1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> 84 ForceToDataRelocations("force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 cl::init(false), 87 cl::Hidden, 88 cl::ZeroOrMore, 89 cl::cat(BoltCategory)); 90 91 cl::opt<std::string> 92 BoltID("bolt-id", 93 cl::desc("add any string to tag this execution in the " 94 "output binary via bolt info section"), 95 cl::ZeroOrMore, 96 cl::cat(BoltCategory)); 97 98 cl::opt<bool> 99 AllowStripped("allow-stripped", 100 cl::desc("allow processing of stripped binaries"), 101 cl::Hidden, 102 cl::cat(BoltCategory)); 103 104 cl::opt<bool> 105 DumpDotAll("dump-dot-all", 106 cl::desc("dump function CFGs to graphviz format after each stage"), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltCategory)); 110 111 static cl::list<std::string> 112 ForceFunctionNames("funcs", 113 cl::CommaSeparated, 114 cl::desc("limit optimizations to functions from the list"), 115 cl::value_desc("func1,func2,func3,..."), 116 cl::Hidden, 117 cl::cat(BoltCategory)); 118 119 static cl::opt<std::string> 120 FunctionNamesFile("funcs-file", 121 cl::desc("file with list of functions to optimize"), 122 cl::Hidden, 123 cl::cat(BoltCategory)); 124 125 static cl::list<std::string> ForceFunctionNamesNR( 126 "funcs-no-regex", cl::CommaSeparated, 127 cl::desc("limit optimizations to functions from the list (non-regex)"), 128 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 129 130 static cl::opt<std::string> FunctionNamesFileNR( 131 "funcs-file-no-regex", 132 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 133 cl::cat(BoltCategory)); 134 135 cl::opt<bool> 136 KeepTmp("keep-tmp", 137 cl::desc("preserve intermediate .o file"), 138 cl::Hidden, 139 cl::cat(BoltCategory)); 140 141 cl::opt<bool> 142 Lite("lite", 143 cl::desc("skip processing of cold functions"), 144 cl::init(false), 145 cl::ZeroOrMore, 146 cl::cat(BoltCategory)); 147 148 static cl::opt<unsigned> 149 LiteThresholdPct("lite-threshold-pct", 150 cl::desc("threshold (in percent) for selecting functions to process in lite " 151 "mode. Higher threshold means fewer functions to process. E.g " 152 "threshold of 90 means only top 10 percent of functions with " 153 "profile will be processed."), 154 cl::init(0), 155 cl::ZeroOrMore, 156 cl::Hidden, 157 cl::cat(BoltOptCategory)); 158 159 static cl::opt<unsigned> 160 LiteThresholdCount("lite-threshold-count", 161 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 162 "absolute function call count. I.e. limit processing to functions " 163 "executed at least the specified number of times."), 164 cl::init(0), 165 cl::ZeroOrMore, 166 cl::Hidden, 167 cl::cat(BoltOptCategory)); 168 169 static cl::opt<unsigned> 170 MaxFunctions("max-funcs", 171 cl::desc("maximum number of functions to process"), 172 cl::ZeroOrMore, 173 cl::Hidden, 174 cl::cat(BoltCategory)); 175 176 static cl::opt<unsigned> 177 MaxDataRelocations("max-data-relocations", 178 cl::desc("maximum number of data relocations to process"), 179 cl::ZeroOrMore, 180 cl::Hidden, 181 cl::cat(BoltCategory)); 182 183 cl::opt<bool> 184 PrintAll("print-all", 185 cl::desc("print functions after each stage"), 186 cl::ZeroOrMore, 187 cl::Hidden, 188 cl::cat(BoltCategory)); 189 190 cl::opt<bool> 191 PrintCFG("print-cfg", 192 cl::desc("print functions after CFG construction"), 193 cl::ZeroOrMore, 194 cl::Hidden, 195 cl::cat(BoltCategory)); 196 197 cl::opt<bool> PrintDisasm("print-disasm", 198 cl::desc("print function after disassembly"), 199 cl::ZeroOrMore, 200 cl::Hidden, 201 cl::cat(BoltCategory)); 202 203 static cl::opt<bool> 204 PrintGlobals("print-globals", 205 cl::desc("print global symbols after disassembly"), 206 cl::ZeroOrMore, 207 cl::Hidden, 208 cl::cat(BoltCategory)); 209 210 extern cl::opt<bool> PrintSections; 211 212 static cl::opt<bool> 213 PrintLoopInfo("print-loops", 214 cl::desc("print loop related information"), 215 cl::ZeroOrMore, 216 cl::Hidden, 217 cl::cat(BoltCategory)); 218 219 static cl::opt<bool> 220 PrintSDTMarkers("print-sdt", 221 cl::desc("print all SDT markers"), 222 cl::ZeroOrMore, 223 cl::Hidden, 224 cl::cat(BoltCategory)); 225 226 enum PrintPseudoProbesOptions { 227 PPP_None = 0, 228 PPP_Probes_Section_Decode = 0x1, 229 PPP_Probes_Address_Conversion = 0x2, 230 PPP_Encoded_Probes = 0x3, 231 PPP_All = 0xf 232 }; 233 234 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 235 "print-pseudo-probes", cl::desc("print pseudo probe info"), 236 cl::init(PPP_None), 237 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 238 "decode probes section from binary"), 239 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 240 "update address2ProbesMap with output block address"), 241 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 242 "display the encoded probes in binary section"), 243 clEnumValN(PPP_All, "all", "enable all debugging printout")), 244 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 245 246 static cl::opt<cl::boolOrDefault> 247 RelocationMode("relocs", 248 cl::desc("use relocations in the binary (default=autodetect)"), 249 cl::ZeroOrMore, 250 cl::cat(BoltCategory)); 251 252 static cl::opt<std::string> 253 SaveProfile("w", 254 cl::desc("save recorded profile to a file"), 255 cl::cat(BoltOutputCategory)); 256 257 static cl::list<std::string> 258 SkipFunctionNames("skip-funcs", 259 cl::CommaSeparated, 260 cl::desc("list of functions to skip"), 261 cl::value_desc("func1,func2,func3,..."), 262 cl::Hidden, 263 cl::cat(BoltCategory)); 264 265 static cl::opt<std::string> 266 SkipFunctionNamesFile("skip-funcs-file", 267 cl::desc("file with list of functions to skip"), 268 cl::Hidden, 269 cl::cat(BoltCategory)); 270 271 cl::opt<bool> 272 TrapOldCode("trap-old-code", 273 cl::desc("insert traps in old function bodies (relocation mode)"), 274 cl::Hidden, 275 cl::cat(BoltCategory)); 276 277 static cl::opt<std::string> DWPPathName("dwp", 278 cl::desc("Path and name to DWP file."), 279 cl::Hidden, cl::ZeroOrMore, 280 cl::init(""), cl::cat(BoltCategory)); 281 282 static cl::opt<bool> 283 UseGnuStack("use-gnu-stack", 284 cl::desc("use GNU_STACK program header for new segment (workaround for " 285 "issues with strip/objcopy)"), 286 cl::ZeroOrMore, 287 cl::cat(BoltCategory)); 288 289 static cl::opt<bool> 290 TimeRewrite("time-rewrite", 291 cl::desc("print time spent in rewriting passes"), 292 cl::ZeroOrMore, 293 cl::Hidden, 294 cl::cat(BoltCategory)); 295 296 static cl::opt<bool> 297 SequentialDisassembly("sequential-disassembly", 298 cl::desc("performs disassembly sequentially"), 299 cl::init(false), 300 cl::cat(BoltOptCategory)); 301 302 static cl::opt<bool> 303 WriteBoltInfoSection("bolt-info", 304 cl::desc("write bolt info section in the output binary"), 305 cl::init(true), 306 cl::ZeroOrMore, 307 cl::Hidden, 308 cl::cat(BoltOutputCategory)); 309 310 } // namespace opts 311 312 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 313 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 314 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_loc", 315 ".debug_ranges", ".gdb_index", ".debug_addr"}; 316 317 const char RewriteInstance::TimerGroupName[] = "rewrite"; 318 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 319 320 namespace llvm { 321 namespace bolt { 322 323 extern const char *BoltRevision; 324 325 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 326 const MCInstrAnalysis *Analysis, 327 const MCInstrInfo *Info, 328 const MCRegisterInfo *RegInfo) { 329 #ifdef X86_AVAILABLE 330 if (Arch == Triple::x86_64) 331 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 332 #endif 333 334 #ifdef AARCH64_AVAILABLE 335 if (Arch == Triple::aarch64) 336 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 337 #endif 338 339 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 340 } 341 342 } // namespace bolt 343 } // namespace llvm 344 345 namespace { 346 347 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 348 auto Itr = 349 std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), 350 [&](const std::string &SectionName) { 351 return (Section && Section->getName() == SectionName); 352 }); 353 return Itr != opts::ReorderData.end(); 354 } 355 356 } // anonymous namespace 357 358 Expected<std::unique_ptr<RewriteInstance>> 359 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 360 const char *const *Argv, 361 StringRef ToolPath) { 362 Error Err = Error::success(); 363 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 364 if (Err) 365 return std::move(Err); 366 return RI; 367 } 368 369 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 370 const char *const *Argv, StringRef ToolPath, 371 Error &Err) 372 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 373 SHStrTab(StringTableBuilder::ELF) { 374 ErrorAsOutParameter EAO(&Err); 375 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 376 if (!ELF64LEFile) { 377 Err = createStringError(errc::not_supported, 378 "Only 64-bit LE ELF binaries are supported"); 379 return; 380 } 381 382 bool IsPIC = false; 383 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 384 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 385 outs() << "BOLT-INFO: shared object or position-independent executable " 386 "detected\n"; 387 IsPIC = true; 388 } 389 390 auto BCOrErr = BinaryContext::createBinaryContext( 391 File, IsPIC, 392 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 393 nullptr, opts::DWPPathName, 394 WithColor::defaultErrorHandler, 395 WithColor::defaultWarningHandler)); 396 if (Error E = BCOrErr.takeError()) { 397 Err = std::move(E); 398 return; 399 } 400 BC = std::move(BCOrErr.get()); 401 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 402 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 403 404 BAT = std::make_unique<BoltAddressTranslation>(*BC); 405 406 if (opts::UpdateDebugSections) 407 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 408 409 if (opts::Instrument) 410 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 411 else if (opts::Hugify) 412 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 413 } 414 415 RewriteInstance::~RewriteInstance() {} 416 417 Error RewriteInstance::setProfile(StringRef Filename) { 418 if (!sys::fs::exists(Filename)) 419 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 420 421 if (ProfileReader) { 422 // Already exists 423 return make_error<StringError>(Twine("multiple profiles specified: ") + 424 ProfileReader->getFilename() + " and " + 425 Filename, 426 inconvertibleErrorCode()); 427 } 428 429 // Spawn a profile reader based on file contents. 430 if (DataAggregator::checkPerfDataMagic(Filename)) 431 ProfileReader = std::make_unique<DataAggregator>(Filename); 432 else if (YAMLProfileReader::isYAML(Filename)) 433 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 434 else 435 ProfileReader = std::make_unique<DataReader>(Filename); 436 437 return Error::success(); 438 } 439 440 /// Return true if the function \p BF should be disassembled. 441 static bool shouldDisassemble(const BinaryFunction &BF) { 442 if (BF.isPseudo()) 443 return false; 444 445 if (opts::processAllFunctions()) 446 return true; 447 448 return !BF.isIgnored(); 449 } 450 451 Error RewriteInstance::discoverStorage() { 452 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 453 TimerGroupDesc, opts::TimeRewrite); 454 455 // Stubs are harmful because RuntimeDyld may try to increase the size of 456 // sections accounting for stubs when we need those sections to match the 457 // same size seen in the input binary, in case this section is a copy 458 // of the original one seen in the binary. 459 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 460 461 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 462 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 463 464 BC->StartFunctionAddress = Obj.getHeader().e_entry; 465 466 NextAvailableAddress = 0; 467 uint64_t NextAvailableOffset = 0; 468 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 469 if (Error E = PHsOrErr.takeError()) 470 return E; 471 472 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 473 for (const ELF64LE::Phdr &Phdr : PHs) { 474 switch (Phdr.p_type) { 475 case ELF::PT_LOAD: 476 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 477 static_cast<uint64_t>(Phdr.p_vaddr)); 478 NextAvailableAddress = std::max(NextAvailableAddress, 479 Phdr.p_vaddr + Phdr.p_memsz); 480 NextAvailableOffset = std::max(NextAvailableOffset, 481 Phdr.p_offset + Phdr.p_filesz); 482 483 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 484 Phdr.p_memsz, 485 Phdr.p_offset, 486 Phdr.p_filesz, 487 Phdr.p_align}; 488 break; 489 case ELF::PT_INTERP: 490 BC->HasInterpHeader = true; 491 break; 492 } 493 } 494 495 for (const SectionRef &Section : InputFile->sections()) { 496 Expected<StringRef> SectionNameOrErr = Section.getName(); 497 if (Error E = SectionNameOrErr.takeError()) 498 return E; 499 StringRef SectionName = SectionNameOrErr.get(); 500 if (SectionName == ".text") { 501 BC->OldTextSectionAddress = Section.getAddress(); 502 BC->OldTextSectionSize = Section.getSize(); 503 504 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 505 if (Error E = SectionContentsOrErr.takeError()) 506 return E; 507 StringRef SectionContents = SectionContentsOrErr.get(); 508 BC->OldTextSectionOffset = 509 SectionContents.data() - InputFile->getData().data(); 510 } 511 512 if (!opts::HeatmapMode && 513 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 514 (SectionName.startswith(getOrgSecPrefix()) || 515 SectionName == getBOLTTextSectionName())) 516 return createStringError( 517 errc::function_not_supported, 518 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 519 } 520 521 if (!NextAvailableAddress || !NextAvailableOffset) 522 return createStringError(errc::executable_format_error, 523 "no PT_LOAD pheader seen"); 524 525 outs() << "BOLT-INFO: first alloc address is 0x" 526 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 527 528 FirstNonAllocatableOffset = NextAvailableOffset; 529 530 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 531 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 532 533 if (!opts::UseGnuStack) { 534 // This is where the black magic happens. Creating PHDR table in a segment 535 // other than that containing ELF header is tricky. Some loaders and/or 536 // parts of loaders will apply e_phoff from ELF header assuming both are in 537 // the same segment, while others will do the proper calculation. 538 // We create the new PHDR table in such a way that both of the methods 539 // of loading and locating the table work. There's a slight file size 540 // overhead because of that. 541 // 542 // NB: bfd's strip command cannot do the above and will corrupt the 543 // binary during the process of stripping non-allocatable sections. 544 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 545 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 546 else 547 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 548 549 assert(NextAvailableOffset == 550 NextAvailableAddress - BC->FirstAllocAddress && 551 "PHDR table address calculation error"); 552 553 outs() << "BOLT-INFO: creating new program header table at address 0x" 554 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 555 << Twine::utohexstr(NextAvailableOffset) << '\n'; 556 557 PHDRTableAddress = NextAvailableAddress; 558 PHDRTableOffset = NextAvailableOffset; 559 560 // Reserve space for 3 extra pheaders. 561 unsigned Phnum = Obj.getHeader().e_phnum; 562 Phnum += 3; 563 564 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 565 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 566 } 567 568 // Align at cache line. 569 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 570 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 571 572 NewTextSegmentAddress = NextAvailableAddress; 573 NewTextSegmentOffset = NextAvailableOffset; 574 BC->LayoutStartAddress = NextAvailableAddress; 575 576 // Tools such as objcopy can strip section contents but leave header 577 // entries. Check that at least .text is mapped in the file. 578 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 579 return createStringError(errc::executable_format_error, 580 "BOLT-ERROR: input binary is not a valid ELF " 581 "executable as its text section is not " 582 "mapped to a valid segment"); 583 return Error::success(); 584 } 585 586 void RewriteInstance::parseSDTNotes() { 587 if (!SDTSection) 588 return; 589 590 StringRef Buf = SDTSection->getContents(); 591 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 592 BC->AsmInfo->getCodePointerSize()); 593 uint64_t Offset = 0; 594 595 while (DE.isValidOffset(Offset)) { 596 uint32_t NameSz = DE.getU32(&Offset); 597 DE.getU32(&Offset); // skip over DescSz 598 uint32_t Type = DE.getU32(&Offset); 599 Offset = alignTo(Offset, 4); 600 601 if (Type != 3) 602 errs() << "BOLT-WARNING: SDT note type \"" << Type 603 << "\" is not expected\n"; 604 605 if (NameSz == 0) 606 errs() << "BOLT-WARNING: SDT note has empty name\n"; 607 608 StringRef Name = DE.getCStr(&Offset); 609 610 if (!Name.equals("stapsdt")) 611 errs() << "BOLT-WARNING: SDT note name \"" << Name 612 << "\" is not expected\n"; 613 614 // Parse description 615 SDTMarkerInfo Marker; 616 Marker.PCOffset = Offset; 617 Marker.PC = DE.getU64(&Offset); 618 Marker.Base = DE.getU64(&Offset); 619 Marker.Semaphore = DE.getU64(&Offset); 620 Marker.Provider = DE.getCStr(&Offset); 621 Marker.Name = DE.getCStr(&Offset); 622 Marker.Args = DE.getCStr(&Offset); 623 Offset = alignTo(Offset, 4); 624 BC->SDTMarkers[Marker.PC] = Marker; 625 } 626 627 if (opts::PrintSDTMarkers) 628 printSDTMarkers(); 629 } 630 631 void RewriteInstance::parsePseudoProbe() { 632 if (!PseudoProbeDescSection && !PseudoProbeSection) { 633 // pesudo probe is not added to binary. It is normal and no warning needed. 634 return; 635 } 636 637 // If only one section is found, it might mean the ELF is corrupted. 638 if (!PseudoProbeDescSection) { 639 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 640 return; 641 } else if (!PseudoProbeSection) { 642 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 643 return; 644 } 645 646 StringRef Contents = PseudoProbeDescSection->getContents(); 647 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 648 reinterpret_cast<const uint8_t *>(Contents.data()), 649 Contents.size())) { 650 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 651 return; 652 } 653 Contents = PseudoProbeSection->getContents(); 654 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 655 reinterpret_cast<const uint8_t *>(Contents.data()), 656 Contents.size())) { 657 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 658 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 659 return; 660 } 661 662 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 663 opts::PrintPseudoProbes == 664 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 665 outs() << "Report of decoding input pseudo probe binaries \n"; 666 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 667 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 668 } 669 } 670 671 void RewriteInstance::printSDTMarkers() { 672 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 673 << "\n"; 674 for (auto It : BC->SDTMarkers) { 675 SDTMarkerInfo &Marker = It.second; 676 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 677 << ", Base: " << utohexstr(Marker.Base) 678 << ", Semaphore: " << utohexstr(Marker.Semaphore) 679 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 680 << ", Args: " << Marker.Args << "\n"; 681 } 682 } 683 684 void RewriteInstance::parseBuildID() { 685 if (!BuildIDSection) 686 return; 687 688 StringRef Buf = BuildIDSection->getContents(); 689 690 // Reading notes section (see Portable Formats Specification, Version 1.1, 691 // pg 2-5, section "Note Section"). 692 DataExtractor DE = DataExtractor(Buf, true, 8); 693 uint64_t Offset = 0; 694 if (!DE.isValidOffset(Offset)) 695 return; 696 uint32_t NameSz = DE.getU32(&Offset); 697 if (!DE.isValidOffset(Offset)) 698 return; 699 uint32_t DescSz = DE.getU32(&Offset); 700 if (!DE.isValidOffset(Offset)) 701 return; 702 uint32_t Type = DE.getU32(&Offset); 703 704 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 705 << "; Type = " << Type << "\n"); 706 707 // Type 3 is a GNU build-id note section 708 if (Type != 3) 709 return; 710 711 StringRef Name = Buf.slice(Offset, Offset + NameSz); 712 Offset = alignTo(Offset + NameSz, 4); 713 if (Name.substr(0, 3) != "GNU") 714 return; 715 716 BuildID = Buf.slice(Offset, Offset + DescSz); 717 } 718 719 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 720 if (BuildID.empty()) 721 return NoneType(); 722 723 std::string Str; 724 raw_string_ostream OS(Str); 725 const unsigned char *CharIter = BuildID.bytes_begin(); 726 while (CharIter != BuildID.bytes_end()) { 727 if (*CharIter < 0x10) 728 OS << "0"; 729 OS << Twine::utohexstr(*CharIter); 730 ++CharIter; 731 } 732 return OS.str(); 733 } 734 735 void RewriteInstance::patchBuildID() { 736 raw_fd_ostream &OS = Out->os(); 737 738 if (BuildID.empty()) 739 return; 740 741 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 742 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 743 744 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 745 if (!FileOffset) { 746 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 747 return; 748 } 749 750 char LastIDByte = BuildID[BuildID.size() - 1]; 751 LastIDByte ^= 1; 752 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 753 754 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 755 } 756 757 Error RewriteInstance::run() { 758 assert(BC && "failed to create a binary context"); 759 760 outs() << "BOLT-INFO: Target architecture: " 761 << Triple::getArchTypeName( 762 (llvm::Triple::ArchType)InputFile->getArch()) 763 << "\n"; 764 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 765 766 if (Error E = discoverStorage()) 767 return E; 768 if (Error E = readSpecialSections()) 769 return E; 770 adjustCommandLineOptions(); 771 discoverFileObjects(); 772 773 preprocessProfileData(); 774 775 // Skip disassembling if we have a translation table and we are running an 776 // aggregation job. 777 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 778 processProfileData(); 779 return Error::success(); 780 } 781 782 selectFunctionsToProcess(); 783 784 readDebugInfo(); 785 786 disassembleFunctions(); 787 788 processProfileDataPreCFG(); 789 790 buildFunctionsCFG(); 791 792 processProfileData(); 793 794 postProcessFunctions(); 795 796 if (opts::DiffOnly) 797 return Error::success(); 798 799 runOptimizationPasses(); 800 801 emitAndLink(); 802 803 updateMetadata(); 804 805 if (opts::LinuxKernelMode) { 806 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 807 return Error::success(); 808 } else if (opts::OutputFilename == "/dev/null") { 809 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 810 return Error::success(); 811 } 812 813 // Rewrite allocatable contents and copy non-allocatable parts with mods. 814 rewriteFile(); 815 return Error::success(); 816 } 817 818 void RewriteInstance::discoverFileObjects() { 819 NamedRegionTimer T("discoverFileObjects", "discover file objects", 820 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 821 FileSymRefs.clear(); 822 BC->getBinaryFunctions().clear(); 823 BC->clearBinaryData(); 824 825 // For local symbols we want to keep track of associated FILE symbol name for 826 // disambiguation by combined name. 827 StringRef FileSymbolName; 828 bool SeenFileName = false; 829 struct SymbolRefHash { 830 size_t operator()(SymbolRef const &S) const { 831 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 832 } 833 }; 834 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 835 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 836 Expected<StringRef> NameOrError = Symbol.getName(); 837 if (NameOrError && NameOrError->startswith("__asan_init")) { 838 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 839 "support. Cannot optimize.