1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> ForceToDataRelocations( 84 "force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 87 cl::Hidden, cl::cat(BoltCategory)); 88 89 cl::opt<std::string> 90 BoltID("bolt-id", 91 cl::desc("add any string to tag this execution in the " 92 "output binary via bolt info section"), 93 cl::cat(BoltCategory)); 94 95 cl::opt<bool> 96 AllowStripped("allow-stripped", 97 cl::desc("allow processing of stripped binaries"), 98 cl::Hidden, 99 cl::cat(BoltCategory)); 100 101 cl::opt<bool> DumpDotAll( 102 "dump-dot-all", 103 cl::desc("dump function CFGs to graphviz format after each stage;" 104 "enable '-print-loops' for color-coded blocks"), 105 cl::Hidden, cl::cat(BoltCategory)); 106 107 static cl::list<std::string> 108 ForceFunctionNames("funcs", 109 cl::CommaSeparated, 110 cl::desc("limit optimizations to functions from the list"), 111 cl::value_desc("func1,func2,func3,..."), 112 cl::Hidden, 113 cl::cat(BoltCategory)); 114 115 static cl::opt<std::string> 116 FunctionNamesFile("funcs-file", 117 cl::desc("file with list of functions to optimize"), 118 cl::Hidden, 119 cl::cat(BoltCategory)); 120 121 static cl::list<std::string> ForceFunctionNamesNR( 122 "funcs-no-regex", cl::CommaSeparated, 123 cl::desc("limit optimizations to functions from the list (non-regex)"), 124 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 125 126 static cl::opt<std::string> FunctionNamesFileNR( 127 "funcs-file-no-regex", 128 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 129 cl::cat(BoltCategory)); 130 131 cl::opt<bool> 132 KeepTmp("keep-tmp", 133 cl::desc("preserve intermediate .o file"), 134 cl::Hidden, 135 cl::cat(BoltCategory)); 136 137 cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"), 138 cl::cat(BoltCategory)); 139 140 static cl::opt<unsigned> 141 LiteThresholdPct("lite-threshold-pct", 142 cl::desc("threshold (in percent) for selecting functions to process in lite " 143 "mode. Higher threshold means fewer functions to process. E.g " 144 "threshold of 90 means only top 10 percent of functions with " 145 "profile will be processed."), 146 cl::init(0), 147 cl::ZeroOrMore, 148 cl::Hidden, 149 cl::cat(BoltOptCategory)); 150 151 static cl::opt<unsigned> LiteThresholdCount( 152 "lite-threshold-count", 153 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 154 "absolute function call count. I.e. limit processing to functions " 155 "executed at least the specified number of times."), 156 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 157 158 static cl::opt<unsigned> 159 MaxFunctions("max-funcs", 160 cl::desc("maximum number of functions to process"), cl::Hidden, 161 cl::cat(BoltCategory)); 162 163 static cl::opt<unsigned> MaxDataRelocations( 164 "max-data-relocations", 165 cl::desc("maximum number of data relocations to process"), cl::Hidden, 166 cl::cat(BoltCategory)); 167 168 cl::opt<bool> PrintAll("print-all", 169 cl::desc("print functions after each stage"), cl::Hidden, 170 cl::cat(BoltCategory)); 171 172 cl::opt<bool> PrintCFG("print-cfg", 173 cl::desc("print functions after CFG construction"), 174 cl::Hidden, cl::cat(BoltCategory)); 175 176 cl::opt<bool> PrintDisasm("print-disasm", 177 cl::desc("print function after disassembly"), 178 cl::Hidden, cl::cat(BoltCategory)); 179 180 static cl::opt<bool> 181 PrintGlobals("print-globals", 182 cl::desc("print global symbols after disassembly"), cl::Hidden, 183 cl::cat(BoltCategory)); 184 185 extern cl::opt<bool> PrintSections; 186 187 static cl::opt<bool> PrintLoopInfo("print-loops", 188 cl::desc("print loop related information"), 189 cl::Hidden, cl::cat(BoltCategory)); 190 191 static cl::opt<bool> PrintSDTMarkers("print-sdt", 192 cl::desc("print all SDT markers"), 193 cl::Hidden, cl::cat(BoltCategory)); 194 195 enum PrintPseudoProbesOptions { 196 PPP_None = 0, 197 PPP_Probes_Section_Decode = 0x1, 198 PPP_Probes_Address_Conversion = 0x2, 199 PPP_Encoded_Probes = 0x3, 200 PPP_All = 0xf 201 }; 202 203 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 204 "print-pseudo-probes", cl::desc("print pseudo probe info"), 205 cl::init(PPP_None), 206 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 207 "decode probes section from binary"), 208 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 209 "update address2ProbesMap with output block address"), 210 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 211 "display the encoded probes in binary section"), 212 clEnumValN(PPP_All, "all", "enable all debugging printout")), 213 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 214 215 static cl::opt<cl::boolOrDefault> RelocationMode( 216 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 217 cl::cat(BoltCategory)); 218 219 static cl::opt<std::string> 220 SaveProfile("w", 221 cl::desc("save recorded profile to a file"), 222 cl::cat(BoltOutputCategory)); 223 224 static cl::list<std::string> 225 SkipFunctionNames("skip-funcs", 226 cl::CommaSeparated, 227 cl::desc("list of functions to skip"), 228 cl::value_desc("func1,func2,func3,..."), 229 cl::Hidden, 230 cl::cat(BoltCategory)); 231 232 static cl::opt<std::string> 233 SkipFunctionNamesFile("skip-funcs-file", 234 cl::desc("file with list of functions to skip"), 235 cl::Hidden, 236 cl::cat(BoltCategory)); 237 238 cl::opt<bool> 239 TrapOldCode("trap-old-code", 240 cl::desc("insert traps in old function bodies (relocation mode)"), 241 cl::Hidden, 242 cl::cat(BoltCategory)); 243 244 static cl::opt<std::string> DWPPathName("dwp", 245 cl::desc("Path and name to DWP file."), 246 cl::Hidden, cl::init(""), 247 cl::cat(BoltCategory)); 248 249 static cl::opt<bool> 250 UseGnuStack("use-gnu-stack", 251 cl::desc("use GNU_STACK program header for new segment (workaround for " 252 "issues with strip/objcopy)"), 253 cl::ZeroOrMore, 254 cl::cat(BoltCategory)); 255 256 static cl::opt<bool> 257 TimeRewrite("time-rewrite", 258 cl::desc("print time spent in rewriting passes"), cl::Hidden, 259 cl::cat(BoltCategory)); 260 261 static cl::opt<bool> 262 SequentialDisassembly("sequential-disassembly", 263 cl::desc("performs disassembly sequentially"), 264 cl::init(false), 265 cl::cat(BoltOptCategory)); 266 267 static cl::opt<bool> WriteBoltInfoSection( 268 "bolt-info", cl::desc("write bolt info section in the output binary"), 269 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 270 271 } // namespace opts 272 273 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 274 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 275 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 276 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 277 ".gdb_index", ".debug_addr"}; 278 279 const char RewriteInstance::TimerGroupName[] = "rewrite"; 280 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 281 282 namespace llvm { 283 namespace bolt { 284 285 extern const char *BoltRevision; 286 287 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 288 const MCInstrAnalysis *Analysis, 289 const MCInstrInfo *Info, 290 const MCRegisterInfo *RegInfo) { 291 #ifdef X86_AVAILABLE 292 if (Arch == Triple::x86_64) 293 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 294 #endif 295 296 #ifdef AARCH64_AVAILABLE 297 if (Arch == Triple::aarch64) 298 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 299 #endif 300 301 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 302 } 303 304 } // namespace bolt 305 } // namespace llvm 306 307 namespace { 308 309 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 310 auto Itr = 311 std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), 312 [&](const std::string &SectionName) { 313 return (Section && Section->getName() == SectionName); 314 }); 315 return Itr != opts::ReorderData.end(); 316 } 317 318 } // anonymous namespace 319 320 Expected<std::unique_ptr<RewriteInstance>> 321 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 322 const char *const *Argv, 323 StringRef ToolPath) { 324 Error Err = Error::success(); 325 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 326 if (Err) 327 return std::move(Err); 328 return std::move(RI); 329 } 330 331 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 332 const char *const *Argv, StringRef ToolPath, 333 Error &Err) 334 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 335 SHStrTab(StringTableBuilder::ELF) { 336 ErrorAsOutParameter EAO(&Err); 337 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 338 if (!ELF64LEFile) { 339 Err = createStringError(errc::not_supported, 340 "Only 64-bit LE ELF binaries are supported"); 341 return; 342 } 343 344 bool IsPIC = false; 345 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 346 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 347 outs() << "BOLT-INFO: shared object or position-independent executable " 348 "detected\n"; 349 IsPIC = true; 350 } 351 352 auto BCOrErr = BinaryContext::createBinaryContext( 353 File, IsPIC, 354 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 355 nullptr, opts::DWPPathName, 356 WithColor::defaultErrorHandler, 357 WithColor::defaultWarningHandler)); 358 if (Error E = BCOrErr.takeError()) { 359 Err = std::move(E); 360 return; 361 } 362 BC = std::move(BCOrErr.get()); 363 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 364 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 365 366 BAT = std::make_unique<BoltAddressTranslation>(*BC); 367 368 if (opts::UpdateDebugSections) 369 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 370 371 if (opts::Instrument) 372 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 373 else if (opts::Hugify) 374 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 375 } 376 377 RewriteInstance::~RewriteInstance() {} 378 379 Error RewriteInstance::setProfile(StringRef Filename) { 380 if (!sys::fs::exists(Filename)) 381 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 382 383 if (ProfileReader) { 384 // Already exists 385 return make_error<StringError>(Twine("multiple profiles specified: ") + 386 ProfileReader->getFilename() + " and " + 387 Filename, 388 inconvertibleErrorCode()); 389 } 390 391 // Spawn a profile reader based on file contents. 392 if (DataAggregator::checkPerfDataMagic(Filename)) 393 ProfileReader = std::make_unique<DataAggregator>(Filename); 394 else if (YAMLProfileReader::isYAML(Filename)) 395 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 396 else 397 ProfileReader = std::make_unique<DataReader>(Filename); 398 399 return Error::success(); 400 } 401 402 /// Return true if the function \p BF should be disassembled. 403 static bool shouldDisassemble(const BinaryFunction &BF) { 404 if (BF.isPseudo()) 405 return false; 406 407 if (opts::processAllFunctions()) 408 return true; 409 410 return !BF.isIgnored(); 411 } 412 413 Error RewriteInstance::discoverStorage() { 414 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 415 TimerGroupDesc, opts::TimeRewrite); 416 417 // Stubs are harmful because RuntimeDyld may try to increase the size of 418 // sections accounting for stubs when we need those sections to match the 419 // same size seen in the input binary, in case this section is a copy 420 // of the original one seen in the binary. 421 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 422 423 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 424 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 425 426 BC->StartFunctionAddress = Obj.getHeader().e_entry; 427 428 NextAvailableAddress = 0; 429 uint64_t NextAvailableOffset = 0; 430 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 431 if (Error E = PHsOrErr.takeError()) 432 return E; 433 434 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 435 for (const ELF64LE::Phdr &Phdr : PHs) { 436 switch (Phdr.p_type) { 437 case ELF::PT_LOAD: 438 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 439 static_cast<uint64_t>(Phdr.p_vaddr)); 440 NextAvailableAddress = std::max(NextAvailableAddress, 441 Phdr.p_vaddr + Phdr.p_memsz); 442 NextAvailableOffset = std::max(NextAvailableOffset, 443 Phdr.p_offset + Phdr.p_filesz); 444 445 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 446 Phdr.p_memsz, 447 Phdr.p_offset, 448 Phdr.p_filesz, 449 Phdr.p_align}; 450 break; 451 case ELF::PT_INTERP: 452 BC->HasInterpHeader = true; 453 break; 454 } 455 } 456 457 for (const SectionRef &Section : InputFile->sections()) { 458 Expected<StringRef> SectionNameOrErr = Section.getName(); 459 if (Error E = SectionNameOrErr.takeError()) 460 return E; 461 StringRef SectionName = SectionNameOrErr.get(); 462 if (SectionName == ".text") { 463 BC->OldTextSectionAddress = Section.getAddress(); 464 BC->OldTextSectionSize = Section.getSize(); 465 466 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 467 if (Error E = SectionContentsOrErr.takeError()) 468 return E; 469 StringRef SectionContents = SectionContentsOrErr.get(); 470 BC->OldTextSectionOffset = 471 SectionContents.data() - InputFile->getData().data(); 472 } 473 474 if (!opts::HeatmapMode && 475 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 476 (SectionName.startswith(getOrgSecPrefix()) || 477 SectionName == getBOLTTextSectionName())) 478 return createStringError( 479 errc::function_not_supported, 480 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 481 } 482 483 if (!NextAvailableAddress || !NextAvailableOffset) 484 return createStringError(errc::executable_format_error, 485 "no PT_LOAD pheader seen"); 486 487 outs() << "BOLT-INFO: first alloc address is 0x" 488 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 489 490 FirstNonAllocatableOffset = NextAvailableOffset; 491 492 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 493 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 494 495 if (!opts::UseGnuStack) { 496 // This is where the black magic happens. Creating PHDR table in a segment 497 // other than that containing ELF header is tricky. Some loaders and/or 498 // parts of loaders will apply e_phoff from ELF header assuming both are in 499 // the same segment, while others will do the proper calculation. 500 // We create the new PHDR table in such a way that both of the methods 501 // of loading and locating the table work. There's a slight file size 502 // overhead because of that. 503 // 504 // NB: bfd's strip command cannot do the above and will corrupt the 505 // binary during the process of stripping non-allocatable sections. 506 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 507 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 508 else 509 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 510 511 assert(NextAvailableOffset == 512 NextAvailableAddress - BC->FirstAllocAddress && 513 "PHDR table address calculation error"); 514 515 outs() << "BOLT-INFO: creating new program header table at address 0x" 516 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 517 << Twine::utohexstr(NextAvailableOffset) << '\n'; 518 519 PHDRTableAddress = NextAvailableAddress; 520 PHDRTableOffset = NextAvailableOffset; 521 522 // Reserve space for 3 extra pheaders. 523 unsigned Phnum = Obj.getHeader().e_phnum; 524 Phnum += 3; 525 526 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 527 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 528 } 529 530 // Align at cache line. 531 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 532 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 533 534 NewTextSegmentAddress = NextAvailableAddress; 535 NewTextSegmentOffset = NextAvailableOffset; 536 BC->LayoutStartAddress = NextAvailableAddress; 537 538 // Tools such as objcopy can strip section contents but leave header 539 // entries. Check that at least .text is mapped in the file. 540 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 541 return createStringError(errc::executable_format_error, 542 "BOLT-ERROR: input binary is not a valid ELF " 543 "executable as its text section is not " 544 "mapped to a valid segment"); 545 return Error::success(); 546 } 547 548 void RewriteInstance::parseSDTNotes() { 549 if (!SDTSection) 550 return; 551 552 StringRef Buf = SDTSection->getContents(); 553 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 554 BC->AsmInfo->getCodePointerSize()); 555 uint64_t Offset = 0; 556 557 while (DE.isValidOffset(Offset)) { 558 uint32_t NameSz = DE.getU32(&Offset); 559 DE.getU32(&Offset); // skip over DescSz 560 uint32_t Type = DE.getU32(&Offset); 561 Offset = alignTo(Offset, 4); 562 563 if (Type != 3) 564 errs() << "BOLT-WARNING: SDT note type \"" << Type 565 << "\" is not expected\n"; 566 567 if (NameSz == 0) 568 errs() << "BOLT-WARNING: SDT note has empty name\n"; 569 570 StringRef Name = DE.getCStr(&Offset); 571 572 if (!Name.equals("stapsdt")) 573 errs() << "BOLT-WARNING: SDT note name \"" << Name 574 << "\" is not expected\n"; 575 576 // Parse description 577 SDTMarkerInfo Marker; 578 Marker.PCOffset = Offset; 579 Marker.PC = DE.getU64(&Offset); 580 Marker.Base = DE.getU64(&Offset); 581 Marker.Semaphore = DE.getU64(&Offset); 582 Marker.Provider = DE.getCStr(&Offset); 583 Marker.Name = DE.getCStr(&Offset); 584 Marker.Args = DE.getCStr(&Offset); 585 Offset = alignTo(Offset, 4); 586 BC->SDTMarkers[Marker.PC] = Marker; 587 } 588 589 if (opts::PrintSDTMarkers) 590 printSDTMarkers(); 591 } 592 593 void RewriteInstance::parsePseudoProbe() { 594 if (!PseudoProbeDescSection && !PseudoProbeSection) { 595 // pesudo probe is not added to binary. It is normal and no warning needed. 596 return; 597 } 598 599 // If only one section is found, it might mean the ELF is corrupted. 600 if (!PseudoProbeDescSection) { 601 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 602 return; 603 } else if (!PseudoProbeSection) { 604 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 605 return; 606 } 607 608 StringRef Contents = PseudoProbeDescSection->getContents(); 609 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 610 reinterpret_cast<const uint8_t *>(Contents.data()), 611 Contents.size())) { 612 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 613 return; 614 } 615 Contents = PseudoProbeSection->getContents(); 616 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 617 reinterpret_cast<const uint8_t *>(Contents.data()), 618 Contents.size())) { 619 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 620 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 621 return; 622 } 623 624 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 625 opts::PrintPseudoProbes == 626 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 627 outs() << "Report of decoding input pseudo probe binaries \n"; 628 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 629 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 630 } 631 } 632 633 void RewriteInstance::printSDTMarkers() { 634 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 635 << "\n"; 636 for (auto It : BC->SDTMarkers) { 637 SDTMarkerInfo &Marker = It.second; 638 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 639 << ", Base: " << utohexstr(Marker.Base) 640 << ", Semaphore: " << utohexstr(Marker.Semaphore) 641 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 642 << ", Args: " << Marker.Args << "\n"; 643 } 644 } 645 646 void RewriteInstance::parseBuildID() { 647 if (!BuildIDSection) 648 return; 649 650 StringRef Buf = BuildIDSection->getContents(); 651 652 // Reading notes section (see Portable Formats Specification, Version 1.1, 653 // pg 2-5, section "Note Section"). 654 DataExtractor DE = DataExtractor(Buf, true, 8); 655 uint64_t Offset = 0; 656 if (!DE.isValidOffset(Offset)) 657 return; 658 uint32_t NameSz = DE.getU32(&Offset); 659 if (!DE.isValidOffset(Offset)) 660 return; 661 uint32_t DescSz = DE.getU32(&Offset); 662 if (!DE.isValidOffset(Offset)) 663 return; 664 uint32_t Type = DE.getU32(&Offset); 665 666 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 667 << "; Type = " << Type << "\n"); 668 669 // Type 3 is a GNU build-id note section 670 if (Type != 3) 671 return; 672 673 StringRef Name = Buf.slice(Offset, Offset + NameSz); 674 Offset = alignTo(Offset + NameSz, 4); 675 if (Name.substr(0, 3) != "GNU") 676 return; 677 678 BuildID = Buf.slice(Offset, Offset + DescSz); 679 } 680 681 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 682 if (BuildID.empty()) 683 return NoneType(); 684 685 std::string Str; 686 raw_string_ostream OS(Str); 687 const unsigned char *CharIter = BuildID.bytes_begin(); 688 while (CharIter != BuildID.bytes_end()) { 689 if (*CharIter < 0x10) 690 OS << "0"; 691 OS << Twine::utohexstr(*CharIter); 692 ++CharIter; 693 } 694 return OS.str(); 695 } 696 697 void RewriteInstance::patchBuildID() { 698 raw_fd_ostream &OS = Out->os(); 699 700 if (BuildID.empty()) 701 return; 702 703 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 704 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 705 706 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 707 if (!FileOffset) { 708 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 709 return; 710 } 711 712 char LastIDByte = BuildID[BuildID.size() - 1]; 713 LastIDByte ^= 1; 714 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 715 716 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 717 } 718 719 Error RewriteInstance::run() { 720 assert(BC && "failed to create a binary context"); 721 722 outs() << "BOLT-INFO: Target architecture: " 723 << Triple::getArchTypeName( 724 (llvm::Triple::ArchType)InputFile->getArch()) 725 << "\n"; 726 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 727 728 if (Error E = discoverStorage()) 729 return E; 730 if (Error E = readSpecialSections()) 731 return E; 732 adjustCommandLineOptions(); 733 discoverFileObjects(); 734 735 preprocessProfileData(); 736 737 // Skip disassembling if we have a translation table and we are running an 738 // aggregation job. 739 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 740 processProfileData(); 741 return Error::success(); 742 } 743 744 selectFunctionsToProcess(); 745 746 readDebugInfo(); 747 748 disassembleFunctions(); 749 750 processProfileDataPreCFG(); 751 752 buildFunctionsCFG(); 753 754 processProfileData(); 755 756 postProcessFunctions(); 757 758 if (opts::DiffOnly) 759 return Error::success(); 760 761 runOptimizationPasses(); 762 763 emitAndLink(); 764 765 updateMetadata(); 766 767 if (opts::LinuxKernelMode) { 768 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 769 return Error::success(); 770 } else if (opts::OutputFilename == "/dev/null") { 771 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 772 return Error::success(); 773 } 774 775 // Rewrite allocatable contents and copy non-allocatable parts with mods. 776 rewriteFile(); 777 return Error::success(); 778 } 779 780 void RewriteInstance::discoverFileObjects() { 781 NamedRegionTimer T("discoverFileObjects", "discover file objects", 782 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 783 FileSymRefs.clear(); 784 BC->getBinaryFunctions().clear(); 785 BC->clearBinaryData(); 786 787 // For local symbols we want to keep track of associated FILE symbol name for 788 // disambiguation by combined name. 789 StringRef FileSymbolName; 790 bool SeenFileName = false; 791 struct SymbolRefHash { 792 size_t operator()(SymbolRef const &S) const { 793 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 794 } 795 }; 796 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 797 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 798 Expected<StringRef> NameOrError = Symbol.getName(); 799 if (NameOrError && NameOrError->startswith("__asan_init")) { 800 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 801 "support. Cannot optimize.\n"; 802 exit(1); 803 } 804 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 805 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 806 "support. Cannot optimize.\n"; 807 exit(1); 808 } 809 810 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 811 continue; 812 813 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 814 StringRef Name = 815 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 816 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 817 // and this uncertainty is causing havoc in function name matching. 