1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> 84 ForceToDataRelocations("force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 cl::init(false), 87 cl::Hidden, 88 cl::ZeroOrMore, 89 cl::cat(BoltCategory)); 90 91 cl::opt<std::string> 92 BoltID("bolt-id", 93 cl::desc("add any string to tag this execution in the " 94 "output binary via bolt info section"), 95 cl::ZeroOrMore, 96 cl::cat(BoltCategory)); 97 98 cl::opt<bool> 99 AllowStripped("allow-stripped", 100 cl::desc("allow processing of stripped binaries"), 101 cl::Hidden, 102 cl::cat(BoltCategory)); 103 104 cl::opt<bool> 105 DumpDotAll("dump-dot-all", 106 cl::desc("dump function CFGs to graphviz format after each stage"), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltCategory)); 110 111 static cl::list<std::string> 112 ForceFunctionNames("funcs", 113 cl::CommaSeparated, 114 cl::desc("limit optimizations to functions from the list"), 115 cl::value_desc("func1,func2,func3,..."), 116 cl::Hidden, 117 cl::cat(BoltCategory)); 118 119 static cl::opt<std::string> 120 FunctionNamesFile("funcs-file", 121 cl::desc("file with list of functions to optimize"), 122 cl::Hidden, 123 cl::cat(BoltCategory)); 124 125 static cl::list<std::string> ForceFunctionNamesNR( 126 "funcs-no-regex", cl::CommaSeparated, 127 cl::desc("limit optimizations to functions from the list (non-regex)"), 128 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 129 130 static cl::opt<std::string> FunctionNamesFileNR( 131 "funcs-file-no-regex", 132 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 133 cl::cat(BoltCategory)); 134 135 cl::opt<bool> 136 KeepTmp("keep-tmp", 137 cl::desc("preserve intermediate .o file"), 138 cl::Hidden, 139 cl::cat(BoltCategory)); 140 141 cl::opt<bool> 142 Lite("lite", 143 cl::desc("skip processing of cold functions"), 144 cl::init(false), 145 cl::ZeroOrMore, 146 cl::cat(BoltCategory)); 147 148 static cl::opt<unsigned> 149 LiteThresholdPct("lite-threshold-pct", 150 cl::desc("threshold (in percent) for selecting functions to process in lite " 151 "mode. Higher threshold means fewer functions to process. E.g " 152 "threshold of 90 means only top 10 percent of functions with " 153 "profile will be processed."), 154 cl::init(0), 155 cl::ZeroOrMore, 156 cl::Hidden, 157 cl::cat(BoltOptCategory)); 158 159 static cl::opt<unsigned> 160 LiteThresholdCount("lite-threshold-count", 161 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 162 "absolute function call count. I.e. limit processing to functions " 163 "executed at least the specified number of times."), 164 cl::init(0), 165 cl::ZeroOrMore, 166 cl::Hidden, 167 cl::cat(BoltOptCategory)); 168 169 static cl::opt<unsigned> 170 MaxFunctions("max-funcs", 171 cl::desc("maximum number of functions to process"), 172 cl::ZeroOrMore, 173 cl::Hidden, 174 cl::cat(BoltCategory)); 175 176 static cl::opt<unsigned> 177 MaxDataRelocations("max-data-relocations", 178 cl::desc("maximum number of data relocations to process"), 179 cl::ZeroOrMore, 180 cl::Hidden, 181 cl::cat(BoltCategory)); 182 183 cl::opt<bool> 184 PrintAll("print-all", 185 cl::desc("print functions after each stage"), 186 cl::ZeroOrMore, 187 cl::Hidden, 188 cl::cat(BoltCategory)); 189 190 cl::opt<bool> 191 PrintCFG("print-cfg", 192 cl::desc("print functions after CFG construction"), 193 cl::ZeroOrMore, 194 cl::Hidden, 195 cl::cat(BoltCategory)); 196 197 cl::opt<bool> PrintDisasm("print-disasm", 198 cl::desc("print function after disassembly"), 199 cl::ZeroOrMore, 200 cl::Hidden, 201 cl::cat(BoltCategory)); 202 203 static cl::opt<bool> 204 PrintGlobals("print-globals", 205 cl::desc("print global symbols after disassembly"), 206 cl::ZeroOrMore, 207 cl::Hidden, 208 cl::cat(BoltCategory)); 209 210 extern cl::opt<bool> PrintSections; 211 212 static cl::opt<bool> 213 PrintLoopInfo("print-loops", 214 cl::desc("print loop related information"), 215 cl::ZeroOrMore, 216 cl::Hidden, 217 cl::cat(BoltCategory)); 218 219 static cl::opt<bool> 220 PrintSDTMarkers("print-sdt", 221 cl::desc("print all SDT markers"), 222 cl::ZeroOrMore, 223 cl::Hidden, 224 cl::cat(BoltCategory)); 225 226 enum PrintPseudoProbesOptions { 227 PPP_None = 0, 228 PPP_Probes_Section_Decode = 0x1, 229 PPP_Probes_Address_Conversion = 0x2, 230 PPP_Encoded_Probes = 0x3, 231 PPP_All = 0xf 232 }; 233 234 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 235 "print-pseudo-probes", cl::desc("print pseudo probe info"), 236 cl::init(PPP_None), 237 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 238 "decode probes section from binary"), 239 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 240 "update address2ProbesMap with output block address"), 241 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 242 "display the encoded probes in binary section"), 243 clEnumValN(PPP_All, "all", "enable all debugging printout")), 244 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 245 246 static cl::opt<cl::boolOrDefault> 247 RelocationMode("relocs", 248 cl::desc("use relocations in the binary (default=autodetect)"), 249 cl::ZeroOrMore, 250 cl::cat(BoltCategory)); 251 252 static cl::opt<std::string> 253 SaveProfile("w", 254 cl::desc("save recorded profile to a file"), 255 cl::cat(BoltOutputCategory)); 256 257 static cl::list<std::string> 258 SkipFunctionNames("skip-funcs", 259 cl::CommaSeparated, 260 cl::desc("list of functions to skip"), 261 cl::value_desc("func1,func2,func3,..."), 262 cl::Hidden, 263 cl::cat(BoltCategory)); 264 265 static cl::opt<std::string> 266 SkipFunctionNamesFile("skip-funcs-file", 267 cl::desc("file with list of functions to skip"), 268 cl::Hidden, 269 cl::cat(BoltCategory)); 270 271 cl::opt<bool> 272 TrapOldCode("trap-old-code", 273 cl::desc("insert traps in old function bodies (relocation mode)"), 274 cl::Hidden, 275 cl::cat(BoltCategory)); 276 277 static cl::opt<std::string> DWPPathName("dwp", 278 cl::desc("Path and name to DWP file."), 279 cl::Hidden, cl::ZeroOrMore, 280 cl::init(""), cl::cat(BoltCategory)); 281 282 static cl::opt<bool> 283 UseGnuStack("use-gnu-stack", 284 cl::desc("use GNU_STACK program header for new segment (workaround for " 285 "issues with strip/objcopy)"), 286 cl::ZeroOrMore, 287 cl::cat(BoltCategory)); 288 289 static cl::opt<bool> 290 TimeRewrite("time-rewrite", 291 cl::desc("print time spent in rewriting passes"), 292 cl::ZeroOrMore, 293 cl::Hidden, 294 cl::cat(BoltCategory)); 295 296 static cl::opt<bool> 297 SequentialDisassembly("sequential-disassembly", 298 cl::desc("performs disassembly sequentially"), 299 cl::init(false), 300 cl::cat(BoltOptCategory)); 301 302 static cl::opt<bool> 303 WriteBoltInfoSection("bolt-info", 304 cl::desc("write bolt info section in the output binary"), 305 cl::init(true), 306 cl::ZeroOrMore, 307 cl::Hidden, 308 cl::cat(BoltOutputCategory)); 309 310 } // namespace opts 311 312 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 313 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 314 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_loc", 315 ".debug_ranges", ".gdb_index", ".debug_addr"}; 316 317 const char RewriteInstance::TimerGroupName[] = "rewrite"; 318 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 319 320 namespace llvm { 321 namespace bolt { 322 323 extern const char *BoltRevision; 324 325 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 326 const MCInstrAnalysis *Analysis, 327 const MCInstrInfo *Info, 328 const MCRegisterInfo *RegInfo) { 329 #ifdef X86_AVAILABLE 330 if (Arch == Triple::x86_64) 331 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 332 #endif 333 334 #ifdef AARCH64_AVAILABLE 335 if (Arch == Triple::aarch64) 336 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 337 #endif 338 339 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 340 } 341 342 } // namespace bolt 343 } // namespace llvm 344 345 namespace { 346 347 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 348 auto Itr = 349 std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), 350 [&](const std::string &SectionName) { 351 return (Section && Section->getName() == SectionName); 352 }); 353 return Itr != opts::ReorderData.end(); 354 } 355 356 } // anonymous namespace 357 358 Expected<std::unique_ptr<RewriteInstance>> 359 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 360 const char *const *Argv, 361 StringRef ToolPath) { 362 Error Err = Error::success(); 363 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 364 if (Err) 365 return std::move(Err); 366 return RI; 367 } 368 369 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 370 const char *const *Argv, StringRef ToolPath, 371 Error &Err) 372 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 373 SHStrTab(StringTableBuilder::ELF) { 374 ErrorAsOutParameter EAO(&Err); 375 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 376 if (!ELF64LEFile) { 377 Err = createStringError(errc::not_supported, 378 "Only 64-bit LE ELF binaries are supported"); 379 return; 380 } 381 382 bool IsPIC = false; 383 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 384 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 385 outs() << "BOLT-INFO: shared object or position-independent executable " 386 "detected\n"; 387 IsPIC = true; 388 } 389 390 auto BCOrErr = BinaryContext::createBinaryContext( 391 File, IsPIC, 392 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 393 nullptr, opts::DWPPathName, 394 WithColor::defaultErrorHandler, 395 WithColor::defaultWarningHandler)); 396 if (Error E = BCOrErr.takeError()) { 397 Err = std::move(E); 398 return; 399 } 400 BC = std::move(BCOrErr.get()); 401 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 402 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 403 404 BAT = std::make_unique<BoltAddressTranslation>(*BC); 405 406 if (opts::UpdateDebugSections) 407 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 408 409 if (opts::Instrument) 410 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 411 else if (opts::Hugify) 412 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 413 } 414 415 RewriteInstance::~RewriteInstance() {} 416 417 Error RewriteInstance::setProfile(StringRef Filename) { 418 if (!sys::fs::exists(Filename)) 419 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 420 421 if (ProfileReader) { 422 // Already exists 423 return make_error<StringError>(Twine("multiple profiles specified: ") + 424 ProfileReader->getFilename() + " and " + 425 Filename, 426 inconvertibleErrorCode()); 427 } 428 429 // Spawn a profile reader based on file contents. 430 if (DataAggregator::checkPerfDataMagic(Filename)) 431 ProfileReader = std::make_unique<DataAggregator>(Filename); 432 else if (YAMLProfileReader::isYAML(Filename)) 433 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 434 else 435 ProfileReader = std::make_unique<DataReader>(Filename); 436 437 return Error::success(); 438 } 439 440 /// Return true if the function \p BF should be disassembled. 441 static bool shouldDisassemble(const BinaryFunction &BF) { 442 if (BF.isPseudo()) 443 return false; 444 445 if (opts::processAllFunctions()) 446 return true; 447 448 return !BF.isIgnored(); 449 } 450 451 Error RewriteInstance::discoverStorage() { 452 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 453 TimerGroupDesc, opts::TimeRewrite); 454 455 // Stubs are harmful because RuntimeDyld may try to increase the size of 456 // sections accounting for stubs when we need those sections to match the 457 // same size seen in the input binary, in case this section is a copy 458 // of the original one seen in the binary. 459 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 460 461 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 462 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 463 464 BC->StartFunctionAddress = Obj.getHeader().e_entry; 465 466 NextAvailableAddress = 0; 467 uint64_t NextAvailableOffset = 0; 468 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 469 if (Error E = PHsOrErr.takeError()) 470 return E; 471 472 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 473 for (const ELF64LE::Phdr &Phdr : PHs) { 474 switch (Phdr.p_type) { 475 case ELF::PT_LOAD: 476 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 477 static_cast<uint64_t>(Phdr.p_vaddr)); 478 NextAvailableAddress = std::max(NextAvailableAddress, 479 Phdr.p_vaddr + Phdr.p_memsz); 480 NextAvailableOffset = std::max(NextAvailableOffset, 481 Phdr.p_offset + Phdr.p_filesz); 482 483 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 484 Phdr.p_memsz, 485 Phdr.p_offset, 486 Phdr.p_filesz, 487 Phdr.p_align}; 488 break; 489 case ELF::PT_INTERP: 490 BC->HasInterpHeader = true; 491 break; 492 } 493 } 494 495 for (const SectionRef &Section : InputFile->sections()) { 496 Expected<StringRef> SectionNameOrErr = Section.getName(); 497 if (Error E = SectionNameOrErr.takeError()) 498 return E; 499 StringRef SectionName = SectionNameOrErr.get(); 500 if (SectionName == ".text") { 501 BC->OldTextSectionAddress = Section.getAddress(); 502 BC->OldTextSectionSize = Section.getSize(); 503 504 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 505 if (Error E = SectionContentsOrErr.takeError()) 506 return E; 507 StringRef SectionContents = SectionContentsOrErr.get(); 508 BC->OldTextSectionOffset = 509 SectionContents.data() - InputFile->getData().data(); 510 } 511 512 if (!opts::HeatmapMode && 513 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 514 (SectionName.startswith(getOrgSecPrefix()) || 515 SectionName == getBOLTTextSectionName())) 516 return createStringError( 517 errc::function_not_supported, 518 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 519 } 520 521 if (!NextAvailableAddress || !NextAvailableOffset) 522 return createStringError(errc::executable_format_error, 523 "no PT_LOAD pheader seen"); 524 525 outs() << "BOLT-INFO: first alloc address is 0x" 526 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 527 528 FirstNonAllocatableOffset = NextAvailableOffset; 529 530 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 531 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 532 533 if (!opts::UseGnuStack) { 534 // This is where the black magic happens. Creating PHDR table in a segment 535 // other than that containing ELF header is tricky. Some loaders and/or 536 // parts of loaders will apply e_phoff from ELF header assuming both are in 537 // the same segment, while others will do the proper calculation. 538 // We create the new PHDR table in such a way that both of the methods 539 // of loading and locating the table work. There's a slight file size 540 // overhead because of that. 541 // 542 // NB: bfd's strip command cannot do the above and will corrupt the 543 // binary during the process of stripping non-allocatable sections. 544 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 545 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 546 else 547 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 548 549 assert(NextAvailableOffset == 550 NextAvailableAddress - BC->FirstAllocAddress && 551 "PHDR table address calculation error"); 552 553 outs() << "BOLT-INFO: creating new program header table at address 0x" 554 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 555 << Twine::utohexstr(NextAvailableOffset) << '\n'; 556 557 PHDRTableAddress = NextAvailableAddress; 558 PHDRTableOffset = NextAvailableOffset; 559 560 // Reserve space for 3 extra pheaders. 561 unsigned Phnum = Obj.getHeader().e_phnum; 562 Phnum += 3; 563 564 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 565 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 566 } 567 568 // Align at cache line. 569 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 570 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 571 572 NewTextSegmentAddress = NextAvailableAddress; 573 NewTextSegmentOffset = NextAvailableOffset; 574 BC->LayoutStartAddress = NextAvailableAddress; 575 576 // Tools such as objcopy can strip section contents but leave header 577 // entries. Check that at least .text is mapped in the file. 578 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 579 return createStringError(errc::executable_format_error, 580 "BOLT-ERROR: input binary is not a valid ELF " 581 "executable as its text section is not " 582 "mapped to a valid segment"); 583 return Error::success(); 584 } 585 586 void RewriteInstance::parseSDTNotes() { 587 if (!SDTSection) 588 return; 589 590 StringRef Buf = SDTSection->getContents(); 591 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 592 BC->AsmInfo->getCodePointerSize()); 593 uint64_t Offset = 0; 594 595 while (DE.isValidOffset(Offset)) { 596 uint32_t NameSz = DE.getU32(&Offset); 597 DE.getU32(&Offset); // skip over DescSz 598 uint32_t Type = DE.getU32(&Offset); 599 Offset = alignTo(Offset, 4); 600 601 if (Type != 3) 602 errs() << "BOLT-WARNING: SDT note type \"" << Type 603 << "\" is not expected\n"; 604 605 if (NameSz == 0) 606 errs() << "BOLT-WARNING: SDT note has empty name\n"; 607 608 StringRef Name = DE.getCStr(&Offset); 609 610 if (!Name.equals("stapsdt")) 611 errs() << "BOLT-WARNING: SDT note name \"" << Name 612 << "\" is not expected\n"; 613 614 // Parse description 615 SDTMarkerInfo Marker; 616 Marker.PCOffset = Offset; 617 Marker.PC = DE.getU64(&Offset); 618 Marker.Base = DE.getU64(&Offset); 619 Marker.Semaphore = DE.getU64(&Offset); 620 Marker.Provider = DE.getCStr(&Offset); 621 Marker.Name = DE.getCStr(&Offset); 622 Marker.Args = DE.getCStr(&Offset); 623 Offset = alignTo(Offset, 4); 624 BC->SDTMarkers[Marker.PC] = Marker; 625 } 626 627 if (opts::PrintSDTMarkers) 628 printSDTMarkers(); 629 } 630 631 void RewriteInstance::parsePseudoProbe() { 632 if (!PseudoProbeDescSection && !PseudoProbeSection) { 633 // pesudo probe is not added to binary. It is normal and no warning needed. 634 return; 635 } 636 637 // If only one section is found, it might mean the ELF is corrupted. 638 if (!PseudoProbeDescSection) { 639 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 640 return; 641 } else if (!PseudoProbeSection) { 642 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 643 return; 644 } 645 646 StringRef Contents = PseudoProbeDescSection->getContents(); 647 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 648 reinterpret_cast<const uint8_t *>(Contents.data()), 649 Contents.size())) { 650 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 651 return; 652 } 653 Contents = PseudoProbeSection->getContents(); 654 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 655 reinterpret_cast<const uint8_t *>(Contents.data()), 656 Contents.size())) { 657 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 658 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 659 return; 660 } 661 662 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 663 opts::PrintPseudoProbes == 664 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 665 outs() << "Report of decoding input pseudo probe binaries \n"; 666 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 667 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 668 } 669 } 670 671 void RewriteInstance::printSDTMarkers() { 672 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 673 << "\n"; 674 for (auto It : BC->SDTMarkers) { 675 SDTMarkerInfo &Marker = It.second; 676 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 677 << ", Base: " << utohexstr(Marker.Base) 678 << ", Semaphore: " << utohexstr(Marker.Semaphore) 679 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 680 << ", Args: " << Marker.Args << "\n"; 681 } 682 } 683 684 void RewriteInstance::parseBuildID() { 685 if (!BuildIDSection) 686 return; 687 688 StringRef Buf = BuildIDSection->getContents(); 689 690 // Reading notes section (see Portable Formats Specification, Version 1.1, 691 // pg 2-5, section "Note Section"). 692 DataExtractor DE = DataExtractor(Buf, true, 8); 693 uint64_t Offset = 0; 694 if (!DE.isValidOffset(Offset)) 695 return; 696 uint32_t NameSz = DE.getU32(&Offset); 697 if (!DE.isValidOffset(Offset)) 698 return; 699 uint32_t DescSz = DE.getU32(&Offset); 700 if (!DE.isValidOffset(Offset)) 701 return; 702 uint32_t Type = DE.getU32(&Offset); 703 704 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 705 << "; Type = " << Type << "\n"); 706 707 // Type 3 is a GNU build-id note section 708 if (Type != 3) 709 return; 710 711 StringRef Name = Buf.slice(Offset, Offset + NameSz); 712 Offset = alignTo(Offset + NameSz, 4); 713 if (Name.substr(0, 3) != "GNU") 714 return; 715 716 BuildID = Buf.slice(Offset, Offset + DescSz); 717 } 718 719 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 720 if (BuildID.empty()) 721 return NoneType(); 722 723 std::string Str; 724 raw_string_ostream OS(Str); 725 const unsigned char *CharIter = BuildID.bytes_begin(); 726 while (CharIter != BuildID.bytes_end()) { 727 if (*CharIter < 0x10) 728 OS << "0"; 729 OS << Twine::utohexstr(*CharIter); 730 ++CharIter; 731 } 732 return OS.str(); 733 } 734 735 void RewriteInstance::patchBuildID() { 736 raw_fd_ostream &OS = Out->os(); 737 738 if (BuildID.empty()) 739 return; 740 741 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 742 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 743 744 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 745 if (!FileOffset) { 746 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 747 return; 748 } 749 750 char LastIDByte = BuildID[BuildID.size() - 1]; 751 LastIDByte ^= 1; 752 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 753 754 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 755 } 756 757 Error RewriteInstance::run() { 758 assert(BC && "failed to create a binary context"); 759 760 outs() << "BOLT-INFO: Target architecture: " 761 << Triple::getArchTypeName( 762 (llvm::Triple::ArchType)InputFile->getArch()) 763 << "\n"; 764 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 765 766 if (Error E = discoverStorage()) 767 return E; 768 if (Error E = readSpecialSections()) 769 return E; 770 adjustCommandLineOptions(); 771 discoverFileObjects(); 772 773 preprocessProfileData(); 774 775 // Skip disassembling if we have a translation table and we are running an 776 // aggregation job. 777 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 778 processProfileData(); 779 return Error::success(); 780 } 781 782 selectFunctionsToProcess(); 783 784 readDebugInfo(); 785 786 disassembleFunctions(); 787 788 processProfileDataPreCFG(); 789 790 buildFunctionsCFG(); 791 792 processProfileData(); 793 794 postProcessFunctions(); 795 796 if (opts::DiffOnly) 797 return Error::success(); 798 799 runOptimizationPasses(); 800 801 emitAndLink(); 802 803 updateMetadata(); 804 805 if (opts::LinuxKernelMode) { 806 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 807 return Error::success(); 808 } else if (opts::OutputFilename == "/dev/null") { 809 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 810 return Error::success(); 811 } 812 813 // Rewrite allocatable contents and copy non-allocatable parts with mods. 814 rewriteFile(); 815 return Error::success(); 816 } 817 818 void RewriteInstance::discoverFileObjects() { 819 NamedRegionTimer T("discoverFileObjects", "discover file objects", 820 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 821 FileSymRefs.clear(); 822 BC->getBinaryFunctions().clear(); 823 BC->clearBinaryData(); 824 825 // For local symbols we want to keep track of associated FILE symbol name for 826 // disambiguation by combined name. 827 StringRef FileSymbolName; 828 bool SeenFileName = false; 829 struct SymbolRefHash { 830 size_t operator()(SymbolRef const &S) const { 831 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 832 } 833 }; 834 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 835 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 836 Expected<StringRef> NameOrError = Symbol.getName(); 837 if (NameOrError && NameOrError->startswith("__asan_init")) { 838 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 839 "support. Cannot optimize.