1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/BinaryContext.h"
11 #include "bolt/Core/BinaryEmitter.h"
12 #include "bolt/Core/BinaryFunction.h"
13 #include "bolt/Core/DebugData.h"
14 #include "bolt/Core/Exceptions.h"
15 #include "bolt/Core/MCPlusBuilder.h"
16 #include "bolt/Core/ParallelUtilities.h"
17 #include "bolt/Core/Relocation.h"
18 #include "bolt/Passes/CacheMetrics.h"
19 #include "bolt/Passes/ReorderFunctions.h"
20 #include "bolt/Profile/BoltAddressTranslation.h"
21 #include "bolt/Profile/DataAggregator.h"
22 #include "bolt/Profile/DataReader.h"
23 #include "bolt/Profile/YAMLProfileReader.h"
24 #include "bolt/Profile/YAMLProfileWriter.h"
25 #include "bolt/Rewrite/BinaryPassManager.h"
26 #include "bolt/Rewrite/DWARFRewriter.h"
27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
30 #include "bolt/Utils/CommandLineOpts.h"
31 #include "bolt/Utils/Utils.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
35 #include "llvm/ExecutionEngine/RuntimeDyld.h"
36 #include "llvm/MC/MCAsmBackend.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCAsmLayout.h"
39 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
40 #include "llvm/MC/MCObjectStreamer.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/MC/TargetRegistry.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Support/Alignment.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/DataExtractor.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/Error.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/ManagedStatic.h"
54 #include "llvm/Support/Timer.h"
55 #include "llvm/Support/ToolOutputFile.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <fstream>
59 #include <memory>
60 #include <system_error>
61
62 #undef DEBUG_TYPE
63 #define DEBUG_TYPE "bolt"
64
65 using namespace llvm;
66 using namespace object;
67 using namespace bolt;
68
69 extern cl::opt<uint32_t> X86AlignBranchBoundary;
70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
71
72 namespace opts {
73
74 extern cl::opt<MacroFusionType> AlignMacroOpFusion;
75 extern cl::list<std::string> HotTextMoveSections;
76 extern cl::opt<bool> Hugify;
77 extern cl::opt<bool> Instrument;
78 extern cl::opt<JumpTableSupportLevel> JumpTables;
79 extern cl::list<std::string> ReorderData;
80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
81 extern cl::opt<bool> TimeBuild;
82
83 static cl::opt<bool> ForceToDataRelocations(
84 "force-data-relocations",
85 cl::desc("force relocations to data sections to always be processed"),
86
87 cl::Hidden, cl::cat(BoltCategory));
88
89 cl::opt<std::string>
90 BoltID("bolt-id",
91 cl::desc("add any string to tag this execution in the "
92 "output binary via bolt info section"),
93 cl::cat(BoltCategory));
94
95 cl::opt<bool>
96 AllowStripped("allow-stripped",
97 cl::desc("allow processing of stripped binaries"),
98 cl::Hidden,
99 cl::cat(BoltCategory));
100
101 cl::opt<bool> DumpDotAll(
102 "dump-dot-all",
103 cl::desc("dump function CFGs to graphviz format after each stage;"
104 "enable '-print-loops' for color-coded blocks"),
105 cl::Hidden, cl::cat(BoltCategory));
106
107 static cl::list<std::string>
108 ForceFunctionNames("funcs",
109 cl::CommaSeparated,
110 cl::desc("limit optimizations to functions from the list"),
111 cl::value_desc("func1,func2,func3,..."),
112 cl::Hidden,
113 cl::cat(BoltCategory));
114
115 static cl::opt<std::string>
116 FunctionNamesFile("funcs-file",
117 cl::desc("file with list of functions to optimize"),
118 cl::Hidden,
119 cl::cat(BoltCategory));
120
121 static cl::list<std::string> ForceFunctionNamesNR(
122 "funcs-no-regex", cl::CommaSeparated,
123 cl::desc("limit optimizations to functions from the list (non-regex)"),
124 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
125
126 static cl::opt<std::string> FunctionNamesFileNR(
127 "funcs-file-no-regex",
128 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
129 cl::cat(BoltCategory));
130
131 cl::opt<bool>
132 KeepTmp("keep-tmp",
133 cl::desc("preserve intermediate .o file"),
134 cl::Hidden,
135 cl::cat(BoltCategory));
136
137 cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"),
138 cl::cat(BoltCategory));
139
140 static cl::opt<unsigned>
141 LiteThresholdPct("lite-threshold-pct",
142 cl::desc("threshold (in percent) for selecting functions to process in lite "
143 "mode. Higher threshold means fewer functions to process. E.g "
144 "threshold of 90 means only top 10 percent of functions with "
145 "profile will be processed."),
146 cl::init(0),
147 cl::ZeroOrMore,
148 cl::Hidden,
149 cl::cat(BoltOptCategory));
150
151 static cl::opt<unsigned> LiteThresholdCount(
152 "lite-threshold-count",
153 cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
154 "absolute function call count. I.e. limit processing to functions "
155 "executed at least the specified number of times."),
156 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
157
158 static cl::opt<unsigned>
159 MaxFunctions("max-funcs",
160 cl::desc("maximum number of functions to process"), cl::Hidden,
161 cl::cat(BoltCategory));
162
163 static cl::opt<unsigned> MaxDataRelocations(
164 "max-data-relocations",
165 cl::desc("maximum number of data relocations to process"), cl::Hidden,
166 cl::cat(BoltCategory));
167
168 cl::opt<bool> PrintAll("print-all",
169 cl::desc("print functions after each stage"), cl::Hidden,
170 cl::cat(BoltCategory));
171
172 cl::opt<bool> PrintCFG("print-cfg",
173 cl::desc("print functions after CFG construction"),
174 cl::Hidden, cl::cat(BoltCategory));
175
176 cl::opt<bool> PrintDisasm("print-disasm",
177 cl::desc("print function after disassembly"),
178 cl::Hidden, cl::cat(BoltCategory));
179
180 static cl::opt<bool>
181 PrintGlobals("print-globals",
182 cl::desc("print global symbols after disassembly"), cl::Hidden,
183 cl::cat(BoltCategory));
184
185 extern cl::opt<bool> PrintSections;
186
187 static cl::opt<bool> PrintLoopInfo("print-loops",
188 cl::desc("print loop related information"),
189 cl::Hidden, cl::cat(BoltCategory));
190
191 static cl::opt<bool> PrintSDTMarkers("print-sdt",
192 cl::desc("print all SDT markers"),
193 cl::Hidden, cl::cat(BoltCategory));
194
195 enum PrintPseudoProbesOptions {
196 PPP_None = 0,
197 PPP_Probes_Section_Decode = 0x1,
198 PPP_Probes_Address_Conversion = 0x2,
199 PPP_Encoded_Probes = 0x3,
200 PPP_All = 0xf
201 };
202
203 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes(
204 "print-pseudo-probes", cl::desc("print pseudo probe info"),
205 cl::init(PPP_None),
206 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode",
207 "decode probes section from binary"),
208 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion",
209 "update address2ProbesMap with output block address"),
210 clEnumValN(PPP_Encoded_Probes, "encoded_probes",
211 "display the encoded probes in binary section"),
212 clEnumValN(PPP_All, "all", "enable all debugging printout")),
213 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory));
214
215 static cl::opt<cl::boolOrDefault> RelocationMode(
216 "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
217 cl::cat(BoltCategory));
218
219 static cl::opt<std::string>
220 SaveProfile("w",
221 cl::desc("save recorded profile to a file"),
222 cl::cat(BoltOutputCategory));
223
224 static cl::list<std::string>
225 SkipFunctionNames("skip-funcs",
226 cl::CommaSeparated,
227 cl::desc("list of functions to skip"),
228 cl::value_desc("func1,func2,func3,..."),
229 cl::Hidden,
230 cl::cat(BoltCategory));
231
232 static cl::opt<std::string>
233 SkipFunctionNamesFile("skip-funcs-file",
234 cl::desc("file with list of functions to skip"),
235 cl::Hidden,
236 cl::cat(BoltCategory));
237
238 cl::opt<bool>
239 TrapOldCode("trap-old-code",
240 cl::desc("insert traps in old function bodies (relocation mode)"),
241 cl::Hidden,
242 cl::cat(BoltCategory));
243
244 static cl::opt<std::string> DWPPathName("dwp",
245 cl::desc("Path and name to DWP file."),
246 cl::Hidden, cl::init(""),
247 cl::cat(BoltCategory));
248
249 static cl::opt<bool>
250 UseGnuStack("use-gnu-stack",
251 cl::desc("use GNU_STACK program header for new segment (workaround for "
252 "issues with strip/objcopy)"),
253 cl::ZeroOrMore,
254 cl::cat(BoltCategory));
255
256 static cl::opt<bool>
257 TimeRewrite("time-rewrite",
258 cl::desc("print time spent in rewriting passes"), cl::Hidden,
259 cl::cat(BoltCategory));
260
261 static cl::opt<bool>
262 SequentialDisassembly("sequential-disassembly",
263 cl::desc("performs disassembly sequentially"),
264 cl::init(false),
265 cl::cat(BoltOptCategory));
266
267 static cl::opt<bool> WriteBoltInfoSection(
268 "bolt-info", cl::desc("write bolt info section in the output binary"),
269 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
270
271 } // namespace opts
272
273 constexpr const char *RewriteInstance::SectionsToOverwrite[];
274 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
275 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
276 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
277 ".gdb_index", ".debug_addr"};
278
279 const char RewriteInstance::TimerGroupName[] = "rewrite";
280 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
281
282 namespace llvm {
283 namespace bolt {
284
285 extern const char *BoltRevision;
286
createMCPlusBuilder(const Triple::ArchType Arch,const MCInstrAnalysis * Analysis,const MCInstrInfo * Info,const MCRegisterInfo * RegInfo)287 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
288 const MCInstrAnalysis *Analysis,
289 const MCInstrInfo *Info,
290 const MCRegisterInfo *RegInfo) {
291 #ifdef X86_AVAILABLE
292 if (Arch == Triple::x86_64)
293 return createX86MCPlusBuilder(Analysis, Info, RegInfo);
294 #endif
295
296 #ifdef AARCH64_AVAILABLE
297 if (Arch == Triple::aarch64)
298 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo);
299 #endif
300
301 llvm_unreachable("architecture unsupported by MCPlusBuilder");
302 }
303
304 } // namespace bolt
305 } // namespace llvm
306
307 namespace {
308
refersToReorderedSection(ErrorOr<BinarySection &> Section)309 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
310 auto Itr =
311 llvm::find_if(opts::ReorderData, [&](const std::string &SectionName) {
312 return (Section && Section->getName() == SectionName);
313 });
314 return Itr != opts::ReorderData.end();
315 }
316
317 } // anonymous namespace
318
319 Expected<std::unique_ptr<RewriteInstance>>
createRewriteInstance(ELFObjectFileBase * File,const int Argc,const char * const * Argv,StringRef ToolPath)320 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc,
321 const char *const *Argv,
322 StringRef ToolPath) {
323 Error Err = Error::success();
324 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err);
325 if (Err)
326 return std::move(Err);
327 return std::move(RI);
328 }
329
RewriteInstance(ELFObjectFileBase * File,const int Argc,const char * const * Argv,StringRef ToolPath,Error & Err)330 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
331 const char *const *Argv, StringRef ToolPath,
332 Error &Err)
333 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
334 SHStrTab(StringTableBuilder::ELF) {
335 ErrorAsOutParameter EAO(&Err);
336 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
337 if (!ELF64LEFile) {
338 Err = createStringError(errc::not_supported,
339 "Only 64-bit LE ELF binaries are supported");
340 return;
341 }
342
343 bool IsPIC = false;
344 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
345 if (Obj.getHeader().e_type != ELF::ET_EXEC) {
346 outs() << "BOLT-INFO: shared object or position-independent executable "
347 "detected\n";
348 IsPIC = true;
349 }
350
351 auto BCOrErr = BinaryContext::createBinaryContext(
352 File, IsPIC,
353 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
354 nullptr, opts::DWPPathName,
355 WithColor::defaultErrorHandler,
356 WithColor::defaultWarningHandler));
357 if (Error E = BCOrErr.takeError()) {
358 Err = std::move(E);
359 return;
360 }
361 BC = std::move(BCOrErr.get());
362 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder(
363 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get())));
364
365 BAT = std::make_unique<BoltAddressTranslation>(*BC);
366
367 if (opts::UpdateDebugSections)
368 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
369
370 if (opts::Instrument)
371 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
372 else if (opts::Hugify)
373 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
374 }
375
~RewriteInstance()376 RewriteInstance::~RewriteInstance() {}
377
setProfile(StringRef Filename)378 Error RewriteInstance::setProfile(StringRef Filename) {
379 if (!sys::fs::exists(Filename))
380 return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
381
382 if (ProfileReader) {
383 // Already exists
384 return make_error<StringError>(Twine("multiple profiles specified: ") +
385 ProfileReader->getFilename() + " and " +
386 Filename,
387 inconvertibleErrorCode());
388 }
389
390 // Spawn a profile reader based on file contents.
391 if (DataAggregator::checkPerfDataMagic(Filename))
392 ProfileReader = std::make_unique<DataAggregator>(Filename);
393 else if (YAMLProfileReader::isYAML(Filename))
394 ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
395 else
396 ProfileReader = std::make_unique<DataReader>(Filename);
397
398 return Error::success();
399 }
400
401 /// Return true if the function \p BF should be disassembled.
shouldDisassemble(const BinaryFunction & BF)402 static bool shouldDisassemble(const BinaryFunction &BF) {
403 if (BF.isPseudo())
404 return false;
405
406 if (opts::processAllFunctions())
407 return true;
408
409 return !BF.isIgnored();
410 }
411
discoverStorage()412 Error RewriteInstance::discoverStorage() {
413 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
414 TimerGroupDesc, opts::TimeRewrite);
415
416 // Stubs are harmful because RuntimeDyld may try to increase the size of
417 // sections accounting for stubs when we need those sections to match the
418 // same size seen in the input binary, in case this section is a copy
419 // of the original one seen in the binary.
420 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false));
421
422 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
423 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
424
425 BC->StartFunctionAddress = Obj.getHeader().e_entry;
426
427 NextAvailableAddress = 0;
428 uint64_t NextAvailableOffset = 0;
429 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
430 if (Error E = PHsOrErr.takeError())
431 return E;
432
433 ELF64LE::PhdrRange PHs = PHsOrErr.get();
434 for (const ELF64LE::Phdr &Phdr : PHs) {
435 switch (Phdr.p_type) {
436 case ELF::PT_LOAD:
437 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
438 static_cast<uint64_t>(Phdr.p_vaddr));
439 NextAvailableAddress = std::max(NextAvailableAddress,
440 Phdr.p_vaddr + Phdr.p_memsz);
441 NextAvailableOffset = std::max(NextAvailableOffset,
442 Phdr.p_offset + Phdr.p_filesz);
443
444 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
445 Phdr.p_memsz,
446 Phdr.p_offset,
447 Phdr.p_filesz,
448 Phdr.p_align};
449 break;
450 case ELF::PT_INTERP:
451 BC->HasInterpHeader = true;
452 break;
453 }
454 }
455
456 for (const SectionRef &Section : InputFile->sections()) {
457 Expected<StringRef> SectionNameOrErr = Section.getName();
458 if (Error E = SectionNameOrErr.takeError())
459 return E;
460 StringRef SectionName = SectionNameOrErr.get();
461 if (SectionName == ".text") {
462 BC->OldTextSectionAddress = Section.getAddress();
463 BC->OldTextSectionSize = Section.getSize();
464
465 Expected<StringRef> SectionContentsOrErr = Section.getContents();
466 if (Error E = SectionContentsOrErr.takeError())
467 return E;
468 StringRef SectionContents = SectionContentsOrErr.get();
469 BC->OldTextSectionOffset =
470 SectionContents.data() - InputFile->getData().data();
471 }
472
473 if (!opts::HeatmapMode &&
474 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
475 (SectionName.startswith(getOrgSecPrefix()) ||
476 SectionName == getBOLTTextSectionName()))
477 return createStringError(
478 errc::function_not_supported,
479 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
480 }
481
482 if (!NextAvailableAddress || !NextAvailableOffset)
483 return createStringError(errc::executable_format_error,
484 "no PT_LOAD pheader seen");
485
486 outs() << "BOLT-INFO: first alloc address is 0x"
487 << Twine::utohexstr(BC->FirstAllocAddress) << '\n';
488
489 FirstNonAllocatableOffset = NextAvailableOffset;
490
491 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
492 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
493
494 if (!opts::UseGnuStack) {
495 // This is where the black magic happens. Creating PHDR table in a segment
496 // other than that containing ELF header is tricky. Some loaders and/or
497 // parts of loaders will apply e_phoff from ELF header assuming both are in
498 // the same segment, while others will do the proper calculation.
499 // We create the new PHDR table in such a way that both of the methods
500 // of loading and locating the table work. There's a slight file size
501 // overhead because of that.
502 //
503 // NB: bfd's strip command cannot do the above and will corrupt the
504 // binary during the process of stripping non-allocatable sections.
505 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
506 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
507 else
508 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
509
510 assert(NextAvailableOffset ==
511 NextAvailableAddress - BC->FirstAllocAddress &&
512 "PHDR table address calculation error");
513
514 outs() << "BOLT-INFO: creating new program header table at address 0x"
515 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
516 << Twine::utohexstr(NextAvailableOffset) << '\n';
517
518 PHDRTableAddress = NextAvailableAddress;
519 PHDRTableOffset = NextAvailableOffset;
520
521 // Reserve space for 3 extra pheaders.
522 unsigned Phnum = Obj.getHeader().e_phnum;
523 Phnum += 3;
524
525 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
526 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
527 }
528
529 // Align at cache line.
530 NextAvailableAddress = alignTo(NextAvailableAddress, 64);
531 NextAvailableOffset = alignTo(NextAvailableOffset, 64);
532
533 NewTextSegmentAddress = NextAvailableAddress;
534 NewTextSegmentOffset = NextAvailableOffset;
535 BC->LayoutStartAddress = NextAvailableAddress;
536
537 // Tools such as objcopy can strip section contents but leave header
538 // entries. Check that at least .text is mapped in the file.
539 if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
540 return createStringError(errc::executable_format_error,
541 "BOLT-ERROR: input binary is not a valid ELF "
542 "executable as its text section is not "
543 "mapped to a valid segment");
544 return Error::success();
545 }
546
parseSDTNotes()547 void RewriteInstance::parseSDTNotes() {
548 if (!SDTSection)
549 return;
550
551 StringRef Buf = SDTSection->getContents();
552 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(),
553 BC->AsmInfo->getCodePointerSize());
554 uint64_t Offset = 0;
555
556 while (DE.isValidOffset(Offset)) {
557 uint32_t NameSz = DE.getU32(&Offset);
558 DE.getU32(&Offset); // skip over DescSz
559 uint32_t Type = DE.getU32(&Offset);
560 Offset = alignTo(Offset, 4);
561
562 if (Type != 3)
563 errs() << "BOLT-WARNING: SDT note type \"" << Type
564 << "\" is not expected\n";
565
566 if (NameSz == 0)
567 errs() << "BOLT-WARNING: SDT note has empty name\n";
568
569 StringRef Name = DE.getCStr(&Offset);
570
571 if (!Name.equals("stapsdt"))
572 errs() << "BOLT-WARNING: SDT note name \"" << Name
573 << "\" is not expected\n";
574
575 // Parse description
576 SDTMarkerInfo Marker;
577 Marker.PCOffset = Offset;
578 Marker.PC = DE.getU64(&Offset);
579 Marker.Base = DE.getU64(&Offset);
580 Marker.Semaphore = DE.getU64(&Offset);
581 Marker.Provider = DE.getCStr(&Offset);
582 Marker.Name = DE.getCStr(&Offset);
583 Marker.Args = DE.getCStr(&Offset);
584 Offset = alignTo(Offset, 4);
585 BC->SDTMarkers[Marker.PC] = Marker;
586 }
587
588 if (opts::PrintSDTMarkers)
589 printSDTMarkers();
590 }
591
parsePseudoProbe()592 void RewriteInstance::parsePseudoProbe() {
593 if (!PseudoProbeDescSection && !PseudoProbeSection) {
594 // pesudo probe is not added to binary. It is normal and no warning needed.
595 return;
596 }
597
598 // If only one section is found, it might mean the ELF is corrupted.
599 if (!PseudoProbeDescSection) {
600 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n";
601 return;
602 } else if (!PseudoProbeSection) {
603 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n";
604 return;
605 }
606
607 StringRef Contents = PseudoProbeDescSection->getContents();
608 if (!BC->ProbeDecoder.buildGUID2FuncDescMap(
609 reinterpret_cast<const uint8_t *>(Contents.data()),
610 Contents.size())) {
611 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n";
612 return;
613 }
614 Contents = PseudoProbeSection->getContents();
615 if (!BC->ProbeDecoder.buildAddress2ProbeMap(
616 reinterpret_cast<const uint8_t *>(Contents.data()),
617 Contents.size())) {
618 BC->ProbeDecoder.getAddress2ProbesMap().clear();
619 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n";
620 return;
621 }
622
623 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
624 opts::PrintPseudoProbes ==
625 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) {
626 outs() << "Report of decoding input pseudo probe binaries \n";
627 BC->ProbeDecoder.printGUID2FuncDescMap(outs());
628 BC->ProbeDecoder.printProbesForAllAddresses(outs());
629 }
630 }
631
printSDTMarkers()632 void RewriteInstance::printSDTMarkers() {
633 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size()
634 << "\n";
635 for (auto It : BC->SDTMarkers) {
636 SDTMarkerInfo &Marker = It.second;
637 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC)
638 << ", Base: " << utohexstr(Marker.Base)
639 << ", Semaphore: " << utohexstr(Marker.Semaphore)
640 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name
641 << ", Args: " << Marker.Args << "\n";
642 }
643 }
644
parseBuildID()645 void RewriteInstance::parseBuildID() {
646 if (!BuildIDSection)
647 return;
648
649 StringRef Buf = BuildIDSection->getContents();
650
651 // Reading notes section (see Portable Formats Specification, Version 1.1,
652 // pg 2-5, section "Note Section").
653 DataExtractor DE = DataExtractor(Buf, true, 8);
654 uint64_t Offset = 0;
655 if (!DE.isValidOffset(Offset))
656 return;
657 uint32_t NameSz = DE.getU32(&Offset);
658 if (!DE.isValidOffset(Offset))
659 return;
660 uint32_t DescSz = DE.getU32(&Offset);
661 if (!DE.isValidOffset(Offset))
662 return;
663 uint32_t Type = DE.getU32(&Offset);
664
665 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz
666 << "; Type = " << Type << "\n");
667
668 // Type 3 is a GNU build-id note section
669 if (Type != 3)
670 return;
671
672 StringRef Name = Buf.slice(Offset, Offset + NameSz);
673 Offset = alignTo(Offset + NameSz, 4);
674 if (Name.substr(0, 3) != "GNU")
675 return;
676
677 BuildID = Buf.slice(Offset, Offset + DescSz);
678 }
679
getPrintableBuildID() const680 Optional<std::string> RewriteInstance::getPrintableBuildID() const {
681 if (BuildID.empty())
682 return NoneType();
683
684 std::string Str;
685 raw_string_ostream OS(Str);
686 const unsigned char *CharIter = BuildID.bytes_begin();
687 while (CharIter != BuildID.bytes_end()) {
688 if (*CharIter < 0x10)
689 OS << "0";
690 OS << Twine::utohexstr(*CharIter);
691 ++CharIter;
692 }
693 return OS.str();
694 }
695
patchBuildID()696 void RewriteInstance::patchBuildID() {
697 raw_fd_ostream &OS = Out->os();
698
699 if (BuildID.empty())
700 return;
701
702 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID);
703 assert(IDOffset != StringRef::npos && "failed to patch build-id");
704
705 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress());
706 if (!FileOffset) {
707 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
708 return;
709 }
710
711 char LastIDByte = BuildID[BuildID.size() - 1];
712 LastIDByte ^= 1;
713 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1);
714
715 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
716 }
717
run()718 Error RewriteInstance::run() {
719 assert(BC && "failed to create a binary context");
720
721 outs() << "BOLT-INFO: Target architecture: "
722 << Triple::getArchTypeName(
723 (llvm::Triple::ArchType)InputFile->getArch())
724 << "\n";
725 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
726
727 if (Error E = discoverStorage())
728 return E;
729 if (Error E = readSpecialSections())
730 return E;
731 adjustCommandLineOptions();
732 discoverFileObjects();
733
734 preprocessProfileData();
735
736 // Skip disassembling if we have a translation table and we are running an
737 // aggregation job.
