1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> 84 ForceToDataRelocations("force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 cl::init(false), 87 cl::Hidden, 88 cl::ZeroOrMore, 89 cl::cat(BoltCategory)); 90 91 cl::opt<std::string> 92 BoltID("bolt-id", 93 cl::desc("add any string to tag this execution in the " 94 "output binary via bolt info section"), 95 cl::ZeroOrMore, 96 cl::cat(BoltCategory)); 97 98 cl::opt<bool> 99 AllowStripped("allow-stripped", 100 cl::desc("allow processing of stripped binaries"), 101 cl::Hidden, 102 cl::cat(BoltCategory)); 103 104 cl::opt<bool> 105 DumpDotAll("dump-dot-all", 106 cl::desc("dump function CFGs to graphviz format after each stage"), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltCategory)); 110 111 static cl::list<std::string> 112 ForceFunctionNames("funcs", 113 cl::CommaSeparated, 114 cl::desc("limit optimizations to functions from the list"), 115 cl::value_desc("func1,func2,func3,..."), 116 cl::Hidden, 117 cl::cat(BoltCategory)); 118 119 static cl::opt<std::string> 120 FunctionNamesFile("funcs-file", 121 cl::desc("file with list of functions to optimize"), 122 cl::Hidden, 123 cl::cat(BoltCategory)); 124 125 static cl::list<std::string> ForceFunctionNamesNR( 126 "funcs-no-regex", cl::CommaSeparated, 127 cl::desc("limit optimizations to functions from the list (non-regex)"), 128 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 129 130 static cl::opt<std::string> FunctionNamesFileNR( 131 "funcs-file-no-regex", 132 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 133 cl::cat(BoltCategory)); 134 135 cl::opt<bool> 136 KeepTmp("keep-tmp", 137 cl::desc("preserve intermediate .o file"), 138 cl::Hidden, 139 cl::cat(BoltCategory)); 140 141 cl::opt<bool> 142 Lite("lite", 143 cl::desc("skip processing of cold functions"), 144 cl::init(false), 145 cl::ZeroOrMore, 146 cl::cat(BoltCategory)); 147 148 static cl::opt<unsigned> 149 LiteThresholdPct("lite-threshold-pct", 150 cl::desc("threshold (in percent) for selecting functions to process in lite " 151 "mode. Higher threshold means fewer functions to process. E.g " 152 "threshold of 90 means only top 10 percent of functions with " 153 "profile will be processed."), 154 cl::init(0), 155 cl::ZeroOrMore, 156 cl::Hidden, 157 cl::cat(BoltOptCategory)); 158 159 static cl::opt<unsigned> 160 LiteThresholdCount("lite-threshold-count", 161 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 162 "absolute function call count. I.e. limit processing to functions " 163 "executed at least the specified number of times."), 164 cl::init(0), 165 cl::ZeroOrMore, 166 cl::Hidden, 167 cl::cat(BoltOptCategory)); 168 169 static cl::opt<unsigned> 170 MaxFunctions("max-funcs", 171 cl::desc("maximum number of functions to process"), 172 cl::ZeroOrMore, 173 cl::Hidden, 174 cl::cat(BoltCategory)); 175 176 static cl::opt<unsigned> 177 MaxDataRelocations("max-data-relocations", 178 cl::desc("maximum number of data relocations to process"), 179 cl::ZeroOrMore, 180 cl::Hidden, 181 cl::cat(BoltCategory)); 182 183 cl::opt<bool> 184 PrintAll("print-all", 185 cl::desc("print functions after each stage"), 186 cl::ZeroOrMore, 187 cl::Hidden, 188 cl::cat(BoltCategory)); 189 190 cl::opt<bool> 191 PrintCFG("print-cfg", 192 cl::desc("print functions after CFG construction"), 193 cl::ZeroOrMore, 194 cl::Hidden, 195 cl::cat(BoltCategory)); 196 197 cl::opt<bool> PrintDisasm("print-disasm", 198 cl::desc("print function after disassembly"), 199 cl::ZeroOrMore, 200 cl::Hidden, 201 cl::cat(BoltCategory)); 202 203 static cl::opt<bool> 204 PrintGlobals("print-globals", 205 cl::desc("print global symbols after disassembly"), 206 cl::ZeroOrMore, 207 cl::Hidden, 208 cl::cat(BoltCategory)); 209 210 extern cl::opt<bool> PrintSections; 211 212 static cl::opt<bool> 213 PrintLoopInfo("print-loops", 214 cl::desc("print loop related information"), 215 cl::ZeroOrMore, 216 cl::Hidden, 217 cl::cat(BoltCategory)); 218 219 static cl::opt<bool> 220 PrintSDTMarkers("print-sdt", 221 cl::desc("print all SDT markers"), 222 cl::ZeroOrMore, 223 cl::Hidden, 224 cl::cat(BoltCategory)); 225 226 enum PrintPseudoProbesOptions { 227 PPP_None = 0, 228 PPP_Probes_Section_Decode = 0x1, 229 PPP_Probes_Address_Conversion = 0x2, 230 PPP_Encoded_Probes = 0x3, 231 PPP_All = 0xf 232 }; 233 234 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 235 "print-pseudo-probes", cl::desc("print pseudo probe info"), 236 cl::init(PPP_None), 237 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 238 "decode probes section from binary"), 239 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 240 "update address2ProbesMap with output block address"), 241 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 242 "display the encoded probes in binary section"), 243 clEnumValN(PPP_All, "all", "enable all debugging printout")), 244 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 245 246 static cl::opt<cl::boolOrDefault> 247 RelocationMode("relocs", 248 cl::desc("use relocations in the binary (default=autodetect)"), 249 cl::ZeroOrMore, 250 cl::cat(BoltCategory)); 251 252 static cl::opt<std::string> 253 SaveProfile("w", 254 cl::desc("save recorded profile to a file"), 255 cl::cat(BoltOutputCategory)); 256 257 static cl::list<std::string> 258 SkipFunctionNames("skip-funcs", 259 cl::CommaSeparated, 260 cl::desc("list of functions to skip"), 261 cl::value_desc("func1,func2,func3,..."), 262 cl::Hidden, 263 cl::cat(BoltCategory)); 264 265 static cl::opt<std::string> 266 SkipFunctionNamesFile("skip-funcs-file", 267 cl::desc("file with list of functions to skip"), 268 cl::Hidden, 269 cl::cat(BoltCategory)); 270 271 cl::opt<bool> 272 TrapOldCode("trap-old-code", 273 cl::desc("insert traps in old function bodies (relocation mode)"), 274 cl::Hidden, 275 cl::cat(BoltCategory)); 276 277 static cl::opt<std::string> DWPPathName("dwp", 278 cl::desc("Path and name to DWP file."), 279 cl::Hidden, cl::ZeroOrMore, 280 cl::init(""), cl::cat(BoltCategory)); 281 282 static cl::opt<bool> 283 UseGnuStack("use-gnu-stack", 284 cl::desc("use GNU_STACK program header for new segment (workaround for " 285 "issues with strip/objcopy)"), 286 cl::ZeroOrMore, 287 cl::cat(BoltCategory)); 288 289 static cl::opt<bool> 290 TimeRewrite("time-rewrite", 291 cl::desc("print time spent in rewriting passes"), 292 cl::ZeroOrMore, 293 cl::Hidden, 294 cl::cat(BoltCategory)); 295 296 static cl::opt<bool> 297 SequentialDisassembly("sequential-disassembly", 298 cl::desc("performs disassembly sequentially"), 299 cl::init(false), 300 cl::cat(BoltOptCategory)); 301 302 static cl::opt<bool> 303 WriteBoltInfoSection("bolt-info", 304 cl::desc("write bolt info section in the output binary"), 305 cl::init(true), 306 cl::ZeroOrMore, 307 cl::Hidden, 308 cl::cat(BoltOutputCategory)); 309 310 } // namespace opts 311 312 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 313 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 314 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_loc", 315 ".debug_ranges", ".gdb_index", ".debug_addr"}; 316 317 const char RewriteInstance::TimerGroupName[] = "rewrite"; 318 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 319 320 namespace llvm { 321 namespace bolt { 322 323 extern const char *BoltRevision; 324 325 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 326 const MCInstrAnalysis *Analysis, 327 const MCInstrInfo *Info, 328 const MCRegisterInfo *RegInfo) { 329 #ifdef X86_AVAILABLE 330 if (Arch == Triple::x86_64) 331 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 332 #endif 333 334 #ifdef AARCH64_AVAILABLE 335 if (Arch == Triple::aarch64) 336 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 337 #endif 338 339 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 340 } 341 342 } // namespace bolt 343 } // namespace llvm 344 345 namespace { 346 347 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 348 auto Itr = 349 std::find_if(opts::ReorderData.begin(), opts::ReorderData.end(), 350 [&](const std::string &SectionName) { 351 return (Section && Section->getName() == SectionName); 352 }); 353 return Itr != opts::ReorderData.end(); 354 } 355 356 } // anonymous namespace 357 358 Expected<std::unique_ptr<RewriteInstance>> 359 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 360 const char *const *Argv, 361 StringRef ToolPath) { 362 Error Err = Error::success(); 363 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 364 if (Err) 365 return std::move(Err); 366 return RI; 367 } 368 369 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 370 const char *const *Argv, StringRef ToolPath, 371 Error &Err) 372 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 373 SHStrTab(StringTableBuilder::ELF) { 374 ErrorAsOutParameter EAO(&Err); 375 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 376 if (!ELF64LEFile) { 377 Err = createStringError(errc::not_supported, 378 "Only 64-bit LE ELF binaries are supported"); 379 return; 380 } 381 382 bool IsPIC = false; 383 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 384 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 385 outs() << "BOLT-INFO: shared object or position-independent executable " 386 "detected\n"; 387 IsPIC = true; 388 } 389 390 auto BCOrErr = BinaryContext::createBinaryContext( 391 File, IsPIC, 392 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 393 nullptr, opts::DWPPathName, 394 WithColor::defaultErrorHandler, 395 WithColor::defaultWarningHandler)); 396 if (Error E = BCOrErr.takeError()) { 397 Err = std::move(E); 398 return; 399 } 400 BC = std::move(BCOrErr.get()); 401 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 402 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 403 404 BAT = std::make_unique<BoltAddressTranslation>(*BC); 405 406 if (opts::UpdateDebugSections) 407 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 408 409 if (opts::Instrument) 410 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 411 else if (opts::Hugify) 412 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 413 } 414 415 RewriteInstance::~RewriteInstance() {} 416 417 Error RewriteInstance::setProfile(StringRef Filename) { 418 if (!sys::fs::exists(Filename)) 419 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 420 421 if (ProfileReader) { 422 // Already exists 423 return make_error<StringError>(Twine("multiple profiles specified: ") + 424 ProfileReader->getFilename() + " and " + 425 Filename, 426 inconvertibleErrorCode()); 427 } 428 429 // Spawn a profile reader based on file contents. 430 if (DataAggregator::checkPerfDataMagic(Filename)) 431 ProfileReader = std::make_unique<DataAggregator>(Filename); 432 else if (YAMLProfileReader::isYAML(Filename)) 433 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 434 else 435 ProfileReader = std::make_unique<DataReader>(Filename); 436 437 return Error::success(); 438 } 439 440 /// Return true if the function \p BF should be disassembled. 441 static bool shouldDisassemble(const BinaryFunction &BF) { 442 if (BF.isPseudo()) 443 return false; 444 445 if (opts::processAllFunctions()) 446 return true; 447 448 return !BF.isIgnored(); 449 } 450 451 Error RewriteInstance::discoverStorage() { 452 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 453 TimerGroupDesc, opts::TimeRewrite); 454 455 // Stubs are harmful because RuntimeDyld may try to increase the size of 456 // sections accounting for stubs when we need those sections to match the 457 // same size seen in the input binary, in case this section is a copy 458 // of the original one seen in the binary. 459 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 460 461 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 462 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 463 464 BC->StartFunctionAddress = Obj.getHeader().e_entry; 465 466 NextAvailableAddress = 0; 467 uint64_t NextAvailableOffset = 0; 468 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 469 if (Error E = PHsOrErr.takeError()) 470 return E; 471 472 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 473 for (const ELF64LE::Phdr &Phdr : PHs) { 474 switch (Phdr.p_type) { 475 case ELF::PT_LOAD: 476 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 477 static_cast<uint64_t>(Phdr.p_vaddr)); 478 NextAvailableAddress = std::max(NextAvailableAddress, 479 Phdr.p_vaddr + Phdr.p_memsz); 480 NextAvailableOffset = std::max(NextAvailableOffset, 481 Phdr.p_offset + Phdr.p_filesz); 482 483 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 484 Phdr.p_memsz, 485 Phdr.p_offset, 486 Phdr.p_filesz, 487 Phdr.p_align}; 488 break; 489 case ELF::PT_INTERP: 490 BC->HasInterpHeader = true; 491 break; 492 } 493 } 494 495 for (const SectionRef &Section : InputFile->sections()) { 496 Expected<StringRef> SectionNameOrErr = Section.getName(); 497 if (Error E = SectionNameOrErr.takeError()) 498 return E; 499 StringRef SectionName = SectionNameOrErr.get(); 500 if (SectionName == ".text") { 501 BC->OldTextSectionAddress = Section.getAddress(); 502 BC->OldTextSectionSize = Section.getSize(); 503 504 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 505 if (Error E = SectionContentsOrErr.takeError()) 506 return E; 507 StringRef SectionContents = SectionContentsOrErr.get(); 508 BC->OldTextSectionOffset = 509 SectionContents.data() - InputFile->getData().data(); 510 } 511 512 if (!opts::HeatmapMode && 513 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 514 (SectionName.startswith(getOrgSecPrefix()) || 515 SectionName == getBOLTTextSectionName())) 516 return createStringError( 517 errc::function_not_supported, 518 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 519 } 520 521 if (!NextAvailableAddress || !NextAvailableOffset) 522 return createStringError(errc::executable_format_error, 523 "no PT_LOAD pheader seen"); 524 525 outs() << "BOLT-INFO: first alloc address is 0x" 526 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 527 528 FirstNonAllocatableOffset = NextAvailableOffset; 529 530 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 531 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 532 533 if (!opts::UseGnuStack) { 534 // This is where the black magic happens. Creating PHDR table in a segment 535 // other than that containing ELF header is tricky. Some loaders and/or 536 // parts of loaders will apply e_phoff from ELF header assuming both are in 537 // the same segment, while others will do the proper calculation. 538 // We create the new PHDR table in such a way that both of the methods 539 // of loading and locating the table work. There's a slight file size 540 // overhead because of that. 541 // 542 // NB: bfd's strip command cannot do the above and will corrupt the 543 // binary during the process of stripping non-allocatable sections. 