1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> ForceToDataRelocations( 84 "force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 87 cl::Hidden, cl::cat(BoltCategory)); 88 89 cl::opt<std::string> 90 BoltID("bolt-id", 91 cl::desc("add any string to tag this execution in the " 92 "output binary via bolt info section"), 93 cl::cat(BoltCategory)); 94 95 cl::opt<bool> 96 AllowStripped("allow-stripped", 97 cl::desc("allow processing of stripped binaries"), 98 cl::Hidden, 99 cl::cat(BoltCategory)); 100 101 cl::opt<bool> DumpDotAll( 102 "dump-dot-all", 103 cl::desc("dump function CFGs to graphviz format after each stage;" 104 "enable '-print-loops' for color-coded blocks"), 105 cl::Hidden, cl::cat(BoltCategory)); 106 107 static cl::list<std::string> 108 ForceFunctionNames("funcs", 109 cl::CommaSeparated, 110 cl::desc("limit optimizations to functions from the list"), 111 cl::value_desc("func1,func2,func3,..."), 112 cl::Hidden, 113 cl::cat(BoltCategory)); 114 115 static cl::opt<std::string> 116 FunctionNamesFile("funcs-file", 117 cl::desc("file with list of functions to optimize"), 118 cl::Hidden, 119 cl::cat(BoltCategory)); 120 121 static cl::list<std::string> ForceFunctionNamesNR( 122 "funcs-no-regex", cl::CommaSeparated, 123 cl::desc("limit optimizations to functions from the list (non-regex)"), 124 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 125 126 static cl::opt<std::string> FunctionNamesFileNR( 127 "funcs-file-no-regex", 128 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 129 cl::cat(BoltCategory)); 130 131 cl::opt<bool> 132 KeepTmp("keep-tmp", 133 cl::desc("preserve intermediate .o file"), 134 cl::Hidden, 135 cl::cat(BoltCategory)); 136 137 cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"), 138 cl::cat(BoltCategory)); 139 140 static cl::opt<unsigned> 141 LiteThresholdPct("lite-threshold-pct", 142 cl::desc("threshold (in percent) for selecting functions to process in lite " 143 "mode. Higher threshold means fewer functions to process. E.g " 144 "threshold of 90 means only top 10 percent of functions with " 145 "profile will be processed."), 146 cl::init(0), 147 cl::ZeroOrMore, 148 cl::Hidden, 149 cl::cat(BoltOptCategory)); 150 151 static cl::opt<unsigned> LiteThresholdCount( 152 "lite-threshold-count", 153 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 154 "absolute function call count. I.e. limit processing to functions " 155 "executed at least the specified number of times."), 156 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 157 158 static cl::opt<unsigned> 159 MaxFunctions("max-funcs", 160 cl::desc("maximum number of functions to process"), cl::Hidden, 161 cl::cat(BoltCategory)); 162 163 static cl::opt<unsigned> MaxDataRelocations( 164 "max-data-relocations", 165 cl::desc("maximum number of data relocations to process"), cl::Hidden, 166 cl::cat(BoltCategory)); 167 168 cl::opt<bool> PrintAll("print-all", 169 cl::desc("print functions after each stage"), cl::Hidden, 170 cl::cat(BoltCategory)); 171 172 cl::opt<bool> PrintCFG("print-cfg", 173 cl::desc("print functions after CFG construction"), 174 cl::Hidden, cl::cat(BoltCategory)); 175 176 cl::opt<bool> PrintDisasm("print-disasm", 177 cl::desc("print function after disassembly"), 178 cl::Hidden, cl::cat(BoltCategory)); 179 180 static cl::opt<bool> 181 PrintGlobals("print-globals", 182 cl::desc("print global symbols after disassembly"), cl::Hidden, 183 cl::cat(BoltCategory)); 184 185 extern cl::opt<bool> PrintSections; 186 187 static cl::opt<bool> PrintLoopInfo("print-loops", 188 cl::desc("print loop related information"), 189 cl::Hidden, cl::cat(BoltCategory)); 190 191 static cl::opt<bool> PrintSDTMarkers("print-sdt", 192 cl::desc("print all SDT markers"), 193 cl::Hidden, cl::cat(BoltCategory)); 194 195 enum PrintPseudoProbesOptions { 196 PPP_None = 0, 197 PPP_Probes_Section_Decode = 0x1, 198 PPP_Probes_Address_Conversion = 0x2, 199 PPP_Encoded_Probes = 0x3, 200 PPP_All = 0xf 201 }; 202 203 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 204 "print-pseudo-probes", cl::desc("print pseudo probe info"), 205 cl::init(PPP_None), 206 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 207 "decode probes section from binary"), 208 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 209 "update address2ProbesMap with output block address"), 210 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 211 "display the encoded probes in binary section"), 212 clEnumValN(PPP_All, "all", "enable all debugging printout")), 213 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 214 215 static cl::opt<cl::boolOrDefault> RelocationMode( 216 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 217 cl::cat(BoltCategory)); 218 219 static cl::opt<std::string> 220 SaveProfile("w", 221 cl::desc("save recorded profile to a file"), 222 cl::cat(BoltOutputCategory)); 223 224 static cl::list<std::string> 225 SkipFunctionNames("skip-funcs", 226 cl::CommaSeparated, 227 cl::desc("list of functions to skip"), 228 cl::value_desc("func1,func2,func3,..."), 229 cl::Hidden, 230 cl::cat(BoltCategory)); 231 232 static cl::opt<std::string> 233 SkipFunctionNamesFile("skip-funcs-file", 234 cl::desc("file with list of functions to skip"), 235 cl::Hidden, 236 cl::cat(BoltCategory)); 237 238 cl::opt<bool> 239 TrapOldCode("trap-old-code", 240 cl::desc("insert traps in old function bodies (relocation mode)"), 241 cl::Hidden, 242 cl::cat(BoltCategory)); 243 244 static cl::opt<std::string> DWPPathName("dwp", 245 cl::desc("Path and name to DWP file."), 246 cl::Hidden, cl::init(""), 247 cl::cat(BoltCategory)); 248 249 static cl::opt<bool> 250 UseGnuStack("use-gnu-stack", 251 cl::desc("use GNU_STACK program header for new segment (workaround for " 252 "issues with strip/objcopy)"), 253 cl::ZeroOrMore, 254 cl::cat(BoltCategory)); 255 256 static cl::opt<bool> 257 TimeRewrite("time-rewrite", 258 cl::desc("print time spent in rewriting passes"), cl::Hidden, 259 cl::cat(BoltCategory)); 260 261 static cl::opt<bool> 262 SequentialDisassembly("sequential-disassembly", 263 cl::desc("performs disassembly sequentially"), 264 cl::init(false), 265 cl::cat(BoltOptCategory)); 266 267 static cl::opt<bool> WriteBoltInfoSection( 268 "bolt-info", cl::desc("write bolt info section in the output binary"), 269 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 270 271 } // namespace opts 272 273 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 274 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 275 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 276 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 277 ".gdb_index", ".debug_addr"}; 278 279 const char RewriteInstance::TimerGroupName[] = "rewrite"; 280 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 281 282 namespace llvm { 283 namespace bolt { 284 285 extern const char *BoltRevision; 286 287 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 288 const MCInstrAnalysis *Analysis, 289 const MCInstrInfo *Info, 290 const MCRegisterInfo *RegInfo) { 291 #ifdef X86_AVAILABLE 292 if (Arch == Triple::x86_64) 293 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 294 #endif 295 296 #ifdef AARCH64_AVAILABLE 297 if (Arch == Triple::aarch64) 298 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 299 #endif 300 301 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 302 } 303 304 } // namespace bolt 305 } // namespace llvm 306 307 namespace { 308 309 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 310 auto Itr = 311 std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), 312 [&](const std::string &SectionName) { 313 return (Section && Section->getName() == SectionName); 314 }); 315 return Itr != opts::ReorderData.end(); 316 } 317 318 } // anonymous namespace 319 320 Expected<std::unique_ptr<RewriteInstance>> 321 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 322 const char *const *Argv, 323 StringRef ToolPath) { 324 Error Err = Error::success(); 325 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 326 if (Err) 327 return std::move(Err); 328 return std::move(RI); 329 } 330 331 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 332 const char *const *Argv, StringRef ToolPath, 333 Error &Err) 334 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 335 SHStrTab(StringTableBuilder::ELF) { 336 ErrorAsOutParameter EAO(&Err); 337 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 338 if (!ELF64LEFile) { 339 Err = createStringError(errc::not_supported, 340 "Only 64-bit LE ELF binaries are supported"); 341 return; 342 } 343 344 bool IsPIC = false; 345 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 346 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 347 outs() << "BOLT-INFO: shared object or position-independent executable " 348 "detected\n"; 349 IsPIC = true; 350 } 351 352 auto BCOrErr = BinaryContext::createBinaryContext( 353 File, IsPIC, 354 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 355 nullptr, opts::DWPPathName, 356 WithColor::defaultErrorHandler, 357 WithColor::defaultWarningHandler)); 358 if (Error E = BCOrErr.takeError()) { 359 Err = std::move(E); 360 return; 361 } 362 BC = std::move(BCOrErr.get()); 363 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 364 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 365 366 BAT = std::make_unique<BoltAddressTranslation>(*BC); 367 368 if (opts::UpdateDebugSections) 369 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 370 371 if (opts::Instrument) 372 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 373 else if (opts::Hugify) 374 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 375 } 376 377 RewriteInstance::~RewriteInstance() {} 378 379 Error RewriteInstance::setProfile(StringRef Filename) { 380 if (!sys::fs::exists(Filename)) 381 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 382 383 if (ProfileReader) { 384 // Already exists 385 return make_error<StringError>(Twine("multiple profiles specified: ") + 386 ProfileReader->getFilename() + " and " + 387 Filename, 388 inconvertibleErrorCode()); 389 } 390 391 // Spawn a profile reader based on file contents. 392 if (DataAggregator::checkPerfDataMagic(Filename)) 393 ProfileReader = std::make_unique<DataAggregator>(Filename); 394 else if (YAMLProfileReader::isYAML(Filename)) 395 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 396 else 397 ProfileReader = std::make_unique<DataReader>(Filename); 398 399 return Error::success(); 400 } 401 402 /// Return true if the function \p BF should be disassembled. 403 static bool shouldDisassemble(const BinaryFunction &BF) { 404 if (BF.isPseudo()) 405 return false; 406 407 if (opts::processAllFunctions()) 408 return true; 409 410 return !BF.isIgnored(); 411 } 412 413 Error RewriteInstance::discoverStorage() { 414 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 415 TimerGroupDesc, opts::TimeRewrite); 416 417 // Stubs are harmful because RuntimeDyld may try to increase the size of 418 // sections accounting for stubs when we need those sections to match the 419 // same size seen in the input binary, in case this section is a copy 420 // of the original one seen in the binary. 421 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 422 423 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 424 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 425 426 BC->StartFunctionAddress = Obj.getHeader().e_entry; 427 428 NextAvailableAddress = 0; 429 uint64_t NextAvailableOffset = 0; 430 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 431 if (Error E = PHsOrErr.takeError()) 432 return E; 433 434 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 435 for (const ELF64LE::Phdr &Phdr : PHs) { 436 switch (Phdr.p_type) { 437 case ELF::PT_LOAD: 438 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 439 static_cast<uint64_t>(Phdr.p_vaddr)); 440 NextAvailableAddress = std::max(NextAvailableAddress, 441 Phdr.p_vaddr + Phdr.p_memsz); 442 NextAvailableOffset = std::max(NextAvailableOffset, 443 Phdr.p_offset + Phdr.p_filesz); 444 445 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 446 Phdr.p_memsz, 447 Phdr.p_offset, 448 Phdr.p_filesz, 449 Phdr.p_align}; 450 break; 451 case ELF::PT_INTERP: 452 BC->HasInterpHeader = true; 453 break; 454 } 455 } 456 457 for (const SectionRef &Section : InputFile->sections()) { 458 Expected<StringRef> SectionNameOrErr = Section.getName(); 459 if (Error E = SectionNameOrErr.takeError()) 460 return E; 461 StringRef SectionName = SectionNameOrErr.get(); 462 if (SectionName == ".text") { 463 BC->OldTextSectionAddress = Section.getAddress(); 464 BC->OldTextSectionSize = Section.getSize(); 465 466 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 467 if (Error E = SectionContentsOrErr.takeError()) 468 return E; 469 StringRef SectionContents = SectionContentsOrErr.get(); 470 BC->OldTextSectionOffset = 471 SectionContents.data() - InputFile->getData().data(); 472 } 473 474 if (!opts::HeatmapMode && 475 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 476 (SectionName.startswith(getOrgSecPrefix()) || 477 SectionName == getBOLTTextSectionName())) 478 return createStringError( 479 errc::function_not_supported, 480 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 481 } 482 483 if (!NextAvailableAddress || !NextAvailableOffset) 484 return createStringError(errc::executable_format_error, 485 "no PT_LOAD pheader seen"); 486 487 outs() << "BOLT-INFO: first alloc address is 0x" 488 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 489 490 FirstNonAllocatableOffset = NextAvailableOffset; 491 492 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 493 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 494 495 if (!opts::UseGnuStack) { 496 // This is where the black magic happens. Creating PHDR table in a segment 497 // other than that containing ELF header is tricky. Some loaders and/or 498 // parts of loaders will apply e_phoff from ELF header assuming both are in 499 // the same segment, while others will do the proper calculation. 500 // We create the new PHDR table in such a way that both of the methods 501 // of loading and locating the table work. There's a slight file size 502 // overhead because of that. 503 // 504 // NB: bfd's strip command cannot do the above and will corrupt the 505 // binary during the process of stripping non-allocatable sections. 506 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 507 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 508 else 509 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 510 511 assert(NextAvailableOffset == 512 NextAvailableAddress - BC->FirstAllocAddress && 513 "PHDR table address calculation error"); 514 515 outs() << "BOLT-INFO: creating new program header table at address 0x" 516 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 517 << Twine::utohexstr(NextAvailableOffset) << '\n'; 518 519 PHDRTableAddress = NextAvailableAddress; 520 PHDRTableOffset = NextAvailableOffset; 521 522 // Reserve space for 3 extra pheaders. 523 unsigned Phnum = Obj.getHeader().e_phnum; 524 Phnum += 3; 525 526 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 527 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 528 } 529 530 // Align at cache line. 531 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 532 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 533 534 NewTextSegmentAddress = NextAvailableAddress; 535 NewTextSegmentOffset = NextAvailableOffset; 536 BC->LayoutStartAddress = NextAvailableAddress; 537 538 // Tools such as objcopy can strip section contents but leave header 539 // entries. Check that at least .text is mapped in the file. 540 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 541 return createStringError(errc::executable_format_error, 542 "BOLT-ERROR: input binary is not a valid ELF " 543 "executable as its text section is not " 544 "mapped to a valid segment"); 545 return Error::success(); 546 } 547 548 void RewriteInstance::parseSDTNotes() { 549 if (!SDTSection) 550 return; 551 552 StringRef Buf = SDTSection->getContents(); 553 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 554 BC->AsmInfo->getCodePointerSize()); 555 uint64_t Offset = 0; 556 557 while (DE.isValidOffset(Offset)) { 558 uint32_t NameSz = DE.getU32(&Offset); 559 DE.getU32(&Offset); // skip over DescSz 560 uint32_t Type = DE.getU32(&Offset); 561 Offset = alignTo(Offset, 4); 562 563 if (Type != 3) 564 errs() << "BOLT-WARNING: SDT note type \"" << Type 565 << "\" is not expected\n"; 566 567 if (NameSz == 0) 568 errs() << "BOLT-WARNING: SDT note has empty name\n"; 569 570 StringRef Name = DE.getCStr(&Offset); 571 572 if (!Name.equals("stapsdt")) 573 errs() << "BOLT-WARNING: SDT note name \"" << Name 574 << "\" is not expected\n"; 575 576 // Parse description 577 SDTMarkerInfo Marker; 578 Marker.PCOffset = Offset; 579 Marker.PC = DE.getU64(&Offset); 580 Marker.Base = DE.getU64(&Offset); 581 Marker.Semaphore = DE.getU64(&Offset); 582 Marker.Provider = DE.getCStr(&Offset); 583 Marker.Name = DE.getCStr(&Offset); 584 Marker.Args = DE.getCStr(&Offset); 585 Offset = alignTo(Offset, 4); 586 BC->SDTMarkers[Marker.PC] = Marker; 587 } 588 589 if (opts::PrintSDTMarkers) 590 printSDTMarkers(); 591 } 592 593 void RewriteInstance::parsePseudoProbe() { 594 if (!PseudoProbeDescSection && !PseudoProbeSection) { 595 // pesudo probe is not added to binary. It is normal and no warning needed. 596 return; 597 } 598 599 // If only one section is found, it might mean the ELF is corrupted. 600 if (!PseudoProbeDescSection) { 601 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 602 return; 603 } else if (!PseudoProbeSection) { 604 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 605 return; 606 } 607 608 StringRef Contents = PseudoProbeDescSection->getContents(); 609 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 610 reinterpret_cast<const uint8_t *>(Contents.data()), 611 Contents.size())) { 612 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 613 return; 614 } 615 Contents = PseudoProbeSection->getContents(); 616 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 617 reinterpret_cast<const uint8_t *>(Contents.data()), 618 Contents.size())) { 619 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 620 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 621 return; 622 } 623 624 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 625 opts::PrintPseudoProbes == 626 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 627 outs() << "Report of decoding input pseudo probe binaries \n"; 628 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 629 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 630 } 631 } 632 633 void RewriteInstance::printSDTMarkers() { 634 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 635 << "\n"; 636 for (auto It : BC->SDTMarkers) { 637 SDTMarkerInfo &Marker = It.second; 638 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 639 << ", Base: " << utohexstr(Marker.Base) 640 << ", Semaphore: " << utohexstr(Marker.Semaphore) 641 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 642 << ", Args: " << Marker.Args << "\n"; 643 } 644 } 645 646 void RewriteInstance::parseBuildID() { 647 if (!BuildIDSection) 648 return; 649 650 StringRef Buf = BuildIDSection->getContents(); 651 652 // Reading notes section (see Portable Formats Specification, Version 1.1, 653 // pg 2-5, section "Note Section"). 654 DataExtractor DE = DataExtractor(Buf, true, 8); 655 uint64_t Offset = 0; 656 if (!DE.isValidOffset(Offset)) 657 return; 658 uint32_t NameSz = DE.getU32(&Offset); 659 if (!DE.isValidOffset(Offset)) 660 return; 661 uint32_t DescSz = DE.getU32(&Offset); 662 if (!DE.isValidOffset(Offset)) 663 return; 664 uint32_t Type = DE.getU32(&Offset); 665 666 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 667 << "; Type = " << Type << "\n"); 668 669 // Type 3 is a GNU build-id note section 670 if (Type != 3) 671 return; 672 673 StringRef Name = Buf.slice(Offset, Offset + NameSz); 674 Offset = alignTo(Offset + NameSz, 4); 675 if (Name.substr(0, 3) != "GNU") 676 return; 677 678 BuildID = Buf.slice(Offset, Offset + DescSz); 679 } 680 681 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 682 if (BuildID.empty()) 683 return NoneType(); 684 685 std::string Str; 686 raw_string_ostream OS(Str); 687 const unsigned char *CharIter = BuildID.bytes_begin(); 688 while (CharIter != BuildID.bytes_end()) { 689 if (*CharIter < 0x10) 690 OS << "0"; 691 OS << Twine::utohexstr(*CharIter); 692 ++CharIter; 693 } 694 return OS.str(); 695 } 696 697 void RewriteInstance::patchBuildID() { 698 raw_fd_ostream &OS = Out->os(); 699 700 if (BuildID.empty()) 701 return; 702 703 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 704 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 705 706 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 707 if (!FileOffset) { 708 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 709 return; 710 } 711 712 char LastIDByte = BuildID[BuildID.size() - 1]; 713 LastIDByte ^= 1; 714 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 715 716 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 717 } 718 719 Error RewriteInstance::run() { 720 assert(BC && "failed to create a binary context"); 721 722 outs() << "BOLT-INFO: Target architecture: " 723 << Triple::getArchTypeName( 724 (llvm::Triple::ArchType)InputFile->getArch()) 725 << "\n"; 726 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 727 728 if (Error E = discoverStorage()) 729 return E; 730 if (Error E = readSpecialSections()) 731 return E; 732 adjustCommandLineOptions(); 733 discoverFileObjects(); 734 735 preprocessProfileData(); 736 737 // Skip disassembling if we have a translation table and we are running an 738 // aggregation job. 739 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 740 processProfileData(); 741 return Error::success(); 742 } 743 744 selectFunctionsToProcess(); 745 746 readDebugInfo(); 747 748 disassembleFunctions(); 749 750 processProfileDataPreCFG(); 751 752 buildFunctionsCFG(); 753 754 processProfileData(); 755 756 postProcessFunctions(); 757 758 if (opts::DiffOnly) 759 return Error::success(); 760 761 runOptimizationPasses(); 762 763 emitAndLink(); 764 765 updateMetadata(); 766 767 if (opts::LinuxKernelMode) { 768 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 769 return Error::success(); 770 } else if (opts::OutputFilename == "/dev/null") { 771 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 772 return Error::success(); 773 } 774 775 // Rewrite allocatable contents and copy non-allocatable parts with mods. 776 rewriteFile(); 777 return Error::success(); 778 } 779 780 void RewriteInstance::discoverFileObjects() { 781 NamedRegionTimer T("discoverFileObjects", "discover file objects", 782 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 783 FileSymRefs.clear(); 784 BC->getBinaryFunctions().clear(); 785 BC->clearBinaryData(); 786 787 // For local symbols we want to keep track of associated FILE symbol name for 788 // disambiguation by combined name. 789 StringRef FileSymbolName; 790 bool SeenFileName = false; 791 struct SymbolRefHash { 792 size_t operator()(SymbolRef const &S) const { 793 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 794 } 795 }; 796 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 797 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 798 Expected<StringRef> NameOrError = Symbol.getName(); 799 if (NameOrError && NameOrError->startswith("__asan_init")) { 800 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 801 "support. Cannot optimize.\n"; 802 exit(1); 803 } 804 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 805 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 806 "support. Cannot optimize.\n"; 807 exit(1); 808 } 809 810 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 811 continue; 812 813 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 814 StringRef Name = 815 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 816 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 817 // and this uncertainty is causing havoc in function name matching. 