738 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
739 processProfileData();
740 return Error::success();
741 }
742
743 selectFunctionsToProcess();
744
745 readDebugInfo();
746
747 disassembleFunctions();
748
749 processProfileDataPreCFG();
750
751 buildFunctionsCFG();
752
753 processProfileData();
754
755 postProcessFunctions();
756
757 if (opts::DiffOnly)
758 return Error::success();
759
760 runOptimizationPasses();
761
762 emitAndLink();
763
764 updateMetadata();
765
766 if (opts::LinuxKernelMode) {
767 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
768 return Error::success();
769 } else if (opts::OutputFilename == "/dev/null") {
770 outs() << "BOLT-INFO: skipping writing final binary to disk\n";
771 return Error::success();
772 }
773
774 // Rewrite allocatable contents and copy non-allocatable parts with mods.
775 rewriteFile();
776 return Error::success();
777 }
778
discoverFileObjects()779 void RewriteInstance::discoverFileObjects() {
780 NamedRegionTimer T("discoverFileObjects", "discover file objects",
781 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
782 FileSymRefs.clear();
783 BC->getBinaryFunctions().clear();
784 BC->clearBinaryData();
785
786 // For local symbols we want to keep track of associated FILE symbol name for
787 // disambiguation by combined name.
788 StringRef FileSymbolName;
789 bool SeenFileName = false;
790 struct SymbolRefHash {
791 size_t operator()(SymbolRef const &S) const {
792 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
793 }
794 };
795 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
796 for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
797 Expected<StringRef> NameOrError = Symbol.getName();
798 if (NameOrError && NameOrError->startswith("__asan_init")) {
799 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
800 "support. Cannot optimize.\n";
801 exit(1);
802 }
803 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) {
804 errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
805 "support. Cannot optimize.\n";
806 exit(1);
807 }
808
809 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
810 continue;
811
812 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
813 StringRef Name =
814 cantFail(std::move(NameOrError), "cannot get symbol name for file");
815 // Ignore Clang LTO artificial FILE symbol as it is not always generated,
816 // and this uncertainty is causing havoc in function name matching.
817 if (Name == "ld-temp.o")
818 continue;
819 FileSymbolName = Name;
820 SeenFileName = true;
821 continue;
822 }
823 if (!FileSymbolName.empty() &&
824 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
825 SymbolToFileName[Symbol] = FileSymbolName;
826 }
827
828 // Sort symbols in the file by value. Ignore symbols from non-allocatable
829 // sections.
830 auto isSymbolInMemory = [this](const SymbolRef &Sym) {
831 if (cantFail(Sym.getType()) == SymbolRef::ST_File)
832 return false;
833 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
834 return true;
835 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
836 return false;
837 BinarySection Section(*BC, *cantFail(Sym.getSection()));
838 return Section.isAllocatable();
839 };
840 std::vector<SymbolRef> SortedFileSymbols;
841 llvm::copy_if(InputFile->symbols(), std::back_inserter(SortedFileSymbols),
842 isSymbolInMemory);
843 auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) {
844 // Marker symbols have the highest precedence, while
845 // SECTIONs have the lowest.
846 auto AddressA = cantFail(A.getAddress());
847 auto AddressB = cantFail(B.getAddress());
848 if (AddressA != AddressB)
849 return AddressA < AddressB;
850
851 bool AMarker = BC->isMarker(A);
852 bool BMarker = BC->isMarker(B);
853 if (AMarker || BMarker) {
854 return AMarker && !BMarker;
855 }
856
857 auto AType = cantFail(A.getType());
858 auto BType = cantFail(B.getType());
859 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
860 return true;
861 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
862 return true;
863
864 return false;
865 };
866
867 llvm::stable_sort(SortedFileSymbols, CompareSymbols);
868
869 auto LastSymbol = SortedFileSymbols.end();
870 if (!SortedFileSymbols.empty())
871 --LastSymbol;
872
873 // For aarch64, the ABI defines mapping symbols so we identify data in the
874 // code section (see IHI0056B). $d identifies data contents.
875 // Compilers usually merge multiple data objects in a single $d-$x interval,
876 // but we need every data object to be marked with $d. Because of that we
877 // create a vector of MarkerSyms with all locations of data objects.
878
879 struct MarkerSym {
880 uint64_t Address;
881 MarkerSymType Type;
882 };
883
884 std::vector<MarkerSym> SortedMarkerSymbols;
885 auto addExtraDataMarkerPerSymbol =
886 [this](const std::vector<SymbolRef> &SortedFileSymbols,
887 std::vector<MarkerSym> &SortedMarkerSymbols) {
888 bool IsData = false;
889 uint64_t LastAddr = 0;
890 for (auto Sym = SortedFileSymbols.begin();
891 Sym < SortedFileSymbols.end(); ++Sym) {
892 uint64_t Address = cantFail(Sym->getAddress());
893 if (LastAddr == Address) // don't repeat markers
894 continue;
895
896 MarkerSymType MarkerType = BC->getMarkerType(*Sym);
897 if (MarkerType != MarkerSymType::NONE) {
898 SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType});
899 LastAddr = Address;
900 IsData = MarkerType == MarkerSymType::DATA;
901 continue;
902 }
903
904 if (IsData) {
905 SortedMarkerSymbols.push_back(
906 MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA});
907 LastAddr = Address;
908 }
909 }
910 };
911
912 if (BC->isAArch64()) {
913 addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols);
914 LastSymbol = std::stable_partition(
915 SortedFileSymbols.begin(), SortedFileSymbols.end(),
916 [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); });
917 if (!SortedFileSymbols.empty())
918 --LastSymbol;
919 }
920
921 BinaryFunction *PreviousFunction = nullptr;
922 unsigned AnonymousId = 0;
923
924 const auto SortedSymbolsEnd = LastSymbol == SortedFileSymbols.end()
925 ? LastSymbol
926 : std::next(LastSymbol);
927 for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd;
928 ++ISym) {
929 const SymbolRef &Symbol = *ISym;
930 // Keep undefined symbols for pretty printing?
931 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
932 continue;
933
934 const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
935
936 if (SymbolType == SymbolRef::ST_File)
937 continue;
938
939 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
940 uint64_t Address =
941 cantFail(Symbol.getAddress(), "cannot get symbol address");
942 if (Address == 0) {
943 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
944 errs() << "BOLT-WARNING: function with 0 address seen\n";
945 continue;
946 }
947
948 // Ignore input hot markers
949 if (SymName == "__hot_start" || SymName == "__hot_end")
950 continue;
951
952 FileSymRefs[Address] = Symbol;
953
954 // Skip section symbols that will be registered by disassemblePLT().
955 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) {
956 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address);
957 if (BSection && getPLTSectionInfo(BSection->getName()))
958 continue;
959 }
960
961 /// It is possible we are seeing a globalized local. LLVM might treat it as
962 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
963 /// change the prefix to enforce global scope of the symbol.
964 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix())
965 ? "PG" + std::string(SymName)
966 : std::string(SymName);
967
968 // Disambiguate all local symbols before adding to symbol table.
969 // Since we don't know if we will see a global with the same name,
970 // always modify the local name.
971 //
972 // NOTE: the naming convention for local symbols should match
973 // the one we use for profile data.
974 std::string UniqueName;
975 std::string AlternativeName;
976 if (Name.empty()) {
977 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
978 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) {
979 assert(!BC->getBinaryDataByName(Name) && "global name not unique");
980 UniqueName = Name;
981 } else {
982 // If we have a local file name, we should create 2 variants for the
983 // function name. The reason is that perf profile might have been
984 // collected on a binary that did not have the local file name (e.g. as
985 // a side effect of stripping debug info from the binary):
986 //
987 // primary: <function>/<id>
988 // alternative: <function>/<file>/<id2>
989 //
990 // The <id> field is used for disambiguation of local symbols since there
991 // could be identical function names coming from identical file names
992 // (e.g. from different directories).
993 std::string AltPrefix;
994 auto SFI = SymbolToFileName.find(Symbol);
995 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
996 AltPrefix = Name + "/" + std::string(SFI->second);
997
998 UniqueName = NR.uniquify(Name);
999 if (!AltPrefix.empty())
1000 AlternativeName = NR.uniquify(AltPrefix);
1001 }
1002
1003 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
1004 uint64_t SymbolAlignment = Symbol.getAlignment();
1005 unsigned SymbolFlags = cantFail(Symbol.getFlags());
1006
1007 auto registerName = [&](uint64_t FinalSize) {
1008 // Register names even if it's not a function, e.g. for an entry point.
1009 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment,
1010 SymbolFlags);
1011 if (!AlternativeName.empty())
1012 BC->registerNameAtAddress(AlternativeName, Address, FinalSize,
1013 SymbolAlignment, SymbolFlags);
1014 };
1015
1016 section_iterator Section =
1017 cantFail(Symbol.getSection(), "cannot get symbol section");
1018 if (Section == InputFile->section_end()) {
1019 // Could be an absolute symbol. Could record for pretty printing.
1020 LLVM_DEBUG(if (opts::Verbosity > 1) {
1021 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
1022 });
1023 registerName(SymbolSize);
1024 continue;
1025 }
1026
1027 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1028 << " for function\n");
1029
1030 if (!Section->isText()) {
1031 assert(SymbolType != SymbolRef::ST_Function &&
1032 "unexpected function inside non-code section");
1033 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1034 registerName(SymbolSize);
1035 continue;
1036 }
1037
1038 // Assembly functions could be ST_NONE with 0 size. Check that the
1039 // corresponding section is a code section and they are not inside any
1040 // other known function to consider them.
1041 //
1042 // Sometimes assembly functions are not marked as functions and neither are
1043 // their local labels. The only way to tell them apart is to look at
1044 // symbol scope - global vs local.
1045 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
1046 if (PreviousFunction->containsAddress(Address)) {
1047 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1048 LLVM_DEBUG(dbgs()
1049 << "BOLT-DEBUG: symbol is a function local symbol\n");
1050 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) {
1051 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1052 } else if (opts::Verbosity > 1) {
1053 errs() << "BOLT-WARNING: symbol " << UniqueName
1054 << " seen in the middle of function " << *PreviousFunction
1055 << ". Could be a new entry.\n";
1056 }
1057 registerName(SymbolSize);
1058 continue;
1059 } else if (PreviousFunction->getSize() == 0 &&
1060 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1061 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1062 registerName(SymbolSize);
1063 continue;
1064 }
1065 }
1066
1067 if (PreviousFunction && PreviousFunction->containsAddress(Address) &&
1068 PreviousFunction->getAddress() != Address) {
1069 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1070 if (opts::Verbosity >= 1)
1071 outs() << "BOLT-INFO: skipping possibly another entry for function "
1072 << *PreviousFunction << " : " << UniqueName << '\n';
1073 } else {
1074 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to "
1075 << "function " << *PreviousFunction << '\n';
1076
1077 registerName(0);
1078
1079 PreviousFunction->addEntryPointAtOffset(Address -
1080 PreviousFunction->getAddress());
1081
1082 // Remove the symbol from FileSymRefs so that we can skip it from
1083 // in the future.
1084 auto SI = FileSymRefs.find(Address);
1085 assert(SI != FileSymRefs.end() && "symbol expected to be present");
1086 assert(SI->second == Symbol && "wrong symbol found");
1087 FileSymRefs.erase(SI);
1088 }
1089 registerName(SymbolSize);
1090 continue;
1091 }
1092
1093 // Checkout for conflicts with function data from FDEs.
1094 bool IsSimple = true;
1095 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address);
1096 if (FDEI != CFIRdWrt->getFDEs().end()) {
1097 const dwarf::FDE &FDE = *FDEI->second;
1098 if (FDEI->first != Address) {
1099 // There's no matching starting address in FDE. Make sure the previous
1100 // FDE does not contain this address.
1101 if (FDEI != CFIRdWrt->getFDEs().begin()) {
1102 --FDEI;
1103 const dwarf::FDE &PrevFDE = *FDEI->second;
1104 uint64_t PrevStart = PrevFDE.getInitialLocation();
1105 uint64_t PrevLength = PrevFDE.getAddressRange();
1106 if (Address > PrevStart && Address < PrevStart + PrevLength) {
1107 errs() << "BOLT-ERROR: function " << UniqueName
1108 << " is in conflict with FDE ["
1109 << Twine::utohexstr(PrevStart) << ", "
1110 << Twine::utohexstr(PrevStart + PrevLength)
1111 << "). Skipping.\n";
1112 IsSimple = false;
1113 }
1114 }
1115 } else if (FDE.getAddressRange() != SymbolSize) {
1116 if (SymbolSize) {
1117 // Function addresses match but sizes differ.
1118 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1119 << ". FDE : " << FDE.getAddressRange()
1120 << "; symbol table : " << SymbolSize << ". Using max size.\n";
1121 }
1122 SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
1123 if (BC->getBinaryDataAtAddress(Address)) {
1124 BC->setBinaryDataSize(Address, SymbolSize);
1125 } else {
1126 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1127 << Twine::utohexstr(Address) << "\n");
1128 }
1129 }
1130 }
1131
1132 BinaryFunction *BF = nullptr;
1133 // Since function may not have yet obtained its real size, do a search
1134 // using the list of registered functions instead of calling
1135 // getBinaryFunctionAtAddress().
1136 auto BFI = BC->getBinaryFunctions().find(Address);
1137 if (BFI != BC->getBinaryFunctions().end()) {
1138 BF = &BFI->second;
1139 // Duplicate the function name. Make sure everything matches before we add
1140 // an alternative name.
1141 if (SymbolSize != BF->getSize()) {
1142 if (opts::Verbosity >= 1) {
1143 if (SymbolSize && BF->getSize())
1144 errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1145 << *BF << " and " << UniqueName << '\n';
1146 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old "
1147 << BF->getSize() << " new " << SymbolSize << "\n";
1148 }
1149 BF->setSize(std::max(SymbolSize, BF->getSize()));
1150 BC->setBinaryDataSize(Address, BF->getSize());
1151 }
1152 BF->addAlternativeName(UniqueName);
1153 } else {
1154 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1155 // Skip symbols from invalid sections
1156 if (!Section) {
1157 errs() << "BOLT-WARNING: " << UniqueName << " (0x"
1158 << Twine::utohexstr(Address) << ") does not have any section\n";
1159 continue;
1160 }
1161 assert(Section && "section for functions must be registered");
1162
1163 // Skip symbols from zero-sized sections.
1164 if (!Section->getSize())
1165 continue;
1166
1167 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize);
1168 if (!IsSimple)
1169 BF->setSimple(false);
1170 }
1171 if (!AlternativeName.empty())
1172 BF->addAlternativeName(AlternativeName);
1173
1174 registerName(SymbolSize);
1175 PreviousFunction = BF;
1176 }
1177
1178 // Read dynamic relocation first as their presence affects the way we process
1179 // static relocations. E.g. we will ignore a static relocation at an address
1180 // that is a subject to dynamic relocation processing.
1181 processDynamicRelocations();
1182
1183 // Process PLT section.
1184 disassemblePLT();
1185
1186 // See if we missed any functions marked by FDE.
1187 for (const auto &FDEI : CFIRdWrt->getFDEs()) {
1188 const uint64_t Address = FDEI.first;
1189 const dwarf::FDE *FDE = FDEI.second;
1190 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
1191 if (BF)
1192 continue;
1193
1194 BF = BC->getBinaryFunctionContainingAddress(Address);
1195 if (BF) {
1196 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
1197 << Twine::utohexstr(Address + FDE->getAddressRange())
1198 << ") conflicts with function " << *BF << '\n';
1199 continue;
1200 }
1201
1202 if (opts::Verbosity >= 1)
1203 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
1204 << Twine::utohexstr(Address + FDE->getAddressRange())
1205 << ") has no corresponding symbol table entry\n";
1206
1207 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1208 assert(Section && "cannot get section for address from FDE");
1209 std::string FunctionName =
1210 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
1211 BC->createBinaryFunction(FunctionName, *Section, Address,
1212 FDE->getAddressRange());
1213 }
1214
1215 BC->setHasSymbolsWithFileName(SeenFileName);
1216
1217 // Now that all the functions were created - adjust their boundaries.
1218 adjustFunctionBoundaries();
1219
1220 // Annotate functions with code/data markers in AArch64
1221 for (auto ISym = SortedMarkerSymbols.begin();
1222 ISym != SortedMarkerSymbols.end(); ++ISym) {
1223
1224 auto *BF =
1225 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true);
1226
1227 if (!BF) {
1228 // Stray marker
1229 continue;
1230 }
1231 const auto EntryOffset = ISym->Address - BF->getAddress();
1232 if (ISym->Type == MarkerSymType::CODE) {
1233 BF->markCodeAtOffset(EntryOffset);
1234 continue;
1235 }
1236 if (ISym->Type == MarkerSymType::DATA) {
1237 BF->markDataAtOffset(EntryOffset);
1238 BC->AddressToConstantIslandMap[ISym->Address] = BF;
1239 continue;
1240 }
1241 llvm_unreachable("Unknown marker");
1242 }
1243
1244 if (opts::LinuxKernelMode) {
1245 // Read all special linux kernel sections and their relocations
1246 processLKSections();
1247 } else {
1248 // Read all relocations now that we have binary functions mapped.
1249 processRelocations();
1250 }
1251 }
1252
createPLTBinaryFunction(uint64_t TargetAddress,uint64_t EntryAddress,uint64_t EntrySize)1253 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
1254 uint64_t EntryAddress,
1255 uint64_t EntrySize) {
1256 if (!TargetAddress)
1257 return;
1258
1259 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
1260 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
1261 MCSymbol *TargetSymbol = BC->registerNameAtAddress(
1262 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
1263 BF->setPLTSymbol(TargetSymbol);
1264 };
1265
1266 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
1267 if (BF && BC->isAArch64()) {
1268 // Handle IFUNC trampoline
1269 setPLTSymbol(BF, BF->getOneName());
1270 return;
1271 }
1272
1273 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
1274 if (!Rel || !Rel->Symbol)
1275 return;
1276
1277 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
1278 assert(Section && "cannot get section for address");
1279 BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section,
1280 EntryAddress, 0, EntrySize,
1281 Section->getAlignment());
1282 setPLTSymbol(BF, Rel->Symbol->getName());
1283 }
1284
disassemblePLTSectionAArch64(BinarySection & Section)1285 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
1286 const uint64_t SectionAddress = Section.getAddress();
1287 const uint64_t SectionSize = Section.getSize();
1288 StringRef PLTContents = Section.getContents();
1289 ArrayRef<uint8_t> PLTData(
1290 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1291
1292 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1293 uint64_t &InstrSize) {
1294 const uint64_t InstrAddr = SectionAddress + InstrOffset;
1295 if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1296 PLTData.slice(InstrOffset), InstrAddr,
1297 nulls())) {
1298 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1299 << Section.getName() << " at offset 0x"
1300 << Twine::utohexstr(InstrOffset) << '\n';
1301 exit(1);
1302 }
1303 };
1304
1305 uint64_t InstrOffset = 0;
1306 // Locate new plt entry
1307 while (InstrOffset < SectionSize) {
1308 InstructionListType Instructions;
1309 MCInst Instruction;
1310 uint64_t EntryOffset = InstrOffset;
1311 uint64_t EntrySize = 0;
1312 uint64_t InstrSize;
1313 // Loop through entry instructions
1314 while (InstrOffset < SectionSize) {
1315 disassembleInstruction(InstrOffset, Instruction, InstrSize);
1316 EntrySize += InstrSize;
1317 if (!BC->MIB->isIndirectBranch(Instruction)) {
1318 Instructions.emplace_back(Instruction);
1319 InstrOffset += InstrSize;
1320 continue;
1321 }
1322
1323 const uint64_t EntryAddress = SectionAddress + EntryOffset;
1324 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1325 Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1326
1327 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1328 break;
1329 }
1330
1331 // Branch instruction
1332 InstrOffset += InstrSize;
1333
1334 // Skip nops if any
1335 while (InstrOffset < SectionSize) {
1336 disassembleInstruction(InstrOffset, Instruction, InstrSize);
1337 if (!BC->MIB->isNoop(Instruction))
1338 break;
1339
1340 InstrOffset += InstrSize;
1341 }
1342 }
1343 }
1344
disassemblePLTSectionX86(BinarySection & Section,uint64_t EntrySize)1345 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
1346 uint64_t EntrySize) {
1347 const uint64_t SectionAddress = Section.getAddress();
1348 const uint64_t SectionSize = Section.getSize();
1349 StringRef PLTContents = Section.getContents();
1350 ArrayRef<uint8_t> PLTData(
1351 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1352
1353 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1354 uint64_t &InstrSize) {
1355 const uint64_t InstrAddr = SectionAddress + InstrOffset;
1356 if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1357 PLTData.slice(InstrOffset), InstrAddr,
1358 nulls())) {
1359 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1360 << Section.getName() << " at offset 0x"
1361 << Twine::utohexstr(InstrOffset) << '\n';
1362 exit(1);
1363 }
1364 };
1365
1366 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
1367 EntryOffset += EntrySize) {
1368 MCInst Instruction;
1369 uint64_t InstrSize, InstrOffset = EntryOffset;
1370 while (InstrOffset < EntryOffset + EntrySize) {
1371 disassembleInstruction(InstrOffset, Instruction, InstrSize);
1372 // Check if the entry size needs adjustment.
1373 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
1374 EntrySize == 8)
1375 EntrySize = 16;
1376
1377 if (BC->MIB->isIndirectBranch(Instruction))
1378 break;
1379
1380 InstrOffset += InstrSize;
1381 }
1382
1383 if (InstrOffset + InstrSize > EntryOffset + EntrySize)
1384 continue;
1385
1386 uint64_t TargetAddress;
1387 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1388 SectionAddress + InstrOffset,
1389 InstrSize)) {
1390 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1391 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
1392 exit(1);
1393 }
1394
1395 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
1396 EntrySize);
1397 }
1398 }
1399
disassemblePLT()1400 void RewriteInstance::disassemblePLT() {
1401 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
1402 if (BC->isAArch64())
1403 return disassemblePLTSectionAArch64(Section);
1404 return disassemblePLTSectionX86(Section, EntrySize);
1405 };
1406
1407 for (BinarySection &Section : BC->allocatableSections()) {
1408 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
1409 if (!PLTSI)
1410 continue;
1411
1412 analyzeOnePLTSection(Section, PLTSI->EntrySize);
1413 // If we did not register any function at the start of the section,
1414 // then it must be a general PLT entry. Add a function at the location.
1415 if (BC->getBinaryFunctions().find(Section.getAddress()) ==
1416 BC->getBinaryFunctions().end()) {
1417 BinaryFunction *BF = BC->createBinaryFunction(
1418 "__BOLT_PSEUDO_" + Section.getName().str(), Section,
1419 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
1420 BF->setPseudo(true);
1421 }
1422 }
1423 }
1424
adjustFunctionBoundaries()1425 void RewriteInstance::adjustFunctionBoundaries() {
1426 for (auto BFI = BC->getBinaryFunctions().begin(),
1427 BFE = BC->getBinaryFunctions().end();
1428 BFI != BFE; ++BFI) {
1429 BinaryFunction &Function = BFI->second;
1430 const BinaryFunction *NextFunction = nullptr;
1431 if (std::next(BFI) != BFE)
1432 NextFunction = &std::next(BFI)->second;
1433
1434 // Check if it's a fragment of a function.
1435 Optional<StringRef> FragName =
1436 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?");
1437 if (FragName) {
1438 static bool PrintedWarning = false;
1439 if (BC->HasRelocations && !PrintedWarning) {
1440 errs() << "BOLT-WARNING: split function detected on input : "
1441 << *FragName << ". The support is limited in relocation mode.\n";
1442 PrintedWarning = true;
1443 }
1444 Function.IsFragment = true;
1445 }
1446
1447 // Check if there's a symbol or a function with a larger address in the
1448 // same section. If there is - it determines the maximum size for the
1449 // current function. Otherwise, it is the size of a containing section
1450 // the defines it.