\n"; 840 exit(1); 841 } 842 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 843 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 844 "support. Cannot optimize.\n"; 845 exit(1); 846 } 847 848 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 849 continue; 850 851 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 852 StringRef Name = 853 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 854 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 855 // and this uncertainty is causing havoc in function name matching. 856 if (Name == "ld-temp.o") 857 continue; 858 FileSymbolName = Name; 859 SeenFileName = true; 860 continue; 861 } 862 if (!FileSymbolName.empty() && 863 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 864 SymbolToFileName[Symbol] = FileSymbolName; 865 } 866 867 // Sort symbols in the file by value. Ignore symbols from non-allocatable 868 // sections. 869 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 870 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 871 return false; 872 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 873 return true; 874 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 875 return false; 876 BinarySection Section(*BC, *cantFail(Sym.getSection())); 877 return Section.isAllocatable(); 878 }; 879 std::vector<SymbolRef> SortedFileSymbols; 880 std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), 881 std::back_inserter(SortedFileSymbols), isSymbolInMemory); 882 883 std::stable_sort( 884 SortedFileSymbols.begin(), SortedFileSymbols.end(), 885 [](const SymbolRef &A, const SymbolRef &B) { 886 // FUNC symbols have the highest precedence, while SECTIONs 887 // have the lowest. 888 uint64_t AddressA = cantFail(A.getAddress()); 889 uint64_t AddressB = cantFail(B.getAddress()); 890 if (AddressA != AddressB) 891 return AddressA < AddressB; 892 893 SymbolRef::Type AType = cantFail(A.getType()); 894 SymbolRef::Type BType = cantFail(B.getType()); 895 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 896 return true; 897 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 898 return true; 899 900 return false; 901 }); 902 903 // For aarch64, the ABI defines mapping symbols so we identify data in the 904 // code section (see IHI0056B). $d identifies data contents. 905 auto LastSymbol = SortedFileSymbols.end() - 1; 906 if (BC->isAArch64()) { 907 LastSymbol = std::stable_partition( 908 SortedFileSymbols.begin(), SortedFileSymbols.end(), 909 [](const SymbolRef &Symbol) { 910 StringRef Name = cantFail(Symbol.getName()); 911 return !(cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && 912 (Name == "$d" || Name.startswith("$d.") || Name == "$x" || 913 Name.startswith("$x."))); 914 }); 915 --LastSymbol; 916 } 917 918 BinaryFunction *PreviousFunction = nullptr; 919 unsigned AnonymousId = 0; 920 921 const auto MarkersBegin = std::next(LastSymbol); 922 for (auto ISym = SortedFileSymbols.begin(); ISym != MarkersBegin; ++ISym) { 923 const SymbolRef &Symbol = *ISym; 924 // Keep undefined symbols for pretty printing? 925 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 926 continue; 927 928 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 929 930 if (SymbolType == SymbolRef::ST_File) 931 continue; 932 933 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 934 uint64_t Address = 935 cantFail(Symbol.getAddress(), "cannot get symbol address"); 936 if (Address == 0) { 937 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 938 errs() << "BOLT-WARNING: function with 0 address seen\n"; 939 continue; 940 } 941 942 // Ignore input hot markers 943 if (SymName == "__hot_start" || SymName == "__hot_end") 944 continue; 945 946 FileSymRefs[Address] = Symbol; 947 948 // Skip section symbols that will be registered by disassemblePLT(). 949 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 950 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 951 if (BSection && getPLTSectionInfo(BSection->getName())) 952 continue; 953 } 954 955 /// It is possible we are seeing a globalized local. LLVM might treat it as 956 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 957 /// change the prefix to enforce global scope of the symbol. 958 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 959 ? "PG" + std::string(SymName) 960 : std::string(SymName); 961 962 // Disambiguate all local symbols before adding to symbol table. 963 // Since we don't know if we will see a global with the same name, 964 // always modify the local name. 965 // 966 // NOTE: the naming convention for local symbols should match 967 // the one we use for profile data. 968 std::string UniqueName; 969 std::string AlternativeName; 970 if (Name.empty()) { 971 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 972 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 973 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 974 UniqueName = Name; 975 } else { 976 // If we have a local file name, we should create 2 variants for the 977 // function name. The reason is that perf profile might have been 978 // collected on a binary that did not have the local file name (e.g. as 979 // a side effect of stripping debug info from the binary): 980 // 981 // primary: <function>/<id> 982 // alternative: <function>/<file>/<id2> 983 // 984 // The <id> field is used for disambiguation of local symbols since there 985 // could be identical function names coming from identical file names 986 // (e.g. from different directories). 987 std::string AltPrefix; 988 auto SFI = SymbolToFileName.find(Symbol); 989 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 990 AltPrefix = Name + "/" + std::string(SFI->second); 991 992 UniqueName = NR.uniquify(Name); 993 if (!AltPrefix.empty()) 994 AlternativeName = NR.uniquify(AltPrefix); 995 } 996 997 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 998 uint64_t SymbolAlignment = Symbol.getAlignment(); 999 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 1000 1001 auto registerName = [&](uint64_t FinalSize) { 1002 // Register names even if it's not a function, e.g. for an entry point. 1003 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1004 SymbolFlags); 1005 if (!AlternativeName.empty()) 1006 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1007 SymbolAlignment, SymbolFlags); 1008 }; 1009 1010 section_iterator Section = 1011 cantFail(Symbol.getSection(), "cannot get symbol section"); 1012 if (Section == InputFile->section_end()) { 1013 // Could be an absolute symbol. Could record for pretty printing. 1014 LLVM_DEBUG(if (opts::Verbosity > 1) { 1015 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1016 }); 1017 registerName(SymbolSize); 1018 continue; 1019 } 1020 1021 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1022 << " for function\n"); 1023 1024 if (!Section->isText()) { 1025 assert(SymbolType != SymbolRef::ST_Function && 1026 "unexpected function inside non-code section"); 1027 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1028 registerName(SymbolSize); 1029 continue; 1030 } 1031 1032 // Assembly functions could be ST_NONE with 0 size. Check that the 1033 // corresponding section is a code section and they are not inside any 1034 // other known function to consider them. 1035 // 1036 // Sometimes assembly functions are not marked as functions and neither are 1037 // their local labels. The only way to tell them apart is to look at 1038 // symbol scope - global vs local. 1039 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1040 if (PreviousFunction->containsAddress(Address)) { 1041 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1042 LLVM_DEBUG(dbgs() 1043 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1044 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1045 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1046 } else if (opts::Verbosity > 1) { 1047 errs() << "BOLT-WARNING: symbol " << UniqueName 1048 << " seen in the middle of function " << *PreviousFunction 1049 << ". Could be a new entry.\n"; 1050 } 1051 registerName(SymbolSize); 1052 continue; 1053 } else if (PreviousFunction->getSize() == 0 && 1054 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1055 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1056 registerName(SymbolSize); 1057 continue; 1058 } 1059 } 1060 1061 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1062 PreviousFunction->getAddress() != Address) { 1063 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1064 if (opts::Verbosity >= 1) 1065 outs() << "BOLT-INFO: skipping possibly another entry for function " 1066 << *PreviousFunction << " : " << UniqueName << '\n'; 1067 } else { 1068 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1069 << "function " << *PreviousFunction << '\n'; 1070 1071 registerName(0); 1072 1073 PreviousFunction->addEntryPointAtOffset(Address - 1074 PreviousFunction->getAddress()); 1075 1076 // Remove the symbol from FileSymRefs so that we can skip it from 1077 // in the future. 1078 auto SI = FileSymRefs.find(Address); 1079 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1080 assert(SI->second == Symbol && "wrong symbol found"); 1081 FileSymRefs.erase(SI); 1082 } 1083 registerName(SymbolSize); 1084 continue; 1085 } 1086 1087 // Checkout for conflicts with function data from FDEs. 1088 bool IsSimple = true; 1089 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1090 if (FDEI != CFIRdWrt->getFDEs().end()) { 1091 const dwarf::FDE &FDE = *FDEI->second; 1092 if (FDEI->first != Address) { 1093 // There's no matching starting address in FDE. Make sure the previous 1094 // FDE does not contain this address. 1095 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1096 --FDEI; 1097 const dwarf::FDE &PrevFDE = *FDEI->second; 1098 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1099 uint64_t PrevLength = PrevFDE.getAddressRange(); 1100 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1101 errs() << "BOLT-ERROR: function " << UniqueName 1102 << " is in conflict with FDE [" 1103 << Twine::utohexstr(PrevStart) << ", " 1104 << Twine::utohexstr(PrevStart + PrevLength) 1105 << "). Skipping.\n"; 1106 IsSimple = false; 1107 } 1108 } 1109 } else if (FDE.getAddressRange() != SymbolSize) { 1110 if (SymbolSize) { 1111 // Function addresses match but sizes differ. 1112 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1113 << ". FDE : " << FDE.getAddressRange() 1114 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1115 } 1116 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1117 if (BC->getBinaryDataAtAddress(Address)) { 1118 BC->setBinaryDataSize(Address, SymbolSize); 1119 } else { 1120 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1121 << Twine::utohexstr(Address) << "\n"); 1122 } 1123 } 1124 } 1125 1126 BinaryFunction *BF = nullptr; 1127 // Since function may not have yet obtained its real size, do a search 1128 // using the list of registered functions instead of calling 1129 // getBinaryFunctionAtAddress(). 1130 auto BFI = BC->getBinaryFunctions().find(Address); 1131 if (BFI != BC->getBinaryFunctions().end()) { 1132 BF = &BFI->second; 1133 // Duplicate the function name. Make sure everything matches before we add 1134 // an alternative name. 1135 if (SymbolSize != BF->getSize()) { 1136 if (opts::Verbosity >= 1) { 1137 if (SymbolSize && BF->getSize()) 1138 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1139 << *BF << " and " << UniqueName << '\n'; 1140 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1141 << BF->getSize() << " new " << SymbolSize << "\n"; 1142 } 1143 BF->setSize(std::max(SymbolSize, BF->getSize())); 1144 BC->setBinaryDataSize(Address, BF->getSize()); 1145 } 1146 BF->addAlternativeName(UniqueName); 1147 } else { 1148 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1149 // Skip symbols from invalid sections 1150 if (!Section) { 1151 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1152 << Twine::utohexstr(Address) << ") does not have any section\n"; 1153 continue; 1154 } 1155 assert(Section && "section for functions must be registered"); 1156 1157 // Skip symbols from zero-sized sections. 1158 if (!Section->getSize()) 1159 continue; 1160 1161 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1162 if (!IsSimple) 1163 BF->setSimple(false); 1164 } 1165 if (!AlternativeName.empty()) 1166 BF->addAlternativeName(AlternativeName); 1167 1168 registerName(SymbolSize); 1169 PreviousFunction = BF; 1170 } 1171 1172 // Read dynamic relocation first as their presence affects the way we process 1173 // static relocations. E.g. we will ignore a static relocation at an address 1174 // that is a subject to dynamic relocation processing. 1175 processDynamicRelocations(); 1176 1177 // Process PLT section. 1178 disassemblePLT(); 1179 1180 // See if we missed any functions marked by FDE. 1181 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1182 const uint64_t Address = FDEI.first; 1183 const dwarf::FDE *FDE = FDEI.second; 1184 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1185 if (BF) 1186 continue; 1187 1188 BF = BC->getBinaryFunctionContainingAddress(Address); 1189 if (BF) { 1190 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1191 << Twine::utohexstr(Address + FDE->getAddressRange()) 1192 << ") conflicts with function " << *BF << '\n'; 1193 continue; 1194 } 1195 1196 if (opts::Verbosity >= 1) 1197 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1198 << Twine::utohexstr(Address + FDE->getAddressRange()) 1199 << ") has no corresponding symbol table entry\n"; 1200 1201 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1202 assert(Section && "cannot get section for address from FDE"); 1203 std::string FunctionName = 1204 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1205 BC->createBinaryFunction(FunctionName, *Section, Address, 1206 FDE->getAddressRange()); 1207 } 1208 1209 BC->setHasSymbolsWithFileName(SeenFileName); 1210 1211 // Now that all the functions were created - adjust their boundaries. 1212 adjustFunctionBoundaries(); 1213 1214 // Annotate functions with code/data markers in AArch64 1215 for (auto ISym = MarkersBegin; ISym != SortedFileSymbols.end(); ++ISym) { 1216 const SymbolRef &Symbol = *ISym; 1217 uint64_t Address = 1218 cantFail(Symbol.getAddress(), "cannot get symbol address"); 1219 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1220 BinaryFunction *BF = 1221 BC->getBinaryFunctionContainingAddress(Address, true, true); 1222 if (!BF) { 1223 // Stray marker 1224 continue; 1225 } 1226 const uint64_t EntryOffset = Address - BF->getAddress(); 1227 if (BF->isCodeMarker(Symbol, SymbolSize)) { 1228 BF->markCodeAtOffset(EntryOffset); 1229 continue; 1230 } 1231 if (BF->isDataMarker(Symbol, SymbolSize)) { 1232 BF->markDataAtOffset(EntryOffset); 1233 BC->AddressToConstantIslandMap[Address] = BF; 1234 continue; 1235 } 1236 llvm_unreachable("Unknown marker"); 1237 } 1238 1239 if (opts::LinuxKernelMode) { 1240 // Read all special linux kernel sections and their relocations 1241 processLKSections(); 1242 } else { 1243 // Read all relocations now that we have binary functions mapped. 1244 processRelocations(); 1245 } 1246 } 1247 1248 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1249 uint64_t EntryAddress, 1250 uint64_t EntrySize) { 1251 if (!TargetAddress) 1252 return; 1253 1254 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1255 if (!Rel || !Rel->Symbol) 1256 return; 1257 1258 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1259 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1260 assert(Section && "cannot get section for address"); 1261 BinaryFunction *BF = BC->createBinaryFunction( 1262 Rel->Symbol->getName().str() + "@PLT", *Section, EntryAddress, 0, 1263 EntrySize, Section->getAlignment()); 1264 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1265 Rel->Symbol->getName().str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1266 BF->setPLTSymbol(TargetSymbol); 1267 } 1268 1269 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1270 const uint64_t SectionAddress = Section.getAddress(); 1271 const uint64_t SectionSize = Section.getSize(); 1272 StringRef PLTContents = Section.getContents(); 1273 ArrayRef<uint8_t> PLTData( 1274 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1275 1276 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1277 uint64_t &InstrSize) { 1278 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1279 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1280 PLTData.slice(InstrOffset), InstrAddr, 1281 nulls())) { 1282 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1283 << Section.getName() << " at offset 0x" 1284 << Twine::utohexstr(InstrOffset) << '\n'; 1285 exit(1); 1286 } 1287 }; 1288 1289 uint64_t InstrOffset = 0; 1290 // Locate new plt entry 1291 while (InstrOffset < SectionSize) { 1292 InstructionListType Instructions; 1293 MCInst Instruction; 1294 uint64_t EntryOffset = InstrOffset; 1295 uint64_t EntrySize = 0; 1296 uint64_t InstrSize; 1297 // Loop through entry instructions 1298 while (InstrOffset < SectionSize) { 1299 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1300 EntrySize += InstrSize; 1301 if (!BC->MIB->isIndirectBranch(Instruction)) { 1302 Instructions.emplace_back(Instruction); 1303 InstrOffset += InstrSize; 1304 continue; 1305 } 1306 1307 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1308 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1309 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1310 1311 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1312 break; 1313 } 1314 1315 // Branch instruction 1316 InstrOffset += InstrSize; 1317 1318 // Skip nops if any 1319 while (InstrOffset < SectionSize) { 1320 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1321 if (!BC->MIB->isNoop(Instruction)) 1322 break; 1323 1324 InstrOffset += InstrSize; 1325 } 1326 } 1327 } 1328 1329 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1330 uint64_t EntrySize) { 1331 const uint64_t SectionAddress = Section.getAddress(); 1332 const uint64_t SectionSize = Section.getSize(); 1333 StringRef PLTContents = Section.getContents(); 1334 ArrayRef<uint8_t> PLTData( 1335 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1336 1337 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1338 uint64_t &InstrSize) { 1339 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1340 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1341 PLTData.slice(InstrOffset), InstrAddr, 1342 nulls())) { 1343 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1344 << Section.getName() << " at offset 0x" 1345 << Twine::utohexstr(InstrOffset) << '\n'; 1346 exit(1); 1347 } 1348 }; 1349 1350 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1351 EntryOffset += EntrySize) { 1352 MCInst Instruction; 1353 uint64_t InstrSize, InstrOffset = EntryOffset; 1354 while (InstrOffset < EntryOffset + EntrySize) { 1355 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1356 // Check if the entry size needs adjustment. 1357 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1358 EntrySize == 8) 1359 EntrySize = 16; 1360 1361 if (BC->MIB->isIndirectBranch(Instruction)) 1362 break; 1363 1364 InstrOffset += InstrSize; 1365 } 1366 1367 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1368 continue; 1369 1370 uint64_t TargetAddress; 1371 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1372 SectionAddress + InstrOffset, 1373 InstrSize)) { 1374 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1375 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1376 exit(1); 1377 } 1378 1379 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1380 EntrySize); 1381 } 1382 } 1383 1384 void RewriteInstance::disassemblePLT() { 1385 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1386 if (BC->isAArch64()) 1387 return disassemblePLTSectionAArch64(Section); 1388 return disassemblePLTSectionX86(Section, EntrySize); 1389 }; 1390 1391 for (BinarySection &Section : BC->allocatableSections()) { 1392 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1393 if (!PLTSI) 1394 continue; 1395 1396 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1397 // If we did not register any function at the start of the section, 1398 // then it must be a general PLT entry. Add a function at the location. 1399 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1400 BC->getBinaryFunctions().end()) { 1401 BinaryFunction *BF = BC->createBinaryFunction( 1402 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1403 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1404 BF->setPseudo(true); 1405 } 1406 } 1407 } 1408 1409 void RewriteInstance::adjustFunctionBoundaries() { 1410 for (auto BFI = BC->getBinaryFunctions().begin(), 1411 BFE = BC->getBinaryFunctions().end(); 1412 BFI != BFE; ++BFI) { 1413 BinaryFunction &Function = BFI->second; 1414 const BinaryFunction *NextFunction = nullptr; 1415 if (std::next(BFI) != BFE) 1416 NextFunction = &std::next(BFI)->second; 1417 1418 // Check if it's a fragment of a function. 1419 Optional<StringRef> FragName = 1420 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1421 if (FragName) { 1422 static bool PrintedWarning = false; 1423 if (BC->HasRelocations && !PrintedWarning) { 1424 errs() << "BOLT-WARNING: split function detected on input : " 1425 << *FragName << ". The support is limited in relocation mode.\n"; 1426 PrintedWarning = true; 1427 } 1428 Function.IsFragment = true; 1429 } 1430 1431 // Check if there's a symbol or a function with a larger address in the 1432 // same section. If there is - it determines the maximum size for the 1433 // current function. Otherwise, it is the size of a containing section 1434 // the defines it. 1435 // 1436 // NOTE: ignore some symbols that could be tolerated inside the body 1437 // of a function. 1438 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1439 while (NextSymRefI != FileSymRefs.end()) { 1440 SymbolRef &Symbol = NextSymRefI->second; 1441 const uint64_t SymbolAddress = NextSymRefI->first; 1442 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1443 1444 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1445 break; 1446 1447 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1448 break; 1449 1450 // This is potentially another entry point into the function. 1451 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1452 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1453 << Function << " at offset 0x" 1454 << Twine::utohexstr(EntryOffset) << '\n'); 1455 Function.addEntryPointAtOffset(EntryOffset); 1456 1457 ++NextSymRefI; 1458 } 1459 1460 // Function runs at most till the end of the containing section. 1461 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1462 // Or till the next object marked by a symbol. 1463 if (NextSymRefI != FileSymRefs.end()) 1464 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1465 1466 // Or till the next function not marked by a symbol. 1467 if (NextFunction) 1468 NextObjectAddress = 1469 std::min(NextFunction->getAddress(), NextObjectAddress); 1470 1471 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1472 if (MaxSize < Function.getSize()) { 1473 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1474 << Function << ". Skipping.