->hasUninitializedReferenceMember() &&
1296 !Field->hasInClassInitializer())
1297 data().HasUninitializedReferenceMember = true;
1298
1299 // C++11 [class.union]p8, DR1460:
1300 // a non-static data member of an anonymous union that is a member of
1301 // X is also a variant member of X.
1302 if (FieldRec->hasVariantMembers() &&
1303 Field->isAnonymousStructOrUnion())
1304 data().HasVariantMembers = true;
1305 }
1306 } else {
1307 // Base element type of field is a non-class type.
1308 if (!T->isLiteralType(Context) ||
1309 (!Field->hasInClassInitializer() && !isUnion() &&
1310 !Context.getLangOpts().CPlusPlus20))
1311 data().DefaultedDefaultConstructorIsConstexpr = false;
1312
1313 // C++11 [class.copy]p23:
1314 // A defaulted copy/move assignment operator for a class X is defined
1315 // as deleted if X has:
1316 // -- a non-static data member of const non-class type (or array
1317 // thereof)
1318 if (T.isConstQualified()) {
1319 data().DefaultedCopyAssignmentIsDeleted = true;
1320 data().DefaultedMoveAssignmentIsDeleted = true;
1321 }
1322
1323 // C++20 [temp.param]p7:
1324 // A structural type is [...] a literal class type [for which] the
1325 // types of all non-static data members are structural types or
1326 // (possibly multidimensional) array thereof
1327 // We deal with class types elsewhere.
1328 if (!T->isStructuralType())
1329 data().StructuralIfLiteral = false;
1330 }
1331
1332 // C++14 [meta.unary.prop]p4:
1333 // T is a class type [...] with [...] no non-static data members other
1334 // than subobjects of zero size
1335 if (data().Empty && !IsZeroSize)
1336 data().Empty = false;
1337 }
1338
1339 // Handle using declarations of conversion functions.
1340 if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1341 if (Shadow->getDeclName().getNameKind()
1342 == DeclarationName::CXXConversionFunctionName) {
1343 ASTContext &Ctx = getASTContext();
1344 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1345 }
1346 }
1347
1348 if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1349 if (Using->getDeclName().getNameKind() ==
1350 DeclarationName::CXXConstructorName) {
1351 data().HasInheritedConstructor = true;
1352 // C++1z [dcl.init.aggr]p1:
1353 // An aggregate is [...] a class [...] with no inherited constructors
1354 data().Aggregate = false;
1355 }
1356
1357 if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1358 data().HasInheritedAssignment = true;
1359 }
1360 }
1361
addedSelectedDestructor(CXXDestructorDecl * DD)1362 void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) {
1363 DD->setIneligibleOrNotSelected(false);
1364 addedEligibleSpecialMemberFunction(DD, SMF_Destructor);
1365 }
1366
addedEligibleSpecialMemberFunction(const CXXMethodDecl * MD,unsigned SMKind)1367 void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD,
1368 unsigned SMKind) {
1369 if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1370 if (DD->isUserProvided())
1371 data().HasIrrelevantDestructor = false;
1372 // If the destructor is explicitly defaulted and not trivial or not public
1373 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
1374 // finishedDefaultedOrDeletedMember.
1375
1376 // C++11 [class.dtor]p5:
1377 // A destructor is trivial if [...] the destructor is not virtual.
1378 if (DD->isVirtual()) {
1379 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1380 data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1381 }
1382
1383 if (DD->isNoReturn())
1384 data().IsAnyDestructorNoReturn = true;
1385 }
1386
1387 if (!MD->isImplicit() && !MD->isUserProvided()) {
1388 // This method is user-declared but not user-provided. We can't work
1389 // out whether it's trivial yet (not until we get to the end of the
1390 // class). We'll handle this method in
1391 // finishedDefaultedOrDeletedMember.
1392 } else if (MD->isTrivial()) {
1393 data().HasTrivialSpecialMembers |= SMKind;
1394 data().HasTrivialSpecialMembersForCall |= SMKind;
1395 } else if (MD->isTrivialForCall()) {
1396 data().HasTrivialSpecialMembersForCall |= SMKind;
1397 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1398 } else {
1399 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1400 // If this is a user-provided function, do not set
1401 // DeclaredNonTrivialSpecialMembersForCall here since we don't know
1402 // yet whether the method would be considered non-trivial for the
1403 // purpose of calls (attribute "trivial_abi" can be dropped from the
1404 // class later, which can change the special method's triviality).
1405 if (!MD->isUserProvided())
1406 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1407 }
1408 }
1409
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)1410 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1411 assert(!D->isImplicit() && !D->isUserProvided());
1412
1413 // The kind of special member this declaration is, if any.
1414 unsigned SMKind = 0;
1415
1416 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1417 if (Constructor->isDefaultConstructor()) {
1418 SMKind |= SMF_DefaultConstructor;
1419 if (Constructor->isConstexpr())
1420 data().HasConstexprDefaultConstructor = true;
1421 }
1422 if (Constructor->isCopyConstructor())
1423 SMKind |= SMF_CopyConstructor;
1424 else if (Constructor->isMoveConstructor())
1425 SMKind |= SMF_MoveConstructor;
1426 else if (Constructor->isConstexpr())
1427 // We may now know that the constructor is constexpr.
1428 data().HasConstexprNonCopyMoveConstructor = true;
1429 } else if (isa<CXXDestructorDecl>(D)) {
1430 SMKind |= SMF_Destructor;
1431 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1432 data().HasIrrelevantDestructor = false;
1433 } else if (D->isCopyAssignmentOperator())
1434 SMKind |= SMF_CopyAssignment;
1435 else if (D->isMoveAssignmentOperator())
1436 SMKind |= SMF_MoveAssignment;
1437
1438 // Update which trivial / non-trivial special members we have.
1439 // addedMember will have skipped this step for this member.
1440 if (D->isTrivial())
1441 data().HasTrivialSpecialMembers |= SMKind;
1442 else
1443 data().DeclaredNonTrivialSpecialMembers |= SMKind;
1444 }
1445
setCaptures(ASTContext & Context,ArrayRef<LambdaCapture> Captures)1446 void CXXRecordDecl::setCaptures(ASTContext &Context,
1447 ArrayRef<LambdaCapture> Captures) {
1448 CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
1449
1450 // Copy captures.
1451 Data.NumCaptures = Captures.size();
1452 Data.NumExplicitCaptures = 0;
1453 Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
1454 Captures.size());
1455 LambdaCapture *ToCapture = Data.Captures;
1456 for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
1457 if (Captures[I].isExplicit())
1458 ++Data.NumExplicitCaptures;
1459
1460 *ToCapture++ = Captures[I];
1461 }
1462
1463 if (!lambdaIsDefaultConstructibleAndAssignable())
1464 Data.DefaultedCopyAssignmentIsDeleted = true;
1465 }
1466
setTrivialForCallFlags(CXXMethodDecl * D)1467 void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1468 unsigned SMKind = 0;
1469
1470 if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1471 if (Constructor->isCopyConstructor())
1472 SMKind = SMF_CopyConstructor;
1473 else if (Constructor->isMoveConstructor())
1474 SMKind = SMF_MoveConstructor;
1475 } else if (isa<CXXDestructorDecl>(D))
1476 SMKind = SMF_Destructor;
1477
1478 if (D->isTrivialForCall())
1479 data().HasTrivialSpecialMembersForCall |= SMKind;
1480 else
1481 data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1482 }
1483
isCLike() const1484 bool CXXRecordDecl::isCLike() const {
1485 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1486 !TemplateOrInstantiation.isNull())
1487 return false;
1488 if (!hasDefinition())
1489 return true;
1490
1491 return isPOD() && data().HasOnlyCMembers;
1492 }
1493
isGenericLambda() const1494 bool CXXRecordDecl::isGenericLambda() const {
1495 if (!isLambda()) return false;
1496 return getLambdaData().IsGenericLambda;
1497 }
1498
1499 #ifndef NDEBUG
allLookupResultsAreTheSame(const DeclContext::lookup_result & R)1500 static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1501 for (auto *D : R)
1502 if (!declaresSameEntity(D, R.front()))
1503 return false;
1504 return true;
1505 }
1506 #endif
1507
getLambdaCallOperatorHelper(const CXXRecordDecl & RD)1508 static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
1509 if (!RD.isLambda()) return nullptr;
1510 DeclarationName Name =
1511 RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1512 DeclContext::lookup_result Calls = RD.lookup(Name);
1513
1514 assert(!Calls.empty() && "Missing lambda call operator!");
1515 assert(allLookupResultsAreTheSame(Calls) &&
1516 "More than one lambda call operator!");
1517 return Calls.front();
1518 }
1519
getDependentLambdaCallOperator() const1520 FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
1521 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1522 return dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
1523 }
1524
getLambdaCallOperator() const1525 CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
1526 NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
1527
1528 if (CallOp == nullptr)
1529 return nullptr;
1530
1531 if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1532 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1533
1534 return cast<CXXMethodDecl>(CallOp);
1535 }
1536
getLambdaStaticInvoker() const1537 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1538 CXXMethodDecl *CallOp = getLambdaCallOperator();
1539 CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv();
1540 return getLambdaStaticInvoker(CC);
1541 }
1542
1543 static DeclContext::lookup_result
getLambdaStaticInvokers(const CXXRecordDecl & RD)1544 getLambdaStaticInvokers(const CXXRecordDecl &RD) {
1545 assert(RD.isLambda() && "Must be a lambda");
1546 DeclarationName Name =
1547 &RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
1548 return RD.lookup(Name);