1451 //
1452 // NOTE: ignore some symbols that could be tolerated inside the body
1453 // of a function.
1454 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
1455 while (NextSymRefI != FileSymRefs.end()) {
1456 SymbolRef &Symbol = NextSymRefI->second;
1457 const uint64_t SymbolAddress = NextSymRefI->first;
1458 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
1459
1460 if (NextFunction && SymbolAddress >= NextFunction->getAddress())
1461 break;
1462
1463 if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
1464 break;
1465
1466 // This is potentially another entry point into the function.
1467 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
1468 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1469 << Function << " at offset 0x"
1470 << Twine::utohexstr(EntryOffset) << '\n');
1471 Function.addEntryPointAtOffset(EntryOffset);
1472
1473 ++NextSymRefI;
1474 }
1475
1476 // Function runs at most till the end of the containing section.
1477 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
1478 // Or till the next object marked by a symbol.
1479 if (NextSymRefI != FileSymRefs.end())
1480 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
1481
1482 // Or till the next function not marked by a symbol.
1483 if (NextFunction)
1484 NextObjectAddress =
1485 std::min(NextFunction->getAddress(), NextObjectAddress);
1486
1487 const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
1488 if (MaxSize < Function.getSize()) {
1489 errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1490 << Function << ". Skipping.\n";
1491 Function.setSimple(false);
1492 Function.setMaxSize(Function.getSize());
1493 continue;
1494 }
1495 Function.setMaxSize(MaxSize);
1496 if (!Function.getSize() && Function.isSimple()) {
1497 // Some assembly functions have their size set to 0, use the max
1498 // size as their real size.
1499 if (opts::Verbosity >= 1)
1500 outs() << "BOLT-INFO: setting size of function " << Function << " to "
1501 << Function.getMaxSize() << " (was 0)\n";
1502 Function.setSize(Function.getMaxSize());
1503 }
1504 }
1505 }
1506
relocateEHFrameSection()1507 void RewriteInstance::relocateEHFrameSection() {
1508 assert(EHFrameSection && "non-empty .eh_frame section expected");
1509
1510 DWARFDataExtractor DE(EHFrameSection->getContents(),
1511 BC->AsmInfo->isLittleEndian(),
1512 BC->AsmInfo->getCodePointerSize());
1513 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
1514 if (DwarfType == dwarf::DW_EH_PE_omit)
1515 return;
1516
1517 // Only fix references that are relative to other locations.
1518 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
1519 !(DwarfType & dwarf::DW_EH_PE_textrel) &&
1520 !(DwarfType & dwarf::DW_EH_PE_funcrel) &&
1521 !(DwarfType & dwarf::DW_EH_PE_datarel))
1522 return;
1523
1524 if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
1525 return;
1526
1527 uint64_t RelType;
1528 switch (DwarfType & 0x0f) {
1529 default:
1530 llvm_unreachable("unsupported DWARF encoding type");
1531 case dwarf::DW_EH_PE_sdata4:
1532 case dwarf::DW_EH_PE_udata4:
1533 RelType = Relocation::getPC32();
1534 Offset -= 4;
1535 break;
1536 case dwarf::DW_EH_PE_sdata8:
1537 case dwarf::DW_EH_PE_udata8:
1538 RelType = Relocation::getPC64();
1539 Offset -= 8;
1540 break;
1541 }
1542
1543 // Create a relocation against an absolute value since the goal is to
1544 // preserve the contents of the section independent of the new values
1545 // of referenced symbols.
1546 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
1547 };
1548
1549 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
1550 check_error(std::move(E), "failed to patch EH frame");
1551 }
1552
getLSDAData()1553 ArrayRef<uint8_t> RewriteInstance::getLSDAData() {
1554 return ArrayRef<uint8_t>(LSDASection->getData(),
1555 LSDASection->getContents().size());
1556 }
1557
getLSDAAddress()1558 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); }
1559
readSpecialSections()1560 Error RewriteInstance::readSpecialSections() {
1561 NamedRegionTimer T("readSpecialSections", "read special sections",
1562 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
1563
1564 bool HasTextRelocations = false;
1565 bool HasDebugInfo = false;
1566
1567 // Process special sections.
1568 for (const SectionRef &Section : InputFile->sections()) {
1569 Expected<StringRef> SectionNameOrErr = Section.getName();
1570 check_error(SectionNameOrErr.takeError(), "cannot get section name");
1571 StringRef SectionName = *SectionNameOrErr;
1572
1573 // Only register sections with names.
1574 if (!SectionName.empty()) {
1575 if (Error E = Section.getContents().takeError())
1576 return E;
1577 BC->registerSection(Section);
1578 LLVM_DEBUG(
1579 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
1580 << Twine::utohexstr(Section.getAddress()) << ":0x"
1581 << Twine::utohexstr(Section.getAddress() + Section.getSize())
1582 << "\n");
1583 if (isDebugSection(SectionName))
1584 HasDebugInfo = true;
1585 if (isKSymtabSection(SectionName))
1586 opts::LinuxKernelMode = true;
1587 }
1588 }
1589
1590 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
1591 errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1592 "Use -update-debug-sections to keep it.\n";
1593 }
1594
1595 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text");
1596 LSDASection = BC->getUniqueSectionByName(".gcc_except_table");
1597 EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
1598 GOTPLTSection = BC->getUniqueSectionByName(".got.plt");
1599 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt");
1600 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn");
1601 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id");
1602 SDTSection = BC->getUniqueSectionByName(".note.stapsdt");
1603 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc");
1604 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe");
1605
1606 if (ErrorOr<BinarySection &> BATSec =
1607 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
1608 // Do not read BAT when plotting a heatmap
1609 if (!opts::HeatmapMode) {
1610 if (std::error_code EC = BAT->parse(BATSec->getContents())) {
1611 errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1612 "table.\n";
1613 exit(1);
1614 }
1615 }
1616 }
1617
1618 if (opts::PrintSections) {
1619 outs() << "BOLT-INFO: Sections from original binary:\n";
1620 BC->printSections(outs());
1621 }
1622
1623 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
1624 errs() << "BOLT-ERROR: relocations against code are missing from the input "
1625 "file. Cannot proceed in relocations mode (-relocs).\n";
1626 exit(1);
1627 }
1628
1629 BC->HasRelocations =
1630 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
1631
1632 // Force non-relocation mode for heatmap generation
1633 if (opts::HeatmapMode)
1634 BC->HasRelocations = false;
1635
1636 if (BC->HasRelocations)
1637 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
1638 << "relocation mode\n";
1639
1640 // Read EH frame for function boundaries info.
1641 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
1642 if (!EHFrameOrError)
1643 report_error("expected valid eh_frame section", EHFrameOrError.takeError());
1644 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get()));
1645
1646 // Parse build-id
1647 parseBuildID();
1648 if (Optional<std::string> FileBuildID = getPrintableBuildID())
1649 BC->setFileBuildID(*FileBuildID);
1650
1651 parseSDTNotes();
1652
1653 // Read .dynamic/PT_DYNAMIC.
1654 return readELFDynamic();
1655 }
1656
adjustCommandLineOptions()1657 void RewriteInstance::adjustCommandLineOptions() {
1658 if (BC->isAArch64() && !BC->HasRelocations)
1659 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
1660 "supported\n";
1661
1662 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
1663 RtLibrary->adjustCommandLineOptions(*BC);
1664
1665 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) {
1666 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
1667 opts::AlignMacroOpFusion = MFT_NONE;
1668 }
1669
1670 if (BC->isX86() && BC->MAB->allowAutoPadding()) {
1671 if (!BC->HasRelocations) {
1672 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
1673 "non-relocation mode\n";
1674 exit(1);
1675 }
1676 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
1677 "may take several minutes\n";
1678 opts::AlignMacroOpFusion = MFT_NONE;
1679 }
1680
1681 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) {
1682 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
1683 "mode\n";
1684 opts::AlignMacroOpFusion = MFT_NONE;
1685 }
1686
1687 if (opts::SplitEH && !BC->HasRelocations) {
1688 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
1689 opts::SplitEH = false;
1690 }
1691
1692 if (opts::StrictMode && !BC->HasRelocations) {
1693 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
1694 "mode\n";
1695 opts::StrictMode = false;
1696 }
1697
1698 if (BC->HasRelocations && opts::AggregateOnly &&
1699 !opts::StrictMode.getNumOccurrences()) {
1700 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
1701 "purposes\n";
1702 opts::StrictMode = true;
1703 }
1704
1705 if (BC->isX86() && BC->HasRelocations &&
1706 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) {
1707 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
1708 "was specified\n";
1709 opts::AlignMacroOpFusion = MFT_ALL;
1710 }
1711
1712 if (!BC->HasRelocations &&
1713 opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
1714 errs() << "BOLT-ERROR: function reordering only works when "
1715 << "relocations are enabled\n";
1716 exit(1);
1717 }
1718
1719 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
1720 !opts::HotText.getNumOccurrences()) {
1721 opts::HotText = true;
1722 } else if (opts::HotText && !BC->HasRelocations) {
1723 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
1724 opts::HotText = false;
1725 }
1726
1727 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
1728 opts::HotTextMoveSections.addValue(".stub");
1729 opts::HotTextMoveSections.addValue(".mover");
1730 opts::HotTextMoveSections.addValue(".never_hugify");
1731 }
1732
1733 if (opts::UseOldText && !BC->OldTextSectionAddress) {
1734 errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
1735 "\n";
1736 opts::UseOldText = false;
1737 }
1738 if (opts::UseOldText && !BC->HasRelocations) {
1739 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
1740 opts::UseOldText = false;
1741 }
1742
1743 if (!opts::AlignText.getNumOccurrences())
1744 opts::AlignText = BC->PageAlign;
1745
1746 if (opts::AlignText < opts::AlignFunctions)
1747 opts::AlignText = (unsigned)opts::AlignFunctions;
1748
1749 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
1750 !opts::UseOldText)
1751 opts::Lite = true;
1752
1753 if (opts::Lite && opts::UseOldText) {
1754 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
1755 "Disabling -use-old-text.\n";
1756 opts::UseOldText = false;
1757 }
1758
1759 if (opts::Lite && opts::StrictMode) {
1760 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
1761 exit(1);
1762 }
1763
1764 if (opts::Lite)
1765 outs() << "BOLT-INFO: enabling lite mode\n";
1766
1767 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) {
1768 errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
1769 "file processed by BOLT. Please remove -w option and use branch "
1770 "profile.\n";
1771 exit(1);
1772 }
1773 }
1774
1775 namespace {
1776 template <typename ELFT>
getRelocationAddend(const ELFObjectFile<ELFT> * Obj,const RelocationRef & RelRef)1777 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
1778 const RelocationRef &RelRef) {
1779 using ELFShdrTy = typename ELFT::Shdr;
1780 using Elf_Rela = typename ELFT::Rela;
1781 int64_t Addend = 0;
1782 const ELFFile<ELFT> &EF = Obj->getELFFile();
1783 DataRefImpl Rel = RelRef.getRawDataRefImpl();
1784 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
1785 switch (RelocationSection->sh_type) {
1786 default:
1787 llvm_unreachable("unexpected relocation section type");
1788 case ELF::SHT_REL:
1789 break;
1790 case ELF::SHT_RELA: {
1791 const Elf_Rela *RelA = Obj->getRela(Rel);
1792 Addend = RelA->r_addend;
1793 break;
1794 }
1795 }
1796
1797 return Addend;
1798 }
1799
getRelocationAddend(const ELFObjectFileBase * Obj,const RelocationRef & Rel)1800 int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
1801 const RelocationRef &Rel) {
1802 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
1803 return getRelocationAddend(ELF32LE, Rel);
1804 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
1805 return getRelocationAddend(ELF64LE, Rel);
1806 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
1807 return getRelocationAddend(ELF32BE, Rel);
1808 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
1809 return getRelocationAddend(ELF64BE, Rel);
1810 }
1811
1812 template <typename ELFT>
getRelocationSymbol(const ELFObjectFile<ELFT> * Obj,const RelocationRef & RelRef)1813 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
1814 const RelocationRef &RelRef) {
1815 using ELFShdrTy = typename ELFT::Shdr;
1816 uint32_t Symbol = 0;
1817 const ELFFile<ELFT> &EF = Obj->getELFFile();
1818 DataRefImpl Rel = RelRef.getRawDataRefImpl();
1819 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
1820 switch (RelocationSection->sh_type) {
1821 default:
1822 llvm_unreachable("unexpected relocation section type");
1823 case ELF::SHT_REL:
1824 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
1825 break;
1826 case ELF::SHT_RELA:
1827 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
1828 break;
1829 }
1830
1831 return Symbol;
1832 }
1833
getRelocationSymbol(const ELFObjectFileBase * Obj,const RelocationRef & Rel)1834 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
1835 const RelocationRef &Rel) {
1836 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
1837 return getRelocationSymbol(ELF32LE, Rel);
1838 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
1839 return getRelocationSymbol(ELF64LE, Rel);
1840 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
1841 return getRelocationSymbol(ELF32BE, Rel);
1842 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
1843 return getRelocationSymbol(ELF64BE, Rel);
1844 }
1845 } // anonymous namespace
1846
analyzeRelocation(const RelocationRef & Rel,uint64_t RType,std::string & SymbolName,bool & IsSectionRelocation,uint64_t & SymbolAddress,int64_t & Addend,uint64_t & ExtractedValue,bool & Skip) const1847 bool RewriteInstance::analyzeRelocation(
1848 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName,
1849 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
1850 uint64_t &ExtractedValue, bool &Skip) const {
1851 Skip = false;
1852 if (!Relocation::isSupported(RType))
1853 return false;
1854
1855 const bool IsAArch64 = BC->isAArch64();
1856
1857 const size_t RelSize = Relocation::getSizeForType(RType);
1858
1859 ErrorOr<uint64_t> Value =
1860 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
1861 assert(Value && "failed to extract relocated value");
1862 if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
1863 return true;
1864
1865 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
1866 Addend = getRelocationAddend(InputFile, Rel);
1867
1868 const bool IsPCRelative = Relocation::isPCRelative(RType);
1869 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
1870 bool SkipVerification = false;
1871 auto SymbolIter = Rel.getSymbol();
1872 if (SymbolIter == InputFile->symbol_end()) {
1873 SymbolAddress = ExtractedValue - Addend + PCRelOffset;
1874 MCSymbol *RelSymbol =
1875 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
1876 SymbolName = std::string(RelSymbol->getName());
1877 IsSectionRelocation = false;
1878 } else {
1879 const SymbolRef &Symbol = *SymbolIter;
1880 SymbolName = std::string(cantFail(Symbol.getName()));
1881 SymbolAddress = cantFail(Symbol.getAddress());
1882 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
1883 // Section symbols are marked as ST_Debug.
1884 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
1885 // Check for PLT entry registered with symbol name
1886 if (!SymbolAddress && IsAArch64) {
1887 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
1888 SymbolAddress = BD ? BD->getAddress() : 0;
1889 }
1890 }
1891 // For PIE or dynamic libs, the linker may choose not to put the relocation
1892 // result at the address if it is a X86_64_64 one because it will emit a
1893 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
1894 // resolve it at run time. The static relocation result goes as the addend
1895 // of the dynamic relocation in this case. We can't verify these cases.
1896 // FIXME: perhaps we can try to find if it really emitted a corresponding
1897 // RELATIVE relocation at this offset with the correct value as the addend.
1898 if (!BC->HasFixedLoadAddress && RelSize == 8)
1899 SkipVerification = true;
1900
1901 if (IsSectionRelocation && !IsAArch64) {
1902 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
1903 assert(Section && "section expected for section relocation");
1904 SymbolName = "section " + std::string(Section->getName());
1905 // Convert section symbol relocations to regular relocations inside
1906 // non-section symbols.
1907 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
1908 SymbolAddress = ExtractedValue;
1909 Addend = 0;
1910 } else {
1911 Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
1912 }
1913 }
1914
1915 // If no symbol has been found or if it is a relocation requiring the
1916 // creation of a GOT entry, do not link against the symbol but against
1917 // whatever address was extracted from the instruction itself. We are
1918 // not creating a GOT entry as this was already processed by the linker.
1919 // For GOT relocs, do not subtract addend as the addend does not refer
1920 // to this instruction's target, but it refers to the target in the GOT
1921 // entry.
1922 if (Relocation::isGOT(RType)) {
1923 Addend = 0;
1924 SymbolAddress = ExtractedValue + PCRelOffset;
1925 } else if (Relocation::isTLS(RType)) {
1926 SkipVerification = true;
1927 } else if (!SymbolAddress) {
1928 assert(!IsSectionRelocation);
1929 if (ExtractedValue || Addend == 0 || IsPCRelative) {
1930 SymbolAddress =
1931 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
1932 } else {
1933 // This is weird case. The extracted value is zero but the addend is
1934 // non-zero and the relocation is not pc-rel. Using the previous logic,
1935 // the SymbolAddress would end up as a huge number. Seen in
1936 // exceptions_pic.test.
1937 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
1938 << Twine::utohexstr(Rel.getOffset())
1939 << " value does not match addend for "
1940 << "relocation to undefined symbol.\n");
1941 return true;
1942 }
1943 }
1944
1945 auto verifyExtractedValue = [&]() {
1946 if (SkipVerification)
1947 return true;
1948
1949 if (IsAArch64)
1950 return true;
1951
1952 if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
1953 return true;
1954
1955 if (RType == ELF::R_X86_64_PLT32)
1956 return true;
1957
1958 return truncateToSize(ExtractedValue, RelSize) ==
1959 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
1960 };
1961
1962 (void)verifyExtractedValue;
1963 assert(verifyExtractedValue() && "mismatched extracted relocation value");
1964
1965 return true;
1966 }
1967
processDynamicRelocations()1968 void RewriteInstance::processDynamicRelocations() {
1969 // Read relocations for PLT - DT_JMPREL.
1970 if (PLTRelocationsSize > 0) {
1971 ErrorOr<BinarySection &> PLTRelSectionOrErr =
1972 BC->getSectionForAddress(*PLTRelocationsAddress);
1973 if (!PLTRelSectionOrErr)
1974 report_error("unable to find section corresponding to DT_JMPREL",
1975 PLTRelSectionOrErr.getError());
1976 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
1977 report_error("section size mismatch for DT_PLTRELSZ",
1978 errc::executable_format_error);
1979 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
1980 /*IsJmpRel*/ true);
1981 }
1982
1983 // The rest of dynamic relocations - DT_RELA.
1984 if (DynamicRelocationsSize > 0) {
1985 ErrorOr<BinarySection &> DynamicRelSectionOrErr =
1986 BC->getSectionForAddress(*DynamicRelocationsAddress);
1987 if (!DynamicRelSectionOrErr)
1988 report_error("unable to find section corresponding to DT_RELA",
1989 DynamicRelSectionOrErr.getError());
1990 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize)
1991 report_error("section size mismatch for DT_RELASZ",
1992 errc::executable_format_error);
1993 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
1994 /*IsJmpRel*/ false);
1995 }
1996 }
1997
processRelocations()1998 void RewriteInstance::processRelocations() {
1999 if (!BC->HasRelocations)
2000 return;
2001
2002 for (const SectionRef &Section : InputFile->sections()) {
2003 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() &&
2004 !BinarySection(*BC, Section).isAllocatable())
2005 readRelocations(Section);
2006 }
2007
2008 if (NumFailedRelocations)
2009 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2010 << " relocations\n";
2011 }
2012
insertLKMarker(uint64_t PC,uint64_t SectionOffset,int32_t PCRelativeOffset,bool IsPCRelative,StringRef SectionName)2013 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
2014 int32_t PCRelativeOffset,
2015 bool IsPCRelative, StringRef SectionName) {
2016 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
2017 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
2018 }
2019
processLKSections()2020 void RewriteInstance::processLKSections() {
2021 assert(opts::LinuxKernelMode &&
2022 "process Linux Kernel special sections and their relocations only in "
2023 "linux kernel mode.\n");
2024
2025 processLKExTable();
2026 processLKPCIFixup();
2027 processLKKSymtab();
2028 processLKKSymtab(true);
2029 processLKBugTable();
2030 processLKSMPLocks();
2031 }
2032
2033 /// Process __ex_table section of Linux Kernel.
2034 /// This section contains information regarding kernel level exception
2035 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html).
2036 /// More documentation is in arch/x86/include/asm/extable.h.
2037 ///
2038 /// The section is the list of the following structures:
2039 ///
2040 /// struct exception_table_entry {
2041 /// int insn;
2042 /// int fixup;
2043 /// int handler;
2044 /// };
2045 ///
processLKExTable()2046 void RewriteInstance::processLKExTable() {
2047 ErrorOr<BinarySection &> SectionOrError =
2048 BC->getUniqueSectionByName("__ex_table");
2049 if (!SectionOrError)
2050 return;
2051
2052 const uint64_t SectionSize = SectionOrError->getSize();
2053 const uint64_t SectionAddress = SectionOrError->getAddress();
2054 assert((SectionSize % 12) == 0 &&
2055 "The size of the __ex_table section should be a multiple of 12");
2056 for (uint64_t I = 0; I < SectionSize; I += 4) {
2057 const uint64_t EntryAddress = SectionAddress + I;
2058 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2059 assert(Offset && "failed reading PC-relative offset for __ex_table");
2060 int32_t SignedOffset = *Offset;
2061 const uint64_t RefAddress = EntryAddress + SignedOffset;
2062
2063 BinaryFunction *ContainingBF =
2064 BC->getBinaryFunctionContainingAddress(RefAddress);
2065 if (!ContainingBF)
2066 continue;
2067
2068 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol();
2069 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress();
2070 switch (I % 12) {
2071 default:
2072 llvm_unreachable("bad alignment of __ex_table");
2073 break;
2074 case 0:
2075 // insn
2076 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table");
2077 break;
2078 case 4:
2079 // fixup
2080 if (FunctionOffset)
2081 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset);
2082 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
2083 0, *Offset);
2084 break;
2085 case 8:
2086 // handler
2087 assert(!FunctionOffset &&
2088 "__ex_table handler entry should point to function start");
2089 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
2090 0, *Offset);
2091 break;
2092 }
2093 }
2094 }
2095
2096 /// Process .pci_fixup section of Linux Kernel.
2097 /// This section contains a list of entries for different PCI devices and their
2098 /// corresponding hook handler (code pointer where the fixup
2099 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
2100 /// Documentation is in include/linux/pci.h.
processLKPCIFixup()2101 void RewriteInstance::processLKPCIFixup() {
2102 ErrorOr<BinarySection &> SectionOrError =
2103 BC->getUniqueSectionByName(".pci_fixup");
2104 assert(SectionOrError &&
2105 ".pci_fixup section not found in Linux Kernel binary");
2106 const uint64_t SectionSize = SectionOrError->getSize();
2107 const uint64_t SectionAddress = SectionOrError->getAddress();
2108 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");
2109
2110 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
2111 const uint64_t PC = SectionAddress + I;
2112 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4);
2113 assert(Offset && "cannot read value from .pci_fixup");
2114 const int32_t SignedOffset = *Offset;
2115 const uint64_t HookupAddress = PC + SignedOffset;
2116 BinaryFunction *HookupFunction =
2117 BC->getBinaryFunctionAtAddress(HookupAddress);
2118 assert(HookupFunction && "expected function for entry in .pci_fixup");
2119 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
2120 *Offset);
2121 }
2122 }
2123
2124 /// Process __ksymtab[_gpl] sections of Linux Kernel.
2125 /// This section lists all the vmlinux symbols that kernel modules can access.
2126 ///
2127 /// All the entries are 4 bytes each and hence we can read them by one by one
2128 /// and ignore the ones that are not pointing to the .text section. All pointers
2129 /// are PC relative offsets. Always, points to the beginning of the function.
processLKKSymtab(bool IsGPL)2130 void RewriteInstance::processLKKSymtab(bool IsGPL) {
2131 StringRef SectionName = "__ksymtab";
2132 if (IsGPL)
2133 SectionName = "__ksymtab_gpl";
2134 ErrorOr<BinarySection &> SectionOrError =
2135 BC->getUniqueSectionByName(SectionName);
2136 assert(SectionOrError &&
2137 "__ksymtab[_gpl] section not found in Linux Kernel binary");
2138 const uint64_t SectionSize = SectionOrError->getSize();
2139 const uint64_t SectionAddress = SectionOrError->getAddress();
2140 assert((SectionSize % 4) == 0 &&
2141 "The size of the __ksymtab[_gpl] section should be a multiple of 4");
2142
2143 for (uint64_t I = 0; I < SectionSize; I += 4) {
2144 const uint64_t EntryAddress = SectionAddress + I;
2145 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2146 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
2147 const int32_t SignedOffset = *Offset;
2148 const uint64_t RefAddress = EntryAddress + SignedOffset;
2149 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress);
2150 if (!BF)
2151 continue;
2152
2153 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
2154 *Offset);
2155 }
2156 }
2157
2158 /// Process __bug_table section.