544 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 545 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 546 else 547 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 548 549 assert(NextAvailableOffset == 550 NextAvailableAddress - BC->FirstAllocAddress && 551 "PHDR table address calculation error"); 552 553 outs() << "BOLT-INFO: creating new program header table at address 0x" 554 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 555 << Twine::utohexstr(NextAvailableOffset) << '\n'; 556 557 PHDRTableAddress = NextAvailableAddress; 558 PHDRTableOffset = NextAvailableOffset; 559 560 // Reserve space for 3 extra pheaders. 561 unsigned Phnum = Obj.getHeader().e_phnum; 562 Phnum += 3; 563 564 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 565 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 566 } 567 568 // Align at cache line. 569 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 570 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 571 572 NewTextSegmentAddress = NextAvailableAddress; 573 NewTextSegmentOffset = NextAvailableOffset; 574 BC->LayoutStartAddress = NextAvailableAddress; 575 576 // Tools such as objcopy can strip section contents but leave header 577 // entries. Check that at least .text is mapped in the file. 578 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 579 return createStringError(errc::executable_format_error, 580 "BOLT-ERROR: input binary is not a valid ELF " 581 "executable as its text section is not " 582 "mapped to a valid segment"); 583 return Error::success(); 584 } 585 586 void RewriteInstance::parseSDTNotes() { 587 if (!SDTSection) 588 return; 589 590 StringRef Buf = SDTSection->getContents(); 591 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 592 BC->AsmInfo->getCodePointerSize()); 593 uint64_t Offset = 0; 594 595 while (DE.isValidOffset(Offset)) { 596 uint32_t NameSz = DE.getU32(&Offset); 597 DE.getU32(&Offset); // skip over DescSz 598 uint32_t Type = DE.getU32(&Offset); 599 Offset = alignTo(Offset, 4); 600 601 if (Type != 3) 602 errs() << "BOLT-WARNING: SDT note type \"" << Type 603 << "\" is not expected\n"; 604 605 if (NameSz == 0) 606 errs() << "BOLT-WARNING: SDT note has empty name\n"; 607 608 StringRef Name = DE.getCStr(&Offset); 609 610 if (!Name.equals("stapsdt")) 611 errs() << "BOLT-WARNING: SDT note name \"" << Name 612 << "\" is not expected\n"; 613 614 // Parse description 615 SDTMarkerInfo Marker; 616 Marker.PCOffset = Offset; 617 Marker.PC = DE.getU64(&Offset); 618 Marker.Base = DE.getU64(&Offset); 619 Marker.Semaphore = DE.getU64(&Offset); 620 Marker.Provider = DE.getCStr(&Offset); 621 Marker.Name = DE.getCStr(&Offset); 622 Marker.Args = DE.getCStr(&Offset); 623 Offset = alignTo(Offset, 4); 624 BC->SDTMarkers[Marker.PC] = Marker; 625 } 626 627 if (opts::PrintSDTMarkers) 628 printSDTMarkers(); 629 } 630 631 void RewriteInstance::parsePseudoProbe() { 632 if (!PseudoProbeDescSection && !PseudoProbeSection) { 633 // pesudo probe is not added to binary. It is normal and no warning needed. 634 return; 635 } 636 637 // If only one section is found, it might mean the ELF is corrupted. 638 if (!PseudoProbeDescSection) { 639 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 640 return; 641 } else if (!PseudoProbeSection) { 642 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 643 return; 644 } 645 646 StringRef Contents = PseudoProbeDescSection->getContents(); 647 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 648 reinterpret_cast<const uint8_t *>(Contents.data()), 649 Contents.size())) { 650 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 651 return; 652 } 653 Contents = PseudoProbeSection->getContents(); 654 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 655 reinterpret_cast<const uint8_t *>(Contents.data()), 656 Contents.size())) { 657 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 658 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 659 return; 660 } 661 662 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 663 opts::PrintPseudoProbes == 664 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 665 outs() << "Report of decoding input pseudo probe binaries \n"; 666 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 667 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 668 } 669 } 670 671 void RewriteInstance::printSDTMarkers() { 672 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 673 << "\n"; 674 for (auto It : BC->SDTMarkers) { 675 SDTMarkerInfo &Marker = It.second; 676 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 677 << ", Base: " << utohexstr(Marker.Base) 678 << ", Semaphore: " << utohexstr(Marker.Semaphore) 679 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 680 << ", Args: " << Marker.Args << "\n"; 681 } 682 } 683 684 void RewriteInstance::parseBuildID() { 685 if (!BuildIDSection) 686 return; 687 688 StringRef Buf = BuildIDSection->getContents(); 689 690 // Reading notes section (see Portable Formats Specification, Version 1.1, 691 // pg 2-5, section "Note Section"). 692 DataExtractor DE = DataExtractor(Buf, true, 8); 693 uint64_t Offset = 0; 694 if (!DE.isValidOffset(Offset)) 695 return; 696 uint32_t NameSz = DE.getU32(&Offset); 697 if (!DE.isValidOffset(Offset)) 698 return; 699 uint32_t DescSz = DE.getU32(&Offset); 700 if (!DE.isValidOffset(Offset)) 701 return; 702 uint32_t Type = DE.getU32(&Offset); 703 704 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 705 << "; Type = " << Type << "\n"); 706 707 // Type 3 is a GNU build-id note section 708 if (Type != 3) 709 return; 710 711 StringRef Name = Buf.slice(Offset, Offset + NameSz); 712 Offset = alignTo(Offset + NameSz, 4); 713 if (Name.substr(0, 3) != "GNU") 714 return; 715 716 BuildID = Buf.slice(Offset, Offset + DescSz); 717 } 718 719 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 720 if (BuildID.empty()) 721 return NoneType(); 722 723 std::string Str; 724 raw_string_ostream OS(Str); 725 const unsigned char *CharIter = BuildID.bytes_begin(); 726 while (CharIter != BuildID.bytes_end()) { 727 if (*CharIter < 0x10) 728 OS << "0"; 729 OS << Twine::utohexstr(*CharIter); 730 ++CharIter; 731 } 732 return OS.str(); 733 } 734 735 void RewriteInstance::patchBuildID() { 736 raw_fd_ostream &OS = Out->os(); 737 738 if (BuildID.empty()) 739 return; 740 741 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 742 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 743 744 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 745 if (!FileOffset) { 746 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 747 return; 748 } 749 750 char LastIDByte = BuildID[BuildID.size() - 1]; 751 LastIDByte ^= 1; 752 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 753 754 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 755 } 756 757 Error RewriteInstance::run() { 758 assert(BC && "failed to create a binary context"); 759 760 outs() << "BOLT-INFO: Target architecture: " 761 << Triple::getArchTypeName( 762 (llvm::Triple::ArchType)InputFile->getArch()) 763 << "\n"; 764 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 765 766 if (Error E = discoverStorage()) 767 return E; 768 readSpecialSections(); 769 adjustCommandLineOptions(); 770 discoverFileObjects(); 771 772 preprocessProfileData(); 773 774 // Skip disassembling if we have a translation table and we are running an 775 // aggregation job. 776 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 777 processProfileData(); 778 return Error::success(); 779 } 780 781 selectFunctionsToProcess(); 782 783 readDebugInfo(); 784 785 disassembleFunctions(); 786 787 processProfileDataPreCFG(); 788 789 buildFunctionsCFG(); 790 791 processProfileData(); 792 793 postProcessFunctions(); 794 795 if (opts::DiffOnly) 796 return Error::success(); 797 798 runOptimizationPasses(); 799 800 emitAndLink(); 801 802 updateMetadata(); 803 804 if (opts::LinuxKernelMode) { 805 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 806 return Error::success(); 807 } else if (opts::OutputFilename == "/dev/null") { 808 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 809 return Error::success(); 810 } 811 812 // Rewrite allocatable contents and copy non-allocatable parts with mods. 813 rewriteFile(); 814 return Error::success(); 815 } 816 817 void RewriteInstance::discoverFileObjects() { 818 NamedRegionTimer T("discoverFileObjects", "discover file objects", 819 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 820 FileSymRefs.clear(); 821 BC->getBinaryFunctions().clear(); 822 BC->clearBinaryData(); 823 824 // For local symbols we want to keep track of associated FILE symbol name for 825 // disambiguation by combined name. 826 StringRef FileSymbolName; 827 bool SeenFileName = false; 828 struct SymbolRefHash { 829 size_t operator()(SymbolRef const &S) const { 830 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 831 } 832 }; 833 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 834 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 835 Expected<StringRef> NameOrError = Symbol.getName(); 836 if (NameOrError && NameOrError->startswith("__asan_init")) { 837 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 838 "support. Cannot optimize.\n"; 839 exit(1); 840 } 841 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 842 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 843 "support. Cannot optimize.\n"; 844 exit(1); 845 } 846 847 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 848 continue; 849 850 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 851 StringRef Name = 852 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 853 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 854 // and this uncertainty is causing havoc in function name matching. 855 if (Name == "ld-temp.o") 856 continue; 857 FileSymbolName = Name; 858 SeenFileName = true; 859 continue; 860 } 861 if (!FileSymbolName.empty() && 862 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 863 SymbolToFileName[Symbol] = FileSymbolName; 864 } 865 866 // Sort symbols in the file by value. Ignore symbols from non-allocatable 867 // sections. 868 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 869 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 870 return false; 871 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 872 return true; 873 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 874 return false; 875 BinarySection Section(*BC, *cantFail(Sym.getSection())); 876 return Section.isAllocatable(); 877 }; 878 std::vector<SymbolRef> SortedFileSymbols; 879 std::copy_if(InputFile->symbol_begin(), InputFile->symbol_end(), 880 std::back_inserter(SortedFileSymbols), isSymbolInMemory); 881 882 std::stable_sort( 883 SortedFileSymbols.begin(), SortedFileSymbols.end(), 884 [](const SymbolRef &A, const SymbolRef &B) { 885 // FUNC symbols have the highest precedence, while SECTIONs 886 // have the lowest. 887 uint64_t AddressA = cantFail(A.getAddress()); 888 uint64_t AddressB = cantFail(B.getAddress()); 889 if (AddressA != AddressB) 890 return AddressA < AddressB; 891 892 SymbolRef::Type AType = cantFail(A.getType()); 893 SymbolRef::Type BType = cantFail(B.getType()); 894 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 895 return true; 896 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 897 return true; 898 899 return false; 900 }); 901 902 // For aarch64, the ABI defines mapping symbols so we identify data in the 903 // code section (see IHI0056B). $d identifies data contents. 904 auto LastSymbol = SortedFileSymbols.end() - 1; 905 if (BC->isAArch64()) { 906 LastSymbol = std::stable_partition( 907 SortedFileSymbols.begin(), SortedFileSymbols.end(), 908 [](const SymbolRef &Symbol) { 909 StringRef Name = cantFail(Symbol.getName()); 910 return !(cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && 911 (Name == "$d" || Name.startswith("$d.") || Name == "$x" || 912 Name.startswith("$x."))); 913 }); 914 --LastSymbol; 915 } 916 917 BinaryFunction *PreviousFunction = nullptr; 918 unsigned AnonymousId = 0; 919 920 const auto MarkersBegin = std::next(LastSymbol); 921 for (auto ISym = SortedFileSymbols.begin(); ISym != MarkersBegin; ++ISym) { 922 const SymbolRef &Symbol = *ISym; 923 // Keep undefined symbols for pretty printing? 924 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 925 continue; 926 927 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 928 929 if (SymbolType == SymbolRef::ST_File) 930 continue; 931 932 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 933 uint64_t Address = 934 cantFail(Symbol.getAddress(), "cannot get symbol address"); 935 if (Address == 0) { 936 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 937 errs() << "BOLT-WARNING: function with 0 address seen\n"; 938 continue; 939 } 940 941 // Ignore input hot markers 942 if (SymName == "__hot_start" || SymName == "__hot_end") 943 continue; 944 945 FileSymRefs[Address] = Symbol; 946 947 // Skip section symbols that will be registered by disassemblePLT(). 948 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 949 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 950 if (BSection && getPLTSectionInfo(BSection->getName())) 951 continue; 952 } 953 954 /// It is possible we are seeing a globalized local. LLVM might treat it as 955 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 956 /// change the prefix to enforce global scope of the symbol. 957 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 958 ? "PG" + std::string(SymName) 959 : std::string(SymName); 960 961 // Disambiguate all local symbols before adding to symbol table. 962 // Since we don't know if we will see a global with the same name, 963 // always modify the local name. 964 // 965 // NOTE: the naming convention for local symbols should match 966 // the one we use for profile data. 967 std::string UniqueName; 968 std::string AlternativeName; 969 if (Name.empty()) { 970 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 971 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 972 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 973 UniqueName = Name; 974 } else { 975 // If we have a local file name, we should create 2 variants for the 976 // function name. The reason is that perf profile might have been 977 // collected on a binary that did not have the local file name (e.g. as 978 // a side effect of stripping debug info from the binary): 979 // 980 // primary: <function>/<id> 981 // alternative: <function>/<file>/<id2> 982 // 983 // The <id> field is used for disambiguation of local symbols since there 984 // could be identical function names coming from identical file names 985 // (e.g. from different directories). 986 std::string AltPrefix; 987 auto SFI = SymbolToFileName.find(Symbol); 988 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 989 AltPrefix = Name + "/" + std::string(SFI->second); 990 991 UniqueName = NR.uniquify(Name); 992 if (!AltPrefix.empty()) 993 AlternativeName = NR.uniquify(AltPrefix); 994 } 995 996 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 997 uint64_t SymbolAlignment = Symbol.getAlignment(); 998 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 999 1000 auto registerName = [&](uint64_t FinalSize) { 1001 // Register names even if it's not a function, e.g. for an entry point. 