818 if (Name == "ld-temp.o") 819 continue; 820 FileSymbolName = Name; 821 SeenFileName = true; 822 continue; 823 } 824 if (!FileSymbolName.empty() && 825 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 826 SymbolToFileName[Symbol] = FileSymbolName; 827 } 828 829 // Sort symbols in the file by value. Ignore symbols from non-allocatable 830 // sections. 831 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 832 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 833 return false; 834 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 835 return true; 836 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 837 return false; 838 BinarySection Section(*BC, *cantFail(Sym.getSection())); 839 return Section.isAllocatable(); 840 }; 841 std::vector<SymbolRef> SortedFileSymbols; 842 std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), 843 std::back_inserter(SortedFileSymbols), isSymbolInMemory); 844 auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) { 845 // Marker symbols have the highest precedence, while 846 // SECTIONs have the lowest. 847 auto AddressA = cantFail(A.getAddress()); 848 auto AddressB = cantFail(B.getAddress()); 849 if (AddressA != AddressB) 850 return AddressA < AddressB; 851 852 bool AMarker = BC->isMarker(A); 853 bool BMarker = BC->isMarker(B); 854 if (AMarker || BMarker) { 855 return AMarker && !BMarker; 856 } 857 858 auto AType = cantFail(A.getType()); 859 auto BType = cantFail(B.getType()); 860 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 861 return true; 862 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 863 return true; 864 865 return false; 866 }; 867 868 std::stable_sort(SortedFileSymbols.begin(), SortedFileSymbols.end(), 869 CompareSymbols); 870 871 auto LastSymbol = SortedFileSymbols.end() - 1; 872 873 // For aarch64, the ABI defines mapping symbols so we identify data in the 874 // code section (see IHI0056B). $d identifies data contents. 875 // Compilers usually merge multiple data objects in a single $d-$x interval, 876 // but we need every data object to be marked with $d. Because of that we 877 // create a vector of MarkerSyms with all locations of data objects. 878 879 struct MarkerSym { 880 uint64_t Address; 881 MarkerSymType Type; 882 }; 883 884 std::vector<MarkerSym> SortedMarkerSymbols; 885 auto addExtraDataMarkerPerSymbol = 886 [this](const std::vector<SymbolRef> &SortedFileSymbols, 887 std::vector<MarkerSym> &SortedMarkerSymbols) { 888 bool IsData = false; 889 uint64_t LastAddr = 0; 890 for (auto Sym = SortedFileSymbols.begin(); 891 Sym < SortedFileSymbols.end(); ++Sym) { 892 uint64_t Address = cantFail(Sym->getAddress()); 893 if (LastAddr == Address) // don't repeat markers 894 continue; 895 896 MarkerSymType MarkerType = BC->getMarkerType(*Sym); 897 if (MarkerType != MarkerSymType::NONE) { 898 SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType}); 899 LastAddr = Address; 900 IsData = MarkerType == MarkerSymType::DATA; 901 continue; 902 } 903 904 if (IsData) { 905 SortedMarkerSymbols.push_back( 906 MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA}); 907 LastAddr = Address; 908 } 909 } 910 }; 911 912 if (BC->isAArch64()) { 913 addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols); 914 LastSymbol = std::stable_partition( 915 SortedFileSymbols.begin(), SortedFileSymbols.end(), 916 [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); }); 917 --LastSymbol; 918 } 919 920 BinaryFunction *PreviousFunction = nullptr; 921 unsigned AnonymousId = 0; 922 923 const auto SortedSymbolsEnd = std::next(LastSymbol); 924 for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd; 925 ++ISym) { 926 const SymbolRef &Symbol = *ISym; 927 // Keep undefined symbols for pretty printing? 928 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 929 continue; 930 931 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 932 933 if (SymbolType == SymbolRef::ST_File) 934 continue; 935 936 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 937 uint64_t Address = 938 cantFail(Symbol.getAddress(), "cannot get symbol address"); 939 if (Address == 0) { 940 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 941 errs() << "BOLT-WARNING: function with 0 address seen\n"; 942 continue; 943 } 944 945 // Ignore input hot markers 946 if (SymName == "__hot_start" || SymName == "__hot_end") 947 continue; 948 949 FileSymRefs[Address] = Symbol; 950 951 // Skip section symbols that will be registered by disassemblePLT(). 952 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 953 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 954 if (BSection && getPLTSectionInfo(BSection->getName())) 955 continue; 956 } 957 958 /// It is possible we are seeing a globalized local. LLVM might treat it as 959 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 960 /// change the prefix to enforce global scope of the symbol. 961 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 962 ? "PG" + std::string(SymName) 963 : std::string(SymName); 964 965 // Disambiguate all local symbols before adding to symbol table. 966 // Since we don't know if we will see a global with the same name, 967 // always modify the local name. 968 // 969 // NOTE: the naming convention for local symbols should match 970 // the one we use for profile data. 971 std::string UniqueName; 972 std::string AlternativeName; 973 if (Name.empty()) { 974 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 975 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 976 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 977 UniqueName = Name; 978 } else { 979 // If we have a local file name, we should create 2 variants for the 980 // function name. The reason is that perf profile might have been 981 // collected on a binary that did not have the local file name (e.g. as 982 // a side effect of stripping debug info from the binary): 983 // 984 // primary: <function>/<id> 985 // alternative: <function>/<file>/<id2> 986 // 987 // The <id> field is used for disambiguation of local symbols since there 988 // could be identical function names coming from identical file names 989 // (e.g. from different directories). 990 std::string AltPrefix; 991 auto SFI = SymbolToFileName.find(Symbol); 992 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 993 AltPrefix = Name + "/" + std::string(SFI->second); 994 995 UniqueName = NR.uniquify(Name); 996 if (!AltPrefix.empty()) 997 AlternativeName = NR.uniquify(AltPrefix); 998 } 999 1000 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1001 uint64_t SymbolAlignment = Symbol.getAlignment(); 1002 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 1003 1004 auto registerName = [&](uint64_t FinalSize) { 1005 // Register names even if it's not a function, e.g. for an entry point. 1006 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1007 SymbolFlags); 1008 if (!AlternativeName.empty()) 1009 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1010 SymbolAlignment, SymbolFlags); 1011 }; 1012 1013 section_iterator Section = 1014 cantFail(Symbol.getSection(), "cannot get symbol section"); 1015 if (Section == InputFile->section_end()) { 1016 // Could be an absolute symbol. Could record for pretty printing. 1017 LLVM_DEBUG(if (opts::Verbosity > 1) { 1018 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1019 }); 1020 registerName(SymbolSize); 1021 continue; 1022 } 1023 1024 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1025 << " for function\n"); 1026 1027 if (!Section->isText()) { 1028 assert(SymbolType != SymbolRef::ST_Function && 1029 "unexpected function inside non-code section"); 1030 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1031 registerName(SymbolSize); 1032 continue; 1033 } 1034 1035 // Assembly functions could be ST_NONE with 0 size. Check that the 1036 // corresponding section is a code section and they are not inside any 1037 // other known function to consider them. 1038 // 1039 // Sometimes assembly functions are not marked as functions and neither are 1040 // their local labels. The only way to tell them apart is to look at 1041 // symbol scope - global vs local. 1042 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1043 if (PreviousFunction->containsAddress(Address)) { 1044 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1045 LLVM_DEBUG(dbgs() 1046 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1047 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1048 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1049 } else if (opts::Verbosity > 1) { 1050 errs() << "BOLT-WARNING: symbol " << UniqueName 1051 << " seen in the middle of function " << *PreviousFunction 1052 << ". Could be a new entry.\n"; 1053 } 1054 registerName(SymbolSize); 1055 continue; 1056 } else if (PreviousFunction->getSize() == 0 && 1057 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1058 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1059 registerName(SymbolSize); 1060 continue; 1061 } 1062 } 1063 1064 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1065 PreviousFunction->getAddress() != Address) { 1066 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1067 if (opts::Verbosity >= 1) 1068 outs() << "BOLT-INFO: skipping possibly another entry for function " 1069 << *PreviousFunction << " : " << UniqueName << '\n'; 1070 } else { 1071 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1072 << "function " << *PreviousFunction << '\n'; 1073 1074 registerName(0); 1075 1076 PreviousFunction->addEntryPointAtOffset(Address - 1077 PreviousFunction->getAddress()); 1078 1079 // Remove the symbol from FileSymRefs so that we can skip it from 1080 // in the future. 1081 auto SI = FileSymRefs.find(Address); 1082 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1083 assert(SI->second == Symbol && "wrong symbol found"); 1084 FileSymRefs.erase(SI); 1085 } 1086 registerName(SymbolSize); 1087 continue; 1088 } 1089 1090 // Checkout for conflicts with function data from FDEs. 1091 bool IsSimple = true; 1092 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1093 if (FDEI != CFIRdWrt->getFDEs().end()) { 1094 const dwarf::FDE &FDE = *FDEI->second; 1095 if (FDEI->first != Address) { 1096 // There's no matching starting address in FDE. Make sure the previous 1097 // FDE does not contain this address. 1098 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1099 --FDEI; 1100 const dwarf::FDE &PrevFDE = *FDEI->second; 1101 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1102 uint64_t PrevLength = PrevFDE.getAddressRange(); 1103 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1104 errs() << "BOLT-ERROR: function " << UniqueName 1105 << " is in conflict with FDE [" 1106 << Twine::utohexstr(PrevStart) << ", " 1107 << Twine::utohexstr(PrevStart + PrevLength) 1108 << "). Skipping.\n"; 1109 IsSimple = false; 1110 } 1111 } 1112 } else if (FDE.getAddressRange() != SymbolSize) { 1113 if (SymbolSize) { 1114 // Function addresses match but sizes differ. 1115 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1116 << ". FDE : " << FDE.getAddressRange() 1117 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1118 } 1119 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1120 if (BC->getBinaryDataAtAddress(Address)) { 1121 BC->setBinaryDataSize(Address, SymbolSize); 1122 } else { 1123 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1124 << Twine::utohexstr(Address) << "\n"); 1125 } 1126 } 1127 } 1128 1129 BinaryFunction *BF = nullptr; 1130 // Since function may not have yet obtained its real size, do a search 1131 // using the list of registered functions instead of calling 1132 // getBinaryFunctionAtAddress(). 1133 auto BFI = BC->getBinaryFunctions().find(Address); 1134 if (BFI != BC->getBinaryFunctions().end()) { 1135 BF = &BFI->second; 1136 // Duplicate the function name. Make sure everything matches before we add 1137 // an alternative name. 1138 if (SymbolSize != BF->getSize()) { 1139 if (opts::Verbosity >= 1) { 1140 if (SymbolSize && BF->getSize()) 1141 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1142 << *BF << " and " << UniqueName << '\n'; 1143 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1144 << BF->getSize() << " new " << SymbolSize << "\n"; 1145 } 1146 BF->setSize(std::max(SymbolSize, BF->getSize())); 1147 BC->setBinaryDataSize(Address, BF->getSize()); 1148 } 1149 BF->addAlternativeName(UniqueName); 1150 } else { 1151 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1152 // Skip symbols from invalid sections 1153 if (!Section) { 1154 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1155 << Twine::utohexstr(Address) << ") does not have any section\n"; 1156 continue; 1157 } 1158 assert(Section && "section for functions must be registered"); 1159 1160 // Skip symbols from zero-sized sections. 1161 if (!Section->getSize()) 1162 continue; 1163 1164 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1165 if (!IsSimple) 1166 BF->setSimple(false); 1167 } 1168 if (!AlternativeName.empty()) 1169 BF->addAlternativeName(AlternativeName); 1170 1171 registerName(SymbolSize); 1172 PreviousFunction = BF; 1173 } 1174 1175 // Read dynamic relocation first as their presence affects the way we process 1176 // static relocations. E.g. we will ignore a static relocation at an address 1177 // that is a subject to dynamic relocation processing. 1178 processDynamicRelocations(); 1179 1180 // Process PLT section. 1181 disassemblePLT(); 1182 1183 // See if we missed any functions marked by FDE. 1184 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1185 const uint64_t Address = FDEI.first; 1186 const dwarf::FDE *FDE = FDEI.second; 1187 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1188 if (BF) 1189 continue; 1190 1191 BF = BC->getBinaryFunctionContainingAddress(Address); 1192 if (BF) { 1193 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1194 << Twine::utohexstr(Address + FDE->getAddressRange()) 1195 << ") conflicts with function " << *BF << '\n'; 1196 continue; 1197 } 1198 1199 if (opts::Verbosity >= 1) 1200 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1201 << Twine::utohexstr(Address + FDE->getAddressRange()) 1202 << ") has no corresponding symbol table entry\n"; 1203 1204 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1205 assert(Section && "cannot get section for address from FDE"); 1206 std::string FunctionName = 1207 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1208 BC->createBinaryFunction(FunctionName, *Section, Address, 1209 FDE->getAddressRange()); 1210 } 1211 1212 BC->setHasSymbolsWithFileName(SeenFileName); 1213 1214 // Now that all the functions were created - adjust their boundaries. 1215 adjustFunctionBoundaries(); 1216 1217 // Annotate functions with code/data markers in AArch64 1218 for (auto ISym = SortedMarkerSymbols.begin(); 1219 ISym != SortedMarkerSymbols.end(); ++ISym) { 1220 1221 auto *BF = 1222 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1223 1224 if (!BF) { 1225 // Stray marker 1226 continue; 1227 } 1228 const auto EntryOffset = ISym->Address - BF->getAddress(); 1229 if (ISym->Type == MarkerSymType::CODE) { 1230 BF->markCodeAtOffset(EntryOffset); 1231 continue; 1232 } 1233 if (ISym->Type == MarkerSymType::DATA) { 1234 BF->markDataAtOffset(EntryOffset); 1235 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1236 continue; 1237 } 1238 llvm_unreachable("Unknown marker"); 1239 } 1240 1241 if (opts::LinuxKernelMode) { 1242 // Read all special linux kernel sections and their relocations 1243 processLKSections(); 1244 } else { 1245 // Read all relocations now that we have binary functions mapped. 1246 processRelocations(); 1247 } 1248 } 1249 1250 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1251 uint64_t EntryAddress, 1252 uint64_t EntrySize) { 1253 if (!TargetAddress) 1254 return; 1255 1256 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1257 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1258 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1259 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1260 BF->setPLTSymbol(TargetSymbol); 1261 }; 1262 1263 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1264 if (BF && BC->isAArch64()) { 1265 // Handle IFUNC trampoline 1266 setPLTSymbol(BF, BF->getOneName()); 1267 return; 1268 } 1269 1270 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1271 if (!Rel || !Rel->Symbol) 1272 return; 1273 1274 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1275 assert(Section && "cannot get section for address"); 1276 BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, 1277 EntryAddress, 0, EntrySize, 1278 Section->getAlignment()); 1279 setPLTSymbol(BF, Rel->Symbol->getName()); 1280 } 1281 1282 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1283 const uint64_t SectionAddress = Section.getAddress(); 1284 const uint64_t SectionSize = Section.getSize(); 1285 StringRef PLTContents = Section.getContents(); 1286 ArrayRef<uint8_t> PLTData( 1287 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1288 1289 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1290 uint64_t &InstrSize) { 1291 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1292 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1293 PLTData.slice(InstrOffset), InstrAddr, 1294 nulls())) { 1295 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1296 << Section.getName() << " at offset 0x" 1297 << Twine::utohexstr(InstrOffset) << '\n'; 1298 exit(1); 1299 } 1300 }; 1301 1302 uint64_t InstrOffset = 0; 1303 // Locate new plt entry 1304 while (InstrOffset < SectionSize) { 1305 InstructionListType Instructions; 1306 MCInst Instruction; 1307 uint64_t EntryOffset = InstrOffset; 1308 uint64_t EntrySize = 0; 1309 uint64_t InstrSize; 1310 // Loop through entry instructions 1311 while (InstrOffset < SectionSize) { 1312 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1313 EntrySize += InstrSize; 1314 if (!BC->MIB->isIndirectBranch(Instruction)) { 1315 Instructions.emplace_back(Instruction); 1316 InstrOffset += InstrSize; 1317 continue; 1318 } 1319 1320 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1321 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1322 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1323 1324 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1325 break; 1326 } 1327 1328 // Branch instruction 1329 InstrOffset += InstrSize; 1330 1331 // Skip nops if any 1332 while (InstrOffset < SectionSize) { 1333 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1334 if (!BC->MIB->isNoop(Instruction)) 1335 break; 1336 1337 InstrOffset += InstrSize; 1338 } 1339 } 1340 } 1341 1342 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1343 uint64_t EntrySize) { 1344 const uint64_t SectionAddress = Section.getAddress(); 1345 const uint64_t SectionSize = Section.getSize(); 1346 StringRef PLTContents = Section.getContents(); 1347 ArrayRef<uint8_t> PLTData( 1348 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1349 1350 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1351 uint64_t &InstrSize) { 1352 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1353 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1354 PLTData.slice(InstrOffset), InstrAddr, 1355 nulls())) { 1356 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1357 << Section.getName() << " at offset 0x" 1358 << Twine::utohexstr(InstrOffset) << '\n'; 1359 exit(1); 1360 } 1361 }; 1362 1363 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1364 EntryOffset += EntrySize) { 1365 MCInst Instruction; 1366 uint64_t InstrSize, InstrOffset = EntryOffset; 1367 while (InstrOffset < EntryOffset + EntrySize) { 1368 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1369 // Check if the entry size needs adjustment. 1370 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1371 EntrySize == 8) 1372 EntrySize = 16; 1373 1374 if (BC->MIB->isIndirectBranch(Instruction)) 1375 break; 1376 1377 InstrOffset += InstrSize; 1378 } 1379 1380 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1381 continue; 1382 1383 uint64_t TargetAddress; 1384 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1385 SectionAddress + InstrOffset, 1386 InstrSize)) { 1387 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1388 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1389 exit(1); 1390 } 1391 1392 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1393 EntrySize); 1394 } 1395 } 1396 1397 void RewriteInstance::disassemblePLT() { 1398 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1399 if (BC->isAArch64()) 1400 return disassemblePLTSectionAArch64(Section); 1401 return disassemblePLTSectionX86(Section, EntrySize); 1402 }; 1403 1404 for (BinarySection &Section : BC->allocatableSections()) { 1405 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1406 if (!PLTSI) 1407 continue; 1408 1409 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1410 // If we did not register any function at the start of the section, 1411 // then it must be a general PLT entry. Add a function at the location. 1412 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1413 BC->getBinaryFunctions().end()) { 1414 BinaryFunction *BF = BC->createBinaryFunction( 1415 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1416 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1417 BF->setPseudo(true); 1418 } 1419 } 1420 } 1421 1422 void RewriteInstance::adjustFunctionBoundaries() { 1423 for (auto BFI = BC->getBinaryFunctions().begin(), 1424 BFE = BC->getBinaryFunctions().end(); 1425 BFI != BFE; ++BFI) { 1426 BinaryFunction &Function = BFI->second; 1427 const BinaryFunction *NextFunction = nullptr; 1428 if (std::next(BFI) != BFE) 1429 NextFunction = &std::next(BFI)->second; 1430 1431 // Check if it's a fragment of a function. 1432 Optional<StringRef> FragName = 1433 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1434 if (FragName) { 1435 static bool PrintedWarning = false; 1436 if (BC->HasRelocations && !PrintedWarning) { 1437 errs() << "BOLT-WARNING: split function detected on input : " 1438 << *FragName << ". The support is limited in relocation mode.\n"; 1439 PrintedWarning = true; 1440 } 1441 Function.IsFragment = true; 1442 } 1443 1444 // Check if there's a symbol or a function with a larger address in the 1445 // same section. If there is - it determines the maximum size for the 1446 // current function. Otherwise, it is the size of a containing section 1447 // the defines it. 1448 // 1449 // NOTE: ignore some symbols that could be tolerated inside the body 1450 // of a function. 1451 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1452 while (NextSymRefI != FileSymRefs.end()) { 1453 SymbolRef &Symbol = NextSymRefI->second; 1454 const uint64_t SymbolAddress = NextSymRefI->first; 1455 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1456 1457 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1458 break; 1459 1460 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1461 break; 1462 1463 // This is potentially another entry point into the function. 1464 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1465 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1466 << Function << " at offset 0x" 1467 << Twine::utohexstr(EntryOffset) << '\n'); 1468 Function.addEntryPointAtOffset(EntryOffset); 1469 1470 ++NextSymRefI; 1471 } 1472 1473 // Function runs at most till the end of the containing section. 1474 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1475 // Or till the next object marked by a symbol. 1476 if (NextSymRefI != FileSymRefs.end()) 1477 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1478 1479 // Or till the next function not marked by a symbol. 1480 if (NextFunction) 1481 NextObjectAddress = 1482 std::min(NextFunction->getAddress(), NextObjectAddress); 1483 1484 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1485 if (MaxSize < Function.getSize()) { 1486 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1487 << Function << ". Skipping.