\n"; 840 exit(1); 841 } 842 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 843 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 844 "support. Cannot optimize.\n"; 845 exit(1); 846 } 847 848 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 849 continue; 850 851 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 852 StringRef Name = 853 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 854 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 855 // and this uncertainty is causing havoc in function name matching. 856 if (Name == "ld-temp.o") 857 continue; 858 FileSymbolName = Name; 859 SeenFileName = true; 860 continue; 861 } 862 if (!FileSymbolName.empty() && 863 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 864 SymbolToFileName[Symbol] = FileSymbolName; 865 } 866 867 // Sort symbols in the file by value. Ignore symbols from non-allocatable 868 // sections. 869 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 870 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 871 return false; 872 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 873 return true; 874 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 875 return false; 876 BinarySection Section(*BC, *cantFail(Sym.getSection())); 877 return Section.isAllocatable(); 878 }; 879 std::vector<SymbolRef> SortedFileSymbols; 880 std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), 881 std::back_inserter(SortedFileSymbols), isSymbolInMemory); 882 883 std::stable_sort( 884 SortedFileSymbols.begin(), SortedFileSymbols.end(), 885 [](const SymbolRef &A, const SymbolRef &B) { 886 // FUNC symbols have the highest precedence, while SECTIONs 887 // have the lowest. 888 uint64_t AddressA = cantFail(A.getAddress()); 889 uint64_t AddressB = cantFail(B.getAddress()); 890 if (AddressA != AddressB) 891 return AddressA < AddressB; 892 893 SymbolRef::Type AType = cantFail(A.getType()); 894 SymbolRef::Type BType = cantFail(B.getType()); 895 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 896 return true; 897 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 898 return true; 899 900 return false; 901 }); 902 903 // For aarch64, the ABI defines mapping symbols so we identify data in the 904 // code section (see IHI0056B). $d identifies data contents. 905 auto LastSymbol = SortedFileSymbols.end() - 1; 906 if (BC->isAArch64()) { 907 LastSymbol = std::stable_partition( 908 SortedFileSymbols.begin(), SortedFileSymbols.end(), 909 [](const SymbolRef &Symbol) { 910 StringRef Name = cantFail(Symbol.getName()); 911 return !(cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && 912 (Name == "$d" || Name.startswith("$d.") || Name == "$x" || 913 Name.startswith("$x."))); 914 }); 915 --LastSymbol; 916 } 917 918 BinaryFunction *PreviousFunction = nullptr; 919 unsigned AnonymousId = 0; 920 921 const auto MarkersBegin = std::next(LastSymbol); 922 for (auto ISym = SortedFileSymbols.begin(); ISym != MarkersBegin; ++ISym) { 923 const SymbolRef &Symbol = *ISym; 924 // Keep undefined symbols for pretty printing? 925 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 926 continue; 927 928 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 929 930 if (SymbolType == SymbolRef::ST_File) 931 continue; 932 933 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 934 uint64_t Address = 935 cantFail(Symbol.getAddress(), "cannot get symbol address"); 936 if (Address == 0) { 937 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 938 errs() << "BOLT-WARNING: function with 0 address seen\n"; 939 continue; 940 } 941 942 // Ignore input hot markers 943 if (SymName == "__hot_start" || SymName == "__hot_end") 944 continue; 945 946 FileSymRefs[Address] = Symbol; 947 948 // Skip section symbols that will be registered by disassemblePLT(). 949 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 950 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 951 if (BSection && getPLTSectionInfo(BSection->getName())) 952 continue; 953 } 954 955 /// It is possible we are seeing a globalized local. LLVM might treat it as 956 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 957 /// change the prefix to enforce global scope of the symbol. 958 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 959 ? "PG" + std::string(SymName) 960 : std::string(SymName); 961 962 // Disambiguate all local symbols before adding to symbol table. 963 // Since we don't know if we will see a global with the same name, 964 // always modify the local name. 965 // 966 // NOTE: the naming convention for local symbols should match 967 // the one we use for profile data. 968 std::string UniqueName; 969 std::string AlternativeName; 970 if (Name.empty()) { 971 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 972 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 973 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 974 UniqueName = Name; 975 } else { 976 // If we have a local file name, we should create 2 variants for the 977 // function name. The reason is that perf profile might have been 978 // collected on a binary that did not have the local file name (e.g. as 979 // a side effect of stripping debug info from the binary): 980 // 981 // primary: <function>/<id> 982 // alternative: <function>/<file>/<id2> 983 // 984 // The <id> field is used for disambiguation of local symbols since there 985 // could be identical function names coming from identical file names 986 // (e.g. from different directories). 987 std::string AltPrefix; 988 auto SFI = SymbolToFileName.find(Symbol); 989 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 990 AltPrefix = Name + "/" + std::string(SFI->second); 991 992 UniqueName = NR.uniquify(Name); 993 if (!AltPrefix.empty()) 994 AlternativeName = NR.uniquify(AltPrefix); 995 } 996 997 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 998 uint64_t SymbolAlignment = Symbol.getAlignment(); 999 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 1000 1001 auto registerName = [&](uint64_t FinalSize) { 1002 // Register names even if it's not a function, e.g. for an entry point. 1003 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1004 SymbolFlags); 1005 if (!AlternativeName.empty()) 1006 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1007 SymbolAlignment, SymbolFlags); 1008 }; 1009 1010 section_iterator Section = 1011 cantFail(Symbol.getSection(), "cannot get symbol section"); 1012 if (Section == InputFile->section_end()) { 1013 // Could be an absolute symbol. Could record for pretty printing. 1014 LLVM_DEBUG(if (opts::Verbosity > 1) { 1015 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1016 }); 1017 registerName(SymbolSize); 1018 continue; 1019 } 1020 1021 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1022 << " for function\n"); 1023 1024 if (!Section->isText()) { 1025 assert(SymbolType != SymbolRef::ST_Function && 1026 "unexpected function inside non-code section"); 1027 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1028 registerName(SymbolSize); 1029 continue; 1030 } 1031 1032 // Assembly functions could be ST_NONE with 0 size. Check that the 1033 // corresponding section is a code section and they are not inside any 1034 // other known function to consider them. 1035 // 1036 // Sometimes assembly functions are not marked as functions and neither are 1037 // their local labels. The only way to tell them apart is to look at 1038 // symbol scope - global vs local. 1039 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1040 if (PreviousFunction->containsAddress(Address)) { 1041 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1042 LLVM_DEBUG(dbgs() 1043 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1044 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1045 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1046 } else if (opts::Verbosity > 1) { 1047 errs() << "BOLT-WARNING: symbol " << UniqueName 1048 << " seen in the middle of function " << *PreviousFunction 1049 << ". Could be a new entry.\n"; 1050 } 1051 registerName(SymbolSize); 1052 continue; 1053 } else if (PreviousFunction->getSize() == 0 && 1054 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1055 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1056 registerName(SymbolSize); 1057 continue; 1058 } 1059 } 1060 1061 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1062 PreviousFunction->getAddress() != Address) { 1063 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1064 if (opts::Verbosity >= 1) 1065 outs() << "BOLT-INFO: skipping possibly another entry for function " 1066 << *PreviousFunction << " : " << UniqueName << '\n'; 1067 } else { 1068 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1069 << "function " << *PreviousFunction << '\n'; 1070 1071 registerName(0); 1072 1073 PreviousFunction->addEntryPointAtOffset(Address - 1074 PreviousFunction->getAddress()); 1075 1076 // Remove the symbol from FileSymRefs so that we can skip it from 1077 // in the future. 1078 auto SI = FileSymRefs.find(Address); 1079 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1080 assert(SI->second == Symbol && "wrong symbol found"); 1081 FileSymRefs.erase(SI); 1082 } 1083 registerName(SymbolSize); 1084 continue; 1085 } 1086 1087 // Checkout for conflicts with function data from FDEs. 1088 bool IsSimple = true; 1089 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1090 if (FDEI != CFIRdWrt->getFDEs().end()) { 1091 const dwarf::FDE &FDE = *FDEI->second; 1092 if (FDEI->first != Address) { 1093 // There's no matching starting address in FDE. Make sure the previous 1094 // FDE does not contain this address. 1095 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1096 --FDEI; 1097 const dwarf::FDE &PrevFDE = *FDEI->second; 1098 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1099 uint64_t PrevLength = PrevFDE.getAddressRange(); 1100 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1101 errs() << "BOLT-ERROR: function " << UniqueName 1102 << " is in conflict with FDE [" 1103 << Twine::utohexstr(PrevStart) << ", " 1104 << Twine::utohexstr(PrevStart + PrevLength) 1105 << "). Skipping.\n"; 1106 IsSimple = false; 1107 } 1108 } 1109 } else if (FDE.getAddressRange() != SymbolSize) { 1110 if (SymbolSize) { 1111 // Function addresses match but sizes differ. 1112 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1113 << ". FDE : " << FDE.getAddressRange() 1114 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1115 } 1116 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1117 if (BC->getBinaryDataAtAddress(Address)) { 1118 BC->setBinaryDataSize(Address, SymbolSize); 1119 } else { 1120 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1121 << Twine::utohexstr(Address) << "\n"); 1122 } 1123 } 1124 } 1125 1126 BinaryFunction *BF = nullptr; 1127 // Since function may not have yet obtained its real size, do a search 1128 // using the list of registered functions instead of calling 1129 // getBinaryFunctionAtAddress(). 1130 auto BFI = BC->getBinaryFunctions().find(Address); 1131 if (BFI != BC->getBinaryFunctions().end()) { 1132 BF = &BFI->second; 1133 // Duplicate the function name. Make sure everything matches before we add 1134 // an alternative name. 1135 if (SymbolSize != BF->getSize()) { 1136 if (opts::Verbosity >= 1) { 1137 if (SymbolSize && BF->getSize()) 1138 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1139 << *BF << " and " << UniqueName << '\n'; 1140 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1141 << BF->getSize() << " new " << SymbolSize << "\n"; 1142 } 1143 BF->setSize(std::max(SymbolSize, BF->getSize())); 1144 BC->setBinaryDataSize(Address, BF->getSize()); 1145 } 1146 BF->addAlternativeName(UniqueName); 1147 } else { 1148 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1149 // Skip symbols from invalid sections 1150 if (!Section) { 1151 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1152 << Twine::utohexstr(Address) << ") does not have any section\n"; 1153 continue; 1154 } 1155 assert(Section && "section for functions must be registered"); 1156 1157 // Skip symbols from zero-sized sections. 1158 if (!Section->getSize()) 1159 continue; 1160 1161 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1162 if (!IsSimple) 1163 BF->setSimple(false); 1164 } 1165 if (!AlternativeName.empty()) 1166 BF->addAlternativeName(AlternativeName); 1167 1168 registerName(SymbolSize); 1169 PreviousFunction = BF; 1170 } 1171 1172 // Read dynamic relocation first as their presence affects the way we process 1173 // static relocations. E.g. we will ignore a static relocation at an address 1174 // that is a subject to dynamic relocation processing. 1175 processDynamicRelocations(); 1176 1177 // Process PLT section. 1178 disassemblePLT(); 1179 1180 // See if we missed any functions marked by FDE. 1181 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1182 const uint64_t Address = FDEI.first; 1183 const dwarf::FDE *FDE = FDEI.second; 1184 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1185 if (BF) 1186 continue; 1187 1188 BF = BC->getBinaryFunctionContainingAddress(Address); 1189 if (BF) { 1190 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1191 << Twine::utohexstr(Address + FDE->getAddressRange()) 1192 << ") conflicts with function " << *BF << '\n'; 1193 continue; 1194 } 1195 1196 if (opts::Verbosity >= 1) 1197 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1198 << Twine::utohexstr(Address + FDE->getAddressRange()) 1199 << ") has no corresponding symbol table entry\n"; 1200 1201 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1202 assert(Section && "cannot get section for address from FDE"); 1203 std::string FunctionName = 1204 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1205 BC->createBinaryFunction(FunctionName, *Section, Address, 1206 FDE->getAddressRange()); 1207 } 1208 1209 BC->setHasSymbolsWithFileName(SeenFileName); 1210 1211 // Now that all the functions were created - adjust their boundaries. 1212 adjustFunctionBoundaries(); 1213 1214 // Annotate functions with code/data markers in AArch64 1215 for (auto ISym = MarkersBegin; ISym != SortedFileSymbols.end(); ++ISym) { 1216 const SymbolRef &Symbol = *ISym; 1217 uint64_t Address = 1218 cantFail(Symbol.getAddress(), "cannot get symbol address"); 1219 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1220 BinaryFunction *BF = 1221 BC->getBinaryFunctionContainingAddress(Address, true, true); 1222 if (!BF) { 1223 // Stray marker 1224 continue; 1225 } 1226 const uint64_t EntryOffset = Address - BF->getAddress(); 1227 if (BF->isCodeMarker(Symbol, SymbolSize)) { 1228 BF->markCodeAtOffset(EntryOffset); 1229 continue; 1230 } 1231 if (BF->isDataMarker(Symbol, SymbolSize)) { 1232 BF->markDataAtOffset(EntryOffset); 1233 BC->AddressToConstantIslandMap[Address] = BF; 1234 continue; 1235 } 1236 llvm_unreachable("Unknown marker"); 1237 } 1238 1239 if (opts::LinuxKernelMode) { 1240 // Read all special linux kernel sections and their relocations 1241 processLKSections(); 1242 } else { 1243 // Read all relocations now that we have binary functions mapped. 1244 processRelocations(); 1245 } 1246 } 1247 1248 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1249 uint64_t EntryAddress, 1250 uint64_t EntrySize) { 1251 if (!TargetAddress) 1252 return; 1253 1254 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1255 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1256 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1257 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1258 BF->setPLTSymbol(TargetSymbol); 1259 }; 1260 1261 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1262 if (BF && BC->isAArch64()) { 1263 // Handle IFUNC trampoline 1264 setPLTSymbol(BF, BF->getOneName()); 1265 return; 1266 } 1267 1268 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1269 if (!Rel || !Rel->Symbol) 1270 return; 1271 1272 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1273 assert(Section && "cannot get section for address"); 1274 BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, 1275 EntryAddress, 0, EntrySize, 1276 Section->getAlignment()); 1277 setPLTSymbol(BF, Rel->Symbol->getName()); 1278 } 1279 1280 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1281 const uint64_t SectionAddress = Section.getAddress(); 1282 const uint64_t SectionSize = Section.getSize(); 1283 StringRef PLTContents = Section.getContents(); 1284 ArrayRef<uint8_t> PLTData( 1285 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1286 1287 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1288 uint64_t &InstrSize) { 1289 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1290 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1291 PLTData.slice(InstrOffset), InstrAddr, 1292 nulls())) { 1293 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1294 << Section.getName() << " at offset 0x" 1295 << Twine::utohexstr(InstrOffset) << '\n'; 1296 exit(1); 1297 } 1298 }; 1299 1300 uint64_t InstrOffset = 0; 1301 // Locate new plt entry 1302 while (InstrOffset < SectionSize) { 1303 InstructionListType Instructions; 1304 MCInst Instruction; 1305 uint64_t EntryOffset = InstrOffset; 1306 uint64_t EntrySize = 0; 1307 uint64_t InstrSize; 1308 // Loop through entry instructions 1309 while (InstrOffset < SectionSize) { 1310 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1311 EntrySize += InstrSize; 1312 if (!BC->MIB->isIndirectBranch(Instruction)) { 1313 Instructions.emplace_back(Instruction); 1314 InstrOffset += InstrSize; 1315 continue; 1316 } 1317 1318 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1319 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1320 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1321 1322 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1323 break; 1324 } 1325 1326 // Branch instruction 1327 InstrOffset += InstrSize; 1328 1329 // Skip nops if any 1330 while (InstrOffset < SectionSize) { 1331 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1332 if (!BC->MIB->isNoop(Instruction)) 1333 break; 1334 1335 InstrOffset += InstrSize; 1336 } 1337 } 1338 } 1339 1340 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1341 uint64_t EntrySize) { 1342 const uint64_t SectionAddress = Section.getAddress(); 1343 const uint64_t SectionSize = Section.getSize(); 1344 StringRef PLTContents = Section.getContents(); 1345 ArrayRef<uint8_t> PLTData( 1346 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1347 1348 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1349 uint64_t &InstrSize) { 1350 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1351 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1352 PLTData.slice(InstrOffset), InstrAddr, 1353 nulls())) { 1354 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1355 << Section.getName() << " at offset 0x" 1356 << Twine::utohexstr(InstrOffset) << '\n'; 1357 exit(1); 1358 } 1359 }; 1360 1361 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1362 EntryOffset += EntrySize) { 1363 MCInst Instruction; 1364 uint64_t InstrSize, InstrOffset = EntryOffset; 1365 while (InstrOffset < EntryOffset + EntrySize) { 1366 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1367 // Check if the entry size needs adjustment. 1368 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1369 EntrySize == 8) 1370 EntrySize = 16; 1371 1372 if (BC->MIB->isIndirectBranch(Instruction)) 1373 break; 1374 1375 InstrOffset += InstrSize; 1376 } 1377 1378 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1379 continue; 1380 1381 uint64_t TargetAddress; 1382 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1383 SectionAddress + InstrOffset, 1384 InstrSize)) { 1385 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1386 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1387 exit(1); 1388 } 1389 1390 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1391 EntrySize); 1392 } 1393 } 1394 1395 void RewriteInstance::disassemblePLT() { 1396 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1397 if (BC->isAArch64()) 1398 return disassemblePLTSectionAArch64(Section); 1399 return disassemblePLTSectionX86(Section, EntrySize); 1400 }; 1401 1402 for (BinarySection &Section : BC->allocatableSections()) { 1403 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1404 if (!PLTSI) 1405 continue; 1406 1407 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1408 // If we did not register any function at the start of the section, 1409 // then it must be a general PLT entry. Add a function at the location. 1410 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1411 BC->getBinaryFunctions().end()) { 1412 BinaryFunction *BF = BC->createBinaryFunction( 1413 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1414 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1415 BF->setPseudo(true); 1416 } 1417 } 1418 } 1419 1420 void RewriteInstance::adjustFunctionBoundaries() { 1421 for (auto BFI = BC->getBinaryFunctions().begin(), 1422 BFE = BC->getBinaryFunctions().end(); 1423 BFI != BFE; ++BFI) { 1424 BinaryFunction &Function = BFI->second; 1425 const BinaryFunction *NextFunction = nullptr; 1426 if (std::next(BFI) != BFE) 1427 NextFunction = &std::next(BFI)->second; 1428 1429 // Check if it's a fragment of a function. 1430 Optional<StringRef> FragName = 1431 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1432 if (FragName) { 1433 static bool PrintedWarning = false; 1434 if (BC->HasRelocations && !PrintedWarning) { 1435 errs() << "BOLT-WARNING: split function detected on input : " 1436 << *FragName << ". The support is limited in relocation mode.\n"; 1437 PrintedWarning = true; 1438 } 1439 Function.IsFragment = true; 1440 } 1441 1442 // Check if there's a symbol or a function with a larger address in the 1443 // same section. If there is - it determines the maximum size for the 1444 // current function. Otherwise, it is the size of a containing section 1445 // the defines it. 1446 // 1447 // NOTE: ignore some symbols that could be tolerated inside the body 1448 // of a function. 1449 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1450 while (NextSymRefI != FileSymRefs.end()) { 1451 SymbolRef &Symbol = NextSymRefI->second; 1452 const uint64_t SymbolAddress = NextSymRefI->first; 1453 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1454 1455 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1456 break; 1457 1458 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1459 break; 1460 1461 // This is potentially another entry point into the function. 1462 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1463 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1464 << Function << " at offset 0x" 1465 << Twine::utohexstr(EntryOffset) << '\n'); 1466 Function.addEntryPointAtOffset(EntryOffset); 1467 1468 ++NextSymRefI; 1469 } 1470 1471 // Function runs at most till the end of the containing section. 1472 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1473 // Or till the next object marked by a symbol. 1474 if (NextSymRefI != FileSymRefs.end()) 1475 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1476 1477 // Or till the next function not marked by a symbol. 1478 if (NextFunction) 1479 NextObjectAddress = 1480 std::min(NextFunction->getAddress(), NextObjectAddress); 1481 1482 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1483 if (MaxSize < Function.getSize()) { 1484 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1485 << Function << ". Skipping.