1002 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1003 SymbolFlags); 1004 if (!AlternativeName.empty()) 1005 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1006 SymbolAlignment, SymbolFlags); 1007 }; 1008 1009 section_iterator Section = 1010 cantFail(Symbol.getSection(), "cannot get symbol section"); 1011 if (Section == InputFile->section_end()) { 1012 // Could be an absolute symbol. Could record for pretty printing. 1013 LLVM_DEBUG(if (opts::Verbosity > 1) { 1014 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1015 }); 1016 registerName(SymbolSize); 1017 continue; 1018 } 1019 1020 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1021 << " for function\n"); 1022 1023 if (!Section->isText()) { 1024 assert(SymbolType != SymbolRef::ST_Function && 1025 "unexpected function inside non-code section"); 1026 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1027 registerName(SymbolSize); 1028 continue; 1029 } 1030 1031 // Assembly functions could be ST_NONE with 0 size. Check that the 1032 // corresponding section is a code section and they are not inside any 1033 // other known function to consider them. 1034 // 1035 // Sometimes assembly functions are not marked as functions and neither are 1036 // their local labels. The only way to tell them apart is to look at 1037 // symbol scope - global vs local. 1038 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1039 if (PreviousFunction->containsAddress(Address)) { 1040 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1041 LLVM_DEBUG(dbgs() 1042 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1043 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1044 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1045 } else if (opts::Verbosity > 1) { 1046 errs() << "BOLT-WARNING: symbol " << UniqueName 1047 << " seen in the middle of function " << *PreviousFunction 1048 << ". Could be a new entry.\n"; 1049 } 1050 registerName(SymbolSize); 1051 continue; 1052 } else if (PreviousFunction->getSize() == 0 && 1053 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1054 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1055 registerName(SymbolSize); 1056 continue; 1057 } 1058 } 1059 1060 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1061 PreviousFunction->getAddress() != Address) { 1062 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1063 if (opts::Verbosity >= 1) 1064 outs() << "BOLT-INFO: skipping possibly another entry for function " 1065 << *PreviousFunction << " : " << UniqueName << '\n'; 1066 } else { 1067 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1068 << "function " << *PreviousFunction << '\n'; 1069 1070 registerName(0); 1071 1072 PreviousFunction->addEntryPointAtOffset(Address - 1073 PreviousFunction->getAddress()); 1074 1075 // Remove the symbol from FileSymRefs so that we can skip it from 1076 // in the future. 1077 auto SI = FileSymRefs.find(Address); 1078 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1079 assert(SI->second == Symbol && "wrong symbol found"); 1080 FileSymRefs.erase(SI); 1081 } 1082 registerName(SymbolSize); 1083 continue; 1084 } 1085 1086 // Checkout for conflicts with function data from FDEs. 1087 bool IsSimple = true; 1088 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1089 if (FDEI != CFIRdWrt->getFDEs().end()) { 1090 const dwarf::FDE &FDE = *FDEI->second; 1091 if (FDEI->first != Address) { 1092 // There's no matching starting address in FDE. Make sure the previous 1093 // FDE does not contain this address. 1094 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1095 --FDEI; 1096 const dwarf::FDE &PrevFDE = *FDEI->second; 1097 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1098 uint64_t PrevLength = PrevFDE.getAddressRange(); 1099 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1100 errs() << "BOLT-ERROR: function " << UniqueName 1101 << " is in conflict with FDE [" 1102 << Twine::utohexstr(PrevStart) << ", " 1103 << Twine::utohexstr(PrevStart + PrevLength) 1104 << "). Skipping.\n"; 1105 IsSimple = false; 1106 } 1107 } 1108 } else if (FDE.getAddressRange() != SymbolSize) { 1109 if (SymbolSize) { 1110 // Function addresses match but sizes differ. 1111 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1112 << ". FDE : " << FDE.getAddressRange() 1113 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1114 } 1115 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1116 if (BC->getBinaryDataAtAddress(Address)) { 1117 BC->setBinaryDataSize(Address, SymbolSize); 1118 } else { 1119 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1120 << Twine::utohexstr(Address) << "\n"); 1121 } 1122 } 1123 } 1124 1125 BinaryFunction *BF = nullptr; 1126 // Since function may not have yet obtained its real size, do a search 1127 // using the list of registered functions instead of calling 1128 // getBinaryFunctionAtAddress(). 1129 auto BFI = BC->getBinaryFunctions().find(Address); 1130 if (BFI != BC->getBinaryFunctions().end()) { 1131 BF = &BFI->second; 1132 // Duplicate the function name. Make sure everything matches before we add 1133 // an alternative name. 1134 if (SymbolSize != BF->getSize()) { 1135 if (opts::Verbosity >= 1) { 1136 if (SymbolSize && BF->getSize()) 1137 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1138 << *BF << " and " << UniqueName << '\n'; 1139 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1140 << BF->getSize() << " new " << SymbolSize << "\n"; 1141 } 1142 BF->setSize(std::max(SymbolSize, BF->getSize())); 1143 BC->setBinaryDataSize(Address, BF->getSize()); 1144 } 1145 BF->addAlternativeName(UniqueName); 1146 } else { 1147 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1148 // Skip symbols from invalid sections 1149 if (!Section) { 1150 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1151 << Twine::utohexstr(Address) << ") does not have any section\n"; 1152 continue; 1153 } 1154 assert(Section && "section for functions must be registered"); 1155 1156 // Skip symbols from zero-sized sections. 1157 if (!Section->getSize()) 1158 continue; 1159 1160 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1161 if (!IsSimple) 1162 BF->setSimple(false); 1163 } 1164 if (!AlternativeName.empty()) 1165 BF->addAlternativeName(AlternativeName); 1166 1167 registerName(SymbolSize); 1168 PreviousFunction = BF; 1169 } 1170 1171 // Read dynamic relocation first as their presence affects the way we process 1172 // static relocations. E.g. we will ignore a static relocation at an address 1173 // that is a subject to dynamic relocation processing. 1174 processDynamicRelocations(); 1175 1176 // Process PLT section. 1177 disassemblePLT(); 1178 1179 // See if we missed any functions marked by FDE. 1180 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1181 const uint64_t Address = FDEI.first; 1182 const dwarf::FDE *FDE = FDEI.second; 1183 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1184 if (BF) 1185 continue; 1186 1187 BF = BC->getBinaryFunctionContainingAddress(Address); 1188 if (BF) { 1189 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1190 << Twine::utohexstr(Address + FDE->getAddressRange()) 1191 << ") conflicts with function " << *BF << '\n'; 1192 continue; 1193 } 1194 1195 if (opts::Verbosity >= 1) 1196 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1197 << Twine::utohexstr(Address + FDE->getAddressRange()) 1198 << ") has no corresponding symbol table entry\n"; 1199 1200 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1201 assert(Section && "cannot get section for address from FDE"); 1202 std::string FunctionName = 1203 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1204 BC->createBinaryFunction(FunctionName, *Section, Address, 1205 FDE->getAddressRange()); 1206 } 1207 1208 BC->setHasSymbolsWithFileName(SeenFileName); 1209 1210 // Now that all the functions were created - adjust their boundaries. 1211 adjustFunctionBoundaries(); 1212 1213 // Annotate functions with code/data markers in AArch64 1214 for (auto ISym = MarkersBegin; ISym != SortedFileSymbols.end(); ++ISym) { 1215 const SymbolRef &Symbol = *ISym; 1216 uint64_t Address = 1217 cantFail(Symbol.getAddress(), "cannot get symbol address"); 1218 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1219 BinaryFunction *BF = 1220 BC->getBinaryFunctionContainingAddress(Address, true, true); 1221 if (!BF) { 1222 // Stray marker 1223 continue; 1224 } 1225 const uint64_t EntryOffset = Address - BF->getAddress(); 1226 if (BF->isCodeMarker(Symbol, SymbolSize)) { 1227 BF->markCodeAtOffset(EntryOffset); 1228 continue; 1229 } 1230 if (BF->isDataMarker(Symbol, SymbolSize)) { 1231 BF->markDataAtOffset(EntryOffset); 1232 BC->AddressToConstantIslandMap[Address] = BF; 1233 continue; 1234 } 1235 llvm_unreachable("Unknown marker"); 1236 } 1237 1238 if (opts::LinuxKernelMode) { 1239 // Read all special linux kernel sections and their relocations 1240 processLKSections(); 1241 } else { 1242 // Read all relocations now that we have binary functions mapped. 1243 processRelocations(); 1244 } 1245 } 1246 1247 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1248 uint64_t EntryAddress, 1249 uint64_t EntrySize) { 1250 if (!TargetAddress) 1251 return; 1252 1253 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1254 if (!Rel || !Rel->Symbol) 1255 return; 1256 1257 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1258 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1259 assert(Section && "cannot get section for address"); 1260 BinaryFunction *BF = BC->createBinaryFunction( 1261 Rel->Symbol->getName().str() + "@PLT", *Section, EntryAddress, 0, 1262 EntrySize, Section->getAlignment()); 1263 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1264 Rel->Symbol->getName().str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1265 BF->setPLTSymbol(TargetSymbol); 1266 } 1267 1268 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1269 const uint64_t SectionAddress = Section.getAddress(); 1270 const uint64_t SectionSize = Section.getSize(); 1271 StringRef PLTContents = Section.getContents(); 1272 ArrayRef<uint8_t> PLTData( 1273 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1274 1275 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1276 uint64_t &InstrSize) { 1277 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1278 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1279 PLTData.slice(InstrOffset), InstrAddr, 1280 nulls())) { 1281 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1282 << Section.getName() << " at offset 0x" 1283 << Twine::utohexstr(InstrOffset) << '\n'; 1284 exit(1); 1285 } 1286 }; 1287 1288 uint64_t InstrOffset = 0; 1289 // Locate new plt entry 1290 while (InstrOffset < SectionSize) { 1291 InstructionListType Instructions; 1292 MCInst Instruction; 1293 uint64_t EntryOffset = InstrOffset; 1294 uint64_t EntrySize = 0; 1295 uint64_t InstrSize; 1296 // Loop through entry instructions 1297 while (InstrOffset < SectionSize) { 1298 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1299 EntrySize += InstrSize; 1300 if (!BC->MIB->isIndirectBranch(Instruction)) { 1301 Instructions.emplace_back(Instruction); 1302 InstrOffset += InstrSize; 1303 continue; 1304 } 1305 1306 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1307 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1308 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1309 1310 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1311 break; 1312 } 1313 1314 // Branch instruction 1315 InstrOffset += InstrSize; 1316 1317 // Skip nops if any 1318 while (InstrOffset < SectionSize) { 1319 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1320 if (!BC->MIB->isNoop(Instruction)) 1321 break; 1322 1323 InstrOffset += InstrSize; 1324 } 1325 } 1326 } 1327 1328 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1329 uint64_t EntrySize) { 1330 const uint64_t SectionAddress = Section.getAddress(); 1331 const uint64_t SectionSize = Section.getSize(); 1332 StringRef PLTContents = Section.getContents(); 1333 ArrayRef<uint8_t> PLTData( 1334 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1335 1336 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1337 uint64_t &InstrSize) { 1338 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1339 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1340 PLTData.slice(InstrOffset), InstrAddr, 1341 nulls())) { 1342 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1343 << Section.getName() << " at offset 0x" 1344 << Twine::utohexstr(InstrOffset) << '\n'; 1345 exit(1); 1346 } 1347 }; 1348 1349 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1350 EntryOffset += EntrySize) { 1351 MCInst Instruction; 1352 uint64_t InstrSize, InstrOffset = EntryOffset; 1353 while (InstrOffset < EntryOffset + EntrySize) { 1354 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1355 // Check if the entry size needs adjustment. 1356 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1357 EntrySize == 8) 1358 EntrySize = 16; 1359 1360 if (BC->MIB->isIndirectBranch(Instruction)) 1361 break; 1362 1363 InstrOffset += InstrSize; 1364 } 1365 1366 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1367 continue; 1368 1369 uint64_t TargetAddress; 1370 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1371 SectionAddress + InstrOffset, 1372 InstrSize)) { 1373 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1374 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1375 exit(1); 1376 } 1377 1378 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1379 EntrySize); 1380 } 1381 } 1382 1383 void RewriteInstance::disassemblePLT() { 1384 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1385 if (BC->isAArch64()) 1386 return disassemblePLTSectionAArch64(Section); 1387 return disassemblePLTSectionX86(Section, EntrySize); 1388 }; 1389 1390 for (BinarySection &Section : BC->allocatableSections()) { 1391 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1392 if (!PLTSI) 1393 continue; 1394 1395 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1396 // If we did not register any function at the start of the section, 1397 // then it must be a general PLT entry. Add a function at the location. 1398 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1399 BC->getBinaryFunctions().end()) { 1400 BinaryFunction *BF = BC->createBinaryFunction( 1401 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1402 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1403 BF->setPseudo(true); 1404 } 1405 } 1406 } 1407 1408 void RewriteInstance::adjustFunctionBoundaries() { 1409 for (auto BFI = BC->getBinaryFunctions().begin(), 1410 BFE = BC->getBinaryFunctions().end(); 1411 BFI != BFE; ++BFI) { 1412 BinaryFunction &Function = BFI->second; 1413 const BinaryFunction *NextFunction = nullptr; 1414 if (std::next(BFI) != BFE) 1415 NextFunction = &std::next(BFI)->second; 1416 1417 // Check if it's a fragment of a function. 