\n"; 1488 Function.setSimple(false); 1489 Function.setMaxSize(Function.getSize()); 1490 continue; 1491 } 1492 Function.setMaxSize(MaxSize); 1493 if (!Function.getSize() && Function.isSimple()) { 1494 // Some assembly functions have their size set to 0, use the max 1495 // size as their real size. 1496 if (opts::Verbosity >= 1) 1497 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1498 << Function.getMaxSize() << " (was 0)\n"; 1499 Function.setSize(Function.getMaxSize()); 1500 } 1501 } 1502 } 1503 1504 void RewriteInstance::relocateEHFrameSection() { 1505 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1506 1507 DWARFDataExtractor DE(EHFrameSection->getContents(), 1508 BC->AsmInfo->isLittleEndian(), 1509 BC->AsmInfo->getCodePointerSize()); 1510 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1511 if (DwarfType == dwarf::DW_EH_PE_omit) 1512 return; 1513 1514 // Only fix references that are relative to other locations. 1515 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1516 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1517 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1518 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1519 return; 1520 1521 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1522 return; 1523 1524 uint64_t RelType; 1525 switch (DwarfType & 0x0f) { 1526 default: 1527 llvm_unreachable("unsupported DWARF encoding type"); 1528 case dwarf::DW_EH_PE_sdata4: 1529 case dwarf::DW_EH_PE_udata4: 1530 RelType = Relocation::getPC32(); 1531 Offset -= 4; 1532 break; 1533 case dwarf::DW_EH_PE_sdata8: 1534 case dwarf::DW_EH_PE_udata8: 1535 RelType = Relocation::getPC64(); 1536 Offset -= 8; 1537 break; 1538 } 1539 1540 // Create a relocation against an absolute value since the goal is to 1541 // preserve the contents of the section independent of the new values 1542 // of referenced symbols. 1543 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1544 }; 1545 1546 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1547 check_error(std::move(E), "failed to patch EH frame"); 1548 } 1549 1550 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1551 return ArrayRef<uint8_t>(LSDASection->getData(), 1552 LSDASection->getContents().size()); 1553 } 1554 1555 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1556 1557 Error RewriteInstance::readSpecialSections() { 1558 NamedRegionTimer T("readSpecialSections", "read special sections", 1559 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1560 1561 bool HasTextRelocations = false; 1562 bool HasDebugInfo = false; 1563 1564 // Process special sections. 1565 for (const SectionRef &Section : InputFile->sections()) { 1566 Expected<StringRef> SectionNameOrErr = Section.getName(); 1567 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1568 StringRef SectionName = *SectionNameOrErr; 1569 1570 // Only register sections with names. 1571 if (!SectionName.empty()) { 1572 if (Error E = Section.getContents().takeError()) 1573 return E; 1574 BC->registerSection(Section); 1575 LLVM_DEBUG( 1576 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1577 << Twine::utohexstr(Section.getAddress()) << ":0x" 1578 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1579 << "\n"); 1580 if (isDebugSection(SectionName)) 1581 HasDebugInfo = true; 1582 if (isKSymtabSection(SectionName)) 1583 opts::LinuxKernelMode = true; 1584 } 1585 } 1586 1587 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1588 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1589 "Use -update-debug-sections to keep it.\n"; 1590 } 1591 1592 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1593 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1594 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1595 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1596 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1597 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1598 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1599 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1600 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1601 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1602 1603 if (ErrorOr<BinarySection &> BATSec = 1604 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1605 // Do not read BAT when plotting a heatmap 1606 if (!opts::HeatmapMode) { 1607 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1608 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1609 "table.\n"; 1610 exit(1); 1611 } 1612 } 1613 } 1614 1615 if (opts::PrintSections) { 1616 outs() << "BOLT-INFO: Sections from original binary:\n"; 1617 BC->printSections(outs()); 1618 } 1619 1620 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1621 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1622 "file. Cannot proceed in relocations mode (-relocs).\n"; 1623 exit(1); 1624 } 1625 1626 BC->HasRelocations = 1627 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1628 1629 // Force non-relocation mode for heatmap generation 1630 if (opts::HeatmapMode) 1631 BC->HasRelocations = false; 1632 1633 if (BC->HasRelocations) 1634 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1635 << "relocation mode\n"; 1636 1637 // Read EH frame for function boundaries info. 1638 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1639 if (!EHFrameOrError) 1640 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1641 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1642 1643 // Parse build-id 1644 parseBuildID(); 1645 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1646 BC->setFileBuildID(*FileBuildID); 1647 1648 parseSDTNotes(); 1649 1650 // Read .dynamic/PT_DYNAMIC. 1651 return readELFDynamic(); 1652 } 1653 1654 void RewriteInstance::adjustCommandLineOptions() { 1655 if (BC->isAArch64() && !BC->HasRelocations) 1656 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1657 "supported\n"; 1658 1659 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1660 RtLibrary->adjustCommandLineOptions(*BC); 1661 1662 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1663 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1664 opts::AlignMacroOpFusion = MFT_NONE; 1665 } 1666 1667 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1668 if (!BC->HasRelocations) { 1669 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1670 "non-relocation mode\n"; 1671 exit(1); 1672 } 1673 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1674 "may take several minutes\n"; 1675 opts::AlignMacroOpFusion = MFT_NONE; 1676 } 1677 1678 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1679 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1680 "mode\n"; 1681 opts::AlignMacroOpFusion = MFT_NONE; 1682 } 1683 1684 if (opts::SplitEH && !BC->HasRelocations) { 1685 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1686 opts::SplitEH = false; 1687 } 1688 1689 if (opts::SplitEH && !BC->HasFixedLoadAddress) { 1690 errs() << "BOLT-WARNING: disabling -split-eh for shared object\n"; 1691 opts::SplitEH = false; 1692 } 1693 1694 if (opts::StrictMode && !BC->HasRelocations) { 1695 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1696 "mode\n"; 1697 opts::StrictMode = false; 1698 } 1699 1700 if (BC->HasRelocations && opts::AggregateOnly && 1701 !opts::StrictMode.getNumOccurrences()) { 1702 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1703 "purposes\n"; 1704 opts::StrictMode = true; 1705 } 1706 1707 if (BC->isX86() && BC->HasRelocations && 1708 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1709 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1710 "was specified\n"; 1711 opts::AlignMacroOpFusion = MFT_ALL; 1712 } 1713 1714 if (!BC->HasRelocations && 1715 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1716 errs() << "BOLT-ERROR: function reordering only works when " 1717 << "relocations are enabled\n"; 1718 exit(1); 1719 } 1720 1721 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1722 !opts::HotText.getNumOccurrences()) { 1723 opts::HotText = true; 1724 } else if (opts::HotText && !BC->HasRelocations) { 1725 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1726 opts::HotText = false; 1727 } 1728 1729 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1730 opts::HotTextMoveSections.addValue(".stub"); 1731 opts::HotTextMoveSections.addValue(".mover"); 1732 opts::HotTextMoveSections.addValue(".never_hugify"); 1733 } 1734 1735 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1736 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1737 "\n"; 1738 opts::UseOldText = false; 1739 } 1740 if (opts::UseOldText && !BC->HasRelocations) { 1741 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1742 opts::UseOldText = false; 1743 } 1744 1745 if (!opts::AlignText.getNumOccurrences()) 1746 opts::AlignText = BC->PageAlign; 1747 1748 if (opts::AlignText < opts::AlignFunctions) 1749 opts::AlignText = (unsigned)opts::AlignFunctions; 1750 1751 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1752 !opts::UseOldText) 1753 opts::Lite = true; 1754 1755 if (opts::Lite && opts::UseOldText) { 1756 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1757 "Disabling -use-old-text.\n"; 1758 opts::UseOldText = false; 1759 } 1760 1761 if (opts::Lite && opts::StrictMode) { 1762 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1763 exit(1); 1764 } 1765 1766 if (opts::Lite) 1767 outs() << "BOLT-INFO: enabling lite mode\n"; 1768 1769 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1770 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1771 "file processed by BOLT. Please remove -w option and use branch " 1772 "profile.\n"; 1773 exit(1); 1774 } 1775 } 1776 1777 namespace { 1778 template <typename ELFT> 1779 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1780 const RelocationRef &RelRef) { 1781 using ELFShdrTy = typename ELFT::Shdr; 1782 using Elf_Rela = typename ELFT::Rela; 1783 int64_t Addend = 0; 1784 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1785 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1786 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1787 switch (RelocationSection->sh_type) { 1788 default: 1789 llvm_unreachable("unexpected relocation section type"); 1790 case ELF::SHT_REL: 1791 break; 1792 case ELF::SHT_RELA: { 1793 const Elf_Rela *RelA = Obj->getRela(Rel); 1794 Addend = RelA->r_addend; 1795 break; 1796 } 1797 } 1798 1799 return Addend; 1800 } 1801 1802 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1803 const RelocationRef &Rel) { 1804 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1805 return getRelocationAddend(ELF32LE, Rel); 1806 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1807 return getRelocationAddend(ELF64LE, Rel); 1808 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1809 return getRelocationAddend(ELF32BE, Rel); 1810 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1811 return getRelocationAddend(ELF64BE, Rel); 1812 } 1813 1814 template <typename ELFT> 1815 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1816 const RelocationRef &RelRef) { 1817 using ELFShdrTy = typename ELFT::Shdr; 1818 uint32_t Symbol = 0; 1819 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1820 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1821 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1822 switch (RelocationSection->sh_type) { 1823 default: 1824 llvm_unreachable("unexpected relocation section type"); 1825 case ELF::SHT_REL: 1826 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1827 break; 1828 case ELF::SHT_RELA: 1829 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1830 break; 1831 } 1832 1833 return Symbol; 1834 } 1835 1836 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1837 const RelocationRef &Rel) { 1838 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1839 return getRelocationSymbol(ELF32LE, Rel); 1840 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1841 return getRelocationSymbol(ELF64LE, Rel); 1842 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1843 return getRelocationSymbol(ELF32BE, Rel); 1844 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1845 return getRelocationSymbol(ELF64BE, Rel); 1846 } 1847 } // anonymous namespace 1848 1849 bool RewriteInstance::analyzeRelocation( 1850 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1851 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1852 uint64_t &ExtractedValue, bool &Skip) const { 1853 Skip = false; 1854 if (!Relocation::isSupported(RType)) 1855 return false; 1856 1857 const bool IsAArch64 = BC->isAArch64(); 1858 1859 const size_t RelSize = Relocation::getSizeForType(RType); 1860 1861 ErrorOr<uint64_t> Value = 1862 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1863 assert(Value && "failed to extract relocated value"); 1864 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1865 return true; 1866 1867 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1868 Addend = getRelocationAddend(InputFile, Rel); 1869 1870 const bool IsPCRelative = Relocation::isPCRelative(RType); 1871 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1872 bool SkipVerification = false; 1873 auto SymbolIter = Rel.getSymbol(); 1874 if (SymbolIter == InputFile->symbol_end()) { 1875 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1876 MCSymbol *RelSymbol = 1877 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1878 SymbolName = std::string(RelSymbol->getName()); 1879 IsSectionRelocation = false; 1880 } else { 1881 const SymbolRef &Symbol = *SymbolIter; 1882 SymbolName = std::string(cantFail(Symbol.getName())); 1883 SymbolAddress = cantFail(Symbol.getAddress()); 1884 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1885 // Section symbols are marked as ST_Debug. 1886 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1887 // Check for PLT entry registered with symbol name 1888 if (!SymbolAddress && IsAArch64) { 1889 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 1890 SymbolAddress = BD ? BD->getAddress() : 0; 1891 } 1892 } 1893 // For PIE or dynamic libs, the linker may choose not to put the relocation 1894 // result at the address if it is a X86_64_64 one because it will emit a 1895 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1896 // resolve it at run time. The static relocation result goes as the addend 1897 // of the dynamic relocation in this case. We can't verify these cases. 1898 // FIXME: perhaps we can try to find if it really emitted a corresponding 1899 // RELATIVE relocation at this offset with the correct value as the addend. 1900 if (!BC->HasFixedLoadAddress && RelSize == 8) 1901 SkipVerification = true; 1902 1903 if (IsSectionRelocation && !IsAArch64) { 1904 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1905 assert(Section && "section expected for section relocation"); 1906 SymbolName = "section " + std::string(Section->getName()); 1907 // Convert section symbol relocations to regular relocations inside 1908 // non-section symbols. 1909 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1910 SymbolAddress = ExtractedValue; 1911 Addend = 0; 1912 } else { 1913 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1914 } 1915 } 1916 1917 // If no symbol has been found or if it is a relocation requiring the 1918 // creation of a GOT entry, do not link against the symbol but against 1919 // whatever address was extracted from the instruction itself. We are 1920 // not creating a GOT entry as this was already processed by the linker. 1921 // For GOT relocs, do not subtract addend as the addend does not refer 1922 // to this instruction's target, but it refers to the target in the GOT 1923 // entry. 1924 if (Relocation::isGOT(RType)) { 1925 Addend = 0; 1926 SymbolAddress = ExtractedValue + PCRelOffset; 1927 } else if (Relocation::isTLS(RType)) { 1928 SkipVerification = true; 1929 } else if (!SymbolAddress) { 1930 assert(!IsSectionRelocation); 1931 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1932 SymbolAddress = 1933 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1934 } else { 1935 // This is weird case. The extracted value is zero but the addend is 1936 // non-zero and the relocation is not pc-rel. Using the previous logic, 1937 // the SymbolAddress would end up as a huge number. Seen in 1938 // exceptions_pic.test. 1939 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1940 << Twine::utohexstr(Rel.getOffset()) 1941 << " value does not match addend for " 1942 << "relocation to undefined symbol.\n"); 1943 return true; 1944 } 1945 } 1946 1947 auto verifyExtractedValue = [&]() { 1948 if (SkipVerification) 1949 return true; 1950 1951 if (IsAArch64) 1952 return true; 1953 1954 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1955 return true; 1956 1957 if (RType == ELF::R_X86_64_PLT32) 1958 return true; 1959 1960 return truncateToSize(ExtractedValue, RelSize) == 1961 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1962 }; 1963 1964 (void)verifyExtractedValue; 1965 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1966 1967 return true; 1968 } 1969 1970 void RewriteInstance::processDynamicRelocations() { 1971 // Read relocations for PLT - DT_JMPREL. 1972 if (PLTRelocationsSize > 0) { 1973 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1974 BC->getSectionForAddress(*PLTRelocationsAddress); 1975 if (!PLTRelSectionOrErr) 1976 report_error("unable to find section corresponding to DT_JMPREL", 1977 PLTRelSectionOrErr.getError()); 1978 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1979 report_error("section size mismatch for DT_PLTRELSZ", 1980 errc::executable_format_error); 1981 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1982 /*IsJmpRel*/ true); 1983 } 1984 1985 // The rest of dynamic relocations - DT_RELA. 1986 if (DynamicRelocationsSize > 0) { 1987 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1988 BC->getSectionForAddress(*DynamicRelocationsAddress); 1989 if (!DynamicRelSectionOrErr) 1990 report_error("unable to find section corresponding to DT_RELA", 1991 DynamicRelSectionOrErr.getError()); 1992 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1993 report_error("section size mismatch for DT_RELASZ", 1994 errc::executable_format_error); 1995 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1996 /*IsJmpRel*/ false); 1997 } 1998 } 1999 2000 void RewriteInstance::processRelocations() { 2001 if (!BC->HasRelocations) 2002 return; 2003 2004 for (const SectionRef &Section : InputFile->sections()) { 2005 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 2006 !BinarySection(*BC, Section).isAllocatable()) 2007 readRelocations(Section); 2008 } 2009 2010 if (NumFailedRelocations) 2011 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2012 << " relocations\n"; 2013 } 2014 2015 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 2016 int32_t PCRelativeOffset, 2017 bool IsPCRelative, StringRef SectionName) { 2018 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2019 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2020 } 2021 2022 void RewriteInstance::processLKSections() { 2023 assert(opts::LinuxKernelMode && 2024 "process Linux Kernel special sections and their relocations only in " 2025 "linux kernel mode.\n"); 2026 2027 processLKExTable(); 2028 processLKPCIFixup(); 2029 processLKKSymtab(); 2030 processLKKSymtab(true); 2031 processLKBugTable(); 2032 processLKSMPLocks(); 2033 } 2034 2035 /// Process __ex_table section of Linux Kernel. 2036 /// This section contains information regarding kernel level exception 2037 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2038 /// More documentation is in arch/x86/include/asm/extable.h. 2039 /// 2040 /// The section is the list of the following structures: 2041 /// 2042 /// struct exception_table_entry { 2043 /// int insn; 2044 /// int fixup; 2045 /// int handler; 2046 /// }; 2047 /// 2048 void RewriteInstance::processLKExTable() { 2049 ErrorOr<BinarySection &> SectionOrError = 2050 BC->getUniqueSectionByName("__ex_table"); 2051 if (!SectionOrError) 2052 return; 2053 2054 const uint64_t SectionSize = SectionOrError->getSize(); 2055 const uint64_t SectionAddress = SectionOrError->getAddress(); 2056 assert((SectionSize % 12) == 0 && 2057 "The size of the __ex_table section should be a multiple of 12"); 2058 for (uint64_t I = 0; I < SectionSize; I += 4) { 2059 const uint64_t EntryAddress = SectionAddress + I; 2060 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2061 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2062 int32_t SignedOffset = *Offset; 2063 const uint64_t RefAddress = EntryAddress + SignedOffset; 2064 2065 BinaryFunction *ContainingBF = 2066 BC->getBinaryFunctionContainingAddress(RefAddress); 2067 if (!ContainingBF) 2068 continue; 2069 2070 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2071 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2072 switch (I % 12) { 2073 default: 2074 llvm_unreachable("bad alignment of __ex_table"); 2075 break; 2076 case 0: 2077 // insn 2078 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2079 break; 2080 case 4: 2081 // fixup 2082 if (FunctionOffset) 2083 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2084 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2085 0, *Offset); 2086 break; 2087 case 8: 2088 // handler 2089 assert(!FunctionOffset && 2090 "__ex_table handler entry should point to function start"); 2091 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2092 0, *Offset); 2093 break; 2094 } 2095 } 2096 } 2097 2098 /// Process .pci_fixup section of Linux Kernel. 2099 /// This section contains a list of entries for different PCI devices and their 2100 /// corresponding hook handler (code pointer where the fixup 2101 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2102 /// Documentation is in include/linux/pci.h. 2103 void RewriteInstance::processLKPCIFixup() { 2104 ErrorOr<BinarySection &> SectionOrError = 2105 BC->getUniqueSectionByName(".pci_fixup"); 2106 assert(SectionOrError && 2107 ".pci_fixup section not found in Linux Kernel binary"); 2108 const uint64_t SectionSize = SectionOrError->getSize(); 2109 const uint64_t SectionAddress = SectionOrError->getAddress(); 2110 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2111 2112 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2113 const uint64_t PC = SectionAddress + I; 2114 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2115 assert(Offset && "cannot read value from .pci_fixup"); 2116 const int32_t SignedOffset = *Offset; 2117 const uint64_t HookupAddress = PC + SignedOffset; 2118 BinaryFunction *HookupFunction = 2119 BC->getBinaryFunctionAtAddress(HookupAddress); 2120 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2121 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2122 *Offset); 2123 } 2124 } 2125 2126 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2127 /// This section lists all the vmlinux symbols that kernel modules can access. 2128 /// 2129 /// All the entries are 4 bytes each and hence we can read them by one by one 2130 /// and ignore the ones that are not pointing to the .text section. All pointers 2131 /// are PC relative offsets. Always, points to the beginning of the function. 2132 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2133 StringRef SectionName = "__ksymtab"; 2134 if (IsGPL) 2135 SectionName = "__ksymtab_gpl"; 2136 ErrorOr<BinarySection &> SectionOrError = 2137 BC->getUniqueSectionByName(SectionName); 2138 assert(SectionOrError && 2139 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2140 const uint64_t SectionSize = SectionOrError->getSize(); 2141 const uint64_t SectionAddress = SectionOrError->getAddress(); 2142 assert((SectionSize % 4) == 0 && 2143 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2144 2145 for (uint64_t I = 0; I < SectionSize; I += 4) { 2146 const uint64_t EntryAddress = SectionAddress + I; 2147 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2148 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2149 const int32_t SignedOffset = *Offset; 2150 const uint64_t RefAddress = EntryAddress + SignedOffset; 2151 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2152 if (!BF) 2153 continue; 2154 2155 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2156 *Offset); 2157 } 2158 } 2159 2160 /// Process __bug_table section. 