1549 }
1550
getInvokerAsMethod(NamedDecl * ND)1551 static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
1552 if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
1553 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1554 return cast<CXXMethodDecl>(ND);
1555 }
1556
getLambdaStaticInvoker(CallingConv CC) const1557 CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
1558 if (!isLambda())
1559 return nullptr;
1560 DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
1561
1562 for (NamedDecl *ND : Invoker) {
1563 const auto *FTy =
1564 cast<ValueDecl>(ND->getAsFunction())->getType()->castAs<FunctionType>();
1565 if (FTy->getCallConv() == CC)
1566 return getInvokerAsMethod(ND);
1567 }
1568
1569 return nullptr;
1570 }
1571
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1572 void CXXRecordDecl::getCaptureFields(
1573 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1574 FieldDecl *&ThisCapture) const {
1575 Captures.clear();
1576 ThisCapture = nullptr;
1577
1578 LambdaDefinitionData &Lambda = getLambdaData();
1579 RecordDecl::field_iterator Field = field_begin();
1580 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1581 C != CEnd; ++C, ++Field) {
1582 if (C->capturesThis())
1583 ThisCapture = *Field;
1584 else if (C->capturesVariable())
1585 Captures[C->getCapturedVar()] = *Field;
1586 }
1587 assert(Field == field_end());
1588 }
1589
1590 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1591 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1592 if (!isGenericLambda()) return nullptr;
1593 CXXMethodDecl *CallOp = getLambdaCallOperator();
1594 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1595 return Tmpl->getTemplateParameters();
1596 return nullptr;
1597 }
1598
1599 ArrayRef<NamedDecl *>
getLambdaExplicitTemplateParameters() const1600 CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
1601 TemplateParameterList *List = getGenericLambdaTemplateParameterList();
1602 if (!List)
1603 return {};
1604
1605 assert(std::is_partitioned(List->begin(), List->end(),
1606 [](const NamedDecl *D) { return !D->isImplicit(); })
1607 && "Explicit template params should be ordered before implicit ones");
1608
1609 const auto ExplicitEnd = llvm::partition_point(
1610 *List, [](const NamedDecl *D) { return !D->isImplicit(); });
1611 return llvm::makeArrayRef(List->begin(), ExplicitEnd);
1612 }
1613
getLambdaContextDecl() const1614 Decl *CXXRecordDecl::getLambdaContextDecl() const {
1615 assert(isLambda() && "Not a lambda closure type!");
1616 ExternalASTSource *Source = getParentASTContext().getExternalSource();
1617 return getLambdaData().ContextDecl.get(Source);
1618 }
1619
setDeviceLambdaManglingNumber(unsigned Num) const1620 void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const {
1621 assert(isLambda() && "Not a lambda closure type!");
1622 if (Num)
1623 getASTContext().DeviceLambdaManglingNumbers[this] = Num;
1624 }
1625
getDeviceLambdaManglingNumber() const1626 unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const {
1627 assert(isLambda() && "Not a lambda closure type!");
1628 auto I = getASTContext().DeviceLambdaManglingNumbers.find(this);
1629 if (I != getASTContext().DeviceLambdaManglingNumbers.end())
1630 return I->second;
1631 return 0;
1632 }
1633
GetConversionType(ASTContext & Context,NamedDecl * Conv)1634 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1635 QualType T =
1636 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1637 ->getConversionType();
1638 return Context.getCanonicalType(T);
1639 }
1640
1641 /// Collect the visible conversions of a base class.
1642 ///
1643 /// \param Record a base class of the class we're considering
1644 /// \param InVirtual whether this base class is a virtual base (or a base
1645 /// of a virtual base)
1646 /// \param Access the access along the inheritance path to this base
1647 /// \param ParentHiddenTypes the conversions provided by the inheritors
1648 /// of this base
1649 /// \param Output the set to which to add conversions from non-virtual bases
1650 /// \param VOutput the set to which to add conversions from virtual bases
1651 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1652 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,const CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1653 static void CollectVisibleConversions(
1654 ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
1655 AccessSpecifier Access,
1656 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1657 ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
1658 llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
1659 // The set of types which have conversions in this class or its
1660 // subclasses. As an optimization, we don't copy the derived set
1661 // unless it might change.
1662 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1663 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1664
1665 // Collect the direct conversions and figure out which conversions
1666 // will be hidden in the subclasses.
1667 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1668 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1669 if (ConvI != ConvE) {
1670 HiddenTypesBuffer = ParentHiddenTypes;
1671 HiddenTypes = &HiddenTypesBuffer;
1672
1673 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1674 CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1675 bool Hidden = ParentHiddenTypes.count(ConvType);
1676 if (!Hidden)
1677 HiddenTypesBuffer.insert(ConvType);
1678
1679 // If this conversion is hidden and we're in a virtual base,
1680 // remember that it's hidden along some inheritance path.
1681 if (Hidden && InVirtual)
1682 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1683
1684 // If this conversion isn't hidden, add it to the appropriate output.
1685 else if (!Hidden) {
1686 AccessSpecifier IAccess
1687 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1688
1689 if (InVirtual)
1690 VOutput.addDecl(I.getDecl(), IAccess);
1691 else
1692 Output.addDecl(Context, I.getDecl(), IAccess);
1693 }
1694 }
1695 }
1696
1697 // Collect information recursively from any base classes.
1698 for (const auto &I : Record->bases()) {
1699 const auto *RT = I.getType()->getAs<RecordType>();
1700 if (!RT) continue;
1701
1702 AccessSpecifier BaseAccess
1703 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1704 bool BaseInVirtual = InVirtual || I.isVirtual();
1705
1706 auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1707 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1708 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1709 }
1710 }
1711
1712 /// Collect the visible conversions of a class.
1713 ///
1714 /// This would be extremely straightforward if it weren't for virtual
1715 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,const CXXRecordDecl * Record,ASTUnresolvedSet & Output)1716 static void CollectVisibleConversions(ASTContext &Context,
1717 const CXXRecordDecl *Record,
1718 ASTUnresolvedSet &Output) {
1719 // The collection of all conversions in virtual bases that we've
1720 // found. These will be added to the output as long as they don't
1721 // appear in the hidden-conversions set.
1722 UnresolvedSet<8> VBaseCs;
1723
1724 // The set of conversions in virtual bases that we've determined to
1725 // be hidden.
1726 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1727
1728 // The set of types hidden by classes derived from this one.
1729 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1730
1731 // Go ahead and collect the direct conversions and add them to the
1732 // hidden-types set.
1733 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1734 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1735 Output.append(Context, ConvI, ConvE);
1736 for (; ConvI != ConvE; ++ConvI)
1737 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1738
1739 // Recursively collect conversions from base classes.
1740 for (const auto &I : Record->bases()) {
1741 const auto *RT = I.getType()->getAs<RecordType>();
1742 if (!RT) continue;
1743
1744 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1745 I.isVirtual(), I.getAccessSpecifier(),
1746 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1747 }
1748
1749 // Add any unhidden conversions provided by virtual bases.
1750 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1751 I != E; ++I) {
1752 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1753 Output.addDecl(Context, I.getDecl(), I.getAccess());
1754 }
1755 }
1756
1757 /// getVisibleConversionFunctions - get all conversion functions visible
1758 /// in current class; including conversion function templates.
1759 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions() const1760 CXXRecordDecl::getVisibleConversionFunctions() const {
1761 ASTContext &Ctx = getASTContext();
1762
1763 ASTUnresolvedSet *Set;
1764 if (bases_begin() == bases_end()) {
1765 // If root class, all conversions are visible.
1766 Set = &data().Conversions.get(Ctx);
1767 } else {
1768 Set = &data().VisibleConversions.get(Ctx);
1769 // If visible conversion list is not evaluated, evaluate it.
1770 if (!data().ComputedVisibleConversions) {
1771 CollectVisibleConversions(Ctx, this, *Set);
1772 data().ComputedVisibleConversions = true;
1773 }
1774 }
1775 return llvm::make_range(Set->begin(), Set->end());
1776 }
1777
removeConversion(const NamedDecl * ConvDecl)1778 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1779 // This operation is O(N) but extremely rare. Sema only uses it to
1780 // remove UsingShadowDecls in a class that were followed by a direct
1781 // declaration, e.g.:
1782 // class A : B {
1783 // using B::operator int;
1784 // operator int();
1785 // };
1786 // This is uncommon by itself and even more uncommon in conjunction
1787 // with sufficiently large numbers of directly-declared conversions
1788 // that asymptotic behavior matters.