\n"; 1475 Function.setSimple(false); 1476 Function.setMaxSize(Function.getSize()); 1477 continue; 1478 } 1479 Function.setMaxSize(MaxSize); 1480 if (!Function.getSize() && Function.isSimple()) { 1481 // Some assembly functions have their size set to 0, use the max 1482 // size as their real size. 1483 if (opts::Verbosity >= 1) 1484 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1485 << Function.getMaxSize() << " (was 0)\n"; 1486 Function.setSize(Function.getMaxSize()); 1487 } 1488 } 1489 } 1490 1491 void RewriteInstance::relocateEHFrameSection() { 1492 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1493 1494 DWARFDataExtractor DE(EHFrameSection->getContents(), 1495 BC->AsmInfo->isLittleEndian(), 1496 BC->AsmInfo->getCodePointerSize()); 1497 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1498 if (DwarfType == dwarf::DW_EH_PE_omit) 1499 return; 1500 1501 // Only fix references that are relative to other locations. 1502 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1503 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1504 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1505 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1506 return; 1507 1508 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1509 return; 1510 1511 uint64_t RelType; 1512 switch (DwarfType & 0x0f) { 1513 default: 1514 llvm_unreachable("unsupported DWARF encoding type"); 1515 case dwarf::DW_EH_PE_sdata4: 1516 case dwarf::DW_EH_PE_udata4: 1517 RelType = Relocation::getPC32(); 1518 Offset -= 4; 1519 break; 1520 case dwarf::DW_EH_PE_sdata8: 1521 case dwarf::DW_EH_PE_udata8: 1522 RelType = Relocation::getPC64(); 1523 Offset -= 8; 1524 break; 1525 } 1526 1527 // Create a relocation against an absolute value since the goal is to 1528 // preserve the contents of the section independent of the new values 1529 // of referenced symbols. 1530 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1531 }; 1532 1533 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1534 check_error(std::move(E), "failed to patch EH frame"); 1535 } 1536 1537 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1538 return ArrayRef<uint8_t>(LSDASection->getData(), 1539 LSDASection->getContents().size()); 1540 } 1541 1542 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1543 1544 Error RewriteInstance::readSpecialSections() { 1545 NamedRegionTimer T("readSpecialSections", "read special sections", 1546 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1547 1548 bool HasTextRelocations = false; 1549 bool HasDebugInfo = false; 1550 1551 // Process special sections. 1552 for (const SectionRef &Section : InputFile->sections()) { 1553 Expected<StringRef> SectionNameOrErr = Section.getName(); 1554 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1555 StringRef SectionName = *SectionNameOrErr; 1556 1557 // Only register sections with names. 1558 if (!SectionName.empty()) { 1559 if (Error E = Section.getContents().takeError()) 1560 return E; 1561 BC->registerSection(Section); 1562 LLVM_DEBUG( 1563 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1564 << Twine::utohexstr(Section.getAddress()) << ":0x" 1565 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1566 << "\n"); 1567 if (isDebugSection(SectionName)) 1568 HasDebugInfo = true; 1569 if (isKSymtabSection(SectionName)) 1570 opts::LinuxKernelMode = true; 1571 } 1572 } 1573 1574 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1575 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1576 "Use -update-debug-sections to keep it.\n"; 1577 } 1578 1579 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1580 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1581 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1582 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1583 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1584 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1585 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1586 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1587 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1588 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1589 1590 if (ErrorOr<BinarySection &> BATSec = 1591 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1592 // Do not read BAT when plotting a heatmap 1593 if (!opts::HeatmapMode) { 1594 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1595 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1596 "table.\n"; 1597 exit(1); 1598 } 1599 } 1600 } 1601 1602 if (opts::PrintSections) { 1603 outs() << "BOLT-INFO: Sections from original binary:\n"; 1604 BC->printSections(outs()); 1605 } 1606 1607 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1608 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1609 "file. Cannot proceed in relocations mode (-relocs).\n"; 1610 exit(1); 1611 } 1612 1613 BC->HasRelocations = 1614 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1615 1616 // Force non-relocation mode for heatmap generation 1617 if (opts::HeatmapMode) 1618 BC->HasRelocations = false; 1619 1620 if (BC->HasRelocations) 1621 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1622 << "relocation mode\n"; 1623 1624 // Read EH frame for function boundaries info. 1625 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1626 if (!EHFrameOrError) 1627 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1628 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1629 1630 // Parse build-id 1631 parseBuildID(); 1632 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1633 BC->setFileBuildID(*FileBuildID); 1634 1635 parseSDTNotes(); 1636 1637 // Read .dynamic/PT_DYNAMIC. 1638 readELFDynamic(); 1639 return Error::success(); 1640 } 1641 1642 void RewriteInstance::adjustCommandLineOptions() { 1643 if (BC->isAArch64() && !BC->HasRelocations) 1644 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1645 "supported\n"; 1646 1647 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1648 RtLibrary->adjustCommandLineOptions(*BC); 1649 1650 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1651 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1652 opts::AlignMacroOpFusion = MFT_NONE; 1653 } 1654 1655 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1656 if (!BC->HasRelocations) { 1657 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1658 "non-relocation mode\n"; 1659 exit(1); 1660 } 1661 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1662 "may take several minutes\n"; 1663 opts::AlignMacroOpFusion = MFT_NONE; 1664 } 1665 1666 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1667 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1668 "mode\n"; 1669 opts::AlignMacroOpFusion = MFT_NONE; 1670 } 1671 1672 if (opts::SplitEH && !BC->HasRelocations) { 1673 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1674 opts::SplitEH = false; 1675 } 1676 1677 if (opts::SplitEH && !BC->HasFixedLoadAddress) { 1678 errs() << "BOLT-WARNING: disabling -split-eh for shared object\n"; 1679 opts::SplitEH = false; 1680 } 1681 1682 if (opts::StrictMode && !BC->HasRelocations) { 1683 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1684 "mode\n"; 1685 opts::StrictMode = false; 1686 } 1687 1688 if (BC->HasRelocations && opts::AggregateOnly && 1689 !opts::StrictMode.getNumOccurrences()) { 1690 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1691 "purposes\n"; 1692 opts::StrictMode = true; 1693 } 1694 1695 if (BC->isX86() && BC->HasRelocations && 1696 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1697 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1698 "was specified\n"; 1699 opts::AlignMacroOpFusion = MFT_ALL; 1700 } 1701 1702 if (!BC->HasRelocations && 1703 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1704 errs() << "BOLT-ERROR: function reordering only works when " 1705 << "relocations are enabled\n"; 1706 exit(1); 1707 } 1708 1709 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1710 !opts::HotText.getNumOccurrences()) { 1711 opts::HotText = true; 1712 } else if (opts::HotText && !BC->HasRelocations) { 1713 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1714 opts::HotText = false; 1715 } 1716 1717 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1718 opts::HotTextMoveSections.addValue(".stub"); 1719 opts::HotTextMoveSections.addValue(".mover"); 1720 opts::HotTextMoveSections.addValue(".never_hugify"); 1721 } 1722 1723 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1724 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1725 "\n"; 1726 opts::UseOldText = false; 1727 } 1728 if (opts::UseOldText && !BC->HasRelocations) { 1729 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1730 opts::UseOldText = false; 1731 } 1732 1733 if (!opts::AlignText.getNumOccurrences()) 1734 opts::AlignText = BC->PageAlign; 1735 1736 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1737 !opts::UseOldText) 1738 opts::Lite = true; 1739 1740 if (opts::Lite && opts::UseOldText) { 1741 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1742 "Disabling -use-old-text.\n"; 1743 opts::UseOldText = false; 1744 } 1745 1746 if (opts::Lite && opts::StrictMode) { 1747 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1748 exit(1); 1749 } 1750 1751 if (opts::Lite) 1752 outs() << "BOLT-INFO: enabling lite mode\n"; 1753 1754 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1755 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1756 "file processed by BOLT. Please remove -w option and use branch " 1757 "profile.\n"; 1758 exit(1); 1759 } 1760 } 1761 1762 namespace { 1763 template <typename ELFT> 1764 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1765 const RelocationRef &RelRef) { 1766 using ELFShdrTy = typename ELFT::Shdr; 1767 using Elf_Rela = typename ELFT::Rela; 1768 int64_t Addend = 0; 1769 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1770 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1771 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1772 switch (RelocationSection->sh_type) { 1773 default: 1774 llvm_unreachable("unexpected relocation section type"); 1775 case ELF::SHT_REL: 1776 break; 1777 case ELF::SHT_RELA: { 1778 const Elf_Rela *RelA = Obj->getRela(Rel); 1779 Addend = RelA->r_addend; 1780 break; 1781 } 1782 } 1783 1784 return Addend; 1785 } 1786 1787 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1788 const RelocationRef &Rel) { 1789 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1790 return getRelocationAddend(ELF32LE, Rel); 1791 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1792 return getRelocationAddend(ELF64LE, Rel); 1793 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1794 return getRelocationAddend(ELF32BE, Rel); 1795 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1796 return getRelocationAddend(ELF64BE, Rel); 1797 } 1798 1799 template <typename ELFT> 1800 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1801 const RelocationRef &RelRef) { 1802 using ELFShdrTy = typename ELFT::Shdr; 1803 uint32_t Symbol = 0; 1804 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1805 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1806 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1807 switch (RelocationSection->sh_type) { 1808 default: 1809 llvm_unreachable("unexpected relocation section type"); 1810 case ELF::SHT_REL: 1811 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1812 break; 1813 case ELF::SHT_RELA: 1814 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1815 break; 1816 } 1817 1818 return Symbol; 1819 } 1820 1821 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1822 const RelocationRef &Rel) { 1823 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1824 return getRelocationSymbol(ELF32LE, Rel); 1825 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1826 return getRelocationSymbol(ELF64LE, Rel); 1827 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1828 return getRelocationSymbol(ELF32BE, Rel); 1829 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1830 return getRelocationSymbol(ELF64BE, Rel); 1831 } 1832 } // anonymous namespace 1833 1834 bool RewriteInstance::analyzeRelocation( 1835 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1836 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1837 uint64_t &ExtractedValue, bool &Skip) const { 1838 Skip = false; 1839 if (!Relocation::isSupported(RType)) 1840 return false; 1841 1842 const bool IsAArch64 = BC->isAArch64(); 1843 1844 const size_t RelSize = Relocation::getSizeForType(RType); 1845 1846 ErrorOr<uint64_t> Value = 1847 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1848 assert(Value && "failed to extract relocated value"); 1849 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1850 return true; 1851 1852 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1853 Addend = getRelocationAddend(InputFile, Rel); 1854 1855 const bool IsPCRelative = Relocation::isPCRelative(RType); 1856 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1857 bool SkipVerification = false; 1858 auto SymbolIter = Rel.getSymbol(); 1859 if (SymbolIter == InputFile->symbol_end()) { 1860 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1861 MCSymbol *RelSymbol = 1862 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1863 SymbolName = std::string(RelSymbol->getName()); 1864 IsSectionRelocation = false; 1865 } else { 1866 const SymbolRef &Symbol = *SymbolIter; 1867 SymbolName = std::string(cantFail(Symbol.getName())); 1868 SymbolAddress = cantFail(Symbol.getAddress()); 1869 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1870 // Section symbols are marked as ST_Debug. 1871 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1872 // Check for PLT entry registered with symbol name 1873 if (!SymbolAddress && IsAArch64) { 1874 BinaryData *BD = BC->getBinaryDataByName(SymbolName + "@PLT"); 1875 SymbolAddress = BD ? BD->getAddress() : 0; 1876 } 1877 } 1878 // For PIE or dynamic libs, the linker may choose not to put the relocation 1879 // result at the address if it is a X86_64_64 one because it will emit a 1880 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1881 // resolve it at run time. The static relocation result goes as the addend 1882 // of the dynamic relocation in this case. We can't verify these cases. 1883 // FIXME: perhaps we can try to find if it really emitted a corresponding 1884 // RELATIVE relocation at this offset with the correct value as the addend. 1885 if (!BC->HasFixedLoadAddress && RelSize == 8) 1886 SkipVerification = true; 1887 1888 if (IsSectionRelocation && !IsAArch64) { 1889 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1890 assert(Section && "section expected for section relocation"); 1891 SymbolName = "section " + std::string(Section->getName()); 1892 // Convert section symbol relocations to regular relocations inside 1893 // non-section symbols. 1894 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1895 SymbolAddress = ExtractedValue; 1896 Addend = 0; 1897 } else { 1898 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1899 } 1900 } 1901 1902 // If no symbol has been found or if it is a relocation requiring the 1903 // creation of a GOT entry, do not link against the symbol but against 1904 // whatever address was extracted from the instruction itself. We are 1905 // not creating a GOT entry as this was already processed by the linker. 1906 // For GOT relocs, do not subtract addend as the addend does not refer 1907 // to this instruction's target, but it refers to the target in the GOT 1908 // entry. 1909 if (Relocation::isGOT(RType)) { 1910 Addend = 0; 1911 SymbolAddress = ExtractedValue + PCRelOffset; 1912 } else if (Relocation::isTLS(RType)) { 1913 SkipVerification = true; 1914 } else if (!SymbolAddress) { 1915 assert(!IsSectionRelocation); 1916 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1917 SymbolAddress = 1918 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1919 } else { 1920 // This is weird case. The extracted value is zero but the addend is 1921 // non-zero and the relocation is not pc-rel. Using the previous logic, 1922 // the SymbolAddress would end up as a huge number. Seen in 1923 // exceptions_pic.test. 1924 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1925 << Twine::utohexstr(Rel.getOffset()) 1926 << " value does not match addend for " 1927 << "relocation to undefined symbol.\n"); 1928 return true; 1929 } 1930 } 1931 1932 auto verifyExtractedValue = [&]() { 1933 if (SkipVerification) 1934 return true; 1935 1936 if (IsAArch64) 1937 return true; 1938 1939 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1940 return true; 1941 1942 if (RType == ELF::R_X86_64_PLT32) 1943 return true; 1944 1945 return truncateToSize(ExtractedValue, RelSize) == 1946 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1947 }; 1948 1949 (void)verifyExtractedValue; 1950 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1951 1952 return true; 1953 } 1954 1955 void RewriteInstance::processDynamicRelocations() { 1956 // Read relocations for PLT - DT_JMPREL. 1957 if (PLTRelocationsSize > 0) { 1958 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1959 BC->getSectionForAddress(*PLTRelocationsAddress); 1960 if (!PLTRelSectionOrErr) 1961 report_error("unable to find section corresponding to DT_JMPREL", 1962 PLTRelSectionOrErr.getError()); 1963 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1964 report_error("section size mismatch for DT_PLTRELSZ", 1965 errc::executable_format_error); 1966 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1967 /*IsJmpRel*/ true); 1968 } 1969 1970 // The rest of dynamic relocations - DT_RELA. 1971 if (DynamicRelocationsSize > 0) { 1972 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1973 BC->getSectionForAddress(*DynamicRelocationsAddress); 1974 if (!DynamicRelSectionOrErr) 1975 report_error("unable to find section corresponding to DT_RELA", 1976 DynamicRelSectionOrErr.getError()); 1977 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1978 report_error("section size mismatch for DT_RELASZ", 1979 errc::executable_format_error); 1980 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1981 /*IsJmpRel*/ false); 1982 } 1983 } 1984 1985 void RewriteInstance::processRelocations() { 1986 if (!BC->HasRelocations) 1987 return; 1988 1989 for (const SectionRef &Section : InputFile->sections()) { 1990 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 1991 !BinarySection(*BC, Section).isAllocatable()) 1992 readRelocations(Section); 1993 } 1994 1995 if (NumFailedRelocations) 1996 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 1997 << " relocations\n"; 1998 } 1999 2000 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 2001 int32_t PCRelativeOffset, 2002 bool IsPCRelative, StringRef SectionName) { 2003 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2004 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2005 } 2006 2007 void RewriteInstance::processLKSections() { 2008 assert(opts::LinuxKernelMode && 2009 "process Linux Kernel special sections and their relocations only in " 2010 "linux kernel mode.\n"); 2011 2012 processLKExTable(); 2013 processLKPCIFixup(); 2014 processLKKSymtab(); 2015 processLKKSymtab(true); 2016 processLKBugTable(); 2017 processLKSMPLocks(); 2018 } 2019 2020 /// Process __ex_table section of Linux Kernel. 2021 /// This section contains information regarding kernel level exception 2022 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2023 /// More documentation is in arch/x86/include/asm/extable.h. 2024 /// 2025 /// The section is the list of the following structures: 2026 /// 2027 /// struct exception_table_entry { 2028 /// int insn; 2029 /// int fixup; 2030 /// int handler; 2031 /// }; 2032 /// 2033 void RewriteInstance::processLKExTable() { 2034 ErrorOr<BinarySection &> SectionOrError = 2035 BC->getUniqueSectionByName("__ex_table"); 2036 if (!SectionOrError) 2037 return; 2038 2039 const uint64_t SectionSize = SectionOrError->getSize(); 2040 const uint64_t SectionAddress = SectionOrError->getAddress(); 2041 assert((SectionSize % 12) == 0 && 2042 "The size of the __ex_table section should be a multiple of 12"); 2043 for (uint64_t I = 0; I < SectionSize; I += 4) { 2044 const uint64_t EntryAddress = SectionAddress + I; 2045 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2046 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2047 int32_t SignedOffset = *Offset; 2048 const uint64_t RefAddress = EntryAddress + SignedOffset; 2049 2050 BinaryFunction *ContainingBF = 2051 BC->getBinaryFunctionContainingAddress(RefAddress); 2052 if (!ContainingBF) 2053 continue; 2054 2055 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2056 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2057 switch (I % 12) { 2058 default: 2059 llvm_unreachable("bad alignment of __ex_table"); 2060 break; 2061 case 0: 2062 // insn 2063 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2064 break; 2065 case 4: 2066 // fixup 2067 if (FunctionOffset) 2068 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2069 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2070 0, *Offset); 2071 break; 2072 case 8: 2073 // handler 2074 assert(!FunctionOffset && 2075 "__ex_table handler entry should point to function start"); 2076 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2077 0, *Offset); 2078 break; 2079 } 2080 } 2081 } 2082 2083 /// Process .pci_fixup section of Linux Kernel. 2084 /// This section contains a list of entries for different PCI devices and their 2085 /// corresponding hook handler (code pointer where the fixup 2086 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2087 /// Documentation is in include/linux/pci.h. 2088 void RewriteInstance::processLKPCIFixup() { 2089 ErrorOr<BinarySection &> SectionOrError = 2090 BC->getUniqueSectionByName(".pci_fixup"); 2091 assert(SectionOrError && 2092 ".pci_fixup section not found in Linux Kernel binary"); 2093 const uint64_t SectionSize = SectionOrError->getSize(); 2094 const uint64_t SectionAddress = SectionOrError->getAddress(); 2095 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2096 2097 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2098 const uint64_t PC = SectionAddress + I; 2099 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2100 assert(Offset && "cannot read value from .pci_fixup"); 2101 const int32_t SignedOffset = *Offset; 2102 const uint64_t HookupAddress = PC + SignedOffset; 2103 BinaryFunction *HookupFunction = 2104 BC->getBinaryFunctionAtAddress(HookupAddress); 2105 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2106 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2107 *Offset); 2108 } 2109 } 2110 2111 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2112 /// This section lists all the vmlinux symbols that kernel modules can access. 2113 /// 2114 /// All the entries are 4 bytes each and hence we can read them by one by one 2115 /// and ignore the ones that are not pointing to the .text section. All pointers 2116 /// are PC relative offsets. Always, points to the beginning of the function. 2117 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2118 StringRef SectionName = "__ksymtab"; 2119 if (IsGPL) 2120 SectionName = "__ksymtab_gpl"; 2121 ErrorOr<BinarySection &> SectionOrError = 2122 BC->getUniqueSectionByName(SectionName); 2123 assert(SectionOrError && 2124 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2125 const uint64_t SectionSize = SectionOrError->getSize(); 2126 const uint64_t SectionAddress = SectionOrError->getAddress(); 2127 assert((SectionSize % 4) == 0 && 2128 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2129 2130 for (uint64_t I = 0; I < SectionSize; I += 4) { 2131 const uint64_t EntryAddress = SectionAddress + I; 2132 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2133 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2134 const int32_t SignedOffset = *Offset; 2135 const uint64_t RefAddress = EntryAddress + SignedOffset; 2136 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2137 if (!BF) 2138 continue; 2139 2140 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2141 *Offset); 2142 } 2143 } 2144 2145 /// Process __bug_table section. 