2161 /// This section contains information useful for kernel debugging. 2162 /// Each entry in the section is a struct bug_entry that contains a pointer to 2163 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2164 /// pointers use PC relative offset addressing), line number, and flags. 2165 /// The definition of the struct bug_entry can be found in 2166 /// `include/asm-generic/bug.h` 2167 void RewriteInstance::processLKBugTable() { 2168 ErrorOr<BinarySection &> SectionOrError = 2169 BC->getUniqueSectionByName("__bug_table"); 2170 if (!SectionOrError) 2171 return; 2172 2173 const uint64_t SectionSize = SectionOrError->getSize(); 2174 const uint64_t SectionAddress = SectionOrError->getAddress(); 2175 assert((SectionSize % 12) == 0 && 2176 "The size of the __bug_table section should be a multiple of 12"); 2177 for (uint64_t I = 0; I < SectionSize; I += 12) { 2178 const uint64_t EntryAddress = SectionAddress + I; 2179 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2180 assert(Offset && 2181 "Reading valid PC-relative offset for a __bug_table entry"); 2182 const int32_t SignedOffset = *Offset; 2183 const uint64_t RefAddress = EntryAddress + SignedOffset; 2184 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2185 "__bug_table entries should point to a function"); 2186 2187 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2188 } 2189 } 2190 2191 /// .smp_locks section contains PC-relative references to instructions with LOCK 2192 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2193 void RewriteInstance::processLKSMPLocks() { 2194 ErrorOr<BinarySection &> SectionOrError = 2195 BC->getUniqueSectionByName(".smp_locks"); 2196 if (!SectionOrError) 2197 return; 2198 2199 uint64_t SectionSize = SectionOrError->getSize(); 2200 const uint64_t SectionAddress = SectionOrError->getAddress(); 2201 assert((SectionSize % 4) == 0 && 2202 "The size of the .smp_locks section should be a multiple of 4"); 2203 2204 for (uint64_t I = 0; I < SectionSize; I += 4) { 2205 const uint64_t EntryAddress = SectionAddress + I; 2206 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2207 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2208 int32_t SignedOffset = *Offset; 2209 uint64_t RefAddress = EntryAddress + SignedOffset; 2210 2211 BinaryFunction *ContainingBF = 2212 BC->getBinaryFunctionContainingAddress(RefAddress); 2213 if (!ContainingBF) 2214 continue; 2215 2216 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2217 } 2218 } 2219 2220 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2221 bool IsJmpRel) { 2222 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2223 2224 LLVM_DEBUG({ 2225 StringRef SectionName = cantFail(Section.getName()); 2226 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2227 << ":\n"; 2228 }); 2229 2230 for (const RelocationRef &Rel : Section.relocations()) { 2231 const uint64_t RType = Rel.getType(); 2232 if (Relocation::isNone(RType)) 2233 continue; 2234 2235 StringRef SymbolName = "<none>"; 2236 MCSymbol *Symbol = nullptr; 2237 uint64_t SymbolAddress = 0; 2238 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2239 2240 symbol_iterator SymbolIter = Rel.getSymbol(); 2241 if (SymbolIter != InputFile->symbol_end()) { 2242 SymbolName = cantFail(SymbolIter->getName()); 2243 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2244 Symbol = BD ? BD->getSymbol() 2245 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2246 SymbolAddress = cantFail(SymbolIter->getAddress()); 2247 (void)SymbolAddress; 2248 } 2249 2250 LLVM_DEBUG( 2251 SmallString<16> TypeName; 2252 Rel.getTypeName(TypeName); 2253 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2254 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2255 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2256 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2257 ); 2258 2259 if (IsJmpRel) 2260 IsJmpRelocation[RType] = true; 2261 2262 if (Symbol) 2263 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2264 2265 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2266 } 2267 } 2268 2269 void RewriteInstance::readRelocations(const SectionRef &Section) { 2270 LLVM_DEBUG({ 2271 StringRef SectionName = cantFail(Section.getName()); 2272 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2273 << ":\n"; 2274 }); 2275 if (BinarySection(*BC, Section).isAllocatable()) { 2276 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2277 return; 2278 } 2279 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2280 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2281 SectionRef RelocatedSection = *SecIter; 2282 2283 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2284 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2285 << RelocatedSectionName << '\n'); 2286 2287 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2288 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2289 << "non-allocatable section\n"); 2290 return; 2291 } 2292 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2293 .Cases(".plt", ".rela.plt", ".got.plt", 2294 ".eh_frame", ".gcc_except_table", true) 2295 .Default(false); 2296 if (SkipRelocs) { 2297 LLVM_DEBUG( 2298 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2299 return; 2300 } 2301 2302 const bool IsAArch64 = BC->isAArch64(); 2303 const bool IsFromCode = RelocatedSection.isText(); 2304 2305 auto printRelocationInfo = [&](const RelocationRef &Rel, 2306 StringRef SymbolName, 2307 uint64_t SymbolAddress, 2308 uint64_t Addend, 2309 uint64_t ExtractedValue) { 2310 SmallString<16> TypeName; 2311 Rel.getTypeName(TypeName); 2312 const uint64_t Address = SymbolAddress + Addend; 2313 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2314 dbgs() << "Relocation: offset = 0x" 2315 << Twine::utohexstr(Rel.getOffset()) 2316 << "; type = " << TypeName 2317 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2318 << "; symbol = " << SymbolName 2319 << " (" << (Section ? Section->getName() : "") << ")" 2320 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2321 << "; addend = 0x" << Twine::utohexstr(Addend) 2322 << "; address = 0x" << Twine::utohexstr(Address) 2323 << "; in = "; 2324 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2325 Rel.getOffset(), false, IsAArch64)) 2326 dbgs() << Func->getPrintName() << "\n"; 2327 else 2328 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2329 }; 2330 2331 for (const RelocationRef &Rel : Section.relocations()) { 2332 SmallString<16> TypeName; 2333 Rel.getTypeName(TypeName); 2334 uint64_t RType = Rel.getType(); 2335 if (Relocation::skipRelocationType(RType)) 2336 continue; 2337 2338 // Adjust the relocation type as the linker might have skewed it. 2339 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2340 if (opts::Verbosity >= 1) 2341 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2342 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2343 } 2344 2345 if (Relocation::isTLS(RType)) { 2346 // No special handling required for TLS relocations on X86. 2347 if (BC->isX86()) 2348 continue; 2349 2350 // The non-got related TLS relocations on AArch64 also could be skipped. 2351 if (!Relocation::isGOT(RType)) 2352 continue; 2353 } 2354 2355 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2356 LLVM_DEBUG( 2357 dbgs() << "BOLT-DEBUG: address 0x" 2358 << Twine::utohexstr(Rel.getOffset()) 2359 << " has a dynamic relocation against it. Ignoring static " 2360 "relocation.\n"); 2361 continue; 2362 } 2363 2364 std::string SymbolName; 2365 uint64_t SymbolAddress; 2366 int64_t Addend; 2367 uint64_t ExtractedValue; 2368 bool IsSectionRelocation; 2369 bool Skip; 2370 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2371 SymbolAddress, Addend, ExtractedValue, Skip)) { 2372 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2373 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2374 << "; type name = " << TypeName << '\n'); 2375 ++NumFailedRelocations; 2376 continue; 2377 } 2378 2379 if (Skip) { 2380 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2381 << Twine::utohexstr(Rel.getOffset()) 2382 << "; type name = " << TypeName << '\n'); 2383 continue; 2384 } 2385 2386 const uint64_t Address = SymbolAddress + Addend; 2387 2388 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2389 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2390 2391 BinaryFunction *ContainingBF = nullptr; 2392 if (IsFromCode) { 2393 ContainingBF = 2394 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2395 /*CheckPastEnd*/ false, 2396 /*UseMaxSize*/ true); 2397 assert(ContainingBF && "cannot find function for address in code"); 2398 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2399 if (opts::Verbosity >= 1) 2400 outs() << "BOLT-INFO: " << *ContainingBF 2401 << " has relocations in padding area\n"; 2402 ContainingBF->setSize(ContainingBF->getMaxSize()); 2403 ContainingBF->setSimple(false); 2404 continue; 2405 } 2406 } 2407 2408 MCSymbol *ReferencedSymbol = nullptr; 2409 if (!IsSectionRelocation) 2410 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2411 ReferencedSymbol = BD->getSymbol(); 2412 2413 ErrorOr<BinarySection &> ReferencedSection = 2414 BC->getSectionForAddress(SymbolAddress); 2415 2416 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2417 2418 // Special handling of PC-relative relocations. 2419 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2420 if (!IsFromCode && IsToCode) { 2421 // PC-relative relocations from data to code are tricky since the 2422 // original information is typically lost after linking, even with 2423 // '--emit-relocs'. Such relocations are normally used by PIC-style 2424 // jump tables and they reference both the jump table and jump 2425 // targets by computing the difference between the two. If we blindly 2426 // apply the relocation, it will appear that it references an arbitrary 2427 // location in the code, possibly in a different function from the one 2428 // containing the jump table. 2429 // 2430 // For that reason, we only register the fact that there is a 2431 // PC-relative relocation at a given address against the code. 2432 // The actual referenced label/address will be determined during jump 2433 // table analysis. 2434 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2435 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2436 // If we know the referenced symbol, register the relocation from 2437 // the code. It's required to properly handle cases where 2438 // "symbol + addend" references an object different from "symbol". 2439 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2440 Addend, ExtractedValue); 2441 } else { 2442 LLVM_DEBUG( 2443 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2444 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2445 << "\n"); 2446 } 2447 2448 continue; 2449 } 2450 2451 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2452 if (BC->isAArch64() && Relocation::isGOT(RType)) 2453 ForceRelocation = true; 2454 2455 if (!ReferencedSection && !ForceRelocation) { 2456 LLVM_DEBUG( 2457 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2458 continue; 2459 } 2460 2461 // Occasionally we may see a reference past the last byte of the function 2462 // typically as a result of __builtin_unreachable(). Check it here. 2463 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2464 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2465 2466 if (!IsSectionRelocation) { 2467 if (BinaryFunction *BF = 2468 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2469 if (BF != ReferencedBF) { 2470 // It's possible we are referencing a function without referencing any 2471 // code, e.g. when taking a bitmask action on a function address. 2472 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2473 "bitmask) detected against function " 2474 << *BF; 2475 if (IsFromCode) 2476 errs() << " from function " << *ContainingBF << '\n'; 2477 else 2478 errs() << " from data section at 0x" 2479 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2480 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2481 ExtractedValue)); 2482 ReferencedBF = BF; 2483 } 2484 } 2485 } else if (ReferencedBF) { 2486 assert(ReferencedSection && "section expected for section relocation"); 2487 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2488 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2489 ReferencedBF = nullptr; 2490 } 2491 } 2492 2493 // Workaround for a member function pointer de-virtualization bug. We check 2494 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2495 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2496 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2497 if (const BinaryFunction *RogueBF = 2498 BC->getBinaryFunctionAtAddress(Address + 1)) { 2499 // Do an extra check that the function was referenced previously. 2500 // It's a linear search, but it should rarely happen. 2501 bool Found = false; 2502 for (const auto &RelKV : ContainingBF->Relocations) { 2503 const Relocation &Rel = RelKV.second; 2504 if (Rel.Symbol == RogueBF->getSymbol() && 2505 !Relocation::isPCRelative(Rel.Type)) { 2506 Found = true; 2507 break; 2508 } 2509 } 2510 2511 if (Found) { 2512 errs() << "BOLT-WARNING: detected possible compiler " 2513 "de-virtualization bug: -1 addend used with " 2514 "non-pc-relative relocation against function " 2515 << *RogueBF << " in function " << *ContainingBF << '\n'; 2516 continue; 2517 } 2518 } 2519 } 2520 2521 if (ForceRelocation) { 2522 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2523 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2524 SymbolAddress = 0; 2525 if (Relocation::isGOT(RType)) 2526 Addend = Address; 2527 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2528 << SymbolName << " with addend " << Addend << '\n'); 2529 } else if (ReferencedBF) { 2530 ReferencedSymbol = ReferencedBF->getSymbol(); 2531 uint64_t RefFunctionOffset = 0; 2532 2533 // Adjust the point of reference to a code location inside a function. 2534 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2535 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2536 if (RefFunctionOffset) { 2537 if (ContainingBF && ContainingBF != ReferencedBF) { 2538 ReferencedSymbol = 2539 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2540 } else { 2541 ReferencedSymbol = 2542 ReferencedBF->getOrCreateLocalLabel(Address, 2543 /*CreatePastEnd =*/true); 2544 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2545 } 2546 if (opts::Verbosity > 1 && 2547 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2548 errs() << "BOLT-WARNING: writable reference into the middle of " 2549 << "the function " << *ReferencedBF 2550 << " detected at address 0x" 2551 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2552 } 2553 SymbolAddress = Address; 2554 Addend = 0; 2555 } 2556 LLVM_DEBUG( 2557 dbgs() << " referenced function " << *ReferencedBF; 2558 if (Address != ReferencedBF->getAddress()) 2559 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2560 dbgs() << '\n' 2561 ); 2562 } else { 2563 if (IsToCode && SymbolAddress) { 2564 // This can happen e.g. with PIC-style jump tables. 2565 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2566 "relocation against code\n"); 2567 } 2568 2569 // In AArch64 there are zero reasons to keep a reference to the 2570 // "original" symbol plus addend. The original symbol is probably just a 2571 // section symbol. If we are here, this means we are probably accessing 2572 // data, so it is imperative to keep the original address. 2573 if (IsAArch64) { 2574 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2575 SymbolAddress = Address; 2576 Addend = 0; 2577 } 2578 2579 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2580 // Note: this assertion is trying to check sanity of BinaryData objects 2581 // but AArch64 has inferred and incomplete object locations coming from 2582 // GOT/TLS or any other non-trivial relocation (that requires creation 2583 // of sections and whose symbol address is not really what should be 2584 // encoded in the instruction). So we essentially disabled this check 2585 // for AArch64 and live with bogus names for objects. 2586 assert((IsAArch64 || IsSectionRelocation || 2587 BD->nameStartsWith(SymbolName) || 2588 BD->nameStartsWith("PG" + SymbolName) || 2589 (BD->nameStartsWith("ANONYMOUS") && 2590 (BD->getSectionName().startswith(".plt") || 2591 BD->getSectionName().endswith(".plt")))) && 2592 "BOLT symbol names of all non-section relocations must match " 2593 "up with symbol names referenced in the relocation"); 2594 2595 if (IsSectionRelocation) 2596 BC->markAmbiguousRelocations(*BD, Address); 2597 2598 ReferencedSymbol = BD->getSymbol(); 2599 Addend += (SymbolAddress - BD->getAddress()); 2600 SymbolAddress = BD->getAddress(); 2601 assert(Address == SymbolAddress + Addend); 2602 } else { 2603 // These are mostly local data symbols but undefined symbols 2604 // in relocation sections can get through here too, from .plt. 2605 assert( 2606 (IsAArch64 || IsSectionRelocation || 2607 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2608 "known symbols should not resolve to anonymous locals"); 2609 2610 if (IsSectionRelocation) { 2611 ReferencedSymbol = 2612 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2613 } else { 2614 SymbolRef Symbol = *Rel.getSymbol(); 2615 const uint64_t SymbolSize = 2616 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2617 const uint64_t SymbolAlignment = 2618 IsAArch64 ? 1 : Symbol.getAlignment(); 2619 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2620 std::string Name; 2621 if (SymbolFlags & SymbolRef::SF_Global) { 2622 Name = SymbolName; 2623 } else { 2624 if (StringRef(SymbolName) 2625 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2626 Name = NR.uniquify("PG" + SymbolName); 2627 else 2628 Name = NR.uniquify(SymbolName); 2629 } 2630 ReferencedSymbol = BC->registerNameAtAddress( 2631 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2632 } 2633 2634 if (IsSectionRelocation) { 2635 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2636 BC->markAmbiguousRelocations(*BD, Address); 2637 } 2638 } 2639 } 2640 2641 auto checkMaxDataRelocations = [&]() { 2642 ++NumDataRelocations; 2643 if (opts::MaxDataRelocations && 2644 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2645 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2646 << NumDataRelocations << ": "); 2647 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2648 Addend, ExtractedValue); 2649 } 2650 2651 return (!opts::MaxDataRelocations || 2652 NumDataRelocations < opts::MaxDataRelocations); 2653 }; 2654 2655 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2656 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2657 ForceRelocation = true; 2658 2659 if (IsFromCode) { 2660 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2661 Addend, ExtractedValue); 2662 } else if (IsToCode || ForceRelocation) { 2663 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2664 ExtractedValue); 2665 } else { 2666 LLVM_DEBUG( 2667 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2668 } 2669 } 2670 } 2671 2672 void RewriteInstance::selectFunctionsToProcess() { 2673 // Extend the list of functions to process or skip from a file. 2674 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2675 cl::list<std::string> &FunctionNames) { 2676 if (FunctionNamesFile.empty()) 2677 return; 2678 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2679 std::string FuncName; 2680 while (std::getline(FuncsFile, FuncName)) 2681 FunctionNames.push_back(FuncName); 2682 }; 2683 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2684 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2685 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2686 2687 // Make a set of functions to process to speed up lookups. 2688 std::unordered_set<std::string> ForceFunctionsNR( 2689 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2690 2691 if ((!opts::ForceFunctionNames.empty() || 2692 !opts::ForceFunctionNamesNR.empty()) && 2693 !opts::SkipFunctionNames.empty()) { 2694 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2695 "same time. Please use only one type of selection.\n"; 2696 exit(1); 2697 } 2698 2699 uint64_t LiteThresholdExecCount = 0; 2700 if (opts::LiteThresholdPct) { 2701 if (opts::LiteThresholdPct > 100) 2702 opts::LiteThresholdPct = 100; 2703 2704 std::vector<const BinaryFunction *> TopFunctions; 2705 for (auto &BFI : BC->getBinaryFunctions()) { 2706 const BinaryFunction &Function = BFI.second; 2707 if (ProfileReader->mayHaveProfileData(Function)) 2708 TopFunctions.push_back(&Function); 2709 } 2710 std::sort(TopFunctions.begin(), TopFunctions.end(), 2711 [](const BinaryFunction *A, const BinaryFunction *B) { 2712 return 2713 A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2714 }); 2715 2716 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2717 if (Index) 2718 --Index; 2719 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2720 outs() << "BOLT-INFO: limiting processing to functions with at least " 2721 << LiteThresholdExecCount << " invocations\n"; 2722 } 2723 LiteThresholdExecCount = std::max( 2724 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2725 2726 uint64_t NumFunctionsToProcess = 0; 2727 auto shouldProcess = [&](const BinaryFunction &Function) { 2728 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2729 return false; 2730 2731 // If the list is not empty, only process functions from the list. 2732 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2733 // Regex check (-funcs and -funcs-file options). 2734 for (std::string &Name : opts::ForceFunctionNames) 2735 if (Function.hasNameRegex(Name)) 2736 return true; 2737 2738 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2739 Optional<StringRef> Match = 2740 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2741 return ForceFunctionsNR.count(Name.str()); 2742 }); 2743 return Match.hasValue(); 2744 } 2745 2746 for (std::string &Name : opts::SkipFunctionNames) 2747 if (Function.hasNameRegex(Name)) 2748 return false; 2749 2750 if (opts::Lite) { 2751 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2752 return false; 2753 2754 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2755 return false; 2756 } 2757 2758 return true; 2759 }; 2760 2761 for (auto &BFI : BC->getBinaryFunctions()) { 2762 BinaryFunction &Function = BFI.second; 2763 2764 // Pseudo functions are explicitly marked by us not to be processed. 2765 if (Function.isPseudo()) { 2766 Function.IsIgnored = true; 2767 Function.HasExternalRefRelocations = true; 2768 continue; 2769 } 2770 2771 if (!shouldProcess(Function)) { 2772 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2773 << Function << " per user request\n"); 2774 Function.setIgnored(); 2775 } else { 2776 ++NumFunctionsToProcess; 2777 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2778 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2779 } 2780 } 2781 } 2782 2783 void RewriteInstance::readDebugInfo() { 2784 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2785 TimerGroupDesc, opts::TimeRewrite); 2786 if (!opts::UpdateDebugSections) 2787 return; 2788 2789 BC->preprocessDebugInfo(); 2790 } 2791 2792 void RewriteInstance::preprocessProfileData() { 2793 if (!ProfileReader) 2794 return; 2795 2796 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2797 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2798 2799 outs() << "BOLT-INFO: pre-processing profile using " 2800 << ProfileReader->getReaderName() << '\n'; 2801 2802 if (BAT->enabledFor(InputFile)) { 2803 outs() << "BOLT-INFO: profile collection done on a binary already " 2804 "processed by BOLT\n"; 2805 ProfileReader->setBAT(&*BAT); 2806 } 2807 2808 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2809 report_error("cannot pre-process profile", std::move(E)); 2810 2811 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2812 !opts::AllowStripped) { 2813 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2814 "but profile data includes function names with embedded file " 2815 "names. It appears that the input binary was stripped while a " 2816 "profiled binary was not. If you know what you are doing and " 2817 "wish to proceed, use -allow-stripped option.