818 if (Name == "ld-temp.o") 819 continue; 820 FileSymbolName = Name; 821 SeenFileName = true; 822 continue; 823 } 824 if (!FileSymbolName.empty() && 825 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 826 SymbolToFileName[Symbol] = FileSymbolName; 827 } 828 829 // Sort symbols in the file by value. Ignore symbols from non-allocatable 830 // sections. 831 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 832 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 833 return false; 834 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 835 return true; 836 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 837 return false; 838 BinarySection Section(*BC, *cantFail(Sym.getSection())); 839 return Section.isAllocatable(); 840 }; 841 std::vector<SymbolRef> SortedFileSymbols; 842 std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), 843 std::back_inserter(SortedFileSymbols), isSymbolInMemory); 844 auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) { 845 // Marker symbols have the highest precedence, while 846 // SECTIONs have the lowest. 847 auto AddressA = cantFail(A.getAddress()); 848 auto AddressB = cantFail(B.getAddress()); 849 if (AddressA != AddressB) 850 return AddressA < AddressB; 851 852 bool AMarker = BC->isMarker(A); 853 bool BMarker = BC->isMarker(B); 854 if (AMarker || BMarker) { 855 return AMarker && !BMarker; 856 } 857 858 auto AType = cantFail(A.getType()); 859 auto BType = cantFail(B.getType()); 860 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 861 return true; 862 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 863 return true; 864 865 return false; 866 }; 867 868 std::stable_sort(SortedFileSymbols.begin(), SortedFileSymbols.end(), 869 CompareSymbols); 870 871 auto LastSymbol = SortedFileSymbols.end() - 1; 872 873 // For aarch64, the ABI defines mapping symbols so we identify data in the 874 // code section (see IHI0056B). $d identifies data contents. 875 // Compilers usually merge multiple data objects in a single $d-$x interval, 876 // but we need every data object to be marked with $d. Because of that we 877 // create a vector of MarkerSyms with all locations of data objects. 878 879 struct MarkerSym { 880 uint64_t Address; 881 MarkerSymType Type; 882 }; 883 884 std::vector<MarkerSym> SortedMarkerSymbols; 885 auto addExtraDataMarkerPerSymbol = 886 [this](const std::vector<SymbolRef> &SortedFileSymbols, 887 std::vector<MarkerSym> &SortedMarkerSymbols) { 888 bool IsData = false; 889 uint64_t LastAddr = 0; 890 for (auto Sym = SortedFileSymbols.begin(); 891 Sym < SortedFileSymbols.end(); ++Sym) { 892 uint64_t Address = cantFail(Sym->getAddress()); 893 if (LastAddr == Address) // don't repeat markers 894 continue; 895 896 MarkerSymType MarkerType = BC->getMarkerType(*Sym); 897 if (MarkerType != MarkerSymType::NONE) { 898 SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType}); 899 LastAddr = Address; 900 IsData = MarkerType == MarkerSymType::DATA; 901 continue; 902 } 903 904 if (IsData) { 905 SortedMarkerSymbols.push_back( 906 MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA}); 907 LastAddr = Address; 908 } 909 } 910 }; 911 912 if (BC->isAArch64()) { 913 addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols); 914 LastSymbol = std::stable_partition( 915 SortedFileSymbols.begin(), SortedFileSymbols.end(), 916 [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); }); 917 --LastSymbol; 918 } 919 920 BinaryFunction *PreviousFunction = nullptr; 921 unsigned AnonymousId = 0; 922 923 const auto SortedSymbolsEnd = std::next(LastSymbol); 924 for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd; 925 ++ISym) { 926 const SymbolRef &Symbol = *ISym; 927 // Keep undefined symbols for pretty printing? 928 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 929 continue; 930 931 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 932 933 if (SymbolType == SymbolRef::ST_File) 934 continue; 935 936 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 937 uint64_t Address = 938 cantFail(Symbol.getAddress(), "cannot get symbol address"); 939 if (Address == 0) { 940 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 941 errs() << "BOLT-WARNING: function with 0 address seen\n"; 942 continue; 943 } 944 945 // Ignore input hot markers 946 if (SymName == "__hot_start" || SymName == "__hot_end") 947 continue; 948 949 FileSymRefs[Address] = Symbol; 950 951 // Skip section symbols that will be registered by disassemblePLT(). 952 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 953 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 954 if (BSection && getPLTSectionInfo(BSection->getName())) 955 continue; 956 } 957 958 /// It is possible we are seeing a globalized local. LLVM might treat it as 959 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 960 /// change the prefix to enforce global scope of the symbol. 961 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 962 ? "PG" + std::string(SymName) 963 : std::string(SymName); 964 965 // Disambiguate all local symbols before adding to symbol table. 966 // Since we don't know if we will see a global with the same name, 967 // always modify the local name. 968 // 969 // NOTE: the naming convention for local symbols should match 970 // the one we use for profile data. 971 std::string UniqueName; 972 std::string AlternativeName; 973 if (Name.empty()) { 974 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 975 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 976 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 977 UniqueName = Name; 978 } else { 979 // If we have a local file name, we should create 2 variants for the 980 // function name. The reason is that perf profile might have been 981 // collected on a binary that did not have the local file name (e.g. as 982 // a side effect of stripping debug info from the binary): 983 // 984 // primary: <function>/<id> 985 // alternative: <function>/<file>/<id2> 986 // 987 // The <id> field is used for disambiguation of local symbols since there 988 // could be identical function names coming from identical file names 989 // (e.g. from different directories). 990 std::string AltPrefix; 991 auto SFI = SymbolToFileName.find(Symbol); 992 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 993 AltPrefix = Name + "/" + std::string(SFI->second); 994 995 UniqueName = NR.uniquify(Name); 996 if (!AltPrefix.empty()) 997 AlternativeName = NR.uniquify(AltPrefix); 998 } 999 1000 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1001 uint64_t SymbolAlignment = Symbol.getAlignment(); 1002 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 1003 1004 auto registerName = [&](uint64_t FinalSize) { 1005 // Register names even if it's not a function, e.g. for an entry point. 1006 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1007 SymbolFlags); 1008 if (!AlternativeName.empty()) 1009 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1010 SymbolAlignment, SymbolFlags); 1011 }; 1012 1013 section_iterator Section = 1014 cantFail(Symbol.getSection(), "cannot get symbol section"); 1015 if (Section == InputFile->section_end()) { 1016 // Could be an absolute symbol. Could record for pretty printing. 1017 LLVM_DEBUG(if (opts::Verbosity > 1) { 1018 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1019 }); 1020 registerName(SymbolSize); 1021 continue; 1022 } 1023 1024 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1025 << " for function\n"); 1026 1027 if (!Section->isText()) { 1028 assert(SymbolType != SymbolRef::ST_Function && 1029 "unexpected function inside non-code section"); 1030 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1031 registerName(SymbolSize); 1032 continue; 1033 } 1034 1035 // Assembly functions could be ST_NONE with 0 size. Check that the 1036 // corresponding section is a code section and they are not inside any 1037 // other known function to consider them. 1038 // 1039 // Sometimes assembly functions are not marked as functions and neither are 1040 // their local labels. The only way to tell them apart is to look at 1041 // symbol scope - global vs local. 1042 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1043 if (PreviousFunction->containsAddress(Address)) { 1044 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1045 LLVM_DEBUG(dbgs() 1046 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1047 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1048 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1049 } else if (opts::Verbosity > 1) { 1050 errs() << "BOLT-WARNING: symbol " << UniqueName 1051 << " seen in the middle of function " << *PreviousFunction 1052 << ". Could be a new entry.\n"; 1053 } 1054 registerName(SymbolSize); 1055 continue; 1056 } else if (PreviousFunction->getSize() == 0 && 1057 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1058 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1059 registerName(SymbolSize); 1060 continue; 1061 } 1062 } 1063 1064 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1065 PreviousFunction->getAddress() != Address) { 1066 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1067 if (opts::Verbosity >= 1) 1068 outs() << "BOLT-INFO: skipping possibly another entry for function " 1069 << *PreviousFunction << " : " << UniqueName << '\n'; 1070 } else { 1071 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1072 << "function " << *PreviousFunction << '\n'; 1073 1074 registerName(0); 1075 1076 PreviousFunction->addEntryPointAtOffset(Address - 1077 PreviousFunction->getAddress()); 1078 1079 // Remove the symbol from FileSymRefs so that we can skip it from 1080 // in the future. 1081 auto SI = FileSymRefs.find(Address); 1082 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1083 assert(SI->second == Symbol && "wrong symbol found"); 1084 FileSymRefs.erase(SI); 1085 } 1086 registerName(SymbolSize); 1087 continue; 1088 } 1089 1090 // Checkout for conflicts with function data from FDEs. 1091 bool IsSimple = true; 1092 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1093 if (FDEI != CFIRdWrt->getFDEs().end()) { 1094 const dwarf::FDE &FDE = *FDEI->second; 1095 if (FDEI->first != Address) { 1096 // There's no matching starting address in FDE. Make sure the previous 1097 // FDE does not contain this address. 1098 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1099 --FDEI; 1100 const dwarf::FDE &PrevFDE = *FDEI->second; 1101 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1102 uint64_t PrevLength = PrevFDE.getAddressRange(); 1103 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1104 errs() << "BOLT-ERROR: function " << UniqueName 1105 << " is in conflict with FDE [" 1106 << Twine::utohexstr(PrevStart) << ", " 1107 << Twine::utohexstr(PrevStart + PrevLength) 1108 << "). Skipping.\n"; 1109 IsSimple = false; 1110 } 1111 } 1112 } else if (FDE.getAddressRange() != SymbolSize) { 1113 if (SymbolSize) { 1114 // Function addresses match but sizes differ. 1115 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1116 << ". FDE : " << FDE.getAddressRange() 1117 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1118 } 1119 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1120 if (BC->getBinaryDataAtAddress(Address)) { 1121 BC->setBinaryDataSize(Address, SymbolSize); 1122 } else { 1123 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1124 << Twine::utohexstr(Address) << "\n"); 1125 } 1126 } 1127 } 1128 1129 BinaryFunction *BF = nullptr; 1130 // Since function may not have yet obtained its real size, do a search 1131 // using the list of registered functions instead of calling 1132 // getBinaryFunctionAtAddress(). 1133 auto BFI = BC->getBinaryFunctions().find(Address); 1134 if (BFI != BC->getBinaryFunctions().end()) { 1135 BF = &BFI->second; 1136 // Duplicate the function name. Make sure everything matches before we add 1137 // an alternative name. 1138 if (SymbolSize != BF->getSize()) { 1139 if (opts::Verbosity >= 1) { 1140 if (SymbolSize && BF->getSize()) 1141 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1142 << *BF << " and " << UniqueName << '\n'; 1143 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1144 << BF->getSize() << " new " << SymbolSize << "\n"; 1145 } 1146 BF->setSize(std::max(SymbolSize, BF->getSize())); 1147 BC->setBinaryDataSize(Address, BF->getSize()); 1148 } 1149 BF->addAlternativeName(UniqueName); 1150 } else { 1151 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1152 // Skip symbols from invalid sections 1153 if (!Section) { 1154 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1155 << Twine::utohexstr(Address) << ") does not have any section\n"; 1156 continue; 1157 } 1158 assert(Section && "section for functions must be registered"); 1159 1160 // Skip symbols from zero-sized sections. 1161 if (!Section->getSize()) 1162 continue; 1163 1164 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1165 if (!IsSimple) 1166 BF->setSimple(false); 1167 } 1168 if (!AlternativeName.empty()) 1169 BF->addAlternativeName(AlternativeName); 1170 1171 registerName(SymbolSize); 1172 PreviousFunction = BF; 1173 } 1174 1175 // Read dynamic relocation first as their presence affects the way we process 1176 // static relocations. E.g. we will ignore a static relocation at an address 1177 // that is a subject to dynamic relocation processing. 1178 processDynamicRelocations(); 1179 1180 // Process PLT section. 1181 disassemblePLT(); 1182 1183 // See if we missed any functions marked by FDE. 1184 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1185 const uint64_t Address = FDEI.first; 1186 const dwarf::FDE *FDE = FDEI.second; 1187 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1188 if (BF) 1189 continue; 1190 1191 BF = BC->getBinaryFunctionContainingAddress(Address); 1192 if (BF) { 1193 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1194 << Twine::utohexstr(Address + FDE->getAddressRange()) 1195 << ") conflicts with function " << *BF << '\n'; 1196 continue; 1197 } 1198 1199 if (opts::Verbosity >= 1) 1200 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1201 << Twine::utohexstr(Address + FDE->getAddressRange()) 1202 << ") has no corresponding symbol table entry\n"; 1203 1204 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1205 assert(Section && "cannot get section for address from FDE"); 1206 std::string FunctionName = 1207 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1208 BC->createBinaryFunction(FunctionName, *Section, Address, 1209 FDE->getAddressRange()); 1210 } 1211 1212 BC->setHasSymbolsWithFileName(SeenFileName); 1213 1214 // Now that all the functions were created - adjust their boundaries. 1215 adjustFunctionBoundaries(); 1216 1217 // Annotate functions with code/data markers in AArch64 1218 for (auto ISym = SortedMarkerSymbols.begin(); 1219 ISym != SortedMarkerSymbols.end(); ++ISym) { 1220 1221 auto *BF = 1222 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1223 1224 if (!BF) { 1225 // Stray marker 1226 continue; 1227 } 1228 const auto EntryOffset = ISym->Address - BF->getAddress(); 1229 if (ISym->Type == MarkerSymType::CODE) { 1230 BF->markCodeAtOffset(EntryOffset); 1231 continue; 1232 } 1233 if (ISym->Type == MarkerSymType::DATA) { 1234 BF->markDataAtOffset(EntryOffset); 1235 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1236 continue; 1237 } 1238 llvm_unreachable("Unknown marker"); 1239 } 1240 1241 if (opts::LinuxKernelMode) { 1242 // Read all special linux kernel sections and their relocations 1243 processLKSections(); 1244 } else { 1245 // Read all relocations now that we have binary functions mapped. 1246 processRelocations(); 1247 } 1248 } 1249 1250 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1251 uint64_t EntryAddress, 1252 uint64_t EntrySize) { 1253 if (!TargetAddress) 1254 return; 1255 1256 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1257 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1258 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1259 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1260 BF->setPLTSymbol(TargetSymbol); 1261 }; 1262 1263 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1264 if (BF && BC->isAArch64()) { 1265 // Handle IFUNC trampoline 1266 setPLTSymbol(BF, BF->getOneName()); 1267 return; 1268 } 1269 1270 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1271 if (!Rel || !Rel->Symbol) 1272 return; 1273 1274 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1275 assert(Section && "cannot get section for address"); 1276 BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, 1277 EntryAddress, 0, EntrySize, 1278 Section->getAlignment()); 1279 setPLTSymbol(BF, Rel->Symbol->getName()); 1280 } 1281 1282 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1283 const uint64_t SectionAddress = Section.getAddress(); 1284 const uint64_t SectionSize = Section.getSize(); 1285 StringRef PLTContents = Section.getContents(); 1286 ArrayRef<uint8_t> PLTData( 1287 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1288 1289 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1290 uint64_t &InstrSize) { 1291 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1292 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1293 PLTData.slice(InstrOffset), InstrAddr, 1294 nulls())) { 1295 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1296 << Section.getName() << " at offset 0x" 1297 << Twine::utohexstr(InstrOffset) << '\n'; 1298 exit(1); 1299 } 1300 }; 1301 1302 uint64_t InstrOffset = 0; 1303 // Locate new plt entry 1304 while (InstrOffset < SectionSize) { 1305 InstructionListType Instructions; 1306 MCInst Instruction; 1307 uint64_t EntryOffset = InstrOffset; 1308 uint64_t EntrySize = 0; 1309 uint64_t InstrSize; 1310 // Loop through entry instructions 1311 while (InstrOffset < SectionSize) { 1312 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1313 EntrySize += InstrSize; 1314 if (!BC->MIB->isIndirectBranch(Instruction)) { 1315 Instructions.emplace_back(Instruction); 1316 InstrOffset += InstrSize; 1317 continue; 1318 } 1319 1320 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1321 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1322 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1323 1324 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1325 break; 1326 } 1327 1328 // Branch instruction 1329 InstrOffset += InstrSize; 1330 1331 // Skip nops if any 1332 while (InstrOffset < SectionSize) { 1333 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1334 if (!BC->MIB->isNoop(Instruction)) 1335 break; 1336 1337 InstrOffset += InstrSize; 1338 } 1339 } 1340 } 1341 1342 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1343 uint64_t EntrySize) { 1344 const uint64_t SectionAddress = Section.getAddress(); 1345 const uint64_t SectionSize = Section.getSize(); 1346 StringRef PLTContents = Section.getContents(); 1347 ArrayRef<uint8_t> PLTData( 1348 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1349 1350 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1351 uint64_t &InstrSize) { 1352 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1353 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1354 PLTData.slice(InstrOffset), InstrAddr, 1355 nulls())) { 1356 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1357 << Section.getName() << " at offset 0x" 1358 << Twine::utohexstr(InstrOffset) << '\n'; 1359 exit(1); 1360 } 1361 }; 1362 1363 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1364 EntryOffset += EntrySize) { 1365 MCInst Instruction; 1366 uint64_t InstrSize, InstrOffset = EntryOffset; 1367 while (InstrOffset < EntryOffset + EntrySize) { 1368 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1369 // Check if the entry size needs adjustment. 1370 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1371 EntrySize == 8) 1372 EntrySize = 16; 1373 1374 if (BC->MIB->isIndirectBranch(Instruction)) 1375 break; 1376 1377 InstrOffset += InstrSize; 1378 } 1379 1380 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1381 continue; 1382 1383 uint64_t TargetAddress; 1384 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1385 SectionAddress + InstrOffset, 1386 InstrSize)) { 1387 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1388 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1389 exit(1); 1390 } 1391 1392 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1393 EntrySize); 1394 } 1395 } 1396 1397 void RewriteInstance::disassemblePLT() { 1398 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1399 if (BC->isAArch64()) 1400 return disassemblePLTSectionAArch64(Section); 1401 return disassemblePLTSectionX86(Section, EntrySize); 1402 }; 1403 1404 for (BinarySection &Section : BC->allocatableSections()) { 1405 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1406 if (!PLTSI) 1407 continue; 1408 1409 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1410 // If we did not register any function at the start of the section, 1411 // then it must be a general PLT entry. Add a function at the location. 1412 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1413 BC->getBinaryFunctions().end()) { 1414 BinaryFunction *BF = BC->createBinaryFunction( 1415 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1416 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1417 BF->setPseudo(true); 1418 } 1419 } 1420 } 1421 1422 void RewriteInstance::adjustFunctionBoundaries() { 1423 for (auto BFI = BC->getBinaryFunctions().begin(), 1424 BFE = BC->getBinaryFunctions().end(); 1425 BFI != BFE; ++BFI) { 1426 BinaryFunction &Function = BFI->second; 1427 const BinaryFunction *NextFunction = nullptr; 1428 if (std::next(BFI) != BFE) 1429 NextFunction = &std::next(BFI)->second; 1430 1431 // Check if it's a fragment of a function. 1432 Optional<StringRef> FragName = 1433 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1434 if (FragName) { 1435 static bool PrintedWarning = false; 1436 if (BC->HasRelocations && !PrintedWarning) { 1437 errs() << "BOLT-WARNING: split function detected on input : " 1438 << *FragName << ". The support is limited in relocation mode.\n"; 1439 PrintedWarning = true; 1440 } 1441 Function.IsFragment = true; 1442 } 1443 1444 // Check if there's a symbol or a function with a larger address in the 1445 // same section. If there is - it determines the maximum size for the 1446 // current function. Otherwise, it is the size of a containing section 1447 // the defines it. 1448 // 1449 // NOTE: ignore some symbols that could be tolerated inside the body 1450 // of a function. 1451 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1452 while (NextSymRefI != FileSymRefs.end()) { 1453 SymbolRef &Symbol = NextSymRefI->second; 1454 const uint64_t SymbolAddress = NextSymRefI->first; 1455 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1456 1457 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1458 break; 1459 1460 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1461 break; 1462 1463 // This is potentially another entry point into the function. 1464 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1465 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1466 << Function << " at offset 0x" 1467 << Twine::utohexstr(EntryOffset) << '\n'); 1468 Function.addEntryPointAtOffset(EntryOffset); 1469 1470 ++NextSymRefI; 1471 } 1472 1473 // Function runs at most till the end of the containing section. 1474 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1475 // Or till the next object marked by a symbol. 1476 if (NextSymRefI != FileSymRefs.end()) 1477 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1478 1479 // Or till the next function not marked by a symbol. 