2159 /// This section contains information useful for kernel debugging.
2160 /// Each entry in the section is a struct bug_entry that contains a pointer to
2161 /// the ud2 instruction corresponding to the bug, corresponding file name (both
2162 /// pointers use PC relative offset addressing), line number, and flags.
2163 /// The definition of the struct bug_entry can be found in
2164 /// `include/asm-generic/bug.h`
processLKBugTable()2165 void RewriteInstance::processLKBugTable() {
2166 ErrorOr<BinarySection &> SectionOrError =
2167 BC->getUniqueSectionByName("__bug_table");
2168 if (!SectionOrError)
2169 return;
2170
2171 const uint64_t SectionSize = SectionOrError->getSize();
2172 const uint64_t SectionAddress = SectionOrError->getAddress();
2173 assert((SectionSize % 12) == 0 &&
2174 "The size of the __bug_table section should be a multiple of 12");
2175 for (uint64_t I = 0; I < SectionSize; I += 12) {
2176 const uint64_t EntryAddress = SectionAddress + I;
2177 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2178 assert(Offset &&
2179 "Reading valid PC-relative offset for a __bug_table entry");
2180 const int32_t SignedOffset = *Offset;
2181 const uint64_t RefAddress = EntryAddress + SignedOffset;
2182 assert(BC->getBinaryFunctionContainingAddress(RefAddress) &&
2183 "__bug_table entries should point to a function");
2184
2185 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table");
2186 }
2187 }
2188
2189 /// .smp_locks section contains PC-relative references to instructions with LOCK
2190 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
processLKSMPLocks()2191 void RewriteInstance::processLKSMPLocks() {
2192 ErrorOr<BinarySection &> SectionOrError =
2193 BC->getUniqueSectionByName(".smp_locks");
2194 if (!SectionOrError)
2195 return;
2196
2197 uint64_t SectionSize = SectionOrError->getSize();
2198 const uint64_t SectionAddress = SectionOrError->getAddress();
2199 assert((SectionSize % 4) == 0 &&
2200 "The size of the .smp_locks section should be a multiple of 4");
2201
2202 for (uint64_t I = 0; I < SectionSize; I += 4) {
2203 const uint64_t EntryAddress = SectionAddress + I;
2204 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2205 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
2206 int32_t SignedOffset = *Offset;
2207 uint64_t RefAddress = EntryAddress + SignedOffset;
2208
2209 BinaryFunction *ContainingBF =
2210 BC->getBinaryFunctionContainingAddress(RefAddress);
2211 if (!ContainingBF)
2212 continue;
2213
2214 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
2215 }
2216 }
2217
readDynamicRelocations(const SectionRef & Section,bool IsJmpRel)2218 void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
2219 bool IsJmpRel) {
2220 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
2221
2222 LLVM_DEBUG({
2223 StringRef SectionName = cantFail(Section.getName());
2224 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2225 << ":\n";
2226 });
2227
2228 for (const RelocationRef &Rel : Section.relocations()) {
2229 const uint64_t RType = Rel.getType();
2230 if (Relocation::isNone(RType))
2231 continue;
2232
2233 StringRef SymbolName = "<none>";
2234 MCSymbol *Symbol = nullptr;
2235 uint64_t SymbolAddress = 0;
2236 const uint64_t Addend = getRelocationAddend(InputFile, Rel);
2237
2238 symbol_iterator SymbolIter = Rel.getSymbol();
2239 if (SymbolIter != InputFile->symbol_end()) {
2240 SymbolName = cantFail(SymbolIter->getName());
2241 BinaryData *BD = BC->getBinaryDataByName(SymbolName);
2242 Symbol = BD ? BD->getSymbol()
2243 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
2244 SymbolAddress = cantFail(SymbolIter->getAddress());
2245 (void)SymbolAddress;
2246 }
2247
2248 LLVM_DEBUG(
2249 SmallString<16> TypeName;
2250 Rel.getTypeName(TypeName);
2251 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2252 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
2253 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress)
2254 << " : + 0x" << Twine::utohexstr(Addend) << '\n'
2255 );
2256
2257 if (IsJmpRel)
2258 IsJmpRelocation[RType] = true;
2259
2260 if (Symbol)
2261 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
2262
2263 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
2264 }
2265 }
2266
readRelocations(const SectionRef & Section)2267 void RewriteInstance::readRelocations(const SectionRef &Section) {
2268 LLVM_DEBUG({
2269 StringRef SectionName = cantFail(Section.getName());
2270 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2271 << ":\n";
2272 });
2273 if (BinarySection(*BC, Section).isAllocatable()) {
2274 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2275 return;
2276 }
2277 section_iterator SecIter = cantFail(Section.getRelocatedSection());
2278 assert(SecIter != InputFile->section_end() && "relocated section expected");
2279 SectionRef RelocatedSection = *SecIter;
2280
2281 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
2282 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2283 << RelocatedSectionName << '\n');
2284
2285 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
2286 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2287 << "non-allocatable section\n");
2288 return;
2289 }
2290 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
2291 .Cases(".plt", ".rela.plt", ".got.plt",
2292 ".eh_frame", ".gcc_except_table", true)
2293 .Default(false);
2294 if (SkipRelocs) {
2295 LLVM_DEBUG(
2296 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2297 return;
2298 }
2299
2300 const bool IsAArch64 = BC->isAArch64();
2301 const bool IsFromCode = RelocatedSection.isText();
2302
2303 auto printRelocationInfo = [&](const RelocationRef &Rel,
2304 StringRef SymbolName,
2305 uint64_t SymbolAddress,
2306 uint64_t Addend,
2307 uint64_t ExtractedValue) {
2308 SmallString<16> TypeName;
2309 Rel.getTypeName(TypeName);
2310 const uint64_t Address = SymbolAddress + Addend;
2311 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2312 dbgs() << "Relocation: offset = 0x"
2313 << Twine::utohexstr(Rel.getOffset())
2314 << "; type = " << TypeName
2315 << "; value = 0x" << Twine::utohexstr(ExtractedValue)
2316 << "; symbol = " << SymbolName
2317 << " (" << (Section ? Section->getName() : "") << ")"
2318 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress)
2319 << "; addend = 0x" << Twine::utohexstr(Addend)
2320 << "; address = 0x" << Twine::utohexstr(Address)
2321 << "; in = ";
2322 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress(
2323 Rel.getOffset(), false, IsAArch64))
2324 dbgs() << Func->getPrintName() << "\n";
2325 else
2326 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n";
2327 };
2328
2329 for (const RelocationRef &Rel : Section.relocations()) {
2330 SmallString<16> TypeName;
2331 Rel.getTypeName(TypeName);
2332 uint64_t RType = Rel.getType();
2333 if (Relocation::skipRelocationType(RType))
2334 continue;
2335
2336 // Adjust the relocation type as the linker might have skewed it.
2337 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
2338 if (opts::Verbosity >= 1)
2339 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2340 RType &= ~ELF::R_X86_64_converted_reloc_bit;
2341 }
2342
2343 if (Relocation::isTLS(RType)) {
2344 // No special handling required for TLS relocations on X86.
2345 if (BC->isX86())
2346 continue;
2347
2348 // The non-got related TLS relocations on AArch64 also could be skipped.
2349 if (!Relocation::isGOT(RType))
2350 continue;
2351 }
2352
2353 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
2354 LLVM_DEBUG(
2355 dbgs() << "BOLT-DEBUG: address 0x"
2356 << Twine::utohexstr(Rel.getOffset())
2357 << " has a dynamic relocation against it. Ignoring static "
2358 "relocation.\n");
2359 continue;
2360 }
2361
2362 std::string SymbolName;
2363 uint64_t SymbolAddress;
2364 int64_t Addend;
2365 uint64_t ExtractedValue;
2366 bool IsSectionRelocation;
2367 bool Skip;
2368 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
2369 SymbolAddress, Addend, ExtractedValue, Skip)) {
2370 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ "
2371 << "offset = 0x" << Twine::utohexstr(Rel.getOffset())
2372 << "; type name = " << TypeName << '\n');
2373 ++NumFailedRelocations;
2374 continue;
2375 }
2376
2377 if (Skip) {
2378 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x"
2379 << Twine::utohexstr(Rel.getOffset())
2380 << "; type name = " << TypeName << '\n');
2381 continue;
2382 }
2383
2384 const uint64_t Address = SymbolAddress + Addend;
2385
2386 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo(
2387 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue));
2388
2389 BinaryFunction *ContainingBF = nullptr;
2390 if (IsFromCode) {
2391 ContainingBF =
2392 BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
2393 /*CheckPastEnd*/ false,
2394 /*UseMaxSize*/ true);
2395 assert(ContainingBF && "cannot find function for address in code");
2396 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
2397 if (opts::Verbosity >= 1)
2398 outs() << "BOLT-INFO: " << *ContainingBF
2399 << " has relocations in padding area\n";
2400 ContainingBF->setSize(ContainingBF->getMaxSize());
2401 ContainingBF->setSimple(false);
2402 continue;
2403 }
2404 }
2405
2406 MCSymbol *ReferencedSymbol = nullptr;
2407 if (!IsSectionRelocation)
2408 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName))
2409 ReferencedSymbol = BD->getSymbol();
2410
2411 ErrorOr<BinarySection &> ReferencedSection =
2412 BC->getSectionForAddress(SymbolAddress);
2413
2414 const bool IsToCode = ReferencedSection && ReferencedSection->isText();
2415
2416 // Special handling of PC-relative relocations.
2417 if (!IsAArch64 && Relocation::isPCRelative(RType)) {
2418 if (!IsFromCode && IsToCode) {
2419 // PC-relative relocations from data to code are tricky since the
2420 // original information is typically lost after linking, even with
2421 // '--emit-relocs'. Such relocations are normally used by PIC-style
2422 // jump tables and they reference both the jump table and jump
2423 // targets by computing the difference between the two. If we blindly
2424 // apply the relocation, it will appear that it references an arbitrary
2425 // location in the code, possibly in a different function from the one
2426 // containing the jump table.
2427 //
2428 // For that reason, we only register the fact that there is a
2429 // PC-relative relocation at a given address against the code.
2430 // The actual referenced label/address will be determined during jump
2431 // table analysis.
2432 BC->addPCRelativeDataRelocation(Rel.getOffset());
2433 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
2434 // If we know the referenced symbol, register the relocation from
2435 // the code. It's required to properly handle cases where
2436 // "symbol + addend" references an object different from "symbol".
2437 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2438 Addend, ExtractedValue);
2439 } else {
2440 LLVM_DEBUG(
2441 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x"
2442 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName
2443 << "\n");
2444 }
2445
2446 continue;
2447 }
2448
2449 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
2450 if (BC->isAArch64() && Relocation::isGOT(RType))
2451 ForceRelocation = true;
2452
2453 if (!ReferencedSection && !ForceRelocation) {
2454 LLVM_DEBUG(
2455 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2456 continue;
2457 }
2458
2459 // Occasionally we may see a reference past the last byte of the function
2460 // typically as a result of __builtin_unreachable(). Check it here.
2461 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
2462 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
2463
2464 if (!IsSectionRelocation) {
2465 if (BinaryFunction *BF =
2466 BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
2467 if (BF != ReferencedBF) {
2468 // It's possible we are referencing a function without referencing any
2469 // code, e.g. when taking a bitmask action on a function address.
2470 errs() << "BOLT-WARNING: non-standard function reference (e.g. "
2471 "bitmask) detected against function "
2472 << *BF;
2473 if (IsFromCode)
2474 errs() << " from function " << *ContainingBF << '\n';
2475 else
2476 errs() << " from data section at 0x"
2477 << Twine::utohexstr(Rel.getOffset()) << '\n';
2478 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
2479 ExtractedValue));
2480 ReferencedBF = BF;
2481 }
2482 }
2483 } else if (ReferencedBF) {
2484 assert(ReferencedSection && "section expected for section relocation");
2485 if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
2486 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2487 ReferencedBF = nullptr;
2488 }
2489 }
2490
2491 // Workaround for a member function pointer de-virtualization bug. We check
2492 // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2493 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
2494 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
2495 if (const BinaryFunction *RogueBF =
2496 BC->getBinaryFunctionAtAddress(Address + 1)) {
2497 // Do an extra check that the function was referenced previously.
2498 // It's a linear search, but it should rarely happen.
2499 bool Found = false;
2500 for (const auto &RelKV : ContainingBF->Relocations) {
2501 const Relocation &Rel = RelKV.second;
2502 if (Rel.Symbol == RogueBF->getSymbol() &&
2503 !Relocation::isPCRelative(Rel.Type)) {
2504 Found = true;
2505 break;
2506 }
2507 }
2508
2509 if (Found) {
2510 errs() << "BOLT-WARNING: detected possible compiler "
2511 "de-virtualization bug: -1 addend used with "
2512 "non-pc-relative relocation against function "
2513 << *RogueBF << " in function " << *ContainingBF << '\n';
2514 continue;
2515 }
2516 }
2517 }
2518
2519 if (ForceRelocation) {
2520 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName;
2521 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
2522 SymbolAddress = 0;
2523 if (Relocation::isGOT(RType))
2524 Addend = Address;
2525 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2526 << SymbolName << " with addend " << Addend << '\n');
2527 } else if (ReferencedBF) {
2528 ReferencedSymbol = ReferencedBF->getSymbol();
2529 uint64_t RefFunctionOffset = 0;
2530
2531 // Adjust the point of reference to a code location inside a function.
2532 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) {
2533 RefFunctionOffset = Address - ReferencedBF->getAddress();
2534 if (RefFunctionOffset) {
2535 if (ContainingBF && ContainingBF != ReferencedBF) {
2536 ReferencedSymbol =
2537 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
2538 } else {
2539 ReferencedSymbol =
2540 ReferencedBF->getOrCreateLocalLabel(Address,
2541 /*CreatePastEnd =*/true);
2542 ReferencedBF->registerReferencedOffset(RefFunctionOffset);
2543 }
2544 if (opts::Verbosity > 1 &&
2545 !BinarySection(*BC, RelocatedSection).isReadOnly())
2546 errs() << "BOLT-WARNING: writable reference into the middle of "
2547 << "the function " << *ReferencedBF
2548 << " detected at address 0x"
2549 << Twine::utohexstr(Rel.getOffset()) << '\n';
2550 }
2551 SymbolAddress = Address;
2552 Addend = 0;
2553 }
2554 LLVM_DEBUG(
2555 dbgs() << " referenced function " << *ReferencedBF;
2556 if (Address != ReferencedBF->getAddress())
2557 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset);
2558 dbgs() << '\n'
2559 );
2560 } else {
2561 if (IsToCode && SymbolAddress) {
2562 // This can happen e.g. with PIC-style jump tables.
2563 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2564 "relocation against code\n");
2565 }
2566
2567 // In AArch64 there are zero reasons to keep a reference to the
2568 // "original" symbol plus addend. The original symbol is probably just a
2569 // section symbol. If we are here, this means we are probably accessing
2570 // data, so it is imperative to keep the original address.
2571 if (IsAArch64) {
2572 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str();
2573 SymbolAddress = Address;
2574 Addend = 0;
2575 }
2576
2577 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
2578 // Note: this assertion is trying to check sanity of BinaryData objects
2579 // but AArch64 has inferred and incomplete object locations coming from
2580 // GOT/TLS or any other non-trivial relocation (that requires creation
2581 // of sections and whose symbol address is not really what should be
2582 // encoded in the instruction). So we essentially disabled this check
2583 // for AArch64 and live with bogus names for objects.
2584 assert((IsAArch64 || IsSectionRelocation ||
2585 BD->nameStartsWith(SymbolName) ||
2586 BD->nameStartsWith("PG" + SymbolName) ||
2587 (BD->nameStartsWith("ANONYMOUS") &&
2588 (BD->getSectionName().startswith(".plt") ||
2589 BD->getSectionName().endswith(".plt")))) &&
2590 "BOLT symbol names of all non-section relocations must match "
2591 "up with symbol names referenced in the relocation");
2592
2593 if (IsSectionRelocation)
2594 BC->markAmbiguousRelocations(*BD, Address);
2595
2596 ReferencedSymbol = BD->getSymbol();
2597 Addend += (SymbolAddress - BD->getAddress());
2598 SymbolAddress = BD->getAddress();
2599 assert(Address == SymbolAddress + Addend);
2600 } else {
2601 // These are mostly local data symbols but undefined symbols
2602 // in relocation sections can get through here too, from .plt.
2603 assert(
2604 (IsAArch64 || IsSectionRelocation ||
2605 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) &&
2606 "known symbols should not resolve to anonymous locals");
2607
2608 if (IsSectionRelocation) {
2609 ReferencedSymbol =
2610 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
2611 } else {
2612 SymbolRef Symbol = *Rel.getSymbol();
2613 const uint64_t SymbolSize =
2614 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
2615 const uint64_t SymbolAlignment =
2616 IsAArch64 ? 1 : Symbol.getAlignment();
2617 const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
2618 std::string Name;
2619 if (SymbolFlags & SymbolRef::SF_Global) {
2620 Name = SymbolName;
2621 } else {
2622 if (StringRef(SymbolName)
2623 .startswith(BC->AsmInfo->getPrivateGlobalPrefix()))
2624 Name = NR.uniquify("PG" + SymbolName);
2625 else
2626 Name = NR.uniquify(SymbolName);
2627 }
2628 ReferencedSymbol = BC->registerNameAtAddress(
2629 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
2630 }
2631
2632 if (IsSectionRelocation) {
2633 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
2634 BC->markAmbiguousRelocations(*BD, Address);
2635 }
2636 }
2637 }
2638
2639 auto checkMaxDataRelocations = [&]() {
2640 ++NumDataRelocations;
2641 if (opts::MaxDataRelocations &&
2642 NumDataRelocations + 1 == opts::MaxDataRelocations) {
2643 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2644 << NumDataRelocations << ": ");
2645 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
2646 Addend, ExtractedValue);
2647 }
2648
2649 return (!opts::MaxDataRelocations ||
2650 NumDataRelocations < opts::MaxDataRelocations);
2651 };
2652
2653 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
2654 (opts::ForceToDataRelocations && checkMaxDataRelocations()))
2655 ForceRelocation = true;
2656
2657 if (IsFromCode) {
2658 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2659 Addend, ExtractedValue);
2660 } else if (IsToCode || ForceRelocation) {
2661 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
2662 ExtractedValue);
2663 } else {
2664 LLVM_DEBUG(
2665 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2666 }
2667 }
2668 }
2669
selectFunctionsToProcess()2670 void RewriteInstance::selectFunctionsToProcess() {
2671 // Extend the list of functions to process or skip from a file.
2672 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
2673 cl::list<std::string> &FunctionNames) {
2674 if (FunctionNamesFile.empty())
2675 return;
2676 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
2677 std::string FuncName;
2678 while (std::getline(FuncsFile, FuncName))
2679 FunctionNames.push_back(FuncName);
2680 };
2681 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
2682 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
2683 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
2684
2685 // Make a set of functions to process to speed up lookups.
2686 std::unordered_set<std::string> ForceFunctionsNR(
2687 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
2688
2689 if ((!opts::ForceFunctionNames.empty() ||
2690 !opts::ForceFunctionNamesNR.empty()) &&
2691 !opts::SkipFunctionNames.empty()) {
2692 errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
2693 "same time. Please use only one type of selection.\n";
2694 exit(1);
2695 }
2696
2697 uint64_t LiteThresholdExecCount = 0;
2698 if (opts::LiteThresholdPct) {
2699 if (opts::LiteThresholdPct > 100)
2700 opts::LiteThresholdPct = 100;
2701
2702 std::vector<const BinaryFunction *> TopFunctions;
2703 for (auto &BFI : BC->getBinaryFunctions()) {
2704 const BinaryFunction &Function = BFI.second;
2705 if (ProfileReader->mayHaveProfileData(Function))
2706 TopFunctions.push_back(&Function);
2707 }
2708 llvm::sort(
2709 TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
2710 return A->getKnownExecutionCount() < B->getKnownExecutionCount();
2711 });
2712
2713 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
2714 if (Index)
2715 --Index;
2716 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
2717 outs() << "BOLT-INFO: limiting processing to functions with at least "
2718 << LiteThresholdExecCount << " invocations\n";
2719 }
2720 LiteThresholdExecCount = std::max(
2721 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
2722
2723 uint64_t NumFunctionsToProcess = 0;
2724 auto shouldProcess = [&](const BinaryFunction &Function) {
2725 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions)
2726 return false;
2727
2728 // If the list is not empty, only process functions from the list.
2729 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
2730 // Regex check (-funcs and -funcs-file options).
2731 for (std::string &Name : opts::ForceFunctionNames)
2732 if (Function.hasNameRegex(Name))
2733 return true;
2734
2735 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
2736 Optional<StringRef> Match =
2737 Function.forEachName([&ForceFunctionsNR](StringRef Name) {
2738 return ForceFunctionsNR.count(Name.str());
2739 });
2740 return Match.hasValue();
2741 }
2742
2743 for (std::string &Name : opts::SkipFunctionNames)
2744 if (Function.hasNameRegex(Name))
2745 return false;
2746
2747 if (opts::Lite) {
2748 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
2749 return false;
2750
2751 if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
2752 return false;
2753 }
2754
2755 return true;
2756 };
2757
2758 for (auto &BFI : BC->getBinaryFunctions()) {
2759 BinaryFunction &Function = BFI.second;
2760
2761 // Pseudo functions are explicitly marked by us not to be processed.
2762 if (Function.isPseudo()) {
2763 Function.IsIgnored = true;
2764 Function.HasExternalRefRelocations = true;
2765 continue;
2766 }
2767
2768 if (!shouldProcess(Function)) {
2769 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function "
2770 << Function << " per user request\n");
2771 Function.setIgnored();
2772 } else {
2773 ++NumFunctionsToProcess;
2774 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
2775 outs() << "BOLT-INFO: processing ending on " << Function << '\n';
2776 }
2777 }
2778 }
2779
readDebugInfo()2780 void RewriteInstance::readDebugInfo() {
2781 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
2782 TimerGroupDesc, opts::TimeRewrite);
2783 if (!opts::UpdateDebugSections)
2784 return;
2785
2786 BC->preprocessDebugInfo();
2787 }
2788
preprocessProfileData()2789 void RewriteInstance::preprocessProfileData() {
2790 if (!ProfileReader)
2791 return;
2792
2793 NamedRegionTimer T("preprocessprofile", "pre-process profile data",
2794 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2795
2796 outs() << "BOLT-INFO: pre-processing profile using "
2797 << ProfileReader->getReaderName() << '\n';
2798
2799 if (BAT->enabledFor(InputFile)) {
2800 outs() << "BOLT-INFO: profile collection done on a binary already "
2801 "processed by BOLT\n";
2802 ProfileReader->setBAT(&*BAT);
2803 }
2804
2805 if (Error E = ProfileReader->preprocessProfile(*BC.get()))
2806 report_error("cannot pre-process profile", std::move(E));
2807
2808 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
2809 !opts::AllowStripped) {
2810 errs() << "BOLT-ERROR: input binary does not have local file symbols "
2811 "but profile data includes function names with embedded file "
2812 "names. It appears that the input binary was stripped while a "
2813 "profiled binary was not. If you know what you are doing and "
2814 "wish to proceed, use -allow-stripped option.\n";
2815 exit(1);
2816 }
2817 }
2818
processProfileDataPreCFG()2819 void RewriteInstance::processProfileDataPreCFG() {
2820 if (!ProfileReader)
2821 return;
2822
2823 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
2824 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2825
2826 if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
2827 report_error("cannot read profile pre-CFG", std::move(E));
2828 }
2829
processProfileData()2830 void RewriteInstance::processProfileData() {
2831 if (!ProfileReader)
2832 return;
2833
2834 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
2835 TimerGroupDesc, opts::TimeRewrite);
2836
2837 if (Error E = ProfileReader->readProfile(*BC.get()))
2838 report_error("cannot read profile", std::move(E));
2839
2840 if (!opts::SaveProfile.empty()) {
2841 YAMLProfileWriter PW(opts::SaveProfile);
2842 PW.writeProfile(*this);
2843 }
2844
2845 // Release memory used by profile reader.