\n"; 2818 exit(1); 2819 } 2820 } 2821 2822 void RewriteInstance::processProfileDataPreCFG() { 2823 if (!ProfileReader) 2824 return; 2825 2826 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2827 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2828 2829 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2830 report_error("cannot read profile pre-CFG", std::move(E)); 2831 } 2832 2833 void RewriteInstance::processProfileData() { 2834 if (!ProfileReader) 2835 return; 2836 2837 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2838 TimerGroupDesc, opts::TimeRewrite); 2839 2840 if (Error E = ProfileReader->readProfile(*BC.get())) 2841 report_error("cannot read profile", std::move(E)); 2842 2843 if (!opts::SaveProfile.empty()) { 2844 YAMLProfileWriter PW(opts::SaveProfile); 2845 PW.writeProfile(*this); 2846 } 2847 2848 // Release memory used by profile reader. 2849 ProfileReader.reset(); 2850 2851 if (opts::AggregateOnly) 2852 exit(0); 2853 } 2854 2855 void RewriteInstance::disassembleFunctions() { 2856 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2857 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2858 for (auto &BFI : BC->getBinaryFunctions()) { 2859 BinaryFunction &Function = BFI.second; 2860 2861 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2862 if (!FunctionData) { 2863 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2864 << "empty for function " << Function << '\n'; 2865 exit(1); 2866 } 2867 2868 // Treat zero-sized functions as non-simple ones. 2869 if (Function.getSize() == 0) { 2870 Function.setSimple(false); 2871 continue; 2872 } 2873 2874 // Offset of the function in the file. 2875 const auto *FileBegin = 2876 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2877 Function.setFileOffset(FunctionData->begin() - FileBegin); 2878 2879 if (!shouldDisassemble(Function)) { 2880 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2881 "Scan Binary Functions", opts::TimeBuild); 2882 Function.scanExternalRefs(); 2883 Function.setSimple(false); 2884 continue; 2885 } 2886 2887 if (!Function.disassemble()) { 2888 if (opts::processAllFunctions()) 2889 BC->exitWithBugReport("function cannot be properly disassembled. " 2890 "Unable to continue in relocation mode.", 2891 Function); 2892 if (opts::Verbosity >= 1) 2893 outs() << "BOLT-INFO: could not disassemble function " << Function 2894 << ". Will ignore.\n"; 2895 // Forcefully ignore the function. 2896 Function.setIgnored(); 2897 continue; 2898 } 2899 2900 if (opts::PrintAll || opts::PrintDisasm) 2901 Function.print(outs(), "after disassembly", true); 2902 2903 BC->processInterproceduralReferences(Function); 2904 } 2905 2906 BC->clearJumpTableOffsets(); 2907 BC->populateJumpTables(); 2908 BC->skipMarkedFragments(); 2909 2910 for (auto &BFI : BC->getBinaryFunctions()) { 2911 BinaryFunction &Function = BFI.second; 2912 2913 if (!shouldDisassemble(Function)) 2914 continue; 2915 2916 Function.postProcessEntryPoints(); 2917 Function.postProcessJumpTables(); 2918 } 2919 2920 BC->adjustCodePadding(); 2921 2922 for (auto &BFI : BC->getBinaryFunctions()) { 2923 BinaryFunction &Function = BFI.second; 2924 2925 if (!shouldDisassemble(Function)) 2926 continue; 2927 2928 if (!Function.isSimple()) { 2929 assert((!BC->HasRelocations || Function.getSize() == 0 || 2930 Function.hasSplitJumpTable()) && 2931 "unexpected non-simple function in relocation mode"); 2932 continue; 2933 } 2934 2935 // Fill in CFI information for this function 2936 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2937 if (BC->HasRelocations) { 2938 BC->exitWithBugReport("unable to fill CFI.", Function); 2939 } else { 2940 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2941 << ". Skipping.\n"; 2942 Function.setSimple(false); 2943 continue; 2944 } 2945 } 2946 2947 // Parse LSDA. 2948 if (Function.getLSDAAddress() != 0) 2949 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2950 } 2951 } 2952 2953 void RewriteInstance::buildFunctionsCFG() { 2954 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2955 "Build Binary Functions", opts::TimeBuild); 2956 2957 // Create annotation indices to allow lock-free execution 2958 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2959 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2960 BC->MIB->getOrCreateAnnotationIndex("Size"); 2961 2962 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2963 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2964 if (!BF.buildCFG(AllocId)) 2965 return; 2966 2967 if (opts::PrintAll) { 2968 auto L = BC->scopeLock(); 2969 BF.print(outs(), "while building cfg", true); 2970 } 2971 }; 2972 2973 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2974 return !shouldDisassemble(BF) || !BF.isSimple(); 2975 }; 2976 2977 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2978 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2979 SkipPredicate, "disassembleFunctions-buildCFG", 2980 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2981 2982 BC->postProcessSymbolTable(); 2983 } 2984 2985 void RewriteInstance::postProcessFunctions() { 2986 BC->TotalScore = 0; 2987 BC->SumExecutionCount = 0; 2988 for (auto &BFI : BC->getBinaryFunctions()) { 2989 BinaryFunction &Function = BFI.second; 2990 2991 if (Function.empty()) 2992 continue; 2993 2994 Function.postProcessCFG(); 2995 2996 if (opts::PrintAll || opts::PrintCFG) 2997 Function.print(outs(), "after building cfg", true); 2998 2999 if (opts::DumpDotAll) 3000 Function.dumpGraphForPass("00_build-cfg"); 3001 3002 if (opts::PrintLoopInfo) { 3003 Function.calculateLoopInfo(); 3004 Function.printLoopInfo(outs()); 3005 } 3006 3007 BC->TotalScore += Function.getFunctionScore(); 3008 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3009 } 3010 3011 if (opts::PrintGlobals) { 3012 outs() << "BOLT-INFO: Global symbols:\n"; 3013 BC->printGlobalSymbols(outs()); 3014 } 3015 } 3016 3017 void RewriteInstance::runOptimizationPasses() { 3018 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3019 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3020 BinaryFunctionPassManager::runAllPasses(*BC); 3021 } 3022 3023 namespace { 3024 3025 class BOLTSymbolResolver : public JITSymbolResolver { 3026 BinaryContext &BC; 3027 3028 public: 3029 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3030 3031 // We are responsible for all symbols 3032 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3033 return Symbols; 3034 } 3035 3036 // Some of our symbols may resolve to zero and this should not be an error 3037 bool allowsZeroSymbols() override { return true; } 3038 3039 /// Resolves the address of each symbol requested 3040 void lookup(const LookupSet &Symbols, 3041 OnResolvedFunction OnResolved) override { 3042 JITSymbolResolver::LookupResult AllResults; 3043 3044 if (BC.EFMM->ObjectsLoaded) { 3045 for (const StringRef &Symbol : Symbols) { 3046 std::string SymName = Symbol.str(); 3047 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3048 // Resolve to a PLT entry if possible 3049 if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) { 3050 AllResults[Symbol] = 3051 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3052 continue; 3053 } 3054 OnResolved(make_error<StringError>( 3055 "Symbol not found required by runtime: " + Symbol, 3056 inconvertibleErrorCode())); 3057 return; 3058 } 3059 OnResolved(std::move(AllResults)); 3060 return; 3061 } 3062 3063 for (const StringRef &Symbol : Symbols) { 3064 std::string SymName = Symbol.str(); 3065 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3066 3067 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3068 uint64_t Address = I->isMoved() && !I->isJumpTable() 3069 ? I->getOutputAddress() 3070 : I->getAddress(); 3071 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3072 << Twine::utohexstr(Address) << "\n"); 3073 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3074 continue; 3075 } 3076 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3077 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3078 } 3079 3080 OnResolved(std::move(AllResults)); 3081 } 3082 }; 3083 3084 } // anonymous namespace 3085 3086 void RewriteInstance::emitAndLink() { 3087 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3088 TimerGroupDesc, opts::TimeRewrite); 3089 std::error_code EC; 3090 3091 // This is an object file, which we keep for debugging purposes. 3092 // Once we decide it's useless, we should create it in memory. 3093 SmallString<128> OutObjectPath; 3094 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3095 std::unique_ptr<ToolOutputFile> TempOut = 3096 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3097 check_error(EC, "cannot create output object file"); 3098 3099 std::unique_ptr<buffer_ostream> BOS = 3100 std::make_unique<buffer_ostream>(TempOut->os()); 3101 raw_pwrite_stream *OS = BOS.get(); 3102 3103 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3104 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3105 // two instances. 3106 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3107 3108 if (EHFrameSection) { 3109 if (opts::UseOldText || opts::StrictMode) { 3110 // The section is going to be regenerated from scratch. 3111 // Empty the contents, but keep the section reference. 3112 EHFrameSection->clearContents(); 3113 } else { 3114 // Make .eh_frame relocatable. 3115 relocateEHFrameSection(); 3116 } 3117 } 3118 3119 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3120 3121 Streamer->finish(); 3122 if (Streamer->getContext().hadError()) { 3123 errs() << "BOLT-ERROR: Emission failed.\n"; 3124 exit(1); 3125 } 3126 3127 ////////////////////////////////////////////////////////////////////////////// 3128 // Assign addresses to new sections. 3129 ////////////////////////////////////////////////////////////////////////////// 3130 3131 // Get output object as ObjectFile. 3132 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3133 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3134 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3135 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3136 "error creating in-memory object"); 3137 3138 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3139 3140 MCAsmLayout FinalLayout( 3141 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3142 3143 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3144 RTDyld->setProcessAllSections(false); 3145 RTDyld->loadObject(*Obj); 3146 3147 // Assign addresses to all sections. If key corresponds to the object 3148 // created by ourselves, call our regular mapping function. If we are 3149 // loading additional objects as part of runtime libraries for 3150 // instrumentation, treat them as extra sections. 3151 mapFileSections(*RTDyld); 3152 3153 RTDyld->finalizeWithMemoryManagerLocking(); 3154 if (RTDyld->hasError()) { 3155 errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3156 exit(1); 3157 } 3158 3159 // Update output addresses based on the new section map and 3160 // layout. Only do this for the object created by ourselves. 3161 updateOutputValues(FinalLayout); 3162 3163 if (opts::UpdateDebugSections) 3164 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3165 3166 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3167 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3168 this->mapExtraSections(*RTDyld); 3169 }); 3170 3171 // Once the code is emitted, we can rename function sections to actual 3172 // output sections and de-register sections used for emission. 3173 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3174 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3175 if (Section && 3176 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3177 continue; 3178 3179 // Restore origin section for functions that were emitted or supposed to 3180 // be emitted to patch sections. 3181 if (Section) 3182 BC->deregisterSection(*Section); 3183 assert(Function->getOriginSectionName() && "expected origin section"); 3184 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3185 if (Function->isSplit()) { 3186 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3187 BC->deregisterSection(*ColdSection); 3188 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3189 } 3190 } 3191 3192 if (opts::PrintCacheMetrics) { 3193 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3194 CacheMetrics::printAll(BC->getSortedFunctions()); 3195 } 3196 3197 if (opts::KeepTmp) { 3198 TempOut->keep(); 3199 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3200 "purposes: " 3201 << OutObjectPath << "\n"; 3202 } 3203 } 3204 3205 void RewriteInstance::updateMetadata() { 3206 updateSDTMarkers(); 3207 updateLKMarkers(); 3208 parsePseudoProbe(); 3209 updatePseudoProbes(); 3210 3211 if (opts::UpdateDebugSections) { 3212 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3213 TimerGroupDesc, opts::TimeRewrite); 3214 DebugInfoRewriter->updateDebugInfo(); 3215 } 3216 3217 if (opts::WriteBoltInfoSection) 3218 addBoltInfoSection(); 3219 } 3220 3221 void RewriteInstance::updatePseudoProbes() { 3222 // check if there is pseudo probe section decoded 3223 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3224 return; 3225 // input address converted to output 3226 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3227 const GUIDProbeFunctionMap &GUID2Func = 3228 BC->ProbeDecoder.getGUID2FuncDescMap(); 3229 3230 for (auto &AP : Address2ProbesMap) { 3231 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3232 // If F is removed, eliminate all probes inside it from inline tree 3233 // Setting probes' addresses as INT64_MAX means elimination 3234 if (!F) { 3235 for (MCDecodedPseudoProbe &Probe : AP.second) 3236 Probe.setAddress(INT64_MAX); 3237 continue; 3238 } 3239 // If F is not emitted, the function will remain in the same address as its 3240 // input 3241 if (!F->isEmitted()) 3242 continue; 3243 3244 uint64_t Offset = AP.first - F->getAddress(); 3245 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3246 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3247 // Check if block output address is defined. 3248 // If not, such block is removed from binary. Then remove the probes from 3249 // inline tree 3250 if (BlkOutputAddress == 0) { 3251 for (MCDecodedPseudoProbe &Probe : AP.second) 3252 Probe.setAddress(INT64_MAX); 3253 continue; 3254 } 3255 3256 unsigned ProbeTrack = AP.second.size(); 3257 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3258 while (ProbeTrack != 0) { 3259 if (Probe->isBlock()) { 3260 Probe->setAddress(BlkOutputAddress); 3261 } else if (Probe->isCall()) { 3262 // A call probe may be duplicated due to ICP 3263 // Go through output of InputOffsetToAddressMap to collect all related 3264 // probes 3265 const InputOffsetToAddressMapTy &Offset2Addr = 3266 F->getInputOffsetToAddressMap(); 3267 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3268 auto CallOutputAddress = CallOutputAddresses.first; 3269 if (CallOutputAddress == CallOutputAddresses.second) { 3270 Probe->setAddress(INT64_MAX); 3271 } else { 3272 Probe->setAddress(CallOutputAddress->second); 3273 CallOutputAddress = std::next(CallOutputAddress); 3274 } 3275 3276 while (CallOutputAddress != CallOutputAddresses.second) { 3277 AP.second.push_back(*Probe); 3278 AP.second.back().setAddress(CallOutputAddress->second); 3279 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3280 CallOutputAddress = std::next(CallOutputAddress); 3281 } 3282 } 3283 Probe = std::next(Probe); 3284 ProbeTrack--; 3285 } 3286 } 3287 3288 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3289 opts::PrintPseudoProbes == 3290 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3291 outs() << "Pseudo Probe Address Conversion results:\n"; 3292 // table that correlates address to block 3293 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3294 for (auto &F : BC->getBinaryFunctions()) 3295 for (BinaryBasicBlock &BinaryBlock : F.second) 3296 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3297 BinaryBlock.getName(); 3298 3299 // scan all addresses -> correlate probe to block when print out 3300 std::vector<uint64_t> Addresses; 3301 for (auto &Entry : Address2ProbesMap) 3302 Addresses.push_back(Entry.first); 3303 std::sort(Addresses.begin(), Addresses.end()); 3304 for (uint64_t Key : Addresses) { 3305 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3306 if (Probe.getAddress() == INT64_MAX) 3307 outs() << "Deleted Probe: "; 3308 else 3309 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3310 Probe.print(outs(), GUID2Func, true); 3311 // print block name only if the probe is block type and undeleted. 3312 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3313 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3314 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3315 } 3316 } 3317 outs() << "=======================================\n"; 3318 } 3319 3320 // encode pseudo probes with updated addresses 3321 encodePseudoProbes(); 3322 } 3323 3324 template <typename F> 3325 static void emitLEB128IntValue(F encode, uint64_t Value, 3326 SmallString<8> &Contents) { 3327 SmallString<128> Tmp; 3328 raw_svector_ostream OSE(Tmp); 3329 encode(Value, OSE); 3330 Contents.append(OSE.str().begin(), OSE.str().end()); 3331 } 3332 3333 void RewriteInstance::encodePseudoProbes() { 3334 // Buffer for new pseudo probes section 3335 SmallString<8> Contents; 3336 MCDecodedPseudoProbe *LastProbe = nullptr; 3337 3338 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3339 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3340 uint64_t Swapped = support::endian::byte_swap( 3341 Value, IsLittleEndian ? support::little : support::big); 3342 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3343 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3344 Contents.append(Entry.begin(), Entry.end()); 3345 }; 3346 3347 auto EmitULEB128IntValue = [&](uint64_t Value) { 3348 SmallString<128> Tmp; 3349 raw_svector_ostream OSE(Tmp); 3350 encodeULEB128(Value, OSE, 0); 3351 Contents.append(OSE.str().begin(), OSE.str().end()); 3352 }; 3353 3354 auto EmitSLEB128IntValue = [&](int64_t Value) { 3355 SmallString<128> Tmp; 3356 raw_svector_ostream OSE(Tmp); 3357 encodeSLEB128(Value, OSE); 3358 Contents.append(OSE.str().begin(), OSE.str().end()); 3359 }; 3360 3361 // Emit indiviual pseudo probes in a inline tree node 3362 // Probe index, type, attribute, address type and address are encoded 3363 // Address of the first probe is absolute. 3364 // Other probes' address are represented by delta 3365 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3366 EmitULEB128IntValue(CurProbe->getIndex()); 3367 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3368 uint8_t Flag = 3369 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3370 EmitInt(Flag | PackedType, 1); 3371 if (LastProbe) { 3372 // Emit the delta between the address label and LastProbe. 3373 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3374 EmitSLEB128IntValue(Delta); 3375 } else { 3376 // Emit absolute address for encoding the first pseudo probe. 3377 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3378 EmitInt(CurProbe->getAddress(), AddrSize); 3379 } 3380 }; 3381 3382 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3383 std::greater<InlineSite>> 3384 Inlinees; 3385 3386 // DFS of inline tree to emit pseudo probes in all tree node 3387 // Inline site index of a probe is emitted first. 3388 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3389 // of contained probes are emitted Deleted probes are skipped Root node is not 3390 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3391 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3392 const MCDecodedPseudoProbeInlineTree &Root = 3393 BC->ProbeDecoder.getDummyInlineRoot(); 3394 for (auto Child = Root.getChildren().begin(); 3395 Child != Root.getChildren().end(); ++Child) 3396 Inlinees[Child->first] = Child->second.get(); 3397 3398 for (auto Inlinee : Inlinees) 3399 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3400 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3401 3402 Inlinees.clear(); 3403 3404 while (!NextNodes.empty()) { 3405 uint64_t ProbeIndex = NextNodes.back().first; 3406 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3407 NextNodes.pop_back(); 3408 3409 if (Cur->Parent && !Cur->Parent->isRoot()) 3410 // Emit probe inline site 3411 EmitULEB128IntValue(ProbeIndex); 3412 3413 // Emit probes grouped by GUID. 3414 LLVM_DEBUG({ 3415 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3416 dbgs() << "GUID: " << Cur->Guid << "\n"; 3417 }); 3418 // Emit Guid 3419 EmitInt(Cur->Guid, 8); 3420 // Emit number of probes in this node 3421 uint64_t Deleted = 0; 3422 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3423 if (Probe->getAddress() == INT64_MAX) 3424 Deleted++; 3425 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3426 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3427 EmitULEB128IntValue(ProbesSize); 3428 // Emit number of direct inlinees 3429 EmitULEB128IntValue(Cur->getChildren().size()); 3430 // Emit probes in this group 3431 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3432 if (Probe->getAddress() == INT64_MAX) 3433 continue; 3434 EmitDecodedPseudoProbe(Probe); 3435 LastProbe = Probe; 3436 } 3437 3438 for (auto Child = Cur->getChildren().begin(); 3439 Child != Cur->getChildren().end(); ++Child) 3440 Inlinees[Child->first] = Child->second.get(); 3441 for (const auto &Inlinee : Inlinees) { 3442 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3443 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3444 LLVM_DEBUG({ 3445 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3446 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3447 }); 3448 } 3449 Inlinees.clear(); 3450 } 3451 3452 // Create buffer for new contents for the section 3453 // Freed when parent section is destroyed 3454 uint8_t *Output = new uint8_t[Contents.str().size()]; 3455 memcpy(Output, Contents.str().data(), Contents.str().size()); 3456 addToDebugSectionsToOverwrite(".pseudo_probe"); 3457 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3458 PseudoProbeSection->getELFFlags(), Output, 3459 Contents.str().size(), 1); 3460 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3461 opts::PrintPseudoProbes == 3462 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3463 // create a dummy decoder; 3464 MCPseudoProbeDecoder DummyDecoder; 3465 StringRef DescContents = PseudoProbeDescSection->getContents(); 3466 DummyDecoder.buildGUID2FuncDescMap( 3467 reinterpret_cast<const uint8_t *>(DescContents.data()), 3468 DescContents.size()); 3469 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3470 DummyDecoder.buildAddress2ProbeMap( 3471 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3472 ProbeContents.size()); 3473 DummyDecoder.printProbesForAllAddresses(outs()); 3474 } 3475 } 3476 3477 void RewriteInstance::updateSDTMarkers() { 3478 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3479 TimerGroupDesc, opts::TimeRewrite); 3480 3481 if (!SDTSection) 3482 return; 3483 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3484 3485 SimpleBinaryPatcher *SDTNotePatcher = 3486 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3487 for (auto &SDTInfoKV : BC->SDTMarkers) { 3488 const uint64_t OriginalAddress = SDTInfoKV.first; 3489 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3490 const BinaryFunction *F = 3491 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3492 if (!F) 3493 continue; 3494 const uint64_t NewAddress = 3495 F->translateInputToOutputAddress(OriginalAddress); 3496 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3497 } 3498 } 3499 3500 void RewriteInstance::updateLKMarkers() { 3501 if (BC->LKMarkers.size() == 0) 3502 return; 3503 3504 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3505 TimerGroupDesc, opts::TimeRewrite); 3506 3507 std::unordered_map<std::string, uint64_t> PatchCounts; 3508 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3509 &LKMarkerInfoKV : BC->LKMarkers) { 3510 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3511 const BinaryFunction *BF = 3512 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3513 if (!BF) 3514 continue; 3515 3516 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3517 if (NewAddress == 0) 3518 continue; 3519 3520 // Apply base address. 