1480 if (NextFunction) 1481 NextObjectAddress = 1482 std::min(NextFunction->getAddress(), NextObjectAddress); 1483 1484 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1485 if (MaxSize < Function.getSize()) { 1486 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1487 << Function << ". Skipping.\n"; 1488 Function.setSimple(false); 1489 Function.setMaxSize(Function.getSize()); 1490 continue; 1491 } 1492 Function.setMaxSize(MaxSize); 1493 if (!Function.getSize() && Function.isSimple()) { 1494 // Some assembly functions have their size set to 0, use the max 1495 // size as their real size. 1496 if (opts::Verbosity >= 1) 1497 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1498 << Function.getMaxSize() << " (was 0)\n"; 1499 Function.setSize(Function.getMaxSize()); 1500 } 1501 } 1502 } 1503 1504 void RewriteInstance::relocateEHFrameSection() { 1505 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1506 1507 DWARFDataExtractor DE(EHFrameSection->getContents(), 1508 BC->AsmInfo->isLittleEndian(), 1509 BC->AsmInfo->getCodePointerSize()); 1510 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1511 if (DwarfType == dwarf::DW_EH_PE_omit) 1512 return; 1513 1514 // Only fix references that are relative to other locations. 1515 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1516 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1517 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1518 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1519 return; 1520 1521 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1522 return; 1523 1524 uint64_t RelType; 1525 switch (DwarfType & 0x0f) { 1526 default: 1527 llvm_unreachable("unsupported DWARF encoding type"); 1528 case dwarf::DW_EH_PE_sdata4: 1529 case dwarf::DW_EH_PE_udata4: 1530 RelType = Relocation::getPC32(); 1531 Offset -= 4; 1532 break; 1533 case dwarf::DW_EH_PE_sdata8: 1534 case dwarf::DW_EH_PE_udata8: 1535 RelType = Relocation::getPC64(); 1536 Offset -= 8; 1537 break; 1538 } 1539 1540 // Create a relocation against an absolute value since the goal is to 1541 // preserve the contents of the section independent of the new values 1542 // of referenced symbols. 1543 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1544 }; 1545 1546 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1547 check_error(std::move(E), "failed to patch EH frame"); 1548 } 1549 1550 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1551 return ArrayRef<uint8_t>(LSDASection->getData(), 1552 LSDASection->getContents().size()); 1553 } 1554 1555 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1556 1557 Error RewriteInstance::readSpecialSections() { 1558 NamedRegionTimer T("readSpecialSections", "read special sections", 1559 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1560 1561 bool HasTextRelocations = false; 1562 bool HasDebugInfo = false; 1563 1564 // Process special sections. 1565 for (const SectionRef &Section : InputFile->sections()) { 1566 Expected<StringRef> SectionNameOrErr = Section.getName(); 1567 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1568 StringRef SectionName = *SectionNameOrErr; 1569 1570 // Only register sections with names. 1571 if (!SectionName.empty()) { 1572 if (Error E = Section.getContents().takeError()) 1573 return E; 1574 BC->registerSection(Section); 1575 LLVM_DEBUG( 1576 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1577 << Twine::utohexstr(Section.getAddress()) << ":0x" 1578 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1579 << "\n"); 1580 if (isDebugSection(SectionName)) 1581 HasDebugInfo = true; 1582 if (isKSymtabSection(SectionName)) 1583 opts::LinuxKernelMode = true; 1584 } 1585 } 1586 1587 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1588 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1589 "Use -update-debug-sections to keep it.\n"; 1590 } 1591 1592 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1593 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1594 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1595 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1596 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1597 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1598 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1599 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1600 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1601 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1602 1603 if (ErrorOr<BinarySection &> BATSec = 1604 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1605 // Do not read BAT when plotting a heatmap 1606 if (!opts::HeatmapMode) { 1607 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1608 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1609 "table.\n"; 1610 exit(1); 1611 } 1612 } 1613 } 1614 1615 if (opts::PrintSections) { 1616 outs() << "BOLT-INFO: Sections from original binary:\n"; 1617 BC->printSections(outs()); 1618 } 1619 1620 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1621 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1622 "file. Cannot proceed in relocations mode (-relocs).\n"; 1623 exit(1); 1624 } 1625 1626 BC->HasRelocations = 1627 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1628 1629 // Force non-relocation mode for heatmap generation 1630 if (opts::HeatmapMode) 1631 BC->HasRelocations = false; 1632 1633 if (BC->HasRelocations) 1634 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1635 << "relocation mode\n"; 1636 1637 // Read EH frame for function boundaries info. 1638 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1639 if (!EHFrameOrError) 1640 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1641 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1642 1643 // Parse build-id 1644 parseBuildID(); 1645 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1646 BC->setFileBuildID(*FileBuildID); 1647 1648 parseSDTNotes(); 1649 1650 // Read .dynamic/PT_DYNAMIC. 1651 return readELFDynamic(); 1652 } 1653 1654 void RewriteInstance::adjustCommandLineOptions() { 1655 if (BC->isAArch64() && !BC->HasRelocations) 1656 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1657 "supported\n"; 1658 1659 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1660 RtLibrary->adjustCommandLineOptions(*BC); 1661 1662 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1663 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1664 opts::AlignMacroOpFusion = MFT_NONE; 1665 } 1666 1667 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1668 if (!BC->HasRelocations) { 1669 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1670 "non-relocation mode\n"; 1671 exit(1); 1672 } 1673 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1674 "may take several minutes\n"; 1675 opts::AlignMacroOpFusion = MFT_NONE; 1676 } 1677 1678 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1679 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1680 "mode\n"; 1681 opts::AlignMacroOpFusion = MFT_NONE; 1682 } 1683 1684 if (opts::SplitEH && !BC->HasRelocations) { 1685 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1686 opts::SplitEH = false; 1687 } 1688 1689 if (opts::StrictMode && !BC->HasRelocations) { 1690 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1691 "mode\n"; 1692 opts::StrictMode = false; 1693 } 1694 1695 if (BC->HasRelocations && opts::AggregateOnly && 1696 !opts::StrictMode.getNumOccurrences()) { 1697 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1698 "purposes\n"; 1699 opts::StrictMode = true; 1700 } 1701 1702 if (BC->isX86() && BC->HasRelocations && 1703 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1704 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1705 "was specified\n"; 1706 opts::AlignMacroOpFusion = MFT_ALL; 1707 } 1708 1709 if (!BC->HasRelocations && 1710 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1711 errs() << "BOLT-ERROR: function reordering only works when " 1712 << "relocations are enabled\n"; 1713 exit(1); 1714 } 1715 1716 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1717 !opts::HotText.getNumOccurrences()) { 1718 opts::HotText = true; 1719 } else if (opts::HotText && !BC->HasRelocations) { 1720 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1721 opts::HotText = false; 1722 } 1723 1724 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1725 opts::HotTextMoveSections.addValue(".stub"); 1726 opts::HotTextMoveSections.addValue(".mover"); 1727 opts::HotTextMoveSections.addValue(".never_hugify"); 1728 } 1729 1730 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1731 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1732 "\n"; 1733 opts::UseOldText = false; 1734 } 1735 if (opts::UseOldText && !BC->HasRelocations) { 1736 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1737 opts::UseOldText = false; 1738 } 1739 1740 if (!opts::AlignText.getNumOccurrences()) 1741 opts::AlignText = BC->PageAlign; 1742 1743 if (opts::AlignText < opts::AlignFunctions) 1744 opts::AlignText = (unsigned)opts::AlignFunctions; 1745 1746 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1747 !opts::UseOldText) 1748 opts::Lite = true; 1749 1750 if (opts::Lite && opts::UseOldText) { 1751 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1752 "Disabling -use-old-text.\n"; 1753 opts::UseOldText = false; 1754 } 1755 1756 if (opts::Lite && opts::StrictMode) { 1757 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1758 exit(1); 1759 } 1760 1761 if (opts::Lite) 1762 outs() << "BOLT-INFO: enabling lite mode\n"; 1763 1764 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1765 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1766 "file processed by BOLT. Please remove -w option and use branch " 1767 "profile.\n"; 1768 exit(1); 1769 } 1770 } 1771 1772 namespace { 1773 template <typename ELFT> 1774 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1775 const RelocationRef &RelRef) { 1776 using ELFShdrTy = typename ELFT::Shdr; 1777 using Elf_Rela = typename ELFT::Rela; 1778 int64_t Addend = 0; 1779 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1780 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1781 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1782 switch (RelocationSection->sh_type) { 1783 default: 1784 llvm_unreachable("unexpected relocation section type"); 1785 case ELF::SHT_REL: 1786 break; 1787 case ELF::SHT_RELA: { 1788 const Elf_Rela *RelA = Obj->getRela(Rel); 1789 Addend = RelA->r_addend; 1790 break; 1791 } 1792 } 1793 1794 return Addend; 1795 } 1796 1797 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1798 const RelocationRef &Rel) { 1799 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1800 return getRelocationAddend(ELF32LE, Rel); 1801 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1802 return getRelocationAddend(ELF64LE, Rel); 1803 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1804 return getRelocationAddend(ELF32BE, Rel); 1805 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1806 return getRelocationAddend(ELF64BE, Rel); 1807 } 1808 1809 template <typename ELFT> 1810 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1811 const RelocationRef &RelRef) { 1812 using ELFShdrTy = typename ELFT::Shdr; 1813 uint32_t Symbol = 0; 1814 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1815 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1816 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1817 switch (RelocationSection->sh_type) { 1818 default: 1819 llvm_unreachable("unexpected relocation section type"); 1820 case ELF::SHT_REL: 1821 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1822 break; 1823 case ELF::SHT_RELA: 1824 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1825 break; 1826 } 1827 1828 return Symbol; 1829 } 1830 1831 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1832 const RelocationRef &Rel) { 1833 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1834 return getRelocationSymbol(ELF32LE, Rel); 1835 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1836 return getRelocationSymbol(ELF64LE, Rel); 1837 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1838 return getRelocationSymbol(ELF32BE, Rel); 1839 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1840 return getRelocationSymbol(ELF64BE, Rel); 1841 } 1842 } // anonymous namespace 1843 1844 bool RewriteInstance::analyzeRelocation( 1845 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1846 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1847 uint64_t &ExtractedValue, bool &Skip) const { 1848 Skip = false; 1849 if (!Relocation::isSupported(RType)) 1850 return false; 1851 1852 const bool IsAArch64 = BC->isAArch64(); 1853 1854 const size_t RelSize = Relocation::getSizeForType(RType); 1855 1856 ErrorOr<uint64_t> Value = 1857 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1858 assert(Value && "failed to extract relocated value"); 1859 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1860 return true; 1861 1862 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1863 Addend = getRelocationAddend(InputFile, Rel); 1864 1865 const bool IsPCRelative = Relocation::isPCRelative(RType); 1866 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1867 bool SkipVerification = false; 1868 auto SymbolIter = Rel.getSymbol(); 1869 if (SymbolIter == InputFile->symbol_end()) { 1870 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1871 MCSymbol *RelSymbol = 1872 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1873 SymbolName = std::string(RelSymbol->getName()); 1874 IsSectionRelocation = false; 1875 } else { 1876 const SymbolRef &Symbol = *SymbolIter; 1877 SymbolName = std::string(cantFail(Symbol.getName())); 1878 SymbolAddress = cantFail(Symbol.getAddress()); 1879 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1880 // Section symbols are marked as ST_Debug. 1881 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1882 // Check for PLT entry registered with symbol name 1883 if (!SymbolAddress && IsAArch64) { 1884 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 1885 SymbolAddress = BD ? BD->getAddress() : 0; 1886 } 1887 } 1888 // For PIE or dynamic libs, the linker may choose not to put the relocation 1889 // result at the address if it is a X86_64_64 one because it will emit a 1890 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1891 // resolve it at run time. The static relocation result goes as the addend 1892 // of the dynamic relocation in this case. We can't verify these cases. 1893 // FIXME: perhaps we can try to find if it really emitted a corresponding 1894 // RELATIVE relocation at this offset with the correct value as the addend. 1895 if (!BC->HasFixedLoadAddress && RelSize == 8) 1896 SkipVerification = true; 1897 1898 if (IsSectionRelocation && !IsAArch64) { 1899 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1900 assert(Section && "section expected for section relocation"); 1901 SymbolName = "section " + std::string(Section->getName()); 1902 // Convert section symbol relocations to regular relocations inside 1903 // non-section symbols. 1904 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1905 SymbolAddress = ExtractedValue; 1906 Addend = 0; 1907 } else { 1908 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1909 } 1910 } 1911 1912 // If no symbol has been found or if it is a relocation requiring the 1913 // creation of a GOT entry, do not link against the symbol but against 1914 // whatever address was extracted from the instruction itself. We are 1915 // not creating a GOT entry as this was already processed by the linker. 1916 // For GOT relocs, do not subtract addend as the addend does not refer 1917 // to this instruction's target, but it refers to the target in the GOT 1918 // entry. 1919 if (Relocation::isGOT(RType)) { 1920 Addend = 0; 1921 SymbolAddress = ExtractedValue + PCRelOffset; 1922 } else if (Relocation::isTLS(RType)) { 1923 SkipVerification = true; 1924 } else if (!SymbolAddress) { 1925 assert(!IsSectionRelocation); 1926 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1927 SymbolAddress = 1928 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1929 } else { 1930 // This is weird case. The extracted value is zero but the addend is 1931 // non-zero and the relocation is not pc-rel. Using the previous logic, 1932 // the SymbolAddress would end up as a huge number. Seen in 1933 // exceptions_pic.test. 1934 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1935 << Twine::utohexstr(Rel.getOffset()) 1936 << " value does not match addend for " 1937 << "relocation to undefined symbol.\n"); 1938 return true; 1939 } 1940 } 1941 1942 auto verifyExtractedValue = [&]() { 1943 if (SkipVerification) 1944 return true; 1945 1946 if (IsAArch64) 1947 return true; 1948 1949 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1950 return true; 1951 1952 if (RType == ELF::R_X86_64_PLT32) 1953 return true; 1954 1955 return truncateToSize(ExtractedValue, RelSize) == 1956 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1957 }; 1958 1959 (void)verifyExtractedValue; 1960 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1961 1962 return true; 1963 } 1964 1965 void RewriteInstance::processDynamicRelocations() { 1966 // Read relocations for PLT - DT_JMPREL. 1967 if (PLTRelocationsSize > 0) { 1968 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1969 BC->getSectionForAddress(*PLTRelocationsAddress); 1970 if (!PLTRelSectionOrErr) 1971 report_error("unable to find section corresponding to DT_JMPREL", 1972 PLTRelSectionOrErr.getError()); 1973 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1974 report_error("section size mismatch for DT_PLTRELSZ", 1975 errc::executable_format_error); 1976 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1977 /*IsJmpRel*/ true); 1978 } 1979 1980 // The rest of dynamic relocations - DT_RELA. 1981 if (DynamicRelocationsSize > 0) { 1982 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1983 BC->getSectionForAddress(*DynamicRelocationsAddress); 1984 if (!DynamicRelSectionOrErr) 1985 report_error("unable to find section corresponding to DT_RELA", 1986 DynamicRelSectionOrErr.getError()); 1987 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1988 report_error("section size mismatch for DT_RELASZ", 1989 errc::executable_format_error); 1990 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1991 /*IsJmpRel*/ false); 1992 } 1993 } 1994 1995 void RewriteInstance::processRelocations() { 1996 if (!BC->HasRelocations) 1997 return; 1998 1999 for (const SectionRef &Section : InputFile->sections()) { 2000 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 2001 !BinarySection(*BC, Section).isAllocatable()) 2002 readRelocations(Section); 2003 } 2004 2005 if (NumFailedRelocations) 2006 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2007 << " relocations\n"; 2008 } 2009 2010 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 2011 int32_t PCRelativeOffset, 2012 bool IsPCRelative, StringRef SectionName) { 2013 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2014 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2015 } 2016 2017 void RewriteInstance::processLKSections() { 2018 assert(opts::LinuxKernelMode && 2019 "process Linux Kernel special sections and their relocations only in " 2020 "linux kernel mode.\n"); 2021 2022 processLKExTable(); 2023 processLKPCIFixup(); 2024 processLKKSymtab(); 2025 processLKKSymtab(true); 2026 processLKBugTable(); 2027 processLKSMPLocks(); 2028 } 2029 2030 /// Process __ex_table section of Linux Kernel. 2031 /// This section contains information regarding kernel level exception 2032 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2033 /// More documentation is in arch/x86/include/asm/extable.h. 2034 /// 2035 /// The section is the list of the following structures: 2036 /// 2037 /// struct exception_table_entry { 2038 /// int insn; 2039 /// int fixup; 2040 /// int handler; 2041 /// }; 2042 /// 2043 void RewriteInstance::processLKExTable() { 2044 ErrorOr<BinarySection &> SectionOrError = 2045 BC->getUniqueSectionByName("__ex_table"); 2046 if (!SectionOrError) 2047 return; 2048 2049 const uint64_t SectionSize = SectionOrError->getSize(); 2050 const uint64_t SectionAddress = SectionOrError->getAddress(); 2051 assert((SectionSize % 12) == 0 && 2052 "The size of the __ex_table section should be a multiple of 12"); 2053 for (uint64_t I = 0; I < SectionSize; I += 4) { 2054 const uint64_t EntryAddress = SectionAddress + I; 2055 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2056 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2057 int32_t SignedOffset = *Offset; 2058 const uint64_t RefAddress = EntryAddress + SignedOffset; 2059 2060 BinaryFunction *ContainingBF = 2061 BC->getBinaryFunctionContainingAddress(RefAddress); 2062 if (!ContainingBF) 2063 continue; 2064 2065 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2066 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2067 switch (I % 12) { 2068 default: 2069 llvm_unreachable("bad alignment of __ex_table"); 2070 break; 2071 case 0: 2072 // insn 2073 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2074 break; 2075 case 4: 2076 // fixup 2077 if (FunctionOffset) 2078 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2079 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2080 0, *Offset); 2081 break; 2082 case 8: 2083 // handler 2084 assert(!FunctionOffset && 2085 "__ex_table handler entry should point to function start"); 2086 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2087 0, *Offset); 2088 break; 2089 } 2090 } 2091 } 2092 2093 /// Process .pci_fixup section of Linux Kernel. 2094 /// This section contains a list of entries for different PCI devices and their 2095 /// corresponding hook handler (code pointer where the fixup 2096 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2097 /// Documentation is in include/linux/pci.h. 2098 void RewriteInstance::processLKPCIFixup() { 2099 ErrorOr<BinarySection &> SectionOrError = 2100 BC->getUniqueSectionByName(".pci_fixup"); 2101 assert(SectionOrError && 2102 ".pci_fixup section not found in Linux Kernel binary"); 2103 const uint64_t SectionSize = SectionOrError->getSize(); 2104 const uint64_t SectionAddress = SectionOrError->getAddress(); 2105 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2106 2107 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2108 const uint64_t PC = SectionAddress + I; 2109 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2110 assert(Offset && "cannot read value from .pci_fixup"); 2111 const int32_t SignedOffset = *Offset; 2112 const uint64_t HookupAddress = PC + SignedOffset; 2113 BinaryFunction *HookupFunction = 2114 BC->getBinaryFunctionAtAddress(HookupAddress); 2115 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2116 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2117 *Offset); 2118 } 2119 } 2120 2121 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2122 /// This section lists all the vmlinux symbols that kernel modules can access. 2123 /// 2124 /// All the entries are 4 bytes each and hence we can read them by one by one 2125 /// and ignore the ones that are not pointing to the .text section. All pointers 2126 /// are PC relative offsets. Always, points to the beginning of the function. 2127 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2128 StringRef SectionName = "__ksymtab"; 2129 if (IsGPL) 2130 SectionName = "__ksymtab_gpl"; 2131 ErrorOr<BinarySection &> SectionOrError = 2132 BC->getUniqueSectionByName(SectionName); 2133 assert(SectionOrError && 2134 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2135 const uint64_t SectionSize = SectionOrError->getSize(); 2136 const uint64_t SectionAddress = SectionOrError->getAddress(); 2137 assert((SectionSize % 4) == 0 && 2138 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2139 2140 for (uint64_t I = 0; I < SectionSize; I += 4) { 2141 const uint64_t EntryAddress = SectionAddress + I; 2142 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2143 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2144 const int32_t SignedOffset = *Offset; 2145 const uint64_t RefAddress = EntryAddress + SignedOffset; 2146 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2147 if (!BF) 2148 continue; 2149 2150 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2151 *Offset); 2152 } 2153 } 2154 2155 /// Process __bug_table section. 