1789
1790 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1791 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1792 if (Convs[I].getDecl() == ConvDecl) {
1793 Convs.erase(I);
1794 assert(!llvm::is_contained(Convs, ConvDecl) &&
1795 "conversion was found multiple times in unresolved set");
1796 return;
1797 }
1798 }
1799
1800 llvm_unreachable("conversion not found in set!");
1801 }
1802
getInstantiatedFromMemberClass() const1803 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1804 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1805 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1806
1807 return nullptr;
1808 }
1809
getMemberSpecializationInfo() const1810 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1811 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1812 }
1813
1814 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1815 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1816 TemplateSpecializationKind TSK) {
1817 assert(TemplateOrInstantiation.isNull() &&
1818 "Previous template or instantiation?");
1819 assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1820 TemplateOrInstantiation
1821 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1822 }
1823
getDescribedClassTemplate() const1824 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1825 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1826 }
1827
setDescribedClassTemplate(ClassTemplateDecl * Template)1828 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1829 TemplateOrInstantiation = Template;
1830 }
1831
getTemplateSpecializationKind() const1832 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1833 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1834 return Spec->getSpecializationKind();
1835
1836 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1837 return MSInfo->getTemplateSpecializationKind();
1838
1839 return TSK_Undeclared;
1840 }
1841
1842 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1843 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1844 if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1845 Spec->setSpecializationKind(TSK);
1846 return;
1847 }
1848
1849 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1850 MSInfo->setTemplateSpecializationKind(TSK);
1851 return;
1852 }
1853
1854 llvm_unreachable("Not a class template or member class specialization");
1855 }
1856
getTemplateInstantiationPattern() const1857 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1858 auto GetDefinitionOrSelf =
1859 [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1860 if (auto *Def = D->getDefinition())
1861 return Def;
1862 return D;
1863 };
1864
1865 // If it's a class template specialization, find the template or partial
1866 // specialization from which it was instantiated.
1867 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1868 auto From = TD->getInstantiatedFrom();
1869 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1870 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1871 if (NewCTD->isMemberSpecialization())
1872 break;
1873 CTD = NewCTD;
1874 }
1875 return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1876 }
1877 if (auto *CTPSD =
1878 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1879 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1880 if (NewCTPSD->isMemberSpecialization())
1881 break;
1882 CTPSD = NewCTPSD;
1883 }
1884 return GetDefinitionOrSelf(CTPSD);
1885 }
1886 }
1887
1888 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1889 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1890 const CXXRecordDecl *RD = this;
1891 while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1892 RD = NewRD;
1893 return GetDefinitionOrSelf(RD);
1894 }
1895 }
1896
1897 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1898 "couldn't find pattern for class template instantiation");
1899 return nullptr;
1900 }
1901
getDestructor() const1902 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1903 ASTContext &Context = getASTContext();
1904 QualType ClassType = Context.getTypeDeclType(this);
1905
1906 DeclarationName Name
1907 = Context.DeclarationNames.getCXXDestructorName(
1908 Context.getCanonicalType(ClassType));
1909
1910 DeclContext::lookup_result R = lookup(Name);
1911
1912 // If a destructor was marked as not selected, we skip it. We don't always
1913 // have a selected destructor: dependent types, unnamed structs.
1914 for (auto *Decl : R) {
1915 auto* DD = dyn_cast<CXXDestructorDecl>(Decl);
1916 if (DD && !DD->isIneligibleOrNotSelected())
1917 return DD;
1918 }
1919 return nullptr;
1920 }
1921
isDeclContextInNamespace(const DeclContext * DC)1922 static bool isDeclContextInNamespace(const DeclContext *DC) {
1923 while (!DC->isTranslationUnit()) {
1924 if (DC->isNamespace())
1925 return true;
1926 DC = DC->getParent();
1927 }
1928 return false;
1929 }
1930
isInterfaceLike() const1931 bool CXXRecordDecl::isInterfaceLike() const {
1932 assert(hasDefinition() && "checking for interface-like without a definition");
1933 // All __interfaces are inheritently interface-like.
1934 if (isInterface())
1935 return true;
1936
1937 // Interface-like types cannot have a user declared constructor, destructor,
1938 // friends, VBases, conversion functions, or fields. Additionally, lambdas
1939 // cannot be interface types.
1940 if (isLambda() || hasUserDeclaredConstructor() ||
1941 hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1942 getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1943 return false;
1944
1945 // No interface-like type can have a method with a definition.
1946 for (const auto *const Method : methods())
1947 if (Method->isDefined() && !Method->isImplicit())
1948 return false;
1949
1950 // Check "Special" types.
1951 const auto *Uuid = getAttr<UuidAttr>();
1952 // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1953 // extern C++ block directly in the TU. These are only valid if in one
1954 // of these two situations.
1955 if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1956 !isDeclContextInNamespace(getDeclContext()) &&
1957 ((getName() == "IUnknown" &&
1958 Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1959 (getName() == "IDispatch" &&
1960 Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1961 if (getNumBases() > 0)
1962 return false;
1963 return true;
1964 }
1965
1966 // FIXME: Any access specifiers is supposed to make this no longer interface
1967 // like.
1968
1969 // If this isn't a 'special' type, it must have a single interface-like base.
1970 if (getNumBases() != 1)
1971 return false;
1972
1973 const auto BaseSpec = *bases_begin();
1974 if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1975 return false;
1976 const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1977 if (Base->isInterface() || !Base->isInterfaceLike())
1978 return false;
1979 return true;
1980 }
1981
completeDefinition()1982 void CXXRecordDecl::completeDefinition() {
1983 completeDefinition(nullptr);
1984 }
1985
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1986 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1987 RecordDecl::completeDefinition();
1988
1989 // If the class may be abstract (but hasn't been marked as such), check for
1990 // any pure final overriders.
1991 if (mayBeAbstract()) {
1992 CXXFinalOverriderMap MyFinalOverriders;
1993 if (!FinalOverriders) {
1994 getFinalOverriders(MyFinalOverriders);
1995 FinalOverriders = &MyFinalOverriders;
1996 }
1997
1998 bool Done = false;
1999 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
2000 MEnd = FinalOverriders->end();
2001 M != MEnd && !Done; ++M) {
2002 for (OverridingMethods::iterator SO = M->second.begin(),
2003 SOEnd = M->second.end();
2004 SO != SOEnd && !Done; ++SO) {
2005 assert(SO->second.size() > 0 &&
2006 "All virtual functions have overriding virtual functions");
2007
2008 // C++ [class.abstract]p4:
2009 // A class is abstract if it contains or inherits at least one
2010 // pure virtual function for which the final overrider is pure
2011 // virtual.
2012 if (SO->second.front().Method->isPure()) {
2013 data().Abstract = true;
2014 Done = true;
2015 break;
2016 }
2017 }
2018 }
2019 }
2020
2021 // Set access bits correctly on the directly-declared conversions.
2022 for (conversion_iterator I = conversion_begin(), E = conversion_end();
2023 I != E; ++I)
2024 I.setAccess((*I)->getAccess());
2025 }
2026
mayBeAbstract() const2027 bool CXXRecordDecl::mayBeAbstract() const {
2028 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
2029 isDependentContext())
2030 return false;
2031
2032 for (const auto &B : bases()) {
2033 const auto *BaseDecl =
2034 cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
2035 if (BaseDecl->isAbstract())
2036 return true;
2037 }
2038
2039 return false;
2040 }
2041
isEffectivelyFinal() const2042 bool CXXRecordDecl::isEffectivelyFinal() const {
2043 auto *Def = getDefinition();
2044 if (!Def)
2045 return false;
2046 if (Def->hasAttr<FinalAttr>())
2047 return true;
2048 if (const auto *Dtor = Def->getDestructor())
2049 if (Dtor->hasAttr<FinalAttr>())
2050 return true;
2051 return false;
2052 }
2053
anchor()2054 void CXXDeductionGuideDecl::anchor() {}
2055
isEquivalent(const ExplicitSpecifier Other) const2056 bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
2057 if ((getKind() != Other.getKind() ||
2058 getKind() == ExplicitSpecKind::Unresolved)) {
2059 if (getKind() == ExplicitSpecKind::Unresolved &&
2060 Other.getKind() == ExplicitSpecKind::Unresolved) {
2061 ODRHash SelfHash, OtherHash;
2062 SelfHash.AddStmt(getExpr());
2063 OtherHash.AddStmt(Other.getExpr());
2064 return SelfHash.CalculateHash() == OtherHash.CalculateHash();
2065 } else
2066 return false;
2067 }
2068 return true;
2069 }
2070
getFromDecl(FunctionDecl * Function)2071 ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
2072 switch (Function->getDeclKind()) {
2073 case Decl::Kind::CXXConstructor:
2074 return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
2075 case Decl::Kind::CXXConversion:
2076 return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
2077 case Decl::Kind::CXXDeductionGuide:
2078 return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
2079 default:
2080 return {};
2081 }
2082 }
2083
2084 CXXDeductionGuideDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,ExplicitSpecifier ES,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,SourceLocation EndLocation,CXXConstructorDecl * Ctor)2085 CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC,
2086 SourceLocation StartLoc, ExplicitSpecifier ES,
2087 const DeclarationNameInfo &NameInfo, QualType T,
2088 TypeSourceInfo *TInfo, SourceLocation EndLocation,
2089 CXXConstructorDecl *Ctor) {
2090 return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
2091 TInfo, EndLocation, Ctor);
2092 }
2093
CreateDeserialized(ASTContext & C,unsigned ID)2094 CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
2095 unsigned ID) {
2096 return new (C, ID) CXXDeductionGuideDecl(
2097 C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
2098 QualType(), nullptr, SourceLocation(), nullptr);
2099 }
2100
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc)2101 RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
2102 ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
2103 return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
2104 }
2105
CreateDeserialized(ASTContext & C,unsigned ID)2106 RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
2107 unsigned ID) {
2108 return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
2109 }
2110
anchor()2111 void CXXMethodDecl::anchor() {}
2112
isStatic() const2113 bool CXXMethodDecl::isStatic() const {
2114 const CXXMethodDecl *MD = getCanonicalDecl();
2115
2116 if (MD->getStorageClass() == SC_Static)
2117 return true;
2118
2119 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
2120 return isStaticOverloadedOperator(OOK);
2121 }
2122
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)2123 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
2124 const CXXMethodDecl *BaseMD) {
2125 for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
2126 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
2127 return true;
2128 if (recursivelyOverrides(MD, BaseMD))
2129 return true;
2130 }
2131 return false;
2132 }
2133
2134 CXXMethodDecl *
getCorrespondingMethodDeclaredInClass(const CXXRecordDecl * RD,bool MayBeBase)2135 CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2136 bool MayBeBase) {
2137 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
2138 return this;
2139
2140 // Lookup doesn't work for destructors, so handle them separately.