2846 ProfileReader.reset();
2847
2848 if (opts::AggregateOnly)
2849 exit(0);
2850 }
2851
disassembleFunctions()2852 void RewriteInstance::disassembleFunctions() {
2853 NamedRegionTimer T("disassembleFunctions", "disassemble functions",
2854 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2855 for (auto &BFI : BC->getBinaryFunctions()) {
2856 BinaryFunction &Function = BFI.second;
2857
2858 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
2859 if (!FunctionData) {
2860 errs() << "BOLT-ERROR: corresponding section is non-executable or "
2861 << "empty for function " << Function << '\n';
2862 exit(1);
2863 }
2864
2865 // Treat zero-sized functions as non-simple ones.
2866 if (Function.getSize() == 0) {
2867 Function.setSimple(false);
2868 continue;
2869 }
2870
2871 // Offset of the function in the file.
2872 const auto *FileBegin =
2873 reinterpret_cast<const uint8_t *>(InputFile->getData().data());
2874 Function.setFileOffset(FunctionData->begin() - FileBegin);
2875
2876 if (!shouldDisassemble(Function)) {
2877 NamedRegionTimer T("scan", "scan functions", "buildfuncs",
2878 "Scan Binary Functions", opts::TimeBuild);
2879 Function.scanExternalRefs();
2880 Function.setSimple(false);
2881 continue;
2882 }
2883
2884 if (!Function.disassemble()) {
2885 if (opts::processAllFunctions())
2886 BC->exitWithBugReport("function cannot be properly disassembled. "
2887 "Unable to continue in relocation mode.",
2888 Function);
2889 if (opts::Verbosity >= 1)
2890 outs() << "BOLT-INFO: could not disassemble function " << Function
2891 << ". Will ignore.\n";
2892 // Forcefully ignore the function.
2893 Function.setIgnored();
2894 continue;
2895 }
2896
2897 if (opts::PrintAll || opts::PrintDisasm)
2898 Function.print(outs(), "after disassembly", true);
2899 }
2900
2901 BC->processInterproceduralReferences();
2902 BC->populateJumpTables();
2903
2904 for (auto &BFI : BC->getBinaryFunctions()) {
2905 BinaryFunction &Function = BFI.second;
2906
2907 if (!shouldDisassemble(Function))
2908 continue;
2909
2910 Function.postProcessEntryPoints();
2911 Function.postProcessJumpTables();
2912 }
2913
2914 BC->clearJumpTableTempData();
2915 BC->adjustCodePadding();
2916
2917 for (auto &BFI : BC->getBinaryFunctions()) {
2918 BinaryFunction &Function = BFI.second;
2919
2920 if (!shouldDisassemble(Function))
2921 continue;
2922
2923 if (!Function.isSimple()) {
2924 assert((!BC->HasRelocations || Function.getSize() == 0 ||
2925 Function.hasIndirectTargetToSplitFragment()) &&
2926 "unexpected non-simple function in relocation mode");
2927 continue;
2928 }
2929
2930 // Fill in CFI information for this function
2931 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
2932 if (BC->HasRelocations) {
2933 BC->exitWithBugReport("unable to fill CFI.", Function);
2934 } else {
2935 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
2936 << ". Skipping.\n";
2937 Function.setSimple(false);
2938 continue;
2939 }
2940 }
2941
2942 // Parse LSDA.
2943 if (Function.getLSDAAddress() != 0 &&
2944 !BC->getFragmentsToSkip().count(&Function))
2945 Function.parseLSDA(getLSDAData(), getLSDAAddress());
2946 }
2947 }
2948
buildFunctionsCFG()2949 void RewriteInstance::buildFunctionsCFG() {
2950 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
2951 "Build Binary Functions", opts::TimeBuild);
2952
2953 // Create annotation indices to allow lock-free execution
2954 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
2955 BC->MIB->getOrCreateAnnotationIndex("NOP");
2956 BC->MIB->getOrCreateAnnotationIndex("Size");
2957
2958 ParallelUtilities::WorkFuncWithAllocTy WorkFun =
2959 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
2960 if (!BF.buildCFG(AllocId))
2961 return;
2962
2963 if (opts::PrintAll) {
2964 auto L = BC->scopeLock();
2965 BF.print(outs(), "while building cfg", true);
2966 }
2967 };
2968
2969 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
2970 return !shouldDisassemble(BF) || !BF.isSimple();
2971 };
2972
2973 ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
2974 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
2975 SkipPredicate, "disassembleFunctions-buildCFG",
2976 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
2977
2978 BC->postProcessSymbolTable();
2979 }
2980
postProcessFunctions()2981 void RewriteInstance::postProcessFunctions() {
2982 // We mark fragments as non-simple here, not during disassembly,
2983 // So we can build their CFGs.
2984 BC->skipMarkedFragments();
2985 BC->clearFragmentsToSkip();
2986
2987 BC->TotalScore = 0;
2988 BC->SumExecutionCount = 0;
2989 for (auto &BFI : BC->getBinaryFunctions()) {
2990 BinaryFunction &Function = BFI.second;
2991
2992 if (Function.empty())
2993 continue;
2994
2995 Function.postProcessCFG();
2996
2997 if (opts::PrintAll || opts::PrintCFG)
2998 Function.print(outs(), "after building cfg", true);
2999
3000 if (opts::DumpDotAll)
3001 Function.dumpGraphForPass("00_build-cfg");
3002
3003 if (opts::PrintLoopInfo) {
3004 Function.calculateLoopInfo();
3005 Function.printLoopInfo(outs());
3006 }
3007
3008 BC->TotalScore += Function.getFunctionScore();
3009 BC->SumExecutionCount += Function.getKnownExecutionCount();
3010 }
3011
3012 if (opts::PrintGlobals) {
3013 outs() << "BOLT-INFO: Global symbols:\n";
3014 BC->printGlobalSymbols(outs());
3015 }
3016 }
3017
runOptimizationPasses()3018 void RewriteInstance::runOptimizationPasses() {
3019 NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
3020 TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3021 BinaryFunctionPassManager::runAllPasses(*BC);
3022 }
3023
3024 namespace {
3025
3026 class BOLTSymbolResolver : public JITSymbolResolver {
3027 BinaryContext &BC;
3028
3029 public:
BOLTSymbolResolver(BinaryContext & BC)3030 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {}
3031
3032 // We are responsible for all symbols
getResponsibilitySet(const LookupSet & Symbols)3033 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override {
3034 return Symbols;
3035 }
3036
3037 // Some of our symbols may resolve to zero and this should not be an error
allowsZeroSymbols()3038 bool allowsZeroSymbols() override { return true; }
3039
3040 /// Resolves the address of each symbol requested
lookup(const LookupSet & Symbols,OnResolvedFunction OnResolved)3041 void lookup(const LookupSet &Symbols,
3042 OnResolvedFunction OnResolved) override {
3043 JITSymbolResolver::LookupResult AllResults;
3044
3045 if (BC.EFMM->ObjectsLoaded) {
3046 for (const StringRef &Symbol : Symbols) {
3047 std::string SymName = Symbol.str();
3048 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
3049 // Resolve to a PLT entry if possible
3050 if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) {
3051 AllResults[Symbol] =
3052 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags());
3053 continue;
3054 }
3055 OnResolved(make_error<StringError>(
3056 "Symbol not found required by runtime: " + Symbol,
3057 inconvertibleErrorCode()));
3058 return;
3059 }
3060 OnResolved(std::move(AllResults));
3061 return;
3062 }
3063
3064 for (const StringRef &Symbol : Symbols) {
3065 std::string SymName = Symbol.str();
3066 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
3067
3068 if (BinaryData *I = BC.getBinaryDataByName(SymName)) {
3069 uint64_t Address = I->isMoved() && !I->isJumpTable()
3070 ? I->getOutputAddress()
3071 : I->getAddress();
3072 LLVM_DEBUG(dbgs() << "Resolved to address 0x"
3073 << Twine::utohexstr(Address) << "\n");
3074 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags());
3075 continue;
3076 }
3077 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n");
3078 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags());
3079 }
3080
3081 OnResolved(std::move(AllResults));
3082 }
3083 };
3084
3085 } // anonymous namespace
3086
emitAndLink()3087 void RewriteInstance::emitAndLink() {
3088 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
3089 TimerGroupDesc, opts::TimeRewrite);
3090 std::error_code EC;
3091
3092 // This is an object file, which we keep for debugging purposes.
3093 // Once we decide it's useless, we should create it in memory.
3094 SmallString<128> OutObjectPath;
3095 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
3096 std::unique_ptr<ToolOutputFile> TempOut =
3097 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None);
3098 check_error(EC, "cannot create output object file");
3099
3100 std::unique_ptr<buffer_ostream> BOS =
3101 std::make_unique<buffer_ostream>(TempOut->os());
3102 raw_pwrite_stream *OS = BOS.get();
3103
3104 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3105 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3106 // two instances.
3107 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS);
3108
3109 if (EHFrameSection) {
3110 if (opts::UseOldText || opts::StrictMode) {
3111 // The section is going to be regenerated from scratch.
3112 // Empty the contents, but keep the section reference.
3113 EHFrameSection->clearContents();
3114 } else {
3115 // Make .eh_frame relocatable.
3116 relocateEHFrameSection();
3117 }
3118 }
3119
3120 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
3121
3122 Streamer->finish();
3123 if (Streamer->getContext().hadError()) {
3124 errs() << "BOLT-ERROR: Emission failed.\n";
3125 exit(1);
3126 }
3127
3128 //////////////////////////////////////////////////////////////////////////////
3129 // Assign addresses to new sections.
3130 //////////////////////////////////////////////////////////////////////////////
3131
3132 // Get output object as ObjectFile.
3133 std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
3134 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false);
3135 std::unique_ptr<object::ObjectFile> Obj = cantFail(
3136 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()),
3137 "error creating in-memory object");
3138
3139 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC);
3140
3141 MCAsmLayout FinalLayout(
3142 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler());
3143
3144 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver));
3145 RTDyld->setProcessAllSections(false);
3146 RTDyld->loadObject(*Obj);
3147
3148 // Assign addresses to all sections. If key corresponds to the object
3149 // created by ourselves, call our regular mapping function. If we are
3150 // loading additional objects as part of runtime libraries for
3151 // instrumentation, treat them as extra sections.
3152 mapFileSections(*RTDyld);
3153
3154 RTDyld->finalizeWithMemoryManagerLocking();
3155 if (RTDyld->hasError()) {
3156 errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n";
3157 exit(1);
3158 }
3159
3160 // Update output addresses based on the new section map and
3161 // layout. Only do this for the object created by ourselves.
3162 updateOutputValues(FinalLayout);
3163
3164 if (opts::UpdateDebugSections)
3165 DebugInfoRewriter->updateLineTableOffsets(FinalLayout);
3166
3167 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3168 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) {
3169 this->mapExtraSections(*RTDyld);
3170 });
3171
3172 // Once the code is emitted, we can rename function sections to actual
3173 // output sections and de-register sections used for emission.
3174 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
3175 ErrorOr<BinarySection &> Section = Function->getCodeSection();
3176 if (Section &&
3177 (Function->getImageAddress() == 0 || Function->getImageSize() == 0))
3178 continue;
3179
3180 // Restore origin section for functions that were emitted or supposed to
3181 // be emitted to patch sections.
3182 if (Section)
3183 BC->deregisterSection(*Section);
3184 assert(Function->getOriginSectionName() && "expected origin section");
3185 Function->CodeSectionName = std::string(*Function->getOriginSectionName());
3186 if (Function->isSplit()) {
3187 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection())
3188 BC->deregisterSection(*ColdSection);
3189 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName());
3190 }
3191 }
3192
3193 if (opts::PrintCacheMetrics) {
3194 outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3195 CacheMetrics::printAll(BC->getSortedFunctions());
3196 }
3197
3198 if (opts::KeepTmp) {
3199 TempOut->keep();
3200 outs() << "BOLT-INFO: intermediary output object file saved for debugging "
3201 "purposes: "
3202 << OutObjectPath << "\n";
3203 }
3204 }
3205
updateMetadata()3206 void RewriteInstance::updateMetadata() {
3207 updateSDTMarkers();
3208 updateLKMarkers();
3209 parsePseudoProbe();
3210 updatePseudoProbes();
3211
3212 if (opts::UpdateDebugSections) {
3213 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
3214 TimerGroupDesc, opts::TimeRewrite);
3215 DebugInfoRewriter->updateDebugInfo();
3216 }
3217
3218 if (opts::WriteBoltInfoSection)
3219 addBoltInfoSection();
3220 }
3221
updatePseudoProbes()3222 void RewriteInstance::updatePseudoProbes() {
3223 // check if there is pseudo probe section decoded
3224 if (BC->ProbeDecoder.getAddress2ProbesMap().empty())
3225 return;
3226 // input address converted to output
3227 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap();
3228 const GUIDProbeFunctionMap &GUID2Func =
3229 BC->ProbeDecoder.getGUID2FuncDescMap();
3230
3231 for (auto &AP : Address2ProbesMap) {
3232 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first);
3233 // If F is removed, eliminate all probes inside it from inline tree
3234 // Setting probes' addresses as INT64_MAX means elimination
3235 if (!F) {
3236 for (MCDecodedPseudoProbe &Probe : AP.second)
3237 Probe.setAddress(INT64_MAX);
3238 continue;
3239 }
3240 // If F is not emitted, the function will remain in the same address as its
3241 // input
3242 if (!F->isEmitted())
3243 continue;
3244
3245 uint64_t Offset = AP.first - F->getAddress();
3246 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset);
3247 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first;
3248 // Check if block output address is defined.
3249 // If not, such block is removed from binary. Then remove the probes from
3250 // inline tree
3251 if (BlkOutputAddress == 0) {
3252 for (MCDecodedPseudoProbe &Probe : AP.second)
3253 Probe.setAddress(INT64_MAX);
3254 continue;
3255 }
3256
3257 unsigned ProbeTrack = AP.second.size();
3258 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin();
3259 while (ProbeTrack != 0) {
3260 if (Probe->isBlock()) {
3261 Probe->setAddress(BlkOutputAddress);
3262 } else if (Probe->isCall()) {
3263 // A call probe may be duplicated due to ICP
3264 // Go through output of InputOffsetToAddressMap to collect all related
3265 // probes
3266 const InputOffsetToAddressMapTy &Offset2Addr =
3267 F->getInputOffsetToAddressMap();
3268 auto CallOutputAddresses = Offset2Addr.equal_range(Offset);
3269 auto CallOutputAddress = CallOutputAddresses.first;
3270 if (CallOutputAddress == CallOutputAddresses.second) {
3271 Probe->setAddress(INT64_MAX);
3272 } else {
3273 Probe->setAddress(CallOutputAddress->second);
3274 CallOutputAddress = std::next(CallOutputAddress);
3275 }
3276
3277 while (CallOutputAddress != CallOutputAddresses.second) {
3278 AP.second.push_back(*Probe);
3279 AP.second.back().setAddress(CallOutputAddress->second);
3280 Probe->getInlineTreeNode()->addProbes(&(AP.second.back()));
3281 CallOutputAddress = std::next(CallOutputAddress);
3282 }
3283 }
3284 Probe = std::next(Probe);
3285 ProbeTrack--;
3286 }
3287 }
3288
3289 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
3290 opts::PrintPseudoProbes ==
3291 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) {
3292 outs() << "Pseudo Probe Address Conversion results:\n";
3293 // table that correlates address to block
3294 std::unordered_map<uint64_t, StringRef> Addr2BlockNames;
3295 for (auto &F : BC->getBinaryFunctions())
3296 for (BinaryBasicBlock &BinaryBlock : F.second)
3297 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] =
3298 BinaryBlock.getName();
3299
3300 // scan all addresses -> correlate probe to block when print out
3301 std::vector<uint64_t> Addresses;
3302 for (auto &Entry : Address2ProbesMap)
3303 Addresses.push_back(Entry.first);
3304 llvm::sort(Addresses);
3305 for (uint64_t Key : Addresses) {
3306 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) {
3307 if (Probe.getAddress() == INT64_MAX)
3308 outs() << "Deleted Probe: ";
3309 else
3310 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " ";
3311 Probe.print(outs(), GUID2Func, true);
3312 // print block name only if the probe is block type and undeleted.
3313 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX)
3314 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in "
3315 << Addr2BlockNames[Probe.getAddress()] << "\n";
3316 }
3317 }
3318 outs() << "=======================================\n";
3319 }
3320
3321 // encode pseudo probes with updated addresses
3322 encodePseudoProbes();
3323 }
3324
3325 template <typename F>
emitLEB128IntValue(F encode,uint64_t Value,SmallString<8> & Contents)3326 static void emitLEB128IntValue(F encode, uint64_t Value,
3327 SmallString<8> &Contents) {
3328 SmallString<128> Tmp;
3329 raw_svector_ostream OSE(Tmp);
3330 encode(Value, OSE);
3331 Contents.append(OSE.str().begin(), OSE.str().end());
3332 }
3333
encodePseudoProbes()3334 void RewriteInstance::encodePseudoProbes() {
3335 // Buffer for new pseudo probes section
3336 SmallString<8> Contents;
3337 MCDecodedPseudoProbe *LastProbe = nullptr;
3338
3339 auto EmitInt = [&](uint64_t Value, uint32_t Size) {
3340 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian();
3341 uint64_t Swapped = support::endian::byte_swap(
3342 Value, IsLittleEndian ? support::little : support::big);
3343 unsigned Index = IsLittleEndian ? 0 : 8 - Size;
3344 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size);
3345 Contents.append(Entry.begin(), Entry.end());
3346 };
3347
3348 auto EmitULEB128IntValue = [&](uint64_t Value) {
3349 SmallString<128> Tmp;
3350 raw_svector_ostream OSE(Tmp);
3351 encodeULEB128(Value, OSE, 0);
3352 Contents.append(OSE.str().begin(), OSE.str().end());
3353 };
3354
3355 auto EmitSLEB128IntValue = [&](int64_t Value) {
3356 SmallString<128> Tmp;
3357 raw_svector_ostream OSE(Tmp);
3358 encodeSLEB128(Value, OSE);
3359 Contents.append(OSE.str().begin(), OSE.str().end());
3360 };
3361
3362 // Emit indiviual pseudo probes in a inline tree node
3363 // Probe index, type, attribute, address type and address are encoded
3364 // Address of the first probe is absolute.
3365 // Other probes' address are represented by delta
3366 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) {
3367 EmitULEB128IntValue(CurProbe->getIndex());
3368 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4);
3369 uint8_t Flag =
3370 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
3371 EmitInt(Flag | PackedType, 1);
3372 if (LastProbe) {
3373 // Emit the delta between the address label and LastProbe.
3374 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress();
3375 EmitSLEB128IntValue(Delta);
3376 } else {
3377 // Emit absolute address for encoding the first pseudo probe.
3378 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize();
3379 EmitInt(CurProbe->getAddress(), AddrSize);
3380 }
3381 };
3382
3383 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *,
3384 std::greater<InlineSite>>
3385 Inlinees;
3386
3387 // DFS of inline tree to emit pseudo probes in all tree node
3388 // Inline site index of a probe is emitted first.
3389 // Then tree node Guid, size of pseudo probes and children nodes, and detail
3390 // of contained probes are emitted Deleted probes are skipped Root node is not
3391 // encoded to binaries. It's a "wrapper" of inline trees of each function.
3392 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes;
3393 const MCDecodedPseudoProbeInlineTree &Root =
3394 BC->ProbeDecoder.getDummyInlineRoot();
3395 for (auto Child = Root.getChildren().begin();
3396 Child != Root.getChildren().end(); ++Child)
3397 Inlinees[Child->first] = Child->second.get();
3398
3399 for (auto Inlinee : Inlinees)
3400 // INT64_MAX is "placeholder" of unused callsite index field in the pair
3401 NextNodes.push_back({INT64_MAX, Inlinee.second});
3402
3403 Inlinees.clear();
3404
3405 while (!NextNodes.empty()) {
3406 uint64_t ProbeIndex = NextNodes.back().first;
3407 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second;
3408 NextNodes.pop_back();
3409
3410 if (Cur->Parent && !Cur->Parent->isRoot())
3411 // Emit probe inline site
3412 EmitULEB128IntValue(ProbeIndex);
3413
3414 // Emit probes grouped by GUID.
3415 LLVM_DEBUG({
3416 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
3417 dbgs() << "GUID: " << Cur->Guid << "\n";
3418 });
3419 // Emit Guid
3420 EmitInt(Cur->Guid, 8);
3421 // Emit number of probes in this node
3422 uint64_t Deleted = 0;
3423 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes())
3424 if (Probe->getAddress() == INT64_MAX)
3425 Deleted++;
3426 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n");
3427 uint64_t ProbesSize = Cur->getProbes().size() - Deleted;
3428 EmitULEB128IntValue(ProbesSize);
3429 // Emit number of direct inlinees
3430 EmitULEB128IntValue(Cur->getChildren().size());
3431 // Emit probes in this group
3432 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) {
3433 if (Probe->getAddress() == INT64_MAX)
3434 continue;
3435 EmitDecodedPseudoProbe(Probe);
3436 LastProbe = Probe;
3437 }
3438
3439 for (auto Child = Cur->getChildren().begin();
3440 Child != Cur->getChildren().end(); ++Child)
3441 Inlinees[Child->first] = Child->second.get();
3442 for (const auto &Inlinee : Inlinees) {
3443 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid");
3444 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second});
3445 LLVM_DEBUG({
3446 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
3447 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
3448 });
3449 }
3450 Inlinees.clear();
3451 }
3452
3453 // Create buffer for new contents for the section
3454 // Freed when parent section is destroyed
3455 uint8_t *Output = new uint8_t[Contents.str().size()];
3456 memcpy(Output, Contents.str().data(), Contents.str().size());
3457 addToDebugSectionsToOverwrite(".pseudo_probe");
3458 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(),
3459 PseudoProbeSection->getELFFlags(), Output,
3460 Contents.str().size(), 1);
3461 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
3462 opts::PrintPseudoProbes ==
3463 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) {
3464 // create a dummy decoder;
3465 MCPseudoProbeDecoder DummyDecoder;
3466 StringRef DescContents = PseudoProbeDescSection->getContents();
3467 DummyDecoder.buildGUID2FuncDescMap(
3468 reinterpret_cast<const uint8_t *>(DescContents.data()),
3469 DescContents.size());
3470 StringRef ProbeContents = PseudoProbeSection->getOutputContents();
3471 DummyDecoder.buildAddress2ProbeMap(
3472 reinterpret_cast<const uint8_t *>(ProbeContents.data()),
3473 ProbeContents.size());
3474 DummyDecoder.printProbesForAllAddresses(outs());
3475 }
3476 }
3477
updateSDTMarkers()3478 void RewriteInstance::updateSDTMarkers() {
3479 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName,
3480 TimerGroupDesc, opts::TimeRewrite);
3481
3482 if (!SDTSection)
3483 return;
3484 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
3485
3486 SimpleBinaryPatcher *SDTNotePatcher =
3487 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher());
3488 for (auto &SDTInfoKV : BC->SDTMarkers) {
3489 const uint64_t OriginalAddress = SDTInfoKV.first;
3490 SDTMarkerInfo &SDTInfo = SDTInfoKV.second;
3491 const BinaryFunction *F =
3492 BC->getBinaryFunctionContainingAddress(OriginalAddress);
3493 if (!F)
3494 continue;
3495 const uint64_t NewAddress =
3496 F->translateInputToOutputAddress(OriginalAddress);
3497 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress);
3498 }
3499 }
3500
updateLKMarkers()3501 void RewriteInstance::updateLKMarkers() {
3502 if (BC->LKMarkers.size() == 0)
3503 return;
3504
3505 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName,
3506 TimerGroupDesc, opts::TimeRewrite);
3507
3508 std::unordered_map<std::string, uint64_t> PatchCounts;
3509 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
3510 &LKMarkerInfoKV : BC->LKMarkers) {
3511 const uint64_t OriginalAddress = LKMarkerInfoKV.first;
3512 const BinaryFunction *BF =
3513 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true);
3514 if (!BF)
3515 continue;
3516
3517 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
3518 if (NewAddress == 0)
3519 continue;
3520
3521 // Apply base address.