2146 /// This section contains information useful for kernel debugging. 2147 /// Each entry in the section is a struct bug_entry that contains a pointer to 2148 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2149 /// pointers use PC relative offset addressing), line number, and flags. 2150 /// The definition of the struct bug_entry can be found in 2151 /// `include/asm-generic/bug.h` 2152 void RewriteInstance::processLKBugTable() { 2153 ErrorOr<BinarySection &> SectionOrError = 2154 BC->getUniqueSectionByName("__bug_table"); 2155 if (!SectionOrError) 2156 return; 2157 2158 const uint64_t SectionSize = SectionOrError->getSize(); 2159 const uint64_t SectionAddress = SectionOrError->getAddress(); 2160 assert((SectionSize % 12) == 0 && 2161 "The size of the __bug_table section should be a multiple of 12"); 2162 for (uint64_t I = 0; I < SectionSize; I += 12) { 2163 const uint64_t EntryAddress = SectionAddress + I; 2164 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2165 assert(Offset && 2166 "Reading valid PC-relative offset for a __bug_table entry"); 2167 const int32_t SignedOffset = *Offset; 2168 const uint64_t RefAddress = EntryAddress + SignedOffset; 2169 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2170 "__bug_table entries should point to a function"); 2171 2172 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2173 } 2174 } 2175 2176 /// .smp_locks section contains PC-relative references to instructions with LOCK 2177 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2178 void RewriteInstance::processLKSMPLocks() { 2179 ErrorOr<BinarySection &> SectionOrError = 2180 BC->getUniqueSectionByName(".smp_locks"); 2181 if (!SectionOrError) 2182 return; 2183 2184 uint64_t SectionSize = SectionOrError->getSize(); 2185 const uint64_t SectionAddress = SectionOrError->getAddress(); 2186 assert((SectionSize % 4) == 0 && 2187 "The size of the .smp_locks section should be a multiple of 4"); 2188 2189 for (uint64_t I = 0; I < SectionSize; I += 4) { 2190 const uint64_t EntryAddress = SectionAddress + I; 2191 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2192 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2193 int32_t SignedOffset = *Offset; 2194 uint64_t RefAddress = EntryAddress + SignedOffset; 2195 2196 BinaryFunction *ContainingBF = 2197 BC->getBinaryFunctionContainingAddress(RefAddress); 2198 if (!ContainingBF) 2199 continue; 2200 2201 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2202 } 2203 } 2204 2205 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2206 bool IsJmpRel) { 2207 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2208 2209 LLVM_DEBUG({ 2210 StringRef SectionName = cantFail(Section.getName()); 2211 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2212 << ":\n"; 2213 }); 2214 2215 for (const RelocationRef &Rel : Section.relocations()) { 2216 const uint64_t RType = Rel.getType(); 2217 if (Relocation::isNone(RType)) 2218 continue; 2219 2220 StringRef SymbolName = "<none>"; 2221 MCSymbol *Symbol = nullptr; 2222 uint64_t SymbolAddress = 0; 2223 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2224 2225 symbol_iterator SymbolIter = Rel.getSymbol(); 2226 if (SymbolIter != InputFile->symbol_end()) { 2227 SymbolName = cantFail(SymbolIter->getName()); 2228 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2229 Symbol = BD ? BD->getSymbol() 2230 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2231 SymbolAddress = cantFail(SymbolIter->getAddress()); 2232 (void)SymbolAddress; 2233 } 2234 2235 LLVM_DEBUG( 2236 SmallString<16> TypeName; 2237 Rel.getTypeName(TypeName); 2238 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2239 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2240 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2241 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2242 ); 2243 2244 if (IsJmpRel) 2245 IsJmpRelocation[RType] = true; 2246 2247 if (Symbol) 2248 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2249 2250 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2251 } 2252 } 2253 2254 void RewriteInstance::readRelocations(const SectionRef &Section) { 2255 LLVM_DEBUG({ 2256 StringRef SectionName = cantFail(Section.getName()); 2257 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2258 << ":\n"; 2259 }); 2260 if (BinarySection(*BC, Section).isAllocatable()) { 2261 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2262 return; 2263 } 2264 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2265 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2266 SectionRef RelocatedSection = *SecIter; 2267 2268 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2269 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2270 << RelocatedSectionName << '\n'); 2271 2272 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2273 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2274 << "non-allocatable section\n"); 2275 return; 2276 } 2277 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2278 .Cases(".plt", ".rela.plt", ".got.plt", 2279 ".eh_frame", ".gcc_except_table", true) 2280 .Default(false); 2281 if (SkipRelocs) { 2282 LLVM_DEBUG( 2283 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2284 return; 2285 } 2286 2287 const bool IsAArch64 = BC->isAArch64(); 2288 const bool IsFromCode = RelocatedSection.isText(); 2289 2290 auto printRelocationInfo = [&](const RelocationRef &Rel, 2291 StringRef SymbolName, 2292 uint64_t SymbolAddress, 2293 uint64_t Addend, 2294 uint64_t ExtractedValue) { 2295 SmallString<16> TypeName; 2296 Rel.getTypeName(TypeName); 2297 const uint64_t Address = SymbolAddress + Addend; 2298 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2299 dbgs() << "Relocation: offset = 0x" 2300 << Twine::utohexstr(Rel.getOffset()) 2301 << "; type = " << TypeName 2302 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2303 << "; symbol = " << SymbolName 2304 << " (" << (Section ? Section->getName() : "") << ")" 2305 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2306 << "; addend = 0x" << Twine::utohexstr(Addend) 2307 << "; address = 0x" << Twine::utohexstr(Address) 2308 << "; in = "; 2309 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2310 Rel.getOffset(), false, IsAArch64)) 2311 dbgs() << Func->getPrintName() << "\n"; 2312 else 2313 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2314 }; 2315 2316 for (const RelocationRef &Rel : Section.relocations()) { 2317 SmallString<16> TypeName; 2318 Rel.getTypeName(TypeName); 2319 uint64_t RType = Rel.getType(); 2320 if (Relocation::isNone(RType)) 2321 continue; 2322 2323 // Adjust the relocation type as the linker might have skewed it. 2324 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2325 if (opts::Verbosity >= 1) 2326 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2327 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2328 } 2329 2330 if (Relocation::isTLS(RType)) { 2331 // No special handling required for TLS relocations on X86. 2332 if (BC->isX86()) 2333 continue; 2334 2335 // The non-got related TLS relocations on AArch64 also could be skipped. 2336 if (!Relocation::isGOT(RType)) 2337 continue; 2338 } 2339 2340 if (BC->getDynamicRelocationAt(Rel.getOffset())) { 2341 LLVM_DEBUG( 2342 dbgs() << "BOLT-DEBUG: address 0x" 2343 << Twine::utohexstr(Rel.getOffset()) 2344 << " has a dynamic relocation against it. Ignoring static " 2345 "relocation.\n"); 2346 continue; 2347 } 2348 2349 std::string SymbolName; 2350 uint64_t SymbolAddress; 2351 int64_t Addend; 2352 uint64_t ExtractedValue; 2353 bool IsSectionRelocation; 2354 bool Skip; 2355 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2356 SymbolAddress, Addend, ExtractedValue, Skip)) { 2357 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2358 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2359 << "; type name = " << TypeName << '\n'); 2360 ++NumFailedRelocations; 2361 continue; 2362 } 2363 2364 if (Skip) { 2365 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2366 << Twine::utohexstr(Rel.getOffset()) 2367 << "; type name = " << TypeName << '\n'); 2368 continue; 2369 } 2370 2371 const uint64_t Address = SymbolAddress + Addend; 2372 2373 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2374 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2375 2376 BinaryFunction *ContainingBF = nullptr; 2377 if (IsFromCode) { 2378 ContainingBF = 2379 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2380 /*CheckPastEnd*/ false, 2381 /*UseMaxSize*/ true); 2382 assert(ContainingBF && "cannot find function for address in code"); 2383 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2384 if (opts::Verbosity >= 1) 2385 outs() << "BOLT-INFO: " << *ContainingBF 2386 << " has relocations in padding area\n"; 2387 ContainingBF->setSize(ContainingBF->getMaxSize()); 2388 ContainingBF->setSimple(false); 2389 continue; 2390 } 2391 } 2392 2393 MCSymbol *ReferencedSymbol = nullptr; 2394 if (!IsSectionRelocation) { 2395 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2396 ReferencedSymbol = BD->getSymbol(); 2397 } 2398 2399 // PC-relative relocations from data to code are tricky since the original 2400 // information is typically lost after linking even with '--emit-relocs'. 2401 // They are normally used by PIC-style jump tables and reference both 2402 // the jump table and jump destination by computing the difference 2403 // between the two. If we blindly apply the relocation it will appear 2404 // that it references an arbitrary location in the code, possibly even 2405 // in a different function from that containing the jump table. 2406 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2407 // For relocations against non-code sections, just register the fact that 2408 // we have a PC-relative relocation at a given address. The actual 2409 // referenced label/address cannot be determined from linker data alone. 2410 if (!IsFromCode) 2411 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2412 else if (!IsSectionRelocation && ReferencedSymbol) 2413 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2414 Addend, ExtractedValue); 2415 else 2416 LLVM_DEBUG( 2417 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2418 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2419 << "\n"); 2420 continue; 2421 } 2422 2423 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2424 ErrorOr<BinarySection &> RefSection = 2425 std::make_error_code(std::errc::bad_address); 2426 if (BC->isAArch64() && Relocation::isGOT(RType)) { 2427 ForceRelocation = true; 2428 } else { 2429 RefSection = BC->getSectionForAddress(SymbolAddress); 2430 if (!RefSection && !ForceRelocation) { 2431 LLVM_DEBUG( 2432 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2433 continue; 2434 } 2435 } 2436 2437 const bool IsToCode = RefSection && RefSection->isText(); 2438 2439 // Occasionally we may see a reference past the last byte of the function 2440 // typically as a result of __builtin_unreachable(). Check it here. 2441 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2442 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2443 2444 if (!IsSectionRelocation) { 2445 if (BinaryFunction *BF = 2446 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2447 if (BF != ReferencedBF) { 2448 // It's possible we are referencing a function without referencing any 2449 // code, e.g. when taking a bitmask action on a function address. 2450 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2451 "bitmask) detected against function " 2452 << *BF; 2453 if (IsFromCode) 2454 errs() << " from function " << *ContainingBF << '\n'; 2455 else 2456 errs() << " from data section at 0x" 2457 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2458 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2459 ExtractedValue)); 2460 ReferencedBF = BF; 2461 } 2462 } 2463 } else if (ReferencedBF) { 2464 assert(RefSection && "section expected for section relocation"); 2465 if (*ReferencedBF->getOriginSection() != *RefSection) { 2466 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2467 ReferencedBF = nullptr; 2468 } 2469 } 2470 2471 // Workaround for a member function pointer de-virtualization bug. We check 2472 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2473 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2474 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2475 if (const BinaryFunction *RogueBF = 2476 BC->getBinaryFunctionAtAddress(Address + 1)) { 2477 // Do an extra check that the function was referenced previously. 2478 // It's a linear search, but it should rarely happen. 2479 bool Found = false; 2480 for (const auto &RelKV : ContainingBF->Relocations) { 2481 const Relocation &Rel = RelKV.second; 2482 if (Rel.Symbol == RogueBF->getSymbol() && 2483 !Relocation::isPCRelative(Rel.Type)) { 2484 Found = true; 2485 break; 2486 } 2487 } 2488 2489 if (Found) { 2490 errs() << "BOLT-WARNING: detected possible compiler " 2491 "de-virtualization bug: -1 addend used with " 2492 "non-pc-relative relocation against function " 2493 << *RogueBF << " in function " << *ContainingBF << '\n'; 2494 continue; 2495 } 2496 } 2497 } 2498 2499 if (ForceRelocation) { 2500 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2501 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2502 SymbolAddress = 0; 2503 if (Relocation::isGOT(RType)) 2504 Addend = Address; 2505 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2506 << SymbolName << " with addend " << Addend << '\n'); 2507 } else if (ReferencedBF) { 2508 ReferencedSymbol = ReferencedBF->getSymbol(); 2509 uint64_t RefFunctionOffset = 0; 2510 2511 // Adjust the point of reference to a code location inside a function. 2512 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2513 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2514 if (RefFunctionOffset) { 2515 if (ContainingBF && ContainingBF != ReferencedBF) { 2516 ReferencedSymbol = 2517 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2518 } else { 2519 ReferencedSymbol = 2520 ReferencedBF->getOrCreateLocalLabel(Address, 2521 /*CreatePastEnd =*/true); 2522 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2523 } 2524 if (opts::Verbosity > 1 && 2525 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2526 errs() << "BOLT-WARNING: writable reference into the middle of " 2527 << "the function " << *ReferencedBF 2528 << " detected at address 0x" 2529 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2530 } 2531 SymbolAddress = Address; 2532 Addend = 0; 2533 } 2534 LLVM_DEBUG( 2535 dbgs() << " referenced function " << *ReferencedBF; 2536 if (Address != ReferencedBF->getAddress()) 2537 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2538 dbgs() << '\n' 2539 ); 2540 } else { 2541 if (IsToCode && SymbolAddress) { 2542 // This can happen e.g. with PIC-style jump tables. 2543 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2544 "relocation against code\n"); 2545 } 2546 2547 // In AArch64 there are zero reasons to keep a reference to the 2548 // "original" symbol plus addend. The original symbol is probably just a 2549 // section symbol. If we are here, this means we are probably accessing 2550 // data, so it is imperative to keep the original address. 2551 if (IsAArch64) { 2552 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2553 SymbolAddress = Address; 2554 Addend = 0; 2555 } 2556 2557 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2558 // Note: this assertion is trying to check sanity of BinaryData objects 2559 // but AArch64 has inferred and incomplete object locations coming from 2560 // GOT/TLS or any other non-trivial relocation (that requires creation 2561 // of sections and whose symbol address is not really what should be 2562 // encoded in the instruction). So we essentially disabled this check 2563 // for AArch64 and live with bogus names for objects. 2564 assert((IsAArch64 || IsSectionRelocation || 2565 BD->nameStartsWith(SymbolName) || 2566 BD->nameStartsWith("PG" + SymbolName) || 2567 (BD->nameStartsWith("ANONYMOUS") && 2568 (BD->getSectionName().startswith(".plt") || 2569 BD->getSectionName().endswith(".plt")))) && 2570 "BOLT symbol names of all non-section relocations must match " 2571 "up with symbol names referenced in the relocation"); 2572 2573 if (IsSectionRelocation) 2574 BC->markAmbiguousRelocations(*BD, Address); 2575 2576 ReferencedSymbol = BD->getSymbol(); 2577 Addend += (SymbolAddress - BD->getAddress()); 2578 SymbolAddress = BD->getAddress(); 2579 assert(Address == SymbolAddress + Addend); 2580 } else { 2581 // These are mostly local data symbols but undefined symbols 2582 // in relocation sections can get through here too, from .plt. 2583 assert( 2584 (IsAArch64 || IsSectionRelocation || 2585 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2586 "known symbols should not resolve to anonymous locals"); 2587 2588 if (IsSectionRelocation) { 2589 ReferencedSymbol = 2590 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2591 } else { 2592 SymbolRef Symbol = *Rel.getSymbol(); 2593 const uint64_t SymbolSize = 2594 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2595 const uint64_t SymbolAlignment = 2596 IsAArch64 ? 1 : Symbol.getAlignment(); 2597 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2598 std::string Name; 2599 if (SymbolFlags & SymbolRef::SF_Global) { 2600 Name = SymbolName; 2601 } else { 2602 if (StringRef(SymbolName) 2603 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2604 Name = NR.uniquify("PG" + SymbolName); 2605 else 2606 Name = NR.uniquify(SymbolName); 2607 } 2608 ReferencedSymbol = BC->registerNameAtAddress( 2609 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2610 } 2611 2612 if (IsSectionRelocation) { 2613 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2614 BC->markAmbiguousRelocations(*BD, Address); 2615 } 2616 } 2617 } 2618 2619 auto checkMaxDataRelocations = [&]() { 2620 ++NumDataRelocations; 2621 if (opts::MaxDataRelocations && 2622 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2623 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2624 << NumDataRelocations << ": "); 2625 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2626 Addend, ExtractedValue); 2627 } 2628 2629 return (!opts::MaxDataRelocations || 2630 NumDataRelocations < opts::MaxDataRelocations); 2631 }; 2632 2633 if ((RefSection && refersToReorderedSection(RefSection)) || 2634 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2635 ForceRelocation = true; 2636 2637 if (IsFromCode) { 2638 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2639 Addend, ExtractedValue); 2640 } else if (IsToCode || ForceRelocation) { 2641 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2642 ExtractedValue); 2643 } else { 2644 LLVM_DEBUG( 2645 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2646 } 2647 } 2648 } 2649 2650 void RewriteInstance::selectFunctionsToProcess() { 2651 // Extend the list of functions to process or skip from a file. 2652 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2653 cl::list<std::string> &FunctionNames) { 2654 if (FunctionNamesFile.empty()) 2655 return; 2656 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2657 std::string FuncName; 2658 while (std::getline(FuncsFile, FuncName)) 2659 FunctionNames.push_back(FuncName); 2660 }; 2661 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2662 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2663 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2664 2665 // Make a set of functions to process to speed up lookups. 2666 std::unordered_set<std::string> ForceFunctionsNR( 2667 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2668 2669 if ((!opts::ForceFunctionNames.empty() || 2670 !opts::ForceFunctionNamesNR.empty()) && 2671 !opts::SkipFunctionNames.empty()) { 2672 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2673 "same time. Please use only one type of selection.\n"; 2674 exit(1); 2675 } 2676 2677 uint64_t LiteThresholdExecCount = 0; 2678 if (opts::LiteThresholdPct) { 2679 if (opts::LiteThresholdPct > 100) 2680 opts::LiteThresholdPct = 100; 2681 2682 std::vector<const BinaryFunction *> TopFunctions; 2683 for (auto &BFI : BC->getBinaryFunctions()) { 2684 const BinaryFunction &Function = BFI.second; 2685 if (ProfileReader->mayHaveProfileData(Function)) 2686 TopFunctions.push_back(&Function); 2687 } 2688 std::sort(TopFunctions.begin(), TopFunctions.end(), 2689 [](const BinaryFunction *A, const BinaryFunction *B) { 2690 return 2691 A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2692 }); 2693 2694 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2695 if (Index) 2696 --Index; 2697 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2698 outs() << "BOLT-INFO: limiting processing to functions with at least " 2699 << LiteThresholdExecCount << " invocations\n"; 2700 } 2701 LiteThresholdExecCount = std::max( 2702 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2703 2704 uint64_t NumFunctionsToProcess = 0; 2705 auto shouldProcess = [&](const BinaryFunction &Function) { 2706 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2707 return false; 2708 2709 // If the list is not empty, only process functions from the list. 2710 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2711 // Regex check (-funcs and -funcs-file options). 2712 for (std::string &Name : opts::ForceFunctionNames) 2713 if (Function.hasNameRegex(Name)) 2714 return true; 2715 2716 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2717 Optional<StringRef> Match = 2718 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2719 return ForceFunctionsNR.count(Name.str()); 2720 }); 2721 return Match.hasValue(); 2722 } 2723 2724 for (std::string &Name : opts::SkipFunctionNames) 2725 if (Function.hasNameRegex(Name)) 2726 return false; 2727 2728 if (opts::Lite) { 2729 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2730 return false; 2731 2732 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2733 return false; 2734 } 2735 2736 return true; 2737 }; 2738 2739 for (auto &BFI : BC->getBinaryFunctions()) { 2740 BinaryFunction &Function = BFI.second; 2741 2742 // Pseudo functions are explicitly marked by us not to be processed. 2743 if (Function.isPseudo()) { 2744 Function.IsIgnored = true; 2745 Function.HasExternalRefRelocations = true; 2746 continue; 2747 } 2748 2749 if (!shouldProcess(Function)) { 2750 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2751 << Function << " per user request\n"); 2752 Function.setIgnored(); 2753 } else { 2754 ++NumFunctionsToProcess; 2755 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2756 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2757 } 2758 } 2759 } 2760 2761 void RewriteInstance::readDebugInfo() { 2762 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2763 TimerGroupDesc, opts::TimeRewrite); 2764 if (!opts::UpdateDebugSections) 2765 return; 2766 2767 BC->preprocessDebugInfo(); 2768 } 2769 2770 void RewriteInstance::preprocessProfileData() { 2771 if (!ProfileReader) 2772 return; 2773 2774 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2775 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2776 2777 outs() << "BOLT-INFO: pre-processing profile using " 2778 << ProfileReader->getReaderName() << '\n'; 2779 2780 if (BAT->enabledFor(InputFile)) { 2781 outs() << "BOLT-INFO: profile collection done on a binary already " 2782 "processed by BOLT\n"; 2783 ProfileReader->setBAT(&*BAT); 2784 } 2785 2786 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2787 report_error("cannot pre-process profile", std::move(E)); 2788 2789 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2790 !opts::AllowStripped) { 2791 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2792 "but profile data includes function names with embedded file " 2793 "names. It appears that the input binary was stripped while a " 2794 "profiled binary was not. If you know what you are doing and " 2795 "wish to proceed, use -allow-stripped option.