\n"; 1486 Function.setSimple(false); 1487 Function.setMaxSize(Function.getSize()); 1488 continue; 1489 } 1490 Function.setMaxSize(MaxSize); 1491 if (!Function.getSize() && Function.isSimple()) { 1492 // Some assembly functions have their size set to 0, use the max 1493 // size as their real size. 1494 if (opts::Verbosity >= 1) 1495 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1496 << Function.getMaxSize() << " (was 0)\n"; 1497 Function.setSize(Function.getMaxSize()); 1498 } 1499 } 1500 } 1501 1502 void RewriteInstance::relocateEHFrameSection() { 1503 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1504 1505 DWARFDataExtractor DE(EHFrameSection->getContents(), 1506 BC->AsmInfo->isLittleEndian(), 1507 BC->AsmInfo->getCodePointerSize()); 1508 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1509 if (DwarfType == dwarf::DW_EH_PE_omit) 1510 return; 1511 1512 // Only fix references that are relative to other locations. 1513 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1514 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1515 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1516 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1517 return; 1518 1519 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1520 return; 1521 1522 uint64_t RelType; 1523 switch (DwarfType & 0x0f) { 1524 default: 1525 llvm_unreachable("unsupported DWARF encoding type"); 1526 case dwarf::DW_EH_PE_sdata4: 1527 case dwarf::DW_EH_PE_udata4: 1528 RelType = Relocation::getPC32(); 1529 Offset -= 4; 1530 break; 1531 case dwarf::DW_EH_PE_sdata8: 1532 case dwarf::DW_EH_PE_udata8: 1533 RelType = Relocation::getPC64(); 1534 Offset -= 8; 1535 break; 1536 } 1537 1538 // Create a relocation against an absolute value since the goal is to 1539 // preserve the contents of the section independent of the new values 1540 // of referenced symbols. 1541 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1542 }; 1543 1544 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1545 check_error(std::move(E), "failed to patch EH frame"); 1546 } 1547 1548 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1549 return ArrayRef<uint8_t>(LSDASection->getData(), 1550 LSDASection->getContents().size()); 1551 } 1552 1553 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1554 1555 Error RewriteInstance::readSpecialSections() { 1556 NamedRegionTimer T("readSpecialSections", "read special sections", 1557 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1558 1559 bool HasTextRelocations = false; 1560 bool HasDebugInfo = false; 1561 1562 // Process special sections. 1563 for (const SectionRef &Section : InputFile->sections()) { 1564 Expected<StringRef> SectionNameOrErr = Section.getName(); 1565 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1566 StringRef SectionName = *SectionNameOrErr; 1567 1568 // Only register sections with names. 1569 if (!SectionName.empty()) { 1570 if (Error E = Section.getContents().takeError()) 1571 return E; 1572 BC->registerSection(Section); 1573 LLVM_DEBUG( 1574 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1575 << Twine::utohexstr(Section.getAddress()) << ":0x" 1576 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1577 << "\n"); 1578 if (isDebugSection(SectionName)) 1579 HasDebugInfo = true; 1580 if (isKSymtabSection(SectionName)) 1581 opts::LinuxKernelMode = true; 1582 } 1583 } 1584 1585 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1586 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1587 "Use -update-debug-sections to keep it.\n"; 1588 } 1589 1590 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1591 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1592 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1593 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1594 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1595 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1596 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1597 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1598 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1599 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1600 1601 if (ErrorOr<BinarySection &> BATSec = 1602 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1603 // Do not read BAT when plotting a heatmap 1604 if (!opts::HeatmapMode) { 1605 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1606 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1607 "table.\n"; 1608 exit(1); 1609 } 1610 } 1611 } 1612 1613 if (opts::PrintSections) { 1614 outs() << "BOLT-INFO: Sections from original binary:\n"; 1615 BC->printSections(outs()); 1616 } 1617 1618 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1619 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1620 "file. Cannot proceed in relocations mode (-relocs).\n"; 1621 exit(1); 1622 } 1623 1624 BC->HasRelocations = 1625 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1626 1627 // Force non-relocation mode for heatmap generation 1628 if (opts::HeatmapMode) 1629 BC->HasRelocations = false; 1630 1631 if (BC->HasRelocations) 1632 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1633 << "relocation mode\n"; 1634 1635 // Read EH frame for function boundaries info. 1636 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1637 if (!EHFrameOrError) 1638 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1639 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1640 1641 // Parse build-id 1642 parseBuildID(); 1643 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1644 BC->setFileBuildID(*FileBuildID); 1645 1646 parseSDTNotes(); 1647 1648 // Read .dynamic/PT_DYNAMIC. 1649 return readELFDynamic(); 1650 } 1651 1652 void RewriteInstance::adjustCommandLineOptions() { 1653 if (BC->isAArch64() && !BC->HasRelocations) 1654 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1655 "supported\n"; 1656 1657 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1658 RtLibrary->adjustCommandLineOptions(*BC); 1659 1660 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1661 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1662 opts::AlignMacroOpFusion = MFT_NONE; 1663 } 1664 1665 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1666 if (!BC->HasRelocations) { 1667 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1668 "non-relocation mode\n"; 1669 exit(1); 1670 } 1671 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1672 "may take several minutes\n"; 1673 opts::AlignMacroOpFusion = MFT_NONE; 1674 } 1675 1676 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1677 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1678 "mode\n"; 1679 opts::AlignMacroOpFusion = MFT_NONE; 1680 } 1681 1682 if (opts::SplitEH && !BC->HasRelocations) { 1683 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1684 opts::SplitEH = false; 1685 } 1686 1687 if (opts::SplitEH && !BC->HasFixedLoadAddress) { 1688 errs() << "BOLT-WARNING: disabling -split-eh for shared object\n"; 1689 opts::SplitEH = false; 1690 } 1691 1692 if (opts::StrictMode && !BC->HasRelocations) { 1693 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1694 "mode\n"; 1695 opts::StrictMode = false; 1696 } 1697 1698 if (BC->HasRelocations && opts::AggregateOnly && 1699 !opts::StrictMode.getNumOccurrences()) { 1700 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1701 "purposes\n"; 1702 opts::StrictMode = true; 1703 } 1704 1705 if (BC->isX86() && BC->HasRelocations && 1706 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1707 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1708 "was specified\n"; 1709 opts::AlignMacroOpFusion = MFT_ALL; 1710 } 1711 1712 if (!BC->HasRelocations && 1713 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1714 errs() << "BOLT-ERROR: function reordering only works when " 1715 << "relocations are enabled\n"; 1716 exit(1); 1717 } 1718 1719 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1720 !opts::HotText.getNumOccurrences()) { 1721 opts::HotText = true; 1722 } else if (opts::HotText && !BC->HasRelocations) { 1723 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1724 opts::HotText = false; 1725 } 1726 1727 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1728 opts::HotTextMoveSections.addValue(".stub"); 1729 opts::HotTextMoveSections.addValue(".mover"); 1730 opts::HotTextMoveSections.addValue(".never_hugify"); 1731 } 1732 1733 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1734 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1735 "\n"; 1736 opts::UseOldText = false; 1737 } 1738 if (opts::UseOldText && !BC->HasRelocations) { 1739 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1740 opts::UseOldText = false; 1741 } 1742 1743 if (!opts::AlignText.getNumOccurrences()) 1744 opts::AlignText = BC->PageAlign; 1745 1746 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1747 !opts::UseOldText) 1748 opts::Lite = true; 1749 1750 if (opts::Lite && opts::UseOldText) { 1751 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1752 "Disabling -use-old-text.\n"; 1753 opts::UseOldText = false; 1754 } 1755 1756 if (opts::Lite && opts::StrictMode) { 1757 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1758 exit(1); 1759 } 1760 1761 if (opts::Lite) 1762 outs() << "BOLT-INFO: enabling lite mode\n"; 1763 1764 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1765 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1766 "file processed by BOLT. Please remove -w option and use branch " 1767 "profile.\n"; 1768 exit(1); 1769 } 1770 } 1771 1772 namespace { 1773 template <typename ELFT> 1774 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1775 const RelocationRef &RelRef) { 1776 using ELFShdrTy = typename ELFT::Shdr; 1777 using Elf_Rela = typename ELFT::Rela; 1778 int64_t Addend = 0; 1779 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1780 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1781 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1782 switch (RelocationSection->sh_type) { 1783 default: 1784 llvm_unreachable("unexpected relocation section type"); 1785 case ELF::SHT_REL: 1786 break; 1787 case ELF::SHT_RELA: { 1788 const Elf_Rela *RelA = Obj->getRela(Rel); 1789 Addend = RelA->r_addend; 1790 break; 1791 } 1792 } 1793 1794 return Addend; 1795 } 1796 1797 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1798 const RelocationRef &Rel) { 1799 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1800 return getRelocationAddend(ELF32LE, Rel); 1801 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1802 return getRelocationAddend(ELF64LE, Rel); 1803 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1804 return getRelocationAddend(ELF32BE, Rel); 1805 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1806 return getRelocationAddend(ELF64BE, Rel); 1807 } 1808 1809 template <typename ELFT> 1810 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1811 const RelocationRef &RelRef) { 1812 using ELFShdrTy = typename ELFT::Shdr; 1813 uint32_t Symbol = 0; 1814 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1815 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1816 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1817 switch (RelocationSection->sh_type) { 1818 default: 1819 llvm_unreachable("unexpected relocation section type"); 1820 case ELF::SHT_REL: 1821 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1822 break; 1823 case ELF::SHT_RELA: 1824 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1825 break; 1826 } 1827 1828 return Symbol; 1829 } 1830 1831 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1832 const RelocationRef &Rel) { 1833 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1834 return getRelocationSymbol(ELF32LE, Rel); 1835 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1836 return getRelocationSymbol(ELF64LE, Rel); 1837 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1838 return getRelocationSymbol(ELF32BE, Rel); 1839 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1840 return getRelocationSymbol(ELF64BE, Rel); 1841 } 1842 } // anonymous namespace 1843 1844 bool RewriteInstance::analyzeRelocation( 1845 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1846 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1847 uint64_t &ExtractedValue, bool &Skip) const { 1848 Skip = false; 1849 if (!Relocation::isSupported(RType)) 1850 return false; 1851 1852 const bool IsAArch64 = BC->isAArch64(); 1853 1854 const size_t RelSize = Relocation::getSizeForType(RType); 1855 1856 ErrorOr<uint64_t> Value = 1857 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1858 assert(Value && "failed to extract relocated value"); 1859 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1860 return true; 1861 1862 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1863 Addend = getRelocationAddend(InputFile, Rel); 1864 1865 const bool IsPCRelative = Relocation::isPCRelative(RType); 1866 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1867 bool SkipVerification = false; 1868 auto SymbolIter = Rel.getSymbol(); 1869 if (SymbolIter == InputFile->symbol_end()) { 1870 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1871 MCSymbol *RelSymbol = 1872 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1873 SymbolName = std::string(RelSymbol->getName()); 1874 IsSectionRelocation = false; 1875 } else { 1876 const SymbolRef &Symbol = *SymbolIter; 1877 SymbolName = std::string(cantFail(Symbol.getName())); 1878 SymbolAddress = cantFail(Symbol.getAddress()); 1879 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1880 // Section symbols are marked as ST_Debug. 1881 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1882 // Check for PLT entry registered with symbol name 1883 if (!SymbolAddress && IsAArch64) { 1884 BinaryData *BD = BC->getBinaryDataByName(SymbolName + "@PLT"); 1885 SymbolAddress = BD ? BD->getAddress() : 0; 1886 } 1887 } 1888 // For PIE or dynamic libs, the linker may choose not to put the relocation 1889 // result at the address if it is a X86_64_64 one because it will emit a 1890 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1891 // resolve it at run time. The static relocation result goes as the addend 1892 // of the dynamic relocation in this case. We can't verify these cases. 1893 // FIXME: perhaps we can try to find if it really emitted a corresponding 1894 // RELATIVE relocation at this offset with the correct value as the addend. 1895 if (!BC->HasFixedLoadAddress && RelSize == 8) 1896 SkipVerification = true; 1897 1898 if (IsSectionRelocation && !IsAArch64) { 1899 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1900 assert(Section && "section expected for section relocation"); 1901 SymbolName = "section " + std::string(Section->getName()); 1902 // Convert section symbol relocations to regular relocations inside 1903 // non-section symbols. 1904 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1905 SymbolAddress = ExtractedValue; 1906 Addend = 0; 1907 } else { 1908 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1909 } 1910 } 1911 1912 // If no symbol has been found or if it is a relocation requiring the 1913 // creation of a GOT entry, do not link against the symbol but against 1914 // whatever address was extracted from the instruction itself. We are 1915 // not creating a GOT entry as this was already processed by the linker. 1916 // For GOT relocs, do not subtract addend as the addend does not refer 1917 // to this instruction's target, but it refers to the target in the GOT 1918 // entry. 1919 if (Relocation::isGOT(RType)) { 1920 Addend = 0; 1921 SymbolAddress = ExtractedValue + PCRelOffset; 1922 } else if (Relocation::isTLS(RType)) { 1923 SkipVerification = true; 1924 } else if (!SymbolAddress) { 1925 assert(!IsSectionRelocation); 1926 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1927 SymbolAddress = 1928 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1929 } else { 1930 // This is weird case. The extracted value is zero but the addend is 1931 // non-zero and the relocation is not pc-rel. Using the previous logic, 1932 // the SymbolAddress would end up as a huge number. Seen in 1933 // exceptions_pic.test. 1934 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1935 << Twine::utohexstr(Rel.getOffset()) 1936 << " value does not match addend for " 1937 << "relocation to undefined symbol.\n"); 1938 return true; 1939 } 1940 } 1941 1942 auto verifyExtractedValue = [&]() { 1943 if (SkipVerification) 1944 return true; 1945 1946 if (IsAArch64) 1947 return true; 1948 1949 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1950 return true; 1951 1952 if (RType == ELF::R_X86_64_PLT32) 1953 return true; 1954 1955 return truncateToSize(ExtractedValue, RelSize) == 1956 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1957 }; 1958 1959 (void)verifyExtractedValue; 1960 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1961 1962 return true; 1963 } 1964 1965 void RewriteInstance::processDynamicRelocations() { 1966 // Read relocations for PLT - DT_JMPREL. 1967 if (PLTRelocationsSize > 0) { 1968 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1969 BC->getSectionForAddress(*PLTRelocationsAddress); 1970 if (!PLTRelSectionOrErr) 1971 report_error("unable to find section corresponding to DT_JMPREL", 1972 PLTRelSectionOrErr.getError()); 1973 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1974 report_error("section size mismatch for DT_PLTRELSZ", 1975 errc::executable_format_error); 1976 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1977 /*IsJmpRel*/ true); 1978 } 1979 1980 // The rest of dynamic relocations - DT_RELA. 1981 if (DynamicRelocationsSize > 0) { 1982 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1983 BC->getSectionForAddress(*DynamicRelocationsAddress); 1984 if (!DynamicRelSectionOrErr) 1985 report_error("unable to find section corresponding to DT_RELA", 1986 DynamicRelSectionOrErr.getError()); 1987 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1988 report_error("section size mismatch for DT_RELASZ", 1989 errc::executable_format_error); 1990 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1991 /*IsJmpRel*/ false); 1992 } 1993 } 1994 1995 void RewriteInstance::processRelocations() { 1996 if (!BC->HasRelocations) 1997 return; 1998 1999 for (const SectionRef &Section : InputFile->sections()) { 2000 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 2001 !BinarySection(*BC, Section).isAllocatable()) 2002 readRelocations(Section); 2003 } 2004 2005 if (NumFailedRelocations) 2006 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2007 << " relocations\n"; 2008 } 2009 2010 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 2011 int32_t PCRelativeOffset, 2012 bool IsPCRelative, StringRef SectionName) { 2013 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2014 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2015 } 2016 2017 void RewriteInstance::processLKSections() { 2018 assert(opts::LinuxKernelMode && 2019 "process Linux Kernel special sections and their relocations only in " 2020 "linux kernel mode.\n"); 2021 2022 processLKExTable(); 2023 processLKPCIFixup(); 2024 processLKKSymtab(); 2025 processLKKSymtab(true); 2026 processLKBugTable(); 2027 processLKSMPLocks(); 2028 } 2029 2030 /// Process __ex_table section of Linux Kernel. 2031 /// This section contains information regarding kernel level exception 2032 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2033 /// More documentation is in arch/x86/include/asm/extable.h. 2034 /// 2035 /// The section is the list of the following structures: 2036 /// 2037 /// struct exception_table_entry { 2038 /// int insn; 2039 /// int fixup; 2040 /// int handler; 2041 /// }; 2042 /// 2043 void RewriteInstance::processLKExTable() { 2044 ErrorOr<BinarySection &> SectionOrError = 2045 BC->getUniqueSectionByName("__ex_table"); 2046 if (!SectionOrError) 2047 return; 2048 2049 const uint64_t SectionSize = SectionOrError->getSize(); 2050 const uint64_t SectionAddress = SectionOrError->getAddress(); 2051 assert((SectionSize % 12) == 0 && 2052 "The size of the __ex_table section should be a multiple of 12"); 2053 for (uint64_t I = 0; I < SectionSize; I += 4) { 2054 const uint64_t EntryAddress = SectionAddress + I; 2055 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2056 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2057 int32_t SignedOffset = *Offset; 2058 const uint64_t RefAddress = EntryAddress + SignedOffset; 2059 2060 BinaryFunction *ContainingBF = 2061 BC->getBinaryFunctionContainingAddress(RefAddress); 2062 if (!ContainingBF) 2063 continue; 2064 2065 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2066 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2067 switch (I % 12) { 2068 default: 2069 llvm_unreachable("bad alignment of __ex_table"); 2070 break; 2071 case 0: 2072 // insn 2073 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2074 break; 2075 case 4: 2076 // fixup 2077 if (FunctionOffset) 2078 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2079 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2080 0, *Offset); 2081 break; 2082 case 8: 2083 // handler 2084 assert(!FunctionOffset && 2085 "__ex_table handler entry should point to function start"); 2086 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2087 0, *Offset); 2088 break; 2089 } 2090 } 2091 } 2092 2093 /// Process .pci_fixup section of Linux Kernel. 2094 /// This section contains a list of entries for different PCI devices and their 2095 /// corresponding hook handler (code pointer where the fixup 2096 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2097 /// Documentation is in include/linux/pci.h. 2098 void RewriteInstance::processLKPCIFixup() { 2099 ErrorOr<BinarySection &> SectionOrError = 2100 BC->getUniqueSectionByName(".pci_fixup"); 2101 assert(SectionOrError && 2102 ".pci_fixup section not found in Linux Kernel binary"); 2103 const uint64_t SectionSize = SectionOrError->getSize(); 2104 const uint64_t SectionAddress = SectionOrError->getAddress(); 2105 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2106 2107 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2108 const uint64_t PC = SectionAddress + I; 2109 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2110 assert(Offset && "cannot read value from .pci_fixup"); 2111 const int32_t SignedOffset = *Offset; 2112 const uint64_t HookupAddress = PC + SignedOffset; 2113 BinaryFunction *HookupFunction = 2114 BC->getBinaryFunctionAtAddress(HookupAddress); 2115 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2116 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2117 *Offset); 2118 } 2119 } 2120 2121 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2122 /// This section lists all the vmlinux symbols that kernel modules can access. 2123 /// 2124 /// All the entries are 4 bytes each and hence we can read them by one by one 2125 /// and ignore the ones that are not pointing to the .text section. All pointers 2126 /// are PC relative offsets. Always, points to the beginning of the function. 2127 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2128 StringRef SectionName = "__ksymtab"; 2129 if (IsGPL) 2130 SectionName = "__ksymtab_gpl"; 2131 ErrorOr<BinarySection &> SectionOrError = 2132 BC->getUniqueSectionByName(SectionName); 2133 assert(SectionOrError && 2134 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2135 const uint64_t SectionSize = SectionOrError->getSize(); 2136 const uint64_t SectionAddress = SectionOrError->getAddress(); 2137 assert((SectionSize % 4) == 0 && 2138 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2139 2140 for (uint64_t I = 0; I < SectionSize; I += 4) { 2141 const uint64_t EntryAddress = SectionAddress + I; 2142 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2143 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2144 const int32_t SignedOffset = *Offset; 2145 const uint64_t RefAddress = EntryAddress + SignedOffset; 2146 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2147 if (!BF) 2148 continue; 2149 2150 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2151 *Offset); 2152 } 2153 } 2154 2155 /// Process __bug_table section. 