1418 Optional<StringRef> FragName = 1419 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1420 if (FragName) { 1421 static bool PrintedWarning = false; 1422 if (BC->HasRelocations && !PrintedWarning) { 1423 errs() << "BOLT-WARNING: split function detected on input : " 1424 << *FragName << ". The support is limited in relocation mode.\n"; 1425 PrintedWarning = true; 1426 } 1427 Function.IsFragment = true; 1428 } 1429 1430 // Check if there's a symbol or a function with a larger address in the 1431 // same section. If there is - it determines the maximum size for the 1432 // current function. Otherwise, it is the size of a containing section 1433 // the defines it. 1434 // 1435 // NOTE: ignore some symbols that could be tolerated inside the body 1436 // of a function. 1437 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1438 while (NextSymRefI != FileSymRefs.end()) { 1439 SymbolRef &Symbol = NextSymRefI->second; 1440 const uint64_t SymbolAddress = NextSymRefI->first; 1441 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1442 1443 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1444 break; 1445 1446 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1447 break; 1448 1449 // This is potentially another entry point into the function. 1450 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1451 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1452 << Function << " at offset 0x" 1453 << Twine::utohexstr(EntryOffset) << '\n'); 1454 Function.addEntryPointAtOffset(EntryOffset); 1455 1456 ++NextSymRefI; 1457 } 1458 1459 // Function runs at most till the end of the containing section. 1460 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1461 // Or till the next object marked by a symbol. 1462 if (NextSymRefI != FileSymRefs.end()) 1463 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1464 1465 // Or till the next function not marked by a symbol. 1466 if (NextFunction) 1467 NextObjectAddress = 1468 std::min(NextFunction->getAddress(), NextObjectAddress); 1469 1470 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1471 if (MaxSize < Function.getSize()) { 1472 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1473 << Function << ". Skipping.\n"; 1474 Function.setSimple(false); 1475 Function.setMaxSize(Function.getSize()); 1476 continue; 1477 } 1478 Function.setMaxSize(MaxSize); 1479 if (!Function.getSize() && Function.isSimple()) { 1480 // Some assembly functions have their size set to 0, use the max 1481 // size as their real size. 1482 if (opts::Verbosity >= 1) 1483 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1484 << Function.getMaxSize() << " (was 0)\n"; 1485 Function.setSize(Function.getMaxSize()); 1486 } 1487 } 1488 } 1489 1490 void RewriteInstance::relocateEHFrameSection() { 1491 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1492 1493 DWARFDataExtractor DE(EHFrameSection->getContents(), 1494 BC->AsmInfo->isLittleEndian(), 1495 BC->AsmInfo->getCodePointerSize()); 1496 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1497 if (DwarfType == dwarf::DW_EH_PE_omit) 1498 return; 1499 1500 // Only fix references that are relative to other locations. 1501 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1502 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1503 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1504 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1505 return; 1506 1507 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1508 return; 1509 1510 uint64_t RelType; 1511 switch (DwarfType & 0x0f) { 1512 default: 1513 llvm_unreachable("unsupported DWARF encoding type"); 1514 case dwarf::DW_EH_PE_sdata4: 1515 case dwarf::DW_EH_PE_udata4: 1516 RelType = Relocation::getPC32(); 1517 Offset -= 4; 1518 break; 1519 case dwarf::DW_EH_PE_sdata8: 1520 case dwarf::DW_EH_PE_udata8: 1521 RelType = Relocation::getPC64(); 1522 Offset -= 8; 1523 break; 1524 } 1525 1526 // Create a relocation against an absolute value since the goal is to 1527 // preserve the contents of the section independent of the new values 1528 // of referenced symbols. 1529 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1530 }; 1531 1532 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1533 check_error(std::move(E), "failed to patch EH frame"); 1534 } 1535 1536 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1537 return ArrayRef<uint8_t>(LSDASection->getData(), 1538 LSDASection->getContents().size()); 1539 } 1540 1541 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1542 1543 void RewriteInstance::readSpecialSections() { 1544 NamedRegionTimer T("readSpecialSections", "read special sections", 1545 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1546 1547 bool HasTextRelocations = false; 1548 bool HasDebugInfo = false; 1549 1550 // Process special sections. 1551 for (const SectionRef &Section : InputFile->sections()) { 1552 Expected<StringRef> SectionNameOrErr = Section.getName(); 1553 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1554 StringRef SectionName = *SectionNameOrErr; 1555 1556 // Only register sections with names. 1557 if (!SectionName.empty()) { 1558 BC->registerSection(Section); 1559 LLVM_DEBUG( 1560 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1561 << Twine::utohexstr(Section.getAddress()) << ":0x" 1562 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1563 << "\n"); 1564 if (isDebugSection(SectionName)) 1565 HasDebugInfo = true; 1566 if (isKSymtabSection(SectionName)) 1567 opts::LinuxKernelMode = true; 1568 } 1569 } 1570 1571 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1572 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1573 "Use -update-debug-sections to keep it.\n"; 1574 } 1575 1576 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1577 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1578 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1579 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1580 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1581 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1582 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1583 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1584 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1585 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1586 1587 if (ErrorOr<BinarySection &> BATSec = 1588 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1589 // Do not read BAT when plotting a heatmap 1590 if (!opts::HeatmapMode) { 1591 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1592 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1593 "table.\n"; 1594 exit(1); 1595 } 1596 } 1597 } 1598 1599 if (opts::PrintSections) { 1600 outs() << "BOLT-INFO: Sections from original binary:\n"; 1601 BC->printSections(outs()); 1602 } 1603 1604 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1605 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1606 "file. Cannot proceed in relocations mode (-relocs).\n"; 1607 exit(1); 1608 } 1609 1610 BC->HasRelocations = 1611 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1612 1613 // Force non-relocation mode for heatmap generation 1614 if (opts::HeatmapMode) 1615 BC->HasRelocations = false; 1616 1617 if (BC->HasRelocations) 1618 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1619 << "relocation mode\n"; 1620 1621 // Read EH frame for function boundaries info. 1622 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1623 if (!EHFrameOrError) 1624 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1625 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1626 1627 // Parse build-id 1628 parseBuildID(); 1629 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1630 BC->setFileBuildID(*FileBuildID); 1631 1632 parseSDTNotes(); 1633 1634 // Read .dynamic/PT_DYNAMIC. 1635 readELFDynamic(); 1636 } 1637 1638 void RewriteInstance::adjustCommandLineOptions() { 1639 if (BC->isAArch64() && !BC->HasRelocations) 1640 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1641 "supported\n"; 1642 1643 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1644 RtLibrary->adjustCommandLineOptions(*BC); 1645 1646 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1647 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1648 opts::AlignMacroOpFusion = MFT_NONE; 1649 } 1650 1651 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1652 if (!BC->HasRelocations) { 1653 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1654 "non-relocation mode\n"; 1655 exit(1); 1656 } 1657 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1658 "may take several minutes\n"; 1659 opts::AlignMacroOpFusion = MFT_NONE; 1660 } 1661 1662 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1663 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1664 "mode\n"; 1665 opts::AlignMacroOpFusion = MFT_NONE; 1666 } 1667 1668 if (opts::SplitEH && !BC->HasRelocations) { 1669 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1670 opts::SplitEH = false; 1671 } 1672 1673 if (opts::SplitEH && !BC->HasFixedLoadAddress) { 1674 errs() << "BOLT-WARNING: disabling -split-eh for shared object\n"; 1675 opts::SplitEH = false; 1676 } 1677 1678 if (opts::StrictMode && !BC->HasRelocations) { 1679 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1680 "mode\n"; 1681 opts::StrictMode = false; 1682 } 1683 1684 if (BC->HasRelocations && opts::AggregateOnly && 1685 !opts::StrictMode.getNumOccurrences()) { 1686 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1687 "purposes\n"; 1688 opts::StrictMode = true; 1689 } 1690 1691 if (BC->isX86() && BC->HasRelocations && 1692 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1693 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1694 "was specified\n"; 1695 opts::AlignMacroOpFusion = MFT_ALL; 1696 } 1697 1698 if (!BC->HasRelocations && 1699 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1700 errs() << "BOLT-ERROR: function reordering only works when " 1701 << "relocations are enabled\n"; 1702 exit(1); 1703 } 1704 1705 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1706 !opts::HotText.getNumOccurrences()) { 1707 opts::HotText = true; 1708 } else if (opts::HotText && !BC->HasRelocations) { 1709 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1710 opts::HotText = false; 1711 } 1712 1713 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1714 opts::HotTextMoveSections.addValue(".stub"); 1715 opts::HotTextMoveSections.addValue(".mover"); 1716 opts::HotTextMoveSections.addValue(".never_hugify"); 1717 } 1718 1719 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1720 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1721 "\n"; 1722 opts::UseOldText = false; 1723 } 1724 if (opts::UseOldText && !BC->HasRelocations) { 1725 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1726 opts::UseOldText = false; 1727 } 1728 1729 if (!opts::AlignText.getNumOccurrences()) 1730 opts::AlignText = BC->PageAlign; 1731 1732 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1733 !opts::UseOldText) 1734 opts::Lite = true; 1735 1736 if (opts::Lite && opts::UseOldText) { 1737 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1738 "Disabling -use-old-text.\n"; 1739 opts::UseOldText = false; 1740 } 1741 1742 if (opts::Lite && opts::StrictMode) { 1743 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1744 exit(1); 1745 } 1746 1747 if (opts::Lite) 1748 outs() << "BOLT-INFO: enabling lite mode\n"; 1749 1750 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1751 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1752 "file processed by BOLT. Please remove -w option and use branch " 1753 "profile.\n"; 1754 exit(1); 1755 } 1756 } 1757 1758 namespace { 1759 template <typename ELFT> 1760 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1761 const RelocationRef &RelRef) { 1762 using ELFShdrTy = typename ELFT::Shdr; 1763 using Elf_Rela = typename ELFT::Rela; 1764 int64_t Addend = 0; 1765 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1766 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1767 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1768 switch (RelocationSection->sh_type) { 1769 default: 1770 llvm_unreachable("unexpected relocation section type"); 1771 case ELF::SHT_REL: 1772 break; 1773 case ELF::SHT_RELA: { 1774 const Elf_Rela *RelA = Obj->getRela(Rel); 1775 Addend = RelA->r_addend; 1776 break; 1777 } 1778 } 1779 1780 return Addend; 1781 } 1782 1783 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1784 const RelocationRef &Rel) { 1785 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1786 return getRelocationAddend(ELF32LE, Rel); 1787 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1788 return getRelocationAddend(ELF64LE, Rel); 1789 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1790 return getRelocationAddend(ELF32BE, Rel); 1791 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1792 return getRelocationAddend(ELF64BE, Rel); 1793 } 1794 1795 template <typename ELFT> 1796 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1797 const RelocationRef &RelRef) { 1798 using ELFShdrTy = typename ELFT::Shdr; 1799 uint32_t Symbol = 0; 1800 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1801 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1802 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1803 switch (RelocationSection->sh_type) { 1804 default: 1805 llvm_unreachable("unexpected relocation section type"); 1806 case ELF::SHT_REL: 1807 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1808 break; 1809 case ELF::SHT_RELA: 1810 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1811 break; 1812 } 1813 1814 return Symbol; 1815 } 1816 1817 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1818 const RelocationRef &Rel) { 1819 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1820 return getRelocationSymbol(ELF32LE, Rel); 1821 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1822 return getRelocationSymbol(ELF64LE, Rel); 1823 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1824 return getRelocationSymbol(ELF32BE, Rel); 1825 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1826 return getRelocationSymbol(ELF64BE, Rel); 1827 } 1828 } // anonymous namespace 1829 1830 bool RewriteInstance::analyzeRelocation( 1831 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1832 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1833 uint64_t &ExtractedValue, bool &Skip) const { 1834 Skip = false; 1835 if (!Relocation::isSupported(RType)) 1836 return false; 1837 1838 const bool IsAArch64 = BC->isAArch64(); 1839 1840 const size_t RelSize = Relocation::getSizeForType(RType); 1841 1842 ErrorOr<uint64_t> Value = 1843 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1844 assert(Value && "failed to extract relocated value"); 1845 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1846 return true; 1847 1848 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1849 Addend = getRelocationAddend(InputFile, Rel); 1850 1851 const bool IsPCRelative = Relocation::isPCRelative(RType); 1852 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1853 bool SkipVerification = false; 1854 auto SymbolIter = Rel.getSymbol(); 1855 if (SymbolIter == InputFile->symbol_end()) { 1856 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1857 MCSymbol *RelSymbol = 1858 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1859 SymbolName = std::string(RelSymbol->getName()); 1860 IsSectionRelocation = false; 1861 } else { 1862 const SymbolRef &Symbol = *SymbolIter; 1863 SymbolName = std::string(cantFail(Symbol.getName())); 1864 SymbolAddress = cantFail(Symbol.getAddress()); 1865 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1866 // Section symbols are marked as ST_Debug. 