\n"; 2796 exit(1); 2797 } 2798 } 2799 2800 void RewriteInstance::processProfileDataPreCFG() { 2801 if (!ProfileReader) 2802 return; 2803 2804 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2805 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2806 2807 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2808 report_error("cannot read profile pre-CFG", std::move(E)); 2809 } 2810 2811 void RewriteInstance::processProfileData() { 2812 if (!ProfileReader) 2813 return; 2814 2815 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2816 TimerGroupDesc, opts::TimeRewrite); 2817 2818 if (Error E = ProfileReader->readProfile(*BC.get())) 2819 report_error("cannot read profile", std::move(E)); 2820 2821 if (!opts::SaveProfile.empty()) { 2822 YAMLProfileWriter PW(opts::SaveProfile); 2823 PW.writeProfile(*this); 2824 } 2825 2826 // Release memory used by profile reader. 2827 ProfileReader.reset(); 2828 2829 if (opts::AggregateOnly) 2830 exit(0); 2831 } 2832 2833 void RewriteInstance::disassembleFunctions() { 2834 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2835 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2836 for (auto &BFI : BC->getBinaryFunctions()) { 2837 BinaryFunction &Function = BFI.second; 2838 2839 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2840 if (!FunctionData) { 2841 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2842 << "empty for function " << Function << '\n'; 2843 exit(1); 2844 } 2845 2846 // Treat zero-sized functions as non-simple ones. 2847 if (Function.getSize() == 0) { 2848 Function.setSimple(false); 2849 continue; 2850 } 2851 2852 // Offset of the function in the file. 2853 const auto *FileBegin = 2854 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2855 Function.setFileOffset(FunctionData->begin() - FileBegin); 2856 2857 if (!shouldDisassemble(Function)) { 2858 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2859 "Scan Binary Functions", opts::TimeBuild); 2860 Function.scanExternalRefs(); 2861 Function.setSimple(false); 2862 continue; 2863 } 2864 2865 if (!Function.disassemble()) { 2866 if (opts::processAllFunctions()) 2867 BC->exitWithBugReport("function cannot be properly disassembled. " 2868 "Unable to continue in relocation mode.", 2869 Function); 2870 if (opts::Verbosity >= 1) 2871 outs() << "BOLT-INFO: could not disassemble function " << Function 2872 << ". Will ignore.\n"; 2873 // Forcefully ignore the function. 2874 Function.setIgnored(); 2875 continue; 2876 } 2877 2878 if (opts::PrintAll || opts::PrintDisasm) 2879 Function.print(outs(), "after disassembly", true); 2880 2881 BC->processInterproceduralReferences(Function); 2882 } 2883 2884 BC->populateJumpTables(); 2885 BC->skipMarkedFragments(); 2886 2887 for (auto &BFI : BC->getBinaryFunctions()) { 2888 BinaryFunction &Function = BFI.second; 2889 2890 if (!shouldDisassemble(Function)) 2891 continue; 2892 2893 Function.postProcessEntryPoints(); 2894 Function.postProcessJumpTables(); 2895 } 2896 2897 BC->adjustCodePadding(); 2898 2899 for (auto &BFI : BC->getBinaryFunctions()) { 2900 BinaryFunction &Function = BFI.second; 2901 2902 if (!shouldDisassemble(Function)) 2903 continue; 2904 2905 if (!Function.isSimple()) { 2906 assert((!BC->HasRelocations || Function.getSize() == 0) && 2907 "unexpected non-simple function in relocation mode"); 2908 continue; 2909 } 2910 2911 // Fill in CFI information for this function 2912 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2913 if (BC->HasRelocations) { 2914 BC->exitWithBugReport("unable to fill CFI.", Function); 2915 } else { 2916 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2917 << ". Skipping.\n"; 2918 Function.setSimple(false); 2919 continue; 2920 } 2921 } 2922 2923 // Parse LSDA. 2924 if (Function.getLSDAAddress() != 0) 2925 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2926 } 2927 } 2928 2929 void RewriteInstance::buildFunctionsCFG() { 2930 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2931 "Build Binary Functions", opts::TimeBuild); 2932 2933 // Create annotation indices to allow lock-free execution 2934 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2935 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2936 BC->MIB->getOrCreateAnnotationIndex("Size"); 2937 2938 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2939 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2940 if (!BF.buildCFG(AllocId)) 2941 return; 2942 2943 if (opts::PrintAll) 2944 BF.print(outs(), "while building cfg", true); 2945 }; 2946 2947 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2948 return !shouldDisassemble(BF) || !BF.isSimple(); 2949 }; 2950 2951 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2952 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2953 SkipPredicate, "disassembleFunctions-buildCFG", 2954 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2955 2956 BC->postProcessSymbolTable(); 2957 } 2958 2959 void RewriteInstance::postProcessFunctions() { 2960 BC->TotalScore = 0; 2961 BC->SumExecutionCount = 0; 2962 for (auto &BFI : BC->getBinaryFunctions()) { 2963 BinaryFunction &Function = BFI.second; 2964 2965 if (Function.empty()) 2966 continue; 2967 2968 Function.postProcessCFG(); 2969 2970 if (opts::PrintAll || opts::PrintCFG) 2971 Function.print(outs(), "after building cfg", true); 2972 2973 if (opts::DumpDotAll) 2974 Function.dumpGraphForPass("00_build-cfg"); 2975 2976 if (opts::PrintLoopInfo) { 2977 Function.calculateLoopInfo(); 2978 Function.printLoopInfo(outs()); 2979 } 2980 2981 BC->TotalScore += Function.getFunctionScore(); 2982 BC->SumExecutionCount += Function.getKnownExecutionCount(); 2983 } 2984 2985 if (opts::PrintGlobals) { 2986 outs() << "BOLT-INFO: Global symbols:\n"; 2987 BC->printGlobalSymbols(outs()); 2988 } 2989 } 2990 2991 void RewriteInstance::runOptimizationPasses() { 2992 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 2993 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2994 BinaryFunctionPassManager::runAllPasses(*BC); 2995 } 2996 2997 namespace { 2998 2999 class BOLTSymbolResolver : public JITSymbolResolver { 3000 BinaryContext &BC; 3001 3002 public: 3003 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3004 3005 // We are responsible for all symbols 3006 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3007 return Symbols; 3008 } 3009 3010 // Some of our symbols may resolve to zero and this should not be an error 3011 bool allowsZeroSymbols() override { return true; } 3012 3013 /// Resolves the address of each symbol requested 3014 void lookup(const LookupSet &Symbols, 3015 OnResolvedFunction OnResolved) override { 3016 JITSymbolResolver::LookupResult AllResults; 3017 3018 if (BC.EFMM->ObjectsLoaded) { 3019 for (const StringRef &Symbol : Symbols) { 3020 std::string SymName = Symbol.str(); 3021 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3022 // Resolve to a PLT entry if possible 3023 if (BinaryData *I = BC.getBinaryDataByName(SymName + "@PLT")) { 3024 AllResults[Symbol] = 3025 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3026 continue; 3027 } 3028 OnResolved(make_error<StringError>( 3029 "Symbol not found required by runtime: " + Symbol, 3030 inconvertibleErrorCode())); 3031 return; 3032 } 3033 OnResolved(std::move(AllResults)); 3034 return; 3035 } 3036 3037 for (const StringRef &Symbol : Symbols) { 3038 std::string SymName = Symbol.str(); 3039 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3040 3041 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3042 uint64_t Address = I->isMoved() && !I->isJumpTable() 3043 ? I->getOutputAddress() 3044 : I->getAddress(); 3045 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3046 << Twine::utohexstr(Address) << "\n"); 3047 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3048 continue; 3049 } 3050 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3051 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3052 } 3053 3054 OnResolved(std::move(AllResults)); 3055 } 3056 }; 3057 3058 } // anonymous namespace 3059 3060 void RewriteInstance::emitAndLink() { 3061 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3062 TimerGroupDesc, opts::TimeRewrite); 3063 std::error_code EC; 3064 3065 // This is an object file, which we keep for debugging purposes. 3066 // Once we decide it's useless, we should create it in memory. 3067 SmallString<128> OutObjectPath; 3068 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3069 std::unique_ptr<ToolOutputFile> TempOut = 3070 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3071 check_error(EC, "cannot create output object file"); 3072 3073 std::unique_ptr<buffer_ostream> BOS = 3074 std::make_unique<buffer_ostream>(TempOut->os()); 3075 raw_pwrite_stream *OS = BOS.get(); 3076 3077 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3078 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3079 // two instances. 3080 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3081 3082 if (EHFrameSection) { 3083 if (opts::UseOldText || opts::StrictMode) { 3084 // The section is going to be regenerated from scratch. 3085 // Empty the contents, but keep the section reference. 3086 EHFrameSection->clearContents(); 3087 } else { 3088 // Make .eh_frame relocatable. 3089 relocateEHFrameSection(); 3090 } 3091 } 3092 3093 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3094 3095 Streamer->Finish(); 3096 3097 ////////////////////////////////////////////////////////////////////////////// 3098 // Assign addresses to new sections. 3099 ////////////////////////////////////////////////////////////////////////////// 3100 3101 // Get output object as ObjectFile. 3102 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3103 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3104 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3105 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3106 "error creating in-memory object"); 3107 3108 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3109 3110 MCAsmLayout FinalLayout( 3111 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3112 3113 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3114 RTDyld->setProcessAllSections(false); 3115 RTDyld->loadObject(*Obj); 3116 3117 // Assign addresses to all sections. If key corresponds to the object 3118 // created by ourselves, call our regular mapping function. If we are 3119 // loading additional objects as part of runtime libraries for 3120 // instrumentation, treat them as extra sections. 3121 mapFileSections(*RTDyld); 3122 3123 RTDyld->finalizeWithMemoryManagerLocking(); 3124 if (RTDyld->hasError()) { 3125 outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3126 exit(1); 3127 } 3128 3129 // Update output addresses based on the new section map and 3130 // layout. Only do this for the object created by ourselves. 3131 updateOutputValues(FinalLayout); 3132 3133 if (opts::UpdateDebugSections) 3134 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3135 3136 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3137 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3138 this->mapExtraSections(*RTDyld); 3139 }); 3140 3141 // Once the code is emitted, we can rename function sections to actual 3142 // output sections and de-register sections used for emission. 3143 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3144 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3145 if (Section && 3146 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3147 continue; 3148 3149 // Restore origin section for functions that were emitted or supposed to 3150 // be emitted to patch sections. 3151 if (Section) 3152 BC->deregisterSection(*Section); 3153 assert(Function->getOriginSectionName() && "expected origin section"); 3154 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3155 if (Function->isSplit()) { 3156 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3157 BC->deregisterSection(*ColdSection); 3158 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3159 } 3160 } 3161 3162 if (opts::PrintCacheMetrics) { 3163 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3164 CacheMetrics::printAll(BC->getSortedFunctions()); 3165 } 3166 3167 if (opts::KeepTmp) { 3168 TempOut->keep(); 3169 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3170 "purposes: " 3171 << OutObjectPath << "\n"; 3172 } 3173 } 3174 3175 void RewriteInstance::updateMetadata() { 3176 updateSDTMarkers(); 3177 updateLKMarkers(); 3178 parsePseudoProbe(); 3179 updatePseudoProbes(); 3180 3181 if (opts::UpdateDebugSections) { 3182 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3183 TimerGroupDesc, opts::TimeRewrite); 3184 DebugInfoRewriter->updateDebugInfo(); 3185 } 3186 3187 if (opts::WriteBoltInfoSection) 3188 addBoltInfoSection(); 3189 } 3190 3191 void RewriteInstance::updatePseudoProbes() { 3192 // check if there is pseudo probe section decoded 3193 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3194 return; 3195 // input address converted to output 3196 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3197 const GUIDProbeFunctionMap &GUID2Func = 3198 BC->ProbeDecoder.getGUID2FuncDescMap(); 3199 3200 for (auto &AP : Address2ProbesMap) { 3201 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3202 // If F is removed, eliminate all probes inside it from inline tree 3203 // Setting probes' addresses as INT64_MAX means elimination 3204 if (!F) { 3205 for (MCDecodedPseudoProbe &Probe : AP.second) 3206 Probe.setAddress(INT64_MAX); 3207 continue; 3208 } 3209 // If F is not emitted, the function will remain in the same address as its 3210 // input 3211 if (!F->isEmitted()) 3212 continue; 3213 3214 uint64_t Offset = AP.first - F->getAddress(); 3215 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3216 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3217 // Check if block output address is defined. 3218 // If not, such block is removed from binary. Then remove the probes from 3219 // inline tree 3220 if (BlkOutputAddress == 0) { 3221 for (MCDecodedPseudoProbe &Probe : AP.second) 3222 Probe.setAddress(INT64_MAX); 3223 continue; 3224 } 3225 3226 unsigned ProbeTrack = AP.second.size(); 3227 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3228 while (ProbeTrack != 0) { 3229 if (Probe->isBlock()) { 3230 Probe->setAddress(BlkOutputAddress); 3231 } else if (Probe->isCall()) { 3232 // A call probe may be duplicated due to ICP 3233 // Go through output of InputOffsetToAddressMap to collect all related 3234 // probes 3235 const InputOffsetToAddressMapTy &Offset2Addr = 3236 F->getInputOffsetToAddressMap(); 3237 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3238 auto CallOutputAddress = CallOutputAddresses.first; 3239 if (CallOutputAddress == CallOutputAddresses.second) { 3240 Probe->setAddress(INT64_MAX); 3241 } else { 3242 Probe->setAddress(CallOutputAddress->second); 3243 CallOutputAddress = std::next(CallOutputAddress); 3244 } 3245 3246 while (CallOutputAddress != CallOutputAddresses.second) { 3247 AP.second.push_back(*Probe); 3248 AP.second.back().setAddress(CallOutputAddress->second); 3249 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3250 CallOutputAddress = std::next(CallOutputAddress); 3251 } 3252 } 3253 Probe = std::next(Probe); 3254 ProbeTrack--; 3255 } 3256 } 3257 3258 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3259 opts::PrintPseudoProbes == 3260 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3261 outs() << "Pseudo Probe Address Conversion results:\n"; 3262 // table that correlates address to block 3263 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3264 for (auto &F : BC->getBinaryFunctions()) 3265 for (BinaryBasicBlock &BinaryBlock : F.second) 3266 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3267 BinaryBlock.getName(); 3268 3269 // scan all addresses -> correlate probe to block when print out 3270 std::vector<uint64_t> Addresses; 3271 for (auto &Entry : Address2ProbesMap) 3272 Addresses.push_back(Entry.first); 3273 std::sort(Addresses.begin(), Addresses.end()); 3274 for (uint64_t Key : Addresses) { 3275 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3276 if (Probe.getAddress() == INT64_MAX) 3277 outs() << "Deleted Probe: "; 3278 else 3279 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3280 Probe.print(outs(), GUID2Func, true); 3281 // print block name only if the probe is block type and undeleted. 3282 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3283 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3284 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3285 } 3286 } 3287 outs() << "=======================================\n"; 3288 } 3289 3290 // encode pseudo probes with updated addresses 3291 encodePseudoProbes(); 3292 } 3293 3294 template <typename F> 3295 static void emitLEB128IntValue(F encode, uint64_t Value, 3296 SmallString<8> &Contents) { 3297 SmallString<128> Tmp; 3298 raw_svector_ostream OSE(Tmp); 3299 encode(Value, OSE); 3300 Contents.append(OSE.str().begin(), OSE.str().end()); 3301 } 3302 3303 void RewriteInstance::encodePseudoProbes() { 3304 // Buffer for new pseudo probes section 3305 SmallString<8> Contents; 3306 MCDecodedPseudoProbe *LastProbe = nullptr; 3307 3308 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3309 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3310 uint64_t Swapped = support::endian::byte_swap( 3311 Value, IsLittleEndian ? support::little : support::big); 3312 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3313 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3314 Contents.append(Entry.begin(), Entry.end()); 3315 }; 3316 3317 auto EmitULEB128IntValue = [&](uint64_t Value) { 3318 SmallString<128> Tmp; 3319 raw_svector_ostream OSE(Tmp); 3320 encodeULEB128(Value, OSE, 0); 3321 Contents.append(OSE.str().begin(), OSE.str().end()); 3322 }; 3323 3324 auto EmitSLEB128IntValue = [&](int64_t Value) { 3325 SmallString<128> Tmp; 3326 raw_svector_ostream OSE(Tmp); 3327 encodeSLEB128(Value, OSE); 3328 Contents.append(OSE.str().begin(), OSE.str().end()); 3329 }; 3330 3331 // Emit indiviual pseudo probes in a inline tree node 3332 // Probe index, type, attribute, address type and address are encoded 3333 // Address of the first probe is absolute. 3334 // Other probes' address are represented by delta 3335 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3336 EmitULEB128IntValue(CurProbe->getIndex()); 3337 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3338 uint8_t Flag = 3339 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3340 EmitInt(Flag | PackedType, 1); 3341 if (LastProbe) { 3342 // Emit the delta between the address label and LastProbe. 3343 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3344 EmitSLEB128IntValue(Delta); 3345 } else { 3346 // Emit absolute address for encoding the first pseudo probe. 3347 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3348 EmitInt(CurProbe->getAddress(), AddrSize); 3349 } 3350 }; 3351 3352 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3353 std::greater<InlineSite>> 3354 Inlinees; 3355 3356 // DFS of inline tree to emit pseudo probes in all tree node 3357 // Inline site index of a probe is emitted first. 3358 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3359 // of contained probes are emitted Deleted probes are skipped Root node is not 3360 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3361 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3362 const MCDecodedPseudoProbeInlineTree &Root = 3363 BC->ProbeDecoder.getDummyInlineRoot(); 3364 for (auto Child = Root.getChildren().begin(); 3365 Child != Root.getChildren().end(); ++Child) 3366 Inlinees[Child->first] = Child->second.get(); 3367 3368 for (auto Inlinee : Inlinees) 3369 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3370 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3371 3372 Inlinees.clear(); 3373 3374 while (!NextNodes.empty()) { 3375 uint64_t ProbeIndex = NextNodes.back().first; 3376 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3377 NextNodes.pop_back(); 3378 3379 if (Cur->Parent && !Cur->Parent->isRoot()) 3380 // Emit probe inline site 3381 EmitULEB128IntValue(ProbeIndex); 3382 3383 // Emit probes grouped by GUID. 3384 LLVM_DEBUG({ 3385 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3386 dbgs() << "GUID: " << Cur->Guid << "\n"; 3387 }); 3388 // Emit Guid 3389 EmitInt(Cur->Guid, 8); 3390 // Emit number of probes in this node 3391 uint64_t Deleted = 0; 3392 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3393 if (Probe->getAddress() == INT64_MAX) 3394 Deleted++; 3395 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3396 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3397 EmitULEB128IntValue(ProbesSize); 3398 // Emit number of direct inlinees 3399 EmitULEB128IntValue(Cur->getChildren().size()); 3400 // Emit probes in this group 3401 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3402 if (Probe->getAddress() == INT64_MAX) 3403 continue; 3404 EmitDecodedPseudoProbe(Probe); 3405 LastProbe = Probe; 3406 } 3407 3408 for (auto Child = Cur->getChildren().begin(); 3409 Child != Cur->getChildren().end(); ++Child) 3410 Inlinees[Child->first] = Child->second.get(); 3411 for (const auto &Inlinee : Inlinees) { 3412 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3413 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3414 LLVM_DEBUG({ 3415 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3416 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3417 }); 3418 } 3419 Inlinees.clear(); 3420 } 3421 3422 // Create buffer for new contents for the section 3423 // Freed when parent section is destroyed 3424 uint8_t *Output = new uint8_t[Contents.str().size()]; 3425 memcpy(Output, Contents.str().data(), Contents.str().size()); 3426 addToDebugSectionsToOverwrite(".pseudo_probe"); 3427 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3428 PseudoProbeSection->getELFFlags(), Output, 3429 Contents.str().size(), 1); 3430 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3431 opts::PrintPseudoProbes == 3432 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3433 // create a dummy decoder; 3434 MCPseudoProbeDecoder DummyDecoder; 3435 StringRef DescContents = PseudoProbeDescSection->getContents(); 3436 DummyDecoder.buildGUID2FuncDescMap( 3437 reinterpret_cast<const uint8_t *>(DescContents.data()), 3438 DescContents.size()); 3439 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3440 DummyDecoder.buildAddress2ProbeMap( 3441 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3442 ProbeContents.size()); 3443 DummyDecoder.printProbesForAllAddresses(outs()); 3444 } 3445 } 3446 3447 void RewriteInstance::updateSDTMarkers() { 3448 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3449 TimerGroupDesc, opts::TimeRewrite); 3450 3451 if (!SDTSection) 3452 return; 3453 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3454 3455 SimpleBinaryPatcher *SDTNotePatcher = 3456 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3457 for (auto &SDTInfoKV : BC->SDTMarkers) { 3458 const uint64_t OriginalAddress = SDTInfoKV.first; 3459 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3460 const BinaryFunction *F = 3461 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3462 if (!F) 3463 continue; 3464 const uint64_t NewAddress = 3465 F->translateInputToOutputAddress(OriginalAddress); 3466 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3467 } 3468 } 3469 3470 void RewriteInstance::updateLKMarkers() { 3471 if (BC->LKMarkers.size() == 0) 3472 return; 3473 3474 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3475 TimerGroupDesc, opts::TimeRewrite); 3476 3477 std::unordered_map<std::string, uint64_t> PatchCounts; 3478 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3479 &LKMarkerInfoKV : BC->LKMarkers) { 3480 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3481 const BinaryFunction *BF = 3482 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3483 if (!BF) 3484 continue; 3485 3486 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3487 if (NewAddress == 0) 3488 continue; 3489 3490 // Apply base address. 