2141 if (isa<CXXDestructorDecl>(this)) {
2142 CXXMethodDecl *MD = RD->getDestructor();
2143 if (MD) {
2144 if (recursivelyOverrides(MD, this))
2145 return MD;
2146 if (MayBeBase && recursivelyOverrides(this, MD))
2147 return MD;
2148 }
2149 return nullptr;
2150 }
2151
2152 for (auto *ND : RD->lookup(getDeclName())) {
2153 auto *MD = dyn_cast<CXXMethodDecl>(ND);
2154 if (!MD)
2155 continue;
2156 if (recursivelyOverrides(MD, this))
2157 return MD;
2158 if (MayBeBase && recursivelyOverrides(this, MD))
2159 return MD;
2160 }
2161
2162 return nullptr;
2163 }
2164
2165 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)2166 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2167 bool MayBeBase) {
2168 if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
2169 return MD;
2170
2171 llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
2172 auto AddFinalOverrider = [&](CXXMethodDecl *D) {
2173 // If this function is overridden by a candidate final overrider, it is not
2174 // a final overrider.
2175 for (CXXMethodDecl *OtherD : FinalOverriders) {
2176 if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
2177 return;
2178 }
2179
2180 // Other candidate final overriders might be overridden by this function.
2181 llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) {
2182 return recursivelyOverrides(D, OtherD);
2183 });
2184
2185 FinalOverriders.push_back(D);
2186 };
2187
2188 for (const auto &I : RD->bases()) {
2189 const RecordType *RT = I.getType()->getAs<RecordType>();
2190 if (!RT)
2191 continue;
2192 const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
2193 if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
2194 AddFinalOverrider(D);
2195 }
2196
2197 return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
2198 }
2199
2200 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool UsesFPIntrin,bool isInline,ConstexprSpecKind ConstexprKind,SourceLocation EndLocation,Expr * TrailingRequiresClause)2201 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2202 const DeclarationNameInfo &NameInfo, QualType T,
2203 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
2204 bool isInline, ConstexprSpecKind ConstexprKind,
2205 SourceLocation EndLocation,
2206 Expr *TrailingRequiresClause) {
2207 return new (C, RD) CXXMethodDecl(
2208 CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2209 isInline, ConstexprKind, EndLocation, TrailingRequiresClause);
2210 }
2211
CreateDeserialized(ASTContext & C,unsigned ID)2212 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2213 return new (C, ID) CXXMethodDecl(
2214 CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
2215 QualType(), nullptr, SC_None, false, false,
2216 ConstexprSpecKind::Unspecified, SourceLocation(), nullptr);
2217 }
2218
getDevirtualizedMethod(const Expr * Base,bool IsAppleKext)2219 CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
2220 bool IsAppleKext) {
2221 assert(isVirtual() && "this method is expected to be virtual");
2222
2223 // When building with -fapple-kext, all calls must go through the vtable since
2224 // the kernel linker can do runtime patching of vtables.
2225 if (IsAppleKext)
2226 return nullptr;
2227
2228 // If the member function is marked 'final', we know that it can't be
2229 // overridden and can therefore devirtualize it unless it's pure virtual.
2230 if (hasAttr<FinalAttr>())
2231 return isPure() ? nullptr : this;
2232
2233 // If Base is unknown, we cannot devirtualize.
2234 if (!Base)
2235 return nullptr;
2236
2237 // If the base expression (after skipping derived-to-base conversions) is a
2238 // class prvalue, then we can devirtualize.
2239 Base = Base->getBestDynamicClassTypeExpr();
2240 if (Base->isPRValue() && Base->getType()->isRecordType())
2241 return this;
2242
2243 // If we don't even know what we would call, we can't devirtualize.
2244 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2245 if (!BestDynamicDecl)
2246 return nullptr;
2247
2248 // There may be a method corresponding to MD in a derived class.
2249 CXXMethodDecl *DevirtualizedMethod =
2250 getCorrespondingMethodInClass(BestDynamicDecl);
2251
2252 // If there final overrider in the dynamic type is ambiguous, we can't
2253 // devirtualize this call.
2254 if (!DevirtualizedMethod)
2255 return nullptr;
2256
2257 // If that method is pure virtual, we can't devirtualize. If this code is
2258 // reached, the result would be UB, not a direct call to the derived class
2259 // function, and we can't assume the derived class function is defined.
2260 if (DevirtualizedMethod->isPure())
2261 return nullptr;
2262
2263 // If that method is marked final, we can devirtualize it.
2264 if (DevirtualizedMethod->hasAttr<FinalAttr>())
2265 return DevirtualizedMethod;
2266
2267 // Similarly, if the class itself or its destructor is marked 'final',
2268 // the class can't be derived from and we can therefore devirtualize the
2269 // member function call.
2270 if (BestDynamicDecl->isEffectivelyFinal())
2271 return DevirtualizedMethod;
2272
2273 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2274 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2275 if (VD->getType()->isRecordType())
2276 // This is a record decl. We know the type and can devirtualize it.
2277 return DevirtualizedMethod;
2278
2279 return nullptr;
2280 }
2281
2282 // We can devirtualize calls on an object accessed by a class member access
2283 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2284 // a derived class object constructed in the same location.
2285 if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2286 const ValueDecl *VD = ME->getMemberDecl();
2287 return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2288 }
2289
2290 // Likewise for calls on an object accessed by a (non-reference) pointer to
2291 // member access.
2292 if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2293 if (BO->isPtrMemOp()) {
2294 auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2295 if (MPT->getPointeeType()->isRecordType())
2296 return DevirtualizedMethod;
2297 }
2298 }
2299
2300 // We can't devirtualize the call.
2301 return nullptr;
2302 }
2303
isUsualDeallocationFunction(SmallVectorImpl<const FunctionDecl * > & PreventedBy) const2304 bool CXXMethodDecl::isUsualDeallocationFunction(
2305 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2306 assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2307 if (getOverloadedOperator() != OO_Delete &&
2308 getOverloadedOperator() != OO_Array_Delete)
2309 return false;
2310
2311 // C++ [basic.stc.dynamic.deallocation]p2:
2312 // A template instance is never a usual deallocation function,
2313 // regardless of its signature.
2314 if (getPrimaryTemplate())
2315 return false;
2316
2317 // C++ [basic.stc.dynamic.deallocation]p2:
2318 // If a class T has a member deallocation function named operator delete
2319 // with exactly one parameter, then that function is a usual (non-placement)
2320 // deallocation function. [...]
2321 if (getNumParams() == 1)
2322 return true;
2323 unsigned UsualParams = 1;
2324
2325 // C++ P0722:
2326 // A destroying operator delete is a usual deallocation function if
2327 // removing the std::destroying_delete_t parameter and changing the
2328 // first parameter type from T* to void* results in the signature of
2329 // a usual deallocation function.
2330 if (isDestroyingOperatorDelete())
2331 ++UsualParams;
2332
2333 // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2334 // [...] If class T does not declare such an operator delete but does
2335 // declare a member deallocation function named operator delete with
2336 // exactly two parameters, the second of which has type std::size_t (18.1),
2337 // then this function is a usual deallocation function.
2338 //
2339 // C++17 says a usual deallocation function is one with the signature
2340 // (void* [, size_t] [, std::align_val_t] [, ...])
2341 // and all such functions are usual deallocation functions. It's not clear
2342 // that allowing varargs functions was intentional.
2343 ASTContext &Context = getASTContext();
2344 if (UsualParams < getNumParams() &&
2345 Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2346 Context.getSizeType()))
2347 ++UsualParams;
2348
2349 if (UsualParams < getNumParams() &&
2350 getParamDecl(UsualParams)->getType()->isAlignValT())
2351 ++UsualParams;
2352
2353 if (UsualParams != getNumParams())
2354 return false;
2355
2356 // In C++17 onwards, all potential usual deallocation functions are actual
2357 // usual deallocation functions. Honor this behavior when post-C++14
2358 // deallocation functions are offered as extensions too.
2359 // FIXME(EricWF): Destroying Delete should be a language option. How do we
2360 // handle when destroying delete is used prior to C++17?
2361 if (Context.getLangOpts().CPlusPlus17 ||
2362 Context.getLangOpts().AlignedAllocation ||
2363 isDestroyingOperatorDelete())
2364 return true;
2365
2366 // This function is a usual deallocation function if there are no
2367 // single-parameter deallocation functions of the same kind.