2156 /// This section contains information useful for kernel debugging. 2157 /// Each entry in the section is a struct bug_entry that contains a pointer to 2158 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2159 /// pointers use PC relative offset addressing), line number, and flags. 2160 /// The definition of the struct bug_entry can be found in 2161 /// `include/asm-generic/bug.h` 2162 void RewriteInstance::processLKBugTable() { 2163 ErrorOr<BinarySection &> SectionOrError = 2164 BC->getUniqueSectionByName("__bug_table"); 2165 if (!SectionOrError) 2166 return; 2167 2168 const uint64_t SectionSize = SectionOrError->getSize(); 2169 const uint64_t SectionAddress = SectionOrError->getAddress(); 2170 assert((SectionSize % 12) == 0 && 2171 "The size of the __bug_table section should be a multiple of 12"); 2172 for (uint64_t I = 0; I < SectionSize; I += 12) { 2173 const uint64_t EntryAddress = SectionAddress + I; 2174 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2175 assert(Offset && 2176 "Reading valid PC-relative offset for a __bug_table entry"); 2177 const int32_t SignedOffset = *Offset; 2178 const uint64_t RefAddress = EntryAddress + SignedOffset; 2179 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2180 "__bug_table entries should point to a function"); 2181 2182 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2183 } 2184 } 2185 2186 /// .smp_locks section contains PC-relative references to instructions with LOCK 2187 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2188 void RewriteInstance::processLKSMPLocks() { 2189 ErrorOr<BinarySection &> SectionOrError = 2190 BC->getUniqueSectionByName(".smp_locks"); 2191 if (!SectionOrError) 2192 return; 2193 2194 uint64_t SectionSize = SectionOrError->getSize(); 2195 const uint64_t SectionAddress = SectionOrError->getAddress(); 2196 assert((SectionSize % 4) == 0 && 2197 "The size of the .smp_locks section should be a multiple of 4"); 2198 2199 for (uint64_t I = 0; I < SectionSize; I += 4) { 2200 const uint64_t EntryAddress = SectionAddress + I; 2201 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2202 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2203 int32_t SignedOffset = *Offset; 2204 uint64_t RefAddress = EntryAddress + SignedOffset; 2205 2206 BinaryFunction *ContainingBF = 2207 BC->getBinaryFunctionContainingAddress(RefAddress); 2208 if (!ContainingBF) 2209 continue; 2210 2211 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2212 } 2213 } 2214 2215 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2216 bool IsJmpRel) { 2217 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2218 2219 LLVM_DEBUG({ 2220 StringRef SectionName = cantFail(Section.getName()); 2221 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2222 << ":\n"; 2223 }); 2224 2225 for (const RelocationRef &Rel : Section.relocations()) { 2226 const uint64_t RType = Rel.getType(); 2227 if (Relocation::isNone(RType)) 2228 continue; 2229 2230 StringRef SymbolName = "<none>"; 2231 MCSymbol *Symbol = nullptr; 2232 uint64_t SymbolAddress = 0; 2233 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2234 2235 symbol_iterator SymbolIter = Rel.getSymbol(); 2236 if (SymbolIter != InputFile->symbol_end()) { 2237 SymbolName = cantFail(SymbolIter->getName()); 2238 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2239 Symbol = BD ? BD->getSymbol() 2240 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2241 SymbolAddress = cantFail(SymbolIter->getAddress()); 2242 (void)SymbolAddress; 2243 } 2244 2245 LLVM_DEBUG( 2246 SmallString<16> TypeName; 2247 Rel.getTypeName(TypeName); 2248 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2249 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2250 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2251 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2252 ); 2253 2254 if (IsJmpRel) 2255 IsJmpRelocation[RType] = true; 2256 2257 if (Symbol) 2258 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2259 2260 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2261 } 2262 } 2263 2264 void RewriteInstance::readRelocations(const SectionRef &Section) { 2265 LLVM_DEBUG({ 2266 StringRef SectionName = cantFail(Section.getName()); 2267 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2268 << ":\n"; 2269 }); 2270 if (BinarySection(*BC, Section).isAllocatable()) { 2271 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2272 return; 2273 } 2274 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2275 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2276 SectionRef RelocatedSection = *SecIter; 2277 2278 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2279 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2280 << RelocatedSectionName << '\n'); 2281 2282 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2283 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2284 << "non-allocatable section\n"); 2285 return; 2286 } 2287 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2288 .Cases(".plt", ".rela.plt", ".got.plt", 2289 ".eh_frame", ".gcc_except_table", true) 2290 .Default(false); 2291 if (SkipRelocs) { 2292 LLVM_DEBUG( 2293 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2294 return; 2295 } 2296 2297 const bool IsAArch64 = BC->isAArch64(); 2298 const bool IsFromCode = RelocatedSection.isText(); 2299 2300 auto printRelocationInfo = [&](const RelocationRef &Rel, 2301 StringRef SymbolName, 2302 uint64_t SymbolAddress, 2303 uint64_t Addend, 2304 uint64_t ExtractedValue) { 2305 SmallString<16> TypeName; 2306 Rel.getTypeName(TypeName); 2307 const uint64_t Address = SymbolAddress + Addend; 2308 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2309 dbgs() << "Relocation: offset = 0x" 2310 << Twine::utohexstr(Rel.getOffset()) 2311 << "; type = " << TypeName 2312 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2313 << "; symbol = " << SymbolName 2314 << " (" << (Section ? Section->getName() : "") << ")" 2315 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2316 << "; addend = 0x" << Twine::utohexstr(Addend) 2317 << "; address = 0x" << Twine::utohexstr(Address) 2318 << "; in = "; 2319 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2320 Rel.getOffset(), false, IsAArch64)) 2321 dbgs() << Func->getPrintName() << "\n"; 2322 else 2323 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2324 }; 2325 2326 for (const RelocationRef &Rel : Section.relocations()) { 2327 SmallString<16> TypeName; 2328 Rel.getTypeName(TypeName); 2329 uint64_t RType = Rel.getType(); 2330 if (Relocation::isNone(RType)) 2331 continue; 2332 2333 // Adjust the relocation type as the linker might have skewed it. 2334 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2335 if (opts::Verbosity >= 1) 2336 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2337 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2338 } 2339 2340 if (Relocation::isTLS(RType)) { 2341 // No special handling required for TLS relocations on X86. 2342 if (BC->isX86()) 2343 continue; 2344 2345 // The non-got related TLS relocations on AArch64 also could be skipped. 2346 if (!Relocation::isGOT(RType)) 2347 continue; 2348 } 2349 2350 if (BC->getDynamicRelocationAt(Rel.getOffset())) { 2351 LLVM_DEBUG( 2352 dbgs() << "BOLT-DEBUG: address 0x" 2353 << Twine::utohexstr(Rel.getOffset()) 2354 << " has a dynamic relocation against it. Ignoring static " 2355 "relocation.\n"); 2356 continue; 2357 } 2358 2359 std::string SymbolName; 2360 uint64_t SymbolAddress; 2361 int64_t Addend; 2362 uint64_t ExtractedValue; 2363 bool IsSectionRelocation; 2364 bool Skip; 2365 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2366 SymbolAddress, Addend, ExtractedValue, Skip)) { 2367 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2368 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2369 << "; type name = " << TypeName << '\n'); 2370 ++NumFailedRelocations; 2371 continue; 2372 } 2373 2374 if (Skip) { 2375 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2376 << Twine::utohexstr(Rel.getOffset()) 2377 << "; type name = " << TypeName << '\n'); 2378 continue; 2379 } 2380 2381 const uint64_t Address = SymbolAddress + Addend; 2382 2383 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2384 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2385 2386 BinaryFunction *ContainingBF = nullptr; 2387 if (IsFromCode) { 2388 ContainingBF = 2389 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2390 /*CheckPastEnd*/ false, 2391 /*UseMaxSize*/ true); 2392 assert(ContainingBF && "cannot find function for address in code"); 2393 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2394 if (opts::Verbosity >= 1) 2395 outs() << "BOLT-INFO: " << *ContainingBF 2396 << " has relocations in padding area\n"; 2397 ContainingBF->setSize(ContainingBF->getMaxSize()); 2398 ContainingBF->setSimple(false); 2399 continue; 2400 } 2401 } 2402 2403 MCSymbol *ReferencedSymbol = nullptr; 2404 if (!IsSectionRelocation) { 2405 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2406 ReferencedSymbol = BD->getSymbol(); 2407 } 2408 2409 // PC-relative relocations from data to code are tricky since the original 2410 // information is typically lost after linking even with '--emit-relocs'. 2411 // They are normally used by PIC-style jump tables and reference both 2412 // the jump table and jump destination by computing the difference 2413 // between the two. If we blindly apply the relocation it will appear 2414 // that it references an arbitrary location in the code, possibly even 2415 // in a different function from that containing the jump table. 2416 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2417 // For relocations against non-code sections, just register the fact that 2418 // we have a PC-relative relocation at a given address. The actual 2419 // referenced label/address cannot be determined from linker data alone. 2420 if (!IsFromCode) 2421 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2422 else if (!IsSectionRelocation && ReferencedSymbol) 2423 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2424 Addend, ExtractedValue); 2425 else 2426 LLVM_DEBUG( 2427 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2428 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2429 << "\n"); 2430 continue; 2431 } 2432 2433 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2434 ErrorOr<BinarySection &> RefSection = 2435 std::make_error_code(std::errc::bad_address); 2436 if (BC->isAArch64() && Relocation::isGOT(RType)) { 2437 ForceRelocation = true; 2438 } else { 2439 RefSection = BC->getSectionForAddress(SymbolAddress); 2440 if (!RefSection && !ForceRelocation) { 2441 LLVM_DEBUG( 2442 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2443 continue; 2444 } 2445 } 2446 2447 const bool IsToCode = RefSection && RefSection->isText(); 2448 2449 // Occasionally we may see a reference past the last byte of the function 2450 // typically as a result of __builtin_unreachable(). Check it here. 2451 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2452 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2453 2454 if (!IsSectionRelocation) { 2455 if (BinaryFunction *BF = 2456 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2457 if (BF != ReferencedBF) { 2458 // It's possible we are referencing a function without referencing any 2459 // code, e.g. when taking a bitmask action on a function address. 2460 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2461 "bitmask) detected against function " 2462 << *BF; 2463 if (IsFromCode) 2464 errs() << " from function " << *ContainingBF << '\n'; 2465 else 2466 errs() << " from data section at 0x" 2467 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2468 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2469 ExtractedValue)); 2470 ReferencedBF = BF; 2471 } 2472 } 2473 } else if (ReferencedBF) { 2474 assert(RefSection && "section expected for section relocation"); 2475 if (*ReferencedBF->getOriginSection() != *RefSection) { 2476 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2477 ReferencedBF = nullptr; 2478 } 2479 } 2480 2481 // Workaround for a member function pointer de-virtualization bug. We check 2482 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2483 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2484 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2485 if (const BinaryFunction *RogueBF = 2486 BC->getBinaryFunctionAtAddress(Address + 1)) { 2487 // Do an extra check that the function was referenced previously. 2488 // It's a linear search, but it should rarely happen. 2489 bool Found = false; 2490 for (const auto &RelKV : ContainingBF->Relocations) { 2491 const Relocation &Rel = RelKV.second; 2492 if (Rel.Symbol == RogueBF->getSymbol() && 2493 !Relocation::isPCRelative(Rel.Type)) { 2494 Found = true; 2495 break; 2496 } 2497 } 2498 2499 if (Found) { 2500 errs() << "BOLT-WARNING: detected possible compiler " 2501 "de-virtualization bug: -1 addend used with " 2502 "non-pc-relative relocation against function " 2503 << *RogueBF << " in function " << *ContainingBF << '\n'; 2504 continue; 2505 } 2506 } 2507 } 2508 2509 if (ForceRelocation) { 2510 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2511 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2512 SymbolAddress = 0; 2513 if (Relocation::isGOT(RType)) 2514 Addend = Address; 2515 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2516 << SymbolName << " with addend " << Addend << '\n'); 2517 } else if (ReferencedBF) { 2518 ReferencedSymbol = ReferencedBF->getSymbol(); 2519 uint64_t RefFunctionOffset = 0; 2520 2521 // Adjust the point of reference to a code location inside a function. 2522 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2523 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2524 if (RefFunctionOffset) { 2525 if (ContainingBF && ContainingBF != ReferencedBF) { 2526 ReferencedSymbol = 2527 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2528 } else { 2529 ReferencedSymbol = 2530 ReferencedBF->getOrCreateLocalLabel(Address, 2531 /*CreatePastEnd =*/true); 2532 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2533 } 2534 if (opts::Verbosity > 1 && 2535 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2536 errs() << "BOLT-WARNING: writable reference into the middle of " 2537 << "the function " << *ReferencedBF 2538 << " detected at address 0x" 2539 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2540 } 2541 SymbolAddress = Address; 2542 Addend = 0; 2543 } 2544 LLVM_DEBUG( 2545 dbgs() << " referenced function " << *ReferencedBF; 2546 if (Address != ReferencedBF->getAddress()) 2547 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2548 dbgs() << '\n' 2549 ); 2550 } else { 2551 if (IsToCode && SymbolAddress) { 2552 // This can happen e.g. with PIC-style jump tables. 2553 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2554 "relocation against code\n"); 2555 } 2556 2557 // In AArch64 there are zero reasons to keep a reference to the 2558 // "original" symbol plus addend. The original symbol is probably just a 2559 // section symbol. If we are here, this means we are probably accessing 2560 // data, so it is imperative to keep the original address. 2561 if (IsAArch64) { 2562 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2563 SymbolAddress = Address; 2564 Addend = 0; 2565 } 2566 2567 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2568 // Note: this assertion is trying to check sanity of BinaryData objects 2569 // but AArch64 has inferred and incomplete object locations coming from 2570 // GOT/TLS or any other non-trivial relocation (that requires creation 2571 // of sections and whose symbol address is not really what should be 2572 // encoded in the instruction). So we essentially disabled this check 2573 // for AArch64 and live with bogus names for objects. 2574 assert((IsAArch64 || IsSectionRelocation || 2575 BD->nameStartsWith(SymbolName) || 2576 BD->nameStartsWith("PG" + SymbolName) || 2577 (BD->nameStartsWith("ANONYMOUS") && 2578 (BD->getSectionName().startswith(".plt") || 2579 BD->getSectionName().endswith(".plt")))) && 2580 "BOLT symbol names of all non-section relocations must match " 2581 "up with symbol names referenced in the relocation"); 2582 2583 if (IsSectionRelocation) 2584 BC->markAmbiguousRelocations(*BD, Address); 2585 2586 ReferencedSymbol = BD->getSymbol(); 2587 Addend += (SymbolAddress - BD->getAddress()); 2588 SymbolAddress = BD->getAddress(); 2589 assert(Address == SymbolAddress + Addend); 2590 } else { 2591 // These are mostly local data symbols but undefined symbols 2592 // in relocation sections can get through here too, from .plt. 2593 assert( 2594 (IsAArch64 || IsSectionRelocation || 2595 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2596 "known symbols should not resolve to anonymous locals"); 2597 2598 if (IsSectionRelocation) { 2599 ReferencedSymbol = 2600 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2601 } else { 2602 SymbolRef Symbol = *Rel.getSymbol(); 2603 const uint64_t SymbolSize = 2604 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2605 const uint64_t SymbolAlignment = 2606 IsAArch64 ? 1 : Symbol.getAlignment(); 2607 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2608 std::string Name; 2609 if (SymbolFlags & SymbolRef::SF_Global) { 2610 Name = SymbolName; 2611 } else { 2612 if (StringRef(SymbolName) 2613 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2614 Name = NR.uniquify("PG" + SymbolName); 2615 else 2616 Name = NR.uniquify(SymbolName); 2617 } 2618 ReferencedSymbol = BC->registerNameAtAddress( 2619 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2620 } 2621 2622 if (IsSectionRelocation) { 2623 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2624 BC->markAmbiguousRelocations(*BD, Address); 2625 } 2626 } 2627 } 2628 2629 auto checkMaxDataRelocations = [&]() { 2630 ++NumDataRelocations; 2631 if (opts::MaxDataRelocations && 2632 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2633 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2634 << NumDataRelocations << ": "); 2635 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2636 Addend, ExtractedValue); 2637 } 2638 2639 return (!opts::MaxDataRelocations || 2640 NumDataRelocations < opts::MaxDataRelocations); 2641 }; 2642 2643 if ((RefSection && refersToReorderedSection(RefSection)) || 2644 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2645 ForceRelocation = true; 2646 2647 if (IsFromCode) { 2648 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2649 Addend, ExtractedValue); 2650 } else if (IsToCode || ForceRelocation) { 2651 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2652 ExtractedValue); 2653 } else { 2654 LLVM_DEBUG( 2655 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2656 } 2657 } 2658 } 2659 2660 void RewriteInstance::selectFunctionsToProcess() { 2661 // Extend the list of functions to process or skip from a file. 2662 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2663 cl::list<std::string> &FunctionNames) { 2664 if (FunctionNamesFile.empty()) 2665 return; 2666 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2667 std::string FuncName; 2668 while (std::getline(FuncsFile, FuncName)) 2669 FunctionNames.push_back(FuncName); 2670 }; 2671 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2672 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2673 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2674 2675 // Make a set of functions to process to speed up lookups. 2676 std::unordered_set<std::string> ForceFunctionsNR( 2677 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2678 2679 if ((!opts::ForceFunctionNames.empty() || 2680 !opts::ForceFunctionNamesNR.empty()) && 2681 !opts::SkipFunctionNames.empty()) { 2682 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2683 "same time. Please use only one type of selection.\n"; 2684 exit(1); 2685 } 2686 2687 uint64_t LiteThresholdExecCount = 0; 2688 if (opts::LiteThresholdPct) { 2689 if (opts::LiteThresholdPct > 100) 2690 opts::LiteThresholdPct = 100; 2691 2692 std::vector<const BinaryFunction *> TopFunctions; 2693 for (auto &BFI : BC->getBinaryFunctions()) { 2694 const BinaryFunction &Function = BFI.second; 2695 if (ProfileReader->mayHaveProfileData(Function)) 2696 TopFunctions.push_back(&Function); 2697 } 2698 std::sort(TopFunctions.begin(), TopFunctions.end(), 2699 [](const BinaryFunction *A, const BinaryFunction *B) { 2700 return 2701 A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2702 }); 2703 2704 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2705 if (Index) 2706 --Index; 2707 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2708 outs() << "BOLT-INFO: limiting processing to functions with at least " 2709 << LiteThresholdExecCount << " invocations\n"; 2710 } 2711 LiteThresholdExecCount = std::max( 2712 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2713 2714 uint64_t NumFunctionsToProcess = 0; 2715 auto shouldProcess = [&](const BinaryFunction &Function) { 2716 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2717 return false; 2718 2719 // If the list is not empty, only process functions from the list. 2720 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2721 // Regex check (-funcs and -funcs-file options). 2722 for (std::string &Name : opts::ForceFunctionNames) 2723 if (Function.hasNameRegex(Name)) 2724 return true; 2725 2726 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2727 Optional<StringRef> Match = 2728 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2729 return ForceFunctionsNR.count(Name.str()); 2730 }); 2731 return Match.hasValue(); 2732 } 2733 2734 for (std::string &Name : opts::SkipFunctionNames) 2735 if (Function.hasNameRegex(Name)) 2736 return false; 2737 2738 if (opts::Lite) { 2739 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2740 return false; 2741 2742 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2743 return false; 2744 } 2745 2746 return true; 2747 }; 2748 2749 for (auto &BFI : BC->getBinaryFunctions()) { 2750 BinaryFunction &Function = BFI.second; 2751 2752 // Pseudo functions are explicitly marked by us not to be processed. 2753 if (Function.isPseudo()) { 2754 Function.IsIgnored = true; 2755 Function.HasExternalRefRelocations = true; 2756 continue; 2757 } 2758 2759 if (!shouldProcess(Function)) { 2760 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2761 << Function << " per user request\n"); 2762 Function.setIgnored(); 2763 } else { 2764 ++NumFunctionsToProcess; 2765 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2766 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2767 } 2768 } 2769 } 2770 2771 void RewriteInstance::readDebugInfo() { 2772 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2773 TimerGroupDesc, opts::TimeRewrite); 2774 if (!opts::UpdateDebugSections) 2775 return; 2776 2777 BC->preprocessDebugInfo(); 2778 } 2779 2780 void RewriteInstance::preprocessProfileData() { 2781 if (!ProfileReader) 2782 return; 2783 2784 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2785 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2786 2787 outs() << "BOLT-INFO: pre-processing profile using " 2788 << ProfileReader->getReaderName() << '\n'; 2789 2790 if (BAT->enabledFor(InputFile)) { 2791 outs() << "BOLT-INFO: profile collection done on a binary already " 2792 "processed by BOLT\n"; 2793 ProfileReader->setBAT(&*BAT); 2794 } 2795 2796 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2797 report_error("cannot pre-process profile", std::move(E)); 2798 2799 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2800 !opts::AllowStripped) { 2801 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2802 "but profile data includes function names with embedded file " 2803 "names. It appears that the input binary was stripped while a " 2804 "profiled binary was not. If you know what you are doing and " 2805 "wish to proceed, use -allow-stripped option.