3521 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3522 NewAddress = NewAddress + 0xffffffff00000000; 3523 3524 if (OriginalAddress == NewAddress) 3525 continue; 3526 3527 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3528 StringRef SectionName = LKMarkerInfo.SectionName; 3529 SimpleBinaryPatcher *LKPatcher; 3530 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3531 assert(BSec && "missing section info for kernel section"); 3532 if (!BSec->getPatcher()) 3533 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3534 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3535 PatchCounts[std::string(SectionName)]++; 3536 if (LKMarkerInfo.IsPCRelative) 3537 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3538 NewAddress - OriginalAddress + 3539 LKMarkerInfo.PCRelativeOffset); 3540 else 3541 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3542 } 3543 } 3544 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3545 "section are as follows:\n"; 3546 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3547 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3548 << '\n'; 3549 } 3550 3551 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3552 mapCodeSections(RTDyld); 3553 mapDataSections(RTDyld); 3554 } 3555 3556 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3557 std::vector<BinarySection *> CodeSections; 3558 for (BinarySection &Section : BC->textSections()) 3559 if (Section.hasValidSectionID()) 3560 CodeSections.emplace_back(&Section); 3561 3562 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3563 // Place movers before anything else. 3564 if (A->getName() == BC->getHotTextMoverSectionName()) 3565 return true; 3566 if (B->getName() == BC->getHotTextMoverSectionName()) 3567 return false; 3568 3569 // Depending on the option, put main text at the beginning or at the end. 3570 if (opts::HotFunctionsAtEnd) 3571 return B->getName() == BC->getMainCodeSectionName(); 3572 else 3573 return A->getName() == BC->getMainCodeSectionName(); 3574 }; 3575 3576 // Determine the order of sections. 3577 std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); 3578 3579 return CodeSections; 3580 } 3581 3582 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3583 if (BC->HasRelocations) { 3584 ErrorOr<BinarySection &> TextSection = 3585 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3586 assert(TextSection && ".text section not found in output"); 3587 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3588 3589 // Map sections for functions with pre-assigned addresses. 3590 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3591 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3592 if (!OutputAddress) 3593 continue; 3594 3595 ErrorOr<BinarySection &> FunctionSection = 3596 InjectedFunction->getCodeSection(); 3597 assert(FunctionSection && "function should have section"); 3598 FunctionSection->setOutputAddress(OutputAddress); 3599 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3600 OutputAddress); 3601 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3602 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3603 } 3604 3605 // Populate the list of sections to be allocated. 3606 std::vector<BinarySection *> CodeSections = getCodeSections(); 3607 3608 // Remove sections that were pre-allocated (patch sections). 3609 CodeSections.erase( 3610 std::remove_if(CodeSections.begin(), CodeSections.end(), 3611 [](BinarySection *Section) { 3612 return Section->getOutputAddress(); 3613 }), 3614 CodeSections.end()); 3615 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3616 for (const BinarySection *Section : CodeSections) 3617 dbgs() << Section->getName() << '\n'; 3618 ); 3619 3620 uint64_t PaddingSize = 0; // size of padding required at the end 3621 3622 // Allocate sections starting at a given Address. 3623 auto allocateAt = [&](uint64_t Address) { 3624 for (BinarySection *Section : CodeSections) { 3625 Address = alignTo(Address, Section->getAlignment()); 3626 Section->setOutputAddress(Address); 3627 Address += Section->getOutputSize(); 3628 } 3629 3630 // Make sure we allocate enough space for huge pages. 3631 if (opts::HotText) { 3632 uint64_t HotTextEnd = 3633 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3634 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3635 if (HotTextEnd > Address) { 3636 PaddingSize = HotTextEnd - Address; 3637 Address = HotTextEnd; 3638 } 3639 } 3640 return Address; 3641 }; 3642 3643 // Check if we can fit code in the original .text 3644 bool AllocationDone = false; 3645 if (opts::UseOldText) { 3646 const uint64_t CodeSize = 3647 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3648 3649 if (CodeSize <= BC->OldTextSectionSize) { 3650 outs() << "BOLT-INFO: using original .text for new code with 0x" 3651 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3652 AllocationDone = true; 3653 } else { 3654 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3655 << " using 0x" << Twine::utohexstr(opts::AlignText) 3656 << " alignment. " << CodeSize << " bytes needed, have " 3657 << BC->OldTextSectionSize << " bytes available.\n"; 3658 opts::UseOldText = false; 3659 } 3660 } 3661 3662 if (!AllocationDone) 3663 NextAvailableAddress = allocateAt(NextAvailableAddress); 3664 3665 // Do the mapping for ORC layer based on the allocation. 3666 for (BinarySection *Section : CodeSections) { 3667 LLVM_DEBUG( 3668 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3669 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3670 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3671 RTDyld.reassignSectionAddress(Section->getSectionID(), 3672 Section->getOutputAddress()); 3673 Section->setOutputFileOffset( 3674 getFileOffsetForAddress(Section->getOutputAddress())); 3675 } 3676 3677 // Check if we need to insert a padding section for hot text. 3678 if (PaddingSize && !opts::UseOldText) 3679 outs() << "BOLT-INFO: padding code to 0x" 3680 << Twine::utohexstr(NextAvailableAddress) 3681 << " to accommodate hot text\n"; 3682 3683 return; 3684 } 3685 3686 // Processing in non-relocation mode. 3687 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3688 3689 for (auto &BFI : BC->getBinaryFunctions()) { 3690 BinaryFunction &Function = BFI.second; 3691 if (!Function.isEmitted()) 3692 continue; 3693 3694 bool TooLarge = false; 3695 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3696 assert(FuncSection && "cannot find section for function"); 3697 FuncSection->setOutputAddress(Function.getAddress()); 3698 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3699 << Twine::utohexstr(FuncSection->getAllocAddress()) 3700 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3701 << '\n'); 3702 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3703 Function.getAddress()); 3704 Function.setImageAddress(FuncSection->getAllocAddress()); 3705 Function.setImageSize(FuncSection->getOutputSize()); 3706 if (Function.getImageSize() > Function.getMaxSize()) { 3707 TooLarge = true; 3708 FailedAddresses.emplace_back(Function.getAddress()); 3709 } 3710 3711 // Map jump tables if updating in-place. 3712 if (opts::JumpTables == JTS_BASIC) { 3713 for (auto &JTI : Function.JumpTables) { 3714 JumpTable *JT = JTI.second; 3715 BinarySection &Section = JT->getOutputSection(); 3716 Section.setOutputAddress(JT->getAddress()); 3717 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3718 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3719 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3720 << '\n'); 3721 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3722 } 3723 } 3724 3725 if (!Function.isSplit()) 3726 continue; 3727 3728 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3729 assert(ColdSection && "cannot find section for cold part"); 3730 // Cold fragments are aligned at 16 bytes. 3731 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3732 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3733 if (TooLarge) { 3734 // The corresponding FDE will refer to address 0. 3735 ColdPart.setAddress(0); 3736 ColdPart.setImageAddress(0); 3737 ColdPart.setImageSize(0); 3738 ColdPart.setFileOffset(0); 3739 } else { 3740 ColdPart.setAddress(NextAvailableAddress); 3741 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3742 ColdPart.setImageSize(ColdSection->getOutputSize()); 3743 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3744 ColdSection->setOutputAddress(ColdPart.getAddress()); 3745 } 3746 3747 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3748 << Twine::utohexstr(ColdPart.getImageAddress()) 3749 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3750 << " with size " 3751 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3752 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3753 ColdPart.getAddress()); 3754 3755 NextAvailableAddress += ColdPart.getImageSize(); 3756 } 3757 3758 // Add the new text section aggregating all existing code sections. 3759 // This is pseudo-section that serves a purpose of creating a corresponding 3760 // entry in section header table. 3761 int64_t NewTextSectionSize = 3762 NextAvailableAddress - NewTextSectionStartAddress; 3763 if (NewTextSectionSize) { 3764 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3765 /*IsText=*/true, 3766 /*IsAllocatable=*/true); 3767 BinarySection &Section = 3768 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3769 ELF::SHT_PROGBITS, 3770 Flags, 3771 /*Data=*/nullptr, 3772 NewTextSectionSize, 3773 16); 3774 Section.setOutputAddress(NewTextSectionStartAddress); 3775 Section.setOutputFileOffset( 3776 getFileOffsetForAddress(NewTextSectionStartAddress)); 3777 } 3778 } 3779 3780 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3781 // Map special sections to their addresses in the output image. 3782 // These are the sections that we generate via MCStreamer. 3783 // The order is important. 3784 std::vector<std::string> Sections = { 3785 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3786 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3787 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3788 RtLibrary->addRuntimeLibSections(Sections); 3789 3790 for (std::string &SectionName : Sections) { 3791 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3792 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3793 continue; 3794 NextAvailableAddress = 3795 alignTo(NextAvailableAddress, Section->getAlignment()); 3796 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3797 << Twine::utohexstr(Section->getAllocAddress()) 3798 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3799 << ":0x" 3800 << Twine::utohexstr(NextAvailableAddress + 3801 Section->getOutputSize()) 3802 << '\n'); 3803 3804 RTDyld.reassignSectionAddress(Section->getSectionID(), 3805 NextAvailableAddress); 3806 Section->setOutputAddress(NextAvailableAddress); 3807 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3808 3809 NextAvailableAddress += Section->getOutputSize(); 3810 } 3811 3812 // Handling for sections with relocations. 3813 for (BinarySection &Section : BC->sections()) { 3814 if (!Section.hasSectionRef()) 3815 continue; 3816 3817 StringRef SectionName = Section.getName(); 3818 ErrorOr<BinarySection &> OrgSection = 3819 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3820 if (!OrgSection || 3821 !OrgSection->isAllocatable() || 3822 !OrgSection->isFinalized() || 3823 !OrgSection->hasValidSectionID()) 3824 continue; 3825 3826 if (OrgSection->getOutputAddress()) { 3827 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3828 << " is already mapped at 0x" 3829 << Twine::utohexstr(OrgSection->getOutputAddress()) 3830 << '\n'); 3831 continue; 3832 } 3833 LLVM_DEBUG( 3834 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3835 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3836 << Twine::utohexstr(Section.getAddress()) << '\n'); 3837 3838 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3839 Section.getAddress()); 3840 3841 OrgSection->setOutputAddress(Section.getAddress()); 3842 OrgSection->setOutputFileOffset(Section.getContents().data() - 3843 InputFile->getData().data()); 3844 } 3845 } 3846 3847 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3848 for (BinarySection &Section : BC->allocatableSections()) { 3849 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3850 continue; 3851 NextAvailableAddress = 3852 alignTo(NextAvailableAddress, Section.getAlignment()); 3853 Section.setOutputAddress(NextAvailableAddress); 3854 NextAvailableAddress += Section.getOutputSize(); 3855 3856 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3857 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3858 << " to 0x" 3859 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3860 3861 RTDyld.reassignSectionAddress(Section.getSectionID(), 3862 Section.getOutputAddress()); 3863 Section.setOutputFileOffset( 3864 getFileOffsetForAddress(Section.getOutputAddress())); 3865 } 3866 } 3867 3868 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3869 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3870 Function->updateOutputValues(Layout); 3871 } 3872 3873 void RewriteInstance::patchELFPHDRTable() { 3874 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3875 if (!ELF64LEFile) { 3876 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3877 exit(1); 3878 } 3879 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3880 raw_fd_ostream &OS = Out->os(); 3881 3882 // Write/re-write program headers. 3883 Phnum = Obj.getHeader().e_phnum; 3884 if (PHDRTableOffset) { 3885 // Writing new pheader table. 3886 Phnum += 1; // only adding one new segment 3887 // Segment size includes the size of the PHDR area. 3888 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3889 } else { 3890 assert(!PHDRTableAddress && "unexpected address for program header table"); 3891 // Update existing table. 3892 PHDRTableOffset = Obj.getHeader().e_phoff; 3893 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3894 } 3895 OS.seek(PHDRTableOffset); 3896 3897 bool ModdedGnuStack = false; 3898 (void)ModdedGnuStack; 3899 bool AddedSegment = false; 3900 (void)AddedSegment; 3901 3902 auto createNewTextPhdr = [&]() { 3903 ELF64LEPhdrTy NewPhdr; 3904 NewPhdr.p_type = ELF::PT_LOAD; 3905 if (PHDRTableAddress) { 3906 NewPhdr.p_offset = PHDRTableOffset; 3907 NewPhdr.p_vaddr = PHDRTableAddress; 3908 NewPhdr.p_paddr = PHDRTableAddress; 3909 } else { 3910 NewPhdr.p_offset = NewTextSegmentOffset; 3911 NewPhdr.p_vaddr = NewTextSegmentAddress; 3912 NewPhdr.p_paddr = NewTextSegmentAddress; 3913 } 3914 NewPhdr.p_filesz = NewTextSegmentSize; 3915 NewPhdr.p_memsz = NewTextSegmentSize; 3916 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3917 // FIXME: Currently instrumentation is experimental and the runtime data 3918 // is emitted with code, thus everything needs to be writable 3919 if (opts::Instrument) 3920 NewPhdr.p_flags |= ELF::PF_W; 3921 NewPhdr.p_align = BC->PageAlign; 3922 3923 return NewPhdr; 3924 }; 3925 3926 // Copy existing program headers with modifications. 3927 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3928 ELF64LE::Phdr NewPhdr = Phdr; 3929 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3930 NewPhdr.p_offset = PHDRTableOffset; 3931 NewPhdr.p_vaddr = PHDRTableAddress; 3932 NewPhdr.p_paddr = PHDRTableAddress; 3933 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3934 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3935 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3936 ErrorOr<BinarySection &> EHFrameHdrSec = 3937 BC->getUniqueSectionByName(".eh_frame_hdr"); 3938 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3939 EHFrameHdrSec->isFinalized()) { 3940 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3941 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3942 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3943 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3944 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3945 } 3946 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3947 NewPhdr = createNewTextPhdr(); 3948 ModdedGnuStack = true; 3949 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3950 // Insert the new header before DYNAMIC. 3951 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3952 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3953 sizeof(NewTextPhdr)); 3954 AddedSegment = true; 3955 } 3956 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3957 } 3958 3959 if (!opts::UseGnuStack && !AddedSegment) { 3960 // Append the new header to the end of the table. 3961 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3962 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3963 } 3964 3965 assert((!opts::UseGnuStack || ModdedGnuStack) && 3966 "could not find GNU_STACK program header to modify"); 3967 } 3968 3969 namespace { 3970 3971 /// Write padding to \p OS such that its current \p Offset becomes aligned 3972 /// at \p Alignment. Return new (aligned) offset. 3973 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3974 uint64_t Alignment) { 3975 if (!Alignment) 3976 return Offset; 3977 3978 const uint64_t PaddingSize = 3979 offsetToAlignment(Offset, llvm::Align(Alignment)); 3980 for (unsigned I = 0; I < PaddingSize; ++I) 3981 OS.write((unsigned char)0); 3982 return Offset + PaddingSize; 3983 } 3984 3985 } 3986 3987 void RewriteInstance::rewriteNoteSections() { 3988 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3989 if (!ELF64LEFile) { 3990 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3991 exit(1); 3992 } 3993 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3994 raw_fd_ostream &OS = Out->os(); 3995 3996 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3997 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3998 "next available offset calculation failure"); 3999 OS.seek(NextAvailableOffset); 4000 4001 // Copy over non-allocatable section contents and update file offsets. 4002 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 4003 if (Section.sh_type == ELF::SHT_NULL) 4004 continue; 4005 if (Section.sh_flags & ELF::SHF_ALLOC) 4006 continue; 4007 4008 StringRef SectionName = 4009 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4010 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4011 4012 if (shouldStrip(Section, SectionName)) 4013 continue; 4014 4015 // Insert padding as needed. 4016 NextAvailableOffset = 4017 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4018 4019 // New section size. 4020 uint64_t Size = 0; 4021 bool DataWritten = false; 4022 uint8_t *SectionData = nullptr; 4023 // Copy over section contents unless it's one of the sections we overwrite. 4024 if (!willOverwriteSection(SectionName)) { 4025 Size = Section.sh_size; 4026 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4027 std::string Data; 4028 if (BSec && BSec->getPatcher()) { 4029 Data = BSec->getPatcher()->patchBinary(Dataref); 4030 Dataref = StringRef(Data); 4031 } 4032 4033 // Section was expanded, so need to treat it as overwrite. 4034 if (Size != Dataref.size()) { 4035 BSec = BC->registerOrUpdateNoteSection( 4036 SectionName, copyByteArray(Dataref), Dataref.size()); 4037 Size = 0; 4038 } else { 4039 OS << Dataref; 4040 DataWritten = true; 4041 4042 // Add padding as the section extension might rely on the alignment. 4043 Size = appendPadding(OS, Size, Section.sh_addralign); 4044 } 4045 } 4046 4047 // Perform section post-processing. 4048 if (BSec && !BSec->isAllocatable()) { 4049 assert(BSec->getAlignment() <= Section.sh_addralign && 4050 "alignment exceeds value in file"); 4051 4052 if (BSec->getAllocAddress()) { 4053 assert(!DataWritten && "Writing section twice."); 4054 (void)DataWritten; 4055 SectionData = BSec->getOutputData(); 4056 4057 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4058 << " contents to section " << SectionName << '\n'); 4059 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4060 Size += BSec->getOutputSize(); 4061 } 4062 4063 BSec->setOutputFileOffset(NextAvailableOffset); 4064 BSec->flushPendingRelocations(OS, 4065 [this] (const MCSymbol *S) { 4066 return getNewValueForSymbol(S->getName()); 4067 }); 4068 } 4069 4070 // Set/modify section info. 4071 BinarySection &NewSection = 4072 BC->registerOrUpdateNoteSection(SectionName, 4073 SectionData, 4074 Size, 4075 Section.sh_addralign, 4076 BSec ? BSec->isReadOnly() : false, 4077 BSec ? BSec->getELFType() 4078 : ELF::SHT_PROGBITS); 4079 NewSection.setOutputAddress(0); 4080 NewSection.setOutputFileOffset(NextAvailableOffset); 4081 4082 NextAvailableOffset += Size; 4083 } 4084 4085 // Write new note sections. 4086 for (BinarySection &Section : BC->nonAllocatableSections()) { 4087 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4088 continue; 4089 4090 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4091 4092 NextAvailableOffset = 4093 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4094 Section.setOutputFileOffset(NextAvailableOffset); 4095 4096 LLVM_DEBUG( 4097 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4098 << " of size " << Section.getOutputSize() << " at offset 0x" 4099 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4100 4101 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4102 NextAvailableOffset += Section.getOutputSize(); 4103 } 4104 } 4105 4106 template <typename ELFT> 4107 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4108 using ELFShdrTy = typename ELFT::Shdr; 4109 const ELFFile<ELFT> &Obj = File->getELFFile(); 4110 4111 // Pre-populate section header string table. 4112 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4113 StringRef SectionName = 4114 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4115 SHStrTab.add(SectionName); 4116 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4117 if (OutputSectionName != SectionName) 4118 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4119 } 4120 for (const std::string &Str : SHStrTabPool) 4121 SHStrTab.add(Str); 4122 for (const BinarySection &Section : BC->sections()) 4123 SHStrTab.add(Section.getName()); 4124 SHStrTab.finalize(); 4125 4126 const size_t SHStrTabSize = SHStrTab.getSize(); 4127 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4128 memset(DataCopy, 0, SHStrTabSize); 4129 SHStrTab.write(DataCopy); 4130 BC->registerOrUpdateNoteSection(".shstrtab", 4131 DataCopy, 4132 SHStrTabSize, 4133 /*Alignment=*/1, 4134 /*IsReadOnly=*/true, 4135 ELF::SHT_STRTAB); 4136 } 4137 4138 void RewriteInstance::addBoltInfoSection() { 4139 std::string DescStr; 4140 raw_string_ostream DescOS(DescStr); 4141 4142 DescOS << "BOLT revision: " << BoltRevision << ", " 4143 << "command line:"; 4144 for (int I = 0; I < Argc; ++I) 4145 DescOS << " " << Argv[I]; 4146 DescOS.flush(); 4147 4148 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4149 const std::string BoltInfo = 4150 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4151 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4152 BoltInfo.size(), 4153 /*Alignment=*/1, 4154 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4155 } 4156 4157 void RewriteInstance::addBATSection() { 4158 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4159 0, 4160 /*Alignment=*/1, 4161 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4162 } 4163 4164 void RewriteInstance::encodeBATSection() { 4165 std::string DescStr; 4166 raw_string_ostream DescOS(DescStr); 4167 4168 BAT->write(DescOS); 4169 DescOS.flush(); 4170 4171 const std::string BoltInfo = 4172 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4173 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4174 copyByteArray(BoltInfo), BoltInfo.size(), 4175 /*Alignment=*/1, 4176 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4177 } 4178 4179 template <typename ELFObjType, typename ELFShdrTy> 4180 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4181 const ELFShdrTy &Section) { 4182 if (Section.sh_type == ELF::SHT_NULL) 4183 return ""; 4184 4185 StringRef SectionName = 4186 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4187 4188 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4189 return (getOrgSecPrefix() + SectionName).str(); 4190 4191 return std::string(SectionName); 4192 } 4193 4194 template <typename ELFShdrTy> 4195 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4196 StringRef SectionName) { 4197 // Strip non-allocatable relocation sections. 