2156 /// This section contains information useful for kernel debugging. 2157 /// Each entry in the section is a struct bug_entry that contains a pointer to 2158 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2159 /// pointers use PC relative offset addressing), line number, and flags. 2160 /// The definition of the struct bug_entry can be found in 2161 /// `include/asm-generic/bug.h` 2162 void RewriteInstance::processLKBugTable() { 2163 ErrorOr<BinarySection &> SectionOrError = 2164 BC->getUniqueSectionByName("__bug_table"); 2165 if (!SectionOrError) 2166 return; 2167 2168 const uint64_t SectionSize = SectionOrError->getSize(); 2169 const uint64_t SectionAddress = SectionOrError->getAddress(); 2170 assert((SectionSize % 12) == 0 && 2171 "The size of the __bug_table section should be a multiple of 12"); 2172 for (uint64_t I = 0; I < SectionSize; I += 12) { 2173 const uint64_t EntryAddress = SectionAddress + I; 2174 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2175 assert(Offset && 2176 "Reading valid PC-relative offset for a __bug_table entry"); 2177 const int32_t SignedOffset = *Offset; 2178 const uint64_t RefAddress = EntryAddress + SignedOffset; 2179 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2180 "__bug_table entries should point to a function"); 2181 2182 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2183 } 2184 } 2185 2186 /// .smp_locks section contains PC-relative references to instructions with LOCK 2187 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2188 void RewriteInstance::processLKSMPLocks() { 2189 ErrorOr<BinarySection &> SectionOrError = 2190 BC->getUniqueSectionByName(".smp_locks"); 2191 if (!SectionOrError) 2192 return; 2193 2194 uint64_t SectionSize = SectionOrError->getSize(); 2195 const uint64_t SectionAddress = SectionOrError->getAddress(); 2196 assert((SectionSize % 4) == 0 && 2197 "The size of the .smp_locks section should be a multiple of 4"); 2198 2199 for (uint64_t I = 0; I < SectionSize; I += 4) { 2200 const uint64_t EntryAddress = SectionAddress + I; 2201 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2202 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2203 int32_t SignedOffset = *Offset; 2204 uint64_t RefAddress = EntryAddress + SignedOffset; 2205 2206 BinaryFunction *ContainingBF = 2207 BC->getBinaryFunctionContainingAddress(RefAddress); 2208 if (!ContainingBF) 2209 continue; 2210 2211 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2212 } 2213 } 2214 2215 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2216 bool IsJmpRel) { 2217 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2218 2219 LLVM_DEBUG({ 2220 StringRef SectionName = cantFail(Section.getName()); 2221 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2222 << ":\n"; 2223 }); 2224 2225 for (const RelocationRef &Rel : Section.relocations()) { 2226 const uint64_t RType = Rel.getType(); 2227 if (Relocation::isNone(RType)) 2228 continue; 2229 2230 StringRef SymbolName = "<none>"; 2231 MCSymbol *Symbol = nullptr; 2232 uint64_t SymbolAddress = 0; 2233 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2234 2235 symbol_iterator SymbolIter = Rel.getSymbol(); 2236 if (SymbolIter != InputFile->symbol_end()) { 2237 SymbolName = cantFail(SymbolIter->getName()); 2238 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2239 Symbol = BD ? BD->getSymbol() 2240 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2241 SymbolAddress = cantFail(SymbolIter->getAddress()); 2242 (void)SymbolAddress; 2243 } 2244 2245 LLVM_DEBUG( 2246 SmallString<16> TypeName; 2247 Rel.getTypeName(TypeName); 2248 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2249 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2250 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2251 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2252 ); 2253 2254 if (IsJmpRel) 2255 IsJmpRelocation[RType] = true; 2256 2257 if (Symbol) 2258 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2259 2260 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2261 } 2262 } 2263 2264 void RewriteInstance::readRelocations(const SectionRef &Section) { 2265 LLVM_DEBUG({ 2266 StringRef SectionName = cantFail(Section.getName()); 2267 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2268 << ":\n"; 2269 }); 2270 if (BinarySection(*BC, Section).isAllocatable()) { 2271 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2272 return; 2273 } 2274 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2275 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2276 SectionRef RelocatedSection = *SecIter; 2277 2278 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2279 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2280 << RelocatedSectionName << '\n'); 2281 2282 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2283 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2284 << "non-allocatable section\n"); 2285 return; 2286 } 2287 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2288 .Cases(".plt", ".rela.plt", ".got.plt", 2289 ".eh_frame", ".gcc_except_table", true) 2290 .Default(false); 2291 if (SkipRelocs) { 2292 LLVM_DEBUG( 2293 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2294 return; 2295 } 2296 2297 const bool IsAArch64 = BC->isAArch64(); 2298 const bool IsFromCode = RelocatedSection.isText(); 2299 2300 auto printRelocationInfo = [&](const RelocationRef &Rel, 2301 StringRef SymbolName, 2302 uint64_t SymbolAddress, 2303 uint64_t Addend, 2304 uint64_t ExtractedValue) { 2305 SmallString<16> TypeName; 2306 Rel.getTypeName(TypeName); 2307 const uint64_t Address = SymbolAddress + Addend; 2308 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2309 dbgs() << "Relocation: offset = 0x" 2310 << Twine::utohexstr(Rel.getOffset()) 2311 << "; type = " << TypeName 2312 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2313 << "; symbol = " << SymbolName 2314 << " (" << (Section ? Section->getName() : "") << ")" 2315 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2316 << "; addend = 0x" << Twine::utohexstr(Addend) 2317 << "; address = 0x" << Twine::utohexstr(Address) 2318 << "; in = "; 2319 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2320 Rel.getOffset(), false, IsAArch64)) 2321 dbgs() << Func->getPrintName() << "\n"; 2322 else 2323 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2324 }; 2325 2326 for (const RelocationRef &Rel : Section.relocations()) { 2327 SmallString<16> TypeName; 2328 Rel.getTypeName(TypeName); 2329 uint64_t RType = Rel.getType(); 2330 if (Relocation::skipRelocationType(RType)) 2331 continue; 2332 2333 // Adjust the relocation type as the linker might have skewed it. 2334 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2335 if (opts::Verbosity >= 1) 2336 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2337 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2338 } 2339 2340 if (Relocation::isTLS(RType)) { 2341 // No special handling required for TLS relocations on X86. 2342 if (BC->isX86()) 2343 continue; 2344 2345 // The non-got related TLS relocations on AArch64 also could be skipped. 2346 if (!Relocation::isGOT(RType)) 2347 continue; 2348 } 2349 2350 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2351 LLVM_DEBUG( 2352 dbgs() << "BOLT-DEBUG: address 0x" 2353 << Twine::utohexstr(Rel.getOffset()) 2354 << " has a dynamic relocation against it. Ignoring static " 2355 "relocation.\n"); 2356 continue; 2357 } 2358 2359 std::string SymbolName; 2360 uint64_t SymbolAddress; 2361 int64_t Addend; 2362 uint64_t ExtractedValue; 2363 bool IsSectionRelocation; 2364 bool Skip; 2365 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2366 SymbolAddress, Addend, ExtractedValue, Skip)) { 2367 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2368 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2369 << "; type name = " << TypeName << '\n'); 2370 ++NumFailedRelocations; 2371 continue; 2372 } 2373 2374 if (Skip) { 2375 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2376 << Twine::utohexstr(Rel.getOffset()) 2377 << "; type name = " << TypeName << '\n'); 2378 continue; 2379 } 2380 2381 const uint64_t Address = SymbolAddress + Addend; 2382 2383 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2384 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2385 2386 BinaryFunction *ContainingBF = nullptr; 2387 if (IsFromCode) { 2388 ContainingBF = 2389 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2390 /*CheckPastEnd*/ false, 2391 /*UseMaxSize*/ true); 2392 assert(ContainingBF && "cannot find function for address in code"); 2393 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2394 if (opts::Verbosity >= 1) 2395 outs() << "BOLT-INFO: " << *ContainingBF 2396 << " has relocations in padding area\n"; 2397 ContainingBF->setSize(ContainingBF->getMaxSize()); 2398 ContainingBF->setSimple(false); 2399 continue; 2400 } 2401 } 2402 2403 MCSymbol *ReferencedSymbol = nullptr; 2404 if (!IsSectionRelocation) 2405 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2406 ReferencedSymbol = BD->getSymbol(); 2407 2408 ErrorOr<BinarySection &> ReferencedSection = 2409 BC->getSectionForAddress(SymbolAddress); 2410 2411 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2412 2413 // Special handling of PC-relative relocations. 2414 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2415 if (!IsFromCode && IsToCode) { 2416 // PC-relative relocations from data to code are tricky since the 2417 // original information is typically lost after linking, even with 2418 // '--emit-relocs'. Such relocations are normally used by PIC-style 2419 // jump tables and they reference both the jump table and jump 2420 // targets by computing the difference between the two. If we blindly 2421 // apply the relocation, it will appear that it references an arbitrary 2422 // location in the code, possibly in a different function from the one 2423 // containing the jump table. 2424 // 2425 // For that reason, we only register the fact that there is a 2426 // PC-relative relocation at a given address against the code. 2427 // The actual referenced label/address will be determined during jump 2428 // table analysis. 2429 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2430 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2431 // If we know the referenced symbol, register the relocation from 2432 // the code. It's required to properly handle cases where 2433 // "symbol + addend" references an object different from "symbol". 2434 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2435 Addend, ExtractedValue); 2436 } else { 2437 LLVM_DEBUG( 2438 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2439 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2440 << "\n"); 2441 } 2442 2443 continue; 2444 } 2445 2446 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2447 if (BC->isAArch64() && Relocation::isGOT(RType)) 2448 ForceRelocation = true; 2449 2450 if (!ReferencedSection && !ForceRelocation) { 2451 LLVM_DEBUG( 2452 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2453 continue; 2454 } 2455 2456 // Occasionally we may see a reference past the last byte of the function 2457 // typically as a result of __builtin_unreachable(). Check it here. 2458 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2459 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2460 2461 if (!IsSectionRelocation) { 2462 if (BinaryFunction *BF = 2463 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2464 if (BF != ReferencedBF) { 2465 // It's possible we are referencing a function without referencing any 2466 // code, e.g. when taking a bitmask action on a function address. 2467 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2468 "bitmask) detected against function " 2469 << *BF; 2470 if (IsFromCode) 2471 errs() << " from function " << *ContainingBF << '\n'; 2472 else 2473 errs() << " from data section at 0x" 2474 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2475 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2476 ExtractedValue)); 2477 ReferencedBF = BF; 2478 } 2479 } 2480 } else if (ReferencedBF) { 2481 assert(ReferencedSection && "section expected for section relocation"); 2482 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2483 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2484 ReferencedBF = nullptr; 2485 } 2486 } 2487 2488 // Workaround for a member function pointer de-virtualization bug. We check 2489 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2490 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2491 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2492 if (const BinaryFunction *RogueBF = 2493 BC->getBinaryFunctionAtAddress(Address + 1)) { 2494 // Do an extra check that the function was referenced previously. 2495 // It's a linear search, but it should rarely happen. 2496 bool Found = false; 2497 for (const auto &RelKV : ContainingBF->Relocations) { 2498 const Relocation &Rel = RelKV.second; 2499 if (Rel.Symbol == RogueBF->getSymbol() && 2500 !Relocation::isPCRelative(Rel.Type)) { 2501 Found = true; 2502 break; 2503 } 2504 } 2505 2506 if (Found) { 2507 errs() << "BOLT-WARNING: detected possible compiler " 2508 "de-virtualization bug: -1 addend used with " 2509 "non-pc-relative relocation against function " 2510 << *RogueBF << " in function " << *ContainingBF << '\n'; 2511 continue; 2512 } 2513 } 2514 } 2515 2516 if (ForceRelocation) { 2517 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2518 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2519 SymbolAddress = 0; 2520 if (Relocation::isGOT(RType)) 2521 Addend = Address; 2522 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2523 << SymbolName << " with addend " << Addend << '\n'); 2524 } else if (ReferencedBF) { 2525 ReferencedSymbol = ReferencedBF->getSymbol(); 2526 uint64_t RefFunctionOffset = 0; 2527 2528 // Adjust the point of reference to a code location inside a function. 2529 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2530 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2531 if (RefFunctionOffset) { 2532 if (ContainingBF && ContainingBF != ReferencedBF) { 2533 ReferencedSymbol = 2534 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2535 } else { 2536 ReferencedSymbol = 2537 ReferencedBF->getOrCreateLocalLabel(Address, 2538 /*CreatePastEnd =*/true); 2539 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2540 } 2541 if (opts::Verbosity > 1 && 2542 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2543 errs() << "BOLT-WARNING: writable reference into the middle of " 2544 << "the function " << *ReferencedBF 2545 << " detected at address 0x" 2546 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2547 } 2548 SymbolAddress = Address; 2549 Addend = 0; 2550 } 2551 LLVM_DEBUG( 2552 dbgs() << " referenced function " << *ReferencedBF; 2553 if (Address != ReferencedBF->getAddress()) 2554 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2555 dbgs() << '\n' 2556 ); 2557 } else { 2558 if (IsToCode && SymbolAddress) { 2559 // This can happen e.g. with PIC-style jump tables. 2560 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2561 "relocation against code\n"); 2562 } 2563 2564 // In AArch64 there are zero reasons to keep a reference to the 2565 // "original" symbol plus addend. The original symbol is probably just a 2566 // section symbol. If we are here, this means we are probably accessing 2567 // data, so it is imperative to keep the original address. 2568 if (IsAArch64) { 2569 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2570 SymbolAddress = Address; 2571 Addend = 0; 2572 } 2573 2574 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2575 // Note: this assertion is trying to check sanity of BinaryData objects 2576 // but AArch64 has inferred and incomplete object locations coming from 2577 // GOT/TLS or any other non-trivial relocation (that requires creation 2578 // of sections and whose symbol address is not really what should be 2579 // encoded in the instruction). So we essentially disabled this check 2580 // for AArch64 and live with bogus names for objects. 2581 assert((IsAArch64 || IsSectionRelocation || 2582 BD->nameStartsWith(SymbolName) || 2583 BD->nameStartsWith("PG" + SymbolName) || 2584 (BD->nameStartsWith("ANONYMOUS") && 2585 (BD->getSectionName().startswith(".plt") || 2586 BD->getSectionName().endswith(".plt")))) && 2587 "BOLT symbol names of all non-section relocations must match " 2588 "up with symbol names referenced in the relocation"); 2589 2590 if (IsSectionRelocation) 2591 BC->markAmbiguousRelocations(*BD, Address); 2592 2593 ReferencedSymbol = BD->getSymbol(); 2594 Addend += (SymbolAddress - BD->getAddress()); 2595 SymbolAddress = BD->getAddress(); 2596 assert(Address == SymbolAddress + Addend); 2597 } else { 2598 // These are mostly local data symbols but undefined symbols 2599 // in relocation sections can get through here too, from .plt. 2600 assert( 2601 (IsAArch64 || IsSectionRelocation || 2602 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2603 "known symbols should not resolve to anonymous locals"); 2604 2605 if (IsSectionRelocation) { 2606 ReferencedSymbol = 2607 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2608 } else { 2609 SymbolRef Symbol = *Rel.getSymbol(); 2610 const uint64_t SymbolSize = 2611 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2612 const uint64_t SymbolAlignment = 2613 IsAArch64 ? 1 : Symbol.getAlignment(); 2614 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2615 std::string Name; 2616 if (SymbolFlags & SymbolRef::SF_Global) { 2617 Name = SymbolName; 2618 } else { 2619 if (StringRef(SymbolName) 2620 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2621 Name = NR.uniquify("PG" + SymbolName); 2622 else 2623 Name = NR.uniquify(SymbolName); 2624 } 2625 ReferencedSymbol = BC->registerNameAtAddress( 2626 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2627 } 2628 2629 if (IsSectionRelocation) { 2630 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2631 BC->markAmbiguousRelocations(*BD, Address); 2632 } 2633 } 2634 } 2635 2636 auto checkMaxDataRelocations = [&]() { 2637 ++NumDataRelocations; 2638 if (opts::MaxDataRelocations && 2639 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2640 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2641 << NumDataRelocations << ": "); 2642 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2643 Addend, ExtractedValue); 2644 } 2645 2646 return (!opts::MaxDataRelocations || 2647 NumDataRelocations < opts::MaxDataRelocations); 2648 }; 2649 2650 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2651 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2652 ForceRelocation = true; 2653 2654 if (IsFromCode) { 2655 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2656 Addend, ExtractedValue); 2657 } else if (IsToCode || ForceRelocation) { 2658 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2659 ExtractedValue); 2660 } else { 2661 LLVM_DEBUG( 2662 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2663 } 2664 } 2665 } 2666 2667 void RewriteInstance::selectFunctionsToProcess() { 2668 // Extend the list of functions to process or skip from a file. 2669 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2670 cl::list<std::string> &FunctionNames) { 2671 if (FunctionNamesFile.empty()) 2672 return; 2673 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2674 std::string FuncName; 2675 while (std::getline(FuncsFile, FuncName)) 2676 FunctionNames.push_back(FuncName); 2677 }; 2678 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2679 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2680 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2681 2682 // Make a set of functions to process to speed up lookups. 2683 std::unordered_set<std::string> ForceFunctionsNR( 2684 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2685 2686 if ((!opts::ForceFunctionNames.empty() || 2687 !opts::ForceFunctionNamesNR.empty()) && 2688 !opts::SkipFunctionNames.empty()) { 2689 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2690 "same time. Please use only one type of selection.\n"; 2691 exit(1); 2692 } 2693 2694 uint64_t LiteThresholdExecCount = 0; 2695 if (opts::LiteThresholdPct) { 2696 if (opts::LiteThresholdPct > 100) 2697 opts::LiteThresholdPct = 100; 2698 2699 std::vector<const BinaryFunction *> TopFunctions; 2700 for (auto &BFI : BC->getBinaryFunctions()) { 2701 const BinaryFunction &Function = BFI.second; 2702 if (ProfileReader->mayHaveProfileData(Function)) 2703 TopFunctions.push_back(&Function); 2704 } 2705 std::sort(TopFunctions.begin(), TopFunctions.end(), 2706 [](const BinaryFunction *A, const BinaryFunction *B) { 2707 return 2708 A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2709 }); 2710 2711 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2712 if (Index) 2713 --Index; 2714 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2715 outs() << "BOLT-INFO: limiting processing to functions with at least " 2716 << LiteThresholdExecCount << " invocations\n"; 2717 } 2718 LiteThresholdExecCount = std::max( 2719 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2720 2721 uint64_t NumFunctionsToProcess = 0; 2722 auto shouldProcess = [&](const BinaryFunction &Function) { 2723 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2724 return false; 2725 2726 // If the list is not empty, only process functions from the list. 2727 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2728 // Regex check (-funcs and -funcs-file options). 2729 for (std::string &Name : opts::ForceFunctionNames) 2730 if (Function.hasNameRegex(Name)) 2731 return true; 2732 2733 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2734 Optional<StringRef> Match = 2735 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2736 return ForceFunctionsNR.count(Name.str()); 2737 }); 2738 return Match.hasValue(); 2739 } 2740 2741 for (std::string &Name : opts::SkipFunctionNames) 2742 if (Function.hasNameRegex(Name)) 2743 return false; 2744 2745 if (opts::Lite) { 2746 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2747 return false; 2748 2749 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2750 return false; 2751 } 2752 2753 return true; 2754 }; 2755 2756 for (auto &BFI : BC->getBinaryFunctions()) { 2757 BinaryFunction &Function = BFI.second; 2758 2759 // Pseudo functions are explicitly marked by us not to be processed. 2760 if (Function.isPseudo()) { 2761 Function.IsIgnored = true; 2762 Function.HasExternalRefRelocations = true; 2763 continue; 2764 } 2765 2766 if (!shouldProcess(Function)) { 2767 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2768 << Function << " per user request\n"); 2769 Function.setIgnored(); 2770 } else { 2771 ++NumFunctionsToProcess; 2772 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2773 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2774 } 2775 } 2776 } 2777 2778 void RewriteInstance::readDebugInfo() { 2779 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2780 TimerGroupDesc, opts::TimeRewrite); 2781 if (!opts::UpdateDebugSections) 2782 return; 2783 2784 BC->preprocessDebugInfo(); 2785 } 2786 2787 void RewriteInstance::preprocessProfileData() { 2788 if (!ProfileReader) 2789 return; 2790 2791 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2792 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2793 2794 outs() << "BOLT-INFO: pre-processing profile using " 2795 << ProfileReader->getReaderName() << '\n'; 2796 2797 if (BAT->enabledFor(InputFile)) { 2798 outs() << "BOLT-INFO: profile collection done on a binary already " 2799 "processed by BOLT\n"; 2800 ProfileReader->setBAT(&*BAT); 2801 } 2802 2803 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2804 report_error("cannot pre-process profile", std::move(E)); 2805 2806 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2807 !opts::AllowStripped) { 2808 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2809 "but profile data includes function names with embedded file " 2810 "names. It appears that the input binary was stripped while a " 2811 "profiled binary was not. If you know what you are doing and " 2812 "wish to proceed, use -allow-stripped option.