3491 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3492 NewAddress = NewAddress + 0xffffffff00000000; 3493 3494 if (OriginalAddress == NewAddress) 3495 continue; 3496 3497 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3498 StringRef SectionName = LKMarkerInfo.SectionName; 3499 SimpleBinaryPatcher *LKPatcher; 3500 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3501 assert(BSec && "missing section info for kernel section"); 3502 if (!BSec->getPatcher()) 3503 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3504 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3505 PatchCounts[std::string(SectionName)]++; 3506 if (LKMarkerInfo.IsPCRelative) 3507 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3508 NewAddress - OriginalAddress + 3509 LKMarkerInfo.PCRelativeOffset); 3510 else 3511 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3512 } 3513 } 3514 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3515 "section are as follows:\n"; 3516 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3517 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3518 << '\n'; 3519 } 3520 3521 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3522 mapCodeSections(RTDyld); 3523 mapDataSections(RTDyld); 3524 } 3525 3526 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3527 std::vector<BinarySection *> CodeSections; 3528 for (BinarySection &Section : BC->textSections()) 3529 if (Section.hasValidSectionID()) 3530 CodeSections.emplace_back(&Section); 3531 3532 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3533 // Place movers before anything else. 3534 if (A->getName() == BC->getHotTextMoverSectionName()) 3535 return true; 3536 if (B->getName() == BC->getHotTextMoverSectionName()) 3537 return false; 3538 3539 // Depending on the option, put main text at the beginning or at the end. 3540 if (opts::HotFunctionsAtEnd) 3541 return B->getName() == BC->getMainCodeSectionName(); 3542 else 3543 return A->getName() == BC->getMainCodeSectionName(); 3544 }; 3545 3546 // Determine the order of sections. 3547 std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); 3548 3549 return CodeSections; 3550 } 3551 3552 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3553 if (BC->HasRelocations) { 3554 ErrorOr<BinarySection &> TextSection = 3555 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3556 assert(TextSection && ".text section not found in output"); 3557 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3558 3559 // Map sections for functions with pre-assigned addresses. 3560 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3561 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3562 if (!OutputAddress) 3563 continue; 3564 3565 ErrorOr<BinarySection &> FunctionSection = 3566 InjectedFunction->getCodeSection(); 3567 assert(FunctionSection && "function should have section"); 3568 FunctionSection->setOutputAddress(OutputAddress); 3569 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3570 OutputAddress); 3571 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3572 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3573 } 3574 3575 // Populate the list of sections to be allocated. 3576 std::vector<BinarySection *> CodeSections = getCodeSections(); 3577 3578 // Remove sections that were pre-allocated (patch sections). 3579 CodeSections.erase( 3580 std::remove_if(CodeSections.begin(), CodeSections.end(), 3581 [](BinarySection *Section) { 3582 return Section->getOutputAddress(); 3583 }), 3584 CodeSections.end()); 3585 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3586 for (const BinarySection *Section : CodeSections) 3587 dbgs() << Section->getName() << '\n'; 3588 ); 3589 3590 uint64_t PaddingSize = 0; // size of padding required at the end 3591 3592 // Allocate sections starting at a given Address. 3593 auto allocateAt = [&](uint64_t Address) { 3594 for (BinarySection *Section : CodeSections) { 3595 Address = alignTo(Address, Section->getAlignment()); 3596 Section->setOutputAddress(Address); 3597 Address += Section->getOutputSize(); 3598 } 3599 3600 // Make sure we allocate enough space for huge pages. 3601 if (opts::HotText) { 3602 uint64_t HotTextEnd = 3603 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3604 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3605 if (HotTextEnd > Address) { 3606 PaddingSize = HotTextEnd - Address; 3607 Address = HotTextEnd; 3608 } 3609 } 3610 return Address; 3611 }; 3612 3613 // Check if we can fit code in the original .text 3614 bool AllocationDone = false; 3615 if (opts::UseOldText) { 3616 const uint64_t CodeSize = 3617 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3618 3619 if (CodeSize <= BC->OldTextSectionSize) { 3620 outs() << "BOLT-INFO: using original .text for new code with 0x" 3621 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3622 AllocationDone = true; 3623 } else { 3624 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3625 << " using 0x" << Twine::utohexstr(opts::AlignText) 3626 << " alignment. " << CodeSize << " bytes needed, have " 3627 << BC->OldTextSectionSize << " bytes available.\n"; 3628 opts::UseOldText = false; 3629 } 3630 } 3631 3632 if (!AllocationDone) 3633 NextAvailableAddress = allocateAt(NextAvailableAddress); 3634 3635 // Do the mapping for ORC layer based on the allocation. 3636 for (BinarySection *Section : CodeSections) { 3637 LLVM_DEBUG( 3638 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3639 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3640 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3641 RTDyld.reassignSectionAddress(Section->getSectionID(), 3642 Section->getOutputAddress()); 3643 Section->setOutputFileOffset( 3644 getFileOffsetForAddress(Section->getOutputAddress())); 3645 } 3646 3647 // Check if we need to insert a padding section for hot text. 3648 if (PaddingSize && !opts::UseOldText) 3649 outs() << "BOLT-INFO: padding code to 0x" 3650 << Twine::utohexstr(NextAvailableAddress) 3651 << " to accommodate hot text\n"; 3652 3653 return; 3654 } 3655 3656 // Processing in non-relocation mode. 3657 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3658 3659 for (auto &BFI : BC->getBinaryFunctions()) { 3660 BinaryFunction &Function = BFI.second; 3661 if (!Function.isEmitted()) 3662 continue; 3663 3664 bool TooLarge = false; 3665 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3666 assert(FuncSection && "cannot find section for function"); 3667 FuncSection->setOutputAddress(Function.getAddress()); 3668 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3669 << Twine::utohexstr(FuncSection->getAllocAddress()) 3670 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3671 << '\n'); 3672 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3673 Function.getAddress()); 3674 Function.setImageAddress(FuncSection->getAllocAddress()); 3675 Function.setImageSize(FuncSection->getOutputSize()); 3676 if (Function.getImageSize() > Function.getMaxSize()) { 3677 TooLarge = true; 3678 FailedAddresses.emplace_back(Function.getAddress()); 3679 } 3680 3681 // Map jump tables if updating in-place. 3682 if (opts::JumpTables == JTS_BASIC) { 3683 for (auto &JTI : Function.JumpTables) { 3684 JumpTable *JT = JTI.second; 3685 BinarySection &Section = JT->getOutputSection(); 3686 Section.setOutputAddress(JT->getAddress()); 3687 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3688 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3689 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3690 << '\n'); 3691 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3692 } 3693 } 3694 3695 if (!Function.isSplit()) 3696 continue; 3697 3698 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3699 assert(ColdSection && "cannot find section for cold part"); 3700 // Cold fragments are aligned at 16 bytes. 3701 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3702 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3703 if (TooLarge) { 3704 // The corresponding FDE will refer to address 0. 3705 ColdPart.setAddress(0); 3706 ColdPart.setImageAddress(0); 3707 ColdPart.setImageSize(0); 3708 ColdPart.setFileOffset(0); 3709 } else { 3710 ColdPart.setAddress(NextAvailableAddress); 3711 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3712 ColdPart.setImageSize(ColdSection->getOutputSize()); 3713 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3714 ColdSection->setOutputAddress(ColdPart.getAddress()); 3715 } 3716 3717 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3718 << Twine::utohexstr(ColdPart.getImageAddress()) 3719 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3720 << " with size " 3721 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3722 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3723 ColdPart.getAddress()); 3724 3725 NextAvailableAddress += ColdPart.getImageSize(); 3726 } 3727 3728 // Add the new text section aggregating all existing code sections. 3729 // This is pseudo-section that serves a purpose of creating a corresponding 3730 // entry in section header table. 3731 int64_t NewTextSectionSize = 3732 NextAvailableAddress - NewTextSectionStartAddress; 3733 if (NewTextSectionSize) { 3734 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3735 /*IsText=*/true, 3736 /*IsAllocatable=*/true); 3737 BinarySection &Section = 3738 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3739 ELF::SHT_PROGBITS, 3740 Flags, 3741 /*Data=*/nullptr, 3742 NewTextSectionSize, 3743 16); 3744 Section.setOutputAddress(NewTextSectionStartAddress); 3745 Section.setOutputFileOffset( 3746 getFileOffsetForAddress(NewTextSectionStartAddress)); 3747 } 3748 } 3749 3750 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3751 // Map special sections to their addresses in the output image. 3752 // These are the sections that we generate via MCStreamer. 3753 // The order is important. 3754 std::vector<std::string> Sections = { 3755 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3756 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3757 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3758 RtLibrary->addRuntimeLibSections(Sections); 3759 3760 for (std::string &SectionName : Sections) { 3761 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3762 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3763 continue; 3764 NextAvailableAddress = 3765 alignTo(NextAvailableAddress, Section->getAlignment()); 3766 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3767 << Twine::utohexstr(Section->getAllocAddress()) 3768 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3769 << ":0x" 3770 << Twine::utohexstr(NextAvailableAddress + 3771 Section->getOutputSize()) 3772 << '\n'); 3773 3774 RTDyld.reassignSectionAddress(Section->getSectionID(), 3775 NextAvailableAddress); 3776 Section->setOutputAddress(NextAvailableAddress); 3777 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3778 3779 NextAvailableAddress += Section->getOutputSize(); 3780 } 3781 3782 // Handling for sections with relocations. 3783 for (BinarySection &Section : BC->sections()) { 3784 if (!Section.hasSectionRef()) 3785 continue; 3786 3787 StringRef SectionName = Section.getName(); 3788 ErrorOr<BinarySection &> OrgSection = 3789 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3790 if (!OrgSection || 3791 !OrgSection->isAllocatable() || 3792 !OrgSection->isFinalized() || 3793 !OrgSection->hasValidSectionID()) 3794 continue; 3795 3796 if (OrgSection->getOutputAddress()) { 3797 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3798 << " is already mapped at 0x" 3799 << Twine::utohexstr(OrgSection->getOutputAddress()) 3800 << '\n'); 3801 continue; 3802 } 3803 LLVM_DEBUG( 3804 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3805 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3806 << Twine::utohexstr(Section.getAddress()) << '\n'); 3807 3808 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3809 Section.getAddress()); 3810 3811 OrgSection->setOutputAddress(Section.getAddress()); 3812 OrgSection->setOutputFileOffset(Section.getContents().data() - 3813 InputFile->getData().data()); 3814 } 3815 } 3816 3817 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3818 for (BinarySection &Section : BC->allocatableSections()) { 3819 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3820 continue; 3821 NextAvailableAddress = 3822 alignTo(NextAvailableAddress, Section.getAlignment()); 3823 Section.setOutputAddress(NextAvailableAddress); 3824 NextAvailableAddress += Section.getOutputSize(); 3825 3826 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3827 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3828 << " to 0x" 3829 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3830 3831 RTDyld.reassignSectionAddress(Section.getSectionID(), 3832 Section.getOutputAddress()); 3833 Section.setOutputFileOffset( 3834 getFileOffsetForAddress(Section.getOutputAddress())); 3835 } 3836 } 3837 3838 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3839 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3840 Function->updateOutputValues(Layout); 3841 } 3842 3843 void RewriteInstance::patchELFPHDRTable() { 3844 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3845 if (!ELF64LEFile) { 3846 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3847 exit(1); 3848 } 3849 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3850 raw_fd_ostream &OS = Out->os(); 3851 3852 // Write/re-write program headers. 3853 Phnum = Obj.getHeader().e_phnum; 3854 if (PHDRTableOffset) { 3855 // Writing new pheader table. 3856 Phnum += 1; // only adding one new segment 3857 // Segment size includes the size of the PHDR area. 3858 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3859 } else { 3860 assert(!PHDRTableAddress && "unexpected address for program header table"); 3861 // Update existing table. 3862 PHDRTableOffset = Obj.getHeader().e_phoff; 3863 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3864 } 3865 OS.seek(PHDRTableOffset); 3866 3867 bool ModdedGnuStack = false; 3868 (void)ModdedGnuStack; 3869 bool AddedSegment = false; 3870 (void)AddedSegment; 3871 3872 auto createNewTextPhdr = [&]() { 3873 ELF64LEPhdrTy NewPhdr; 3874 NewPhdr.p_type = ELF::PT_LOAD; 3875 if (PHDRTableAddress) { 3876 NewPhdr.p_offset = PHDRTableOffset; 3877 NewPhdr.p_vaddr = PHDRTableAddress; 3878 NewPhdr.p_paddr = PHDRTableAddress; 3879 } else { 3880 NewPhdr.p_offset = NewTextSegmentOffset; 3881 NewPhdr.p_vaddr = NewTextSegmentAddress; 3882 NewPhdr.p_paddr = NewTextSegmentAddress; 3883 } 3884 NewPhdr.p_filesz = NewTextSegmentSize; 3885 NewPhdr.p_memsz = NewTextSegmentSize; 3886 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3887 // FIXME: Currently instrumentation is experimental and the runtime data 3888 // is emitted with code, thus everything needs to be writable 3889 if (opts::Instrument) 3890 NewPhdr.p_flags |= ELF::PF_W; 3891 NewPhdr.p_align = BC->PageAlign; 3892 3893 return NewPhdr; 3894 }; 3895 3896 // Copy existing program headers with modifications. 3897 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3898 ELF64LE::Phdr NewPhdr = Phdr; 3899 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3900 NewPhdr.p_offset = PHDRTableOffset; 3901 NewPhdr.p_vaddr = PHDRTableAddress; 3902 NewPhdr.p_paddr = PHDRTableAddress; 3903 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3904 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3905 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3906 ErrorOr<BinarySection &> EHFrameHdrSec = 3907 BC->getUniqueSectionByName(".eh_frame_hdr"); 3908 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3909 EHFrameHdrSec->isFinalized()) { 3910 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3911 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3912 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3913 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3914 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3915 } 3916 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3917 NewPhdr = createNewTextPhdr(); 3918 ModdedGnuStack = true; 3919 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3920 // Insert the new header before DYNAMIC. 3921 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3922 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3923 sizeof(NewTextPhdr)); 3924 AddedSegment = true; 3925 } 3926 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3927 } 3928 3929 if (!opts::UseGnuStack && !AddedSegment) { 3930 // Append the new header to the end of the table. 3931 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3932 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3933 } 3934 3935 assert((!opts::UseGnuStack || ModdedGnuStack) && 3936 "could not find GNU_STACK program header to modify"); 3937 } 3938 3939 namespace { 3940 3941 /// Write padding to \p OS such that its current \p Offset becomes aligned 3942 /// at \p Alignment. Return new (aligned) offset. 3943 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3944 uint64_t Alignment) { 3945 if (!Alignment) 3946 return Offset; 3947 3948 const uint64_t PaddingSize = 3949 offsetToAlignment(Offset, llvm::Align(Alignment)); 3950 for (unsigned I = 0; I < PaddingSize; ++I) 3951 OS.write((unsigned char)0); 3952 return Offset + PaddingSize; 3953 } 3954 3955 } 3956 3957 void RewriteInstance::rewriteNoteSections() { 3958 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3959 if (!ELF64LEFile) { 3960 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3961 exit(1); 3962 } 3963 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3964 raw_fd_ostream &OS = Out->os(); 3965 3966 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3967 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3968 "next available offset calculation failure"); 3969 OS.seek(NextAvailableOffset); 3970 3971 // Copy over non-allocatable section contents and update file offsets. 3972 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 3973 if (Section.sh_type == ELF::SHT_NULL) 3974 continue; 3975 if (Section.sh_flags & ELF::SHF_ALLOC) 3976 continue; 3977 3978 StringRef SectionName = 3979 cantFail(Obj.getSectionName(Section), "cannot get section name"); 3980 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3981 3982 if (shouldStrip(Section, SectionName)) 3983 continue; 3984 3985 // Insert padding as needed. 3986 NextAvailableOffset = 3987 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 3988 3989 // New section size. 3990 uint64_t Size = 0; 3991 bool DataWritten = false; 3992 uint8_t *SectionData = nullptr; 3993 // Copy over section contents unless it's one of the sections we overwrite. 3994 if (!willOverwriteSection(SectionName)) { 3995 Size = Section.sh_size; 3996 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 3997 std::string Data; 3998 if (BSec && BSec->getPatcher()) { 3999 Data = BSec->getPatcher()->patchBinary(Dataref); 4000 Dataref = StringRef(Data); 4001 } 4002 4003 // Section was expanded, so need to treat it as overwrite. 4004 if (Size != Dataref.size()) { 4005 BSec = BC->registerOrUpdateNoteSection( 4006 SectionName, copyByteArray(Dataref), Dataref.size()); 4007 Size = 0; 4008 } else { 4009 OS << Dataref; 4010 DataWritten = true; 4011 4012 // Add padding as the section extension might rely on the alignment. 4013 Size = appendPadding(OS, Size, Section.sh_addralign); 4014 } 4015 } 4016 4017 // Perform section post-processing. 4018 if (BSec && !BSec->isAllocatable()) { 4019 assert(BSec->getAlignment() <= Section.sh_addralign && 4020 "alignment exceeds value in file"); 4021 4022 if (BSec->getAllocAddress()) { 4023 assert(!DataWritten && "Writing section twice."); 4024 SectionData = BSec->getOutputData(); 4025 4026 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4027 << " contents to section " << SectionName << '\n'); 4028 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4029 Size += BSec->getOutputSize(); 4030 } 4031 4032 BSec->setOutputFileOffset(NextAvailableOffset); 4033 BSec->flushPendingRelocations(OS, 4034 [this] (const MCSymbol *S) { 4035 return getNewValueForSymbol(S->getName()); 4036 }); 4037 } 4038 4039 // Set/modify section info. 4040 BinarySection &NewSection = 4041 BC->registerOrUpdateNoteSection(SectionName, 4042 SectionData, 4043 Size, 4044 Section.sh_addralign, 4045 BSec ? BSec->isReadOnly() : false, 4046 BSec ? BSec->getELFType() 4047 : ELF::SHT_PROGBITS); 4048 NewSection.setOutputAddress(0); 4049 NewSection.setOutputFileOffset(NextAvailableOffset); 4050 4051 NextAvailableOffset += Size; 4052 } 4053 4054 // Write new note sections. 4055 for (BinarySection &Section : BC->nonAllocatableSections()) { 4056 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4057 continue; 4058 4059 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4060 4061 NextAvailableOffset = 4062 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4063 Section.setOutputFileOffset(NextAvailableOffset); 4064 4065 LLVM_DEBUG( 4066 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4067 << " of size " << Section.getOutputSize() << " at offset 0x" 4068 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4069 4070 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4071 NextAvailableOffset += Section.getOutputSize(); 4072 } 4073 } 4074 4075 template <typename ELFT> 4076 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4077 using ELFShdrTy = typename ELFT::Shdr; 4078 const ELFFile<ELFT> &Obj = File->getELFFile(); 4079 4080 // Pre-populate section header string table. 4081 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4082 StringRef SectionName = 4083 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4084 SHStrTab.add(SectionName); 4085 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4086 if (OutputSectionName != SectionName) 4087 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4088 } 4089 for (const std::string &Str : SHStrTabPool) 4090 SHStrTab.add(Str); 4091 for (const BinarySection &Section : BC->sections()) 4092 SHStrTab.add(Section.getName()); 4093 SHStrTab.finalize(); 4094 4095 const size_t SHStrTabSize = SHStrTab.getSize(); 4096 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4097 memset(DataCopy, 0, SHStrTabSize); 4098 SHStrTab.write(DataCopy); 4099 BC->registerOrUpdateNoteSection(".shstrtab", 4100 DataCopy, 4101 SHStrTabSize, 4102 /*Alignment=*/1, 4103 /*IsReadOnly=*/true, 4104 ELF::SHT_STRTAB); 4105 } 4106 4107 void RewriteInstance::addBoltInfoSection() { 4108 std::string DescStr; 4109 raw_string_ostream DescOS(DescStr); 4110 4111 DescOS << "BOLT revision: " << BoltRevision << ", " 4112 << "command line:"; 4113 for (int I = 0; I < Argc; ++I) 4114 DescOS << " " << Argv[I]; 4115 DescOS.flush(); 4116 4117 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4118 const std::string BoltInfo = 4119 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4120 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4121 BoltInfo.size(), 4122 /*Alignment=*/1, 4123 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4124 } 4125 4126 void RewriteInstance::addBATSection() { 4127 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4128 0, 4129 /*Alignment=*/1, 4130 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4131 } 4132 4133 void RewriteInstance::encodeBATSection() { 4134 std::string DescStr; 4135 raw_string_ostream DescOS(DescStr); 4136 4137 BAT->write(DescOS); 4138 DescOS.flush(); 4139 4140 const std::string BoltInfo = 4141 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4142 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4143 copyByteArray(BoltInfo), BoltInfo.size(), 4144 /*Alignment=*/1, 4145 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4146 } 4147 4148 template <typename ELFObjType, typename ELFShdrTy> 4149 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4150 const ELFShdrTy &Section) { 4151 if (Section.sh_type == ELF::SHT_NULL) 4152 return ""; 4153 4154 StringRef SectionName = 4155 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4156 4157 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4158 return (getOrgSecPrefix() + SectionName).str(); 4159 4160 return std::string(SectionName); 4161 } 4162 4163 template <typename ELFShdrTy> 4164 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4165 StringRef SectionName) { 4166 // Strip non-allocatable relocation sections. 