4198 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4199 return true; 4200 4201 // Strip debug sections if not updating them. 4202 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4203 return true; 4204 4205 // Strip symtab section if needed 4206 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4207 return true; 4208 4209 return false; 4210 } 4211 4212 template <typename ELFT> 4213 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4214 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4215 std::vector<uint32_t> &NewSectionIndex) { 4216 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4217 const ELFFile<ELFT> &Obj = File->getELFFile(); 4218 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4219 4220 // Keep track of section header entries together with their name. 4221 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4222 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4223 ELFShdrTy NewSection = Section; 4224 NewSection.sh_name = SHStrTab.getOffset(Name); 4225 OutputSections.emplace_back(Name, std::move(NewSection)); 4226 }; 4227 4228 // Copy over entries for original allocatable sections using modified name. 4229 for (const ELFShdrTy &Section : Sections) { 4230 // Always ignore this section. 4231 if (Section.sh_type == ELF::SHT_NULL) { 4232 OutputSections.emplace_back("", Section); 4233 continue; 4234 } 4235 4236 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4237 continue; 4238 4239 addSection(getOutputSectionName(Obj, Section), Section); 4240 } 4241 4242 for (const BinarySection &Section : BC->allocatableSections()) { 4243 if (!Section.isFinalized()) 4244 continue; 4245 4246 if (Section.getName().startswith(getOrgSecPrefix()) || 4247 Section.isAnonymous()) { 4248 if (opts::Verbosity) 4249 outs() << "BOLT-INFO: not writing section header for section " 4250 << Section.getName() << '\n'; 4251 continue; 4252 } 4253 4254 if (opts::Verbosity >= 1) 4255 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4256 << '\n'; 4257 ELFShdrTy NewSection; 4258 NewSection.sh_type = ELF::SHT_PROGBITS; 4259 NewSection.sh_addr = Section.getOutputAddress(); 4260 NewSection.sh_offset = Section.getOutputFileOffset(); 4261 NewSection.sh_size = Section.getOutputSize(); 4262 NewSection.sh_entsize = 0; 4263 NewSection.sh_flags = Section.getELFFlags(); 4264 NewSection.sh_link = 0; 4265 NewSection.sh_info = 0; 4266 NewSection.sh_addralign = Section.getAlignment(); 4267 addSection(std::string(Section.getName()), NewSection); 4268 } 4269 4270 // Sort all allocatable sections by their offset. 4271 std::stable_sort(OutputSections.begin(), OutputSections.end(), 4272 [] (const std::pair<std::string, ELFShdrTy> &A, 4273 const std::pair<std::string, ELFShdrTy> &B) { 4274 return A.second.sh_offset < B.second.sh_offset; 4275 }); 4276 4277 // Fix section sizes to prevent overlapping. 4278 ELFShdrTy *PrevSection = nullptr; 4279 StringRef PrevSectionName; 4280 for (auto &SectionKV : OutputSections) { 4281 ELFShdrTy &Section = SectionKV.second; 4282 4283 // TBSS section does not take file or memory space. Ignore it for layout 4284 // purposes. 4285 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4286 continue; 4287 4288 if (PrevSection && 4289 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4290 if (opts::Verbosity > 1) 4291 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4292 << '\n'; 4293 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4294 ? Section.sh_addr - PrevSection->sh_addr 4295 : 0; 4296 } 4297 4298 PrevSection = &Section; 4299 PrevSectionName = SectionKV.first; 4300 } 4301 4302 uint64_t LastFileOffset = 0; 4303 4304 // Copy over entries for non-allocatable sections performing necessary 4305 // adjustments. 4306 for (const ELFShdrTy &Section : Sections) { 4307 if (Section.sh_type == ELF::SHT_NULL) 4308 continue; 4309 if (Section.sh_flags & ELF::SHF_ALLOC) 4310 continue; 4311 4312 StringRef SectionName = 4313 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4314 4315 if (shouldStrip(Section, SectionName)) 4316 continue; 4317 4318 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4319 assert(BSec && "missing section info for non-allocatable section"); 4320 4321 ELFShdrTy NewSection = Section; 4322 NewSection.sh_offset = BSec->getOutputFileOffset(); 4323 NewSection.sh_size = BSec->getOutputSize(); 4324 4325 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4326 NewSection.sh_info = NumLocalSymbols; 4327 4328 addSection(std::string(SectionName), NewSection); 4329 4330 LastFileOffset = BSec->getOutputFileOffset(); 4331 } 4332 4333 // Create entries for new non-allocatable sections. 4334 for (BinarySection &Section : BC->nonAllocatableSections()) { 4335 if (Section.getOutputFileOffset() <= LastFileOffset) 4336 continue; 4337 4338 if (opts::Verbosity >= 1) 4339 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4340 << '\n'; 4341 4342 ELFShdrTy NewSection; 4343 NewSection.sh_type = Section.getELFType(); 4344 NewSection.sh_addr = 0; 4345 NewSection.sh_offset = Section.getOutputFileOffset(); 4346 NewSection.sh_size = Section.getOutputSize(); 4347 NewSection.sh_entsize = 0; 4348 NewSection.sh_flags = Section.getELFFlags(); 4349 NewSection.sh_link = 0; 4350 NewSection.sh_info = 0; 4351 NewSection.sh_addralign = Section.getAlignment(); 4352 4353 addSection(std::string(Section.getName()), NewSection); 4354 } 4355 4356 // Assign indices to sections. 4357 std::unordered_map<std::string, uint64_t> NameToIndex; 4358 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4359 const std::string &SectionName = OutputSections[Index].first; 4360 NameToIndex[SectionName] = Index; 4361 if (ErrorOr<BinarySection &> Section = 4362 BC->getUniqueSectionByName(SectionName)) 4363 Section->setIndex(Index); 4364 } 4365 4366 // Update section index mapping 4367 NewSectionIndex.clear(); 4368 NewSectionIndex.resize(Sections.size(), 0); 4369 for (const ELFShdrTy &Section : Sections) { 4370 if (Section.sh_type == ELF::SHT_NULL) 4371 continue; 4372 4373 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4374 std::string SectionName = getOutputSectionName(Obj, Section); 4375 4376 // Some sections are stripped 4377 if (!NameToIndex.count(SectionName)) 4378 continue; 4379 4380 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4381 } 4382 4383 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4384 std::transform(OutputSections.begin(), OutputSections.end(), 4385 SectionsOnly.begin(), 4386 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4387 return SectionInfo.second; 4388 }); 4389 4390 return SectionsOnly; 4391 } 4392 4393 // Rewrite section header table inserting new entries as needed. The sections 4394 // header table size itself may affect the offsets of other sections, 4395 // so we are placing it at the end of the binary. 4396 // 4397 // As we rewrite entries we need to track how many sections were inserted 4398 // as it changes the sh_link value. We map old indices to new ones for 4399 // existing sections. 4400 template <typename ELFT> 4401 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4402 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4403 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4404 raw_fd_ostream &OS = Out->os(); 4405 const ELFFile<ELFT> &Obj = File->getELFFile(); 4406 4407 std::vector<uint32_t> NewSectionIndex; 4408 std::vector<ELFShdrTy> OutputSections = 4409 getOutputSections(File, NewSectionIndex); 4410 LLVM_DEBUG( 4411 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4412 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4413 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4414 ); 4415 4416 // Align starting address for section header table. 4417 uint64_t SHTOffset = OS.tell(); 4418 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4419 4420 // Write all section header entries while patching section references. 4421 for (ELFShdrTy &Section : OutputSections) { 4422 Section.sh_link = NewSectionIndex[Section.sh_link]; 4423 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4424 if (Section.sh_info) 4425 Section.sh_info = NewSectionIndex[Section.sh_info]; 4426 } 4427 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4428 } 4429 4430 // Fix ELF header. 4431 ELFEhdrTy NewEhdr = Obj.getHeader(); 4432 4433 if (BC->HasRelocations) { 4434 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4435 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4436 else 4437 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4438 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4439 "cannot find new address for entry point"); 4440 } 4441 NewEhdr.e_phoff = PHDRTableOffset; 4442 NewEhdr.e_phnum = Phnum; 4443 NewEhdr.e_shoff = SHTOffset; 4444 NewEhdr.e_shnum = OutputSections.size(); 4445 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4446 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4447 } 4448 4449 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4450 void RewriteInstance::updateELFSymbolTable( 4451 ELFObjectFile<ELFT> *File, bool IsDynSym, 4452 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4453 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4454 StrTabFuncTy AddToStrTab) { 4455 const ELFFile<ELFT> &Obj = File->getELFFile(); 4456 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4457 4458 StringRef StringSection = 4459 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4460 4461 unsigned NumHotTextSymsUpdated = 0; 4462 unsigned NumHotDataSymsUpdated = 0; 4463 4464 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4465 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4466 auto Itr = IslandSizes.find(&BF); 4467 if (Itr != IslandSizes.end()) 4468 return Itr->second; 4469 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4470 }; 4471 4472 // Symbols for the new symbol table. 4473 std::vector<ELFSymTy> Symbols; 4474 4475 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4476 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4477 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4478 4479 // We may have stripped the section that dynsym was referencing due to 4480 // the linker bug. In that case return the old index avoiding marking 4481 // the symbol as undefined. 4482 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4483 return OldIndex; 4484 return NewIndex; 4485 }; 4486 4487 // Add extra symbols for the function. 4488 // 4489 // Note that addExtraSymbols() could be called multiple times for the same 4490 // function with different FunctionSymbol matching the main function entry 4491 // point. 4492 auto addExtraSymbols = [&](const BinaryFunction &Function, 4493 const ELFSymTy &FunctionSymbol) { 4494 if (Function.isFolded()) { 4495 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4496 while (ICFParent->isFolded()) 4497 ICFParent = ICFParent->getFoldedIntoFunction(); 4498 ELFSymTy ICFSymbol = FunctionSymbol; 4499 SmallVector<char, 256> Buf; 4500 ICFSymbol.st_name = 4501 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4502 .concat(".icf.0") 4503 .toStringRef(Buf)); 4504 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4505 ICFSymbol.st_size = ICFParent->getOutputSize(); 4506 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4507 Symbols.emplace_back(ICFSymbol); 4508 } 4509 if (Function.isSplit() && Function.cold().getAddress()) { 4510 ELFSymTy NewColdSym = FunctionSymbol; 4511 SmallVector<char, 256> Buf; 4512 NewColdSym.st_name = 4513 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4514 .concat(".cold.0") 4515 .toStringRef(Buf)); 4516 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4517 NewColdSym.st_value = Function.cold().getAddress(); 4518 NewColdSym.st_size = Function.cold().getImageSize(); 4519 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4520 Symbols.emplace_back(NewColdSym); 4521 } 4522 if (Function.hasConstantIsland()) { 4523 uint64_t DataMark = Function.getOutputDataAddress(); 4524 uint64_t CISize = getConstantIslandSize(Function); 4525 uint64_t CodeMark = DataMark + CISize; 4526 ELFSymTy DataMarkSym = FunctionSymbol; 4527 DataMarkSym.st_name = AddToStrTab("$d"); 4528 DataMarkSym.st_value = DataMark; 4529 DataMarkSym.st_size = 0; 4530 DataMarkSym.setType(ELF::STT_NOTYPE); 4531 DataMarkSym.setBinding(ELF::STB_LOCAL); 4532 ELFSymTy CodeMarkSym = DataMarkSym; 4533 CodeMarkSym.st_name = AddToStrTab("$x"); 4534 CodeMarkSym.st_value = CodeMark; 4535 Symbols.emplace_back(DataMarkSym); 4536 Symbols.emplace_back(CodeMarkSym); 4537 } 4538 if (Function.hasConstantIsland() && Function.isSplit()) { 4539 uint64_t DataMark = Function.getOutputColdDataAddress(); 4540 uint64_t CISize = getConstantIslandSize(Function); 4541 uint64_t CodeMark = DataMark + CISize; 4542 ELFSymTy DataMarkSym = FunctionSymbol; 4543 DataMarkSym.st_name = AddToStrTab("$d"); 4544 DataMarkSym.st_value = DataMark; 4545 DataMarkSym.st_size = 0; 4546 DataMarkSym.setType(ELF::STT_NOTYPE); 4547 DataMarkSym.setBinding(ELF::STB_LOCAL); 4548 ELFSymTy CodeMarkSym = DataMarkSym; 4549 CodeMarkSym.st_name = AddToStrTab("$x"); 4550 CodeMarkSym.st_value = CodeMark; 4551 Symbols.emplace_back(DataMarkSym); 4552 Symbols.emplace_back(CodeMarkSym); 4553 } 4554 }; 4555 4556 // For regular (non-dynamic) symbol table, exclude symbols referring 4557 // to non-allocatable sections. 4558 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4559 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4560 return false; 4561 4562 // If we cannot link the symbol to a section, leave it as is. 4563 Expected<const typename ELFT::Shdr *> Section = 4564 Obj.getSection(Symbol.st_shndx); 4565 if (!Section) 4566 return false; 4567 4568 // Remove the section symbol iif the corresponding section was stripped. 4569 if (Symbol.getType() == ELF::STT_SECTION) { 4570 if (!getNewSectionIndex(Symbol.st_shndx)) 4571 return true; 4572 return false; 4573 } 4574 4575 // Symbols in non-allocatable sections are typically remnants of relocations 4576 // emitted under "-emit-relocs" linker option. Delete those as we delete 4577 // relocations against non-allocatable sections. 4578 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4579 return true; 4580 4581 return false; 4582 }; 4583 4584 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4585 // For regular (non-dynamic) symbol table strip unneeded symbols. 4586 if (!IsDynSym && shouldStrip(Symbol)) 4587 continue; 4588 4589 const BinaryFunction *Function = 4590 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4591 // Ignore false function references, e.g. when the section address matches 4592 // the address of the function. 4593 if (Function && Symbol.getType() == ELF::STT_SECTION) 4594 Function = nullptr; 4595 4596 // For non-dynamic symtab, make sure the symbol section matches that of 4597 // the function. It can mismatch e.g. if the symbol is a section marker 4598 // in which case we treat the symbol separately from the function. 4599 // For dynamic symbol table, the section index could be wrong on the input, 4600 // and its value is ignored by the runtime if it's different from 4601 // SHN_UNDEF and SHN_ABS. 4602 if (!IsDynSym && Function && 4603 Symbol.st_shndx != 4604 Function->getOriginSection()->getSectionRef().getIndex()) 4605 Function = nullptr; 4606 4607 // Create a new symbol based on the existing symbol. 4608 ELFSymTy NewSymbol = Symbol; 4609 4610 if (Function) { 4611 // If the symbol matched a function that was not emitted, update the 4612 // corresponding section index but otherwise leave it unchanged. 4613 if (Function->isEmitted()) { 4614 NewSymbol.st_value = Function->getOutputAddress(); 4615 NewSymbol.st_size = Function->getOutputSize(); 4616 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4617 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4618 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4619 } 4620 4621 // Add new symbols to the symbol table if necessary. 4622 if (!IsDynSym) 4623 addExtraSymbols(*Function, NewSymbol); 4624 } else { 4625 // Check if the function symbol matches address inside a function, i.e. 4626 // it marks a secondary entry point. 4627 Function = 4628 (Symbol.getType() == ELF::STT_FUNC) 4629 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4630 /*CheckPastEnd=*/false, 4631 /*UseMaxSize=*/true) 4632 : nullptr; 4633 4634 if (Function && Function->isEmitted()) { 4635 const uint64_t OutputAddress = 4636 Function->translateInputToOutputAddress(Symbol.st_value); 4637 4638 NewSymbol.st_value = OutputAddress; 4639 // Force secondary entry points to have zero size. 4640 NewSymbol.st_size = 0; 4641 NewSymbol.st_shndx = 4642 OutputAddress >= Function->cold().getAddress() && 4643 OutputAddress < Function->cold().getImageSize() 4644 ? Function->getColdCodeSection()->getIndex() 4645 : Function->getCodeSection()->getIndex(); 4646 } else { 4647 // Check if the symbol belongs to moved data object and update it. 4648 BinaryData *BD = opts::ReorderData.empty() 4649 ? nullptr 4650 : BC->getBinaryDataAtAddress(Symbol.st_value); 4651 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4652 assert((!BD->getSize() || !Symbol.st_size || 4653 Symbol.st_size == BD->getSize()) && 4654 "sizes must match"); 4655 4656 BinarySection &OutputSection = BD->getOutputSection(); 4657 assert(OutputSection.getIndex()); 4658 LLVM_DEBUG(dbgs() 4659 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4660 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4661 << Symbol.st_shndx << ") to " << OutputSection.getName() 4662 << " (" << OutputSection.getIndex() << ")\n"); 4663 NewSymbol.st_shndx = OutputSection.getIndex(); 4664 NewSymbol.st_value = BD->getOutputAddress(); 4665 } else { 4666 // Otherwise just update the section for the symbol. 4667 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4668 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4669 } 4670 4671 // Detect local syms in the text section that we didn't update 4672 // and that were preserved by the linker to support relocations against 4673 // .text. Remove them from the symtab. 4674 if (Symbol.getType() == ELF::STT_NOTYPE && 4675 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4676 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4677 /*CheckPastEnd=*/false, 4678 /*UseMaxSize=*/true)) { 4679 // Can only delete the symbol if not patching. Such symbols should 4680 // not exist in the dynamic symbol table. 4681 assert(!IsDynSym && "cannot delete symbol"); 4682 continue; 4683 } 4684 } 4685 } 4686 } 4687 4688 // Handle special symbols based on their name. 4689 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4690 assert(SymbolName && "cannot get symbol name"); 4691 4692 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4693 NewSymbol.st_value = getNewValueForSymbol(Name); 4694 NewSymbol.st_shndx = ELF::SHN_ABS; 4695 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4696 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4697 ++IsUpdated; 4698 }; 4699 4700 if (opts::HotText && 4701 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4702 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4703 4704 if (opts::HotData && 4705 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4706 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4707 4708 if (*SymbolName == "_end") { 4709 unsigned Ignored; 4710 updateSymbolValue(*SymbolName, Ignored); 4711 } 4712 4713 if (IsDynSym) 4714 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4715 sizeof(ELFSymTy), 4716 NewSymbol); 4717 else 4718 Symbols.emplace_back(NewSymbol); 4719 } 4720 4721 if (IsDynSym) { 4722 assert(Symbols.empty()); 4723 return; 4724 } 4725 4726 // Add symbols of injected functions 4727 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4728 ELFSymTy NewSymbol; 4729 BinarySection *OriginSection = Function->getOriginSection(); 4730 NewSymbol.st_shndx = 4731 OriginSection 4732 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4733 : Function->getCodeSection()->getIndex(); 4734 NewSymbol.st_value = Function->getOutputAddress(); 4735 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4736 NewSymbol.st_size = Function->getOutputSize(); 4737 NewSymbol.st_other = 0; 4738 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4739 Symbols.emplace_back(NewSymbol); 4740 4741 if (Function->isSplit()) { 4742 ELFSymTy NewColdSym = NewSymbol; 4743 NewColdSym.setType(ELF::STT_NOTYPE); 4744 SmallVector<char, 256> Buf; 4745 NewColdSym.st_name = AddToStrTab( 4746 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4747 NewColdSym.st_value = Function->cold().getAddress(); 4748 NewColdSym.st_size = Function->cold().getImageSize(); 4749 Symbols.emplace_back(NewColdSym); 4750 } 4751 } 4752 4753 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4754 "either none or both __hot_start/__hot_end symbols were expected"); 4755 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4756 "either none or both __hot_data_start/__hot_data_end symbols were " 4757 "expected"); 4758 4759 auto addSymbol = [&](const std::string &Name) { 4760 ELFSymTy Symbol; 4761 Symbol.st_value = getNewValueForSymbol(Name); 4762 Symbol.st_shndx = ELF::SHN_ABS; 4763 Symbol.st_name = AddToStrTab(Name); 4764 Symbol.st_size = 0; 4765 Symbol.st_other = 0; 4766 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4767 4768 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4769 << Twine::utohexstr(Symbol.st_value) << '\n'; 4770 4771 Symbols.emplace_back(Symbol); 4772 }; 4773 4774 if (opts::HotText && !NumHotTextSymsUpdated) { 4775 addSymbol("__hot_start"); 4776 addSymbol("__hot_end"); 4777 } 4778 4779 if (opts::HotData && !NumHotDataSymsUpdated) { 4780 addSymbol("__hot_data_start"); 4781 addSymbol("__hot_data_end"); 4782 } 4783 4784 // Put local symbols at the beginning. 4785 std::stable_sort(Symbols.begin(), Symbols.end(), 4786 [](const ELFSymTy &A, const ELFSymTy &B) { 4787 if (A.getBinding() == ELF::STB_LOCAL && 4788 B.getBinding() != ELF::STB_LOCAL) 4789 return true; 4790 return false; 4791 }); 4792 4793 for (const ELFSymTy &Symbol : Symbols) 4794 Write(0, Symbol); 4795 } 4796 4797 template <typename ELFT> 4798 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4799 const ELFFile<ELFT> &Obj = File->getELFFile(); 4800 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4801 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4802 4803 // Compute a preview of how section indices will change after rewriting, so 4804 // we can properly update the symbol table based on new section indices. 