\n"; 2813 exit(1); 2814 } 2815 } 2816 2817 void RewriteInstance::processProfileDataPreCFG() { 2818 if (!ProfileReader) 2819 return; 2820 2821 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2822 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2823 2824 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2825 report_error("cannot read profile pre-CFG", std::move(E)); 2826 } 2827 2828 void RewriteInstance::processProfileData() { 2829 if (!ProfileReader) 2830 return; 2831 2832 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2833 TimerGroupDesc, opts::TimeRewrite); 2834 2835 if (Error E = ProfileReader->readProfile(*BC.get())) 2836 report_error("cannot read profile", std::move(E)); 2837 2838 if (!opts::SaveProfile.empty()) { 2839 YAMLProfileWriter PW(opts::SaveProfile); 2840 PW.writeProfile(*this); 2841 } 2842 2843 // Release memory used by profile reader. 2844 ProfileReader.reset(); 2845 2846 if (opts::AggregateOnly) 2847 exit(0); 2848 } 2849 2850 void RewriteInstance::disassembleFunctions() { 2851 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2852 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2853 for (auto &BFI : BC->getBinaryFunctions()) { 2854 BinaryFunction &Function = BFI.second; 2855 2856 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2857 if (!FunctionData) { 2858 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2859 << "empty for function " << Function << '\n'; 2860 exit(1); 2861 } 2862 2863 // Treat zero-sized functions as non-simple ones. 2864 if (Function.getSize() == 0) { 2865 Function.setSimple(false); 2866 continue; 2867 } 2868 2869 // Offset of the function in the file. 2870 const auto *FileBegin = 2871 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2872 Function.setFileOffset(FunctionData->begin() - FileBegin); 2873 2874 if (!shouldDisassemble(Function)) { 2875 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2876 "Scan Binary Functions", opts::TimeBuild); 2877 Function.scanExternalRefs(); 2878 Function.setSimple(false); 2879 continue; 2880 } 2881 2882 if (!Function.disassemble()) { 2883 if (opts::processAllFunctions()) 2884 BC->exitWithBugReport("function cannot be properly disassembled. " 2885 "Unable to continue in relocation mode.", 2886 Function); 2887 if (opts::Verbosity >= 1) 2888 outs() << "BOLT-INFO: could not disassemble function " << Function 2889 << ". Will ignore.\n"; 2890 // Forcefully ignore the function. 2891 Function.setIgnored(); 2892 continue; 2893 } 2894 2895 if (opts::PrintAll || opts::PrintDisasm) 2896 Function.print(outs(), "after disassembly", true); 2897 2898 BC->processInterproceduralReferences(Function); 2899 } 2900 2901 BC->clearJumpTableOffsets(); 2902 BC->populateJumpTables(); 2903 BC->skipMarkedFragments(); 2904 2905 for (auto &BFI : BC->getBinaryFunctions()) { 2906 BinaryFunction &Function = BFI.second; 2907 2908 if (!shouldDisassemble(Function)) 2909 continue; 2910 2911 Function.postProcessEntryPoints(); 2912 Function.postProcessJumpTables(); 2913 } 2914 2915 BC->adjustCodePadding(); 2916 2917 for (auto &BFI : BC->getBinaryFunctions()) { 2918 BinaryFunction &Function = BFI.second; 2919 2920 if (!shouldDisassemble(Function)) 2921 continue; 2922 2923 if (!Function.isSimple()) { 2924 assert((!BC->HasRelocations || Function.getSize() == 0 || 2925 Function.hasSplitJumpTable()) && 2926 "unexpected non-simple function in relocation mode"); 2927 continue; 2928 } 2929 2930 // Fill in CFI information for this function 2931 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2932 if (BC->HasRelocations) { 2933 BC->exitWithBugReport("unable to fill CFI.", Function); 2934 } else { 2935 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2936 << ". Skipping.\n"; 2937 Function.setSimple(false); 2938 continue; 2939 } 2940 } 2941 2942 // Parse LSDA. 2943 if (Function.getLSDAAddress() != 0) 2944 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2945 } 2946 } 2947 2948 void RewriteInstance::buildFunctionsCFG() { 2949 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2950 "Build Binary Functions", opts::TimeBuild); 2951 2952 // Create annotation indices to allow lock-free execution 2953 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2954 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2955 BC->MIB->getOrCreateAnnotationIndex("Size"); 2956 2957 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2958 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2959 if (!BF.buildCFG(AllocId)) 2960 return; 2961 2962 if (opts::PrintAll) { 2963 auto L = BC->scopeLock(); 2964 BF.print(outs(), "while building cfg", true); 2965 } 2966 }; 2967 2968 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2969 return !shouldDisassemble(BF) || !BF.isSimple(); 2970 }; 2971 2972 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2973 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2974 SkipPredicate, "disassembleFunctions-buildCFG", 2975 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2976 2977 BC->postProcessSymbolTable(); 2978 } 2979 2980 void RewriteInstance::postProcessFunctions() { 2981 BC->TotalScore = 0; 2982 BC->SumExecutionCount = 0; 2983 for (auto &BFI : BC->getBinaryFunctions()) { 2984 BinaryFunction &Function = BFI.second; 2985 2986 if (Function.empty()) 2987 continue; 2988 2989 Function.postProcessCFG(); 2990 2991 if (opts::PrintAll || opts::PrintCFG) 2992 Function.print(outs(), "after building cfg", true); 2993 2994 if (opts::DumpDotAll) 2995 Function.dumpGraphForPass("00_build-cfg"); 2996 2997 if (opts::PrintLoopInfo) { 2998 Function.calculateLoopInfo(); 2999 Function.printLoopInfo(outs()); 3000 } 3001 3002 BC->TotalScore += Function.getFunctionScore(); 3003 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3004 } 3005 3006 if (opts::PrintGlobals) { 3007 outs() << "BOLT-INFO: Global symbols:\n"; 3008 BC->printGlobalSymbols(outs()); 3009 } 3010 } 3011 3012 void RewriteInstance::runOptimizationPasses() { 3013 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3014 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3015 BinaryFunctionPassManager::runAllPasses(*BC); 3016 } 3017 3018 namespace { 3019 3020 class BOLTSymbolResolver : public JITSymbolResolver { 3021 BinaryContext &BC; 3022 3023 public: 3024 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3025 3026 // We are responsible for all symbols 3027 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3028 return Symbols; 3029 } 3030 3031 // Some of our symbols may resolve to zero and this should not be an error 3032 bool allowsZeroSymbols() override { return true; } 3033 3034 /// Resolves the address of each symbol requested 3035 void lookup(const LookupSet &Symbols, 3036 OnResolvedFunction OnResolved) override { 3037 JITSymbolResolver::LookupResult AllResults; 3038 3039 if (BC.EFMM->ObjectsLoaded) { 3040 for (const StringRef &Symbol : Symbols) { 3041 std::string SymName = Symbol.str(); 3042 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3043 // Resolve to a PLT entry if possible 3044 if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) { 3045 AllResults[Symbol] = 3046 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3047 continue; 3048 } 3049 OnResolved(make_error<StringError>( 3050 "Symbol not found required by runtime: " + Symbol, 3051 inconvertibleErrorCode())); 3052 return; 3053 } 3054 OnResolved(std::move(AllResults)); 3055 return; 3056 } 3057 3058 for (const StringRef &Symbol : Symbols) { 3059 std::string SymName = Symbol.str(); 3060 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3061 3062 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3063 uint64_t Address = I->isMoved() && !I->isJumpTable() 3064 ? I->getOutputAddress() 3065 : I->getAddress(); 3066 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3067 << Twine::utohexstr(Address) << "\n"); 3068 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3069 continue; 3070 } 3071 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3072 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3073 } 3074 3075 OnResolved(std::move(AllResults)); 3076 } 3077 }; 3078 3079 } // anonymous namespace 3080 3081 void RewriteInstance::emitAndLink() { 3082 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3083 TimerGroupDesc, opts::TimeRewrite); 3084 std::error_code EC; 3085 3086 // This is an object file, which we keep for debugging purposes. 3087 // Once we decide it's useless, we should create it in memory. 3088 SmallString<128> OutObjectPath; 3089 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3090 std::unique_ptr<ToolOutputFile> TempOut = 3091 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3092 check_error(EC, "cannot create output object file"); 3093 3094 std::unique_ptr<buffer_ostream> BOS = 3095 std::make_unique<buffer_ostream>(TempOut->os()); 3096 raw_pwrite_stream *OS = BOS.get(); 3097 3098 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3099 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3100 // two instances. 3101 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3102 3103 if (EHFrameSection) { 3104 if (opts::UseOldText || opts::StrictMode) { 3105 // The section is going to be regenerated from scratch. 3106 // Empty the contents, but keep the section reference. 3107 EHFrameSection->clearContents(); 3108 } else { 3109 // Make .eh_frame relocatable. 3110 relocateEHFrameSection(); 3111 } 3112 } 3113 3114 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3115 3116 Streamer->finish(); 3117 if (Streamer->getContext().hadError()) { 3118 errs() << "BOLT-ERROR: Emission failed.\n"; 3119 exit(1); 3120 } 3121 3122 ////////////////////////////////////////////////////////////////////////////// 3123 // Assign addresses to new sections. 3124 ////////////////////////////////////////////////////////////////////////////// 3125 3126 // Get output object as ObjectFile. 3127 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3128 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3129 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3130 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3131 "error creating in-memory object"); 3132 3133 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3134 3135 MCAsmLayout FinalLayout( 3136 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3137 3138 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3139 RTDyld->setProcessAllSections(false); 3140 RTDyld->loadObject(*Obj); 3141 3142 // Assign addresses to all sections. If key corresponds to the object 3143 // created by ourselves, call our regular mapping function. If we are 3144 // loading additional objects as part of runtime libraries for 3145 // instrumentation, treat them as extra sections. 3146 mapFileSections(*RTDyld); 3147 3148 RTDyld->finalizeWithMemoryManagerLocking(); 3149 if (RTDyld->hasError()) { 3150 errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3151 exit(1); 3152 } 3153 3154 // Update output addresses based on the new section map and 3155 // layout. Only do this for the object created by ourselves. 3156 updateOutputValues(FinalLayout); 3157 3158 if (opts::UpdateDebugSections) 3159 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3160 3161 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3162 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3163 this->mapExtraSections(*RTDyld); 3164 }); 3165 3166 // Once the code is emitted, we can rename function sections to actual 3167 // output sections and de-register sections used for emission. 3168 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3169 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3170 if (Section && 3171 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3172 continue; 3173 3174 // Restore origin section for functions that were emitted or supposed to 3175 // be emitted to patch sections. 3176 if (Section) 3177 BC->deregisterSection(*Section); 3178 assert(Function->getOriginSectionName() && "expected origin section"); 3179 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3180 if (Function->isSplit()) { 3181 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3182 BC->deregisterSection(*ColdSection); 3183 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3184 } 3185 } 3186 3187 if (opts::PrintCacheMetrics) { 3188 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3189 CacheMetrics::printAll(BC->getSortedFunctions()); 3190 } 3191 3192 if (opts::KeepTmp) { 3193 TempOut->keep(); 3194 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3195 "purposes: " 3196 << OutObjectPath << "\n"; 3197 } 3198 } 3199 3200 void RewriteInstance::updateMetadata() { 3201 updateSDTMarkers(); 3202 updateLKMarkers(); 3203 parsePseudoProbe(); 3204 updatePseudoProbes(); 3205 3206 if (opts::UpdateDebugSections) { 3207 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3208 TimerGroupDesc, opts::TimeRewrite); 3209 DebugInfoRewriter->updateDebugInfo(); 3210 } 3211 3212 if (opts::WriteBoltInfoSection) 3213 addBoltInfoSection(); 3214 } 3215 3216 void RewriteInstance::updatePseudoProbes() { 3217 // check if there is pseudo probe section decoded 3218 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3219 return; 3220 // input address converted to output 3221 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3222 const GUIDProbeFunctionMap &GUID2Func = 3223 BC->ProbeDecoder.getGUID2FuncDescMap(); 3224 3225 for (auto &AP : Address2ProbesMap) { 3226 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3227 // If F is removed, eliminate all probes inside it from inline tree 3228 // Setting probes' addresses as INT64_MAX means elimination 3229 if (!F) { 3230 for (MCDecodedPseudoProbe &Probe : AP.second) 3231 Probe.setAddress(INT64_MAX); 3232 continue; 3233 } 3234 // If F is not emitted, the function will remain in the same address as its 3235 // input 3236 if (!F->isEmitted()) 3237 continue; 3238 3239 uint64_t Offset = AP.first - F->getAddress(); 3240 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3241 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3242 // Check if block output address is defined. 3243 // If not, such block is removed from binary. Then remove the probes from 3244 // inline tree 3245 if (BlkOutputAddress == 0) { 3246 for (MCDecodedPseudoProbe &Probe : AP.second) 3247 Probe.setAddress(INT64_MAX); 3248 continue; 3249 } 3250 3251 unsigned ProbeTrack = AP.second.size(); 3252 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3253 while (ProbeTrack != 0) { 3254 if (Probe->isBlock()) { 3255 Probe->setAddress(BlkOutputAddress); 3256 } else if (Probe->isCall()) { 3257 // A call probe may be duplicated due to ICP 3258 // Go through output of InputOffsetToAddressMap to collect all related 3259 // probes 3260 const InputOffsetToAddressMapTy &Offset2Addr = 3261 F->getInputOffsetToAddressMap(); 3262 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3263 auto CallOutputAddress = CallOutputAddresses.first; 3264 if (CallOutputAddress == CallOutputAddresses.second) { 3265 Probe->setAddress(INT64_MAX); 3266 } else { 3267 Probe->setAddress(CallOutputAddress->second); 3268 CallOutputAddress = std::next(CallOutputAddress); 3269 } 3270 3271 while (CallOutputAddress != CallOutputAddresses.second) { 3272 AP.second.push_back(*Probe); 3273 AP.second.back().setAddress(CallOutputAddress->second); 3274 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3275 CallOutputAddress = std::next(CallOutputAddress); 3276 } 3277 } 3278 Probe = std::next(Probe); 3279 ProbeTrack--; 3280 } 3281 } 3282 3283 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3284 opts::PrintPseudoProbes == 3285 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3286 outs() << "Pseudo Probe Address Conversion results:\n"; 3287 // table that correlates address to block 3288 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3289 for (auto &F : BC->getBinaryFunctions()) 3290 for (BinaryBasicBlock &BinaryBlock : F.second) 3291 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3292 BinaryBlock.getName(); 3293 3294 // scan all addresses -> correlate probe to block when print out 3295 std::vector<uint64_t> Addresses; 3296 for (auto &Entry : Address2ProbesMap) 3297 Addresses.push_back(Entry.first); 3298 std::sort(Addresses.begin(), Addresses.end()); 3299 for (uint64_t Key : Addresses) { 3300 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3301 if (Probe.getAddress() == INT64_MAX) 3302 outs() << "Deleted Probe: "; 3303 else 3304 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3305 Probe.print(outs(), GUID2Func, true); 3306 // print block name only if the probe is block type and undeleted. 3307 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3308 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3309 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3310 } 3311 } 3312 outs() << "=======================================\n"; 3313 } 3314 3315 // encode pseudo probes with updated addresses 3316 encodePseudoProbes(); 3317 } 3318 3319 template <typename F> 3320 static void emitLEB128IntValue(F encode, uint64_t Value, 3321 SmallString<8> &Contents) { 3322 SmallString<128> Tmp; 3323 raw_svector_ostream OSE(Tmp); 3324 encode(Value, OSE); 3325 Contents.append(OSE.str().begin(), OSE.str().end()); 3326 } 3327 3328 void RewriteInstance::encodePseudoProbes() { 3329 // Buffer for new pseudo probes section 3330 SmallString<8> Contents; 3331 MCDecodedPseudoProbe *LastProbe = nullptr; 3332 3333 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3334 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3335 uint64_t Swapped = support::endian::byte_swap( 3336 Value, IsLittleEndian ? support::little : support::big); 3337 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3338 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3339 Contents.append(Entry.begin(), Entry.end()); 3340 }; 3341 3342 auto EmitULEB128IntValue = [&](uint64_t Value) { 3343 SmallString<128> Tmp; 3344 raw_svector_ostream OSE(Tmp); 3345 encodeULEB128(Value, OSE, 0); 3346 Contents.append(OSE.str().begin(), OSE.str().end()); 3347 }; 3348 3349 auto EmitSLEB128IntValue = [&](int64_t Value) { 3350 SmallString<128> Tmp; 3351 raw_svector_ostream OSE(Tmp); 3352 encodeSLEB128(Value, OSE); 3353 Contents.append(OSE.str().begin(), OSE.str().end()); 3354 }; 3355 3356 // Emit indiviual pseudo probes in a inline tree node 3357 // Probe index, type, attribute, address type and address are encoded 3358 // Address of the first probe is absolute. 3359 // Other probes' address are represented by delta 3360 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3361 EmitULEB128IntValue(CurProbe->getIndex()); 3362 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3363 uint8_t Flag = 3364 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3365 EmitInt(Flag | PackedType, 1); 3366 if (LastProbe) { 3367 // Emit the delta between the address label and LastProbe. 3368 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3369 EmitSLEB128IntValue(Delta); 3370 } else { 3371 // Emit absolute address for encoding the first pseudo probe. 3372 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3373 EmitInt(CurProbe->getAddress(), AddrSize); 3374 } 3375 }; 3376 3377 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3378 std::greater<InlineSite>> 3379 Inlinees; 3380 3381 // DFS of inline tree to emit pseudo probes in all tree node 3382 // Inline site index of a probe is emitted first. 3383 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3384 // of contained probes are emitted Deleted probes are skipped Root node is not 3385 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3386 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3387 const MCDecodedPseudoProbeInlineTree &Root = 3388 BC->ProbeDecoder.getDummyInlineRoot(); 3389 for (auto Child = Root.getChildren().begin(); 3390 Child != Root.getChildren().end(); ++Child) 3391 Inlinees[Child->first] = Child->second.get(); 3392 3393 for (auto Inlinee : Inlinees) 3394 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3395 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3396 3397 Inlinees.clear(); 3398 3399 while (!NextNodes.empty()) { 3400 uint64_t ProbeIndex = NextNodes.back().first; 3401 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3402 NextNodes.pop_back(); 3403 3404 if (Cur->Parent && !Cur->Parent->isRoot()) 3405 // Emit probe inline site 3406 EmitULEB128IntValue(ProbeIndex); 3407 3408 // Emit probes grouped by GUID. 3409 LLVM_DEBUG({ 3410 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3411 dbgs() << "GUID: " << Cur->Guid << "\n"; 3412 }); 3413 // Emit Guid 3414 EmitInt(Cur->Guid, 8); 3415 // Emit number of probes in this node 3416 uint64_t Deleted = 0; 3417 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3418 if (Probe->getAddress() == INT64_MAX) 3419 Deleted++; 3420 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3421 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3422 EmitULEB128IntValue(ProbesSize); 3423 // Emit number of direct inlinees 3424 EmitULEB128IntValue(Cur->getChildren().size()); 3425 // Emit probes in this group 3426 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3427 if (Probe->getAddress() == INT64_MAX) 3428 continue; 3429 EmitDecodedPseudoProbe(Probe); 3430 LastProbe = Probe; 3431 } 3432 3433 for (auto Child = Cur->getChildren().begin(); 3434 Child != Cur->getChildren().end(); ++Child) 3435 Inlinees[Child->first] = Child->second.get(); 3436 for (const auto &Inlinee : Inlinees) { 3437 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3438 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3439 LLVM_DEBUG({ 3440 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3441 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3442 }); 3443 } 3444 Inlinees.clear(); 3445 } 3446 3447 // Create buffer for new contents for the section 3448 // Freed when parent section is destroyed 3449 uint8_t *Output = new uint8_t[Contents.str().size()]; 3450 memcpy(Output, Contents.str().data(), Contents.str().size()); 3451 addToDebugSectionsToOverwrite(".pseudo_probe"); 3452 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3453 PseudoProbeSection->getELFFlags(), Output, 3454 Contents.str().size(), 1); 3455 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3456 opts::PrintPseudoProbes == 3457 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3458 // create a dummy decoder; 3459 MCPseudoProbeDecoder DummyDecoder; 3460 StringRef DescContents = PseudoProbeDescSection->getContents(); 3461 DummyDecoder.buildGUID2FuncDescMap( 3462 reinterpret_cast<const uint8_t *>(DescContents.data()), 3463 DescContents.size()); 3464 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3465 DummyDecoder.buildAddress2ProbeMap( 3466 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3467 ProbeContents.size()); 3468 DummyDecoder.printProbesForAllAddresses(outs()); 3469 } 3470 } 3471 3472 void RewriteInstance::updateSDTMarkers() { 3473 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3474 TimerGroupDesc, opts::TimeRewrite); 3475 3476 if (!SDTSection) 3477 return; 3478 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3479 3480 SimpleBinaryPatcher *SDTNotePatcher = 3481 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3482 for (auto &SDTInfoKV : BC->SDTMarkers) { 3483 const uint64_t OriginalAddress = SDTInfoKV.first; 3484 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3485 const BinaryFunction *F = 3486 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3487 if (!F) 3488 continue; 3489 const uint64_t NewAddress = 3490 F->translateInputToOutputAddress(OriginalAddress); 3491 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3492 } 3493 } 3494 3495 void RewriteInstance::updateLKMarkers() { 3496 if (BC->LKMarkers.size() == 0) 3497 return; 3498 3499 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3500 TimerGroupDesc, opts::TimeRewrite); 3501 3502 std::unordered_map<std::string, uint64_t> PatchCounts; 3503 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3504 &LKMarkerInfoKV : BC->LKMarkers) { 3505 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3506 const BinaryFunction *BF = 3507 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3508 if (!BF) 3509 continue; 3510 3511 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3512 if (NewAddress == 0) 3513 continue; 3514 3515 // Apply base address. 