2368 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2369 bool Result = true;
2370 for (const auto *D : R) {
2371 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2372 if (FD->getNumParams() == 1) {
2373 PreventedBy.push_back(FD);
2374 Result = false;
2375 }
2376 }
2377 }
2378 return Result;
2379 }
2380
isCopyAssignmentOperator() const2381 bool CXXMethodDecl::isCopyAssignmentOperator() const {
2382 // C++0x [class.copy]p17:
2383 // A user-declared copy assignment operator X::operator= is a non-static
2384 // non-template member function of class X with exactly one parameter of
2385 // type X, X&, const X&, volatile X& or const volatile X&.
2386 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2387 /*non-static*/ isStatic() ||
2388 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2389 getNumParams() != 1)
2390 return false;
2391
2392 QualType ParamType = getParamDecl(0)->getType();
2393 if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2394 ParamType = Ref->getPointeeType();
2395
2396 ASTContext &Context = getASTContext();
2397 QualType ClassType
2398 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2399 return Context.hasSameUnqualifiedType(ClassType, ParamType);
2400 }
2401
isMoveAssignmentOperator() const2402 bool CXXMethodDecl::isMoveAssignmentOperator() const {
2403 // C++0x [class.copy]p19:
2404 // A user-declared move assignment operator X::operator= is a non-static
2405 // non-template member function of class X with exactly one parameter of type
2406 // X&&, const X&&, volatile X&&, or const volatile X&&.
2407 if (getOverloadedOperator() != OO_Equal || isStatic() ||
2408 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2409 getNumParams() != 1)
2410 return false;
2411
2412 QualType ParamType = getParamDecl(0)->getType();
2413 if (!ParamType->isRValueReferenceType())
2414 return false;
2415 ParamType = ParamType->getPointeeType();
2416
2417 ASTContext &Context = getASTContext();
2418 QualType ClassType
2419 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2420 return Context.hasSameUnqualifiedType(ClassType, ParamType);
2421 }
2422
addOverriddenMethod(const CXXMethodDecl * MD)2423 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2424 assert(MD->isCanonicalDecl() && "Method is not canonical!");
2425 assert(!MD->getParent()->isDependentContext() &&
2426 "Can't add an overridden method to a class template!");
2427 assert(MD->isVirtual() && "Method is not virtual!");
2428
2429 getASTContext().addOverriddenMethod(this, MD);
2430 }
2431
begin_overridden_methods() const2432 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2433 if (isa<CXXConstructorDecl>(this)) return nullptr;
2434 return getASTContext().overridden_methods_begin(this);
2435 }
2436
end_overridden_methods() const2437 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2438 if (isa<CXXConstructorDecl>(this)) return nullptr;
2439 return getASTContext().overridden_methods_end(this);
2440 }
2441
size_overridden_methods() const2442 unsigned CXXMethodDecl::size_overridden_methods() const {
2443 if (isa<CXXConstructorDecl>(this)) return 0;
2444 return getASTContext().overridden_methods_size(this);
2445 }
2446
2447 CXXMethodDecl::overridden_method_range
overridden_methods() const2448 CXXMethodDecl::overridden_methods() const {
2449 if (isa<CXXConstructorDecl>(this))
2450 return overridden_method_range(nullptr, nullptr);
2451 return getASTContext().overridden_methods(this);
2452 }
2453
getThisObjectType(ASTContext & C,const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2454 static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
2455 const CXXRecordDecl *Decl) {
2456 QualType ClassTy = C.getTypeDeclType(Decl);
2457 return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
2458 }
2459
getThisType(const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2460 QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2461 const CXXRecordDecl *Decl) {
2462 ASTContext &C = Decl->getASTContext();
2463 QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
2464 return C.getPointerType(ObjectTy);
2465 }
2466
getThisObjectType(const FunctionProtoType * FPT,const CXXRecordDecl * Decl)2467 QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
2468 const CXXRecordDecl *Decl) {
2469 ASTContext &C = Decl->getASTContext();
2470 return ::getThisObjectType(C, FPT, Decl);
2471 }
2472
getThisType() const2473 QualType CXXMethodDecl::getThisType() const {
2474 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2475 // If the member function is declared const, the type of this is const X*,
2476 // if the member function is declared volatile, the type of this is
2477 // volatile X*, and if the member function is declared const volatile,
2478 // the type of this is const volatile X*.
2479 assert(isInstance() && "No 'this' for static methods!");
2480 return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
2481 getParent());
2482 }
2483
getThisObjectType() const2484 QualType CXXMethodDecl::getThisObjectType() const {
2485 // Ditto getThisType.
2486 assert(isInstance() && "No 'this' for static methods!");
2487 return CXXMethodDecl::getThisObjectType(
2488 getType()->castAs<FunctionProtoType>(), getParent());
2489 }
2490
hasInlineBody() const2491 bool CXXMethodDecl::hasInlineBody() const {
2492 // If this function is a template instantiation, look at the template from
2493 // which it was instantiated.
2494 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2495 if (!CheckFn)
2496 CheckFn = this;
2497
2498 const FunctionDecl *fn;
2499 return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2500 (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2501 }
2502
isLambdaStaticInvoker() const2503 bool CXXMethodDecl::isLambdaStaticInvoker() const {
2504 const CXXRecordDecl *P = getParent();
2505 return P->isLambda() && getDeclName().isIdentifier() &&
2506 getName() == getLambdaStaticInvokerName();
2507 }
2508
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)2509 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2510 TypeSourceInfo *TInfo, bool IsVirtual,
2511 SourceLocation L, Expr *Init,
2512 SourceLocation R,
2513 SourceLocation EllipsisLoc)
2514 : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc),
2515 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2516 IsWritten(false), SourceOrder(0) {}
2517
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)2518 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2519 SourceLocation MemberLoc,
2520 SourceLocation L, Expr *Init,
2521 SourceLocation R)
2522 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2523 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2524 IsWritten(false), SourceOrder(0) {}
2525
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)2526 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2527 IndirectFieldDecl *Member,
2528 SourceLocation MemberLoc,
2529 SourceLocation L, Expr *Init,
2530 SourceLocation R)
2531 : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc),
2532 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2533 IsWritten(false), SourceOrder(0) {}
2534
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)2535 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2536 TypeSourceInfo *TInfo,
2537 SourceLocation L, Expr *Init,
2538 SourceLocation R)
2539 : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2540 IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2541
getID(const ASTContext & Context) const2542 int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2543 return Context.getAllocator()
2544 .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2545 }
2546
getBaseClassLoc() const2547 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2548 if (isBaseInitializer())
2549 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2550 else
2551 return {};
2552 }
2553
getBaseClass() const2554 const Type *CXXCtorInitializer::getBaseClass() const {
2555 if (isBaseInitializer())
2556 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2557 else
2558 return nullptr;
2559 }
2560
getSourceLocation() const2561 SourceLocation CXXCtorInitializer::getSourceLocation() const {
2562 if (isInClassMemberInitializer())
2563 return getAnyMember()->getLocation();
2564
2565 if (isAnyMemberInitializer())
2566 return getMemberLocation();
2567
2568 if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2569 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2570
2571 return {};
2572 }
2573
getSourceRange() const2574 SourceRange CXXCtorInitializer::getSourceRange() const {
2575 if (isInClassMemberInitializer()) {
2576 FieldDecl *D = getAnyMember();
2577 if (Expr *I = D->getInClassInitializer())
2578 return I->getSourceRange();
2579 return {};
2580 }
2581
2582 return SourceRange(getSourceLocation(), getRParenLoc());
2583 }
2584
CXXConstructorDecl(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,ExplicitSpecifier ES,bool UsesFPIntrin,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,InheritedConstructor Inherited,Expr * TrailingRequiresClause)2585 CXXConstructorDecl::CXXConstructorDecl(
2586 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2587 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2588 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2589 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2590 InheritedConstructor Inherited, Expr *TrailingRequiresClause)
2591 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2592 SC_None, UsesFPIntrin, isInline, ConstexprKind,
2593 SourceLocation(), TrailingRequiresClause) {
2594 setNumCtorInitializers(0);
2595 setInheritingConstructor(static_cast<bool>(Inherited));
2596 setImplicit(isImplicitlyDeclared);
2597 CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
2598 if (Inherited)
2599 *getTrailingObjects<InheritedConstructor>() = Inherited;
2600 setExplicitSpecifier(ES);
2601 }
2602
anchor()2603 void CXXConstructorDecl::anchor() {}
2604
CreateDeserialized(ASTContext & C,unsigned ID,uint64_t AllocKind)2605 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2606 unsigned ID,
2607 uint64_t AllocKind) {
2608 bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
2609 bool isInheritingConstructor =
2610 static_cast<bool>(AllocKind & TAKInheritsConstructor);
2611 unsigned Extra =
2612 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2613 isInheritingConstructor, hasTrailingExplicit);
2614 auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2615 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2616 ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified,
2617 InheritedConstructor(), nullptr);
2618 Result->setInheritingConstructor(isInheritingConstructor);
2619 Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
2620 hasTrailingExplicit;
2621 Result->setExplicitSpecifier(ExplicitSpecifier());
2622 return Result;
2623 }
2624
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,ExplicitSpecifier ES,bool UsesFPIntrin,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,InheritedConstructor Inherited,Expr * TrailingRequiresClause)2625 CXXConstructorDecl *CXXConstructorDecl::Create(
2626 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2627 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2628 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2629 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2630 InheritedConstructor Inherited, Expr *TrailingRequiresClause) {
2631 assert(NameInfo.getName().getNameKind()
2632 == DeclarationName::CXXConstructorName &&
2633 "Name must refer to a constructor");
2634 unsigned Extra =
2635 additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
2636 Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
2637 return new (C, RD, Extra) CXXConstructorDecl(
2638 C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline,
2639 isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause);
2640 }
2641
init_begin() const2642 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2643 return CtorInitializers.get(getASTContext().getExternalSource());
2644 }
2645
getTargetConstructor() const2646 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2647 assert(isDelegatingConstructor() && "Not a delegating constructor!");
2648 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2649 if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2650 return Construct->getConstructor();
2651
2652 return nullptr;
2653 }
2654
isDefaultConstructor() const2655 bool CXXConstructorDecl::isDefaultConstructor() const {
2656 // C++ [class.default.ctor]p1:
2657 // A default constructor for a class X is a constructor of class X for
2658 // which each parameter that is not a function parameter pack has a default
2659 // argument (including the case of a constructor with no parameters)
2660 return getMinRequiredArguments() == 0;
2661 }
2662
2663 bool
isCopyConstructor(unsigned & TypeQuals) const2664 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2665 return isCopyOrMoveConstructor(TypeQuals) &&
2666 getParamDecl(0)->getType()->isLValueReferenceType();
2667 }
2668
isMoveConstructor(unsigned & TypeQuals) const2669 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2670 return isCopyOrMoveConstructor(TypeQuals) &&
2671 getParamDecl(0)->getType()->isRValueReferenceType();
2672 }
2673
2674 /// Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const2675 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2676 // C++ [class.copy]p2:
2677 // A non-template constructor for class X is a copy constructor
2678 // if its first parameter is of type X&, const X&, volatile X& or
2679 // const volatile X&, and either there are no other parameters
2680 // or else all other parameters have default arguments (8.3.6).