1867 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1868 // Check for PLT entry registered with symbol name 1869 if (!SymbolAddress && IsAArch64) { 1870 BinaryData *BD = BC->getBinaryDataByName(SymbolName + "@PLT"); 1871 SymbolAddress = BD ? BD->getAddress() : 0; 1872 } 1873 } 1874 // For PIE or dynamic libs, the linker may choose not to put the relocation 1875 // result at the address if it is a X86_64_64 one because it will emit a 1876 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1877 // resolve it at run time. The static relocation result goes as the addend 1878 // of the dynamic relocation in this case. We can't verify these cases. 1879 // FIXME: perhaps we can try to find if it really emitted a corresponding 1880 // RELATIVE relocation at this offset with the correct value as the addend. 1881 if (!BC->HasFixedLoadAddress && RelSize == 8) 1882 SkipVerification = true; 1883 1884 if (IsSectionRelocation && !IsAArch64) { 1885 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1886 assert(Section && "section expected for section relocation"); 1887 SymbolName = "section " + std::string(Section->getName()); 1888 // Convert section symbol relocations to regular relocations inside 1889 // non-section symbols. 1890 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1891 SymbolAddress = ExtractedValue; 1892 Addend = 0; 1893 } else { 1894 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1895 } 1896 } 1897 1898 // If no symbol has been found or if it is a relocation requiring the 1899 // creation of a GOT entry, do not link against the symbol but against 1900 // whatever address was extracted from the instruction itself. We are 1901 // not creating a GOT entry as this was already processed by the linker. 1902 // For GOT relocs, do not subtract addend as the addend does not refer 1903 // to this instruction's target, but it refers to the target in the GOT 1904 // entry. 1905 if (Relocation::isGOT(RType)) { 1906 Addend = 0; 1907 SymbolAddress = ExtractedValue + PCRelOffset; 1908 } else if (Relocation::isTLS(RType)) { 1909 SkipVerification = true; 1910 } else if (!SymbolAddress) { 1911 assert(!IsSectionRelocation); 1912 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1913 SymbolAddress = 1914 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1915 } else { 1916 // This is weird case. The extracted value is zero but the addend is 1917 // non-zero and the relocation is not pc-rel. Using the previous logic, 1918 // the SymbolAddress would end up as a huge number. Seen in 1919 // exceptions_pic.test. 1920 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1921 << Twine::utohexstr(Rel.getOffset()) 1922 << " value does not match addend for " 1923 << "relocation to undefined symbol.\n"); 1924 return true; 1925 } 1926 } 1927 1928 auto verifyExtractedValue = [&]() { 1929 if (SkipVerification) 1930 return true; 1931 1932 if (IsAArch64) 1933 return true; 1934 1935 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1936 return true; 1937 1938 if (RType == ELF::R_X86_64_PLT32) 1939 return true; 1940 1941 return truncateToSize(ExtractedValue, RelSize) == 1942 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1943 }; 1944 1945 (void)verifyExtractedValue; 1946 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1947 1948 return true; 1949 } 1950 1951 void RewriteInstance::processDynamicRelocations() { 1952 // Read relocations for PLT - DT_JMPREL. 1953 if (PLTRelocationsSize > 0) { 1954 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1955 BC->getSectionForAddress(*PLTRelocationsAddress); 1956 if (!PLTRelSectionOrErr) 1957 report_error("unable to find section corresponding to DT_JMPREL", 1958 PLTRelSectionOrErr.getError()); 1959 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1960 report_error("section size mismatch for DT_PLTRELSZ", 1961 errc::executable_format_error); 1962 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1963 /*IsJmpRel*/ true); 1964 } 1965 1966 // The rest of dynamic relocations - DT_RELA. 1967 if (DynamicRelocationsSize > 0) { 1968 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1969 BC->getSectionForAddress(*DynamicRelocationsAddress); 1970 if (!DynamicRelSectionOrErr) 1971 report_error("unable to find section corresponding to DT_RELA", 1972 DynamicRelSectionOrErr.getError()); 1973 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1974 report_error("section size mismatch for DT_RELASZ", 1975 errc::executable_format_error); 1976 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1977 /*IsJmpRel*/ false); 1978 } 1979 } 1980 1981 void RewriteInstance::processRelocations() { 1982 if (!BC->HasRelocations) 1983 return; 1984 1985 for (const SectionRef &Section : InputFile->sections()) { 1986 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 1987 !BinarySection(*BC, Section).isAllocatable()) 1988 readRelocations(Section); 1989 } 1990 1991 if (NumFailedRelocations) 1992 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 1993 << " relocations\n"; 1994 } 1995 1996 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 1997 int32_t PCRelativeOffset, 1998 bool IsPCRelative, StringRef SectionName) { 1999 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2000 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2001 } 2002 2003 void RewriteInstance::processLKSections() { 2004 assert(opts::LinuxKernelMode && 2005 "process Linux Kernel special sections and their relocations only in " 2006 "linux kernel mode.\n"); 2007 2008 processLKExTable(); 2009 processLKPCIFixup(); 2010 processLKKSymtab(); 2011 processLKKSymtab(true); 2012 processLKBugTable(); 2013 processLKSMPLocks(); 2014 } 2015 2016 /// Process __ex_table section of Linux Kernel. 2017 /// This section contains information regarding kernel level exception 2018 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2019 /// More documentation is in arch/x86/include/asm/extable.h. 2020 /// 2021 /// The section is the list of the following structures: 2022 /// 2023 /// struct exception_table_entry { 2024 /// int insn; 2025 /// int fixup; 2026 /// int handler; 2027 /// }; 2028 /// 2029 void RewriteInstance::processLKExTable() { 2030 ErrorOr<BinarySection &> SectionOrError = 2031 BC->getUniqueSectionByName("__ex_table"); 2032 if (!SectionOrError) 2033 return; 2034 2035 const uint64_t SectionSize = SectionOrError->getSize(); 2036 const uint64_t SectionAddress = SectionOrError->getAddress(); 2037 assert((SectionSize % 12) == 0 && 2038 "The size of the __ex_table section should be a multiple of 12"); 2039 for (uint64_t I = 0; I < SectionSize; I += 4) { 2040 const uint64_t EntryAddress = SectionAddress + I; 2041 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2042 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2043 int32_t SignedOffset = *Offset; 2044 const uint64_t RefAddress = EntryAddress + SignedOffset; 2045 2046 BinaryFunction *ContainingBF = 2047 BC->getBinaryFunctionContainingAddress(RefAddress); 2048 if (!ContainingBF) 2049 continue; 2050 2051 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2052 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2053 switch (I % 12) { 2054 default: 2055 llvm_unreachable("bad alignment of __ex_table"); 2056 break; 2057 case 0: 2058 // insn 2059 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2060 break; 2061 case 4: 2062 // fixup 2063 if (FunctionOffset) 2064 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2065 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2066 0, *Offset); 2067 break; 2068 case 8: 2069 // handler 2070 assert(!FunctionOffset && 2071 "__ex_table handler entry should point to function start"); 2072 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2073 0, *Offset); 2074 break; 2075 } 2076 } 2077 } 2078 2079 /// Process .pci_fixup section of Linux Kernel. 2080 /// This section contains a list of entries for different PCI devices and their 2081 /// corresponding hook handler (code pointer where the fixup 2082 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2083 /// Documentation is in include/linux/pci.h. 2084 void RewriteInstance::processLKPCIFixup() { 2085 ErrorOr<BinarySection &> SectionOrError = 2086 BC->getUniqueSectionByName(".pci_fixup"); 2087 assert(SectionOrError && 2088 ".pci_fixup section not found in Linux Kernel binary"); 2089 const uint64_t SectionSize = SectionOrError->getSize(); 2090 const uint64_t SectionAddress = SectionOrError->getAddress(); 2091 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2092 2093 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2094 const uint64_t PC = SectionAddress + I; 2095 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2096 assert(Offset && "cannot read value from .pci_fixup"); 2097 const int32_t SignedOffset = *Offset; 2098 const uint64_t HookupAddress = PC + SignedOffset; 2099 BinaryFunction *HookupFunction = 2100 BC->getBinaryFunctionAtAddress(HookupAddress); 2101 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2102 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2103 *Offset); 2104 } 2105 } 2106 2107 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2108 /// This section lists all the vmlinux symbols that kernel modules can access. 2109 /// 2110 /// All the entries are 4 bytes each and hence we can read them by one by one 2111 /// and ignore the ones that are not pointing to the .text section. All pointers 2112 /// are PC relative offsets. Always, points to the beginning of the function. 2113 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2114 StringRef SectionName = "__ksymtab"; 2115 if (IsGPL) 2116 SectionName = "__ksymtab_gpl"; 2117 ErrorOr<BinarySection &> SectionOrError = 2118 BC->getUniqueSectionByName(SectionName); 2119 assert(SectionOrError && 2120 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2121 const uint64_t SectionSize = SectionOrError->getSize(); 2122 const uint64_t SectionAddress = SectionOrError->getAddress(); 2123 assert((SectionSize % 4) == 0 && 2124 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2125 2126 for (uint64_t I = 0; I < SectionSize; I += 4) { 2127 const uint64_t EntryAddress = SectionAddress + I; 2128 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2129 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2130 const int32_t SignedOffset = *Offset; 2131 const uint64_t RefAddress = EntryAddress + SignedOffset; 2132 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2133 if (!BF) 2134 continue; 2135 2136 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2137 *Offset); 2138 } 2139 } 2140 2141 /// Process __bug_table section. 2142 /// This section contains information useful for kernel debugging. 2143 /// Each entry in the section is a struct bug_entry that contains a pointer to 2144 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2145 /// pointers use PC relative offset addressing), line number, and flags. 2146 /// The definition of the struct bug_entry can be found in 2147 /// `include/asm-generic/bug.h` 2148 void RewriteInstance::processLKBugTable() { 2149 ErrorOr<BinarySection &> SectionOrError = 2150 BC->getUniqueSectionByName("__bug_table"); 2151 if (!SectionOrError) 2152 return; 2153 2154 const uint64_t SectionSize = SectionOrError->getSize(); 2155 const uint64_t SectionAddress = SectionOrError->getAddress(); 2156 assert((SectionSize % 12) == 0 && 2157 "The size of the __bug_table section should be a multiple of 12"); 2158 for (uint64_t I = 0; I < SectionSize; I += 12) { 2159 const uint64_t EntryAddress = SectionAddress + I; 2160 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2161 assert(Offset && 2162 "Reading valid PC-relative offset for a __bug_table entry"); 2163 const int32_t SignedOffset = *Offset; 2164 const uint64_t RefAddress = EntryAddress + SignedOffset; 2165 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2166 "__bug_table entries should point to a function"); 2167 2168 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2169 } 2170 } 2171 2172 /// .smp_locks section contains PC-relative references to instructions with LOCK 2173 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2174 void RewriteInstance::processLKSMPLocks() { 2175 ErrorOr<BinarySection &> SectionOrError = 2176 BC->getUniqueSectionByName(".smp_locks"); 2177 if (!SectionOrError) 2178 return; 2179 2180 uint64_t SectionSize = SectionOrError->getSize(); 2181 const uint64_t SectionAddress = SectionOrError->getAddress(); 2182 assert((SectionSize % 4) == 0 && 2183 "The size of the .smp_locks section should be a multiple of 4"); 2184 2185 for (uint64_t I = 0; I < SectionSize; I += 4) { 2186 const uint64_t EntryAddress = SectionAddress + I; 2187 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2188 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2189 int32_t SignedOffset = *Offset; 2190 uint64_t RefAddress = EntryAddress + SignedOffset; 2191 2192 BinaryFunction *ContainingBF = 2193 BC->getBinaryFunctionContainingAddress(RefAddress); 2194 if (!ContainingBF) 2195 continue; 2196 2197 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2198 } 2199 } 2200 2201 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2202 bool IsJmpRel) { 2203 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2204 2205 LLVM_DEBUG({ 2206 StringRef SectionName = cantFail(Section.getName()); 2207 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2208 << ":\n"; 2209 }); 2210 2211 for (const RelocationRef &Rel : Section.relocations()) { 2212 const uint64_t RType = Rel.getType(); 2213 if (Relocation::isNone(RType)) 2214 continue; 2215 2216 StringRef SymbolName = "<none>"; 2217 MCSymbol *Symbol = nullptr; 2218 uint64_t SymbolAddress = 0; 2219 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2220 2221 symbol_iterator SymbolIter = Rel.getSymbol(); 