3516 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3517 NewAddress = NewAddress + 0xffffffff00000000; 3518 3519 if (OriginalAddress == NewAddress) 3520 continue; 3521 3522 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3523 StringRef SectionName = LKMarkerInfo.SectionName; 3524 SimpleBinaryPatcher *LKPatcher; 3525 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3526 assert(BSec && "missing section info for kernel section"); 3527 if (!BSec->getPatcher()) 3528 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3529 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3530 PatchCounts[std::string(SectionName)]++; 3531 if (LKMarkerInfo.IsPCRelative) 3532 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3533 NewAddress - OriginalAddress + 3534 LKMarkerInfo.PCRelativeOffset); 3535 else 3536 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3537 } 3538 } 3539 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3540 "section are as follows:\n"; 3541 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3542 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3543 << '\n'; 3544 } 3545 3546 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3547 mapCodeSections(RTDyld); 3548 mapDataSections(RTDyld); 3549 } 3550 3551 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3552 std::vector<BinarySection *> CodeSections; 3553 for (BinarySection &Section : BC->textSections()) 3554 if (Section.hasValidSectionID()) 3555 CodeSections.emplace_back(&Section); 3556 3557 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3558 // Place movers before anything else. 3559 if (A->getName() == BC->getHotTextMoverSectionName()) 3560 return true; 3561 if (B->getName() == BC->getHotTextMoverSectionName()) 3562 return false; 3563 3564 // Depending on the option, put main text at the beginning or at the end. 3565 if (opts::HotFunctionsAtEnd) 3566 return B->getName() == BC->getMainCodeSectionName(); 3567 else 3568 return A->getName() == BC->getMainCodeSectionName(); 3569 }; 3570 3571 // Determine the order of sections. 3572 std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); 3573 3574 return CodeSections; 3575 } 3576 3577 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3578 if (BC->HasRelocations) { 3579 ErrorOr<BinarySection &> TextSection = 3580 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3581 assert(TextSection && ".text section not found in output"); 3582 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3583 3584 // Map sections for functions with pre-assigned addresses. 3585 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3586 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3587 if (!OutputAddress) 3588 continue; 3589 3590 ErrorOr<BinarySection &> FunctionSection = 3591 InjectedFunction->getCodeSection(); 3592 assert(FunctionSection && "function should have section"); 3593 FunctionSection->setOutputAddress(OutputAddress); 3594 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3595 OutputAddress); 3596 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3597 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3598 } 3599 3600 // Populate the list of sections to be allocated. 3601 std::vector<BinarySection *> CodeSections = getCodeSections(); 3602 3603 // Remove sections that were pre-allocated (patch sections). 3604 CodeSections.erase( 3605 std::remove_if(CodeSections.begin(), CodeSections.end(), 3606 [](BinarySection *Section) { 3607 return Section->getOutputAddress(); 3608 }), 3609 CodeSections.end()); 3610 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3611 for (const BinarySection *Section : CodeSections) 3612 dbgs() << Section->getName() << '\n'; 3613 ); 3614 3615 uint64_t PaddingSize = 0; // size of padding required at the end 3616 3617 // Allocate sections starting at a given Address. 3618 auto allocateAt = [&](uint64_t Address) { 3619 for (BinarySection *Section : CodeSections) { 3620 Address = alignTo(Address, Section->getAlignment()); 3621 Section->setOutputAddress(Address); 3622 Address += Section->getOutputSize(); 3623 } 3624 3625 // Make sure we allocate enough space for huge pages. 3626 if (opts::HotText) { 3627 uint64_t HotTextEnd = 3628 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3629 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3630 if (HotTextEnd > Address) { 3631 PaddingSize = HotTextEnd - Address; 3632 Address = HotTextEnd; 3633 } 3634 } 3635 return Address; 3636 }; 3637 3638 // Check if we can fit code in the original .text 3639 bool AllocationDone = false; 3640 if (opts::UseOldText) { 3641 const uint64_t CodeSize = 3642 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3643 3644 if (CodeSize <= BC->OldTextSectionSize) { 3645 outs() << "BOLT-INFO: using original .text for new code with 0x" 3646 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3647 AllocationDone = true; 3648 } else { 3649 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3650 << " using 0x" << Twine::utohexstr(opts::AlignText) 3651 << " alignment. " << CodeSize << " bytes needed, have " 3652 << BC->OldTextSectionSize << " bytes available.\n"; 3653 opts::UseOldText = false; 3654 } 3655 } 3656 3657 if (!AllocationDone) 3658 NextAvailableAddress = allocateAt(NextAvailableAddress); 3659 3660 // Do the mapping for ORC layer based on the allocation. 3661 for (BinarySection *Section : CodeSections) { 3662 LLVM_DEBUG( 3663 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3664 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3665 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3666 RTDyld.reassignSectionAddress(Section->getSectionID(), 3667 Section->getOutputAddress()); 3668 Section->setOutputFileOffset( 3669 getFileOffsetForAddress(Section->getOutputAddress())); 3670 } 3671 3672 // Check if we need to insert a padding section for hot text. 3673 if (PaddingSize && !opts::UseOldText) 3674 outs() << "BOLT-INFO: padding code to 0x" 3675 << Twine::utohexstr(NextAvailableAddress) 3676 << " to accommodate hot text\n"; 3677 3678 return; 3679 } 3680 3681 // Processing in non-relocation mode. 3682 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3683 3684 for (auto &BFI : BC->getBinaryFunctions()) { 3685 BinaryFunction &Function = BFI.second; 3686 if (!Function.isEmitted()) 3687 continue; 3688 3689 bool TooLarge = false; 3690 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3691 assert(FuncSection && "cannot find section for function"); 3692 FuncSection->setOutputAddress(Function.getAddress()); 3693 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3694 << Twine::utohexstr(FuncSection->getAllocAddress()) 3695 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3696 << '\n'); 3697 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3698 Function.getAddress()); 3699 Function.setImageAddress(FuncSection->getAllocAddress()); 3700 Function.setImageSize(FuncSection->getOutputSize()); 3701 if (Function.getImageSize() > Function.getMaxSize()) { 3702 TooLarge = true; 3703 FailedAddresses.emplace_back(Function.getAddress()); 3704 } 3705 3706 // Map jump tables if updating in-place. 3707 if (opts::JumpTables == JTS_BASIC) { 3708 for (auto &JTI : Function.JumpTables) { 3709 JumpTable *JT = JTI.second; 3710 BinarySection &Section = JT->getOutputSection(); 3711 Section.setOutputAddress(JT->getAddress()); 3712 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3713 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3714 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3715 << '\n'); 3716 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3717 } 3718 } 3719 3720 if (!Function.isSplit()) 3721 continue; 3722 3723 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3724 assert(ColdSection && "cannot find section for cold part"); 3725 // Cold fragments are aligned at 16 bytes. 3726 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3727 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3728 if (TooLarge) { 3729 // The corresponding FDE will refer to address 0. 3730 ColdPart.setAddress(0); 3731 ColdPart.setImageAddress(0); 3732 ColdPart.setImageSize(0); 3733 ColdPart.setFileOffset(0); 3734 } else { 3735 ColdPart.setAddress(NextAvailableAddress); 3736 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3737 ColdPart.setImageSize(ColdSection->getOutputSize()); 3738 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3739 ColdSection->setOutputAddress(ColdPart.getAddress()); 3740 } 3741 3742 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3743 << Twine::utohexstr(ColdPart.getImageAddress()) 3744 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3745 << " with size " 3746 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3747 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3748 ColdPart.getAddress()); 3749 3750 NextAvailableAddress += ColdPart.getImageSize(); 3751 } 3752 3753 // Add the new text section aggregating all existing code sections. 3754 // This is pseudo-section that serves a purpose of creating a corresponding 3755 // entry in section header table. 3756 int64_t NewTextSectionSize = 3757 NextAvailableAddress - NewTextSectionStartAddress; 3758 if (NewTextSectionSize) { 3759 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3760 /*IsText=*/true, 3761 /*IsAllocatable=*/true); 3762 BinarySection &Section = 3763 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3764 ELF::SHT_PROGBITS, 3765 Flags, 3766 /*Data=*/nullptr, 3767 NewTextSectionSize, 3768 16); 3769 Section.setOutputAddress(NewTextSectionStartAddress); 3770 Section.setOutputFileOffset( 3771 getFileOffsetForAddress(NewTextSectionStartAddress)); 3772 } 3773 } 3774 3775 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3776 // Map special sections to their addresses in the output image. 3777 // These are the sections that we generate via MCStreamer. 3778 // The order is important. 3779 std::vector<std::string> Sections = { 3780 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3781 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3782 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3783 RtLibrary->addRuntimeLibSections(Sections); 3784 3785 for (std::string &SectionName : Sections) { 3786 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3787 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3788 continue; 3789 NextAvailableAddress = 3790 alignTo(NextAvailableAddress, Section->getAlignment()); 3791 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3792 << Twine::utohexstr(Section->getAllocAddress()) 3793 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3794 << ":0x" 3795 << Twine::utohexstr(NextAvailableAddress + 3796 Section->getOutputSize()) 3797 << '\n'); 3798 3799 RTDyld.reassignSectionAddress(Section->getSectionID(), 3800 NextAvailableAddress); 3801 Section->setOutputAddress(NextAvailableAddress); 3802 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3803 3804 NextAvailableAddress += Section->getOutputSize(); 3805 } 3806 3807 // Handling for sections with relocations. 3808 for (BinarySection &Section : BC->sections()) { 3809 if (!Section.hasSectionRef()) 3810 continue; 3811 3812 StringRef SectionName = Section.getName(); 3813 ErrorOr<BinarySection &> OrgSection = 3814 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3815 if (!OrgSection || 3816 !OrgSection->isAllocatable() || 3817 !OrgSection->isFinalized() || 3818 !OrgSection->hasValidSectionID()) 3819 continue; 3820 3821 if (OrgSection->getOutputAddress()) { 3822 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3823 << " is already mapped at 0x" 3824 << Twine::utohexstr(OrgSection->getOutputAddress()) 3825 << '\n'); 3826 continue; 3827 } 3828 LLVM_DEBUG( 3829 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3830 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3831 << Twine::utohexstr(Section.getAddress()) << '\n'); 3832 3833 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3834 Section.getAddress()); 3835 3836 OrgSection->setOutputAddress(Section.getAddress()); 3837 OrgSection->setOutputFileOffset(Section.getContents().data() - 3838 InputFile->getData().data()); 3839 } 3840 } 3841 3842 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3843 for (BinarySection &Section : BC->allocatableSections()) { 3844 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3845 continue; 3846 NextAvailableAddress = 3847 alignTo(NextAvailableAddress, Section.getAlignment()); 3848 Section.setOutputAddress(NextAvailableAddress); 3849 NextAvailableAddress += Section.getOutputSize(); 3850 3851 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3852 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3853 << " to 0x" 3854 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3855 3856 RTDyld.reassignSectionAddress(Section.getSectionID(), 3857 Section.getOutputAddress()); 3858 Section.setOutputFileOffset( 3859 getFileOffsetForAddress(Section.getOutputAddress())); 3860 } 3861 } 3862 3863 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3864 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3865 Function->updateOutputValues(Layout); 3866 } 3867 3868 void RewriteInstance::patchELFPHDRTable() { 3869 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3870 if (!ELF64LEFile) { 3871 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3872 exit(1); 3873 } 3874 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3875 raw_fd_ostream &OS = Out->os(); 3876 3877 // Write/re-write program headers. 3878 Phnum = Obj.getHeader().e_phnum; 3879 if (PHDRTableOffset) { 3880 // Writing new pheader table. 3881 Phnum += 1; // only adding one new segment 3882 // Segment size includes the size of the PHDR area. 3883 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3884 } else { 3885 assert(!PHDRTableAddress && "unexpected address for program header table"); 3886 // Update existing table. 3887 PHDRTableOffset = Obj.getHeader().e_phoff; 3888 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3889 } 3890 OS.seek(PHDRTableOffset); 3891 3892 bool ModdedGnuStack = false; 3893 (void)ModdedGnuStack; 3894 bool AddedSegment = false; 3895 (void)AddedSegment; 3896 3897 auto createNewTextPhdr = [&]() { 3898 ELF64LEPhdrTy NewPhdr; 3899 NewPhdr.p_type = ELF::PT_LOAD; 3900 if (PHDRTableAddress) { 3901 NewPhdr.p_offset = PHDRTableOffset; 3902 NewPhdr.p_vaddr = PHDRTableAddress; 3903 NewPhdr.p_paddr = PHDRTableAddress; 3904 } else { 3905 NewPhdr.p_offset = NewTextSegmentOffset; 3906 NewPhdr.p_vaddr = NewTextSegmentAddress; 3907 NewPhdr.p_paddr = NewTextSegmentAddress; 3908 } 3909 NewPhdr.p_filesz = NewTextSegmentSize; 3910 NewPhdr.p_memsz = NewTextSegmentSize; 3911 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3912 // FIXME: Currently instrumentation is experimental and the runtime data 3913 // is emitted with code, thus everything needs to be writable 3914 if (opts::Instrument) 3915 NewPhdr.p_flags |= ELF::PF_W; 3916 NewPhdr.p_align = BC->PageAlign; 3917 3918 return NewPhdr; 3919 }; 3920 3921 // Copy existing program headers with modifications. 3922 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3923 ELF64LE::Phdr NewPhdr = Phdr; 3924 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3925 NewPhdr.p_offset = PHDRTableOffset; 3926 NewPhdr.p_vaddr = PHDRTableAddress; 3927 NewPhdr.p_paddr = PHDRTableAddress; 3928 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3929 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3930 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3931 ErrorOr<BinarySection &> EHFrameHdrSec = 3932 BC->getUniqueSectionByName(".eh_frame_hdr"); 3933 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3934 EHFrameHdrSec->isFinalized()) { 3935 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3936 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3937 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3938 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3939 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3940 } 3941 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3942 NewPhdr = createNewTextPhdr(); 3943 ModdedGnuStack = true; 3944 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3945 // Insert the new header before DYNAMIC. 3946 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3947 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3948 sizeof(NewTextPhdr)); 3949 AddedSegment = true; 3950 } 3951 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3952 } 3953 3954 if (!opts::UseGnuStack && !AddedSegment) { 3955 // Append the new header to the end of the table. 3956 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3957 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3958 } 3959 3960 assert((!opts::UseGnuStack || ModdedGnuStack) && 3961 "could not find GNU_STACK program header to modify"); 3962 } 3963 3964 namespace { 3965 3966 /// Write padding to \p OS such that its current \p Offset becomes aligned 3967 /// at \p Alignment. Return new (aligned) offset. 3968 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3969 uint64_t Alignment) { 3970 if (!Alignment) 3971 return Offset; 3972 3973 const uint64_t PaddingSize = 3974 offsetToAlignment(Offset, llvm::Align(Alignment)); 3975 for (unsigned I = 0; I < PaddingSize; ++I) 3976 OS.write((unsigned char)0); 3977 return Offset + PaddingSize; 3978 } 3979 3980 } 3981 3982 void RewriteInstance::rewriteNoteSections() { 3983 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3984 if (!ELF64LEFile) { 3985 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3986 exit(1); 3987 } 3988 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3989 raw_fd_ostream &OS = Out->os(); 3990 3991 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3992 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3993 "next available offset calculation failure"); 3994 OS.seek(NextAvailableOffset); 3995 3996 // Copy over non-allocatable section contents and update file offsets. 3997 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 3998 if (Section.sh_type == ELF::SHT_NULL) 3999 continue; 4000 if (Section.sh_flags & ELF::SHF_ALLOC) 4001 continue; 4002 4003 StringRef SectionName = 4004 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4005 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4006 4007 if (shouldStrip(Section, SectionName)) 4008 continue; 4009 4010 // Insert padding as needed. 4011 NextAvailableOffset = 4012 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4013 4014 // New section size. 4015 uint64_t Size = 0; 4016 bool DataWritten = false; 4017 uint8_t *SectionData = nullptr; 4018 // Copy over section contents unless it's one of the sections we overwrite. 4019 if (!willOverwriteSection(SectionName)) { 4020 Size = Section.sh_size; 4021 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4022 std::string Data; 4023 if (BSec && BSec->getPatcher()) { 4024 Data = BSec->getPatcher()->patchBinary(Dataref); 4025 Dataref = StringRef(Data); 4026 } 4027 4028 // Section was expanded, so need to treat it as overwrite. 4029 if (Size != Dataref.size()) { 4030 BSec = BC->registerOrUpdateNoteSection( 4031 SectionName, copyByteArray(Dataref), Dataref.size()); 4032 Size = 0; 4033 } else { 4034 OS << Dataref; 4035 DataWritten = true; 4036 4037 // Add padding as the section extension might rely on the alignment. 4038 Size = appendPadding(OS, Size, Section.sh_addralign); 4039 } 4040 } 4041 4042 // Perform section post-processing. 4043 if (BSec && !BSec->isAllocatable()) { 4044 assert(BSec->getAlignment() <= Section.sh_addralign && 4045 "alignment exceeds value in file"); 4046 4047 if (BSec->getAllocAddress()) { 4048 assert(!DataWritten && "Writing section twice."); 4049 (void)DataWritten; 4050 SectionData = BSec->getOutputData(); 4051 4052 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4053 << " contents to section " << SectionName << '\n'); 4054 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4055 Size += BSec->getOutputSize(); 4056 } 4057 4058 BSec->setOutputFileOffset(NextAvailableOffset); 4059 BSec->flushPendingRelocations(OS, 4060 [this] (const MCSymbol *S) { 4061 return getNewValueForSymbol(S->getName()); 4062 }); 4063 } 4064 4065 // Set/modify section info. 4066 BinarySection &NewSection = 4067 BC->registerOrUpdateNoteSection(SectionName, 4068 SectionData, 4069 Size, 4070 Section.sh_addralign, 4071 BSec ? BSec->isReadOnly() : false, 4072 BSec ? BSec->getELFType() 4073 : ELF::SHT_PROGBITS); 4074 NewSection.setOutputAddress(0); 4075 NewSection.setOutputFileOffset(NextAvailableOffset); 4076 4077 NextAvailableOffset += Size; 4078 } 4079 4080 // Write new note sections. 4081 for (BinarySection &Section : BC->nonAllocatableSections()) { 4082 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4083 continue; 4084 4085 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4086 4087 NextAvailableOffset = 4088 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4089 Section.setOutputFileOffset(NextAvailableOffset); 4090 4091 LLVM_DEBUG( 4092 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4093 << " of size " << Section.getOutputSize() << " at offset 0x" 4094 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4095 4096 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4097 NextAvailableOffset += Section.getOutputSize(); 4098 } 4099 } 4100 4101 template <typename ELFT> 4102 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4103 using ELFShdrTy = typename ELFT::Shdr; 4104 const ELFFile<ELFT> &Obj = File->getELFFile(); 4105 4106 // Pre-populate section header string table. 4107 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4108 StringRef SectionName = 4109 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4110 SHStrTab.add(SectionName); 4111 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4112 if (OutputSectionName != SectionName) 4113 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4114 } 4115 for (const std::string &Str : SHStrTabPool) 4116 SHStrTab.add(Str); 4117 for (const BinarySection &Section : BC->sections()) 4118 SHStrTab.add(Section.getName()); 4119 SHStrTab.finalize(); 4120 4121 const size_t SHStrTabSize = SHStrTab.getSize(); 4122 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4123 memset(DataCopy, 0, SHStrTabSize); 4124 SHStrTab.write(DataCopy); 4125 BC->registerOrUpdateNoteSection(".shstrtab", 4126 DataCopy, 4127 SHStrTabSize, 4128 /*Alignment=*/1, 4129 /*IsReadOnly=*/true, 4130 ELF::SHT_STRTAB); 4131 } 4132 4133 void RewriteInstance::addBoltInfoSection() { 4134 std::string DescStr; 4135 raw_string_ostream DescOS(DescStr); 4136 4137 DescOS << "BOLT revision: " << BoltRevision << ", " 4138 << "command line:"; 4139 for (int I = 0; I < Argc; ++I) 4140 DescOS << " " << Argv[I]; 4141 DescOS.flush(); 4142 4143 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4144 const std::string BoltInfo = 4145 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4146 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4147 BoltInfo.size(), 4148 /*Alignment=*/1, 4149 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4150 } 4151 4152 void RewriteInstance::addBATSection() { 4153 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4154 0, 4155 /*Alignment=*/1, 4156 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4157 } 4158 4159 void RewriteInstance::encodeBATSection() { 4160 std::string DescStr; 4161 raw_string_ostream DescOS(DescStr); 4162 4163 BAT->write(DescOS); 4164 DescOS.flush(); 4165 4166 const std::string BoltInfo = 4167 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4168 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4169 copyByteArray(BoltInfo), BoltInfo.size(), 4170 /*Alignment=*/1, 4171 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4172 } 4173 4174 template <typename ELFObjType, typename ELFShdrTy> 4175 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4176 const ELFShdrTy &Section) { 4177 if (Section.sh_type == ELF::SHT_NULL) 4178 return ""; 4179 4180 StringRef SectionName = 4181 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4182 4183 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4184 return (getOrgSecPrefix() + SectionName).str(); 4185 4186 return std::string(SectionName); 4187 } 4188 4189 template <typename ELFShdrTy> 4190 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4191 StringRef SectionName) { 4192 // Strip non-allocatable relocation sections. 