\n"; 2806 exit(1); 2807 } 2808 } 2809 2810 void RewriteInstance::processProfileDataPreCFG() { 2811 if (!ProfileReader) 2812 return; 2813 2814 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2815 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2816 2817 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2818 report_error("cannot read profile pre-CFG", std::move(E)); 2819 } 2820 2821 void RewriteInstance::processProfileData() { 2822 if (!ProfileReader) 2823 return; 2824 2825 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2826 TimerGroupDesc, opts::TimeRewrite); 2827 2828 if (Error E = ProfileReader->readProfile(*BC.get())) 2829 report_error("cannot read profile", std::move(E)); 2830 2831 if (!opts::SaveProfile.empty()) { 2832 YAMLProfileWriter PW(opts::SaveProfile); 2833 PW.writeProfile(*this); 2834 } 2835 2836 // Release memory used by profile reader. 2837 ProfileReader.reset(); 2838 2839 if (opts::AggregateOnly) 2840 exit(0); 2841 } 2842 2843 void RewriteInstance::disassembleFunctions() { 2844 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2845 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2846 for (auto &BFI : BC->getBinaryFunctions()) { 2847 BinaryFunction &Function = BFI.second; 2848 2849 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2850 if (!FunctionData) { 2851 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2852 << "empty for function " << Function << '\n'; 2853 exit(1); 2854 } 2855 2856 // Treat zero-sized functions as non-simple ones. 2857 if (Function.getSize() == 0) { 2858 Function.setSimple(false); 2859 continue; 2860 } 2861 2862 // Offset of the function in the file. 2863 const auto *FileBegin = 2864 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2865 Function.setFileOffset(FunctionData->begin() - FileBegin); 2866 2867 if (!shouldDisassemble(Function)) { 2868 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2869 "Scan Binary Functions", opts::TimeBuild); 2870 Function.scanExternalRefs(); 2871 Function.setSimple(false); 2872 continue; 2873 } 2874 2875 if (!Function.disassemble()) { 2876 if (opts::processAllFunctions()) 2877 BC->exitWithBugReport("function cannot be properly disassembled. " 2878 "Unable to continue in relocation mode.", 2879 Function); 2880 if (opts::Verbosity >= 1) 2881 outs() << "BOLT-INFO: could not disassemble function " << Function 2882 << ". Will ignore.\n"; 2883 // Forcefully ignore the function. 2884 Function.setIgnored(); 2885 continue; 2886 } 2887 2888 if (opts::PrintAll || opts::PrintDisasm) 2889 Function.print(outs(), "after disassembly", true); 2890 2891 BC->processInterproceduralReferences(Function); 2892 } 2893 2894 BC->populateJumpTables(); 2895 BC->skipMarkedFragments(); 2896 2897 for (auto &BFI : BC->getBinaryFunctions()) { 2898 BinaryFunction &Function = BFI.second; 2899 2900 if (!shouldDisassemble(Function)) 2901 continue; 2902 2903 Function.postProcessEntryPoints(); 2904 Function.postProcessJumpTables(); 2905 } 2906 2907 BC->adjustCodePadding(); 2908 2909 for (auto &BFI : BC->getBinaryFunctions()) { 2910 BinaryFunction &Function = BFI.second; 2911 2912 if (!shouldDisassemble(Function)) 2913 continue; 2914 2915 if (!Function.isSimple()) { 2916 assert((!BC->HasRelocations || Function.getSize() == 0) && 2917 "unexpected non-simple function in relocation mode"); 2918 continue; 2919 } 2920 2921 // Fill in CFI information for this function 2922 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2923 if (BC->HasRelocations) { 2924 BC->exitWithBugReport("unable to fill CFI.", Function); 2925 } else { 2926 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2927 << ". Skipping.\n"; 2928 Function.setSimple(false); 2929 continue; 2930 } 2931 } 2932 2933 // Parse LSDA. 2934 if (Function.getLSDAAddress() != 0) 2935 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2936 } 2937 } 2938 2939 void RewriteInstance::buildFunctionsCFG() { 2940 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2941 "Build Binary Functions", opts::TimeBuild); 2942 2943 // Create annotation indices to allow lock-free execution 2944 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2945 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2946 BC->MIB->getOrCreateAnnotationIndex("Size"); 2947 2948 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2949 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2950 if (!BF.buildCFG(AllocId)) 2951 return; 2952 2953 if (opts::PrintAll) { 2954 auto L = BC->scopeLock(); 2955 BF.print(outs(), "while building cfg", true); 2956 } 2957 }; 2958 2959 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2960 return !shouldDisassemble(BF) || !BF.isSimple(); 2961 }; 2962 2963 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2964 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2965 SkipPredicate, "disassembleFunctions-buildCFG", 2966 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2967 2968 BC->postProcessSymbolTable(); 2969 } 2970 2971 void RewriteInstance::postProcessFunctions() { 2972 BC->TotalScore = 0; 2973 BC->SumExecutionCount = 0; 2974 for (auto &BFI : BC->getBinaryFunctions()) { 2975 BinaryFunction &Function = BFI.second; 2976 2977 if (Function.empty()) 2978 continue; 2979 2980 Function.postProcessCFG(); 2981 2982 if (opts::PrintAll || opts::PrintCFG) 2983 Function.print(outs(), "after building cfg", true); 2984 2985 if (opts::DumpDotAll) 2986 Function.dumpGraphForPass("00_build-cfg"); 2987 2988 if (opts::PrintLoopInfo) { 2989 Function.calculateLoopInfo(); 2990 Function.printLoopInfo(outs()); 2991 } 2992 2993 BC->TotalScore += Function.getFunctionScore(); 2994 BC->SumExecutionCount += Function.getKnownExecutionCount(); 2995 } 2996 2997 if (opts::PrintGlobals) { 2998 outs() << "BOLT-INFO: Global symbols:\n"; 2999 BC->printGlobalSymbols(outs()); 3000 } 3001 } 3002 3003 void RewriteInstance::runOptimizationPasses() { 3004 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3005 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3006 BinaryFunctionPassManager::runAllPasses(*BC); 3007 } 3008 3009 namespace { 3010 3011 class BOLTSymbolResolver : public JITSymbolResolver { 3012 BinaryContext &BC; 3013 3014 public: 3015 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3016 3017 // We are responsible for all symbols 3018 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3019 return Symbols; 3020 } 3021 3022 // Some of our symbols may resolve to zero and this should not be an error 3023 bool allowsZeroSymbols() override { return true; } 3024 3025 /// Resolves the address of each symbol requested 3026 void lookup(const LookupSet &Symbols, 3027 OnResolvedFunction OnResolved) override { 3028 JITSymbolResolver::LookupResult AllResults; 3029 3030 if (BC.EFMM->ObjectsLoaded) { 3031 for (const StringRef &Symbol : Symbols) { 3032 std::string SymName = Symbol.str(); 3033 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3034 // Resolve to a PLT entry if possible 3035 if (BinaryData *I = BC.getBinaryDataByName(SymName + "@PLT")) { 3036 AllResults[Symbol] = 3037 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3038 continue; 3039 } 3040 OnResolved(make_error<StringError>( 3041 "Symbol not found required by runtime: " + Symbol, 3042 inconvertibleErrorCode())); 3043 return; 3044 } 3045 OnResolved(std::move(AllResults)); 3046 return; 3047 } 3048 3049 for (const StringRef &Symbol : Symbols) { 3050 std::string SymName = Symbol.str(); 3051 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3052 3053 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3054 uint64_t Address = I->isMoved() && !I->isJumpTable() 3055 ? I->getOutputAddress() 3056 : I->getAddress(); 3057 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3058 << Twine::utohexstr(Address) << "\n"); 3059 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3060 continue; 3061 } 3062 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3063 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3064 } 3065 3066 OnResolved(std::move(AllResults)); 3067 } 3068 }; 3069 3070 } // anonymous namespace 3071 3072 void RewriteInstance::emitAndLink() { 3073 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3074 TimerGroupDesc, opts::TimeRewrite); 3075 std::error_code EC; 3076 3077 // This is an object file, which we keep for debugging purposes. 3078 // Once we decide it's useless, we should create it in memory. 3079 SmallString<128> OutObjectPath; 3080 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3081 std::unique_ptr<ToolOutputFile> TempOut = 3082 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3083 check_error(EC, "cannot create output object file"); 3084 3085 std::unique_ptr<buffer_ostream> BOS = 3086 std::make_unique<buffer_ostream>(TempOut->os()); 3087 raw_pwrite_stream *OS = BOS.get(); 3088 3089 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3090 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3091 // two instances. 3092 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3093 3094 if (EHFrameSection) { 3095 if (opts::UseOldText || opts::StrictMode) { 3096 // The section is going to be regenerated from scratch. 3097 // Empty the contents, but keep the section reference. 3098 EHFrameSection->clearContents(); 3099 } else { 3100 // Make .eh_frame relocatable. 3101 relocateEHFrameSection(); 3102 } 3103 } 3104 3105 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3106 3107 Streamer->Finish(); 3108 3109 ////////////////////////////////////////////////////////////////////////////// 3110 // Assign addresses to new sections. 3111 ////////////////////////////////////////////////////////////////////////////// 3112 3113 // Get output object as ObjectFile. 3114 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3115 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3116 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3117 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3118 "error creating in-memory object"); 3119 3120 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3121 3122 MCAsmLayout FinalLayout( 3123 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3124 3125 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3126 RTDyld->setProcessAllSections(false); 3127 RTDyld->loadObject(*Obj); 3128 3129 // Assign addresses to all sections. If key corresponds to the object 3130 // created by ourselves, call our regular mapping function. If we are 3131 // loading additional objects as part of runtime libraries for 3132 // instrumentation, treat them as extra sections. 3133 mapFileSections(*RTDyld); 3134 3135 RTDyld->finalizeWithMemoryManagerLocking(); 3136 if (RTDyld->hasError()) { 3137 outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3138 exit(1); 3139 } 3140 3141 // Update output addresses based on the new section map and 3142 // layout. Only do this for the object created by ourselves. 3143 updateOutputValues(FinalLayout); 3144 3145 if (opts::UpdateDebugSections) 3146 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3147 3148 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3149 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3150 this->mapExtraSections(*RTDyld); 3151 }); 3152 3153 // Once the code is emitted, we can rename function sections to actual 3154 // output sections and de-register sections used for emission. 3155 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3156 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3157 if (Section && 3158 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3159 continue; 3160 3161 // Restore origin section for functions that were emitted or supposed to 3162 // be emitted to patch sections. 3163 if (Section) 3164 BC->deregisterSection(*Section); 3165 assert(Function->getOriginSectionName() && "expected origin section"); 3166 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3167 if (Function->isSplit()) { 3168 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3169 BC->deregisterSection(*ColdSection); 3170 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3171 } 3172 } 3173 3174 if (opts::PrintCacheMetrics) { 3175 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3176 CacheMetrics::printAll(BC->getSortedFunctions()); 3177 } 3178 3179 if (opts::KeepTmp) { 3180 TempOut->keep(); 3181 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3182 "purposes: " 3183 << OutObjectPath << "\n"; 3184 } 3185 } 3186 3187 void RewriteInstance::updateMetadata() { 3188 updateSDTMarkers(); 3189 updateLKMarkers(); 3190 parsePseudoProbe(); 3191 updatePseudoProbes(); 3192 3193 if (opts::UpdateDebugSections) { 3194 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3195 TimerGroupDesc, opts::TimeRewrite); 3196 DebugInfoRewriter->updateDebugInfo(); 3197 } 3198 3199 if (opts::WriteBoltInfoSection) 3200 addBoltInfoSection(); 3201 } 3202 3203 void RewriteInstance::updatePseudoProbes() { 3204 // check if there is pseudo probe section decoded 3205 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3206 return; 3207 // input address converted to output 3208 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3209 const GUIDProbeFunctionMap &GUID2Func = 3210 BC->ProbeDecoder.getGUID2FuncDescMap(); 3211 3212 for (auto &AP : Address2ProbesMap) { 3213 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3214 // If F is removed, eliminate all probes inside it from inline tree 3215 // Setting probes' addresses as INT64_MAX means elimination 3216 if (!F) { 3217 for (MCDecodedPseudoProbe &Probe : AP.second) 3218 Probe.setAddress(INT64_MAX); 3219 continue; 3220 } 3221 // If F is not emitted, the function will remain in the same address as its 3222 // input 3223 if (!F->isEmitted()) 3224 continue; 3225 3226 uint64_t Offset = AP.first - F->getAddress(); 3227 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3228 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3229 // Check if block output address is defined. 3230 // If not, such block is removed from binary. Then remove the probes from 3231 // inline tree 3232 if (BlkOutputAddress == 0) { 3233 for (MCDecodedPseudoProbe &Probe : AP.second) 3234 Probe.setAddress(INT64_MAX); 3235 continue; 3236 } 3237 3238 unsigned ProbeTrack = AP.second.size(); 3239 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3240 while (ProbeTrack != 0) { 3241 if (Probe->isBlock()) { 3242 Probe->setAddress(BlkOutputAddress); 3243 } else if (Probe->isCall()) { 3244 // A call probe may be duplicated due to ICP 3245 // Go through output of InputOffsetToAddressMap to collect all related 3246 // probes 3247 const InputOffsetToAddressMapTy &Offset2Addr = 3248 F->getInputOffsetToAddressMap(); 3249 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3250 auto CallOutputAddress = CallOutputAddresses.first; 3251 if (CallOutputAddress == CallOutputAddresses.second) { 3252 Probe->setAddress(INT64_MAX); 3253 } else { 3254 Probe->setAddress(CallOutputAddress->second); 3255 CallOutputAddress = std::next(CallOutputAddress); 3256 } 3257 3258 while (CallOutputAddress != CallOutputAddresses.second) { 3259 AP.second.push_back(*Probe); 3260 AP.second.back().setAddress(CallOutputAddress->second); 3261 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3262 CallOutputAddress = std::next(CallOutputAddress); 3263 } 3264 } 3265 Probe = std::next(Probe); 3266 ProbeTrack--; 3267 } 3268 } 3269 3270 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3271 opts::PrintPseudoProbes == 3272 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3273 outs() << "Pseudo Probe Address Conversion results:\n"; 3274 // table that correlates address to block 3275 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3276 for (auto &F : BC->getBinaryFunctions()) 3277 for (BinaryBasicBlock &BinaryBlock : F.second) 3278 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3279 BinaryBlock.getName(); 3280 3281 // scan all addresses -> correlate probe to block when print out 3282 std::vector<uint64_t> Addresses; 3283 for (auto &Entry : Address2ProbesMap) 3284 Addresses.push_back(Entry.first); 3285 std::sort(Addresses.begin(), Addresses.end()); 3286 for (uint64_t Key : Addresses) { 3287 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3288 if (Probe.getAddress() == INT64_MAX) 3289 outs() << "Deleted Probe: "; 3290 else 3291 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3292 Probe.print(outs(), GUID2Func, true); 3293 // print block name only if the probe is block type and undeleted. 3294 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3295 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3296 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3297 } 3298 } 3299 outs() << "=======================================\n"; 3300 } 3301 3302 // encode pseudo probes with updated addresses 3303 encodePseudoProbes(); 3304 } 3305 3306 template <typename F> 3307 static void emitLEB128IntValue(F encode, uint64_t Value, 3308 SmallString<8> &Contents) { 3309 SmallString<128> Tmp; 3310 raw_svector_ostream OSE(Tmp); 3311 encode(Value, OSE); 3312 Contents.append(OSE.str().begin(), OSE.str().end()); 3313 } 3314 3315 void RewriteInstance::encodePseudoProbes() { 3316 // Buffer for new pseudo probes section 3317 SmallString<8> Contents; 3318 MCDecodedPseudoProbe *LastProbe = nullptr; 3319 3320 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3321 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3322 uint64_t Swapped = support::endian::byte_swap( 3323 Value, IsLittleEndian ? support::little : support::big); 3324 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3325 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3326 Contents.append(Entry.begin(), Entry.end()); 3327 }; 3328 3329 auto EmitULEB128IntValue = [&](uint64_t Value) { 3330 SmallString<128> Tmp; 3331 raw_svector_ostream OSE(Tmp); 3332 encodeULEB128(Value, OSE, 0); 3333 Contents.append(OSE.str().begin(), OSE.str().end()); 3334 }; 3335 3336 auto EmitSLEB128IntValue = [&](int64_t Value) { 3337 SmallString<128> Tmp; 3338 raw_svector_ostream OSE(Tmp); 3339 encodeSLEB128(Value, OSE); 3340 Contents.append(OSE.str().begin(), OSE.str().end()); 3341 }; 3342 3343 // Emit indiviual pseudo probes in a inline tree node 3344 // Probe index, type, attribute, address type and address are encoded 3345 // Address of the first probe is absolute. 3346 // Other probes' address are represented by delta 3347 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3348 EmitULEB128IntValue(CurProbe->getIndex()); 3349 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3350 uint8_t Flag = 3351 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3352 EmitInt(Flag | PackedType, 1); 3353 if (LastProbe) { 3354 // Emit the delta between the address label and LastProbe. 3355 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3356 EmitSLEB128IntValue(Delta); 3357 } else { 3358 // Emit absolute address for encoding the first pseudo probe. 3359 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3360 EmitInt(CurProbe->getAddress(), AddrSize); 3361 } 3362 }; 3363 3364 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3365 std::greater<InlineSite>> 3366 Inlinees; 3367 3368 // DFS of inline tree to emit pseudo probes in all tree node 3369 // Inline site index of a probe is emitted first. 3370 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3371 // of contained probes are emitted Deleted probes are skipped Root node is not 3372 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3373 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3374 const MCDecodedPseudoProbeInlineTree &Root = 3375 BC->ProbeDecoder.getDummyInlineRoot(); 3376 for (auto Child = Root.getChildren().begin(); 3377 Child != Root.getChildren().end(); ++Child) 3378 Inlinees[Child->first] = Child->second.get(); 3379 3380 for (auto Inlinee : Inlinees) 3381 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3382 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3383 3384 Inlinees.clear(); 3385 3386 while (!NextNodes.empty()) { 3387 uint64_t ProbeIndex = NextNodes.back().first; 3388 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3389 NextNodes.pop_back(); 3390 3391 if (Cur->Parent && !Cur->Parent->isRoot()) 3392 // Emit probe inline site 3393 EmitULEB128IntValue(ProbeIndex); 3394 3395 // Emit probes grouped by GUID. 3396 LLVM_DEBUG({ 3397 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3398 dbgs() << "GUID: " << Cur->Guid << "\n"; 3399 }); 3400 // Emit Guid 3401 EmitInt(Cur->Guid, 8); 3402 // Emit number of probes in this node 3403 uint64_t Deleted = 0; 3404 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3405 if (Probe->getAddress() == INT64_MAX) 3406 Deleted++; 3407 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3408 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3409 EmitULEB128IntValue(ProbesSize); 3410 // Emit number of direct inlinees 3411 EmitULEB128IntValue(Cur->getChildren().size()); 3412 // Emit probes in this group 3413 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3414 if (Probe->getAddress() == INT64_MAX) 3415 continue; 3416 EmitDecodedPseudoProbe(Probe); 3417 LastProbe = Probe; 3418 } 3419 3420 for (auto Child = Cur->getChildren().begin(); 3421 Child != Cur->getChildren().end(); ++Child) 3422 Inlinees[Child->first] = Child->second.get(); 3423 for (const auto &Inlinee : Inlinees) { 3424 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3425 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3426 LLVM_DEBUG({ 3427 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3428 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3429 }); 3430 } 3431 Inlinees.clear(); 3432 } 3433 3434 // Create buffer for new contents for the section 3435 // Freed when parent section is destroyed 3436 uint8_t *Output = new uint8_t[Contents.str().size()]; 3437 memcpy(Output, Contents.str().data(), Contents.str().size()); 3438 addToDebugSectionsToOverwrite(".pseudo_probe"); 3439 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3440 PseudoProbeSection->getELFFlags(), Output, 3441 Contents.str().size(), 1); 3442 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3443 opts::PrintPseudoProbes == 3444 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3445 // create a dummy decoder; 3446 MCPseudoProbeDecoder DummyDecoder; 3447 StringRef DescContents = PseudoProbeDescSection->getContents(); 3448 DummyDecoder.buildGUID2FuncDescMap( 3449 reinterpret_cast<const uint8_t *>(DescContents.data()), 3450 DescContents.size()); 3451 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3452 DummyDecoder.buildAddress2ProbeMap( 3453 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3454 ProbeContents.size()); 3455 DummyDecoder.printProbesForAllAddresses(outs()); 3456 } 3457 } 3458 3459 void RewriteInstance::updateSDTMarkers() { 3460 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3461 TimerGroupDesc, opts::TimeRewrite); 3462 3463 if (!SDTSection) 3464 return; 3465 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3466 3467 SimpleBinaryPatcher *SDTNotePatcher = 3468 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3469 for (auto &SDTInfoKV : BC->SDTMarkers) { 3470 const uint64_t OriginalAddress = SDTInfoKV.first; 3471 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3472 const BinaryFunction *F = 3473 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3474 if (!F) 3475 continue; 3476 const uint64_t NewAddress = 3477 F->translateInputToOutputAddress(OriginalAddress); 3478 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3479 } 3480 } 3481 3482 void RewriteInstance::updateLKMarkers() { 3483 if (BC->LKMarkers.size() == 0) 3484 return; 3485 3486 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3487 TimerGroupDesc, opts::TimeRewrite); 3488 3489 std::unordered_map<std::string, uint64_t> PatchCounts; 3490 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3491 &LKMarkerInfoKV : BC->LKMarkers) { 3492 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3493 const BinaryFunction *BF = 3494 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3495 if (!BF) 3496 continue; 3497 3498 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3499 if (NewAddress == 0) 3500 continue; 3501 3502 // Apply base address. 