4167 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4168 return true; 4169 4170 // Strip debug sections if not updating them. 4171 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4172 return true; 4173 4174 // Strip symtab section if needed 4175 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4176 return true; 4177 4178 return false; 4179 } 4180 4181 template <typename ELFT> 4182 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4183 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4184 std::vector<uint32_t> &NewSectionIndex) { 4185 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4186 const ELFFile<ELFT> &Obj = File->getELFFile(); 4187 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4188 4189 // Keep track of section header entries together with their name. 4190 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4191 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4192 ELFShdrTy NewSection = Section; 4193 NewSection.sh_name = SHStrTab.getOffset(Name); 4194 OutputSections.emplace_back(Name, std::move(NewSection)); 4195 }; 4196 4197 // Copy over entries for original allocatable sections using modified name. 4198 for (const ELFShdrTy &Section : Sections) { 4199 // Always ignore this section. 4200 if (Section.sh_type == ELF::SHT_NULL) { 4201 OutputSections.emplace_back("", Section); 4202 continue; 4203 } 4204 4205 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4206 continue; 4207 4208 addSection(getOutputSectionName(Obj, Section), Section); 4209 } 4210 4211 for (const BinarySection &Section : BC->allocatableSections()) { 4212 if (!Section.isFinalized()) 4213 continue; 4214 4215 if (Section.getName().startswith(getOrgSecPrefix()) || 4216 Section.isAnonymous()) { 4217 if (opts::Verbosity) 4218 outs() << "BOLT-INFO: not writing section header for section " 4219 << Section.getName() << '\n'; 4220 continue; 4221 } 4222 4223 if (opts::Verbosity >= 1) 4224 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4225 << '\n'; 4226 ELFShdrTy NewSection; 4227 NewSection.sh_type = ELF::SHT_PROGBITS; 4228 NewSection.sh_addr = Section.getOutputAddress(); 4229 NewSection.sh_offset = Section.getOutputFileOffset(); 4230 NewSection.sh_size = Section.getOutputSize(); 4231 NewSection.sh_entsize = 0; 4232 NewSection.sh_flags = Section.getELFFlags(); 4233 NewSection.sh_link = 0; 4234 NewSection.sh_info = 0; 4235 NewSection.sh_addralign = Section.getAlignment(); 4236 addSection(std::string(Section.getName()), NewSection); 4237 } 4238 4239 // Sort all allocatable sections by their offset. 4240 std::stable_sort(OutputSections.begin(), OutputSections.end(), 4241 [] (const std::pair<std::string, ELFShdrTy> &A, 4242 const std::pair<std::string, ELFShdrTy> &B) { 4243 return A.second.sh_offset < B.second.sh_offset; 4244 }); 4245 4246 // Fix section sizes to prevent overlapping. 4247 ELFShdrTy *PrevSection = nullptr; 4248 StringRef PrevSectionName; 4249 for (auto &SectionKV : OutputSections) { 4250 ELFShdrTy &Section = SectionKV.second; 4251 4252 // TBSS section does not take file or memory space. Ignore it for layout 4253 // purposes. 4254 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4255 continue; 4256 4257 if (PrevSection && 4258 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4259 if (opts::Verbosity > 1) 4260 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4261 << '\n'; 4262 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4263 ? Section.sh_addr - PrevSection->sh_addr 4264 : 0; 4265 } 4266 4267 PrevSection = &Section; 4268 PrevSectionName = SectionKV.first; 4269 } 4270 4271 uint64_t LastFileOffset = 0; 4272 4273 // Copy over entries for non-allocatable sections performing necessary 4274 // adjustments. 4275 for (const ELFShdrTy &Section : Sections) { 4276 if (Section.sh_type == ELF::SHT_NULL) 4277 continue; 4278 if (Section.sh_flags & ELF::SHF_ALLOC) 4279 continue; 4280 4281 StringRef SectionName = 4282 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4283 4284 if (shouldStrip(Section, SectionName)) 4285 continue; 4286 4287 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4288 assert(BSec && "missing section info for non-allocatable section"); 4289 4290 ELFShdrTy NewSection = Section; 4291 NewSection.sh_offset = BSec->getOutputFileOffset(); 4292 NewSection.sh_size = BSec->getOutputSize(); 4293 4294 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4295 NewSection.sh_info = NumLocalSymbols; 4296 4297 addSection(std::string(SectionName), NewSection); 4298 4299 LastFileOffset = BSec->getOutputFileOffset(); 4300 } 4301 4302 // Create entries for new non-allocatable sections. 4303 for (BinarySection &Section : BC->nonAllocatableSections()) { 4304 if (Section.getOutputFileOffset() <= LastFileOffset) 4305 continue; 4306 4307 if (opts::Verbosity >= 1) 4308 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4309 << '\n'; 4310 4311 ELFShdrTy NewSection; 4312 NewSection.sh_type = Section.getELFType(); 4313 NewSection.sh_addr = 0; 4314 NewSection.sh_offset = Section.getOutputFileOffset(); 4315 NewSection.sh_size = Section.getOutputSize(); 4316 NewSection.sh_entsize = 0; 4317 NewSection.sh_flags = Section.getELFFlags(); 4318 NewSection.sh_link = 0; 4319 NewSection.sh_info = 0; 4320 NewSection.sh_addralign = Section.getAlignment(); 4321 4322 addSection(std::string(Section.getName()), NewSection); 4323 } 4324 4325 // Assign indices to sections. 4326 std::unordered_map<std::string, uint64_t> NameToIndex; 4327 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4328 const std::string &SectionName = OutputSections[Index].first; 4329 NameToIndex[SectionName] = Index; 4330 if (ErrorOr<BinarySection &> Section = 4331 BC->getUniqueSectionByName(SectionName)) 4332 Section->setIndex(Index); 4333 } 4334 4335 // Update section index mapping 4336 NewSectionIndex.clear(); 4337 NewSectionIndex.resize(Sections.size(), 0); 4338 for (const ELFShdrTy &Section : Sections) { 4339 if (Section.sh_type == ELF::SHT_NULL) 4340 continue; 4341 4342 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4343 std::string SectionName = getOutputSectionName(Obj, Section); 4344 4345 // Some sections are stripped 4346 if (!NameToIndex.count(SectionName)) 4347 continue; 4348 4349 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4350 } 4351 4352 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4353 std::transform(OutputSections.begin(), OutputSections.end(), 4354 SectionsOnly.begin(), 4355 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4356 return SectionInfo.second; 4357 }); 4358 4359 return SectionsOnly; 4360 } 4361 4362 // Rewrite section header table inserting new entries as needed. The sections 4363 // header table size itself may affect the offsets of other sections, 4364 // so we are placing it at the end of the binary. 4365 // 4366 // As we rewrite entries we need to track how many sections were inserted 4367 // as it changes the sh_link value. We map old indices to new ones for 4368 // existing sections. 4369 template <typename ELFT> 4370 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4371 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4372 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4373 raw_fd_ostream &OS = Out->os(); 4374 const ELFFile<ELFT> &Obj = File->getELFFile(); 4375 4376 std::vector<uint32_t> NewSectionIndex; 4377 std::vector<ELFShdrTy> OutputSections = 4378 getOutputSections(File, NewSectionIndex); 4379 LLVM_DEBUG( 4380 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4381 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4382 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4383 ); 4384 4385 // Align starting address for section header table. 4386 uint64_t SHTOffset = OS.tell(); 4387 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4388 4389 // Write all section header entries while patching section references. 4390 for (ELFShdrTy &Section : OutputSections) { 4391 Section.sh_link = NewSectionIndex[Section.sh_link]; 4392 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4393 if (Section.sh_info) 4394 Section.sh_info = NewSectionIndex[Section.sh_info]; 4395 } 4396 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4397 } 4398 4399 // Fix ELF header. 4400 ELFEhdrTy NewEhdr = Obj.getHeader(); 4401 4402 if (BC->HasRelocations) { 4403 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4404 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4405 else 4406 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4407 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4408 "cannot find new address for entry point"); 4409 } 4410 NewEhdr.e_phoff = PHDRTableOffset; 4411 NewEhdr.e_phnum = Phnum; 4412 NewEhdr.e_shoff = SHTOffset; 4413 NewEhdr.e_shnum = OutputSections.size(); 4414 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4415 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4416 } 4417 4418 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4419 void RewriteInstance::updateELFSymbolTable( 4420 ELFObjectFile<ELFT> *File, bool IsDynSym, 4421 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4422 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4423 StrTabFuncTy AddToStrTab) { 4424 const ELFFile<ELFT> &Obj = File->getELFFile(); 4425 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4426 4427 StringRef StringSection = 4428 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4429 4430 unsigned NumHotTextSymsUpdated = 0; 4431 unsigned NumHotDataSymsUpdated = 0; 4432 4433 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4434 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4435 auto Itr = IslandSizes.find(&BF); 4436 if (Itr != IslandSizes.end()) 4437 return Itr->second; 4438 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4439 }; 4440 4441 // Symbols for the new symbol table. 4442 std::vector<ELFSymTy> Symbols; 4443 4444 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4445 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4446 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4447 4448 // We may have stripped the section that dynsym was referencing due to 4449 // the linker bug. In that case return the old index avoiding marking 4450 // the symbol as undefined. 4451 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4452 return OldIndex; 4453 return NewIndex; 4454 }; 4455 4456 // Add extra symbols for the function. 4457 // 4458 // Note that addExtraSymbols() could be called multiple times for the same 4459 // function with different FunctionSymbol matching the main function entry 4460 // point. 4461 auto addExtraSymbols = [&](const BinaryFunction &Function, 4462 const ELFSymTy &FunctionSymbol) { 4463 if (Function.isFolded()) { 4464 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4465 while (ICFParent->isFolded()) 4466 ICFParent = ICFParent->getFoldedIntoFunction(); 4467 ELFSymTy ICFSymbol = FunctionSymbol; 4468 SmallVector<char, 256> Buf; 4469 ICFSymbol.st_name = 4470 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4471 .concat(".icf.0") 4472 .toStringRef(Buf)); 4473 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4474 ICFSymbol.st_size = ICFParent->getOutputSize(); 4475 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4476 Symbols.emplace_back(ICFSymbol); 4477 } 4478 if (Function.isSplit() && Function.cold().getAddress()) { 4479 ELFSymTy NewColdSym = FunctionSymbol; 4480 SmallVector<char, 256> Buf; 4481 NewColdSym.st_name = 4482 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4483 .concat(".cold.0") 4484 .toStringRef(Buf)); 4485 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4486 NewColdSym.st_value = Function.cold().getAddress(); 4487 NewColdSym.st_size = Function.cold().getImageSize(); 4488 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4489 Symbols.emplace_back(NewColdSym); 4490 } 4491 if (Function.hasConstantIsland()) { 4492 uint64_t DataMark = Function.getOutputDataAddress(); 4493 uint64_t CISize = getConstantIslandSize(Function); 4494 uint64_t CodeMark = DataMark + CISize; 4495 ELFSymTy DataMarkSym = FunctionSymbol; 4496 DataMarkSym.st_name = AddToStrTab("$d"); 4497 DataMarkSym.st_value = DataMark; 4498 DataMarkSym.st_size = 0; 4499 DataMarkSym.setType(ELF::STT_NOTYPE); 4500 DataMarkSym.setBinding(ELF::STB_LOCAL); 4501 ELFSymTy CodeMarkSym = DataMarkSym; 4502 CodeMarkSym.st_name = AddToStrTab("$x"); 4503 CodeMarkSym.st_value = CodeMark; 4504 Symbols.emplace_back(DataMarkSym); 4505 Symbols.emplace_back(CodeMarkSym); 4506 } 4507 if (Function.hasConstantIsland() && Function.isSplit()) { 4508 uint64_t DataMark = Function.getOutputColdDataAddress(); 4509 uint64_t CISize = getConstantIslandSize(Function); 4510 uint64_t CodeMark = DataMark + CISize; 4511 ELFSymTy DataMarkSym = FunctionSymbol; 4512 DataMarkSym.st_name = AddToStrTab("$d"); 4513 DataMarkSym.st_value = DataMark; 4514 DataMarkSym.st_size = 0; 4515 DataMarkSym.setType(ELF::STT_NOTYPE); 4516 DataMarkSym.setBinding(ELF::STB_LOCAL); 4517 ELFSymTy CodeMarkSym = DataMarkSym; 4518 CodeMarkSym.st_name = AddToStrTab("$x"); 4519 CodeMarkSym.st_value = CodeMark; 4520 Symbols.emplace_back(DataMarkSym); 4521 Symbols.emplace_back(CodeMarkSym); 4522 } 4523 }; 4524 4525 // For regular (non-dynamic) symbol table, exclude symbols referring 4526 // to non-allocatable sections. 4527 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4528 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4529 return false; 4530 4531 // If we cannot link the symbol to a section, leave it as is. 4532 Expected<const typename ELFT::Shdr *> Section = 4533 Obj.getSection(Symbol.st_shndx); 4534 if (!Section) 4535 return false; 4536 4537 // Remove the section symbol iif the corresponding section was stripped. 4538 if (Symbol.getType() == ELF::STT_SECTION) { 4539 if (!getNewSectionIndex(Symbol.st_shndx)) 4540 return true; 4541 return false; 4542 } 4543 4544 // Symbols in non-allocatable sections are typically remnants of relocations 4545 // emitted under "-emit-relocs" linker option. Delete those as we delete 4546 // relocations against non-allocatable sections. 4547 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4548 return true; 4549 4550 return false; 4551 }; 4552 4553 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4554 // For regular (non-dynamic) symbol table strip unneeded symbols. 4555 if (!IsDynSym && shouldStrip(Symbol)) 4556 continue; 4557 4558 const BinaryFunction *Function = 4559 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4560 // Ignore false function references, e.g. when the section address matches 4561 // the address of the function. 4562 if (Function && Symbol.getType() == ELF::STT_SECTION) 4563 Function = nullptr; 4564 4565 // For non-dynamic symtab, make sure the symbol section matches that of 4566 // the function. It can mismatch e.g. if the symbol is a section marker 4567 // in which case we treat the symbol separately from the function. 4568 // For dynamic symbol table, the section index could be wrong on the input, 4569 // and its value is ignored by the runtime if it's different from 4570 // SHN_UNDEF and SHN_ABS. 4571 if (!IsDynSym && Function && 4572 Symbol.st_shndx != 4573 Function->getOriginSection()->getSectionRef().getIndex()) 4574 Function = nullptr; 4575 4576 // Create a new symbol based on the existing symbol. 4577 ELFSymTy NewSymbol = Symbol; 4578 4579 if (Function) { 4580 // If the symbol matched a function that was not emitted, update the 4581 // corresponding section index but otherwise leave it unchanged. 4582 if (Function->isEmitted()) { 4583 NewSymbol.st_value = Function->getOutputAddress(); 4584 NewSymbol.st_size = Function->getOutputSize(); 4585 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4586 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4587 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4588 } 4589 4590 // Add new symbols to the symbol table if necessary. 4591 if (!IsDynSym) 4592 addExtraSymbols(*Function, NewSymbol); 4593 } else { 4594 // Check if the function symbol matches address inside a function, i.e. 4595 // it marks a secondary entry point. 4596 Function = 4597 (Symbol.getType() == ELF::STT_FUNC) 4598 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4599 /*CheckPastEnd=*/false, 4600 /*UseMaxSize=*/true) 4601 : nullptr; 4602 4603 if (Function && Function->isEmitted()) { 4604 const uint64_t OutputAddress = 4605 Function->translateInputToOutputAddress(Symbol.st_value); 4606 4607 NewSymbol.st_value = OutputAddress; 4608 // Force secondary entry points to have zero size. 4609 NewSymbol.st_size = 0; 4610 NewSymbol.st_shndx = 4611 OutputAddress >= Function->cold().getAddress() && 4612 OutputAddress < Function->cold().getImageSize() 4613 ? Function->getColdCodeSection()->getIndex() 4614 : Function->getCodeSection()->getIndex(); 4615 } else { 4616 // Check if the symbol belongs to moved data object and update it. 4617 BinaryData *BD = opts::ReorderData.empty() 4618 ? nullptr 4619 : BC->getBinaryDataAtAddress(Symbol.st_value); 4620 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4621 assert((!BD->getSize() || !Symbol.st_size || 4622 Symbol.st_size == BD->getSize()) && 4623 "sizes must match"); 4624 4625 BinarySection &OutputSection = BD->getOutputSection(); 4626 assert(OutputSection.getIndex()); 4627 LLVM_DEBUG(dbgs() 4628 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4629 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4630 << Symbol.st_shndx << ") to " << OutputSection.getName() 4631 << " (" << OutputSection.getIndex() << ")\n"); 4632 NewSymbol.st_shndx = OutputSection.getIndex(); 4633 NewSymbol.st_value = BD->getOutputAddress(); 4634 } else { 4635 // Otherwise just update the section for the symbol. 4636 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4637 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4638 } 4639 4640 // Detect local syms in the text section that we didn't update 4641 // and that were preserved by the linker to support relocations against 4642 // .text. Remove them from the symtab. 4643 if (Symbol.getType() == ELF::STT_NOTYPE && 4644 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4645 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4646 /*CheckPastEnd=*/false, 4647 /*UseMaxSize=*/true)) { 4648 // Can only delete the symbol if not patching. Such symbols should 4649 // not exist in the dynamic symbol table. 4650 assert(!IsDynSym && "cannot delete symbol"); 4651 continue; 4652 } 4653 } 4654 } 4655 } 4656 4657 // Handle special symbols based on their name. 4658 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4659 assert(SymbolName && "cannot get symbol name"); 4660 4661 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4662 NewSymbol.st_value = getNewValueForSymbol(Name); 4663 NewSymbol.st_shndx = ELF::SHN_ABS; 4664 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4665 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4666 ++IsUpdated; 4667 }; 4668 4669 if (opts::HotText && 4670 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4671 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4672 4673 if (opts::HotData && 4674 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4675 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4676 4677 if (*SymbolName == "_end") { 4678 unsigned Ignored; 4679 updateSymbolValue(*SymbolName, Ignored); 4680 } 4681 4682 if (IsDynSym) 4683 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4684 sizeof(ELFSymTy), 4685 NewSymbol); 4686 else 4687 Symbols.emplace_back(NewSymbol); 4688 } 4689 4690 if (IsDynSym) { 4691 assert(Symbols.empty()); 4692 return; 4693 } 4694 4695 // Add symbols of injected functions 4696 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4697 ELFSymTy NewSymbol; 4698 BinarySection *OriginSection = Function->getOriginSection(); 4699 NewSymbol.st_shndx = 4700 OriginSection 4701 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4702 : Function->getCodeSection()->getIndex(); 4703 NewSymbol.st_value = Function->getOutputAddress(); 4704 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4705 NewSymbol.st_size = Function->getOutputSize(); 4706 NewSymbol.st_other = 0; 4707 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4708 Symbols.emplace_back(NewSymbol); 4709 4710 if (Function->isSplit()) { 4711 ELFSymTy NewColdSym = NewSymbol; 4712 NewColdSym.setType(ELF::STT_NOTYPE); 4713 SmallVector<char, 256> Buf; 4714 NewColdSym.st_name = AddToStrTab( 4715 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4716 NewColdSym.st_value = Function->cold().getAddress(); 4717 NewColdSym.st_size = Function->cold().getImageSize(); 4718 Symbols.emplace_back(NewColdSym); 4719 } 4720 } 4721 4722 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4723 "either none or both __hot_start/__hot_end symbols were expected"); 4724 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4725 "either none or both __hot_data_start/__hot_data_end symbols were " 4726 "expected"); 4727 4728 auto addSymbol = [&](const std::string &Name) { 4729 ELFSymTy Symbol; 4730 Symbol.st_value = getNewValueForSymbol(Name); 4731 Symbol.st_shndx = ELF::SHN_ABS; 4732 Symbol.st_name = AddToStrTab(Name); 4733 Symbol.st_size = 0; 4734 Symbol.st_other = 0; 4735 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4736 4737 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4738 << Twine::utohexstr(Symbol.st_value) << '\n'; 4739 4740 Symbols.emplace_back(Symbol); 4741 }; 4742 4743 if (opts::HotText && !NumHotTextSymsUpdated) { 4744 addSymbol("__hot_start"); 4745 addSymbol("__hot_end"); 4746 } 4747 4748 if (opts::HotData && !NumHotDataSymsUpdated) { 4749 addSymbol("__hot_data_start"); 4750 addSymbol("__hot_data_end"); 4751 } 4752 4753 // Put local symbols at the beginning. 4754 std::stable_sort(Symbols.begin(), Symbols.end(), 4755 [](const ELFSymTy &A, const ELFSymTy &B) { 4756 if (A.getBinding() == ELF::STB_LOCAL && 4757 B.getBinding() != ELF::STB_LOCAL) 4758 return true; 4759 return false; 4760 }); 4761 4762 for (const ELFSymTy &Symbol : Symbols) 4763 Write(0, Symbol); 4764 } 4765 4766 template <typename ELFT> 4767 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4768 const ELFFile<ELFT> &Obj = File->getELFFile(); 4769 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4770 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4771 4772 // Compute a preview of how section indices will change after rewriting, so 4773 // we can properly update the symbol table based on new section indices. 4774 std::vector<uint32_t> NewSectionIndex; 4775 getOutputSections(File, NewSectionIndex); 4776 4777 // Set pointer at the end of the output file, so we can pwrite old symbol 4778 // tables if we need to. 4779 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4780 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4781 "next available offset calculation failure"); 4782 Out->os().seek(NextAvailableOffset); 4783 4784 // Update dynamic symbol table. 