2222 if (SymbolIter != InputFile->symbol_end()) { 2223 SymbolName = cantFail(SymbolIter->getName()); 2224 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2225 Symbol = BD ? BD->getSymbol() 2226 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2227 SymbolAddress = cantFail(SymbolIter->getAddress()); 2228 (void)SymbolAddress; 2229 } 2230 2231 LLVM_DEBUG( 2232 SmallString<16> TypeName; 2233 Rel.getTypeName(TypeName); 2234 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2235 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2236 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2237 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2238 ); 2239 2240 if (IsJmpRel) 2241 IsJmpRelocation[RType] = true; 2242 2243 if (Symbol) 2244 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2245 2246 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2247 } 2248 } 2249 2250 void RewriteInstance::readRelocations(const SectionRef &Section) { 2251 LLVM_DEBUG({ 2252 StringRef SectionName = cantFail(Section.getName()); 2253 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2254 << ":\n"; 2255 }); 2256 if (BinarySection(*BC, Section).isAllocatable()) { 2257 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2258 return; 2259 } 2260 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2261 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2262 SectionRef RelocatedSection = *SecIter; 2263 2264 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2265 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2266 << RelocatedSectionName << '\n'); 2267 2268 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2269 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2270 << "non-allocatable section\n"); 2271 return; 2272 } 2273 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2274 .Cases(".plt", ".rela.plt", ".got.plt", 2275 ".eh_frame", ".gcc_except_table", true) 2276 .Default(false); 2277 if (SkipRelocs) { 2278 LLVM_DEBUG( 2279 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2280 return; 2281 } 2282 2283 const bool IsAArch64 = BC->isAArch64(); 2284 const bool IsFromCode = RelocatedSection.isText(); 2285 2286 auto printRelocationInfo = [&](const RelocationRef &Rel, 2287 StringRef SymbolName, 2288 uint64_t SymbolAddress, 2289 uint64_t Addend, 2290 uint64_t ExtractedValue) { 2291 SmallString<16> TypeName; 2292 Rel.getTypeName(TypeName); 2293 const uint64_t Address = SymbolAddress + Addend; 2294 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2295 dbgs() << "Relocation: offset = 0x" 2296 << Twine::utohexstr(Rel.getOffset()) 2297 << "; type = " << TypeName 2298 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2299 << "; symbol = " << SymbolName 2300 << " (" << (Section ? Section->getName() : "") << ")" 2301 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2302 << "; addend = 0x" << Twine::utohexstr(Addend) 2303 << "; address = 0x" << Twine::utohexstr(Address) 2304 << "; in = "; 2305 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2306 Rel.getOffset(), false, IsAArch64)) 2307 dbgs() << Func->getPrintName() << "\n"; 2308 else 2309 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2310 }; 2311 2312 for (const RelocationRef &Rel : Section.relocations()) { 2313 SmallString<16> TypeName; 2314 Rel.getTypeName(TypeName); 2315 uint64_t RType = Rel.getType(); 2316 if (Relocation::isNone(RType)) 2317 continue; 2318 2319 // Adjust the relocation type as the linker might have skewed it. 2320 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2321 if (opts::Verbosity >= 1) 2322 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2323 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2324 } 2325 2326 if (Relocation::isTLS(RType)) { 2327 // No special handling required for TLS relocations on X86. 2328 if (BC->isX86()) 2329 continue; 2330 2331 // The non-got related TLS relocations on AArch64 also could be skipped. 2332 if (!Relocation::isGOT(RType)) 2333 continue; 2334 } 2335 2336 if (BC->getDynamicRelocationAt(Rel.getOffset())) { 2337 LLVM_DEBUG( 2338 dbgs() << "BOLT-DEBUG: address 0x" 2339 << Twine::utohexstr(Rel.getOffset()) 2340 << " has a dynamic relocation against it. Ignoring static " 2341 "relocation.\n"); 2342 continue; 2343 } 2344 2345 std::string SymbolName; 2346 uint64_t SymbolAddress; 2347 int64_t Addend; 2348 uint64_t ExtractedValue; 2349 bool IsSectionRelocation; 2350 bool Skip; 2351 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2352 SymbolAddress, Addend, ExtractedValue, Skip)) { 2353 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2354 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2355 << "; type name = " << TypeName << '\n'); 2356 ++NumFailedRelocations; 2357 continue; 2358 } 2359 2360 if (Skip) { 2361 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2362 << Twine::utohexstr(Rel.getOffset()) 2363 << "; type name = " << TypeName << '\n'); 2364 continue; 2365 } 2366 2367 const uint64_t Address = SymbolAddress + Addend; 2368 2369 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2370 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2371 2372 BinaryFunction *ContainingBF = nullptr; 2373 if (IsFromCode) { 2374 ContainingBF = 2375 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2376 /*CheckPastEnd*/ false, 2377 /*UseMaxSize*/ true); 2378 assert(ContainingBF && "cannot find function for address in code"); 2379 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2380 if (opts::Verbosity >= 1) 2381 outs() << "BOLT-INFO: " << *ContainingBF 2382 << " has relocations in padding area\n"; 2383 ContainingBF->setSize(ContainingBF->getMaxSize()); 2384 ContainingBF->setSimple(false); 2385 continue; 2386 } 2387 } 2388 2389 MCSymbol *ReferencedSymbol = nullptr; 2390 if (!IsSectionRelocation) { 2391 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2392 ReferencedSymbol = BD->getSymbol(); 2393 } 2394 2395 // PC-relative relocations from data to code are tricky since the original 2396 // information is typically lost after linking even with '--emit-relocs'. 2397 // They are normally used by PIC-style jump tables and reference both 2398 // the jump table and jump destination by computing the difference 2399 // between the two. If we blindly apply the relocation it will appear 2400 // that it references an arbitrary location in the code, possibly even 2401 // in a different function from that containing the jump table. 2402 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2403 // For relocations against non-code sections, just register the fact that 2404 // we have a PC-relative relocation at a given address. The actual 2405 // referenced label/address cannot be determined from linker data alone. 2406 if (!IsFromCode) 2407 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2408 else if (!IsSectionRelocation && ReferencedSymbol) 2409 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2410 Addend, ExtractedValue); 2411 else 2412 LLVM_DEBUG( 2413 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2414 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2415 << "\n"); 2416 continue; 2417 } 2418 2419 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2420 ErrorOr<BinarySection &> RefSection = 2421 std::make_error_code(std::errc::bad_address); 2422 if (BC->isAArch64() && Relocation::isGOT(RType)) { 2423 ForceRelocation = true; 2424 } else { 2425 RefSection = BC->getSectionForAddress(SymbolAddress); 2426 if (!RefSection && !ForceRelocation) { 2427 LLVM_DEBUG( 2428 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2429 continue; 2430 } 2431 } 2432 2433 const bool IsToCode = RefSection && RefSection->isText(); 2434 2435 // Occasionally we may see a reference past the last byte of the function 2436 // typically as a result of __builtin_unreachable(). Check it here. 2437 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2438 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2439 2440 if (!IsSectionRelocation) { 2441 if (BinaryFunction *BF = 2442 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2443 if (BF != ReferencedBF) { 2444 // It's possible we are referencing a function without referencing any 2445 // code, e.g. when taking a bitmask action on a function address. 2446 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2447 "bitmask) detected against function " 2448 << *BF; 2449 if (IsFromCode) 2450 errs() << " from function " << *ContainingBF << '\n'; 2451 else 2452 errs() << " from data section at 0x" 2453 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2454 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2455 ExtractedValue)); 2456 ReferencedBF = BF; 2457 } 2458 } 2459 } else if (ReferencedBF) { 2460 assert(RefSection && "section expected for section relocation"); 2461 if (*ReferencedBF->getOriginSection() != *RefSection) { 2462 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2463 ReferencedBF = nullptr; 2464 } 2465 } 2466 2467 // Workaround for a member function pointer de-virtualization bug. We check 2468 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2469 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2470 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2471 if (const BinaryFunction *RogueBF = 2472 BC->getBinaryFunctionAtAddress(Address + 1)) { 2473 // Do an extra check that the function was referenced previously. 2474 // It's a linear search, but it should rarely happen. 2475 bool Found = false; 2476 for (const auto &RelKV : ContainingBF->Relocations) { 2477 const Relocation &Rel = RelKV.second; 2478 if (Rel.Symbol == RogueBF->getSymbol() && 2479 !Relocation::isPCRelative(Rel.Type)) { 2480 Found = true; 2481 break; 2482 } 2483 } 2484 2485 if (Found) { 2486 errs() << "BOLT-WARNING: detected possible compiler " 2487 "de-virtualization bug: -1 addend used with " 2488 "non-pc-relative relocation against function " 2489 << *RogueBF << " in function " << *ContainingBF << '\n'; 2490 continue; 2491 } 2492 } 2493 } 2494 2495 if (ForceRelocation) { 2496 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2497 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2498 SymbolAddress = 0; 2499 if (Relocation::isGOT(RType)) 2500 Addend = Address; 2501 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2502 << SymbolName << " with addend " << Addend << '\n'); 2503 } else if (ReferencedBF) { 2504 ReferencedSymbol = ReferencedBF->getSymbol(); 2505 uint64_t RefFunctionOffset = 0; 2506 2507 // Adjust the point of reference to a code location inside a function. 2508 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2509 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2510 if (RefFunctionOffset) { 2511 if (ContainingBF && ContainingBF != ReferencedBF) { 2512 ReferencedSymbol = 2513 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2514 } else { 2515 ReferencedSymbol = 2516 ReferencedBF->getOrCreateLocalLabel(Address, 2517 /*CreatePastEnd =*/true); 2518 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2519 } 2520 if (opts::Verbosity > 1 && 2521 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2522 errs() << "BOLT-WARNING: writable reference into the middle of " 2523 << "the function " << *ReferencedBF 2524 << " detected at address 0x" 2525 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2526 } 2527 SymbolAddress = Address; 2528 Addend = 0; 2529 } 2530 LLVM_DEBUG( 2531 dbgs() << " referenced function " << *ReferencedBF; 2532 if (Address != ReferencedBF->getAddress()) 2533 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2534 dbgs() << '\n' 2535 ); 2536 } else { 2537 if (IsToCode && SymbolAddress) { 2538 // This can happen e.g. with PIC-style jump tables. 2539 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2540 "relocation against code\n"); 2541 } 2542 2543 // In AArch64 there are zero reasons to keep a reference to the 2544 // "original" symbol plus addend. The original symbol is probably just a 2545 // section symbol. If we are here, this means we are probably accessing 2546 // data, so it is imperative to keep the original address. 2547 if (IsAArch64) { 2548 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2549 SymbolAddress = Address; 2550 Addend = 0; 2551 } 2552 2553 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2554 // Note: this assertion is trying to check sanity of BinaryData objects 2555 // but AArch64 has inferred and incomplete object locations coming from 2556 // GOT/TLS or any other non-trivial relocation (that requires creation 2557 // of sections and whose symbol address is not really what should be 2558 // encoded in the instruction). So we essentially disabled this check 2559 // for AArch64 and live with bogus names for objects. 2560 assert((IsAArch64 || IsSectionRelocation || 2561 BD->nameStartsWith(SymbolName) || 2562 BD->nameStartsWith("PG" + SymbolName) || 2563 (BD->nameStartsWith("ANONYMOUS") && 2564 (BD->getSectionName().startswith(".plt") || 2565 BD->getSectionName().endswith(".plt")))) && 2566 "BOLT symbol names of all non-section relocations must match " 2567 "up with symbol names referenced in the relocation"); 2568 2569 if (IsSectionRelocation) 2570 BC->markAmbiguousRelocations(*BD, Address); 2571 2572 ReferencedSymbol = BD->getSymbol(); 2573 Addend += (SymbolAddress - BD->getAddress()); 2574 SymbolAddress = BD->getAddress(); 2575 assert(Address == SymbolAddress + Addend); 2576 } else { 2577 // These are mostly local data symbols but undefined symbols 2578 // in relocation sections can get through here too, from .plt. 2579 assert( 2580 (IsAArch64 || IsSectionRelocation || 2581 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2582 "known symbols should not resolve to anonymous locals"); 2583 2584 if (IsSectionRelocation) { 2585 ReferencedSymbol = 2586 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2587 } else { 2588 SymbolRef Symbol = *Rel.getSymbol(); 2589 const uint64_t SymbolSize = 2590 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2591 const uint64_t SymbolAlignment = 2592 IsAArch64 ? 