3522 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
3523 NewAddress = NewAddress + 0xffffffff00000000;
3524
3525 if (OriginalAddress == NewAddress)
3526 continue;
3527
3528 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
3529 StringRef SectionName = LKMarkerInfo.SectionName;
3530 SimpleBinaryPatcher *LKPatcher;
3531 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
3532 assert(BSec && "missing section info for kernel section");
3533 if (!BSec->getPatcher())
3534 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
3535 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
3536 PatchCounts[std::string(SectionName)]++;
3537 if (LKMarkerInfo.IsPCRelative)
3538 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
3539 NewAddress - OriginalAddress +
3540 LKMarkerInfo.PCRelativeOffset);
3541 else
3542 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
3543 }
3544 }
3545 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
3546 "section are as follows:\n";
3547 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
3548 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second
3549 << '\n';
3550 }
3551
mapFileSections(RuntimeDyld & RTDyld)3552 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) {
3553 mapCodeSections(RTDyld);
3554 mapDataSections(RTDyld);
3555 }
3556
getCodeSections()3557 std::vector<BinarySection *> RewriteInstance::getCodeSections() {
3558 std::vector<BinarySection *> CodeSections;
3559 for (BinarySection &Section : BC->textSections())
3560 if (Section.hasValidSectionID())
3561 CodeSections.emplace_back(&Section);
3562
3563 auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
3564 // Place movers before anything else.
3565 if (A->getName() == BC->getHotTextMoverSectionName())
3566 return true;
3567 if (B->getName() == BC->getHotTextMoverSectionName())
3568 return false;
3569
3570 // Depending on the option, put main text at the beginning or at the end.
3571 if (opts::HotFunctionsAtEnd)
3572 return B->getName() == BC->getMainCodeSectionName();
3573 else
3574 return A->getName() == BC->getMainCodeSectionName();
3575 };
3576
3577 // Determine the order of sections.
3578 llvm::stable_sort(CodeSections, compareSections);
3579
3580 return CodeSections;
3581 }
3582
mapCodeSections(RuntimeDyld & RTDyld)3583 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) {
3584 if (BC->HasRelocations) {
3585 ErrorOr<BinarySection &> TextSection =
3586 BC->getUniqueSectionByName(BC->getMainCodeSectionName());
3587 assert(TextSection && ".text section not found in output");
3588 assert(TextSection->hasValidSectionID() && ".text section should be valid");
3589
3590 // Map sections for functions with pre-assigned addresses.
3591 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
3592 const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
3593 if (!OutputAddress)
3594 continue;
3595
3596 ErrorOr<BinarySection &> FunctionSection =
3597 InjectedFunction->getCodeSection();
3598 assert(FunctionSection && "function should have section");
3599 FunctionSection->setOutputAddress(OutputAddress);
3600 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(),
3601 OutputAddress);
3602 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
3603 InjectedFunction->setImageSize(FunctionSection->getOutputSize());
3604 }
3605
3606 // Populate the list of sections to be allocated.
3607 std::vector<BinarySection *> CodeSections = getCodeSections();
3608
3609 // Remove sections that were pre-allocated (patch sections).
3610 llvm::erase_if(CodeSections, [](BinarySection *Section) {
3611 return Section->getOutputAddress();
3612 });
3613 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3614 for (const BinarySection *Section : CodeSections)
3615 dbgs() << Section->getName() << '\n';
3616 );
3617
3618 uint64_t PaddingSize = 0; // size of padding required at the end
3619
3620 // Allocate sections starting at a given Address.
3621 auto allocateAt = [&](uint64_t Address) {
3622 for (BinarySection *Section : CodeSections) {
3623 Address = alignTo(Address, Section->getAlignment());
3624 Section->setOutputAddress(Address);
3625 Address += Section->getOutputSize();
3626 }
3627
3628 // Make sure we allocate enough space for huge pages.
3629 if (opts::HotText) {
3630 uint64_t HotTextEnd =
3631 TextSection->getOutputAddress() + TextSection->getOutputSize();
3632 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
3633 if (HotTextEnd > Address) {
3634 PaddingSize = HotTextEnd - Address;
3635 Address = HotTextEnd;
3636 }
3637 }
3638 return Address;
3639 };
3640
3641 // Check if we can fit code in the original .text
3642 bool AllocationDone = false;
3643 if (opts::UseOldText) {
3644 const uint64_t CodeSize =
3645 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
3646
3647 if (CodeSize <= BC->OldTextSectionSize) {
3648 outs() << "BOLT-INFO: using original .text for new code with 0x"
3649 << Twine::utohexstr(opts::AlignText) << " alignment\n";
3650 AllocationDone = true;
3651 } else {
3652 errs() << "BOLT-WARNING: original .text too small to fit the new code"
3653 << " using 0x" << Twine::utohexstr(opts::AlignText)
3654 << " alignment. " << CodeSize << " bytes needed, have "
3655 << BC->OldTextSectionSize << " bytes available.\n";
3656 opts::UseOldText = false;
3657 }
3658 }
3659
3660 if (!AllocationDone)
3661 NextAvailableAddress = allocateAt(NextAvailableAddress);
3662
3663 // Do the mapping for ORC layer based on the allocation.
3664 for (BinarySection *Section : CodeSections) {
3665 LLVM_DEBUG(
3666 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
3667 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
3668 << Twine::utohexstr(Section->getOutputAddress()) << '\n');
3669 RTDyld.reassignSectionAddress(Section->getSectionID(),
3670 Section->getOutputAddress());
3671 Section->setOutputFileOffset(
3672 getFileOffsetForAddress(Section->getOutputAddress()));
3673 }
3674
3675 // Check if we need to insert a padding section for hot text.
3676 if (PaddingSize && !opts::UseOldText)
3677 outs() << "BOLT-INFO: padding code to 0x"
3678 << Twine::utohexstr(NextAvailableAddress)
3679 << " to accommodate hot text\n";
3680
3681 return;
3682 }
3683
3684 // Processing in non-relocation mode.
3685 uint64_t NewTextSectionStartAddress = NextAvailableAddress;
3686
3687 for (auto &BFI : BC->getBinaryFunctions()) {
3688 BinaryFunction &Function = BFI.second;
3689 if (!Function.isEmitted())
3690 continue;
3691
3692 bool TooLarge = false;
3693 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
3694 assert(FuncSection && "cannot find section for function");
3695 FuncSection->setOutputAddress(Function.getAddress());
3696 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3697 << Twine::utohexstr(FuncSection->getAllocAddress())
3698 << " to 0x" << Twine::utohexstr(Function.getAddress())
3699 << '\n');
3700 RTDyld.reassignSectionAddress(FuncSection->getSectionID(),
3701 Function.getAddress());
3702 Function.setImageAddress(FuncSection->getAllocAddress());
3703 Function.setImageSize(FuncSection->getOutputSize());
3704 if (Function.getImageSize() > Function.getMaxSize()) {
3705 TooLarge = true;
3706 FailedAddresses.emplace_back(Function.getAddress());
3707 }
3708
3709 // Map jump tables if updating in-place.
3710 if (opts::JumpTables == JTS_BASIC) {
3711 for (auto &JTI : Function.JumpTables) {
3712 JumpTable *JT = JTI.second;
3713 BinarySection &Section = JT->getOutputSection();
3714 Section.setOutputAddress(JT->getAddress());
3715 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
3716 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName()
3717 << " to 0x" << Twine::utohexstr(JT->getAddress())
3718 << '\n');
3719 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress());
3720 }
3721 }
3722
3723 if (!Function.isSplit())
3724 continue;
3725
3726 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection();
3727 assert(ColdSection && "cannot find section for cold part");
3728 // Cold fragments are aligned at 16 bytes.
3729 NextAvailableAddress = alignTo(NextAvailableAddress, 16);
3730 BinaryFunction::FragmentInfo &ColdPart = Function.cold();
3731 if (TooLarge) {
3732 // The corresponding FDE will refer to address 0.
3733 ColdPart.setAddress(0);
3734 ColdPart.setImageAddress(0);
3735 ColdPart.setImageSize(0);
3736 ColdPart.setFileOffset(0);
3737 } else {
3738 ColdPart.setAddress(NextAvailableAddress);
3739 ColdPart.setImageAddress(ColdSection->getAllocAddress());
3740 ColdPart.setImageSize(ColdSection->getOutputSize());
3741 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3742 ColdSection->setOutputAddress(ColdPart.getAddress());
3743 }
3744
3745 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x"
3746 << Twine::utohexstr(ColdPart.getImageAddress())
3747 << " to 0x" << Twine::utohexstr(ColdPart.getAddress())
3748 << " with size "
3749 << Twine::utohexstr(ColdPart.getImageSize()) << '\n');
3750 RTDyld.reassignSectionAddress(ColdSection->getSectionID(),
3751 ColdPart.getAddress());
3752
3753 NextAvailableAddress += ColdPart.getImageSize();
3754 }
3755
3756 // Add the new text section aggregating all existing code sections.
3757 // This is pseudo-section that serves a purpose of creating a corresponding
3758 // entry in section header table.
3759 int64_t NewTextSectionSize =
3760 NextAvailableAddress - NewTextSectionStartAddress;
3761 if (NewTextSectionSize) {
3762 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
3763 /*IsText=*/true,
3764 /*IsAllocatable=*/true);
3765 BinarySection &Section =
3766 BC->registerOrUpdateSection(getBOLTTextSectionName(),
3767 ELF::SHT_PROGBITS,
3768 Flags,
3769 /*Data=*/nullptr,
3770 NewTextSectionSize,
3771 16);
3772 Section.setOutputAddress(NewTextSectionStartAddress);
3773 Section.setOutputFileOffset(
3774 getFileOffsetForAddress(NewTextSectionStartAddress));
3775 }
3776 }
3777
mapDataSections(RuntimeDyld & RTDyld)3778 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) {
3779 // Map special sections to their addresses in the output image.
3780 // These are the sections that we generate via MCStreamer.
3781 // The order is important.
3782 std::vector<std::string> Sections = {
3783 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(),
3784 ".gcc_except_table", ".rodata", ".rodata.cold"};
3785 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3786 RtLibrary->addRuntimeLibSections(Sections);
3787
3788 for (std::string &SectionName : Sections) {
3789 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
3790 if (!Section || !Section->isAllocatable() || !Section->isFinalized())
3791 continue;
3792 NextAvailableAddress =
3793 alignTo(NextAvailableAddress, Section->getAlignment());
3794 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x"
3795 << Twine::utohexstr(Section->getAllocAddress())
3796 << ") to 0x" << Twine::utohexstr(NextAvailableAddress)
3797 << ":0x"
3798 << Twine::utohexstr(NextAvailableAddress +
3799 Section->getOutputSize())
3800 << '\n');
3801
3802 RTDyld.reassignSectionAddress(Section->getSectionID(),
3803 NextAvailableAddress);
3804 Section->setOutputAddress(NextAvailableAddress);
3805 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3806
3807 NextAvailableAddress += Section->getOutputSize();
3808 }
3809
3810 // Handling for sections with relocations.
3811 for (BinarySection &Section : BC->sections()) {
3812 if (!Section.hasSectionRef())
3813 continue;
3814
3815 StringRef SectionName = Section.getName();
3816 ErrorOr<BinarySection &> OrgSection =
3817 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str());
3818 if (!OrgSection ||
3819 !OrgSection->isAllocatable() ||
3820 !OrgSection->isFinalized() ||
3821 !OrgSection->hasValidSectionID())
3822 continue;
3823
3824 if (OrgSection->getOutputAddress()) {
3825 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName
3826 << " is already mapped at 0x"
3827 << Twine::utohexstr(OrgSection->getOutputAddress())
3828 << '\n');
3829 continue;
3830 }
3831 LLVM_DEBUG(
3832 dbgs() << "BOLT: mapping original section " << SectionName << " (0x"
3833 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x"
3834 << Twine::utohexstr(Section.getAddress()) << '\n');
3835
3836 RTDyld.reassignSectionAddress(OrgSection->getSectionID(),
3837 Section.getAddress());
3838
3839 OrgSection->setOutputAddress(Section.getAddress());
3840 OrgSection->setOutputFileOffset(Section.getContents().data() -
3841 InputFile->getData().data());
3842 }
3843 }
3844
mapExtraSections(RuntimeDyld & RTDyld)3845 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) {
3846 for (BinarySection &Section : BC->allocatableSections()) {
3847 if (Section.getOutputAddress() || !Section.hasValidSectionID())
3848 continue;
3849 NextAvailableAddress =
3850 alignTo(NextAvailableAddress, Section.getAlignment());
3851 Section.setOutputAddress(NextAvailableAddress);
3852 NextAvailableAddress += Section.getOutputSize();
3853
3854 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName()
3855 << " at 0x" << Twine::utohexstr(Section.getAllocAddress())
3856 << " to 0x"
3857 << Twine::utohexstr(Section.getOutputAddress()) << '\n');
3858
3859 RTDyld.reassignSectionAddress(Section.getSectionID(),
3860 Section.getOutputAddress());
3861 Section.setOutputFileOffset(
3862 getFileOffsetForAddress(Section.getOutputAddress()));
3863 }
3864 }
3865
updateOutputValues(const MCAsmLayout & Layout)3866 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) {
3867 for (BinaryFunction *Function : BC->getAllBinaryFunctions())
3868 Function->updateOutputValues(Layout);
3869 }
3870
patchELFPHDRTable()3871 void RewriteInstance::patchELFPHDRTable() {
3872 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
3873 if (!ELF64LEFile) {
3874 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
3875 exit(1);
3876 }
3877 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3878 raw_fd_ostream &OS = Out->os();
3879
3880 // Write/re-write program headers.
3881 Phnum = Obj.getHeader().e_phnum;
3882 if (PHDRTableOffset) {
3883 // Writing new pheader table.
3884 Phnum += 1; // only adding one new segment
3885 // Segment size includes the size of the PHDR area.
3886 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
3887 } else {
3888 assert(!PHDRTableAddress && "unexpected address for program header table");
3889 // Update existing table.
3890 PHDRTableOffset = Obj.getHeader().e_phoff;
3891 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
3892 }
3893 OS.seek(PHDRTableOffset);
3894
3895 bool ModdedGnuStack = false;
3896 (void)ModdedGnuStack;
3897 bool AddedSegment = false;
3898 (void)AddedSegment;
3899
3900 auto createNewTextPhdr = [&]() {
3901 ELF64LEPhdrTy NewPhdr;
3902 NewPhdr.p_type = ELF::PT_LOAD;
3903 if (PHDRTableAddress) {
3904 NewPhdr.p_offset = PHDRTableOffset;
3905 NewPhdr.p_vaddr = PHDRTableAddress;
3906 NewPhdr.p_paddr = PHDRTableAddress;
3907 } else {
3908 NewPhdr.p_offset = NewTextSegmentOffset;
3909 NewPhdr.p_vaddr = NewTextSegmentAddress;
3910 NewPhdr.p_paddr = NewTextSegmentAddress;
3911 }
3912 NewPhdr.p_filesz = NewTextSegmentSize;
3913 NewPhdr.p_memsz = NewTextSegmentSize;
3914 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
3915 // FIXME: Currently instrumentation is experimental and the runtime data
3916 // is emitted with code, thus everything needs to be writable
3917 if (opts::Instrument)
3918 NewPhdr.p_flags |= ELF::PF_W;
3919 NewPhdr.p_align = BC->PageAlign;
3920
3921 return NewPhdr;
3922 };
3923
3924 // Copy existing program headers with modifications.
3925 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
3926 ELF64LE::Phdr NewPhdr = Phdr;
3927 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) {
3928 NewPhdr.p_offset = PHDRTableOffset;
3929 NewPhdr.p_vaddr = PHDRTableAddress;
3930 NewPhdr.p_paddr = PHDRTableAddress;
3931 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
3932 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
3933 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
3934 ErrorOr<BinarySection &> EHFrameHdrSec =
3935 BC->getUniqueSectionByName(".eh_frame_hdr");
3936 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
3937 EHFrameHdrSec->isFinalized()) {
3938 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
3939 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
3940 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
3941 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
3942 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
3943 }
3944 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) {
3945 NewPhdr = createNewTextPhdr();
3946 ModdedGnuStack = true;
3947 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) {
3948 // Insert the new header before DYNAMIC.
3949 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
3950 OS.write(reinterpret_cast<const char *>(&NewTextPhdr),
3951 sizeof(NewTextPhdr));
3952 AddedSegment = true;
3953 }
3954 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
3955 }
3956
3957 if (!opts::UseGnuStack && !AddedSegment) {
3958 // Append the new header to the end of the table.
3959 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
3960 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr));
3961 }
3962
3963 assert((!opts::UseGnuStack || ModdedGnuStack) &&
3964 "could not find GNU_STACK program header to modify");
3965 }
3966
3967 namespace {
3968
3969 /// Write padding to \p OS such that its current \p Offset becomes aligned
3970 /// at \p Alignment. Return new (aligned) offset.
appendPadding(raw_pwrite_stream & OS,uint64_t Offset,uint64_t Alignment)3971 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
3972 uint64_t Alignment) {
3973 if (!Alignment)
3974 return Offset;
3975
3976 const uint64_t PaddingSize =
3977 offsetToAlignment(Offset, llvm::Align(Alignment));
3978 for (unsigned I = 0; I < PaddingSize; ++I)
3979 OS.write((unsigned char)0);
3980 return Offset + PaddingSize;
3981 }
3982
3983 }
3984
rewriteNoteSections()3985 void RewriteInstance::rewriteNoteSections() {
3986 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
3987 if (!ELF64LEFile) {
3988 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
3989 exit(1);
3990 }
3991 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3992 raw_fd_ostream &OS = Out->os();
3993
3994 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
3995 assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
3996 "next available offset calculation failure");
3997 OS.seek(NextAvailableOffset);
3998
3999 // Copy over non-allocatable section contents and update file offsets.
4000 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
4001 if (Section.sh_type == ELF::SHT_NULL)
4002 continue;
4003 if (Section.sh_flags & ELF::SHF_ALLOC)
4004 continue;
4005
4006 StringRef SectionName =
4007 cantFail(Obj.getSectionName(Section), "cannot get section name");
4008 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
4009
4010 if (shouldStrip(Section, SectionName))
4011 continue;
4012
4013 // Insert padding as needed.
4014 NextAvailableOffset =
4015 appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
4016
4017 // New section size.
4018 uint64_t Size = 0;
4019 bool DataWritten = false;
4020 uint8_t *SectionData = nullptr;
4021 // Copy over section contents unless it's one of the sections we overwrite.
4022 if (!willOverwriteSection(SectionName)) {
4023 Size = Section.sh_size;
4024 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
4025 std::string Data;
4026 if (BSec && BSec->getPatcher()) {
4027 Data = BSec->getPatcher()->patchBinary(Dataref);
4028 Dataref = StringRef(Data);
4029 }
4030
4031 // Section was expanded, so need to treat it as overwrite.
4032 if (Size != Dataref.size()) {
4033 BSec = BC->registerOrUpdateNoteSection(
4034 SectionName, copyByteArray(Dataref), Dataref.size());
4035 Size = 0;
4036 } else {
4037 OS << Dataref;
4038 DataWritten = true;
4039
4040 // Add padding as the section extension might rely on the alignment.
4041 Size = appendPadding(OS, Size, Section.sh_addralign);
4042 }
4043 }
4044
4045 // Perform section post-processing.
4046 if (BSec && !BSec->isAllocatable()) {
4047 assert(BSec->getAlignment() <= Section.sh_addralign &&
4048 "alignment exceeds value in file");
4049
4050 if (BSec->getAllocAddress()) {
4051 assert(!DataWritten && "Writing section twice.");
4052 (void)DataWritten;
4053 SectionData = BSec->getOutputData();
4054
4055 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
4056 << " contents to section " << SectionName << '\n');
4057 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
4058 Size += BSec->getOutputSize();
4059 }
4060
4061 BSec->setOutputFileOffset(NextAvailableOffset);
4062 BSec->flushPendingRelocations(OS,
4063 [this] (const MCSymbol *S) {
4064 return getNewValueForSymbol(S->getName());
4065 });
4066 }
4067
4068 // Set/modify section info.
4069 BinarySection &NewSection =
4070 BC->registerOrUpdateNoteSection(SectionName,
4071 SectionData,
4072 Size,
4073 Section.sh_addralign,
4074 BSec ? BSec->isReadOnly() : false,
4075 BSec ? BSec->getELFType()
4076 : ELF::SHT_PROGBITS);
4077 NewSection.setOutputAddress(0);
4078 NewSection.setOutputFileOffset(NextAvailableOffset);
4079
4080 NextAvailableOffset += Size;
4081 }
4082
4083 // Write new note sections.
4084 for (BinarySection &Section : BC->nonAllocatableSections()) {
4085 if (Section.getOutputFileOffset() || !Section.getAllocAddress())
4086 continue;
4087
4088 assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
4089
4090 NextAvailableOffset =
4091 appendPadding(OS, NextAvailableOffset, Section.getAlignment());
4092 Section.setOutputFileOffset(NextAvailableOffset);
4093
4094 LLVM_DEBUG(
4095 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
4096 << " of size " << Section.getOutputSize() << " at offset 0x"
4097 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
4098
4099 OS.write(Section.getOutputContents().data(), Section.getOutputSize());
4100 NextAvailableOffset += Section.getOutputSize();
4101 }
4102 }
4103
4104 template <typename ELFT>
finalizeSectionStringTable(ELFObjectFile<ELFT> * File)4105 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
4106 using ELFShdrTy = typename ELFT::Shdr;
4107 const ELFFile<ELFT> &Obj = File->getELFFile();
4108
4109 // Pre-populate section header string table.
4110 for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4111 StringRef SectionName =
4112 cantFail(Obj.getSectionName(Section), "cannot get section name");
4113 SHStrTab.add(SectionName);
4114 std::string OutputSectionName = getOutputSectionName(Obj, Section);
4115 if (OutputSectionName != SectionName)
4116 SHStrTabPool.emplace_back(std::move(OutputSectionName));
4117 }
4118 for (const std::string &Str : SHStrTabPool)
4119 SHStrTab.add(Str);
4120 for (const BinarySection &Section : BC->sections())
4121 SHStrTab.add(Section.getName());
4122 SHStrTab.finalize();
4123
4124 const size_t SHStrTabSize = SHStrTab.getSize();
4125 uint8_t *DataCopy = new uint8_t[SHStrTabSize];
4126 memset(DataCopy, 0, SHStrTabSize);
4127 SHStrTab.write(DataCopy);
4128 BC->registerOrUpdateNoteSection(".shstrtab",
4129 DataCopy,
4130 SHStrTabSize,
4131 /*Alignment=*/1,
4132 /*IsReadOnly=*/true,
4133 ELF::SHT_STRTAB);
4134 }
4135
addBoltInfoSection()4136 void RewriteInstance::addBoltInfoSection() {
4137 std::string DescStr;
4138 raw_string_ostream DescOS(DescStr);
4139
4140 DescOS << "BOLT revision: " << BoltRevision << ", "
4141 << "command line:";
4142 for (int I = 0; I < Argc; ++I)
4143 DescOS << " " << Argv[I];
4144 DescOS.flush();
4145
4146 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4147 const std::string BoltInfo =
4148 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
4149 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
4150 BoltInfo.size(),
4151 /*Alignment=*/1,
4152 /*IsReadOnly=*/true, ELF::SHT_NOTE);
4153 }
4154
addBATSection()4155 void RewriteInstance::addBATSection() {
4156 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
4157 0,
4158 /*Alignment=*/1,
4159 /*IsReadOnly=*/true, ELF::SHT_NOTE);
4160 }
4161
encodeBATSection()4162 void RewriteInstance::encodeBATSection() {
4163 std::string DescStr;
4164 raw_string_ostream DescOS(DescStr);
4165
4166 BAT->write(DescOS);
4167 DescOS.flush();
4168
4169 const std::string BoltInfo =
4170 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
4171 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
4172 copyByteArray(BoltInfo), BoltInfo.size(),
4173 /*Alignment=*/1,
4174 /*IsReadOnly=*/true, ELF::SHT_NOTE);
4175 }
4176
4177 template <typename ELFObjType, typename ELFShdrTy>
getOutputSectionName(const ELFObjType & Obj,const ELFShdrTy & Section)4178 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj,
4179 const ELFShdrTy &Section) {
4180 if (Section.sh_type == ELF::SHT_NULL)
4181 return "";
4182
4183 StringRef SectionName =
4184 cantFail(Obj.getSectionName(Section), "cannot get section name");
4185
4186 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName))
4187 return (getOrgSecPrefix() + SectionName).str();
4188
4189 return std::string(SectionName);
4190 }
4191
4192 template <typename ELFShdrTy>
shouldStrip(const ELFShdrTy & Section,StringRef SectionName)4193 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
4194 StringRef SectionName) {
4195 // Strip non-allocatable relocation sections.