3503 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3504 NewAddress = NewAddress + 0xffffffff00000000; 3505 3506 if (OriginalAddress == NewAddress) 3507 continue; 3508 3509 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3510 StringRef SectionName = LKMarkerInfo.SectionName; 3511 SimpleBinaryPatcher *LKPatcher; 3512 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3513 assert(BSec && "missing section info for kernel section"); 3514 if (!BSec->getPatcher()) 3515 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3516 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3517 PatchCounts[std::string(SectionName)]++; 3518 if (LKMarkerInfo.IsPCRelative) 3519 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3520 NewAddress - OriginalAddress + 3521 LKMarkerInfo.PCRelativeOffset); 3522 else 3523 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3524 } 3525 } 3526 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3527 "section are as follows:\n"; 3528 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3529 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3530 << '\n'; 3531 } 3532 3533 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3534 mapCodeSections(RTDyld); 3535 mapDataSections(RTDyld); 3536 } 3537 3538 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3539 std::vector<BinarySection *> CodeSections; 3540 for (BinarySection &Section : BC->textSections()) 3541 if (Section.hasValidSectionID()) 3542 CodeSections.emplace_back(&Section); 3543 3544 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3545 // Place movers before anything else. 3546 if (A->getName() == BC->getHotTextMoverSectionName()) 3547 return true; 3548 if (B->getName() == BC->getHotTextMoverSectionName()) 3549 return false; 3550 3551 // Depending on the option, put main text at the beginning or at the end. 3552 if (opts::HotFunctionsAtEnd) 3553 return B->getName() == BC->getMainCodeSectionName(); 3554 else 3555 return A->getName() == BC->getMainCodeSectionName(); 3556 }; 3557 3558 // Determine the order of sections. 3559 std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); 3560 3561 return CodeSections; 3562 } 3563 3564 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3565 if (BC->HasRelocations) { 3566 ErrorOr<BinarySection &> TextSection = 3567 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3568 assert(TextSection && ".text section not found in output"); 3569 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3570 3571 // Map sections for functions with pre-assigned addresses. 3572 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3573 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3574 if (!OutputAddress) 3575 continue; 3576 3577 ErrorOr<BinarySection &> FunctionSection = 3578 InjectedFunction->getCodeSection(); 3579 assert(FunctionSection && "function should have section"); 3580 FunctionSection->setOutputAddress(OutputAddress); 3581 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3582 OutputAddress); 3583 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3584 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3585 } 3586 3587 // Populate the list of sections to be allocated. 3588 std::vector<BinarySection *> CodeSections = getCodeSections(); 3589 3590 // Remove sections that were pre-allocated (patch sections). 3591 CodeSections.erase( 3592 std::remove_if(CodeSections.begin(), CodeSections.end(), 3593 [](BinarySection *Section) { 3594 return Section->getOutputAddress(); 3595 }), 3596 CodeSections.end()); 3597 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3598 for (const BinarySection *Section : CodeSections) 3599 dbgs() << Section->getName() << '\n'; 3600 ); 3601 3602 uint64_t PaddingSize = 0; // size of padding required at the end 3603 3604 // Allocate sections starting at a given Address. 3605 auto allocateAt = [&](uint64_t Address) { 3606 for (BinarySection *Section : CodeSections) { 3607 Address = alignTo(Address, Section->getAlignment()); 3608 Section->setOutputAddress(Address); 3609 Address += Section->getOutputSize(); 3610 } 3611 3612 // Make sure we allocate enough space for huge pages. 3613 if (opts::HotText) { 3614 uint64_t HotTextEnd = 3615 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3616 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3617 if (HotTextEnd > Address) { 3618 PaddingSize = HotTextEnd - Address; 3619 Address = HotTextEnd; 3620 } 3621 } 3622 return Address; 3623 }; 3624 3625 // Check if we can fit code in the original .text 3626 bool AllocationDone = false; 3627 if (opts::UseOldText) { 3628 const uint64_t CodeSize = 3629 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3630 3631 if (CodeSize <= BC->OldTextSectionSize) { 3632 outs() << "BOLT-INFO: using original .text for new code with 0x" 3633 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3634 AllocationDone = true; 3635 } else { 3636 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3637 << " using 0x" << Twine::utohexstr(opts::AlignText) 3638 << " alignment. " << CodeSize << " bytes needed, have " 3639 << BC->OldTextSectionSize << " bytes available.\n"; 3640 opts::UseOldText = false; 3641 } 3642 } 3643 3644 if (!AllocationDone) 3645 NextAvailableAddress = allocateAt(NextAvailableAddress); 3646 3647 // Do the mapping for ORC layer based on the allocation. 3648 for (BinarySection *Section : CodeSections) { 3649 LLVM_DEBUG( 3650 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3651 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3652 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3653 RTDyld.reassignSectionAddress(Section->getSectionID(), 3654 Section->getOutputAddress()); 3655 Section->setOutputFileOffset( 3656 getFileOffsetForAddress(Section->getOutputAddress())); 3657 } 3658 3659 // Check if we need to insert a padding section for hot text. 3660 if (PaddingSize && !opts::UseOldText) 3661 outs() << "BOLT-INFO: padding code to 0x" 3662 << Twine::utohexstr(NextAvailableAddress) 3663 << " to accommodate hot text\n"; 3664 3665 return; 3666 } 3667 3668 // Processing in non-relocation mode. 3669 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3670 3671 for (auto &BFI : BC->getBinaryFunctions()) { 3672 BinaryFunction &Function = BFI.second; 3673 if (!Function.isEmitted()) 3674 continue; 3675 3676 bool TooLarge = false; 3677 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3678 assert(FuncSection && "cannot find section for function"); 3679 FuncSection->setOutputAddress(Function.getAddress()); 3680 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3681 << Twine::utohexstr(FuncSection->getAllocAddress()) 3682 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3683 << '\n'); 3684 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3685 Function.getAddress()); 3686 Function.setImageAddress(FuncSection->getAllocAddress()); 3687 Function.setImageSize(FuncSection->getOutputSize()); 3688 if (Function.getImageSize() > Function.getMaxSize()) { 3689 TooLarge = true; 3690 FailedAddresses.emplace_back(Function.getAddress()); 3691 } 3692 3693 // Map jump tables if updating in-place. 3694 if (opts::JumpTables == JTS_BASIC) { 3695 for (auto &JTI : Function.JumpTables) { 3696 JumpTable *JT = JTI.second; 3697 BinarySection &Section = JT->getOutputSection(); 3698 Section.setOutputAddress(JT->getAddress()); 3699 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3700 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3701 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3702 << '\n'); 3703 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3704 } 3705 } 3706 3707 if (!Function.isSplit()) 3708 continue; 3709 3710 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3711 assert(ColdSection && "cannot find section for cold part"); 3712 // Cold fragments are aligned at 16 bytes. 3713 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3714 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3715 if (TooLarge) { 3716 // The corresponding FDE will refer to address 0. 3717 ColdPart.setAddress(0); 3718 ColdPart.setImageAddress(0); 3719 ColdPart.setImageSize(0); 3720 ColdPart.setFileOffset(0); 3721 } else { 3722 ColdPart.setAddress(NextAvailableAddress); 3723 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3724 ColdPart.setImageSize(ColdSection->getOutputSize()); 3725 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3726 ColdSection->setOutputAddress(ColdPart.getAddress()); 3727 } 3728 3729 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3730 << Twine::utohexstr(ColdPart.getImageAddress()) 3731 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3732 << " with size " 3733 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3734 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3735 ColdPart.getAddress()); 3736 3737 NextAvailableAddress += ColdPart.getImageSize(); 3738 } 3739 3740 // Add the new text section aggregating all existing code sections. 3741 // This is pseudo-section that serves a purpose of creating a corresponding 3742 // entry in section header table. 3743 int64_t NewTextSectionSize = 3744 NextAvailableAddress - NewTextSectionStartAddress; 3745 if (NewTextSectionSize) { 3746 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3747 /*IsText=*/true, 3748 /*IsAllocatable=*/true); 3749 BinarySection &Section = 3750 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3751 ELF::SHT_PROGBITS, 3752 Flags, 3753 /*Data=*/nullptr, 3754 NewTextSectionSize, 3755 16); 3756 Section.setOutputAddress(NewTextSectionStartAddress); 3757 Section.setOutputFileOffset( 3758 getFileOffsetForAddress(NewTextSectionStartAddress)); 3759 } 3760 } 3761 3762 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3763 // Map special sections to their addresses in the output image. 3764 // These are the sections that we generate via MCStreamer. 3765 // The order is important. 3766 std::vector<std::string> Sections = { 3767 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3768 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3769 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3770 RtLibrary->addRuntimeLibSections(Sections); 3771 3772 for (std::string &SectionName : Sections) { 3773 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3774 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3775 continue; 3776 NextAvailableAddress = 3777 alignTo(NextAvailableAddress, Section->getAlignment()); 3778 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3779 << Twine::utohexstr(Section->getAllocAddress()) 3780 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3781 << ":0x" 3782 << Twine::utohexstr(NextAvailableAddress + 3783 Section->getOutputSize()) 3784 << '\n'); 3785 3786 RTDyld.reassignSectionAddress(Section->getSectionID(), 3787 NextAvailableAddress); 3788 Section->setOutputAddress(NextAvailableAddress); 3789 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3790 3791 NextAvailableAddress += Section->getOutputSize(); 3792 } 3793 3794 // Handling for sections with relocations. 3795 for (BinarySection &Section : BC->sections()) { 3796 if (!Section.hasSectionRef()) 3797 continue; 3798 3799 StringRef SectionName = Section.getName(); 3800 ErrorOr<BinarySection &> OrgSection = 3801 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3802 if (!OrgSection || 3803 !OrgSection->isAllocatable() || 3804 !OrgSection->isFinalized() || 3805 !OrgSection->hasValidSectionID()) 3806 continue; 3807 3808 if (OrgSection->getOutputAddress()) { 3809 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3810 << " is already mapped at 0x" 3811 << Twine::utohexstr(OrgSection->getOutputAddress()) 3812 << '\n'); 3813 continue; 3814 } 3815 LLVM_DEBUG( 3816 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3817 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3818 << Twine::utohexstr(Section.getAddress()) << '\n'); 3819 3820 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3821 Section.getAddress()); 3822 3823 OrgSection->setOutputAddress(Section.getAddress()); 3824 OrgSection->setOutputFileOffset(Section.getContents().data() - 3825 InputFile->getData().data()); 3826 } 3827 } 3828 3829 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3830 for (BinarySection &Section : BC->allocatableSections()) { 3831 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3832 continue; 3833 NextAvailableAddress = 3834 alignTo(NextAvailableAddress, Section.getAlignment()); 3835 Section.setOutputAddress(NextAvailableAddress); 3836 NextAvailableAddress += Section.getOutputSize(); 3837 3838 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3839 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3840 << " to 0x" 3841 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3842 3843 RTDyld.reassignSectionAddress(Section.getSectionID(), 3844 Section.getOutputAddress()); 3845 Section.setOutputFileOffset( 3846 getFileOffsetForAddress(Section.getOutputAddress())); 3847 } 3848 } 3849 3850 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3851 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3852 Function->updateOutputValues(Layout); 3853 } 3854 3855 void RewriteInstance::patchELFPHDRTable() { 3856 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3857 if (!ELF64LEFile) { 3858 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3859 exit(1); 3860 } 3861 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3862 raw_fd_ostream &OS = Out->os(); 3863 3864 // Write/re-write program headers. 3865 Phnum = Obj.getHeader().e_phnum; 3866 if (PHDRTableOffset) { 3867 // Writing new pheader table. 3868 Phnum += 1; // only adding one new segment 3869 // Segment size includes the size of the PHDR area. 3870 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3871 } else { 3872 assert(!PHDRTableAddress && "unexpected address for program header table"); 3873 // Update existing table. 3874 PHDRTableOffset = Obj.getHeader().e_phoff; 3875 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3876 } 3877 OS.seek(PHDRTableOffset); 3878 3879 bool ModdedGnuStack = false; 3880 (void)ModdedGnuStack; 3881 bool AddedSegment = false; 3882 (void)AddedSegment; 3883 3884 auto createNewTextPhdr = [&]() { 3885 ELF64LEPhdrTy NewPhdr; 3886 NewPhdr.p_type = ELF::PT_LOAD; 3887 if (PHDRTableAddress) { 3888 NewPhdr.p_offset = PHDRTableOffset; 3889 NewPhdr.p_vaddr = PHDRTableAddress; 3890 NewPhdr.p_paddr = PHDRTableAddress; 3891 } else { 3892 NewPhdr.p_offset = NewTextSegmentOffset; 3893 NewPhdr.p_vaddr = NewTextSegmentAddress; 3894 NewPhdr.p_paddr = NewTextSegmentAddress; 3895 } 3896 NewPhdr.p_filesz = NewTextSegmentSize; 3897 NewPhdr.p_memsz = NewTextSegmentSize; 3898 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3899 // FIXME: Currently instrumentation is experimental and the runtime data 3900 // is emitted with code, thus everything needs to be writable 3901 if (opts::Instrument) 3902 NewPhdr.p_flags |= ELF::PF_W; 3903 NewPhdr.p_align = BC->PageAlign; 3904 3905 return NewPhdr; 3906 }; 3907 3908 // Copy existing program headers with modifications. 3909 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3910 ELF64LE::Phdr NewPhdr = Phdr; 3911 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3912 NewPhdr.p_offset = PHDRTableOffset; 3913 NewPhdr.p_vaddr = PHDRTableAddress; 3914 NewPhdr.p_paddr = PHDRTableAddress; 3915 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3916 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3917 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3918 ErrorOr<BinarySection &> EHFrameHdrSec = 3919 BC->getUniqueSectionByName(".eh_frame_hdr"); 3920 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3921 EHFrameHdrSec->isFinalized()) { 3922 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3923 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3924 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3925 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3926 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3927 } 3928 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3929 NewPhdr = createNewTextPhdr(); 3930 ModdedGnuStack = true; 3931 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3932 // Insert the new header before DYNAMIC. 3933 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3934 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3935 sizeof(NewTextPhdr)); 3936 AddedSegment = true; 3937 } 3938 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3939 } 3940 3941 if (!opts::UseGnuStack && !AddedSegment) { 3942 // Append the new header to the end of the table. 3943 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3944 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3945 } 3946 3947 assert((!opts::UseGnuStack || ModdedGnuStack) && 3948 "could not find GNU_STACK program header to modify"); 3949 } 3950 3951 namespace { 3952 3953 /// Write padding to \p OS such that its current \p Offset becomes aligned 3954 /// at \p Alignment. Return new (aligned) offset. 3955 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3956 uint64_t Alignment) { 3957 if (!Alignment) 3958 return Offset; 3959 3960 const uint64_t PaddingSize = 3961 offsetToAlignment(Offset, llvm::Align(Alignment)); 3962 for (unsigned I = 0; I < PaddingSize; ++I) 3963 OS.write((unsigned char)0); 3964 return Offset + PaddingSize; 3965 } 3966 3967 } 3968 3969 void RewriteInstance::rewriteNoteSections() { 3970 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3971 if (!ELF64LEFile) { 3972 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3973 exit(1); 3974 } 3975 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3976 raw_fd_ostream &OS = Out->os(); 3977 3978 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3979 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3980 "next available offset calculation failure"); 3981 OS.seek(NextAvailableOffset); 3982 3983 // Copy over non-allocatable section contents and update file offsets. 3984 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 3985 if (Section.sh_type == ELF::SHT_NULL) 3986 continue; 3987 if (Section.sh_flags & ELF::SHF_ALLOC) 3988 continue; 3989 3990 StringRef SectionName = 3991 cantFail(Obj.getSectionName(Section), "cannot get section name"); 3992 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3993 3994 if (shouldStrip(Section, SectionName)) 3995 continue; 3996 3997 // Insert padding as needed. 3998 NextAvailableOffset = 3999 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4000 4001 // New section size. 4002 uint64_t Size = 0; 4003 bool DataWritten = false; 4004 uint8_t *SectionData = nullptr; 4005 // Copy over section contents unless it's one of the sections we overwrite. 4006 if (!willOverwriteSection(SectionName)) { 4007 Size = Section.sh_size; 4008 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4009 std::string Data; 4010 if (BSec && BSec->getPatcher()) { 4011 Data = BSec->getPatcher()->patchBinary(Dataref); 4012 Dataref = StringRef(Data); 4013 } 4014 4015 // Section was expanded, so need to treat it as overwrite. 4016 if (Size != Dataref.size()) { 4017 BSec = BC->registerOrUpdateNoteSection( 4018 SectionName, copyByteArray(Dataref), Dataref.size()); 4019 Size = 0; 4020 } else { 4021 OS << Dataref; 4022 DataWritten = true; 4023 4024 // Add padding as the section extension might rely on the alignment. 4025 Size = appendPadding(OS, Size, Section.sh_addralign); 4026 } 4027 } 4028 4029 // Perform section post-processing. 4030 if (BSec && !BSec->isAllocatable()) { 4031 assert(BSec->getAlignment() <= Section.sh_addralign && 4032 "alignment exceeds value in file"); 4033 4034 if (BSec->getAllocAddress()) { 4035 assert(!DataWritten && "Writing section twice."); 4036 SectionData = BSec->getOutputData(); 4037 4038 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4039 << " contents to section " << SectionName << '\n'); 4040 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4041 Size += BSec->getOutputSize(); 4042 } 4043 4044 BSec->setOutputFileOffset(NextAvailableOffset); 4045 BSec->flushPendingRelocations(OS, 4046 [this] (const MCSymbol *S) { 4047 return getNewValueForSymbol(S->getName()); 4048 }); 4049 } 4050 4051 // Set/modify section info. 4052 BinarySection &NewSection = 4053 BC->registerOrUpdateNoteSection(SectionName, 4054 SectionData, 4055 Size, 4056 Section.sh_addralign, 4057 BSec ? BSec->isReadOnly() : false, 4058 BSec ? BSec->getELFType() 4059 : ELF::SHT_PROGBITS); 4060 NewSection.setOutputAddress(0); 4061 NewSection.setOutputFileOffset(NextAvailableOffset); 4062 4063 NextAvailableOffset += Size; 4064 } 4065 4066 // Write new note sections. 4067 for (BinarySection &Section : BC->nonAllocatableSections()) { 4068 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4069 continue; 4070 4071 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4072 4073 NextAvailableOffset = 4074 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4075 Section.setOutputFileOffset(NextAvailableOffset); 4076 4077 LLVM_DEBUG( 4078 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4079 << " of size " << Section.getOutputSize() << " at offset 0x" 4080 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4081 4082 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4083 NextAvailableOffset += Section.getOutputSize(); 4084 } 4085 } 4086 4087 template <typename ELFT> 4088 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4089 using ELFShdrTy = typename ELFT::Shdr; 4090 const ELFFile<ELFT> &Obj = File->getELFFile(); 4091 4092 // Pre-populate section header string table. 4093 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4094 StringRef SectionName = 4095 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4096 SHStrTab.add(SectionName); 4097 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4098 if (OutputSectionName != SectionName) 4099 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4100 } 4101 for (const std::string &Str : SHStrTabPool) 4102 SHStrTab.add(Str); 4103 for (const BinarySection &Section : BC->sections()) 4104 SHStrTab.add(Section.getName()); 4105 SHStrTab.finalize(); 4106 4107 const size_t SHStrTabSize = SHStrTab.getSize(); 4108 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4109 memset(DataCopy, 0, SHStrTabSize); 4110 SHStrTab.write(DataCopy); 4111 BC->registerOrUpdateNoteSection(".shstrtab", 4112 DataCopy, 4113 SHStrTabSize, 4114 /*Alignment=*/1, 4115 /*IsReadOnly=*/true, 4116 ELF::SHT_STRTAB); 4117 } 4118 4119 void RewriteInstance::addBoltInfoSection() { 4120 std::string DescStr; 4121 raw_string_ostream DescOS(DescStr); 4122 4123 DescOS << "BOLT revision: " << BoltRevision << ", " 4124 << "command line:"; 4125 for (int I = 0; I < Argc; ++I) 4126 DescOS << " " << Argv[I]; 4127 DescOS.flush(); 4128 4129 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4130 const std::string BoltInfo = 4131 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4132 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4133 BoltInfo.size(), 4134 /*Alignment=*/1, 4135 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4136 } 4137 4138 void RewriteInstance::addBATSection() { 4139 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4140 0, 4141 /*Alignment=*/1, 4142 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4143 } 4144 4145 void RewriteInstance::encodeBATSection() { 4146 std::string DescStr; 4147 raw_string_ostream DescOS(DescStr); 4148 4149 BAT->write(DescOS); 4150 DescOS.flush(); 4151 4152 const std::string BoltInfo = 4153 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4154 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4155 copyByteArray(BoltInfo), BoltInfo.size(), 4156 /*Alignment=*/1, 4157 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4158 } 4159 4160 template <typename ELFObjType, typename ELFShdrTy> 4161 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4162 const ELFShdrTy &Section) { 4163 if (Section.sh_type == ELF::SHT_NULL) 4164 return ""; 4165 4166 StringRef SectionName = 4167 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4168 4169 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4170 return (getOrgSecPrefix() + SectionName).str(); 4171 4172 return std::string(SectionName); 4173 } 4174 4175 template <typename ELFShdrTy> 4176 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4177 StringRef SectionName) { 4178 // Strip non-allocatable relocation sections. 