4193 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4194 return true; 4195 4196 // Strip debug sections if not updating them. 4197 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4198 return true; 4199 4200 // Strip symtab section if needed 4201 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4202 return true; 4203 4204 return false; 4205 } 4206 4207 template <typename ELFT> 4208 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4209 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4210 std::vector<uint32_t> &NewSectionIndex) { 4211 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4212 const ELFFile<ELFT> &Obj = File->getELFFile(); 4213 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4214 4215 // Keep track of section header entries together with their name. 4216 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4217 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4218 ELFShdrTy NewSection = Section; 4219 NewSection.sh_name = SHStrTab.getOffset(Name); 4220 OutputSections.emplace_back(Name, std::move(NewSection)); 4221 }; 4222 4223 // Copy over entries for original allocatable sections using modified name. 4224 for (const ELFShdrTy &Section : Sections) { 4225 // Always ignore this section. 4226 if (Section.sh_type == ELF::SHT_NULL) { 4227 OutputSections.emplace_back("", Section); 4228 continue; 4229 } 4230 4231 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4232 continue; 4233 4234 addSection(getOutputSectionName(Obj, Section), Section); 4235 } 4236 4237 for (const BinarySection &Section : BC->allocatableSections()) { 4238 if (!Section.isFinalized()) 4239 continue; 4240 4241 if (Section.getName().startswith(getOrgSecPrefix()) || 4242 Section.isAnonymous()) { 4243 if (opts::Verbosity) 4244 outs() << "BOLT-INFO: not writing section header for section " 4245 << Section.getName() << '\n'; 4246 continue; 4247 } 4248 4249 if (opts::Verbosity >= 1) 4250 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4251 << '\n'; 4252 ELFShdrTy NewSection; 4253 NewSection.sh_type = ELF::SHT_PROGBITS; 4254 NewSection.sh_addr = Section.getOutputAddress(); 4255 NewSection.sh_offset = Section.getOutputFileOffset(); 4256 NewSection.sh_size = Section.getOutputSize(); 4257 NewSection.sh_entsize = 0; 4258 NewSection.sh_flags = Section.getELFFlags(); 4259 NewSection.sh_link = 0; 4260 NewSection.sh_info = 0; 4261 NewSection.sh_addralign = Section.getAlignment(); 4262 addSection(std::string(Section.getName()), NewSection); 4263 } 4264 4265 // Sort all allocatable sections by their offset. 4266 std::stable_sort(OutputSections.begin(), OutputSections.end(), 4267 [] (const std::pair<std::string, ELFShdrTy> &A, 4268 const std::pair<std::string, ELFShdrTy> &B) { 4269 return A.second.sh_offset < B.second.sh_offset; 4270 }); 4271 4272 // Fix section sizes to prevent overlapping. 4273 ELFShdrTy *PrevSection = nullptr; 4274 StringRef PrevSectionName; 4275 for (auto &SectionKV : OutputSections) { 4276 ELFShdrTy &Section = SectionKV.second; 4277 4278 // TBSS section does not take file or memory space. Ignore it for layout 4279 // purposes. 4280 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4281 continue; 4282 4283 if (PrevSection && 4284 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4285 if (opts::Verbosity > 1) 4286 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4287 << '\n'; 4288 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4289 ? Section.sh_addr - PrevSection->sh_addr 4290 : 0; 4291 } 4292 4293 PrevSection = &Section; 4294 PrevSectionName = SectionKV.first; 4295 } 4296 4297 uint64_t LastFileOffset = 0; 4298 4299 // Copy over entries for non-allocatable sections performing necessary 4300 // adjustments. 4301 for (const ELFShdrTy &Section : Sections) { 4302 if (Section.sh_type == ELF::SHT_NULL) 4303 continue; 4304 if (Section.sh_flags & ELF::SHF_ALLOC) 4305 continue; 4306 4307 StringRef SectionName = 4308 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4309 4310 if (shouldStrip(Section, SectionName)) 4311 continue; 4312 4313 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4314 assert(BSec && "missing section info for non-allocatable section"); 4315 4316 ELFShdrTy NewSection = Section; 4317 NewSection.sh_offset = BSec->getOutputFileOffset(); 4318 NewSection.sh_size = BSec->getOutputSize(); 4319 4320 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4321 NewSection.sh_info = NumLocalSymbols; 4322 4323 addSection(std::string(SectionName), NewSection); 4324 4325 LastFileOffset = BSec->getOutputFileOffset(); 4326 } 4327 4328 // Create entries for new non-allocatable sections. 4329 for (BinarySection &Section : BC->nonAllocatableSections()) { 4330 if (Section.getOutputFileOffset() <= LastFileOffset) 4331 continue; 4332 4333 if (opts::Verbosity >= 1) 4334 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4335 << '\n'; 4336 4337 ELFShdrTy NewSection; 4338 NewSection.sh_type = Section.getELFType(); 4339 NewSection.sh_addr = 0; 4340 NewSection.sh_offset = Section.getOutputFileOffset(); 4341 NewSection.sh_size = Section.getOutputSize(); 4342 NewSection.sh_entsize = 0; 4343 NewSection.sh_flags = Section.getELFFlags(); 4344 NewSection.sh_link = 0; 4345 NewSection.sh_info = 0; 4346 NewSection.sh_addralign = Section.getAlignment(); 4347 4348 addSection(std::string(Section.getName()), NewSection); 4349 } 4350 4351 // Assign indices to sections. 4352 std::unordered_map<std::string, uint64_t> NameToIndex; 4353 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4354 const std::string &SectionName = OutputSections[Index].first; 4355 NameToIndex[SectionName] = Index; 4356 if (ErrorOr<BinarySection &> Section = 4357 BC->getUniqueSectionByName(SectionName)) 4358 Section->setIndex(Index); 4359 } 4360 4361 // Update section index mapping 4362 NewSectionIndex.clear(); 4363 NewSectionIndex.resize(Sections.size(), 0); 4364 for (const ELFShdrTy &Section : Sections) { 4365 if (Section.sh_type == ELF::SHT_NULL) 4366 continue; 4367 4368 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4369 std::string SectionName = getOutputSectionName(Obj, Section); 4370 4371 // Some sections are stripped 4372 if (!NameToIndex.count(SectionName)) 4373 continue; 4374 4375 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4376 } 4377 4378 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4379 std::transform(OutputSections.begin(), OutputSections.end(), 4380 SectionsOnly.begin(), 4381 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4382 return SectionInfo.second; 4383 }); 4384 4385 return SectionsOnly; 4386 } 4387 4388 // Rewrite section header table inserting new entries as needed. The sections 4389 // header table size itself may affect the offsets of other sections, 4390 // so we are placing it at the end of the binary. 4391 // 4392 // As we rewrite entries we need to track how many sections were inserted 4393 // as it changes the sh_link value. We map old indices to new ones for 4394 // existing sections. 4395 template <typename ELFT> 4396 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4397 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4398 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4399 raw_fd_ostream &OS = Out->os(); 4400 const ELFFile<ELFT> &Obj = File->getELFFile(); 4401 4402 std::vector<uint32_t> NewSectionIndex; 4403 std::vector<ELFShdrTy> OutputSections = 4404 getOutputSections(File, NewSectionIndex); 4405 LLVM_DEBUG( 4406 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4407 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4408 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4409 ); 4410 4411 // Align starting address for section header table. 4412 uint64_t SHTOffset = OS.tell(); 4413 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4414 4415 // Write all section header entries while patching section references. 4416 for (ELFShdrTy &Section : OutputSections) { 4417 Section.sh_link = NewSectionIndex[Section.sh_link]; 4418 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4419 if (Section.sh_info) 4420 Section.sh_info = NewSectionIndex[Section.sh_info]; 4421 } 4422 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4423 } 4424 4425 // Fix ELF header. 4426 ELFEhdrTy NewEhdr = Obj.getHeader(); 4427 4428 if (BC->HasRelocations) { 4429 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4430 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4431 else 4432 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4433 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4434 "cannot find new address for entry point"); 4435 } 4436 NewEhdr.e_phoff = PHDRTableOffset; 4437 NewEhdr.e_phnum = Phnum; 4438 NewEhdr.e_shoff = SHTOffset; 4439 NewEhdr.e_shnum = OutputSections.size(); 4440 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4441 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4442 } 4443 4444 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4445 void RewriteInstance::updateELFSymbolTable( 4446 ELFObjectFile<ELFT> *File, bool IsDynSym, 4447 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4448 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4449 StrTabFuncTy AddToStrTab) { 4450 const ELFFile<ELFT> &Obj = File->getELFFile(); 4451 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4452 4453 StringRef StringSection = 4454 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4455 4456 unsigned NumHotTextSymsUpdated = 0; 4457 unsigned NumHotDataSymsUpdated = 0; 4458 4459 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4460 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4461 auto Itr = IslandSizes.find(&BF); 4462 if (Itr != IslandSizes.end()) 4463 return Itr->second; 4464 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4465 }; 4466 4467 // Symbols for the new symbol table. 4468 std::vector<ELFSymTy> Symbols; 4469 4470 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4471 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4472 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4473 4474 // We may have stripped the section that dynsym was referencing due to 4475 // the linker bug. In that case return the old index avoiding marking 4476 // the symbol as undefined. 4477 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4478 return OldIndex; 4479 return NewIndex; 4480 }; 4481 4482 // Add extra symbols for the function. 4483 // 4484 // Note that addExtraSymbols() could be called multiple times for the same 4485 // function with different FunctionSymbol matching the main function entry 4486 // point. 4487 auto addExtraSymbols = [&](const BinaryFunction &Function, 4488 const ELFSymTy &FunctionSymbol) { 4489 if (Function.isFolded()) { 4490 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4491 while (ICFParent->isFolded()) 4492 ICFParent = ICFParent->getFoldedIntoFunction(); 4493 ELFSymTy ICFSymbol = FunctionSymbol; 4494 SmallVector<char, 256> Buf; 4495 ICFSymbol.st_name = 4496 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4497 .concat(".icf.0") 4498 .toStringRef(Buf)); 4499 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4500 ICFSymbol.st_size = ICFParent->getOutputSize(); 4501 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4502 Symbols.emplace_back(ICFSymbol); 4503 } 4504 if (Function.isSplit() && Function.cold().getAddress()) { 4505 ELFSymTy NewColdSym = FunctionSymbol; 4506 SmallVector<char, 256> Buf; 4507 NewColdSym.st_name = 4508 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4509 .concat(".cold.0") 4510 .toStringRef(Buf)); 4511 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4512 NewColdSym.st_value = Function.cold().getAddress(); 4513 NewColdSym.st_size = Function.cold().getImageSize(); 4514 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4515 Symbols.emplace_back(NewColdSym); 4516 } 4517 if (Function.hasConstantIsland()) { 4518 uint64_t DataMark = Function.getOutputDataAddress(); 4519 uint64_t CISize = getConstantIslandSize(Function); 4520 uint64_t CodeMark = DataMark + CISize; 4521 ELFSymTy DataMarkSym = FunctionSymbol; 4522 DataMarkSym.st_name = AddToStrTab("$d"); 4523 DataMarkSym.st_value = DataMark; 4524 DataMarkSym.st_size = 0; 4525 DataMarkSym.setType(ELF::STT_NOTYPE); 4526 DataMarkSym.setBinding(ELF::STB_LOCAL); 4527 ELFSymTy CodeMarkSym = DataMarkSym; 4528 CodeMarkSym.st_name = AddToStrTab("$x"); 4529 CodeMarkSym.st_value = CodeMark; 4530 Symbols.emplace_back(DataMarkSym); 4531 Symbols.emplace_back(CodeMarkSym); 4532 } 4533 if (Function.hasConstantIsland() && Function.isSplit()) { 4534 uint64_t DataMark = Function.getOutputColdDataAddress(); 4535 uint64_t CISize = getConstantIslandSize(Function); 4536 uint64_t CodeMark = DataMark + CISize; 4537 ELFSymTy DataMarkSym = FunctionSymbol; 4538 DataMarkSym.st_name = AddToStrTab("$d"); 4539 DataMarkSym.st_value = DataMark; 4540 DataMarkSym.st_size = 0; 4541 DataMarkSym.setType(ELF::STT_NOTYPE); 4542 DataMarkSym.setBinding(ELF::STB_LOCAL); 4543 ELFSymTy CodeMarkSym = DataMarkSym; 4544 CodeMarkSym.st_name = AddToStrTab("$x"); 4545 CodeMarkSym.st_value = CodeMark; 4546 Symbols.emplace_back(DataMarkSym); 4547 Symbols.emplace_back(CodeMarkSym); 4548 } 4549 }; 4550 4551 // For regular (non-dynamic) symbol table, exclude symbols referring 4552 // to non-allocatable sections. 4553 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4554 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4555 return false; 4556 4557 // If we cannot link the symbol to a section, leave it as is. 4558 Expected<const typename ELFT::Shdr *> Section = 4559 Obj.getSection(Symbol.st_shndx); 4560 if (!Section) 4561 return false; 4562 4563 // Remove the section symbol iif the corresponding section was stripped. 4564 if (Symbol.getType() == ELF::STT_SECTION) { 4565 if (!getNewSectionIndex(Symbol.st_shndx)) 4566 return true; 4567 return false; 4568 } 4569 4570 // Symbols in non-allocatable sections are typically remnants of relocations 4571 // emitted under "-emit-relocs" linker option. Delete those as we delete 4572 // relocations against non-allocatable sections. 4573 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4574 return true; 4575 4576 return false; 4577 }; 4578 4579 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4580 // For regular (non-dynamic) symbol table strip unneeded symbols. 4581 if (!IsDynSym && shouldStrip(Symbol)) 4582 continue; 4583 4584 const BinaryFunction *Function = 4585 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4586 // Ignore false function references, e.g. when the section address matches 4587 // the address of the function. 4588 if (Function && Symbol.getType() == ELF::STT_SECTION) 4589 Function = nullptr; 4590 4591 // For non-dynamic symtab, make sure the symbol section matches that of 4592 // the function. It can mismatch e.g. if the symbol is a section marker 4593 // in which case we treat the symbol separately from the function. 4594 // For dynamic symbol table, the section index could be wrong on the input, 4595 // and its value is ignored by the runtime if it's different from 4596 // SHN_UNDEF and SHN_ABS. 4597 if (!IsDynSym && Function && 4598 Symbol.st_shndx != 4599 Function->getOriginSection()->getSectionRef().getIndex()) 4600 Function = nullptr; 4601 4602 // Create a new symbol based on the existing symbol. 4603 ELFSymTy NewSymbol = Symbol; 4604 4605 if (Function) { 4606 // If the symbol matched a function that was not emitted, update the 4607 // corresponding section index but otherwise leave it unchanged. 4608 if (Function->isEmitted()) { 4609 NewSymbol.st_value = Function->getOutputAddress(); 4610 NewSymbol.st_size = Function->getOutputSize(); 4611 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4612 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4613 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4614 } 4615 4616 // Add new symbols to the symbol table if necessary. 4617 if (!IsDynSym) 4618 addExtraSymbols(*Function, NewSymbol); 4619 } else { 4620 // Check if the function symbol matches address inside a function, i.e. 4621 // it marks a secondary entry point. 4622 Function = 4623 (Symbol.getType() == ELF::STT_FUNC) 4624 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4625 /*CheckPastEnd=*/false, 4626 /*UseMaxSize=*/true) 4627 : nullptr; 4628 4629 if (Function && Function->isEmitted()) { 4630 const uint64_t OutputAddress = 4631 Function->translateInputToOutputAddress(Symbol.st_value); 4632 4633 NewSymbol.st_value = OutputAddress; 4634 // Force secondary entry points to have zero size. 4635 NewSymbol.st_size = 0; 4636 NewSymbol.st_shndx = 4637 OutputAddress >= Function->cold().getAddress() && 4638 OutputAddress < Function->cold().getImageSize() 4639 ? Function->getColdCodeSection()->getIndex() 4640 : Function->getCodeSection()->getIndex(); 4641 } else { 4642 // Check if the symbol belongs to moved data object and update it. 4643 BinaryData *BD = opts::ReorderData.empty() 4644 ? nullptr 4645 : BC->getBinaryDataAtAddress(Symbol.st_value); 4646 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4647 assert((!BD->getSize() || !Symbol.st_size || 4648 Symbol.st_size == BD->getSize()) && 4649 "sizes must match"); 4650 4651 BinarySection &OutputSection = BD->getOutputSection(); 4652 assert(OutputSection.getIndex()); 4653 LLVM_DEBUG(dbgs() 4654 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4655 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4656 << Symbol.st_shndx << ") to " << OutputSection.getName() 4657 << " (" << OutputSection.getIndex() << ")\n"); 4658 NewSymbol.st_shndx = OutputSection.getIndex(); 4659 NewSymbol.st_value = BD->getOutputAddress(); 4660 } else { 4661 // Otherwise just update the section for the symbol. 4662 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4663 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4664 } 4665 4666 // Detect local syms in the text section that we didn't update 4667 // and that were preserved by the linker to support relocations against 4668 // .text. Remove them from the symtab. 4669 if (Symbol.getType() == ELF::STT_NOTYPE && 4670 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4671 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4672 /*CheckPastEnd=*/false, 4673 /*UseMaxSize=*/true)) { 4674 // Can only delete the symbol if not patching. Such symbols should 4675 // not exist in the dynamic symbol table. 4676 assert(!IsDynSym && "cannot delete symbol"); 4677 continue; 4678 } 4679 } 4680 } 4681 } 4682 4683 // Handle special symbols based on their name. 4684 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4685 assert(SymbolName && "cannot get symbol name"); 4686 4687 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4688 NewSymbol.st_value = getNewValueForSymbol(Name); 4689 NewSymbol.st_shndx = ELF::SHN_ABS; 4690 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4691 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4692 ++IsUpdated; 4693 }; 4694 4695 if (opts::HotText && 4696 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4697 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4698 4699 if (opts::HotData && 4700 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4701 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4702 4703 if (*SymbolName == "_end") { 4704 unsigned Ignored; 4705 updateSymbolValue(*SymbolName, Ignored); 4706 } 4707 4708 if (IsDynSym) 4709 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4710 sizeof(ELFSymTy), 4711 NewSymbol); 4712 else 4713 Symbols.emplace_back(NewSymbol); 4714 } 4715 4716 if (IsDynSym) { 4717 assert(Symbols.empty()); 4718 return; 4719 } 4720 4721 // Add symbols of injected functions 4722 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4723 ELFSymTy NewSymbol; 4724 BinarySection *OriginSection = Function->getOriginSection(); 4725 NewSymbol.st_shndx = 4726 OriginSection 4727 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4728 : Function->getCodeSection()->getIndex(); 4729 NewSymbol.st_value = Function->getOutputAddress(); 4730 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4731 NewSymbol.st_size = Function->getOutputSize(); 4732 NewSymbol.st_other = 0; 4733 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4734 Symbols.emplace_back(NewSymbol); 4735 4736 if (Function->isSplit()) { 4737 ELFSymTy NewColdSym = NewSymbol; 4738 NewColdSym.setType(ELF::STT_NOTYPE); 4739 SmallVector<char, 256> Buf; 4740 NewColdSym.st_name = AddToStrTab( 4741 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4742 NewColdSym.st_value = Function->cold().getAddress(); 4743 NewColdSym.st_size = Function->cold().getImageSize(); 4744 Symbols.emplace_back(NewColdSym); 4745 } 4746 } 4747 4748 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4749 "either none or both __hot_start/__hot_end symbols were expected"); 4750 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4751 "either none or both __hot_data_start/__hot_data_end symbols were " 4752 "expected"); 4753 4754 auto addSymbol = [&](const std::string &Name) { 4755 ELFSymTy Symbol; 4756 Symbol.st_value = getNewValueForSymbol(Name); 4757 Symbol.st_shndx = ELF::SHN_ABS; 4758 Symbol.st_name = AddToStrTab(Name); 4759 Symbol.st_size = 0; 4760 Symbol.st_other = 0; 4761 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4762 4763 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4764 << Twine::utohexstr(Symbol.st_value) << '\n'; 4765 4766 Symbols.emplace_back(Symbol); 4767 }; 4768 4769 if (opts::HotText && !NumHotTextSymsUpdated) { 4770 addSymbol("__hot_start"); 4771 addSymbol("__hot_end"); 4772 } 4773 4774 if (opts::HotData && !NumHotDataSymsUpdated) { 4775 addSymbol("__hot_data_start"); 4776 addSymbol("__hot_data_end"); 4777 } 4778 4779 // Put local symbols at the beginning. 4780 std::stable_sort(Symbols.begin(), Symbols.end(), 4781 [](const ELFSymTy &A, const ELFSymTy &B) { 4782 if (A.getBinding() == ELF::STB_LOCAL && 4783 B.getBinding() != ELF::STB_LOCAL) 4784 return true; 4785 return false; 4786 }); 4787 4788 for (const ELFSymTy &Symbol : Symbols) 4789 Write(0, Symbol); 4790 } 4791 4792 template <typename ELFT> 4793 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4794 const ELFFile<ELFT> &Obj = File->getELFFile(); 4795 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4796 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4797 4798 // Compute a preview of how section indices will change after rewriting, so 4799 // we can properly update the symbol table based on new section indices. 