2681 // C++0x [class.copy]p3:
2682 // A non-template constructor for class X is a move constructor if its
2683 // first parameter is of type X&&, const X&&, volatile X&&, or
2684 // const volatile X&&, and either there are no other parameters or else
2685 // all other parameters have default arguments.
2686 if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
2687 getDescribedFunctionTemplate() != nullptr)
2688 return false;
2689
2690 const ParmVarDecl *Param = getParamDecl(0);
2691
2692 // Do we have a reference type?
2693 const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2694 if (!ParamRefType)
2695 return false;
2696
2697 // Is it a reference to our class type?
2698 ASTContext &Context = getASTContext();
2699
2700 CanQualType PointeeType
2701 = Context.getCanonicalType(ParamRefType->getPointeeType());
2702 CanQualType ClassTy
2703 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2704 if (PointeeType.getUnqualifiedType() != ClassTy)
2705 return false;
2706
2707 // FIXME: other qualifiers?
2708
2709 // We have a copy or move constructor.
2710 TypeQuals = PointeeType.getCVRQualifiers();
2711 return true;
2712 }
2713
isConvertingConstructor(bool AllowExplicit) const2714 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2715 // C++ [class.conv.ctor]p1:
2716 // A constructor declared without the function-specifier explicit
2717 // that can be called with a single parameter specifies a
2718 // conversion from the type of its first parameter to the type of
2719 // its class. Such a constructor is called a converting
2720 // constructor.
2721 if (isExplicit() && !AllowExplicit)
2722 return false;
2723
2724 // FIXME: This has nothing to do with the definition of converting
2725 // constructor, but is convenient for how we use this function in overload
2726 // resolution.
2727 return getNumParams() == 0
2728 ? getType()->castAs<FunctionProtoType>()->isVariadic()
2729 : getMinRequiredArguments() <= 1;
2730 }
2731
isSpecializationCopyingObject() const2732 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2733 if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
2734 return false;
2735
2736 const ParmVarDecl *Param = getParamDecl(0);
2737
2738 ASTContext &Context = getASTContext();
2739 CanQualType ParamType = Context.getCanonicalType(Param->getType());
2740
2741 // Is it the same as our class type?
2742 CanQualType ClassTy
2743 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2744 if (ParamType.getUnqualifiedType() != ClassTy)
2745 return false;
2746
2747 return true;
2748 }
2749
anchor()2750 void CXXDestructorDecl::anchor() {}
2751
2752 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2753 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2754 return new (C, ID) CXXDestructorDecl(
2755 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2756 false, false, false, ConstexprSpecKind::Unspecified, nullptr);
2757 }
2758
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool UsesFPIntrin,bool isInline,bool isImplicitlyDeclared,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)2759 CXXDestructorDecl *CXXDestructorDecl::Create(
2760 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2761 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2762 bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2763 ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) {
2764 assert(NameInfo.getName().getNameKind()
2765 == DeclarationName::CXXDestructorName &&
2766 "Name must refer to a destructor");
2767 return new (C, RD) CXXDestructorDecl(
2768 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline,
2769 isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause);
2770 }
2771
setOperatorDelete(FunctionDecl * OD,Expr * ThisArg)2772 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2773 auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2774 if (OD && !First->OperatorDelete) {
2775 First->OperatorDelete = OD;
2776 First->OperatorDeleteThisArg = ThisArg;
2777 if (auto *L = getASTMutationListener())
2778 L->ResolvedOperatorDelete(First, OD, ThisArg);
2779 }
2780 }
2781
anchor()2782 void CXXConversionDecl::anchor() {}
2783
2784 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2785 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2786 return new (C, ID) CXXConversionDecl(
2787 C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2788 false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
2789 SourceLocation(), nullptr);
2790 }
2791
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool UsesFPIntrin,bool isInline,ExplicitSpecifier ES,ConstexprSpecKind ConstexprKind,SourceLocation EndLocation,Expr * TrailingRequiresClause)2792 CXXConversionDecl *CXXConversionDecl::Create(
2793 ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2794 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2795 bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2796 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2797 Expr *TrailingRequiresClause) {
2798 assert(NameInfo.getName().getNameKind()
2799 == DeclarationName::CXXConversionFunctionName &&
2800 "Name must refer to a conversion function");
2801 return new (C, RD) CXXConversionDecl(
2802 C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES,
2803 ConstexprKind, EndLocation, TrailingRequiresClause);
2804 }
2805
isLambdaToBlockPointerConversion() const2806 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2807 return isImplicit() && getParent()->isLambda() &&
2808 getConversionType()->isBlockPointerType();
2809 }
2810
LinkageSpecDecl(DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs lang,bool HasBraces)2811 LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2812 SourceLocation LangLoc, LanguageIDs lang,
2813 bool HasBraces)
2814 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2815 ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2816 setLanguage(lang);
2817 LinkageSpecDeclBits.HasBraces = HasBraces;
2818 }
2819
anchor()2820 void LinkageSpecDecl::anchor() {}
2821
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)2822 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2823 DeclContext *DC,
2824 SourceLocation ExternLoc,
2825 SourceLocation LangLoc,
2826 LanguageIDs Lang,
2827 bool HasBraces) {
2828 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2829 }
2830
CreateDeserialized(ASTContext & C,unsigned ID)2831 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2832 unsigned ID) {
2833 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2834 SourceLocation(), lang_c, false);
2835 }
2836
anchor()2837 void UsingDirectiveDecl::anchor() {}
2838
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)2839 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2840 SourceLocation L,
2841 SourceLocation NamespaceLoc,
2842 NestedNameSpecifierLoc QualifierLoc,
2843 SourceLocation IdentLoc,
2844 NamedDecl *Used,
2845 DeclContext *CommonAncestor) {
2846 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2847 Used = NS->getOriginalNamespace();
2848 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2849 IdentLoc, Used, CommonAncestor);
2850 }
2851
CreateDeserialized(ASTContext & C,unsigned ID)2852 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2853 unsigned ID) {
2854 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2855 SourceLocation(),
2856 NestedNameSpecifierLoc(),
2857 SourceLocation(), nullptr, nullptr);
2858 }
2859
getNominatedNamespace()2860 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2861 if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2862 return NA->getNamespace();
2863 return cast_or_null<NamespaceDecl>(NominatedNamespace);
2864 }
2865
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2866 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2867 SourceLocation StartLoc, SourceLocation IdLoc,
2868 IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2869 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2870 redeclarable_base(C), LocStart(StartLoc),
2871 AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2872 setPreviousDecl(PrevDecl);
2873
2874 if (PrevDecl)
2875 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2876 }
2877
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2878 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2879 bool Inline, SourceLocation StartLoc,
2880 SourceLocation IdLoc, IdentifierInfo *Id,
2881 NamespaceDecl *PrevDecl) {
2882 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2883 PrevDecl);
2884 }
2885
CreateDeserialized(ASTContext & C,unsigned ID)2886 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2887 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2888 SourceLocation(), nullptr, nullptr);
2889 }
2890
getOriginalNamespace()2891 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2892 if (isFirstDecl())
2893 return this;
2894
2895 return AnonOrFirstNamespaceAndInline.getPointer();
2896 }
2897
getOriginalNamespace() const2898 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2899 if (isFirstDecl())
2900 return this;
2901
2902 return AnonOrFirstNamespaceAndInline.getPointer();
2903 }
2904
isOriginalNamespace() const2905 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2906
getNextRedeclarationImpl()2907 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2908 return getNextRedeclaration();
2909 }
2910
getPreviousDeclImpl()2911 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2912 return getPreviousDecl();
2913 }
2914
getMostRecentDeclImpl()2915 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2916 return getMostRecentDecl();
2917 }
2918
anchor()2919 void NamespaceAliasDecl::anchor() {}
2920
getNextRedeclarationImpl()2921 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2922 return getNextRedeclaration();
2923 }
2924
getPreviousDeclImpl()2925 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2926 return getPreviousDecl();
2927 }
2928
getMostRecentDeclImpl()2929 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2930 return getMostRecentDecl();
2931 }
2932
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2933 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2934 SourceLocation UsingLoc,
2935 SourceLocation AliasLoc,
2936 IdentifierInfo *Alias,
2937 NestedNameSpecifierLoc QualifierLoc,
2938 SourceLocation IdentLoc,
2939 NamedDecl *Namespace) {
2940 // FIXME: Preserve the aliased namespace as written.