4179 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4180 return true; 4181 4182 // Strip debug sections if not updating them. 4183 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4184 return true; 4185 4186 // Strip symtab section if needed 4187 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4188 return true; 4189 4190 return false; 4191 } 4192 4193 template <typename ELFT> 4194 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4195 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4196 std::vector<uint32_t> &NewSectionIndex) { 4197 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4198 const ELFFile<ELFT> &Obj = File->getELFFile(); 4199 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4200 4201 // Keep track of section header entries together with their name. 4202 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4203 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4204 ELFShdrTy NewSection = Section; 4205 NewSection.sh_name = SHStrTab.getOffset(Name); 4206 OutputSections.emplace_back(Name, std::move(NewSection)); 4207 }; 4208 4209 // Copy over entries for original allocatable sections using modified name. 4210 for (const ELFShdrTy &Section : Sections) { 4211 // Always ignore this section. 4212 if (Section.sh_type == ELF::SHT_NULL) { 4213 OutputSections.emplace_back("", Section); 4214 continue; 4215 } 4216 4217 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4218 continue; 4219 4220 addSection(getOutputSectionName(Obj, Section), Section); 4221 } 4222 4223 for (const BinarySection &Section : BC->allocatableSections()) { 4224 if (!Section.isFinalized()) 4225 continue; 4226 4227 if (Section.getName().startswith(getOrgSecPrefix()) || 4228 Section.isAnonymous()) { 4229 if (opts::Verbosity) 4230 outs() << "BOLT-INFO: not writing section header for section " 4231 << Section.getName() << '\n'; 4232 continue; 4233 } 4234 4235 if (opts::Verbosity >= 1) 4236 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4237 << '\n'; 4238 ELFShdrTy NewSection; 4239 NewSection.sh_type = ELF::SHT_PROGBITS; 4240 NewSection.sh_addr = Section.getOutputAddress(); 4241 NewSection.sh_offset = Section.getOutputFileOffset(); 4242 NewSection.sh_size = Section.getOutputSize(); 4243 NewSection.sh_entsize = 0; 4244 NewSection.sh_flags = Section.getELFFlags(); 4245 NewSection.sh_link = 0; 4246 NewSection.sh_info = 0; 4247 NewSection.sh_addralign = Section.getAlignment(); 4248 addSection(std::string(Section.getName()), NewSection); 4249 } 4250 4251 // Sort all allocatable sections by their offset. 4252 std::stable_sort(OutputSections.begin(), OutputSections.end(), 4253 [] (const std::pair<std::string, ELFShdrTy> &A, 4254 const std::pair<std::string, ELFShdrTy> &B) { 4255 return A.second.sh_offset < B.second.sh_offset; 4256 }); 4257 4258 // Fix section sizes to prevent overlapping. 4259 ELFShdrTy *PrevSection = nullptr; 4260 StringRef PrevSectionName; 4261 for (auto &SectionKV : OutputSections) { 4262 ELFShdrTy &Section = SectionKV.second; 4263 4264 // TBSS section does not take file or memory space. Ignore it for layout 4265 // purposes. 4266 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4267 continue; 4268 4269 if (PrevSection && 4270 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4271 if (opts::Verbosity > 1) 4272 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4273 << '\n'; 4274 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4275 ? Section.sh_addr - PrevSection->sh_addr 4276 : 0; 4277 } 4278 4279 PrevSection = &Section; 4280 PrevSectionName = SectionKV.first; 4281 } 4282 4283 uint64_t LastFileOffset = 0; 4284 4285 // Copy over entries for non-allocatable sections performing necessary 4286 // adjustments. 4287 for (const ELFShdrTy &Section : Sections) { 4288 if (Section.sh_type == ELF::SHT_NULL) 4289 continue; 4290 if (Section.sh_flags & ELF::SHF_ALLOC) 4291 continue; 4292 4293 StringRef SectionName = 4294 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4295 4296 if (shouldStrip(Section, SectionName)) 4297 continue; 4298 4299 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4300 assert(BSec && "missing section info for non-allocatable section"); 4301 4302 ELFShdrTy NewSection = Section; 4303 NewSection.sh_offset = BSec->getOutputFileOffset(); 4304 NewSection.sh_size = BSec->getOutputSize(); 4305 4306 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4307 NewSection.sh_info = NumLocalSymbols; 4308 4309 addSection(std::string(SectionName), NewSection); 4310 4311 LastFileOffset = BSec->getOutputFileOffset(); 4312 } 4313 4314 // Create entries for new non-allocatable sections. 4315 for (BinarySection &Section : BC->nonAllocatableSections()) { 4316 if (Section.getOutputFileOffset() <= LastFileOffset) 4317 continue; 4318 4319 if (opts::Verbosity >= 1) 4320 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4321 << '\n'; 4322 4323 ELFShdrTy NewSection; 4324 NewSection.sh_type = Section.getELFType(); 4325 NewSection.sh_addr = 0; 4326 NewSection.sh_offset = Section.getOutputFileOffset(); 4327 NewSection.sh_size = Section.getOutputSize(); 4328 NewSection.sh_entsize = 0; 4329 NewSection.sh_flags = Section.getELFFlags(); 4330 NewSection.sh_link = 0; 4331 NewSection.sh_info = 0; 4332 NewSection.sh_addralign = Section.getAlignment(); 4333 4334 addSection(std::string(Section.getName()), NewSection); 4335 } 4336 4337 // Assign indices to sections. 4338 std::unordered_map<std::string, uint64_t> NameToIndex; 4339 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4340 const std::string &SectionName = OutputSections[Index].first; 4341 NameToIndex[SectionName] = Index; 4342 if (ErrorOr<BinarySection &> Section = 4343 BC->getUniqueSectionByName(SectionName)) 4344 Section->setIndex(Index); 4345 } 4346 4347 // Update section index mapping 4348 NewSectionIndex.clear(); 4349 NewSectionIndex.resize(Sections.size(), 0); 4350 for (const ELFShdrTy &Section : Sections) { 4351 if (Section.sh_type == ELF::SHT_NULL) 4352 continue; 4353 4354 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4355 std::string SectionName = getOutputSectionName(Obj, Section); 4356 4357 // Some sections are stripped 4358 if (!NameToIndex.count(SectionName)) 4359 continue; 4360 4361 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4362 } 4363 4364 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4365 std::transform(OutputSections.begin(), OutputSections.end(), 4366 SectionsOnly.begin(), 4367 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4368 return SectionInfo.second; 4369 }); 4370 4371 return SectionsOnly; 4372 } 4373 4374 // Rewrite section header table inserting new entries as needed. The sections 4375 // header table size itself may affect the offsets of other sections, 4376 // so we are placing it at the end of the binary. 4377 // 4378 // As we rewrite entries we need to track how many sections were inserted 4379 // as it changes the sh_link value. We map old indices to new ones for 4380 // existing sections. 4381 template <typename ELFT> 4382 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4383 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4384 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4385 raw_fd_ostream &OS = Out->os(); 4386 const ELFFile<ELFT> &Obj = File->getELFFile(); 4387 4388 std::vector<uint32_t> NewSectionIndex; 4389 std::vector<ELFShdrTy> OutputSections = 4390 getOutputSections(File, NewSectionIndex); 4391 LLVM_DEBUG( 4392 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4393 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4394 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4395 ); 4396 4397 // Align starting address for section header table. 4398 uint64_t SHTOffset = OS.tell(); 4399 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4400 4401 // Write all section header entries while patching section references. 4402 for (ELFShdrTy &Section : OutputSections) { 4403 Section.sh_link = NewSectionIndex[Section.sh_link]; 4404 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4405 if (Section.sh_info) 4406 Section.sh_info = NewSectionIndex[Section.sh_info]; 4407 } 4408 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4409 } 4410 4411 // Fix ELF header. 4412 ELFEhdrTy NewEhdr = Obj.getHeader(); 4413 4414 if (BC->HasRelocations) { 4415 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4416 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4417 else 4418 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4419 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4420 "cannot find new address for entry point"); 4421 } 4422 NewEhdr.e_phoff = PHDRTableOffset; 4423 NewEhdr.e_phnum = Phnum; 4424 NewEhdr.e_shoff = SHTOffset; 4425 NewEhdr.e_shnum = OutputSections.size(); 4426 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4427 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4428 } 4429 4430 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4431 void RewriteInstance::updateELFSymbolTable( 4432 ELFObjectFile<ELFT> *File, bool IsDynSym, 4433 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4434 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4435 StrTabFuncTy AddToStrTab) { 4436 const ELFFile<ELFT> &Obj = File->getELFFile(); 4437 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4438 4439 StringRef StringSection = 4440 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4441 4442 unsigned NumHotTextSymsUpdated = 0; 4443 unsigned NumHotDataSymsUpdated = 0; 4444 4445 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4446 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4447 auto Itr = IslandSizes.find(&BF); 4448 if (Itr != IslandSizes.end()) 4449 return Itr->second; 4450 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4451 }; 4452 4453 // Symbols for the new symbol table. 4454 std::vector<ELFSymTy> Symbols; 4455 4456 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4457 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4458 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4459 4460 // We may have stripped the section that dynsym was referencing due to 4461 // the linker bug. In that case return the old index avoiding marking 4462 // the symbol as undefined. 4463 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4464 return OldIndex; 4465 return NewIndex; 4466 }; 4467 4468 // Add extra symbols for the function. 4469 // 4470 // Note that addExtraSymbols() could be called multiple times for the same 4471 // function with different FunctionSymbol matching the main function entry 4472 // point. 4473 auto addExtraSymbols = [&](const BinaryFunction &Function, 4474 const ELFSymTy &FunctionSymbol) { 4475 if (Function.isFolded()) { 4476 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4477 while (ICFParent->isFolded()) 4478 ICFParent = ICFParent->getFoldedIntoFunction(); 4479 ELFSymTy ICFSymbol = FunctionSymbol; 4480 SmallVector<char, 256> Buf; 4481 ICFSymbol.st_name = 4482 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4483 .concat(".icf.0") 4484 .toStringRef(Buf)); 4485 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4486 ICFSymbol.st_size = ICFParent->getOutputSize(); 4487 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4488 Symbols.emplace_back(ICFSymbol); 4489 } 4490 if (Function.isSplit() && Function.cold().getAddress()) { 4491 ELFSymTy NewColdSym = FunctionSymbol; 4492 SmallVector<char, 256> Buf; 4493 NewColdSym.st_name = 4494 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4495 .concat(".cold.0") 4496 .toStringRef(Buf)); 4497 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4498 NewColdSym.st_value = Function.cold().getAddress(); 4499 NewColdSym.st_size = Function.cold().getImageSize(); 4500 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4501 Symbols.emplace_back(NewColdSym); 4502 } 4503 if (Function.hasConstantIsland()) { 4504 uint64_t DataMark = Function.getOutputDataAddress(); 4505 uint64_t CISize = getConstantIslandSize(Function); 4506 uint64_t CodeMark = DataMark + CISize; 4507 ELFSymTy DataMarkSym = FunctionSymbol; 4508 DataMarkSym.st_name = AddToStrTab("$d"); 4509 DataMarkSym.st_value = DataMark; 4510 DataMarkSym.st_size = 0; 4511 DataMarkSym.setType(ELF::STT_NOTYPE); 4512 DataMarkSym.setBinding(ELF::STB_LOCAL); 4513 ELFSymTy CodeMarkSym = DataMarkSym; 4514 CodeMarkSym.st_name = AddToStrTab("$x"); 4515 CodeMarkSym.st_value = CodeMark; 4516 Symbols.emplace_back(DataMarkSym); 4517 Symbols.emplace_back(CodeMarkSym); 4518 } 4519 if (Function.hasConstantIsland() && Function.isSplit()) { 4520 uint64_t DataMark = Function.getOutputColdDataAddress(); 4521 uint64_t CISize = getConstantIslandSize(Function); 4522 uint64_t CodeMark = DataMark + CISize; 4523 ELFSymTy DataMarkSym = FunctionSymbol; 4524 DataMarkSym.st_name = AddToStrTab("$d"); 4525 DataMarkSym.st_value = DataMark; 4526 DataMarkSym.st_size = 0; 4527 DataMarkSym.setType(ELF::STT_NOTYPE); 4528 DataMarkSym.setBinding(ELF::STB_LOCAL); 4529 ELFSymTy CodeMarkSym = DataMarkSym; 4530 CodeMarkSym.st_name = AddToStrTab("$x"); 4531 CodeMarkSym.st_value = CodeMark; 4532 Symbols.emplace_back(DataMarkSym); 4533 Symbols.emplace_back(CodeMarkSym); 4534 } 4535 }; 4536 4537 // For regular (non-dynamic) symbol table, exclude symbols referring 4538 // to non-allocatable sections. 4539 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4540 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4541 return false; 4542 4543 // If we cannot link the symbol to a section, leave it as is. 4544 Expected<const typename ELFT::Shdr *> Section = 4545 Obj.getSection(Symbol.st_shndx); 4546 if (!Section) 4547 return false; 4548 4549 // Remove the section symbol iif the corresponding section was stripped. 4550 if (Symbol.getType() == ELF::STT_SECTION) { 4551 if (!getNewSectionIndex(Symbol.st_shndx)) 4552 return true; 4553 return false; 4554 } 4555 4556 // Symbols in non-allocatable sections are typically remnants of relocations 4557 // emitted under "-emit-relocs" linker option. Delete those as we delete 4558 // relocations against non-allocatable sections. 4559 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4560 return true; 4561 4562 return false; 4563 }; 4564 4565 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4566 // For regular (non-dynamic) symbol table strip unneeded symbols. 4567 if (!IsDynSym && shouldStrip(Symbol)) 4568 continue; 4569 4570 const BinaryFunction *Function = 4571 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4572 // Ignore false function references, e.g. when the section address matches 4573 // the address of the function. 4574 if (Function && Symbol.getType() == ELF::STT_SECTION) 4575 Function = nullptr; 4576 4577 // For non-dynamic symtab, make sure the symbol section matches that of 4578 // the function. It can mismatch e.g. if the symbol is a section marker 4579 // in which case we treat the symbol separately from the function. 4580 // For dynamic symbol table, the section index could be wrong on the input, 4581 // and its value is ignored by the runtime if it's different from 4582 // SHN_UNDEF and SHN_ABS. 4583 if (!IsDynSym && Function && 4584 Symbol.st_shndx != 4585 Function->getOriginSection()->getSectionRef().getIndex()) 4586 Function = nullptr; 4587 4588 // Create a new symbol based on the existing symbol. 4589 ELFSymTy NewSymbol = Symbol; 4590 4591 if (Function) { 4592 // If the symbol matched a function that was not emitted, update the 4593 // corresponding section index but otherwise leave it unchanged. 4594 if (Function->isEmitted()) { 4595 NewSymbol.st_value = Function->getOutputAddress(); 4596 NewSymbol.st_size = Function->getOutputSize(); 4597 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4598 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4599 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4600 } 4601 4602 // Add new symbols to the symbol table if necessary. 4603 if (!IsDynSym) 4604 addExtraSymbols(*Function, NewSymbol); 4605 } else { 4606 // Check if the function symbol matches address inside a function, i.e. 4607 // it marks a secondary entry point. 4608 Function = 4609 (Symbol.getType() == ELF::STT_FUNC) 4610 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4611 /*CheckPastEnd=*/false, 4612 /*UseMaxSize=*/true) 4613 : nullptr; 4614 4615 if (Function && Function->isEmitted()) { 4616 const uint64_t OutputAddress = 4617 Function->translateInputToOutputAddress(Symbol.st_value); 4618 4619 NewSymbol.st_value = OutputAddress; 4620 // Force secondary entry points to have zero size. 4621 NewSymbol.st_size = 0; 4622 NewSymbol.st_shndx = 4623 OutputAddress >= Function->cold().getAddress() && 4624 OutputAddress < Function->cold().getImageSize() 4625 ? Function->getColdCodeSection()->getIndex() 4626 : Function->getCodeSection()->getIndex(); 4627 } else { 4628 // Check if the symbol belongs to moved data object and update it. 4629 BinaryData *BD = opts::ReorderData.empty() 4630 ? nullptr 4631 : BC->getBinaryDataAtAddress(Symbol.st_value); 4632 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4633 assert((!BD->getSize() || !Symbol.st_size || 4634 Symbol.st_size == BD->getSize()) && 4635 "sizes must match"); 4636 4637 BinarySection &OutputSection = BD->getOutputSection(); 4638 assert(OutputSection.getIndex()); 4639 LLVM_DEBUG(dbgs() 4640 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4641 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4642 << Symbol.st_shndx << ") to " << OutputSection.getName() 4643 << " (" << OutputSection.getIndex() << ")\n"); 4644 NewSymbol.st_shndx = OutputSection.getIndex(); 4645 NewSymbol.st_value = BD->getOutputAddress(); 4646 } else { 4647 // Otherwise just update the section for the symbol. 4648 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4649 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4650 } 4651 4652 // Detect local syms in the text section that we didn't update 4653 // and that were preserved by the linker to support relocations against 4654 // .text. Remove them from the symtab. 4655 if (Symbol.getType() == ELF::STT_NOTYPE && 4656 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4657 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4658 /*CheckPastEnd=*/false, 4659 /*UseMaxSize=*/true)) { 4660 // Can only delete the symbol if not patching. Such symbols should 4661 // not exist in the dynamic symbol table. 4662 assert(!IsDynSym && "cannot delete symbol"); 4663 continue; 4664 } 4665 } 4666 } 4667 } 4668 4669 // Handle special symbols based on their name. 4670 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4671 assert(SymbolName && "cannot get symbol name"); 4672 4673 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4674 NewSymbol.st_value = getNewValueForSymbol(Name); 4675 NewSymbol.st_shndx = ELF::SHN_ABS; 4676 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4677 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4678 ++IsUpdated; 4679 }; 4680 4681 if (opts::HotText && 4682 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4683 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4684 4685 if (opts::HotData && 4686 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4687 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4688 4689 if (*SymbolName == "_end") { 4690 unsigned Ignored; 4691 updateSymbolValue(*SymbolName, Ignored); 4692 } 4693 4694 if (IsDynSym) 4695 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4696 sizeof(ELFSymTy), 4697 NewSymbol); 4698 else 4699 Symbols.emplace_back(NewSymbol); 4700 } 4701 4702 if (IsDynSym) { 4703 assert(Symbols.empty()); 4704 return; 4705 } 4706 4707 // Add symbols of injected functions 4708 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4709 ELFSymTy NewSymbol; 4710 BinarySection *OriginSection = Function->getOriginSection(); 4711 NewSymbol.st_shndx = 4712 OriginSection 4713 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4714 : Function->getCodeSection()->getIndex(); 4715 NewSymbol.st_value = Function->getOutputAddress(); 4716 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4717 NewSymbol.st_size = Function->getOutputSize(); 4718 NewSymbol.st_other = 0; 4719 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4720 Symbols.emplace_back(NewSymbol); 4721 4722 if (Function->isSplit()) { 4723 ELFSymTy NewColdSym = NewSymbol; 4724 NewColdSym.setType(ELF::STT_NOTYPE); 4725 SmallVector<char, 256> Buf; 4726 NewColdSym.st_name = AddToStrTab( 4727 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4728 NewColdSym.st_value = Function->cold().getAddress(); 4729 NewColdSym.st_size = Function->cold().getImageSize(); 4730 Symbols.emplace_back(NewColdSym); 4731 } 4732 } 4733 4734 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4735 "either none or both __hot_start/__hot_end symbols were expected"); 4736 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4737 "either none or both __hot_data_start/__hot_data_end symbols were " 4738 "expected"); 4739 4740 auto addSymbol = [&](const std::string &Name) { 4741 ELFSymTy Symbol; 4742 Symbol.st_value = getNewValueForSymbol(Name); 4743 Symbol.st_shndx = ELF::SHN_ABS; 4744 Symbol.st_name = AddToStrTab(Name); 4745 Symbol.st_size = 0; 4746 Symbol.st_other = 0; 4747 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4748 4749 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4750 << Twine::utohexstr(Symbol.st_value) << '\n'; 4751 4752 Symbols.emplace_back(Symbol); 4753 }; 4754 4755 if (opts::HotText && !NumHotTextSymsUpdated) { 4756 addSymbol("__hot_start"); 4757 addSymbol("__hot_end"); 4758 } 4759 4760 if (opts::HotData && !NumHotDataSymsUpdated) { 4761 addSymbol("__hot_data_start"); 4762 addSymbol("__hot_data_end"); 4763 } 4764 4765 // Put local symbols at the beginning. 4766 std::stable_sort(Symbols.begin(), Symbols.end(), 4767 [](const ELFSymTy &A, const ELFSymTy &B) { 4768 if (A.getBinding() == ELF::STB_LOCAL && 4769 B.getBinding() != ELF::STB_LOCAL) 4770 return true; 4771 return false; 4772 }); 4773 4774 for (const ELFSymTy &Symbol : Symbols) 4775 Write(0, Symbol); 4776 } 4777 4778 template <typename ELFT> 4779 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4780 const ELFFile<ELFT> &Obj = File->getELFFile(); 4781 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4782 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4783 4784 // Compute a preview of how section indices will change after rewriting, so 4785 // we can properly update the symbol table based on new section indices. 4786 std::vector<uint32_t> NewSectionIndex; 4787 getOutputSections(File, NewSectionIndex); 4788 4789 // Set pointer at the end of the output file, so we can pwrite old symbol 4790 // tables if we need to. 4791 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4792 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4793 "next available offset calculation failure"); 4794 Out->os().seek(NextAvailableOffset); 4795 4796 // Update dynamic symbol table. 