4196 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
4197 return true;
4198
4199 // Strip debug sections if not updating them.
4200 if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
4201 return true;
4202
4203 // Strip symtab section if needed
4204 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
4205 return true;
4206
4207 return false;
4208 }
4209
4210 template <typename ELFT>
4211 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
getOutputSections(ELFObjectFile<ELFT> * File,std::vector<uint32_t> & NewSectionIndex)4212 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
4213 std::vector<uint32_t> &NewSectionIndex) {
4214 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4215 const ELFFile<ELFT> &Obj = File->getELFFile();
4216 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
4217
4218 // Keep track of section header entries together with their name.
4219 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections;
4220 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) {
4221 ELFShdrTy NewSection = Section;
4222 NewSection.sh_name = SHStrTab.getOffset(Name);
4223 OutputSections.emplace_back(Name, std::move(NewSection));
4224 };
4225
4226 // Copy over entries for original allocatable sections using modified name.
4227 for (const ELFShdrTy &Section : Sections) {
4228 // Always ignore this section.
4229 if (Section.sh_type == ELF::SHT_NULL) {
4230 OutputSections.emplace_back("", Section);
4231 continue;
4232 }
4233
4234 if (!(Section.sh_flags & ELF::SHF_ALLOC))
4235 continue;
4236
4237 addSection(getOutputSectionName(Obj, Section), Section);
4238 }
4239
4240 for (const BinarySection &Section : BC->allocatableSections()) {
4241 if (!Section.isFinalized())
4242 continue;
4243
4244 if (Section.getName().startswith(getOrgSecPrefix()) ||
4245 Section.isAnonymous()) {
4246 if (opts::Verbosity)
4247 outs() << "BOLT-INFO: not writing section header for section "
4248 << Section.getName() << '\n';
4249 continue;
4250 }
4251
4252 if (opts::Verbosity >= 1)
4253 outs() << "BOLT-INFO: writing section header for " << Section.getName()
4254 << '\n';
4255 ELFShdrTy NewSection;
4256 NewSection.sh_type = ELF::SHT_PROGBITS;
4257 NewSection.sh_addr = Section.getOutputAddress();
4258 NewSection.sh_offset = Section.getOutputFileOffset();
4259 NewSection.sh_size = Section.getOutputSize();
4260 NewSection.sh_entsize = 0;
4261 NewSection.sh_flags = Section.getELFFlags();
4262 NewSection.sh_link = 0;
4263 NewSection.sh_info = 0;
4264 NewSection.sh_addralign = Section.getAlignment();
4265 addSection(std::string(Section.getName()), NewSection);
4266 }
4267
4268 // Sort all allocatable sections by their offset.
4269 llvm::stable_sort(OutputSections,
4270 [](const std::pair<std::string, ELFShdrTy> &A,
4271 const std::pair<std::string, ELFShdrTy> &B) {
4272 return A.second.sh_offset < B.second.sh_offset;
4273 });
4274
4275 // Fix section sizes to prevent overlapping.
4276 ELFShdrTy *PrevSection = nullptr;
4277 StringRef PrevSectionName;
4278 for (auto &SectionKV : OutputSections) {
4279 ELFShdrTy &Section = SectionKV.second;
4280
4281 // TBSS section does not take file or memory space. Ignore it for layout
4282 // purposes.
4283 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS))
4284 continue;
4285
4286 if (PrevSection &&
4287 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) {
4288 if (opts::Verbosity > 1)
4289 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName
4290 << '\n';
4291 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr
4292 ? Section.sh_addr - PrevSection->sh_addr
4293 : 0;
4294 }
4295
4296 PrevSection = &Section;
4297 PrevSectionName = SectionKV.first;
4298 }
4299
4300 uint64_t LastFileOffset = 0;
4301
4302 // Copy over entries for non-allocatable sections performing necessary
4303 // adjustments.
4304 for (const ELFShdrTy &Section : Sections) {
4305 if (Section.sh_type == ELF::SHT_NULL)
4306 continue;
4307 if (Section.sh_flags & ELF::SHF_ALLOC)
4308 continue;
4309
4310 StringRef SectionName =
4311 cantFail(Obj.getSectionName(Section), "cannot get section name");
4312
4313 if (shouldStrip(Section, SectionName))
4314 continue;
4315
4316 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
4317 assert(BSec && "missing section info for non-allocatable section");
4318
4319 ELFShdrTy NewSection = Section;
4320 NewSection.sh_offset = BSec->getOutputFileOffset();
4321 NewSection.sh_size = BSec->getOutputSize();
4322
4323 if (NewSection.sh_type == ELF::SHT_SYMTAB)
4324 NewSection.sh_info = NumLocalSymbols;
4325
4326 addSection(std::string(SectionName), NewSection);
4327
4328 LastFileOffset = BSec->getOutputFileOffset();
4329 }
4330
4331 // Create entries for new non-allocatable sections.
4332 for (BinarySection &Section : BC->nonAllocatableSections()) {
4333 if (Section.getOutputFileOffset() <= LastFileOffset)
4334 continue;
4335
4336 if (opts::Verbosity >= 1)
4337 outs() << "BOLT-INFO: writing section header for " << Section.getName()
4338 << '\n';
4339
4340 ELFShdrTy NewSection;
4341 NewSection.sh_type = Section.getELFType();
4342 NewSection.sh_addr = 0;
4343 NewSection.sh_offset = Section.getOutputFileOffset();
4344 NewSection.sh_size = Section.getOutputSize();
4345 NewSection.sh_entsize = 0;
4346 NewSection.sh_flags = Section.getELFFlags();
4347 NewSection.sh_link = 0;
4348 NewSection.sh_info = 0;
4349 NewSection.sh_addralign = Section.getAlignment();
4350
4351 addSection(std::string(Section.getName()), NewSection);
4352 }
4353
4354 // Assign indices to sections.
4355 std::unordered_map<std::string, uint64_t> NameToIndex;
4356 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) {
4357 const std::string &SectionName = OutputSections[Index].first;
4358 NameToIndex[SectionName] = Index;
4359 if (ErrorOr<BinarySection &> Section =
4360 BC->getUniqueSectionByName(SectionName))
4361 Section->setIndex(Index);
4362 }
4363
4364 // Update section index mapping
4365 NewSectionIndex.clear();
4366 NewSectionIndex.resize(Sections.size(), 0);
4367 for (const ELFShdrTy &Section : Sections) {
4368 if (Section.sh_type == ELF::SHT_NULL)
4369 continue;
4370
4371 size_t OrgIndex = std::distance(Sections.begin(), &Section);
4372 std::string SectionName = getOutputSectionName(Obj, Section);
4373
4374 // Some sections are stripped
4375 if (!NameToIndex.count(SectionName))
4376 continue;
4377
4378 NewSectionIndex[OrgIndex] = NameToIndex[SectionName];
4379 }
4380
4381 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
4382 llvm::transform(OutputSections, SectionsOnly.begin(),
4383 [](std::pair<std::string, ELFShdrTy> &SectionInfo) {
4384 return SectionInfo.second;
4385 });
4386
4387 return SectionsOnly;
4388 }
4389
4390 // Rewrite section header table inserting new entries as needed. The sections
4391 // header table size itself may affect the offsets of other sections,
4392 // so we are placing it at the end of the binary.
4393 //
4394 // As we rewrite entries we need to track how many sections were inserted
4395 // as it changes the sh_link value. We map old indices to new ones for
4396 // existing sections.
4397 template <typename ELFT>
patchELFSectionHeaderTable(ELFObjectFile<ELFT> * File)4398 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
4399 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4400 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
4401 raw_fd_ostream &OS = Out->os();
4402 const ELFFile<ELFT> &Obj = File->getELFFile();
4403
4404 std::vector<uint32_t> NewSectionIndex;
4405 std::vector<ELFShdrTy> OutputSections =
4406 getOutputSections(File, NewSectionIndex);
4407 LLVM_DEBUG(
4408 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4409 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
4410 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n';
4411 );
4412
4413 // Align starting address for section header table.
4414 uint64_t SHTOffset = OS.tell();
4415 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy));
4416
4417 // Write all section header entries while patching section references.
4418 for (ELFShdrTy &Section : OutputSections) {
4419 Section.sh_link = NewSectionIndex[Section.sh_link];
4420 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) {
4421 if (Section.sh_info)
4422 Section.sh_info = NewSectionIndex[Section.sh_info];
4423 }
4424 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
4425 }
4426
4427 // Fix ELF header.
4428 ELFEhdrTy NewEhdr = Obj.getHeader();
4429
4430 if (BC->HasRelocations) {
4431 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
4432 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
4433 else
4434 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
4435 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
4436 "cannot find new address for entry point");
4437 }
4438 NewEhdr.e_phoff = PHDRTableOffset;
4439 NewEhdr.e_phnum = Phnum;
4440 NewEhdr.e_shoff = SHTOffset;
4441 NewEhdr.e_shnum = OutputSections.size();
4442 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
4443 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
4444 }
4445
4446 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
updateELFSymbolTable(ELFObjectFile<ELFT> * File,bool IsDynSym,const typename object::ELFObjectFile<ELFT>::Elf_Shdr & SymTabSection,const std::vector<uint32_t> & NewSectionIndex,WriteFuncTy Write,StrTabFuncTy AddToStrTab)4447 void RewriteInstance::updateELFSymbolTable(
4448 ELFObjectFile<ELFT> *File, bool IsDynSym,
4449 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
4450 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
4451 StrTabFuncTy AddToStrTab) {
4452 const ELFFile<ELFT> &Obj = File->getELFFile();
4453 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4454
4455 StringRef StringSection =
4456 cantFail(Obj.getStringTableForSymtab(SymTabSection));
4457
4458 unsigned NumHotTextSymsUpdated = 0;
4459 unsigned NumHotDataSymsUpdated = 0;
4460
4461 std::map<const BinaryFunction *, uint64_t> IslandSizes;
4462 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
4463 auto Itr = IslandSizes.find(&BF);
4464 if (Itr != IslandSizes.end())
4465 return Itr->second;
4466 return IslandSizes[&BF] = BF.estimateConstantIslandSize();
4467 };
4468
4469 // Symbols for the new symbol table.
4470 std::vector<ELFSymTy> Symbols;
4471
4472 auto getNewSectionIndex = [&](uint32_t OldIndex) {
4473 // For dynamic symbol table, the section index could be wrong on the input,
4474 // and its value is ignored by the runtime if it's different from
4475 // SHN_UNDEF and SHN_ABS.
4476 // However, we still need to update dynamic symbol table, so return a
4477 // section index, even though the index is broken.
4478 if (IsDynSym && OldIndex >= NewSectionIndex.size())
4479 return OldIndex;
4480
4481 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
4482 const uint32_t NewIndex = NewSectionIndex[OldIndex];
4483
4484 // We may have stripped the section that dynsym was referencing due to
4485 // the linker bug. In that case return the old index avoiding marking
4486 // the symbol as undefined.
4487 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
4488 return OldIndex;
4489 return NewIndex;
4490 };
4491
4492 // Add extra symbols for the function.
4493 //
4494 // Note that addExtraSymbols() could be called multiple times for the same
4495 // function with different FunctionSymbol matching the main function entry
4496 // point.
4497 auto addExtraSymbols = [&](const BinaryFunction &Function,
4498 const ELFSymTy &FunctionSymbol) {
4499 if (Function.isFolded()) {
4500 BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
4501 while (ICFParent->isFolded())
4502 ICFParent = ICFParent->getFoldedIntoFunction();
4503 ELFSymTy ICFSymbol = FunctionSymbol;
4504 SmallVector<char, 256> Buf;
4505 ICFSymbol.st_name =
4506 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4507 .concat(".icf.0")
4508 .toStringRef(Buf));
4509 ICFSymbol.st_value = ICFParent->getOutputAddress();
4510 ICFSymbol.st_size = ICFParent->getOutputSize();
4511 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
4512 Symbols.emplace_back(ICFSymbol);
4513 }
4514 if (Function.isSplit() && Function.cold().getAddress()) {
4515 ELFSymTy NewColdSym = FunctionSymbol;
4516 SmallVector<char, 256> Buf;
4517 NewColdSym.st_name =
4518 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4519 .concat(".cold.0")
4520 .toStringRef(Buf));
4521 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex();
4522 NewColdSym.st_value = Function.cold().getAddress();
4523 NewColdSym.st_size = Function.cold().getImageSize();
4524 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4525 Symbols.emplace_back(NewColdSym);
4526 }
4527 if (Function.hasConstantIsland()) {
4528 uint64_t DataMark = Function.getOutputDataAddress();
4529 uint64_t CISize = getConstantIslandSize(Function);
4530 uint64_t CodeMark = DataMark + CISize;
4531 ELFSymTy DataMarkSym = FunctionSymbol;
4532 DataMarkSym.st_name = AddToStrTab("$d");
4533 DataMarkSym.st_value = DataMark;
4534 DataMarkSym.st_size = 0;
4535 DataMarkSym.setType(ELF::STT_NOTYPE);
4536 DataMarkSym.setBinding(ELF::STB_LOCAL);
4537 ELFSymTy CodeMarkSym = DataMarkSym;
4538 CodeMarkSym.st_name = AddToStrTab("$x");
4539 CodeMarkSym.st_value = CodeMark;
4540 Symbols.emplace_back(DataMarkSym);
4541 Symbols.emplace_back(CodeMarkSym);
4542 }
4543 if (Function.hasConstantIsland() && Function.isSplit()) {
4544 uint64_t DataMark = Function.getOutputColdDataAddress();
4545 uint64_t CISize = getConstantIslandSize(Function);
4546 uint64_t CodeMark = DataMark + CISize;
4547 ELFSymTy DataMarkSym = FunctionSymbol;
4548 DataMarkSym.st_name = AddToStrTab("$d");
4549 DataMarkSym.st_value = DataMark;
4550 DataMarkSym.st_size = 0;
4551 DataMarkSym.setType(ELF::STT_NOTYPE);
4552 DataMarkSym.setBinding(ELF::STB_LOCAL);
4553 ELFSymTy CodeMarkSym = DataMarkSym;
4554 CodeMarkSym.st_name = AddToStrTab("$x");
4555 CodeMarkSym.st_value = CodeMark;
4556 Symbols.emplace_back(DataMarkSym);
4557 Symbols.emplace_back(CodeMarkSym);
4558 }
4559 };
4560
4561 // For regular (non-dynamic) symbol table, exclude symbols referring
4562 // to non-allocatable sections.
4563 auto shouldStrip = [&](const ELFSymTy &Symbol) {
4564 if (Symbol.isAbsolute() || !Symbol.isDefined())
4565 return false;
4566
4567 // If we cannot link the symbol to a section, leave it as is.
4568 Expected<const typename ELFT::Shdr *> Section =
4569 Obj.getSection(Symbol.st_shndx);
4570 if (!Section)
4571 return false;
4572
4573 // Remove the section symbol iif the corresponding section was stripped.
4574 if (Symbol.getType() == ELF::STT_SECTION) {
4575 if (!getNewSectionIndex(Symbol.st_shndx))
4576 return true;
4577 return false;
4578 }
4579
4580 // Symbols in non-allocatable sections are typically remnants of relocations
4581 // emitted under "-emit-relocs" linker option. Delete those as we delete
4582 // relocations against non-allocatable sections.
4583 if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
4584 return true;
4585
4586 return false;
4587 };
4588
4589 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
4590 // For regular (non-dynamic) symbol table strip unneeded symbols.
4591 if (!IsDynSym && shouldStrip(Symbol))
4592 continue;
4593
4594 const BinaryFunction *Function =
4595 BC->getBinaryFunctionAtAddress(Symbol.st_value);
4596 // Ignore false function references, e.g. when the section address matches
4597 // the address of the function.
4598 if (Function && Symbol.getType() == ELF::STT_SECTION)
4599 Function = nullptr;
4600
4601 // For non-dynamic symtab, make sure the symbol section matches that of
4602 // the function. It can mismatch e.g. if the symbol is a section marker
4603 // in which case we treat the symbol separately from the function.
4604 // For dynamic symbol table, the section index could be wrong on the input,
4605 // and its value is ignored by the runtime if it's different from
4606 // SHN_UNDEF and SHN_ABS.
4607 if (!IsDynSym && Function &&
4608 Symbol.st_shndx !=
4609 Function->getOriginSection()->getSectionRef().getIndex())
4610 Function = nullptr;
4611
4612 // Create a new symbol based on the existing symbol.
4613 ELFSymTy NewSymbol = Symbol;
4614
4615 if (Function) {
4616 // If the symbol matched a function that was not emitted, update the
4617 // corresponding section index but otherwise leave it unchanged.
4618 if (Function->isEmitted()) {
4619 NewSymbol.st_value = Function->getOutputAddress();
4620 NewSymbol.st_size = Function->getOutputSize();
4621 NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
4622 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
4623 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4624 }
4625
4626 // Add new symbols to the symbol table if necessary.
4627 if (!IsDynSym)
4628 addExtraSymbols(*Function, NewSymbol);
4629 } else {
4630 // Check if the function symbol matches address inside a function, i.e.
4631 // it marks a secondary entry point.
4632 Function =
4633 (Symbol.getType() == ELF::STT_FUNC)
4634 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4635 /*CheckPastEnd=*/false,
4636 /*UseMaxSize=*/true)
4637 : nullptr;
4638
4639 if (Function && Function->isEmitted()) {
4640 const uint64_t OutputAddress =
4641 Function->translateInputToOutputAddress(Symbol.st_value);
4642
4643 NewSymbol.st_value = OutputAddress;
4644 // Force secondary entry points to have zero size.
4645 NewSymbol.st_size = 0;
4646 NewSymbol.st_shndx =
4647 OutputAddress >= Function->cold().getAddress() &&
4648 OutputAddress < Function->cold().getImageSize()
4649 ? Function->getColdCodeSection()->getIndex()
4650 : Function->getCodeSection()->getIndex();
4651 } else {
4652 // Check if the symbol belongs to moved data object and update it.
4653 BinaryData *BD = opts::ReorderData.empty()
4654 ? nullptr
4655 : BC->getBinaryDataAtAddress(Symbol.st_value);
4656 if (BD && BD->isMoved() && !BD->isJumpTable()) {
4657 assert((!BD->getSize() || !Symbol.st_size ||
4658 Symbol.st_size == BD->getSize()) &&
4659 "sizes must match");
4660
4661 BinarySection &OutputSection = BD->getOutputSection();
4662 assert(OutputSection.getIndex());
4663 LLVM_DEBUG(dbgs()
4664 << "BOLT-DEBUG: moving " << BD->getName() << " from "
4665 << *BC->getSectionNameForAddress(Symbol.st_value) << " ("
4666 << Symbol.st_shndx << ") to " << OutputSection.getName()
4667 << " (" << OutputSection.getIndex() << ")\n");
4668 NewSymbol.st_shndx = OutputSection.getIndex();
4669 NewSymbol.st_value = BD->getOutputAddress();
4670 } else {
4671 // Otherwise just update the section for the symbol.
4672 if (Symbol.st_shndx < ELF::SHN_LORESERVE)
4673 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4674 }
4675
4676 // Detect local syms in the text section that we didn't update
4677 // and that were preserved by the linker to support relocations against
4678 // .text. Remove them from the symtab.
4679 if (Symbol.getType() == ELF::STT_NOTYPE &&
4680 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
4681 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4682 /*CheckPastEnd=*/false,
4683 /*UseMaxSize=*/true)) {
4684 // Can only delete the symbol if not patching. Such symbols should
4685 // not exist in the dynamic symbol table.
4686 assert(!IsDynSym && "cannot delete symbol");
4687 continue;
4688 }
4689 }
4690 }
4691 }
4692
4693 // Handle special symbols based on their name.
4694 Expected<StringRef> SymbolName = Symbol.getName(StringSection);
4695 assert(SymbolName && "cannot get symbol name");
4696
4697 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) {
4698 NewSymbol.st_value = getNewValueForSymbol(Name);
4699 NewSymbol.st_shndx = ELF::SHN_ABS;
4700 outs() << "BOLT-INFO: setting " << Name << " to 0x"
4701 << Twine::utohexstr(NewSymbol.st_value) << '\n';
4702 ++IsUpdated;
4703 };
4704
4705 if (opts::HotText &&
4706 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end"))
4707 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated);
4708
4709 if (opts::HotData &&
4710 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end"))
4711 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated);
4712
4713 if (*SymbolName == "_end") {
4714 unsigned Ignored;
4715 updateSymbolValue(*SymbolName, Ignored);
4716 }
4717
4718 if (IsDynSym)
4719 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
4720 sizeof(ELFSymTy),
4721 NewSymbol);
4722 else
4723 Symbols.emplace_back(NewSymbol);
4724 }
4725
4726 if (IsDynSym) {
4727 assert(Symbols.empty());
4728 return;
4729 }
4730
4731 // Add symbols of injected functions
4732 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
4733 ELFSymTy NewSymbol;
4734 BinarySection *OriginSection = Function->getOriginSection();
4735 NewSymbol.st_shndx =
4736 OriginSection
4737 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
4738 : Function->getCodeSection()->getIndex();
4739 NewSymbol.st_value = Function->getOutputAddress();
4740 NewSymbol.st_name = AddToStrTab(Function->getOneName());
4741 NewSymbol.st_size = Function->getOutputSize();
4742 NewSymbol.st_other = 0;
4743 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4744 Symbols.emplace_back(NewSymbol);
4745
4746 if (Function->isSplit()) {
4747 ELFSymTy NewColdSym = NewSymbol;
4748 NewColdSym.setType(ELF::STT_NOTYPE);
4749 SmallVector<char, 256> Buf;
4750 NewColdSym.st_name = AddToStrTab(
4751 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
4752 NewColdSym.st_value = Function->cold().getAddress();
4753 NewColdSym.st_size = Function->cold().getImageSize();
4754 Symbols.emplace_back(NewColdSym);
4755 }
4756 }
4757
4758 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
4759 "either none or both __hot_start/__hot_end symbols were expected");
4760 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
4761 "either none or both __hot_data_start/__hot_data_end symbols were "
4762 "expected");
4763
4764 auto addSymbol = [&](const std::string &Name) {
4765 ELFSymTy Symbol;
4766 Symbol.st_value = getNewValueForSymbol(Name);
4767 Symbol.st_shndx = ELF::SHN_ABS;
4768 Symbol.st_name = AddToStrTab(Name);
4769 Symbol.st_size = 0;
4770 Symbol.st_other = 0;
4771 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
4772
4773 outs() << "BOLT-INFO: setting " << Name << " to 0x"
4774 << Twine::utohexstr(Symbol.st_value) << '\n';
4775
4776 Symbols.emplace_back(Symbol);
4777 };
4778
4779 if (opts::HotText && !NumHotTextSymsUpdated) {
4780 addSymbol("__hot_start");
4781 addSymbol("__hot_end");
4782 }
4783
4784 if (opts::HotData && !NumHotDataSymsUpdated) {
4785 addSymbol("__hot_data_start");
4786 addSymbol("__hot_data_end");
4787 }
4788
4789 // Put local symbols at the beginning.
4790 llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
4791 if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
4792 return true;
4793 return false;
4794 });
4795
4796 for (const ELFSymTy &Symbol : Symbols)
4797 Write(0, Symbol);
4798 }
4799
4800 template <typename ELFT>
patchELFSymTabs(ELFObjectFile<ELFT> * File)4801 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
4802 const ELFFile<ELFT> &Obj = File->getELFFile();
4803 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4804 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4805
4806 // Compute a preview of how section indices will change after rewriting, so
4807 // we can properly update the symbol table based on new section indices.