2941 if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2942 Namespace = NS->getOriginalNamespace();
2943 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2944 QualifierLoc, IdentLoc, Namespace);
2945 }
2946
2947 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2948 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2949 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2950 SourceLocation(), nullptr,
2951 NestedNameSpecifierLoc(),
2952 SourceLocation(), nullptr);
2953 }
2954
anchor()2955 void LifetimeExtendedTemporaryDecl::anchor() {}
2956
2957 /// Retrieve the storage duration for the materialized temporary.
getStorageDuration() const2958 StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
2959 const ValueDecl *ExtendingDecl = getExtendingDecl();
2960 if (!ExtendingDecl)
2961 return SD_FullExpression;
2962 // FIXME: This is not necessarily correct for a temporary materialized
2963 // within a default initializer.
2964 if (isa<FieldDecl>(ExtendingDecl))
2965 return SD_Automatic;
2966 // FIXME: This only works because storage class specifiers are not allowed
2967 // on decomposition declarations.
2968 if (isa<BindingDecl>(ExtendingDecl))
2969 return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
2970 : SD_Static;
2971 return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
2972 }
2973
getOrCreateValue(bool MayCreate) const2974 APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
2975 assert(getStorageDuration() == SD_Static &&
2976 "don't need to cache the computed value for this temporary");
2977 if (MayCreate && !Value) {
2978 Value = (new (getASTContext()) APValue);
2979 getASTContext().addDestruction(Value);
2980 }
2981 assert(Value && "may not be null");
2982 return Value;
2983 }
2984
anchor()2985 void UsingShadowDecl::anchor() {}
2986
UsingShadowDecl(Kind K,ASTContext & C,DeclContext * DC,SourceLocation Loc,DeclarationName Name,BaseUsingDecl * Introducer,NamedDecl * Target)2987 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2988 SourceLocation Loc, DeclarationName Name,
2989 BaseUsingDecl *Introducer, NamedDecl *Target)
2990 : NamedDecl(K, DC, Loc, Name), redeclarable_base(C),
2991 UsingOrNextShadow(Introducer) {
2992 if (Target) {
2993 assert(!isa<UsingShadowDecl>(Target));
2994 setTargetDecl(Target);
2995 }
2996 setImplicit();
2997 }
2998
UsingShadowDecl(Kind K,ASTContext & C,EmptyShell Empty)2999 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
3000 : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
3001 redeclarable_base(C) {}
3002
3003 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3004 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3005 return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
3006 }
3007
getIntroducer() const3008 BaseUsingDecl *UsingShadowDecl::getIntroducer() const {
3009 const UsingShadowDecl *Shadow = this;
3010 while (const auto *NextShadow =
3011 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
3012 Shadow = NextShadow;
3013 return cast<BaseUsingDecl>(Shadow->UsingOrNextShadow);
3014 }
3015
anchor()3016 void ConstructorUsingShadowDecl::anchor() {}
3017
3018 ConstructorUsingShadowDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target,bool IsVirtual)3019 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
3020 SourceLocation Loc, UsingDecl *Using,
3021 NamedDecl *Target, bool IsVirtual) {
3022 return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
3023 IsVirtual);
3024 }
3025
3026 ConstructorUsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3027 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3028 return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
3029 }
3030
getNominatedBaseClass() const3031 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
3032 return getIntroducer()->getQualifier()->getAsRecordDecl();
3033 }
3034
anchor()3035 void BaseUsingDecl::anchor() {}
3036
addShadowDecl(UsingShadowDecl * S)3037 void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) {
3038 assert(!llvm::is_contained(shadows(), S) && "declaration already in set");
3039 assert(S->getIntroducer() == this);
3040
3041 if (FirstUsingShadow.getPointer())
3042 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
3043 FirstUsingShadow.setPointer(S);
3044 }
3045
removeShadowDecl(UsingShadowDecl * S)3046 void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) {
3047 assert(llvm::is_contained(shadows(), S) && "declaration not in set");
3048 assert(S->getIntroducer() == this);
3049
3050 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
3051
3052 if (FirstUsingShadow.getPointer() == S) {
3053 FirstUsingShadow.setPointer(
3054 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
3055 S->UsingOrNextShadow = this;
3056 return;
3057 }
3058
3059 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
3060 while (Prev->UsingOrNextShadow != S)
3061 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
3062 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
3063 S->UsingOrNextShadow = this;
3064 }
3065
anchor()3066 void UsingDecl::anchor() {}
3067
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)3068 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
3069 NestedNameSpecifierLoc QualifierLoc,
3070 const DeclarationNameInfo &NameInfo,
3071 bool HasTypename) {
3072 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
3073 }
3074
CreateDeserialized(ASTContext & C,unsigned ID)3075 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3076 return new (C, ID) UsingDecl(nullptr, SourceLocation(),
3077 NestedNameSpecifierLoc(), DeclarationNameInfo(),
3078 false);
3079 }
3080
getSourceRange() const3081 SourceRange UsingDecl::getSourceRange() const {
3082 SourceLocation Begin = isAccessDeclaration()
3083 ? getQualifierLoc().getBeginLoc() : UsingLocation;
3084 return SourceRange(Begin, getNameInfo().getEndLoc());
3085 }
3086
anchor()3087 void UsingEnumDecl::anchor() {}
3088
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,SourceLocation EL,SourceLocation NL,EnumDecl * Enum)3089 UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC,
3090 SourceLocation UL, SourceLocation EL,
3091 SourceLocation NL, EnumDecl *Enum) {
3092 return new (C, DC) UsingEnumDecl(DC, Enum->getDeclName(), UL, EL, NL, Enum);
3093 }
3094
CreateDeserialized(ASTContext & C,unsigned ID)3095 UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3096 return new (C, ID) UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(),
3097 SourceLocation(), SourceLocation(), nullptr);
3098 }
3099
getSourceRange() const3100 SourceRange UsingEnumDecl::getSourceRange() const {
3101 return SourceRange(EnumLocation, getLocation());
3102 }
3103
anchor()3104 void UsingPackDecl::anchor() {}
3105
Create(ASTContext & C,DeclContext * DC,NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > UsingDecls)3106 UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
3107 NamedDecl *InstantiatedFrom,
3108 ArrayRef<NamedDecl *> UsingDecls) {
3109 size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
3110 return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
3111 }
3112
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumExpansions)3113 UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3114 unsigned NumExpansions) {
3115 size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
3116 auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
3117 Result->NumExpansions = NumExpansions;
3118 auto *Trail = Result->getTrailingObjects<NamedDecl *>();
3119 for (unsigned I = 0; I != NumExpansions; ++I)
3120 new (Trail + I) NamedDecl*(nullptr);
3121 return Result;
3122 }
3123
anchor()3124 void UnresolvedUsingValueDecl::anchor() {}
3125
3126 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,SourceLocation EllipsisLoc)3127 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
3128 SourceLocation UsingLoc,
3129 NestedNameSpecifierLoc QualifierLoc,
3130 const DeclarationNameInfo &NameInfo,
3131 SourceLocation EllipsisLoc) {
3132 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
3133 QualifierLoc, NameInfo,
3134 EllipsisLoc);
3135 }
3136
3137 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3138 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3139 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
3140 SourceLocation(),
3141 NestedNameSpecifierLoc(),
3142 DeclarationNameInfo(),
3143 SourceLocation());
3144 }
3145
getSourceRange() const3146 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
3147 SourceLocation Begin = isAccessDeclaration()
3148 ? getQualifierLoc().getBeginLoc() : UsingLocation;
3149 return SourceRange(Begin, getNameInfo().getEndLoc());
3150 }
3151
anchor()3152 void UnresolvedUsingTypenameDecl::anchor() {}
3153
3154 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName,SourceLocation EllipsisLoc)3155 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
3156 SourceLocation UsingLoc,
3157 SourceLocation TypenameLoc,
3158 NestedNameSpecifierLoc QualifierLoc,
3159 SourceLocation TargetNameLoc,
3160 DeclarationName TargetName,
3161 SourceLocation EllipsisLoc) {
3162 return new (C, DC) UnresolvedUsingTypenameDecl(
3163 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
3164 TargetName.getAsIdentifierInfo(), EllipsisLoc);
3165 }
3166
3167 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3168 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3169 return new (C, ID) UnresolvedUsingTypenameDecl(
3170 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
3171 SourceLocation(), nullptr, SourceLocation());
3172 }
3173
3174 UnresolvedUsingIfExistsDecl *
Create(ASTContext & Ctx,DeclContext * DC,SourceLocation Loc,DeclarationName Name)3175 UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC,
3176 SourceLocation Loc, DeclarationName Name) {