1 : Symbol.getAlignment(); 2593 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2594 std::string Name; 2595 if (SymbolFlags & SymbolRef::SF_Global) { 2596 Name = SymbolName; 2597 } else { 2598 if (StringRef(SymbolName) 2599 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2600 Name = NR.uniquify("PG" + SymbolName); 2601 else 2602 Name = NR.uniquify(SymbolName); 2603 } 2604 ReferencedSymbol = BC->registerNameAtAddress( 2605 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2606 } 2607 2608 if (IsSectionRelocation) { 2609 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2610 BC->markAmbiguousRelocations(*BD, Address); 2611 } 2612 } 2613 } 2614 2615 auto checkMaxDataRelocations = [&]() { 2616 ++NumDataRelocations; 2617 if (opts::MaxDataRelocations && 2618 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2619 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2620 << NumDataRelocations << ": "); 2621 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2622 Addend, ExtractedValue); 2623 } 2624 2625 return (!opts::MaxDataRelocations || 2626 NumDataRelocations < opts::MaxDataRelocations); 2627 }; 2628 2629 if ((RefSection && refersToReorderedSection(RefSection)) || 2630 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2631 ForceRelocation = true; 2632 2633 if (IsFromCode) { 2634 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2635 Addend, ExtractedValue); 2636 } else if (IsToCode || ForceRelocation) { 2637 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2638 ExtractedValue); 2639 } else { 2640 LLVM_DEBUG( 2641 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2642 } 2643 } 2644 } 2645 2646 void RewriteInstance::selectFunctionsToProcess() { 2647 // Extend the list of functions to process or skip from a file. 2648 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2649 cl::list<std::string> &FunctionNames) { 2650 if (FunctionNamesFile.empty()) 2651 return; 2652 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2653 std::string FuncName; 2654 while (std::getline(FuncsFile, FuncName)) 2655 FunctionNames.push_back(FuncName); 2656 }; 2657 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2658 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2659 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2660 2661 // Make a set of functions to process to speed up lookups. 2662 std::unordered_set<std::string> ForceFunctionsNR( 2663 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2664 2665 if ((!opts::ForceFunctionNames.empty() || 2666 !opts::ForceFunctionNamesNR.empty()) && 2667 !opts::SkipFunctionNames.empty()) { 2668 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2669 "same time. Please use only one type of selection.\n"; 2670 exit(1); 2671 } 2672 2673 uint64_t LiteThresholdExecCount = 0; 2674 if (opts::LiteThresholdPct) { 2675 if (opts::LiteThresholdPct > 100) 2676 opts::LiteThresholdPct = 100; 2677 2678 std::vector<const BinaryFunction *> TopFunctions; 2679 for (auto &BFI : BC->getBinaryFunctions()) { 2680 const BinaryFunction &Function = BFI.second; 2681 if (ProfileReader->mayHaveProfileData(Function)) 2682 TopFunctions.push_back(&Function); 2683 } 2684 std::sort(TopFunctions.begin(), TopFunctions.end(), 2685 [](const BinaryFunction *A, const BinaryFunction *B) { 2686 return 2687 A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2688 }); 2689 2690 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2691 if (Index) 2692 --Index; 2693 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2694 outs() << "BOLT-INFO: limiting processing to functions with at least " 2695 << LiteThresholdExecCount << " invocations\n"; 2696 } 2697 LiteThresholdExecCount = std::max( 2698 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2699 2700 uint64_t NumFunctionsToProcess = 0; 2701 auto shouldProcess = [&](const BinaryFunction &Function) { 2702 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2703 return false; 2704 2705 // If the list is not empty, only process functions from the list. 2706 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2707 // Regex check (-funcs and -funcs-file options). 2708 for (std::string &Name : opts::ForceFunctionNames) 2709 if (Function.hasNameRegex(Name)) 2710 return true; 2711 2712 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2713 Optional<StringRef> Match = 2714 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2715 return ForceFunctionsNR.count(Name.str()); 2716 }); 2717 return Match.hasValue(); 2718 } 2719 2720 for (std::string &Name : opts::SkipFunctionNames) 2721 if (Function.hasNameRegex(Name)) 2722 return false; 2723 2724 if (opts::Lite) { 2725 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2726 return false; 2727 2728 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2729 return false; 2730 } 2731 2732 return true; 2733 }; 2734 2735 for (auto &BFI : BC->getBinaryFunctions()) { 2736 BinaryFunction &Function = BFI.second; 2737 2738 // Pseudo functions are explicitly marked by us not to be processed. 2739 if (Function.isPseudo()) { 2740 Function.IsIgnored = true; 2741 Function.HasExternalRefRelocations = true; 2742 continue; 2743 } 2744 2745 if (!shouldProcess(Function)) { 2746 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2747 << Function << " per user request\n"); 2748 Function.setIgnored(); 2749 } else { 2750 ++NumFunctionsToProcess; 2751 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2752 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2753 } 2754 } 2755 } 2756 2757 void RewriteInstance::readDebugInfo() { 2758 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2759 TimerGroupDesc, opts::TimeRewrite); 2760 if (!opts::UpdateDebugSections) 2761 return; 2762 2763 BC->preprocessDebugInfo(); 2764 } 2765 2766 void RewriteInstance::preprocessProfileData() { 2767 if (!ProfileReader) 2768 return; 2769 2770 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2771 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2772 2773 outs() << "BOLT-INFO: pre-processing profile using " 2774 << ProfileReader->getReaderName() << '\n'; 2775 2776 if (BAT->enabledFor(InputFile)) { 2777 outs() << "BOLT-INFO: profile collection done on a binary already " 2778 "processed by BOLT\n"; 2779 ProfileReader->setBAT(&*BAT); 2780 } 2781 2782 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2783 report_error("cannot pre-process profile", std::move(E)); 2784 2785 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2786 !opts::AllowStripped) { 2787 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2788 "but profile data includes function names with embedded file " 2789 "names. It appears that the input binary was stripped while a " 2790 "profiled binary was not. If you know what you are doing and " 2791 "wish to proceed, use -allow-stripped option.\n"; 2792 exit(1); 2793 } 2794 } 2795 2796 void RewriteInstance::processProfileDataPreCFG() { 2797 if (!ProfileReader) 2798 return; 2799 2800 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2801 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2802 2803 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2804 report_error("cannot read profile pre-CFG", std::move(E)); 2805 } 2806 2807 void RewriteInstance::processProfileData() { 2808 if (!ProfileReader) 2809 return; 2810 2811 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2812 TimerGroupDesc, opts::TimeRewrite); 2813 2814 if (Error E = ProfileReader->readProfile(*BC.get())) 2815 report_error("cannot read profile", std::move(E)); 2816 2817 if (!opts::SaveProfile.empty()) { 2818 YAMLProfileWriter PW(opts::SaveProfile); 2819 PW.writeProfile(*this); 2820 } 2821 2822 // Release memory used by profile reader. 2823 ProfileReader.reset(); 2824 2825 if (opts::AggregateOnly) 2826 exit(0); 2827 } 2828 2829 void RewriteInstance::disassembleFunctions() { 2830 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2831 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2832 for (auto &BFI : BC->getBinaryFunctions()) { 2833 BinaryFunction &Function = BFI.second; 2834 2835 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2836 if (!FunctionData) { 2837 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2838 << "empty for function " << Function << '\n'; 2839 exit(1); 2840 } 2841 2842 // Treat zero-sized functions as non-simple ones. 2843 if (Function.getSize() == 0) { 2844 Function.setSimple(false); 2845 continue; 2846 } 2847 2848 // Offset of the function in the file. 2849 const auto *FileBegin = 2850 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2851 Function.setFileOffset(FunctionData->begin() - FileBegin); 2852 2853 if (!shouldDisassemble(Function)) { 2854 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2855 "Scan Binary Functions", opts::TimeBuild); 2856 Function.scanExternalRefs(); 2857 Function.setSimple(false); 2858 continue; 2859 } 2860 2861 if (!Function.disassemble()) { 2862 if (opts::processAllFunctions()) 2863 BC->exitWithBugReport("function cannot be properly disassembled. " 2864 "Unable to continue in relocation mode.", 2865 Function); 2866 if (opts::Verbosity >= 1) 2867 outs() << "BOLT-INFO: could not disassemble function " << Function 2868 << ". Will ignore.\n"; 2869 // Forcefully ignore the function. 2870 Function.setIgnored(); 2871 continue; 2872 } 2873 2874 if (opts::PrintAll || opts::PrintDisasm) 2875 Function.print(outs(), "after disassembly", true); 2876 2877 BC->processInterproceduralReferences(Function); 2878 } 2879 2880 BC->populateJumpTables(); 2881 BC->skipMarkedFragments(); 2882 2883 for (auto &BFI : BC->getBinaryFunctions()) { 2884 BinaryFunction &Function = BFI.second; 2885 2886 if (!shouldDisassemble(Function)) 2887 continue; 2888 2889 Function.postProcessEntryPoints(); 2890 Function.postProcessJumpTables(); 2891 } 2892 2893 BC->adjustCodePadding(); 2894 2895 for (auto &BFI : BC->getBinaryFunctions()) { 2896 BinaryFunction &Function = BFI.second; 2897 2898 if (!shouldDisassemble(Function)) 2899 continue; 2900 2901 if (!Function.isSimple()) { 2902 assert((!BC->HasRelocations || Function.getSize() == 0) && 2903 "unexpected non-simple function in relocation mode"); 2904 continue; 2905 } 2906 2907 // Fill in CFI information for this function 2908 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2909 if (BC->HasRelocations) { 2910 BC->exitWithBugReport("unable to fill CFI.", Function); 2911 } else { 2912 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2913 << ". Skipping.\n"; 2914 Function.setSimple(false); 2915 continue; 2916 } 2917 } 2918 2919 // Parse LSDA. 2920 if (Function.getLSDAAddress() != 0) 2921 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2922 } 2923 } 2924 2925 void RewriteInstance::buildFunctionsCFG() { 2926 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2927 "Build Binary Functions", opts::TimeBuild); 2928 2929 // Create annotation indices to allow lock-free execution 2930 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2931 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2932 BC->MIB->getOrCreateAnnotationIndex("Size"); 2933 2934 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2935 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2936 if (!BF.buildCFG(AllocId)) 2937 return; 2938 2939 if (opts::PrintAll) 2940 BF.print(outs(), "while building cfg", true); 2941 }; 2942 2943 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2944 return !shouldDisassemble(BF) || !BF.isSimple(); 2945 }; 2946 2947 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2948 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2949 SkipPredicate, "disassembleFunctions-buildCFG", 2950 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2951 2952 BC->postProcessSymbolTable(); 2953 } 2954 2955 void RewriteInstance::postProcessFunctions() { 2956 BC->TotalScore = 0; 2957 BC->SumExecutionCount = 0; 2958 for (auto &BFI : BC->getBinaryFunctions()) { 2959 BinaryFunction &Function = BFI.second; 2960 2961 if (Function.empty()) 2962 continue; 2963 2964 Function.postProcessCFG(); 2965 2966 if (opts::PrintAll || opts::PrintCFG) 2967 Function.print(outs(), "after building cfg", true); 2968 2969 if (opts::DumpDotAll) 2970 Function.dumpGraphForPass("00_build-cfg"); 2971 2972 if (opts::PrintLoopInfo) { 2973 Function.calculateLoopInfo(); 2974 Function.printLoopInfo(outs()); 2975 } 2976 2977 BC->TotalScore += Function.getFunctionScore(); 2978 BC->SumExecutionCount += Function.getKnownExecutionCount(); 2979 } 2980 2981 if (opts::PrintGlobals) { 2982 outs() << "BOLT-INFO: Global symbols:\n"; 2983 BC->printGlobalSymbols(outs()); 2984 } 2985 } 2986 2987 void RewriteInstance::runOptimizationPasses() { 2988 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 2989 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2990 BinaryFunctionPassManager::runAllPasses(*BC); 2991 } 2992 2993 namespace { 2994 2995 class BOLTSymbolResolver : public JITSymbolResolver { 2996 BinaryContext &BC; 2997 2998 public: 2999 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3000 3001 // We are responsible for all symbols 3002 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3003 return Symbols; 3004 } 3005 3006 // Some of our symbols may resolve to zero and this should not be an error 3007 bool allowsZeroSymbols() override { return true; } 3008 3009 /// Resolves the address of each symbol requested 3010 void lookup(const LookupSet &Symbols, 3011 OnResolvedFunction OnResolved) override { 3012 JITSymbolResolver::LookupResult AllResults; 3013 3014 if (BC.EFMM->ObjectsLoaded) { 3015 for (const StringRef &Symbol : Symbols) { 3016 std::string SymName = Symbol.str(); 3017 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3018 // Resolve to a PLT entry if possible 3019 if (BinaryData *I = BC.getBinaryDataByName(SymName + "@PLT")) { 3020 AllResults[Symbol] = 3021 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3022 continue; 3023 } 3024 OnResolved(make_error<StringError>( 3025 "Symbol not found required by runtime: " + Symbol, 3026 inconvertibleErrorCode())); 3027 return; 3028 } 3029 OnResolved(std::move(AllResults)); 3030 return; 3031 } 3032 3033 for (const StringRef &Symbol : Symbols) { 3034 std::string SymName = Symbol.str(); 3035 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3036 3037 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3038 uint64_t Address = I->isMoved() && !I->isJumpTable() 3039 ? I->getOutputAddress() 3040 : I->getAddress(); 3041 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3042 << Twine::utohexstr(Address) << "\n"); 3043 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3044 continue; 3045 } 3046 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3047 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3048 } 3049 3050 OnResolved(std::move(AllResults)); 3051 } 3052 }; 3053 3054 } // anonymous namespace 3055 3056 void RewriteInstance::emitAndLink() { 3057 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3058 TimerGroupDesc, opts::TimeRewrite); 3059 std::error_code EC; 3060 3061 // This is an object file, which we keep for debugging purposes. 3062 // Once we decide it's useless, we should create it in memory. 3063 SmallString<128> OutObjectPath; 3064 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3065 std::unique_ptr<ToolOutputFile> TempOut = 3066 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3067 check_error(EC, "cannot create output object file"); 3068 3069 std::unique_ptr<buffer_ostream> BOS = 3070 std::make_unique<buffer_ostream>(TempOut->os()); 3071 raw_pwrite_stream *OS = BOS.get(); 3072 3073 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3074 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3075 // two instances. 3076 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3077 3078 if (EHFrameSection) { 3079 if (opts::UseOldText || opts::StrictMode) { 3080 // The section is going to be regenerated from scratch. 