4808 std::vector<uint32_t> NewSectionIndex;
4809 getOutputSections(File, NewSectionIndex);
4810
4811 // Set pointer at the end of the output file, so we can pwrite old symbol
4812 // tables if we need to.
4813 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
4814 assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
4815 "next available offset calculation failure");
4816 Out->os().seek(NextAvailableOffset);
4817
4818 // Update dynamic symbol table.
4819 const ELFShdrTy *DynSymSection = nullptr;
4820 for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4821 if (Section.sh_type == ELF::SHT_DYNSYM) {
4822 DynSymSection = &Section;
4823 break;
4824 }
4825 }
4826 assert((DynSymSection || BC->IsStaticExecutable) &&
4827 "dynamic symbol table expected");
4828 if (DynSymSection) {
4829 updateELFSymbolTable(
4830 File,
4831 /*IsDynSym=*/true,
4832 *DynSymSection,
4833 NewSectionIndex,
4834 [&](size_t Offset, const ELFSymTy &Sym) {
4835 Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
4836 sizeof(ELFSymTy),
4837 DynSymSection->sh_offset + Offset);
4838 },
4839 [](StringRef) -> size_t { return 0; });
4840 }
4841
4842 if (opts::RemoveSymtab)
4843 return;
4844
4845 // (re)create regular symbol table.
4846 const ELFShdrTy *SymTabSection = nullptr;
4847 for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4848 if (Section.sh_type == ELF::SHT_SYMTAB) {
4849 SymTabSection = &Section;
4850 break;
4851 }
4852 }
4853 if (!SymTabSection) {
4854 errs() << "BOLT-WARNING: no symbol table found\n";
4855 return;
4856 }
4857
4858 const ELFShdrTy *StrTabSection =
4859 cantFail(Obj.getSection(SymTabSection->sh_link));
4860 std::string NewContents;
4861 std::string NewStrTab = std::string(
4862 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
4863 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
4864 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
4865
4866 NumLocalSymbols = 0;
4867 updateELFSymbolTable(
4868 File,
4869 /*IsDynSym=*/false,
4870 *SymTabSection,
4871 NewSectionIndex,
4872 [&](size_t Offset, const ELFSymTy &Sym) {
4873 if (Sym.getBinding() == ELF::STB_LOCAL)
4874 ++NumLocalSymbols;
4875 NewContents.append(reinterpret_cast<const char *>(&Sym),
4876 sizeof(ELFSymTy));
4877 },
4878 [&](StringRef Str) {
4879 size_t Idx = NewStrTab.size();
4880 NewStrTab.append(NameResolver::restore(Str).str());
4881 NewStrTab.append(1, '\0');
4882 return Idx;
4883 });
4884
4885 BC->registerOrUpdateNoteSection(SecName,
4886 copyByteArray(NewContents),
4887 NewContents.size(),
4888 /*Alignment=*/1,
4889 /*IsReadOnly=*/true,
4890 ELF::SHT_SYMTAB);
4891
4892 BC->registerOrUpdateNoteSection(StrSecName,
4893 copyByteArray(NewStrTab),
4894 NewStrTab.size(),
4895 /*Alignment=*/1,
4896 /*IsReadOnly=*/true,
4897 ELF::SHT_STRTAB);
4898 }
4899
4900 template <typename ELFT>
4901 void
patchELFAllocatableRelaSections(ELFObjectFile<ELFT> * File)4902 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
4903 using Elf_Rela = typename ELFT::Rela;
4904 raw_fd_ostream &OS = Out->os();
4905 const ELFFile<ELFT> &EF = File->getELFFile();
4906
4907 uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
4908 uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
4909
4910 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
4911 uint64_t &End) {
4912 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
4913 Start = Section->getInputFileOffset();
4914 End = Start + Section->getSize();
4915 };
4916
4917 if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
4918 return;
4919
4920 if (DynamicRelocationsAddress)
4921 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
4922 RelDynEndOffset);
4923
4924 if (PLTRelocationsAddress)
4925 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
4926 RelPltEndOffset);
4927
4928 DynamicRelativeRelocationsCount = 0;
4929
4930 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
4931 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
4932 Offset += sizeof(*RelA);
4933 };
4934
4935 auto writeRelocations = [&](bool PatchRelative) {
4936 for (BinarySection &Section : BC->allocatableSections()) {
4937 for (const Relocation &Rel : Section.dynamicRelocations()) {
4938 const bool IsRelative = Rel.isRelative();
4939 if (PatchRelative != IsRelative)
4940 continue;
4941
4942 if (IsRelative)
4943 ++DynamicRelativeRelocationsCount;
4944
4945 Elf_Rela NewRelA;
4946 uint64_t SectionAddress = Section.getOutputAddress();
4947 SectionAddress =
4948 SectionAddress == 0 ? Section.getAddress() : SectionAddress;
4949 MCSymbol *Symbol = Rel.Symbol;
4950 uint32_t SymbolIdx = 0;
4951 uint64_t Addend = Rel.Addend;
4952
4953 if (Rel.Symbol) {
4954 SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
4955 } else {
4956 // Usually this case is used for R_*_(I)RELATIVE relocations
4957 const uint64_t Address = getNewFunctionOrDataAddress(Addend);
4958 if (Address)
4959 Addend = Address;
4960 }
4961
4962 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
4963 NewRelA.r_offset = SectionAddress + Rel.Offset;
4964 NewRelA.r_addend = Addend;
4965
4966 const bool IsJmpRel =
4967 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end());
4968 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
4969 const uint64_t &EndOffset =
4970 IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
4971 if (!Offset || !EndOffset) {
4972 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
4973 exit(1);
4974 }
4975
4976 if (Offset + sizeof(NewRelA) > EndOffset) {
4977 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
4978 exit(1);
4979 }
4980
4981 writeRela(&NewRelA, Offset);
4982 }
4983 }
4984 };
4985
4986 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first
4987 writeRelocations(/* PatchRelative */ true);
4988 writeRelocations(/* PatchRelative */ false);
4989
4990 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
4991 if (!Offset)
4992 return;
4993
4994 typename ELFObjectFile<ELFT>::Elf_Rela RelA;
4995 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
4996 RelA.r_offset = 0;
4997 RelA.r_addend = 0;
4998 while (Offset < EndOffset)
4999 writeRela(&RelA, Offset);
5000
5001 assert(Offset == EndOffset && "Unexpected section overflow");
5002 };
5003
5004 // Fill the rest of the sections with R_*_NONE relocations
5005 fillNone(RelDynOffset, RelDynEndOffset);
5006 fillNone(RelPltOffset, RelPltEndOffset);
5007 }
5008
5009 template <typename ELFT>
patchELFGOT(ELFObjectFile<ELFT> * File)5010 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
5011 raw_fd_ostream &OS = Out->os();
5012
5013 SectionRef GOTSection;
5014 for (const SectionRef &Section : File->sections()) {
5015 StringRef SectionName = cantFail(Section.getName());
5016 if (SectionName == ".got") {
5017 GOTSection = Section;
5018 break;
5019 }
5020 }
5021 if (!GOTSection.getObject()) {
5022 if (!BC->IsStaticExecutable)
5023 errs() << "BOLT-INFO: no .got section found\n";
5024 return;
5025 }
5026
5027 StringRef GOTContents = cantFail(GOTSection.getContents());
5028 for (const uint64_t *GOTEntry =
5029 reinterpret_cast<const uint64_t *>(GOTContents.data());
5030 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
5031 GOTContents.size());
5032 ++GOTEntry) {
5033 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
5034 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5035 << Twine::utohexstr(*GOTEntry) << " with 0x"
5036 << Twine::utohexstr(NewAddress) << '\n');
5037 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
5038 reinterpret_cast<const char *>(GOTEntry) -
5039 File->getData().data());
5040 }
5041 }
5042 }
5043
5044 template <typename ELFT>
patchELFDynamic(ELFObjectFile<ELFT> * File)5045 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
5046 if (BC->IsStaticExecutable)
5047 return;
5048
5049 const ELFFile<ELFT> &Obj = File->getELFFile();
5050 raw_fd_ostream &OS = Out->os();
5051
5052 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5053 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5054
5055 // Locate DYNAMIC by looking through program headers.
5056 uint64_t DynamicOffset = 0;
5057 const Elf_Phdr *DynamicPhdr = 0;
5058 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5059 if (Phdr.p_type == ELF::PT_DYNAMIC) {
5060 DynamicOffset = Phdr.p_offset;
5061 DynamicPhdr = &Phdr;
5062 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
5063 break;
5064 }
5065 }
5066 assert(DynamicPhdr && "missing dynamic in ELF binary");
5067
5068 bool ZNowSet = false;
5069
5070 // Go through all dynamic entries and patch functions addresses with
5071 // new ones.
5072 typename ELFT::DynRange DynamicEntries =
5073 cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
5074 auto DTB = DynamicEntries.begin();
5075 for (const Elf_Dyn &Dyn : DynamicEntries) {
5076 Elf_Dyn NewDE = Dyn;
5077 bool ShouldPatch = true;
5078 switch (Dyn.d_tag) {
5079 default:
5080 ShouldPatch = false;
5081 break;
5082 case ELF::DT_RELACOUNT:
5083 NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
5084 break;
5085 case ELF::DT_INIT:
5086 case ELF::DT_FINI: {
5087 if (BC->HasRelocations) {
5088 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
5089 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5090 << Dyn.getTag() << '\n');
5091 NewDE.d_un.d_ptr = NewAddress;
5092 }
5093 }
5094 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
5095 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
5096 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
5097 NewDE.d_un.d_ptr = Addr;
5098 }
5099 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
5100 if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
5101 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5102 << Twine::utohexstr(Addr) << '\n');
5103 NewDE.d_un.d_ptr = Addr;
5104 }
5105 }
5106 break;
5107 }
5108 case ELF::DT_FLAGS:
5109 if (BC->RequiresZNow) {
5110 NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
5111 ZNowSet = true;
5112 }
5113 break;
5114 case ELF::DT_FLAGS_1:
5115 if (BC->RequiresZNow) {
5116 NewDE.d_un.d_val |= ELF::DF_1_NOW;
5117 ZNowSet = true;
5118 }
5119 break;
5120 }
5121 if (ShouldPatch)
5122 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
5123 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
5124 }
5125
5126 if (BC->RequiresZNow && !ZNowSet) {
5127 errs() << "BOLT-ERROR: output binary requires immediate relocation "
5128 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5129 ".dynamic. Please re-link the binary with -znow.\n";
5130 exit(1);
5131 }
5132 }
5133
5134 template <typename ELFT>
readELFDynamic(ELFObjectFile<ELFT> * File)5135 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
5136 const ELFFile<ELFT> &Obj = File->getELFFile();
5137
5138 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5139 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5140
5141 // Locate DYNAMIC by looking through program headers.
5142 const Elf_Phdr *DynamicPhdr = 0;
5143 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5144 if (Phdr.p_type == ELF::PT_DYNAMIC) {
5145 DynamicPhdr = &Phdr;
5146 break;
5147 }
5148 }
5149
5150 if (!DynamicPhdr) {
5151 outs() << "BOLT-INFO: static input executable detected\n";
5152 // TODO: static PIE executable might have dynamic header
5153 BC->IsStaticExecutable = true;
5154 return Error::success();
5155 }
5156
5157 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
5158 return createStringError(errc::executable_format_error,
5159 "dynamic section sizes should match");
5160
5161 // Go through all dynamic entries to locate entries of interest.
5162 auto DynamicEntriesOrErr = Obj.dynamicEntries();
5163 if (!DynamicEntriesOrErr)
5164 return DynamicEntriesOrErr.takeError();
5165 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
5166
5167 for (const Elf_Dyn &Dyn : DynamicEntries) {
5168 switch (Dyn.d_tag) {
5169 case ELF::DT_INIT:
5170 if (!BC->HasInterpHeader) {
5171 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5172 BC->StartFunctionAddress = Dyn.getPtr();
5173 }
5174 break;
5175 case ELF::DT_FINI:
5176 BC->FiniFunctionAddress = Dyn.getPtr();
5177 break;
5178 case ELF::DT_RELA:
5179 DynamicRelocationsAddress = Dyn.getPtr();
5180 break;
5181 case ELF::DT_RELASZ:
5182 DynamicRelocationsSize = Dyn.getVal();
5183 break;
5184 case ELF::DT_JMPREL:
5185 PLTRelocationsAddress = Dyn.getPtr();
5186 break;
5187 case ELF::DT_PLTRELSZ:
5188 PLTRelocationsSize = Dyn.getVal();
5189 break;
5190 case ELF::DT_RELACOUNT:
5191 DynamicRelativeRelocationsCount = Dyn.getVal();
5192 break;
5193 }
5194 }
5195
5196 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
5197 DynamicRelocationsAddress.reset();
5198 DynamicRelocationsSize = 0;
5199 }
5200
5201 if (!PLTRelocationsAddress || !PLTRelocationsSize) {
5202 PLTRelocationsAddress.reset();
5203 PLTRelocationsSize = 0;
5204 }
5205 return Error::success();
5206 }
5207
getNewFunctionAddress(uint64_t OldAddress)5208 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
5209 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
5210 if (!Function)
5211 return 0;
5212
5213 return Function->getOutputAddress();
5214 }
5215
getNewFunctionOrDataAddress(uint64_t OldAddress)5216 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
5217 if (uint64_t Function = getNewFunctionAddress(OldAddress))
5218 return Function;
5219
5220 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
5221 if (BD && BD->isMoved())
5222 return BD->getOutputAddress();
5223
5224 return 0;
5225 }
5226
rewriteFile()5227 void RewriteInstance::rewriteFile() {
5228 std::error_code EC;
5229 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
5230 sys::fs::OF_None);
5231 check_error(EC, "cannot create output executable file");
5232
5233 raw_fd_ostream &OS = Out->os();
5234
5235 // Copy allocatable part of the input.
5236 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
5237
5238 // We obtain an asm-specific writer so that we can emit nops in an
5239 // architecture-specific way at the end of the function.
5240 std::unique_ptr<MCAsmBackend> MAB(
5241 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
5242 auto Streamer = BC->createStreamer(OS);
5243 // Make sure output stream has enough reserved space, otherwise
5244 // pwrite() will fail.
5245 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress));
5246 (void)Offset;
5247 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) &&
5248 "error resizing output file");
5249
5250 // Overwrite functions with fixed output address. This is mostly used by
5251 // non-relocation mode, with one exception: injected functions are covered
5252 // here in both modes.
5253 uint64_t CountOverwrittenFunctions = 0;
5254 uint64_t OverwrittenScore = 0;
5255 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
5256 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
5257 continue;
5258
5259 if (Function->getImageSize() > Function->getMaxSize()) {
5260 if (opts::Verbosity >= 1)
5261 errs() << "BOLT-WARNING: new function size (0x"
5262 << Twine::utohexstr(Function->getImageSize())
5263 << ") is larger than maximum allowed size (0x"
5264 << Twine::utohexstr(Function->getMaxSize()) << ") for function "
5265 << *Function << '\n';
5266
5267 // Remove jump table sections that this function owns in non-reloc mode
5268 // because we don't want to write them anymore.
5269 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
5270 for (auto &JTI : Function->JumpTables) {
5271 JumpTable *JT = JTI.second;
5272 BinarySection &Section = JT->getOutputSection();
5273 BC->deregisterSection(Section);
5274 }
5275 }
5276 continue;
5277 }
5278
5279 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 ||
5280 Function->cold().getImageSize() == 0))
5281 continue;
5282
5283 OverwrittenScore += Function->getFunctionScore();
5284 // Overwrite function in the output file.
5285 if (opts::Verbosity >= 2)
5286 outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
5287
5288 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
5289 Function->getImageSize(), Function->getFileOffset());
5290
5291 // Write nops at the end of the function.
5292 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
5293 uint64_t Pos = OS.tell();
5294 OS.seek(Function->getFileOffset() + Function->getImageSize());
5295 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(),
5296 &*BC->STI);
5297
5298 OS.seek(Pos);
5299 }
5300
5301 if (!Function->isSplit()) {
5302 ++CountOverwrittenFunctions;
5303 if (opts::MaxFunctions &&
5304 CountOverwrittenFunctions == opts::MaxFunctions) {
5305 outs() << "BOLT: maximum number of functions reached\n";
5306 break;
5307 }
5308 continue;
5309 }
5310
5311 // Write cold part
5312 if (opts::Verbosity >= 2)
5313 outs() << "BOLT: rewriting function \"" << *Function
5314 << "\" (cold part)\n";
5315
5316 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()),
5317 Function->cold().getImageSize(),
5318 Function->cold().getFileOffset());
5319
5320 ++CountOverwrittenFunctions;
5321 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) {
5322 outs() << "BOLT: maximum number of functions reached\n";
5323 break;
5324 }
5325 }
5326
5327 // Print function statistics for non-relocation mode.
5328 if (!BC->HasRelocations) {
5329 outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
5330 << BC->getBinaryFunctions().size()
5331 << " functions were overwritten.\n";
5332 if (BC->TotalScore != 0) {
5333 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
5334 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage)
5335 << "% of the execution count of simple functions of "
5336 "this binary\n";
5337 }
5338 }
5339
5340 if (BC->HasRelocations && opts::TrapOldCode) {
5341 uint64_t SavedPos = OS.tell();
5342 // Overwrite function body to make sure we never execute these instructions.
5343 for (auto &BFI : BC->getBinaryFunctions()) {
5344 BinaryFunction &BF = BFI.second;
5345 if (!BF.getFileOffset() || !BF.isEmitted())
5346 continue;
5347 OS.seek(BF.getFileOffset());
5348 for (unsigned I = 0; I < BF.getMaxSize(); ++I)
5349 OS.write((unsigned char)BC->MIB->getTrapFillValue());
5350 }
5351 OS.seek(SavedPos);
5352 }
5353
5354 // Write all allocatable sections - reloc-mode text is written here as well
5355 for (BinarySection &Section : BC->allocatableSections()) {
5356 if (!Section.isFinalized() || !Section.getOutputData())
5357 continue;
5358
5359 if (opts::Verbosity >= 1)
5360 outs() << "BOLT: writing new section " << Section.getName()
5361 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress())
5362 << "\n of size " << Section.getOutputSize() << "\n at offset "
5363 << Section.getOutputFileOffset() << '\n';
5364 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
5365 Section.getOutputSize(), Section.getOutputFileOffset());
5366 }
5367
5368 for (BinarySection &Section : BC->allocatableSections())
5369 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
5370 return getNewValueForSymbol(S->getName());
5371 });
5372
5373 // If .eh_frame is present create .eh_frame_hdr.
5374 if (EHFrameSection && EHFrameSection->isFinalized())
5375 writeEHFrameHeader();
5376
5377 // Add BOLT Addresses Translation maps to allow profile collection to
5378 // happen in the output binary
5379 if (opts::EnableBAT)
5380 addBATSection();
5381
5382 // Patch program header table.
5383 patchELFPHDRTable();
5384
5385 // Finalize memory image of section string table.
5386 finalizeSectionStringTable();
5387
5388 // Update symbol tables.
5389 patchELFSymTabs();
5390
5391 patchBuildID();
5392
5393 if (opts::EnableBAT)
5394 encodeBATSection();
5395
5396 // Copy non-allocatable sections once allocatable part is finished.
5397 rewriteNoteSections();
5398
5399 if (BC->HasRelocations) {
5400 patchELFAllocatableRelaSections();
5401 patchELFGOT();
5402 }
5403
5404 // Patch dynamic section/segment.
5405 patchELFDynamic();
5406
5407 // Update ELF book-keeping info.
5408 patchELFSectionHeaderTable();
5409
5410 if (opts::PrintSections) {
5411 outs() << "BOLT-INFO: Sections after processing:\n";
5412 BC->printSections(outs());
5413 }
5414
5415 Out->keep();
5416 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all);
5417 check_error(EC, "cannot set permissions of output file");
5418 }
5419
writeEHFrameHeader()5420 void RewriteInstance::writeEHFrameHeader() {
5421 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
5422 EHFrameSection->getOutputAddress());
5423 Error E = NewEHFrame.parse(DWARFDataExtractor(
5424 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
5425 BC->AsmInfo->getCodePointerSize()));
5426 check_error(std::move(E), "failed to parse EH frame");
5427
5428 uint64_t OldEHFrameAddress = 0;
5429 StringRef OldEHFrameContents;
5430 ErrorOr<BinarySection &> OldEHFrameSection =
5431 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str());
5432 if (OldEHFrameSection) {
5433 OldEHFrameAddress = OldEHFrameSection->getOutputAddress();
5434 OldEHFrameContents = OldEHFrameSection->getOutputContents();
5435 }
5436 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress);
5437 Error Er = OldEHFrame.parse(
5438 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(),
5439 BC->AsmInfo->getCodePointerSize()));
5440 check_error(std::move(Er), "failed to parse EH frame");
5441
5442 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
5443
5444 NextAvailableAddress =
5445 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
5446
5447 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
5448 const uint64_t EHFrameHdrFileOffset =
5449 getFileOffsetForAddress(NextAvailableAddress);
5450
5451 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
5452 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses);
5453
5454 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch");
5455 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
5456
5457 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
5458 /*IsText=*/false,
5459 /*IsAllocatable=*/true);
5460 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
5461 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(),
5462 /*Alignment=*/1);
5463 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
5464 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
5465
5466 NextAvailableAddress += EHFrameHdrSec.getOutputSize();
5467
5468 // Merge new .eh_frame with original so that gdb can locate all FDEs.
5469 if (OldEHFrameSection) {
5470 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() +
5471 OldEHFrameSection->getOutputSize() -
5472 EHFrameSection->getOutputAddress());
5473 EHFrameSection =
5474 BC->registerOrUpdateSection(".eh_frame",
5475 EHFrameSection->getELFType(),
5476 EHFrameSection->getELFFlags(),
5477 EHFrameSection->getOutputData(),
5478 EHFrameSectionSize,
5479 EHFrameSection->getAlignment());
5480 BC->deregisterSection(*OldEHFrameSection);
5481 }
5482
5483 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5484 << EHFrameSection->getOutputSize() << '\n');
5485 }
5486
getNewValueForSymbol(const StringRef Name)5487 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
5488 uint64_t Value = RTDyld->getSymbol(Name).getAddress();
5489 if (Value != 0)
5490 return Value;
5491
5492 // Return the original value if we haven't emitted the symbol.
5493 BinaryData *BD = BC->getBinaryDataByName(Name);
5494 if (!BD)
5495 return 0;
5496
5497 return BD->getAddress();
5498 }
5499
getFileOffsetForAddress(uint64_t Address) const5500 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
5501 // Check if it's possibly part of the new segment.
5502 if (Address >= NewTextSegmentAddress)
5503 return Address - NewTextSegmentAddress + NewTextSegmentOffset;
5504
5505 // Find an existing segment that matches the address.
5506 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
5507 if (SegmentInfoI == BC->SegmentMapInfo.begin())
5508 return 0;
5509
5510 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
5511 if (Address < SegmentInfo.Address ||
5512 Address >= SegmentInfo.Address + SegmentInfo.FileSize)
5513 return 0;
5514
5515 return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
5516 }
5517
willOverwriteSection(StringRef SectionName)5518 bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
5519 for (const char *const &OverwriteName : SectionsToOverwrite)
5520 if (SectionName == OverwriteName)
5521 return true;
5522 for (std::string &OverwriteName : DebugSectionsToOverwrite)
5523 if (SectionName == OverwriteName)
5524 return true;
5525
5526 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
5527 return Section && Section->isAllocatable() && Section->isFinalized();
5528 }
5529
isDebugSection(StringRef SectionName)5530 bool RewriteInstance::isDebugSection(StringRef SectionName) {
5531 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") ||
5532 SectionName == ".gdb_index" || SectionName == ".stab" ||
5533 SectionName == ".stabstr")
5534 return true;
5535
5536 return false;
5537 }
5538
isKSymtabSection(StringRef SectionName)5539 bool RewriteInstance::isKSymtabSection(StringRef SectionName) {
5540 if (SectionName.startswith("__ksymtab"))
5541 return true;
5542
5543 return false;
5544 }
5545