3177 return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name);
3178 }
3179
3180 UnresolvedUsingIfExistsDecl *
CreateDeserialized(ASTContext & Ctx,unsigned ID)3181 UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) {
3182 return new (Ctx, ID)
3183 UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName());
3184 }
3185
UnresolvedUsingIfExistsDecl(DeclContext * DC,SourceLocation Loc,DeclarationName Name)3186 UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC,
3187 SourceLocation Loc,
3188 DeclarationName Name)
3189 : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {}
3190
anchor()3191 void UnresolvedUsingIfExistsDecl::anchor() {}
3192
anchor()3193 void StaticAssertDecl::anchor() {}
3194
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)3195 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
3196 SourceLocation StaticAssertLoc,
3197 Expr *AssertExpr,
3198 StringLiteral *Message,
3199 SourceLocation RParenLoc,
3200 bool Failed) {
3201 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
3202 RParenLoc, Failed);
3203 }
3204
CreateDeserialized(ASTContext & C,unsigned ID)3205 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
3206 unsigned ID) {
3207 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
3208 nullptr, SourceLocation(), false);
3209 }
3210
anchor()3211 void BindingDecl::anchor() {}
3212
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id)3213 BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
3214 SourceLocation IdLoc, IdentifierInfo *Id) {
3215 return new (C, DC) BindingDecl(DC, IdLoc, Id);
3216 }
3217
CreateDeserialized(ASTContext & C,unsigned ID)3218 BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3219 return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
3220 }
3221
getHoldingVar() const3222 VarDecl *BindingDecl::getHoldingVar() const {
3223 Expr *B = getBinding();
3224 if (!B)
3225 return nullptr;
3226 auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
3227 if (!DRE)
3228 return nullptr;
3229
3230 auto *VD = cast<VarDecl>(DRE->getDecl());
3231 assert(VD->isImplicit() && "holding var for binding decl not implicit");
3232 return VD;
3233 }
3234
anchor()3235 void DecompositionDecl::anchor() {}
3236
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation LSquareLoc,QualType T,TypeSourceInfo * TInfo,StorageClass SC,ArrayRef<BindingDecl * > Bindings)3237 DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
3238 SourceLocation StartLoc,
3239 SourceLocation LSquareLoc,
3240 QualType T, TypeSourceInfo *TInfo,
3241 StorageClass SC,
3242 ArrayRef<BindingDecl *> Bindings) {
3243 size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
3244 return new (C, DC, Extra)
3245 DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
3246 }
3247
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumBindings)3248 DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
3249 unsigned ID,
3250 unsigned NumBindings) {
3251 size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
3252 auto *Result = new (C, ID, Extra)
3253 DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
3254 QualType(), nullptr, StorageClass(), None);
3255 // Set up and clean out the bindings array.
3256 Result->NumBindings = NumBindings;
3257 auto *Trail = Result->getTrailingObjects<BindingDecl *>();
3258 for (unsigned I = 0; I != NumBindings; ++I)
3259 new (Trail + I) BindingDecl*(nullptr);
3260 return Result;
3261 }
3262
printName(llvm::raw_ostream & os) const3263 void DecompositionDecl::printName(llvm::raw_ostream &os) const {
3264 os << '[';
3265 bool Comma = false;
3266 for (const auto *B : bindings()) {
3267 if (Comma)
3268 os << ", ";
3269 B->printName(os);
3270 Comma = true;
3271 }
3272 os << ']';
3273 }
3274
anchor()3275 void MSPropertyDecl::anchor() {}
3276
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)3277 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
3278 SourceLocation L, DeclarationName N,
3279 QualType T, TypeSourceInfo *TInfo,
3280 SourceLocation StartL,
3281 IdentifierInfo *Getter,
3282 IdentifierInfo *Setter) {
3283 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
3284 }
3285
CreateDeserialized(ASTContext & C,unsigned ID)3286 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
3287 unsigned ID) {
3288 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
3289 DeclarationName(), QualType(), nullptr,
3290 SourceLocation(), nullptr, nullptr);
3291 }
3292
anchor()3293 void MSGuidDecl::anchor() {}
3294
MSGuidDecl(DeclContext * DC,QualType T,Parts P)3295 MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
3296 : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
3297 PartVal(P) {}
3298
Create(const ASTContext & C,QualType T,Parts P)3299 MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
3300 DeclContext *DC = C.getTranslationUnitDecl();
3301 return new (C, DC) MSGuidDecl(DC, T, P);
3302 }
3303
CreateDeserialized(ASTContext & C,unsigned ID)3304 MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3305 return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
3306 }
3307
printName(llvm::raw_ostream & OS) const3308 void MSGuidDecl::printName(llvm::raw_ostream &OS) const {
3309 OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
3310 PartVal.Part1, PartVal.Part2, PartVal.Part3);
3311 unsigned I = 0;
3312 for (uint8_t Byte : PartVal.Part4And5) {
3313 OS << llvm::format("%02" PRIx8, Byte);
3314 if (++I == 2)
3315 OS << '-';
3316 }
3317 OS << '}';
3318 }
3319
3320 /// Determine if T is a valid 'struct _GUID' of the shape that we expect.
isValidStructGUID(ASTContext & Ctx,QualType T)3321 static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
3322 // FIXME: We only need to check this once, not once each time we compute a
3323 // GUID APValue.
3324 using MatcherRef = llvm::function_ref<bool(QualType)>;
3325
3326 auto IsInt = [&Ctx](unsigned N) {
3327 return [&Ctx, N](QualType T) {
3328 return T->isUnsignedIntegerOrEnumerationType() &&
3329 Ctx.getIntWidth(T) == N;
3330 };
3331 };
3332
3333 auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
3334 return [&Ctx, Elem, N](QualType T) {
3335 const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
3336 return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
3337 };
3338 };
3339
3340 auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
3341 return [Fields](QualType T) {
3342 const RecordDecl *RD = T->getAsRecordDecl();
3343 if (!RD || RD->isUnion())
3344 return false;
3345 RD = RD->getDefinition();
3346 if (!RD)
3347 return false;
3348 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3349 if (CXXRD->getNumBases())
3350 return false;
3351 auto MatcherIt = Fields.begin();
3352 for (const FieldDecl *FD : RD->fields()) {
3353 if (FD->isUnnamedBitfield()) continue;
3354 if (FD->isBitField() || MatcherIt == Fields.end() ||
3355 !(*MatcherIt)(FD->getType()))
3356 return false;
3357 ++MatcherIt;
3358 }
3359 return MatcherIt == Fields.end();
3360 };
3361 };
3362
3363 // We expect an {i32, i16, i16, [8 x i8]}.
3364 return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
3365 }
3366
getAsAPValue() const3367 APValue &MSGuidDecl::getAsAPValue() const {
3368 if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
3369 using llvm::APInt;
3370 using llvm::APSInt;
3371 APVal = APValue(APValue::UninitStruct(), 0, 4);
3372 APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
3373 APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
3374 APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
3375 APValue &Arr = APVal.getStructField(3) =
3376 APValue(APValue::UninitArray(), 8, 8);
3377 for (unsigned I = 0; I != 8; ++I) {
3378 Arr.getArrayInitializedElt(I) =
3379 APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
3380 }
3381 // Register this APValue to be destroyed if necessary. (Note that the
3382 // MSGuidDecl destructor is never run.)
3383 getASTContext().addDestruction(&APVal);
3384 }
3385
3386 return APVal;
3387 }
3388
anchor()3389 void UnnamedGlobalConstantDecl::anchor() {}
3390
UnnamedGlobalConstantDecl(const ASTContext & C,DeclContext * DC,QualType Ty,const APValue & Val)3391 UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C,
3392 DeclContext *DC,
3393 QualType Ty,
3394 const APValue &Val)
3395 : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(),
3396 DeclarationName(), Ty),
3397 Value(Val) {
3398 // Cleanup the embedded APValue if required (note that our destructor is never
3399 // run)
3400 if (Value.needsCleanup())
3401 C.addDestruction(&Value);
3402 }
3403
3404 UnnamedGlobalConstantDecl *
Create(const ASTContext & C,QualType T,const APValue & Value)3405 UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T,
3406 const APValue &Value) {
3407 DeclContext *DC = C.getTranslationUnitDecl();
3408 return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value);
3409 }
3410
3411 UnnamedGlobalConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3412 UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3413 return new (C, ID)
3414 UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue());
3415 }
3416
printName(llvm::raw_ostream & OS) const3417 void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS) const {
3418 OS << "unnamed-global-constant";
3419 }
3420
getAccessName(AccessSpecifier AS)3421 static const char *getAccessName(AccessSpecifier AS) {
3422 switch (AS) {
3423 case AS_none:
3424 llvm_unreachable("Invalid access specifier!");
3425 case AS_public:
3426 return "public";
3427 case AS_private:
3428 return "private";
3429 case AS_protected:
3430 return "protected";
3431 }
3432 llvm_unreachable("Invalid access specifier!");
3433 }
3434
operator <<(const StreamingDiagnostic & DB,AccessSpecifier AS)3435 const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
3436 AccessSpecifier AS) {
3437 return DB << getAccessName(AS);
3438 }
3439