4797 const ELFShdrTy *DynSymSection = nullptr; 4798 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4799 if (Section.sh_type == ELF::SHT_DYNSYM) { 4800 DynSymSection = &Section; 4801 break; 4802 } 4803 } 4804 assert((DynSymSection || BC->IsStaticExecutable) && 4805 "dynamic symbol table expected"); 4806 if (DynSymSection) { 4807 updateELFSymbolTable( 4808 File, 4809 /*IsDynSym=*/true, 4810 *DynSymSection, 4811 NewSectionIndex, 4812 [&](size_t Offset, const ELFSymTy &Sym) { 4813 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4814 sizeof(ELFSymTy), 4815 DynSymSection->sh_offset + Offset); 4816 }, 4817 [](StringRef) -> size_t { return 0; }); 4818 } 4819 4820 if (opts::RemoveSymtab) 4821 return; 4822 4823 // (re)create regular symbol table. 4824 const ELFShdrTy *SymTabSection = nullptr; 4825 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4826 if (Section.sh_type == ELF::SHT_SYMTAB) { 4827 SymTabSection = &Section; 4828 break; 4829 } 4830 } 4831 if (!SymTabSection) { 4832 errs() << "BOLT-WARNING: no symbol table found\n"; 4833 return; 4834 } 4835 4836 const ELFShdrTy *StrTabSection = 4837 cantFail(Obj.getSection(SymTabSection->sh_link)); 4838 std::string NewContents; 4839 std::string NewStrTab = std::string( 4840 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4841 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4842 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4843 4844 NumLocalSymbols = 0; 4845 updateELFSymbolTable( 4846 File, 4847 /*IsDynSym=*/false, 4848 *SymTabSection, 4849 NewSectionIndex, 4850 [&](size_t Offset, const ELFSymTy &Sym) { 4851 if (Sym.getBinding() == ELF::STB_LOCAL) 4852 ++NumLocalSymbols; 4853 NewContents.append(reinterpret_cast<const char *>(&Sym), 4854 sizeof(ELFSymTy)); 4855 }, 4856 [&](StringRef Str) { 4857 size_t Idx = NewStrTab.size(); 4858 NewStrTab.append(NameResolver::restore(Str).str()); 4859 NewStrTab.append(1, '\0'); 4860 return Idx; 4861 }); 4862 4863 BC->registerOrUpdateNoteSection(SecName, 4864 copyByteArray(NewContents), 4865 NewContents.size(), 4866 /*Alignment=*/1, 4867 /*IsReadOnly=*/true, 4868 ELF::SHT_SYMTAB); 4869 4870 BC->registerOrUpdateNoteSection(StrSecName, 4871 copyByteArray(NewStrTab), 4872 NewStrTab.size(), 4873 /*Alignment=*/1, 4874 /*IsReadOnly=*/true, 4875 ELF::SHT_STRTAB); 4876 } 4877 4878 template <typename ELFT> 4879 void 4880 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4881 using Elf_Rela = typename ELFT::Rela; 4882 raw_fd_ostream &OS = Out->os(); 4883 const ELFFile<ELFT> &EF = File->getELFFile(); 4884 4885 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4886 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4887 4888 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4889 uint64_t &End) { 4890 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4891 Start = Section->getInputFileOffset(); 4892 End = Start + Section->getSize(); 4893 }; 4894 4895 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4896 return; 4897 4898 if (DynamicRelocationsAddress) 4899 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4900 RelDynEndOffset); 4901 4902 if (PLTRelocationsAddress) 4903 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4904 RelPltEndOffset); 4905 4906 DynamicRelativeRelocationsCount = 0; 4907 4908 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4909 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4910 Offset += sizeof(*RelA); 4911 }; 4912 4913 auto writeRelocations = [&](bool PatchRelative) { 4914 for (BinarySection &Section : BC->allocatableSections()) { 4915 for (const Relocation &Rel : Section.dynamicRelocations()) { 4916 const bool IsRelative = Rel.isRelative(); 4917 if (PatchRelative != IsRelative) 4918 continue; 4919 4920 if (IsRelative) 4921 ++DynamicRelativeRelocationsCount; 4922 4923 Elf_Rela NewRelA; 4924 uint64_t SectionAddress = Section.getOutputAddress(); 4925 SectionAddress = 4926 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4927 MCSymbol *Symbol = Rel.Symbol; 4928 uint32_t SymbolIdx = 0; 4929 uint64_t Addend = Rel.Addend; 4930 4931 if (Rel.Symbol) { 4932 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4933 } else { 4934 // Usually this case is used for R_*_(I)RELATIVE relocations 4935 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4936 if (Address) 4937 Addend = Address; 4938 } 4939 4940 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4941 NewRelA.r_offset = SectionAddress + Rel.Offset; 4942 NewRelA.r_addend = Addend; 4943 4944 const bool IsJmpRel = 4945 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4946 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4947 const uint64_t &EndOffset = 4948 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4949 if (!Offset || !EndOffset) { 4950 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4951 exit(1); 4952 } 4953 4954 if (Offset + sizeof(NewRelA) > EndOffset) { 4955 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4956 exit(1); 4957 } 4958 4959 writeRela(&NewRelA, Offset); 4960 } 4961 } 4962 }; 4963 4964 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4965 writeRelocations(/* PatchRelative */ true); 4966 writeRelocations(/* PatchRelative */ false); 4967 4968 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4969 if (!Offset) 4970 return; 4971 4972 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4973 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4974 RelA.r_offset = 0; 4975 RelA.r_addend = 0; 4976 while (Offset < EndOffset) 4977 writeRela(&RelA, Offset); 4978 4979 assert(Offset == EndOffset && "Unexpected section overflow"); 4980 }; 4981 4982 // Fill the rest of the sections with R_*_NONE relocations 4983 fillNone(RelDynOffset, RelDynEndOffset); 4984 fillNone(RelPltOffset, RelPltEndOffset); 4985 } 4986 4987 template <typename ELFT> 4988 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 4989 raw_fd_ostream &OS = Out->os(); 4990 4991 SectionRef GOTSection; 4992 for (const SectionRef &Section : File->sections()) { 4993 StringRef SectionName = cantFail(Section.getName()); 4994 if (SectionName == ".got") { 4995 GOTSection = Section; 4996 break; 4997 } 4998 } 4999 if (!GOTSection.getObject()) { 5000 if (!BC->IsStaticExecutable) 5001 errs() << "BOLT-INFO: no .got section found\n"; 5002 return; 5003 } 5004 5005 StringRef GOTContents = cantFail(GOTSection.getContents()); 5006 for (const uint64_t *GOTEntry = 5007 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5008 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5009 GOTContents.size()); 5010 ++GOTEntry) { 5011 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5012 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5013 << Twine::utohexstr(*GOTEntry) << " with 0x" 5014 << Twine::utohexstr(NewAddress) << '\n'); 5015 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5016 reinterpret_cast<const char *>(GOTEntry) - 5017 File->getData().data()); 5018 } 5019 } 5020 } 5021 5022 template <typename ELFT> 5023 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5024 if (BC->IsStaticExecutable) 5025 return; 5026 5027 const ELFFile<ELFT> &Obj = File->getELFFile(); 5028 raw_fd_ostream &OS = Out->os(); 5029 5030 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5031 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5032 5033 // Locate DYNAMIC by looking through program headers. 5034 uint64_t DynamicOffset = 0; 5035 const Elf_Phdr *DynamicPhdr = 0; 5036 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5037 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5038 DynamicOffset = Phdr.p_offset; 5039 DynamicPhdr = &Phdr; 5040 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5041 break; 5042 } 5043 } 5044 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5045 5046 bool ZNowSet = false; 5047 5048 // Go through all dynamic entries and patch functions addresses with 5049 // new ones. 5050 typename ELFT::DynRange DynamicEntries = 5051 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5052 auto DTB = DynamicEntries.begin(); 5053 for (const Elf_Dyn &Dyn : DynamicEntries) { 5054 Elf_Dyn NewDE = Dyn; 5055 bool ShouldPatch = true; 5056 switch (Dyn.d_tag) { 5057 default: 5058 ShouldPatch = false; 5059 break; 5060 case ELF::DT_RELACOUNT: 5061 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5062 break; 5063 case ELF::DT_INIT: 5064 case ELF::DT_FINI: { 5065 if (BC->HasRelocations) { 5066 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5067 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5068 << Dyn.getTag() << '\n'); 5069 NewDE.d_un.d_ptr = NewAddress; 5070 } 5071 } 5072 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5073 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5074 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5075 NewDE.d_un.d_ptr = Addr; 5076 } 5077 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5078 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5079 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5080 << Twine::utohexstr(Addr) << '\n'); 5081 NewDE.d_un.d_ptr = Addr; 5082 } 5083 } 5084 break; 5085 } 5086 case ELF::DT_FLAGS: 5087 if (BC->RequiresZNow) { 5088 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5089 ZNowSet = true; 5090 } 5091 break; 5092 case ELF::DT_FLAGS_1: 5093 if (BC->RequiresZNow) { 5094 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5095 ZNowSet = true; 5096 } 5097 break; 5098 } 5099 if (ShouldPatch) 5100 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5101 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5102 } 5103 5104 if (BC->RequiresZNow && !ZNowSet) { 5105 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5106 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5107 ".dynamic. Please re-link the binary with -znow.\n"; 5108 exit(1); 5109 } 5110 } 5111 5112 template <typename ELFT> 5113 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5114 const ELFFile<ELFT> &Obj = File->getELFFile(); 5115 5116 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5117 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5118 5119 // Locate DYNAMIC by looking through program headers. 5120 const Elf_Phdr *DynamicPhdr = 0; 5121 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5122 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5123 DynamicPhdr = &Phdr; 5124 break; 5125 } 5126 } 5127 5128 if (!DynamicPhdr) { 5129 outs() << "BOLT-INFO: static input executable detected\n"; 5130 // TODO: static PIE executable might have dynamic header 5131 BC->IsStaticExecutable = true; 5132 return Error::success(); 5133 } 5134 5135 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5136 return createStringError(errc::executable_format_error, 5137 "dynamic section sizes should match"); 5138 5139 // Go through all dynamic entries to locate entries of interest. 5140 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5141 if (!DynamicEntriesOrErr) 5142 return DynamicEntriesOrErr.takeError(); 5143 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5144 5145 for (const Elf_Dyn &Dyn : DynamicEntries) { 5146 switch (Dyn.d_tag) { 5147 case ELF::DT_INIT: 5148 if (!BC->HasInterpHeader) { 5149 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5150 BC->StartFunctionAddress = Dyn.getPtr(); 5151 } 5152 break; 5153 case ELF::DT_FINI: 5154 BC->FiniFunctionAddress = Dyn.getPtr(); 5155 break; 5156 case ELF::DT_RELA: 5157 DynamicRelocationsAddress = Dyn.getPtr(); 5158 break; 5159 case ELF::DT_RELASZ: 5160 DynamicRelocationsSize = Dyn.getVal(); 5161 break; 5162 case ELF::DT_JMPREL: 5163 PLTRelocationsAddress = Dyn.getPtr(); 5164 break; 5165 case ELF::DT_PLTRELSZ: 5166 PLTRelocationsSize = Dyn.getVal(); 5167 break; 5168 case ELF::DT_RELACOUNT: 5169 DynamicRelativeRelocationsCount = Dyn.getVal(); 5170 break; 5171 } 5172 } 5173 5174 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5175 DynamicRelocationsAddress.reset(); 5176 DynamicRelocationsSize = 0; 5177 } 5178 5179 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5180 PLTRelocationsAddress.reset(); 5181 PLTRelocationsSize = 0; 5182 } 5183 return Error::success(); 5184 } 5185 5186 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5187 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5188 if (!Function) 5189 return 0; 5190 5191 assert(!Function->isFragment() && "cannot get new address for a fragment"); 5192 5193 return Function->getOutputAddress(); 5194 } 5195 5196 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5197 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5198 return Function; 5199 5200 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5201 if (BD && BD->isMoved()) 5202 return BD->getOutputAddress(); 5203 5204 return 0; 5205 } 5206 5207 void RewriteInstance::rewriteFile() { 5208 std::error_code EC; 5209 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5210 sys::fs::OF_None); 5211 check_error(EC, "cannot create output executable file"); 5212 5213 raw_fd_ostream &OS = Out->os(); 5214 5215 // Copy allocatable part of the input. 5216 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5217 5218 // We obtain an asm-specific writer so that we can emit nops in an 5219 // architecture-specific way at the end of the function. 5220 std::unique_ptr<MCAsmBackend> MAB( 5221 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5222 auto Streamer = BC->createStreamer(OS); 5223 // Make sure output stream has enough reserved space, otherwise 5224 // pwrite() will fail. 5225 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5226 (void)Offset; 5227 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5228 "error resizing output file"); 5229 5230 // Overwrite functions with fixed output address. This is mostly used by 5231 // non-relocation mode, with one exception: injected functions are covered 5232 // here in both modes. 5233 uint64_t CountOverwrittenFunctions = 0; 5234 uint64_t OverwrittenScore = 0; 5235 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5236 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5237 continue; 5238 5239 if (Function->getImageSize() > Function->getMaxSize()) { 5240 if (opts::Verbosity >= 1) 5241 errs() << "BOLT-WARNING: new function size (0x" 5242 << Twine::utohexstr(Function->getImageSize()) 5243 << ") is larger than maximum allowed size (0x" 5244 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5245 << *Function << '\n'; 5246 5247 // Remove jump table sections that this function owns in non-reloc mode 5248 // because we don't want to write them anymore. 5249 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5250 for (auto &JTI : Function->JumpTables) { 5251 JumpTable *JT = JTI.second; 5252 BinarySection &Section = JT->getOutputSection(); 5253 BC->deregisterSection(Section); 5254 } 5255 } 5256 continue; 5257 } 5258 5259 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5260 Function->cold().getImageSize() == 0)) 5261 continue; 5262 5263 OverwrittenScore += Function->getFunctionScore(); 5264 // Overwrite function in the output file. 5265 if (opts::Verbosity >= 2) 5266 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5267 5268 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5269 Function->getImageSize(), Function->getFileOffset()); 5270 5271 // Write nops at the end of the function. 5272 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5273 uint64_t Pos = OS.tell(); 5274 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5275 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5276 &*BC->STI); 5277 5278 OS.seek(Pos); 5279 } 5280 5281 if (!Function->isSplit()) { 5282 ++CountOverwrittenFunctions; 5283 if (opts::MaxFunctions && 5284 CountOverwrittenFunctions == opts::MaxFunctions) { 5285 outs() << "BOLT: maximum number of functions reached\n"; 5286 break; 5287 } 5288 continue; 5289 } 5290 5291 // Write cold part 5292 if (opts::Verbosity >= 2) 5293 outs() << "BOLT: rewriting function \"" << *Function 5294 << "\" (cold part)\n"; 5295 5296 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5297 Function->cold().getImageSize(), 5298 Function->cold().getFileOffset()); 5299 5300 ++CountOverwrittenFunctions; 5301 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5302 outs() << "BOLT: maximum number of functions reached\n"; 5303 break; 5304 } 5305 } 5306 5307 // Print function statistics for non-relocation mode. 5308 if (!BC->HasRelocations) { 5309 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5310 << BC->getBinaryFunctions().size() 5311 << " functions were overwritten.\n"; 5312 if (BC->TotalScore != 0) { 5313 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5314 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5315 << "% of the execution count of simple functions of " 5316 "this binary\n"; 5317 } 5318 } 5319 5320 if (BC->HasRelocations && opts::TrapOldCode) { 5321 uint64_t SavedPos = OS.tell(); 5322 // Overwrite function body to make sure we never execute these instructions. 5323 for (auto &BFI : BC->getBinaryFunctions()) { 5324 BinaryFunction &BF = BFI.second; 5325 if (!BF.getFileOffset() || !BF.isEmitted()) 5326 continue; 5327 OS.seek(BF.getFileOffset()); 5328 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5329 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5330 } 5331 OS.seek(SavedPos); 5332 } 5333 5334 // Write all allocatable sections - reloc-mode text is written here as well 5335 for (BinarySection &Section : BC->allocatableSections()) { 5336 if (!Section.isFinalized() || !Section.getOutputData()) 5337 continue; 5338 5339 if (opts::Verbosity >= 1) 5340 outs() << "BOLT: writing new section " << Section.getName() 5341 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5342 << "\n of size " << Section.getOutputSize() << "\n at offset " 5343 << Section.getOutputFileOffset() << '\n'; 5344 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5345 Section.getOutputSize(), Section.getOutputFileOffset()); 5346 } 5347 5348 for (BinarySection &Section : BC->allocatableSections()) 5349 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5350 return getNewValueForSymbol(S->getName()); 5351 }); 5352 5353 // If .eh_frame is present create .eh_frame_hdr. 5354 if (EHFrameSection && EHFrameSection->isFinalized()) 5355 writeEHFrameHeader(); 5356 5357 // Add BOLT Addresses Translation maps to allow profile collection to 5358 // happen in the output binary 5359 if (opts::EnableBAT) 5360 addBATSection(); 5361 5362 // Patch program header table. 5363 patchELFPHDRTable(); 5364 5365 // Finalize memory image of section string table. 5366 finalizeSectionStringTable(); 5367 5368 // Update symbol tables. 5369 patchELFSymTabs(); 5370 5371 patchBuildID(); 5372 5373 if (opts::EnableBAT) 5374 encodeBATSection(); 5375 5376 // Copy non-allocatable sections once allocatable part is finished. 5377 rewriteNoteSections(); 5378 5379 if (BC->HasRelocations) { 5380 patchELFAllocatableRelaSections(); 5381 patchELFGOT(); 5382 } 5383 5384 // Patch dynamic section/segment. 5385 patchELFDynamic(); 5386 5387 // Update ELF book-keeping info. 5388 patchELFSectionHeaderTable(); 5389 5390 if (opts::PrintSections) { 5391 outs() << "BOLT-INFO: Sections after processing:\n"; 5392 BC->printSections(outs()); 5393 } 5394 5395 Out->keep(); 5396 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5397 check_error(EC, "cannot set permissions of output file"); 5398 } 5399 5400 void RewriteInstance::writeEHFrameHeader() { 5401 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5402 EHFrameSection->getOutputAddress()); 5403 Error E = NewEHFrame.parse(DWARFDataExtractor( 5404 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5405 BC->AsmInfo->getCodePointerSize())); 5406 check_error(std::move(E), "failed to parse EH frame"); 5407 5408 uint64_t OldEHFrameAddress = 0; 5409 StringRef OldEHFrameContents; 5410 ErrorOr<BinarySection &> OldEHFrameSection = 5411 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5412 if (OldEHFrameSection) { 5413 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5414 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5415 } 5416 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5417 Error Er = OldEHFrame.parse( 5418 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5419 BC->AsmInfo->getCodePointerSize())); 5420 check_error(std::move(Er), "failed to parse EH frame"); 5421 5422 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5423 5424 NextAvailableAddress = 5425 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5426 5427 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5428 const uint64_t EHFrameHdrFileOffset = 5429 getFileOffsetForAddress(NextAvailableAddress); 5430 5431 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5432 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5433 5434 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5435 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5436 5437 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5438 /*IsText=*/false, 5439 /*IsAllocatable=*/true); 5440 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5441 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5442 /*Alignment=*/1); 5443 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5444 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5445 5446 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5447 5448 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5449 if (OldEHFrameSection) { 5450 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5451 OldEHFrameSection->getOutputSize() - 5452 EHFrameSection->getOutputAddress()); 5453 EHFrameSection = 5454 BC->registerOrUpdateSection(".eh_frame", 5455 EHFrameSection->getELFType(), 5456 EHFrameSection->getELFFlags(), 5457 EHFrameSection->getOutputData(), 5458 EHFrameSectionSize, 5459 EHFrameSection->getAlignment()); 5460 BC->deregisterSection(*OldEHFrameSection); 5461 } 5462 5463 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5464 << EHFrameSection->getOutputSize() << '\n'); 5465 } 5466 5467 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5468 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5469 if (Value != 0) 5470 return Value; 5471 5472 // Return the original value if we haven't emitted the symbol. 5473 BinaryData *BD = BC->getBinaryDataByName(Name); 5474 if (!BD) 5475 return 0; 5476 5477 return BD->getAddress(); 5478 } 5479 5480 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5481 // Check if it's possibly part of the new segment. 5482 if (Address >= NewTextSegmentAddress) 5483 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5484 5485 // Find an existing segment that matches the address. 5486 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5487 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5488 return 0; 5489 5490 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5491 if (Address < SegmentInfo.Address || 5492 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5493 return 0; 5494 5495 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5496 } 5497 5498 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5499 for (const char *const &OverwriteName : SectionsToOverwrite) 5500 if (SectionName == OverwriteName) 5501 return true; 5502 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5503 if (SectionName == OverwriteName) 5504 return true; 5505 5506 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5507 return Section && Section->isAllocatable() && Section->isFinalized(); 5508 } 5509 5510 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5511 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5512 SectionName == ".gdb_index" || SectionName == ".stab" || 5513 SectionName == ".stabstr") 5514 return true; 5515 5516 return false; 5517 } 5518 5519 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5520 if (SectionName.startswith("__ksymtab")) 5521 return true; 5522 5523 return false; 5524 } 5525