4800 std::vector<uint32_t> NewSectionIndex; 4801 getOutputSections(File, NewSectionIndex); 4802 4803 // Set pointer at the end of the output file, so we can pwrite old symbol 4804 // tables if we need to. 4805 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4806 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4807 "next available offset calculation failure"); 4808 Out->os().seek(NextAvailableOffset); 4809 4810 // Update dynamic symbol table. 4811 const ELFShdrTy *DynSymSection = nullptr; 4812 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4813 if (Section.sh_type == ELF::SHT_DYNSYM) { 4814 DynSymSection = &Section; 4815 break; 4816 } 4817 } 4818 assert((DynSymSection || BC->IsStaticExecutable) && 4819 "dynamic symbol table expected"); 4820 if (DynSymSection) { 4821 updateELFSymbolTable( 4822 File, 4823 /*IsDynSym=*/true, 4824 *DynSymSection, 4825 NewSectionIndex, 4826 [&](size_t Offset, const ELFSymTy &Sym) { 4827 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4828 sizeof(ELFSymTy), 4829 DynSymSection->sh_offset + Offset); 4830 }, 4831 [](StringRef) -> size_t { return 0; }); 4832 } 4833 4834 if (opts::RemoveSymtab) 4835 return; 4836 4837 // (re)create regular symbol table. 4838 const ELFShdrTy *SymTabSection = nullptr; 4839 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4840 if (Section.sh_type == ELF::SHT_SYMTAB) { 4841 SymTabSection = &Section; 4842 break; 4843 } 4844 } 4845 if (!SymTabSection) { 4846 errs() << "BOLT-WARNING: no symbol table found\n"; 4847 return; 4848 } 4849 4850 const ELFShdrTy *StrTabSection = 4851 cantFail(Obj.getSection(SymTabSection->sh_link)); 4852 std::string NewContents; 4853 std::string NewStrTab = std::string( 4854 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4855 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4856 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4857 4858 NumLocalSymbols = 0; 4859 updateELFSymbolTable( 4860 File, 4861 /*IsDynSym=*/false, 4862 *SymTabSection, 4863 NewSectionIndex, 4864 [&](size_t Offset, const ELFSymTy &Sym) { 4865 if (Sym.getBinding() == ELF::STB_LOCAL) 4866 ++NumLocalSymbols; 4867 NewContents.append(reinterpret_cast<const char *>(&Sym), 4868 sizeof(ELFSymTy)); 4869 }, 4870 [&](StringRef Str) { 4871 size_t Idx = NewStrTab.size(); 4872 NewStrTab.append(NameResolver::restore(Str).str()); 4873 NewStrTab.append(1, '\0'); 4874 return Idx; 4875 }); 4876 4877 BC->registerOrUpdateNoteSection(SecName, 4878 copyByteArray(NewContents), 4879 NewContents.size(), 4880 /*Alignment=*/1, 4881 /*IsReadOnly=*/true, 4882 ELF::SHT_SYMTAB); 4883 4884 BC->registerOrUpdateNoteSection(StrSecName, 4885 copyByteArray(NewStrTab), 4886 NewStrTab.size(), 4887 /*Alignment=*/1, 4888 /*IsReadOnly=*/true, 4889 ELF::SHT_STRTAB); 4890 } 4891 4892 template <typename ELFT> 4893 void 4894 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4895 using Elf_Rela = typename ELFT::Rela; 4896 raw_fd_ostream &OS = Out->os(); 4897 const ELFFile<ELFT> &EF = File->getELFFile(); 4898 4899 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4900 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4901 4902 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4903 uint64_t &End) { 4904 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4905 Start = Section->getInputFileOffset(); 4906 End = Start + Section->getSize(); 4907 }; 4908 4909 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4910 return; 4911 4912 if (DynamicRelocationsAddress) 4913 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4914 RelDynEndOffset); 4915 4916 if (PLTRelocationsAddress) 4917 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4918 RelPltEndOffset); 4919 4920 DynamicRelativeRelocationsCount = 0; 4921 4922 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4923 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4924 Offset += sizeof(*RelA); 4925 }; 4926 4927 auto writeRelocations = [&](bool PatchRelative) { 4928 for (BinarySection &Section : BC->allocatableSections()) { 4929 for (const Relocation &Rel : Section.dynamicRelocations()) { 4930 const bool IsRelative = Rel.isRelative(); 4931 if (PatchRelative != IsRelative) 4932 continue; 4933 4934 if (IsRelative) 4935 ++DynamicRelativeRelocationsCount; 4936 4937 Elf_Rela NewRelA; 4938 uint64_t SectionAddress = Section.getOutputAddress(); 4939 SectionAddress = 4940 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4941 MCSymbol *Symbol = Rel.Symbol; 4942 uint32_t SymbolIdx = 0; 4943 uint64_t Addend = Rel.Addend; 4944 4945 if (Rel.Symbol) { 4946 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4947 } else { 4948 // Usually this case is used for R_*_(I)RELATIVE relocations 4949 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4950 if (Address) 4951 Addend = Address; 4952 } 4953 4954 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4955 NewRelA.r_offset = SectionAddress + Rel.Offset; 4956 NewRelA.r_addend = Addend; 4957 4958 const bool IsJmpRel = 4959 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4960 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4961 const uint64_t &EndOffset = 4962 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4963 if (!Offset || !EndOffset) { 4964 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4965 exit(1); 4966 } 4967 4968 if (Offset + sizeof(NewRelA) > EndOffset) { 4969 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4970 exit(1); 4971 } 4972 4973 writeRela(&NewRelA, Offset); 4974 } 4975 } 4976 }; 4977 4978 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4979 writeRelocations(/* PatchRelative */ true); 4980 writeRelocations(/* PatchRelative */ false); 4981 4982 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4983 if (!Offset) 4984 return; 4985 4986 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4987 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4988 RelA.r_offset = 0; 4989 RelA.r_addend = 0; 4990 while (Offset < EndOffset) 4991 writeRela(&RelA, Offset); 4992 4993 assert(Offset == EndOffset && "Unexpected section overflow"); 4994 }; 4995 4996 // Fill the rest of the sections with R_*_NONE relocations 4997 fillNone(RelDynOffset, RelDynEndOffset); 4998 fillNone(RelPltOffset, RelPltEndOffset); 4999 } 5000 5001 template <typename ELFT> 5002 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5003 raw_fd_ostream &OS = Out->os(); 5004 5005 SectionRef GOTSection; 5006 for (const SectionRef &Section : File->sections()) { 5007 StringRef SectionName = cantFail(Section.getName()); 5008 if (SectionName == ".got") { 5009 GOTSection = Section; 5010 break; 5011 } 5012 } 5013 if (!GOTSection.getObject()) { 5014 if (!BC->IsStaticExecutable) 5015 errs() << "BOLT-INFO: no .got section found\n"; 5016 return; 5017 } 5018 5019 StringRef GOTContents = cantFail(GOTSection.getContents()); 5020 for (const uint64_t *GOTEntry = 5021 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5022 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5023 GOTContents.size()); 5024 ++GOTEntry) { 5025 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5026 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5027 << Twine::utohexstr(*GOTEntry) << " with 0x" 5028 << Twine::utohexstr(NewAddress) << '\n'); 5029 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5030 reinterpret_cast<const char *>(GOTEntry) - 5031 File->getData().data()); 5032 } 5033 } 5034 } 5035 5036 template <typename ELFT> 5037 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5038 if (BC->IsStaticExecutable) 5039 return; 5040 5041 const ELFFile<ELFT> &Obj = File->getELFFile(); 5042 raw_fd_ostream &OS = Out->os(); 5043 5044 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5045 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5046 5047 // Locate DYNAMIC by looking through program headers. 5048 uint64_t DynamicOffset = 0; 5049 const Elf_Phdr *DynamicPhdr = 0; 5050 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5051 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5052 DynamicOffset = Phdr.p_offset; 5053 DynamicPhdr = &Phdr; 5054 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5055 break; 5056 } 5057 } 5058 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5059 5060 bool ZNowSet = false; 5061 5062 // Go through all dynamic entries and patch functions addresses with 5063 // new ones. 5064 typename ELFT::DynRange DynamicEntries = 5065 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5066 auto DTB = DynamicEntries.begin(); 5067 for (const Elf_Dyn &Dyn : DynamicEntries) { 5068 Elf_Dyn NewDE = Dyn; 5069 bool ShouldPatch = true; 5070 switch (Dyn.d_tag) { 5071 default: 5072 ShouldPatch = false; 5073 break; 5074 case ELF::DT_RELACOUNT: 5075 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5076 break; 5077 case ELF::DT_INIT: 5078 case ELF::DT_FINI: { 5079 if (BC->HasRelocations) { 5080 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5081 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5082 << Dyn.getTag() << '\n'); 5083 NewDE.d_un.d_ptr = NewAddress; 5084 } 5085 } 5086 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5087 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5088 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5089 NewDE.d_un.d_ptr = Addr; 5090 } 5091 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5092 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5093 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5094 << Twine::utohexstr(Addr) << '\n'); 5095 NewDE.d_un.d_ptr = Addr; 5096 } 5097 } 5098 break; 5099 } 5100 case ELF::DT_FLAGS: 5101 if (BC->RequiresZNow) { 5102 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5103 ZNowSet = true; 5104 } 5105 break; 5106 case ELF::DT_FLAGS_1: 5107 if (BC->RequiresZNow) { 5108 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5109 ZNowSet = true; 5110 } 5111 break; 5112 } 5113 if (ShouldPatch) 5114 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5115 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5116 } 5117 5118 if (BC->RequiresZNow && !ZNowSet) { 5119 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5120 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5121 ".dynamic. Please re-link the binary with -znow.\n"; 5122 exit(1); 5123 } 5124 } 5125 5126 template <typename ELFT> 5127 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5128 const ELFFile<ELFT> &Obj = File->getELFFile(); 5129 5130 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5131 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5132 5133 // Locate DYNAMIC by looking through program headers. 5134 const Elf_Phdr *DynamicPhdr = 0; 5135 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5136 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5137 DynamicPhdr = &Phdr; 5138 break; 5139 } 5140 } 5141 5142 if (!DynamicPhdr) { 5143 outs() << "BOLT-INFO: static input executable detected\n"; 5144 // TODO: static PIE executable might have dynamic header 5145 BC->IsStaticExecutable = true; 5146 return Error::success(); 5147 } 5148 5149 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5150 return createStringError(errc::executable_format_error, 5151 "dynamic section sizes should match"); 5152 5153 // Go through all dynamic entries to locate entries of interest. 5154 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5155 if (!DynamicEntriesOrErr) 5156 return DynamicEntriesOrErr.takeError(); 5157 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5158 5159 for (const Elf_Dyn &Dyn : DynamicEntries) { 5160 switch (Dyn.d_tag) { 5161 case ELF::DT_INIT: 5162 if (!BC->HasInterpHeader) { 5163 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5164 BC->StartFunctionAddress = Dyn.getPtr(); 5165 } 5166 break; 5167 case ELF::DT_FINI: 5168 BC->FiniFunctionAddress = Dyn.getPtr(); 5169 break; 5170 case ELF::DT_RELA: 5171 DynamicRelocationsAddress = Dyn.getPtr(); 5172 break; 5173 case ELF::DT_RELASZ: 5174 DynamicRelocationsSize = Dyn.getVal(); 5175 break; 5176 case ELF::DT_JMPREL: 5177 PLTRelocationsAddress = Dyn.getPtr(); 5178 break; 5179 case ELF::DT_PLTRELSZ: 5180 PLTRelocationsSize = Dyn.getVal(); 5181 break; 5182 case ELF::DT_RELACOUNT: 5183 DynamicRelativeRelocationsCount = Dyn.getVal(); 5184 break; 5185 } 5186 } 5187 5188 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5189 DynamicRelocationsAddress.reset(); 5190 DynamicRelocationsSize = 0; 5191 } 5192 5193 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5194 PLTRelocationsAddress.reset(); 5195 PLTRelocationsSize = 0; 5196 } 5197 return Error::success(); 5198 } 5199 5200 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5201 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5202 if (!Function) 5203 return 0; 5204 5205 return Function->getOutputAddress(); 5206 } 5207 5208 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5209 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5210 return Function; 5211 5212 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5213 if (BD && BD->isMoved()) 5214 return BD->getOutputAddress(); 5215 5216 return 0; 5217 } 5218 5219 void RewriteInstance::rewriteFile() { 5220 std::error_code EC; 5221 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5222 sys::fs::OF_None); 5223 check_error(EC, "cannot create output executable file"); 5224 5225 raw_fd_ostream &OS = Out->os(); 5226 5227 // Copy allocatable part of the input. 5228 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5229 5230 // We obtain an asm-specific writer so that we can emit nops in an 5231 // architecture-specific way at the end of the function. 5232 std::unique_ptr<MCAsmBackend> MAB( 5233 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5234 auto Streamer = BC->createStreamer(OS); 5235 // Make sure output stream has enough reserved space, otherwise 5236 // pwrite() will fail. 5237 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5238 (void)Offset; 5239 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5240 "error resizing output file"); 5241 5242 // Overwrite functions with fixed output address. This is mostly used by 5243 // non-relocation mode, with one exception: injected functions are covered 5244 // here in both modes. 5245 uint64_t CountOverwrittenFunctions = 0; 5246 uint64_t OverwrittenScore = 0; 5247 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5248 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5249 continue; 5250 5251 if (Function->getImageSize() > Function->getMaxSize()) { 5252 if (opts::Verbosity >= 1) 5253 errs() << "BOLT-WARNING: new function size (0x" 5254 << Twine::utohexstr(Function->getImageSize()) 5255 << ") is larger than maximum allowed size (0x" 5256 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5257 << *Function << '\n'; 5258 5259 // Remove jump table sections that this function owns in non-reloc mode 5260 // because we don't want to write them anymore. 5261 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5262 for (auto &JTI : Function->JumpTables) { 5263 JumpTable *JT = JTI.second; 5264 BinarySection &Section = JT->getOutputSection(); 5265 BC->deregisterSection(Section); 5266 } 5267 } 5268 continue; 5269 } 5270 5271 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5272 Function->cold().getImageSize() == 0)) 5273 continue; 5274 5275 OverwrittenScore += Function->getFunctionScore(); 5276 // Overwrite function in the output file. 5277 if (opts::Verbosity >= 2) 5278 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5279 5280 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5281 Function->getImageSize(), Function->getFileOffset()); 5282 5283 // Write nops at the end of the function. 5284 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5285 uint64_t Pos = OS.tell(); 5286 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5287 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5288 &*BC->STI); 5289 5290 OS.seek(Pos); 5291 } 5292 5293 if (!Function->isSplit()) { 5294 ++CountOverwrittenFunctions; 5295 if (opts::MaxFunctions && 5296 CountOverwrittenFunctions == opts::MaxFunctions) { 5297 outs() << "BOLT: maximum number of functions reached\n"; 5298 break; 5299 } 5300 continue; 5301 } 5302 5303 // Write cold part 5304 if (opts::Verbosity >= 2) 5305 outs() << "BOLT: rewriting function \"" << *Function 5306 << "\" (cold part)\n"; 5307 5308 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5309 Function->cold().getImageSize(), 5310 Function->cold().getFileOffset()); 5311 5312 ++CountOverwrittenFunctions; 5313 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5314 outs() << "BOLT: maximum number of functions reached\n"; 5315 break; 5316 } 5317 } 5318 5319 // Print function statistics for non-relocation mode. 5320 if (!BC->HasRelocations) { 5321 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5322 << BC->getBinaryFunctions().size() 5323 << " functions were overwritten.\n"; 5324 if (BC->TotalScore != 0) { 5325 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5326 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5327 << "% of the execution count of simple functions of " 5328 "this binary\n"; 5329 } 5330 } 5331 5332 if (BC->HasRelocations && opts::TrapOldCode) { 5333 uint64_t SavedPos = OS.tell(); 5334 // Overwrite function body to make sure we never execute these instructions. 5335 for (auto &BFI : BC->getBinaryFunctions()) { 5336 BinaryFunction &BF = BFI.second; 5337 if (!BF.getFileOffset() || !BF.isEmitted()) 5338 continue; 5339 OS.seek(BF.getFileOffset()); 5340 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5341 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5342 } 5343 OS.seek(SavedPos); 5344 } 5345 5346 // Write all allocatable sections - reloc-mode text is written here as well 5347 for (BinarySection &Section : BC->allocatableSections()) { 5348 if (!Section.isFinalized() || !Section.getOutputData()) 5349 continue; 5350 5351 if (opts::Verbosity >= 1) 5352 outs() << "BOLT: writing new section " << Section.getName() 5353 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5354 << "\n of size " << Section.getOutputSize() << "\n at offset " 5355 << Section.getOutputFileOffset() << '\n'; 5356 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5357 Section.getOutputSize(), Section.getOutputFileOffset()); 5358 } 5359 5360 for (BinarySection &Section : BC->allocatableSections()) 5361 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5362 return getNewValueForSymbol(S->getName()); 5363 }); 5364 5365 // If .eh_frame is present create .eh_frame_hdr. 5366 if (EHFrameSection && EHFrameSection->isFinalized()) 5367 writeEHFrameHeader(); 5368 5369 // Add BOLT Addresses Translation maps to allow profile collection to 5370 // happen in the output binary 5371 if (opts::EnableBAT) 5372 addBATSection(); 5373 5374 // Patch program header table. 5375 patchELFPHDRTable(); 5376 5377 // Finalize memory image of section string table. 5378 finalizeSectionStringTable(); 5379 5380 // Update symbol tables. 5381 patchELFSymTabs(); 5382 5383 patchBuildID(); 5384 5385 if (opts::EnableBAT) 5386 encodeBATSection(); 5387 5388 // Copy non-allocatable sections once allocatable part is finished. 5389 rewriteNoteSections(); 5390 5391 if (BC->HasRelocations) { 5392 patchELFAllocatableRelaSections(); 5393 patchELFGOT(); 5394 } 5395 5396 // Patch dynamic section/segment. 5397 patchELFDynamic(); 5398 5399 // Update ELF book-keeping info. 5400 patchELFSectionHeaderTable(); 5401 5402 if (opts::PrintSections) { 5403 outs() << "BOLT-INFO: Sections after processing:\n"; 5404 BC->printSections(outs()); 5405 } 5406 5407 Out->keep(); 5408 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5409 check_error(EC, "cannot set permissions of output file"); 5410 } 5411 5412 void RewriteInstance::writeEHFrameHeader() { 5413 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5414 EHFrameSection->getOutputAddress()); 5415 Error E = NewEHFrame.parse(DWARFDataExtractor( 5416 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5417 BC->AsmInfo->getCodePointerSize())); 5418 check_error(std::move(E), "failed to parse EH frame"); 5419 5420 uint64_t OldEHFrameAddress = 0; 5421 StringRef OldEHFrameContents; 5422 ErrorOr<BinarySection &> OldEHFrameSection = 5423 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5424 if (OldEHFrameSection) { 5425 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5426 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5427 } 5428 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5429 Error Er = OldEHFrame.parse( 5430 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5431 BC->AsmInfo->getCodePointerSize())); 5432 check_error(std::move(Er), "failed to parse EH frame"); 5433 5434 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5435 5436 NextAvailableAddress = 5437 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5438 5439 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5440 const uint64_t EHFrameHdrFileOffset = 5441 getFileOffsetForAddress(NextAvailableAddress); 5442 5443 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5444 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5445 5446 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5447 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5448 5449 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5450 /*IsText=*/false, 5451 /*IsAllocatable=*/true); 5452 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5453 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5454 /*Alignment=*/1); 5455 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5456 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5457 5458 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5459 5460 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5461 if (OldEHFrameSection) { 5462 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5463 OldEHFrameSection->getOutputSize() - 5464 EHFrameSection->getOutputAddress()); 5465 EHFrameSection = 5466 BC->registerOrUpdateSection(".eh_frame", 5467 EHFrameSection->getELFType(), 5468 EHFrameSection->getELFFlags(), 5469 EHFrameSection->getOutputData(), 5470 EHFrameSectionSize, 5471 EHFrameSection->getAlignment()); 5472 BC->deregisterSection(*OldEHFrameSection); 5473 } 5474 5475 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5476 << EHFrameSection->getOutputSize() << '\n'); 5477 } 5478 5479 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5480 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5481 if (Value != 0) 5482 return Value; 5483 5484 // Return the original value if we haven't emitted the symbol. 5485 BinaryData *BD = BC->getBinaryDataByName(Name); 5486 if (!BD) 5487 return 0; 5488 5489 return BD->getAddress(); 5490 } 5491 5492 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5493 // Check if it's possibly part of the new segment. 5494 if (Address >= NewTextSegmentAddress) 5495 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5496 5497 // Find an existing segment that matches the address. 5498 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5499 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5500 return 0; 5501 5502 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5503 if (Address < SegmentInfo.Address || 5504 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5505 return 0; 5506 5507 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5508 } 5509 5510 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5511 for (const char *const &OverwriteName : SectionsToOverwrite) 5512 if (SectionName == OverwriteName) 5513 return true; 5514 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5515 if (SectionName == OverwriteName) 5516 return true; 5517 5518 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5519 return Section && Section->isAllocatable() && Section->isFinalized(); 5520 } 5521 5522 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5523 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5524 SectionName == ".gdb_index" || SectionName == ".stab" || 5525 SectionName == ".stabstr") 5526 return true; 5527 5528 return false; 5529 } 5530 5531 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5532 if (SectionName.startswith("__ksymtab")) 5533 return true; 5534 5535 return false; 5536 } 5537