4805 std::vector<uint32_t> NewSectionIndex; 4806 getOutputSections(File, NewSectionIndex); 4807 4808 // Set pointer at the end of the output file, so we can pwrite old symbol 4809 // tables if we need to. 4810 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4811 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4812 "next available offset calculation failure"); 4813 Out->os().seek(NextAvailableOffset); 4814 4815 // Update dynamic symbol table. 4816 const ELFShdrTy *DynSymSection = nullptr; 4817 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4818 if (Section.sh_type == ELF::SHT_DYNSYM) { 4819 DynSymSection = &Section; 4820 break; 4821 } 4822 } 4823 assert((DynSymSection || BC->IsStaticExecutable) && 4824 "dynamic symbol table expected"); 4825 if (DynSymSection) { 4826 updateELFSymbolTable( 4827 File, 4828 /*IsDynSym=*/true, 4829 *DynSymSection, 4830 NewSectionIndex, 4831 [&](size_t Offset, const ELFSymTy &Sym) { 4832 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4833 sizeof(ELFSymTy), 4834 DynSymSection->sh_offset + Offset); 4835 }, 4836 [](StringRef) -> size_t { return 0; }); 4837 } 4838 4839 if (opts::RemoveSymtab) 4840 return; 4841 4842 // (re)create regular symbol table. 4843 const ELFShdrTy *SymTabSection = nullptr; 4844 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4845 if (Section.sh_type == ELF::SHT_SYMTAB) { 4846 SymTabSection = &Section; 4847 break; 4848 } 4849 } 4850 if (!SymTabSection) { 4851 errs() << "BOLT-WARNING: no symbol table found\n"; 4852 return; 4853 } 4854 4855 const ELFShdrTy *StrTabSection = 4856 cantFail(Obj.getSection(SymTabSection->sh_link)); 4857 std::string NewContents; 4858 std::string NewStrTab = std::string( 4859 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4860 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4861 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4862 4863 NumLocalSymbols = 0; 4864 updateELFSymbolTable( 4865 File, 4866 /*IsDynSym=*/false, 4867 *SymTabSection, 4868 NewSectionIndex, 4869 [&](size_t Offset, const ELFSymTy &Sym) { 4870 if (Sym.getBinding() == ELF::STB_LOCAL) 4871 ++NumLocalSymbols; 4872 NewContents.append(reinterpret_cast<const char *>(&Sym), 4873 sizeof(ELFSymTy)); 4874 }, 4875 [&](StringRef Str) { 4876 size_t Idx = NewStrTab.size(); 4877 NewStrTab.append(NameResolver::restore(Str).str()); 4878 NewStrTab.append(1, '\0'); 4879 return Idx; 4880 }); 4881 4882 BC->registerOrUpdateNoteSection(SecName, 4883 copyByteArray(NewContents), 4884 NewContents.size(), 4885 /*Alignment=*/1, 4886 /*IsReadOnly=*/true, 4887 ELF::SHT_SYMTAB); 4888 4889 BC->registerOrUpdateNoteSection(StrSecName, 4890 copyByteArray(NewStrTab), 4891 NewStrTab.size(), 4892 /*Alignment=*/1, 4893 /*IsReadOnly=*/true, 4894 ELF::SHT_STRTAB); 4895 } 4896 4897 template <typename ELFT> 4898 void 4899 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4900 using Elf_Rela = typename ELFT::Rela; 4901 raw_fd_ostream &OS = Out->os(); 4902 const ELFFile<ELFT> &EF = File->getELFFile(); 4903 4904 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4905 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4906 4907 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4908 uint64_t &End) { 4909 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4910 Start = Section->getInputFileOffset(); 4911 End = Start + Section->getSize(); 4912 }; 4913 4914 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4915 return; 4916 4917 if (DynamicRelocationsAddress) 4918 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4919 RelDynEndOffset); 4920 4921 if (PLTRelocationsAddress) 4922 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4923 RelPltEndOffset); 4924 4925 DynamicRelativeRelocationsCount = 0; 4926 4927 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4928 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4929 Offset += sizeof(*RelA); 4930 }; 4931 4932 auto writeRelocations = [&](bool PatchRelative) { 4933 for (BinarySection &Section : BC->allocatableSections()) { 4934 for (const Relocation &Rel : Section.dynamicRelocations()) { 4935 const bool IsRelative = Rel.isRelative(); 4936 if (PatchRelative != IsRelative) 4937 continue; 4938 4939 if (IsRelative) 4940 ++DynamicRelativeRelocationsCount; 4941 4942 Elf_Rela NewRelA; 4943 uint64_t SectionAddress = Section.getOutputAddress(); 4944 SectionAddress = 4945 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4946 MCSymbol *Symbol = Rel.Symbol; 4947 uint32_t SymbolIdx = 0; 4948 uint64_t Addend = Rel.Addend; 4949 4950 if (Rel.Symbol) { 4951 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4952 } else { 4953 // Usually this case is used for R_*_(I)RELATIVE relocations 4954 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4955 if (Address) 4956 Addend = Address; 4957 } 4958 4959 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4960 NewRelA.r_offset = SectionAddress + Rel.Offset; 4961 NewRelA.r_addend = Addend; 4962 4963 const bool IsJmpRel = 4964 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4965 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4966 const uint64_t &EndOffset = 4967 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4968 if (!Offset || !EndOffset) { 4969 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4970 exit(1); 4971 } 4972 4973 if (Offset + sizeof(NewRelA) > EndOffset) { 4974 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4975 exit(1); 4976 } 4977 4978 writeRela(&NewRelA, Offset); 4979 } 4980 } 4981 }; 4982 4983 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4984 writeRelocations(/* PatchRelative */ true); 4985 writeRelocations(/* PatchRelative */ false); 4986 4987 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4988 if (!Offset) 4989 return; 4990 4991 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4992 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4993 RelA.r_offset = 0; 4994 RelA.r_addend = 0; 4995 while (Offset < EndOffset) 4996 writeRela(&RelA, Offset); 4997 4998 assert(Offset == EndOffset && "Unexpected section overflow"); 4999 }; 5000 5001 // Fill the rest of the sections with R_*_NONE relocations 5002 fillNone(RelDynOffset, RelDynEndOffset); 5003 fillNone(RelPltOffset, RelPltEndOffset); 5004 } 5005 5006 template <typename ELFT> 5007 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5008 raw_fd_ostream &OS = Out->os(); 5009 5010 SectionRef GOTSection; 5011 for (const SectionRef &Section : File->sections()) { 5012 StringRef SectionName = cantFail(Section.getName()); 5013 if (SectionName == ".got") { 5014 GOTSection = Section; 5015 break; 5016 } 5017 } 5018 if (!GOTSection.getObject()) { 5019 if (!BC->IsStaticExecutable) 5020 errs() << "BOLT-INFO: no .got section found\n"; 5021 return; 5022 } 5023 5024 StringRef GOTContents = cantFail(GOTSection.getContents()); 5025 for (const uint64_t *GOTEntry = 5026 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5027 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5028 GOTContents.size()); 5029 ++GOTEntry) { 5030 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5031 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5032 << Twine::utohexstr(*GOTEntry) << " with 0x" 5033 << Twine::utohexstr(NewAddress) << '\n'); 5034 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5035 reinterpret_cast<const char *>(GOTEntry) - 5036 File->getData().data()); 5037 } 5038 } 5039 } 5040 5041 template <typename ELFT> 5042 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5043 if (BC->IsStaticExecutable) 5044 return; 5045 5046 const ELFFile<ELFT> &Obj = File->getELFFile(); 5047 raw_fd_ostream &OS = Out->os(); 5048 5049 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5050 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5051 5052 // Locate DYNAMIC by looking through program headers. 5053 uint64_t DynamicOffset = 0; 5054 const Elf_Phdr *DynamicPhdr = 0; 5055 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5056 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5057 DynamicOffset = Phdr.p_offset; 5058 DynamicPhdr = &Phdr; 5059 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5060 break; 5061 } 5062 } 5063 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5064 5065 bool ZNowSet = false; 5066 5067 // Go through all dynamic entries and patch functions addresses with 5068 // new ones. 5069 typename ELFT::DynRange DynamicEntries = 5070 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5071 auto DTB = DynamicEntries.begin(); 5072 for (const Elf_Dyn &Dyn : DynamicEntries) { 5073 Elf_Dyn NewDE = Dyn; 5074 bool ShouldPatch = true; 5075 switch (Dyn.d_tag) { 5076 default: 5077 ShouldPatch = false; 5078 break; 5079 case ELF::DT_RELACOUNT: 5080 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5081 break; 5082 case ELF::DT_INIT: 5083 case ELF::DT_FINI: { 5084 if (BC->HasRelocations) { 5085 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5086 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5087 << Dyn.getTag() << '\n'); 5088 NewDE.d_un.d_ptr = NewAddress; 5089 } 5090 } 5091 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5092 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5093 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5094 NewDE.d_un.d_ptr = Addr; 5095 } 5096 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5097 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5098 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5099 << Twine::utohexstr(Addr) << '\n'); 5100 NewDE.d_un.d_ptr = Addr; 5101 } 5102 } 5103 break; 5104 } 5105 case ELF::DT_FLAGS: 5106 if (BC->RequiresZNow) { 5107 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5108 ZNowSet = true; 5109 } 5110 break; 5111 case ELF::DT_FLAGS_1: 5112 if (BC->RequiresZNow) { 5113 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5114 ZNowSet = true; 5115 } 5116 break; 5117 } 5118 if (ShouldPatch) 5119 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5120 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5121 } 5122 5123 if (BC->RequiresZNow && !ZNowSet) { 5124 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5125 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5126 ".dynamic. Please re-link the binary with -znow.\n"; 5127 exit(1); 5128 } 5129 } 5130 5131 template <typename ELFT> 5132 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5133 const ELFFile<ELFT> &Obj = File->getELFFile(); 5134 5135 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5136 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5137 5138 // Locate DYNAMIC by looking through program headers. 5139 const Elf_Phdr *DynamicPhdr = 0; 5140 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5141 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5142 DynamicPhdr = &Phdr; 5143 break; 5144 } 5145 } 5146 5147 if (!DynamicPhdr) { 5148 outs() << "BOLT-INFO: static input executable detected\n"; 5149 // TODO: static PIE executable might have dynamic header 5150 BC->IsStaticExecutable = true; 5151 return Error::success(); 5152 } 5153 5154 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5155 return createStringError(errc::executable_format_error, 5156 "dynamic section sizes should match"); 5157 5158 // Go through all dynamic entries to locate entries of interest. 5159 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5160 if (!DynamicEntriesOrErr) 5161 return DynamicEntriesOrErr.takeError(); 5162 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5163 5164 for (const Elf_Dyn &Dyn : DynamicEntries) { 5165 switch (Dyn.d_tag) { 5166 case ELF::DT_INIT: 5167 if (!BC->HasInterpHeader) { 5168 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5169 BC->StartFunctionAddress = Dyn.getPtr(); 5170 } 5171 break; 5172 case ELF::DT_FINI: 5173 BC->FiniFunctionAddress = Dyn.getPtr(); 5174 break; 5175 case ELF::DT_RELA: 5176 DynamicRelocationsAddress = Dyn.getPtr(); 5177 break; 5178 case ELF::DT_RELASZ: 5179 DynamicRelocationsSize = Dyn.getVal(); 5180 break; 5181 case ELF::DT_JMPREL: 5182 PLTRelocationsAddress = Dyn.getPtr(); 5183 break; 5184 case ELF::DT_PLTRELSZ: 5185 PLTRelocationsSize = Dyn.getVal(); 5186 break; 5187 case ELF::DT_RELACOUNT: 5188 DynamicRelativeRelocationsCount = Dyn.getVal(); 5189 break; 5190 } 5191 } 5192 5193 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5194 DynamicRelocationsAddress.reset(); 5195 DynamicRelocationsSize = 0; 5196 } 5197 5198 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5199 PLTRelocationsAddress.reset(); 5200 PLTRelocationsSize = 0; 5201 } 5202 return Error::success(); 5203 } 5204 5205 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5206 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5207 if (!Function) 5208 return 0; 5209 5210 return Function->getOutputAddress(); 5211 } 5212 5213 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5214 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5215 return Function; 5216 5217 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5218 if (BD && BD->isMoved()) 5219 return BD->getOutputAddress(); 5220 5221 return 0; 5222 } 5223 5224 void RewriteInstance::rewriteFile() { 5225 std::error_code EC; 5226 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5227 sys::fs::OF_None); 5228 check_error(EC, "cannot create output executable file"); 5229 5230 raw_fd_ostream &OS = Out->os(); 5231 5232 // Copy allocatable part of the input. 5233 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5234 5235 // We obtain an asm-specific writer so that we can emit nops in an 5236 // architecture-specific way at the end of the function. 5237 std::unique_ptr<MCAsmBackend> MAB( 5238 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5239 auto Streamer = BC->createStreamer(OS); 5240 // Make sure output stream has enough reserved space, otherwise 5241 // pwrite() will fail. 5242 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5243 (void)Offset; 5244 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5245 "error resizing output file"); 5246 5247 // Overwrite functions with fixed output address. This is mostly used by 5248 // non-relocation mode, with one exception: injected functions are covered 5249 // here in both modes. 5250 uint64_t CountOverwrittenFunctions = 0; 5251 uint64_t OverwrittenScore = 0; 5252 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5253 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5254 continue; 5255 5256 if (Function->getImageSize() > Function->getMaxSize()) { 5257 if (opts::Verbosity >= 1) 5258 errs() << "BOLT-WARNING: new function size (0x" 5259 << Twine::utohexstr(Function->getImageSize()) 5260 << ") is larger than maximum allowed size (0x" 5261 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5262 << *Function << '\n'; 5263 5264 // Remove jump table sections that this function owns in non-reloc mode 5265 // because we don't want to write them anymore. 5266 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5267 for (auto &JTI : Function->JumpTables) { 5268 JumpTable *JT = JTI.second; 5269 BinarySection &Section = JT->getOutputSection(); 5270 BC->deregisterSection(Section); 5271 } 5272 } 5273 continue; 5274 } 5275 5276 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5277 Function->cold().getImageSize() == 0)) 5278 continue; 5279 5280 OverwrittenScore += Function->getFunctionScore(); 5281 // Overwrite function in the output file. 5282 if (opts::Verbosity >= 2) 5283 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5284 5285 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5286 Function->getImageSize(), Function->getFileOffset()); 5287 5288 // Write nops at the end of the function. 5289 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5290 uint64_t Pos = OS.tell(); 5291 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5292 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5293 &*BC->STI); 5294 5295 OS.seek(Pos); 5296 } 5297 5298 if (!Function->isSplit()) { 5299 ++CountOverwrittenFunctions; 5300 if (opts::MaxFunctions && 5301 CountOverwrittenFunctions == opts::MaxFunctions) { 5302 outs() << "BOLT: maximum number of functions reached\n"; 5303 break; 5304 } 5305 continue; 5306 } 5307 5308 // Write cold part 5309 if (opts::Verbosity >= 2) 5310 outs() << "BOLT: rewriting function \"" << *Function 5311 << "\" (cold part)\n"; 5312 5313 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5314 Function->cold().getImageSize(), 5315 Function->cold().getFileOffset()); 5316 5317 ++CountOverwrittenFunctions; 5318 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5319 outs() << "BOLT: maximum number of functions reached\n"; 5320 break; 5321 } 5322 } 5323 5324 // Print function statistics for non-relocation mode. 5325 if (!BC->HasRelocations) { 5326 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5327 << BC->getBinaryFunctions().size() 5328 << " functions were overwritten.\n"; 5329 if (BC->TotalScore != 0) { 5330 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5331 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5332 << "% of the execution count of simple functions of " 5333 "this binary\n"; 5334 } 5335 } 5336 5337 if (BC->HasRelocations && opts::TrapOldCode) { 5338 uint64_t SavedPos = OS.tell(); 5339 // Overwrite function body to make sure we never execute these instructions. 5340 for (auto &BFI : BC->getBinaryFunctions()) { 5341 BinaryFunction &BF = BFI.second; 5342 if (!BF.getFileOffset() || !BF.isEmitted()) 5343 continue; 5344 OS.seek(BF.getFileOffset()); 5345 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5346 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5347 } 5348 OS.seek(SavedPos); 5349 } 5350 5351 // Write all allocatable sections - reloc-mode text is written here as well 5352 for (BinarySection &Section : BC->allocatableSections()) { 5353 if (!Section.isFinalized() || !Section.getOutputData()) 5354 continue; 5355 5356 if (opts::Verbosity >= 1) 5357 outs() << "BOLT: writing new section " << Section.getName() 5358 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5359 << "\n of size " << Section.getOutputSize() << "\n at offset " 5360 << Section.getOutputFileOffset() << '\n'; 5361 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5362 Section.getOutputSize(), Section.getOutputFileOffset()); 5363 } 5364 5365 for (BinarySection &Section : BC->allocatableSections()) 5366 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5367 return getNewValueForSymbol(S->getName()); 5368 }); 5369 5370 // If .eh_frame is present create .eh_frame_hdr. 5371 if (EHFrameSection && EHFrameSection->isFinalized()) 5372 writeEHFrameHeader(); 5373 5374 // Add BOLT Addresses Translation maps to allow profile collection to 5375 // happen in the output binary 5376 if (opts::EnableBAT) 5377 addBATSection(); 5378 5379 // Patch program header table. 5380 patchELFPHDRTable(); 5381 5382 // Finalize memory image of section string table. 5383 finalizeSectionStringTable(); 5384 5385 // Update symbol tables. 5386 patchELFSymTabs(); 5387 5388 patchBuildID(); 5389 5390 if (opts::EnableBAT) 5391 encodeBATSection(); 5392 5393 // Copy non-allocatable sections once allocatable part is finished. 5394 rewriteNoteSections(); 5395 5396 if (BC->HasRelocations) { 5397 patchELFAllocatableRelaSections(); 5398 patchELFGOT(); 5399 } 5400 5401 // Patch dynamic section/segment. 5402 patchELFDynamic(); 5403 5404 // Update ELF book-keeping info. 5405 patchELFSectionHeaderTable(); 5406 5407 if (opts::PrintSections) { 5408 outs() << "BOLT-INFO: Sections after processing:\n"; 5409 BC->printSections(outs()); 5410 } 5411 5412 Out->keep(); 5413 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5414 check_error(EC, "cannot set permissions of output file"); 5415 } 5416 5417 void RewriteInstance::writeEHFrameHeader() { 5418 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5419 EHFrameSection->getOutputAddress()); 5420 Error E = NewEHFrame.parse(DWARFDataExtractor( 5421 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5422 BC->AsmInfo->getCodePointerSize())); 5423 check_error(std::move(E), "failed to parse EH frame"); 5424 5425 uint64_t OldEHFrameAddress = 0; 5426 StringRef OldEHFrameContents; 5427 ErrorOr<BinarySection &> OldEHFrameSection = 5428 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5429 if (OldEHFrameSection) { 5430 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5431 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5432 } 5433 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5434 Error Er = OldEHFrame.parse( 5435 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5436 BC->AsmInfo->getCodePointerSize())); 5437 check_error(std::move(Er), "failed to parse EH frame"); 5438 5439 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5440 5441 NextAvailableAddress = 5442 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5443 5444 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5445 const uint64_t EHFrameHdrFileOffset = 5446 getFileOffsetForAddress(NextAvailableAddress); 5447 5448 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5449 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5450 5451 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5452 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5453 5454 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5455 /*IsText=*/false, 5456 /*IsAllocatable=*/true); 5457 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5458 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5459 /*Alignment=*/1); 5460 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5461 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5462 5463 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5464 5465 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5466 if (OldEHFrameSection) { 5467 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5468 OldEHFrameSection->getOutputSize() - 5469 EHFrameSection->getOutputAddress()); 5470 EHFrameSection = 5471 BC->registerOrUpdateSection(".eh_frame", 5472 EHFrameSection->getELFType(), 5473 EHFrameSection->getELFFlags(), 5474 EHFrameSection->getOutputData(), 5475 EHFrameSectionSize, 5476 EHFrameSection->getAlignment()); 5477 BC->deregisterSection(*OldEHFrameSection); 5478 } 5479 5480 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5481 << EHFrameSection->getOutputSize() << '\n'); 5482 } 5483 5484 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5485 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5486 if (Value != 0) 5487 return Value; 5488 5489 // Return the original value if we haven't emitted the symbol. 5490 BinaryData *BD = BC->getBinaryDataByName(Name); 5491 if (!BD) 5492 return 0; 5493 5494 return BD->getAddress(); 5495 } 5496 5497 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5498 // Check if it's possibly part of the new segment. 5499 if (Address >= NewTextSegmentAddress) 5500 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5501 5502 // Find an existing segment that matches the address. 5503 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5504 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5505 return 0; 5506 5507 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5508 if (Address < SegmentInfo.Address || 5509 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5510 return 0; 5511 5512 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5513 } 5514 5515 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5516 for (const char *const &OverwriteName : SectionsToOverwrite) 5517 if (SectionName == OverwriteName) 5518 return true; 5519 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5520 if (SectionName == OverwriteName) 5521 return true; 5522 5523 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5524 return Section && Section->isAllocatable() && Section->isFinalized(); 5525 } 5526 5527 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5528 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5529 SectionName == ".gdb_index" || SectionName == ".stab" || 5530 SectionName == ".stabstr") 5531 return true; 5532 5533 return false; 5534 } 5535 5536 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5537 if (SectionName.startswith("__ksymtab")) 5538 return true; 5539 5540 return false; 5541 } 5542