4785 const ELFShdrTy *DynSymSection = nullptr; 4786 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4787 if (Section.sh_type == ELF::SHT_DYNSYM) { 4788 DynSymSection = &Section; 4789 break; 4790 } 4791 } 4792 assert((DynSymSection || BC->IsStaticExecutable) && 4793 "dynamic symbol table expected"); 4794 if (DynSymSection) { 4795 updateELFSymbolTable( 4796 File, 4797 /*IsDynSym=*/true, 4798 *DynSymSection, 4799 NewSectionIndex, 4800 [&](size_t Offset, const ELFSymTy &Sym) { 4801 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4802 sizeof(ELFSymTy), 4803 DynSymSection->sh_offset + Offset); 4804 }, 4805 [](StringRef) -> size_t { return 0; }); 4806 } 4807 4808 if (opts::RemoveSymtab) 4809 return; 4810 4811 // (re)create regular symbol table. 4812 const ELFShdrTy *SymTabSection = nullptr; 4813 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4814 if (Section.sh_type == ELF::SHT_SYMTAB) { 4815 SymTabSection = &Section; 4816 break; 4817 } 4818 } 4819 if (!SymTabSection) { 4820 errs() << "BOLT-WARNING: no symbol table found\n"; 4821 return; 4822 } 4823 4824 const ELFShdrTy *StrTabSection = 4825 cantFail(Obj.getSection(SymTabSection->sh_link)); 4826 std::string NewContents; 4827 std::string NewStrTab = std::string( 4828 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4829 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4830 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4831 4832 NumLocalSymbols = 0; 4833 updateELFSymbolTable( 4834 File, 4835 /*IsDynSym=*/false, 4836 *SymTabSection, 4837 NewSectionIndex, 4838 [&](size_t Offset, const ELFSymTy &Sym) { 4839 if (Sym.getBinding() == ELF::STB_LOCAL) 4840 ++NumLocalSymbols; 4841 NewContents.append(reinterpret_cast<const char *>(&Sym), 4842 sizeof(ELFSymTy)); 4843 }, 4844 [&](StringRef Str) { 4845 size_t Idx = NewStrTab.size(); 4846 NewStrTab.append(NameResolver::restore(Str).str()); 4847 NewStrTab.append(1, '\0'); 4848 return Idx; 4849 }); 4850 4851 BC->registerOrUpdateNoteSection(SecName, 4852 copyByteArray(NewContents), 4853 NewContents.size(), 4854 /*Alignment=*/1, 4855 /*IsReadOnly=*/true, 4856 ELF::SHT_SYMTAB); 4857 4858 BC->registerOrUpdateNoteSection(StrSecName, 4859 copyByteArray(NewStrTab), 4860 NewStrTab.size(), 4861 /*Alignment=*/1, 4862 /*IsReadOnly=*/true, 4863 ELF::SHT_STRTAB); 4864 } 4865 4866 template <typename ELFT> 4867 void 4868 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4869 using Elf_Rela = typename ELFT::Rela; 4870 raw_fd_ostream &OS = Out->os(); 4871 const ELFFile<ELFT> &EF = File->getELFFile(); 4872 4873 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4874 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4875 4876 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4877 uint64_t &End) { 4878 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4879 Start = Section->getInputFileOffset(); 4880 End = Start + Section->getSize(); 4881 }; 4882 4883 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4884 return; 4885 4886 if (DynamicRelocationsAddress) 4887 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4888 RelDynEndOffset); 4889 4890 if (PLTRelocationsAddress) 4891 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4892 RelPltEndOffset); 4893 4894 DynamicRelativeRelocationsCount = 0; 4895 4896 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4897 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4898 Offset += sizeof(*RelA); 4899 }; 4900 4901 auto writeRelocations = [&](bool PatchRelative) { 4902 for (BinarySection &Section : BC->allocatableSections()) { 4903 for (const Relocation &Rel : Section.dynamicRelocations()) { 4904 const bool IsRelative = Rel.isRelative(); 4905 if (PatchRelative != IsRelative) 4906 continue; 4907 4908 if (IsRelative) 4909 ++DynamicRelativeRelocationsCount; 4910 4911 Elf_Rela NewRelA; 4912 uint64_t SectionAddress = Section.getOutputAddress(); 4913 SectionAddress = 4914 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4915 MCSymbol *Symbol = Rel.Symbol; 4916 uint32_t SymbolIdx = 0; 4917 uint64_t Addend = Rel.Addend; 4918 4919 if (Rel.Symbol) { 4920 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4921 } else { 4922 // Usually this case is used for R_*_(I)RELATIVE relocations 4923 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4924 if (Address) 4925 Addend = Address; 4926 } 4927 4928 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4929 NewRelA.r_offset = SectionAddress + Rel.Offset; 4930 NewRelA.r_addend = Addend; 4931 4932 const bool IsJmpRel = 4933 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4934 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4935 const uint64_t &EndOffset = 4936 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4937 if (!Offset || !EndOffset) { 4938 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4939 exit(1); 4940 } 4941 4942 if (Offset + sizeof(NewRelA) > EndOffset) { 4943 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4944 exit(1); 4945 } 4946 4947 writeRela(&NewRelA, Offset); 4948 } 4949 } 4950 }; 4951 4952 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4953 writeRelocations(/* PatchRelative */ true); 4954 writeRelocations(/* PatchRelative */ false); 4955 4956 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4957 if (!Offset) 4958 return; 4959 4960 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4961 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4962 RelA.r_offset = 0; 4963 RelA.r_addend = 0; 4964 while (Offset < EndOffset) 4965 writeRela(&RelA, Offset); 4966 4967 assert(Offset == EndOffset && "Unexpected section overflow"); 4968 }; 4969 4970 // Fill the rest of the sections with R_*_NONE relocations 4971 fillNone(RelDynOffset, RelDynEndOffset); 4972 fillNone(RelPltOffset, RelPltEndOffset); 4973 } 4974 4975 template <typename ELFT> 4976 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 4977 raw_fd_ostream &OS = Out->os(); 4978 4979 SectionRef GOTSection; 4980 for (const SectionRef &Section : File->sections()) { 4981 StringRef SectionName = cantFail(Section.getName()); 4982 if (SectionName == ".got") { 4983 GOTSection = Section; 4984 break; 4985 } 4986 } 4987 if (!GOTSection.getObject()) { 4988 if (!BC->IsStaticExecutable) 4989 errs() << "BOLT-INFO: no .got section found\n"; 4990 return; 4991 } 4992 4993 StringRef GOTContents = cantFail(GOTSection.getContents()); 4994 for (const uint64_t *GOTEntry = 4995 reinterpret_cast<const uint64_t *>(GOTContents.data()); 4996 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 4997 GOTContents.size()); 4998 ++GOTEntry) { 4999 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5000 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5001 << Twine::utohexstr(*GOTEntry) << " with 0x" 5002 << Twine::utohexstr(NewAddress) << '\n'); 5003 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5004 reinterpret_cast<const char *>(GOTEntry) - 5005 File->getData().data()); 5006 } 5007 } 5008 } 5009 5010 template <typename ELFT> 5011 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5012 if (BC->IsStaticExecutable) 5013 return; 5014 5015 const ELFFile<ELFT> &Obj = File->getELFFile(); 5016 raw_fd_ostream &OS = Out->os(); 5017 5018 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5019 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5020 5021 // Locate DYNAMIC by looking through program headers. 5022 uint64_t DynamicOffset = 0; 5023 const Elf_Phdr *DynamicPhdr = 0; 5024 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5025 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5026 DynamicOffset = Phdr.p_offset; 5027 DynamicPhdr = &Phdr; 5028 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5029 break; 5030 } 5031 } 5032 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5033 5034 bool ZNowSet = false; 5035 5036 // Go through all dynamic entries and patch functions addresses with 5037 // new ones. 5038 typename ELFT::DynRange DynamicEntries = 5039 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5040 auto DTB = DynamicEntries.begin(); 5041 for (const Elf_Dyn &Dyn : DynamicEntries) { 5042 Elf_Dyn NewDE = Dyn; 5043 bool ShouldPatch = true; 5044 switch (Dyn.d_tag) { 5045 default: 5046 ShouldPatch = false; 5047 break; 5048 case ELF::DT_RELACOUNT: 5049 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5050 break; 5051 case ELF::DT_INIT: 5052 case ELF::DT_FINI: { 5053 if (BC->HasRelocations) { 5054 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5055 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5056 << Dyn.getTag() << '\n'); 5057 NewDE.d_un.d_ptr = NewAddress; 5058 } 5059 } 5060 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5061 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5062 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5063 NewDE.d_un.d_ptr = Addr; 5064 } 5065 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5066 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5067 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5068 << Twine::utohexstr(Addr) << '\n'); 5069 NewDE.d_un.d_ptr = Addr; 5070 } 5071 } 5072 break; 5073 } 5074 case ELF::DT_FLAGS: 5075 if (BC->RequiresZNow) { 5076 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5077 ZNowSet = true; 5078 } 5079 break; 5080 case ELF::DT_FLAGS_1: 5081 if (BC->RequiresZNow) { 5082 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5083 ZNowSet = true; 5084 } 5085 break; 5086 } 5087 if (ShouldPatch) 5088 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5089 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5090 } 5091 5092 if (BC->RequiresZNow && !ZNowSet) { 5093 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5094 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5095 ".dynamic. Please re-link the binary with -znow.\n"; 5096 exit(1); 5097 } 5098 } 5099 5100 template <typename ELFT> 5101 void RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5102 const ELFFile<ELFT> &Obj = File->getELFFile(); 5103 5104 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5105 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5106 5107 // Locate DYNAMIC by looking through program headers. 5108 const Elf_Phdr *DynamicPhdr = 0; 5109 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5110 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5111 DynamicPhdr = &Phdr; 5112 break; 5113 } 5114 } 5115 5116 if (!DynamicPhdr) { 5117 outs() << "BOLT-INFO: static input executable detected\n"; 5118 // TODO: static PIE executable might have dynamic header 5119 BC->IsStaticExecutable = true; 5120 return; 5121 } 5122 5123 assert(DynamicPhdr->p_memsz == DynamicPhdr->p_filesz && 5124 "dynamic section sizes should match"); 5125 5126 // Go through all dynamic entries to locate entries of interest. 5127 typename ELFT::DynRange DynamicEntries = 5128 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5129 5130 for (const Elf_Dyn &Dyn : DynamicEntries) { 5131 switch (Dyn.d_tag) { 5132 case ELF::DT_INIT: 5133 if (!BC->HasInterpHeader) { 5134 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5135 BC->StartFunctionAddress = Dyn.getPtr(); 5136 } 5137 break; 5138 case ELF::DT_FINI: 5139 BC->FiniFunctionAddress = Dyn.getPtr(); 5140 break; 5141 case ELF::DT_RELA: 5142 DynamicRelocationsAddress = Dyn.getPtr(); 5143 break; 5144 case ELF::DT_RELASZ: 5145 DynamicRelocationsSize = Dyn.getVal(); 5146 break; 5147 case ELF::DT_JMPREL: 5148 PLTRelocationsAddress = Dyn.getPtr(); 5149 break; 5150 case ELF::DT_PLTRELSZ: 5151 PLTRelocationsSize = Dyn.getVal(); 5152 break; 5153 case ELF::DT_RELACOUNT: 5154 DynamicRelativeRelocationsCount = Dyn.getVal(); 5155 break; 5156 } 5157 } 5158 5159 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5160 DynamicRelocationsAddress.reset(); 5161 DynamicRelocationsSize = 0; 5162 } 5163 5164 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5165 PLTRelocationsAddress.reset(); 5166 PLTRelocationsSize = 0; 5167 } 5168 } 5169 5170 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5171 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5172 if (!Function) 5173 return 0; 5174 5175 assert(!Function->isFragment() && "cannot get new address for a fragment"); 5176 5177 return Function->getOutputAddress(); 5178 } 5179 5180 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5181 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5182 return Function; 5183 5184 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5185 if (BD && BD->isMoved()) 5186 return BD->getOutputAddress(); 5187 5188 return 0; 5189 } 5190 5191 void RewriteInstance::rewriteFile() { 5192 std::error_code EC; 5193 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5194 sys::fs::OF_None); 5195 check_error(EC, "cannot create output executable file"); 5196 5197 raw_fd_ostream &OS = Out->os(); 5198 5199 // Copy allocatable part of the input. 5200 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5201 5202 // We obtain an asm-specific writer so that we can emit nops in an 5203 // architecture-specific way at the end of the function. 5204 std::unique_ptr<MCAsmBackend> MAB( 5205 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5206 auto Streamer = BC->createStreamer(OS); 5207 // Make sure output stream has enough reserved space, otherwise 5208 // pwrite() will fail. 5209 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5210 (void)Offset; 5211 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5212 "error resizing output file"); 5213 5214 // Overwrite functions with fixed output address. This is mostly used by 5215 // non-relocation mode, with one exception: injected functions are covered 5216 // here in both modes. 5217 uint64_t CountOverwrittenFunctions = 0; 5218 uint64_t OverwrittenScore = 0; 5219 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5220 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5221 continue; 5222 5223 if (Function->getImageSize() > Function->getMaxSize()) { 5224 if (opts::Verbosity >= 1) 5225 errs() << "BOLT-WARNING: new function size (0x" 5226 << Twine::utohexstr(Function->getImageSize()) 5227 << ") is larger than maximum allowed size (0x" 5228 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5229 << *Function << '\n'; 5230 5231 // Remove jump table sections that this function owns in non-reloc mode 5232 // because we don't want to write them anymore. 5233 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5234 for (auto &JTI : Function->JumpTables) { 5235 JumpTable *JT = JTI.second; 5236 BinarySection &Section = JT->getOutputSection(); 5237 BC->deregisterSection(Section); 5238 } 5239 } 5240 continue; 5241 } 5242 5243 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5244 Function->cold().getImageSize() == 0)) 5245 continue; 5246 5247 OverwrittenScore += Function->getFunctionScore(); 5248 // Overwrite function in the output file. 5249 if (opts::Verbosity >= 2) 5250 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5251 5252 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5253 Function->getImageSize(), Function->getFileOffset()); 5254 5255 // Write nops at the end of the function. 5256 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5257 uint64_t Pos = OS.tell(); 5258 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5259 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5260 &*BC->STI); 5261 5262 OS.seek(Pos); 5263 } 5264 5265 if (!Function->isSplit()) { 5266 ++CountOverwrittenFunctions; 5267 if (opts::MaxFunctions && 5268 CountOverwrittenFunctions == opts::MaxFunctions) { 5269 outs() << "BOLT: maximum number of functions reached\n"; 5270 break; 5271 } 5272 continue; 5273 } 5274 5275 // Write cold part 5276 if (opts::Verbosity >= 2) 5277 outs() << "BOLT: rewriting function \"" << *Function 5278 << "\" (cold part)\n"; 5279 5280 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5281 Function->cold().getImageSize(), 5282 Function->cold().getFileOffset()); 5283 5284 ++CountOverwrittenFunctions; 5285 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5286 outs() << "BOLT: maximum number of functions reached\n"; 5287 break; 5288 } 5289 } 5290 5291 // Print function statistics for non-relocation mode. 5292 if (!BC->HasRelocations) { 5293 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5294 << BC->getBinaryFunctions().size() 5295 << " functions were overwritten.\n"; 5296 if (BC->TotalScore != 0) { 5297 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5298 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5299 << "% of the execution count of simple functions of " 5300 "this binary\n"; 5301 } 5302 } 5303 5304 if (BC->HasRelocations && opts::TrapOldCode) { 5305 uint64_t SavedPos = OS.tell(); 5306 // Overwrite function body to make sure we never execute these instructions. 5307 for (auto &BFI : BC->getBinaryFunctions()) { 5308 BinaryFunction &BF = BFI.second; 5309 if (!BF.getFileOffset() || !BF.isEmitted()) 5310 continue; 5311 OS.seek(BF.getFileOffset()); 5312 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5313 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5314 } 5315 OS.seek(SavedPos); 5316 } 5317 5318 // Write all allocatable sections - reloc-mode text is written here as well 5319 for (BinarySection &Section : BC->allocatableSections()) { 5320 if (!Section.isFinalized() || !Section.getOutputData()) 5321 continue; 5322 5323 if (opts::Verbosity >= 1) 5324 outs() << "BOLT: writing new section " << Section.getName() 5325 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5326 << "\n of size " << Section.getOutputSize() << "\n at offset " 5327 << Section.getOutputFileOffset() << '\n'; 5328 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5329 Section.getOutputSize(), Section.getOutputFileOffset()); 5330 } 5331 5332 for (BinarySection &Section : BC->allocatableSections()) 5333 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5334 return getNewValueForSymbol(S->getName()); 5335 }); 5336 5337 // If .eh_frame is present create .eh_frame_hdr. 5338 if (EHFrameSection && EHFrameSection->isFinalized()) 5339 writeEHFrameHeader(); 5340 5341 // Add BOLT Addresses Translation maps to allow profile collection to 5342 // happen in the output binary 5343 if (opts::EnableBAT) 5344 addBATSection(); 5345 5346 // Patch program header table. 5347 patchELFPHDRTable(); 5348 5349 // Finalize memory image of section string table. 5350 finalizeSectionStringTable(); 5351 5352 // Update symbol tables. 5353 patchELFSymTabs(); 5354 5355 patchBuildID(); 5356 5357 if (opts::EnableBAT) 5358 encodeBATSection(); 5359 5360 // Copy non-allocatable sections once allocatable part is finished. 5361 rewriteNoteSections(); 5362 5363 if (BC->HasRelocations) { 5364 patchELFAllocatableRelaSections(); 5365 patchELFGOT(); 5366 } 5367 5368 // Patch dynamic section/segment. 5369 patchELFDynamic(); 5370 5371 // Update ELF book-keeping info. 5372 patchELFSectionHeaderTable(); 5373 5374 if (opts::PrintSections) { 5375 outs() << "BOLT-INFO: Sections after processing:\n"; 5376 BC->printSections(outs()); 5377 } 5378 5379 Out->keep(); 5380 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5381 check_error(EC, "cannot set permissions of output file"); 5382 } 5383 5384 void RewriteInstance::writeEHFrameHeader() { 5385 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5386 EHFrameSection->getOutputAddress()); 5387 Error E = NewEHFrame.parse(DWARFDataExtractor( 5388 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5389 BC->AsmInfo->getCodePointerSize())); 5390 check_error(std::move(E), "failed to parse EH frame"); 5391 5392 uint64_t OldEHFrameAddress = 0; 5393 StringRef OldEHFrameContents; 5394 ErrorOr<BinarySection &> OldEHFrameSection = 5395 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5396 if (OldEHFrameSection) { 5397 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5398 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5399 } 5400 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5401 Error Er = OldEHFrame.parse( 5402 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5403 BC->AsmInfo->getCodePointerSize())); 5404 check_error(std::move(Er), "failed to parse EH frame"); 5405 5406 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5407 5408 NextAvailableAddress = 5409 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5410 5411 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5412 const uint64_t EHFrameHdrFileOffset = 5413 getFileOffsetForAddress(NextAvailableAddress); 5414 5415 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5416 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5417 5418 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5419 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5420 5421 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5422 /*IsText=*/false, 5423 /*IsAllocatable=*/true); 5424 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5425 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5426 /*Alignment=*/1); 5427 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5428 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5429 5430 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5431 5432 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5433 if (OldEHFrameSection) { 5434 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5435 OldEHFrameSection->getOutputSize() - 5436 EHFrameSection->getOutputAddress()); 5437 EHFrameSection = 5438 BC->registerOrUpdateSection(".eh_frame", 5439 EHFrameSection->getELFType(), 5440 EHFrameSection->getELFFlags(), 5441 EHFrameSection->getOutputData(), 5442 EHFrameSectionSize, 5443 EHFrameSection->getAlignment()); 5444 BC->deregisterSection(*OldEHFrameSection); 5445 } 5446 5447 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5448 << EHFrameSection->getOutputSize() << '\n'); 5449 } 5450 5451 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5452 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5453 if (Value != 0) 5454 return Value; 5455 5456 // Return the original value if we haven't emitted the symbol. 5457 BinaryData *BD = BC->getBinaryDataByName(Name); 5458 if (!BD) 5459 return 0; 5460 5461 return BD->getAddress(); 5462 } 5463 5464 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5465 // Check if it's possibly part of the new segment. 5466 if (Address >= NewTextSegmentAddress) 5467 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5468 5469 // Find an existing segment that matches the address. 5470 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5471 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5472 return 0; 5473 5474 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5475 if (Address < SegmentInfo.Address || 5476 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5477 return 0; 5478 5479 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5480 } 5481 5482 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5483 for (const char *const &OverwriteName : SectionsToOverwrite) 5484 if (SectionName == OverwriteName) 5485 return true; 5486 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5487 if (SectionName == OverwriteName) 5488 return true; 5489 5490 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5491 return Section && Section->isAllocatable() && Section->isFinalized(); 5492 } 5493 5494 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5495 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5496 SectionName == ".gdb_index" || SectionName == ".stab" || 5497 SectionName == ".stabstr") 5498 return true; 5499 5500 return false; 5501 } 5502 5503 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5504 if (SectionName.startswith("__ksymtab")) 5505 return true; 5506 5507 return false; 5508 } 5509