3081 // Empty the contents, but keep the section reference. 3082 EHFrameSection->clearContents(); 3083 } else { 3084 // Make .eh_frame relocatable. 3085 relocateEHFrameSection(); 3086 } 3087 } 3088 3089 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3090 3091 Streamer->Finish(); 3092 3093 ////////////////////////////////////////////////////////////////////////////// 3094 // Assign addresses to new sections. 3095 ////////////////////////////////////////////////////////////////////////////// 3096 3097 // Get output object as ObjectFile. 3098 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3099 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3100 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3101 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3102 "error creating in-memory object"); 3103 3104 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3105 3106 MCAsmLayout FinalLayout( 3107 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3108 3109 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3110 RTDyld->setProcessAllSections(false); 3111 RTDyld->loadObject(*Obj); 3112 3113 // Assign addresses to all sections. If key corresponds to the object 3114 // created by ourselves, call our regular mapping function. If we are 3115 // loading additional objects as part of runtime libraries for 3116 // instrumentation, treat them as extra sections. 3117 mapFileSections(*RTDyld); 3118 3119 RTDyld->finalizeWithMemoryManagerLocking(); 3120 if (RTDyld->hasError()) { 3121 outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3122 exit(1); 3123 } 3124 3125 // Update output addresses based on the new section map and 3126 // layout. Only do this for the object created by ourselves. 3127 updateOutputValues(FinalLayout); 3128 3129 if (opts::UpdateDebugSections) 3130 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3131 3132 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3133 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3134 this->mapExtraSections(*RTDyld); 3135 }); 3136 3137 // Once the code is emitted, we can rename function sections to actual 3138 // output sections and de-register sections used for emission. 3139 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3140 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3141 if (Section && 3142 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3143 continue; 3144 3145 // Restore origin section for functions that were emitted or supposed to 3146 // be emitted to patch sections. 3147 if (Section) 3148 BC->deregisterSection(*Section); 3149 assert(Function->getOriginSectionName() && "expected origin section"); 3150 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3151 if (Function->isSplit()) { 3152 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3153 BC->deregisterSection(*ColdSection); 3154 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3155 } 3156 } 3157 3158 if (opts::PrintCacheMetrics) { 3159 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3160 CacheMetrics::printAll(BC->getSortedFunctions()); 3161 } 3162 3163 if (opts::KeepTmp) { 3164 TempOut->keep(); 3165 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3166 "purposes: " 3167 << OutObjectPath << "\n"; 3168 } 3169 } 3170 3171 void RewriteInstance::updateMetadata() { 3172 updateSDTMarkers(); 3173 updateLKMarkers(); 3174 parsePseudoProbe(); 3175 updatePseudoProbes(); 3176 3177 if (opts::UpdateDebugSections) { 3178 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3179 TimerGroupDesc, opts::TimeRewrite); 3180 DebugInfoRewriter->updateDebugInfo(); 3181 } 3182 3183 if (opts::WriteBoltInfoSection) 3184 addBoltInfoSection(); 3185 } 3186 3187 void RewriteInstance::updatePseudoProbes() { 3188 // check if there is pseudo probe section decoded 3189 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3190 return; 3191 // input address converted to output 3192 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3193 const GUIDProbeFunctionMap &GUID2Func = 3194 BC->ProbeDecoder.getGUID2FuncDescMap(); 3195 3196 for (auto &AP : Address2ProbesMap) { 3197 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3198 // If F is removed, eliminate all probes inside it from inline tree 3199 // Setting probes' addresses as INT64_MAX means elimination 3200 if (!F) { 3201 for (MCDecodedPseudoProbe &Probe : AP.second) 3202 Probe.setAddress(INT64_MAX); 3203 continue; 3204 } 3205 // If F is not emitted, the function will remain in the same address as its 3206 // input 3207 if (!F->isEmitted()) 3208 continue; 3209 3210 uint64_t Offset = AP.first - F->getAddress(); 3211 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3212 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3213 // Check if block output address is defined. 3214 // If not, such block is removed from binary. Then remove the probes from 3215 // inline tree 3216 if (BlkOutputAddress == 0) { 3217 for (MCDecodedPseudoProbe &Probe : AP.second) 3218 Probe.setAddress(INT64_MAX); 3219 continue; 3220 } 3221 3222 unsigned ProbeTrack = AP.second.size(); 3223 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3224 while (ProbeTrack != 0) { 3225 if (Probe->isBlock()) { 3226 Probe->setAddress(BlkOutputAddress); 3227 } else if (Probe->isCall()) { 3228 // A call probe may be duplicated due to ICP 3229 // Go through output of InputOffsetToAddressMap to collect all related 3230 // probes 3231 const InputOffsetToAddressMapTy &Offset2Addr = 3232 F->getInputOffsetToAddressMap(); 3233 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3234 auto CallOutputAddress = CallOutputAddresses.first; 3235 if (CallOutputAddress == CallOutputAddresses.second) { 3236 Probe->setAddress(INT64_MAX); 3237 } else { 3238 Probe->setAddress(CallOutputAddress->second); 3239 CallOutputAddress = std::next(CallOutputAddress); 3240 } 3241 3242 while (CallOutputAddress != CallOutputAddresses.second) { 3243 AP.second.push_back(*Probe); 3244 AP.second.back().setAddress(CallOutputAddress->second); 3245 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3246 CallOutputAddress = std::next(CallOutputAddress); 3247 } 3248 } 3249 Probe = std::next(Probe); 3250 ProbeTrack--; 3251 } 3252 } 3253 3254 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3255 opts::PrintPseudoProbes == 3256 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3257 outs() << "Pseudo Probe Address Conversion results:\n"; 3258 // table that correlates address to block 3259 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3260 for (auto &F : BC->getBinaryFunctions()) 3261 for (BinaryBasicBlock &BinaryBlock : F.second) 3262 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3263 BinaryBlock.getName(); 3264 3265 // scan all addresses -> correlate probe to block when print out 3266 std::vector<uint64_t> Addresses; 3267 for (auto &Entry : Address2ProbesMap) 3268 Addresses.push_back(Entry.first); 3269 std::sort(Addresses.begin(), Addresses.end()); 3270 for (uint64_t Key : Addresses) { 3271 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3272 if (Probe.getAddress() == INT64_MAX) 3273 outs() << "Deleted Probe: "; 3274 else 3275 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3276 Probe.print(outs(), GUID2Func, true); 3277 // print block name only if the probe is block type and undeleted. 3278 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3279 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3280 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3281 } 3282 } 3283 outs() << "=======================================\n"; 3284 } 3285 3286 // encode pseudo probes with updated addresses 3287 encodePseudoProbes(); 3288 } 3289 3290 template <typename F> 3291 static void emitLEB128IntValue(F encode, uint64_t Value, 3292 SmallString<8> &Contents) { 3293 SmallString<128> Tmp; 3294 raw_svector_ostream OSE(Tmp); 3295 encode(Value, OSE); 3296 Contents.append(OSE.str().begin(), OSE.str().end()); 3297 } 3298 3299 void RewriteInstance::encodePseudoProbes() { 3300 // Buffer for new pseudo probes section 3301 SmallString<8> Contents; 3302 MCDecodedPseudoProbe *LastProbe = nullptr; 3303 3304 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3305 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3306 uint64_t Swapped = support::endian::byte_swap( 3307 Value, IsLittleEndian ? support::little : support::big); 3308 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3309 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3310 Contents.append(Entry.begin(), Entry.end()); 3311 }; 3312 3313 auto EmitULEB128IntValue = [&](uint64_t Value) { 3314 SmallString<128> Tmp; 3315 raw_svector_ostream OSE(Tmp); 3316 encodeULEB128(Value, OSE, 0); 3317 Contents.append(OSE.str().begin(), OSE.str().end()); 3318 }; 3319 3320 auto EmitSLEB128IntValue = [&](int64_t Value) { 3321 SmallString<128> Tmp; 3322 raw_svector_ostream OSE(Tmp); 3323 encodeSLEB128(Value, OSE); 3324 Contents.append(OSE.str().begin(), OSE.str().end()); 3325 }; 3326 3327 // Emit indiviual pseudo probes in a inline tree node 3328 // Probe index, type, attribute, address type and address are encoded 3329 // Address of the first probe is absolute. 3330 // Other probes' address are represented by delta 3331 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3332 EmitULEB128IntValue(CurProbe->getIndex()); 3333 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3334 uint8_t Flag = 3335 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3336 EmitInt(Flag | PackedType, 1); 3337 if (LastProbe) { 3338 // Emit the delta between the address label and LastProbe. 3339 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3340 EmitSLEB128IntValue(Delta); 3341 } else { 3342 // Emit absolute address for encoding the first pseudo probe. 3343 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3344 EmitInt(CurProbe->getAddress(), AddrSize); 3345 } 3346 }; 3347 3348 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3349 std::greater<InlineSite>> 3350 Inlinees; 3351 3352 // DFS of inline tree to emit pseudo probes in all tree node 3353 // Inline site index of a probe is emitted first. 3354 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3355 // of contained probes are emitted Deleted probes are skipped Root node is not 3356 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3357 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3358 const MCDecodedPseudoProbeInlineTree &Root = 3359 BC->ProbeDecoder.getDummyInlineRoot(); 3360 for (auto Child = Root.getChildren().begin(); 3361 Child != Root.getChildren().end(); ++Child) 3362 Inlinees[Child->first] = Child->second.get(); 3363 3364 for (auto Inlinee : Inlinees) 3365 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3366 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3367 3368 Inlinees.clear(); 3369 3370 while (!NextNodes.empty()) { 3371 uint64_t ProbeIndex = NextNodes.back().first; 3372 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3373 NextNodes.pop_back(); 3374 3375 if (Cur->Parent && !Cur->Parent->isRoot()) 3376 // Emit probe inline site 3377 EmitULEB128IntValue(ProbeIndex); 3378 3379 // Emit probes grouped by GUID. 3380 LLVM_DEBUG({ 3381 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3382 dbgs() << "GUID: " << Cur->Guid << "\n"; 3383 }); 3384 // Emit Guid 3385 EmitInt(Cur->Guid, 8); 3386 // Emit number of probes in this node 3387 uint64_t Deleted = 0; 3388 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3389 if (Probe->getAddress() == INT64_MAX) 3390 Deleted++; 3391 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3392 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3393 EmitULEB128IntValue(ProbesSize); 3394 // Emit number of direct inlinees 3395 EmitULEB128IntValue(Cur->getChildren().size()); 3396 // Emit probes in this group 3397 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3398 if (Probe->getAddress() == INT64_MAX) 3399 continue; 3400 EmitDecodedPseudoProbe(Probe); 3401 LastProbe = Probe; 3402 } 3403 3404 for (auto Child = Cur->getChildren().begin(); 3405 Child != Cur->getChildren().end(); ++Child) 3406 Inlinees[Child->first] = Child->second.get(); 3407 for (const auto &Inlinee : Inlinees) { 3408 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3409 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3410 LLVM_DEBUG({ 3411 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3412 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3413 }); 3414 } 3415 Inlinees.clear(); 3416 } 3417 3418 // Create buffer for new contents for the section 3419 // Freed when parent section is destroyed 3420 uint8_t *Output = new uint8_t[Contents.str().size()]; 3421 memcpy(Output, Contents.str().data(), Contents.str().size()); 3422 addToDebugSectionsToOverwrite(".pseudo_probe"); 3423 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3424 PseudoProbeSection->getELFFlags(), Output, 3425 Contents.str().size(), 1); 3426 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3427 opts::PrintPseudoProbes == 3428 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3429 // create a dummy decoder; 3430 MCPseudoProbeDecoder DummyDecoder; 3431 StringRef DescContents = PseudoProbeDescSection->getContents(); 3432 DummyDecoder.buildGUID2FuncDescMap( 3433 reinterpret_cast<const uint8_t *>(DescContents.data()), 3434 DescContents.size()); 3435 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3436 DummyDecoder.buildAddress2ProbeMap( 3437 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3438 ProbeContents.size()); 3439 DummyDecoder.printProbesForAllAddresses(outs()); 3440 } 3441 } 3442 3443 void RewriteInstance::updateSDTMarkers() { 3444 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3445 TimerGroupDesc, opts::TimeRewrite); 3446 3447 if (!SDTSection) 3448 return; 3449 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3450 3451 SimpleBinaryPatcher *SDTNotePatcher = 3452 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3453 for (auto &SDTInfoKV : BC->SDTMarkers) { 3454 const uint64_t OriginalAddress = SDTInfoKV.first; 3455 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3456 const BinaryFunction *F = 3457 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3458 if (!F) 3459 continue; 3460 const uint64_t NewAddress = 3461 F->translateInputToOutputAddress(OriginalAddress); 3462 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3463 } 3464 } 3465 3466 void RewriteInstance::updateLKMarkers() { 3467 if (BC->LKMarkers.size() == 0) 3468 return; 3469 3470 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3471 TimerGroupDesc, opts::TimeRewrite); 3472 3473 std::unordered_map<std::string, uint64_t> PatchCounts; 3474 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3475 &LKMarkerInfoKV : BC->LKMarkers) { 3476 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3477 const BinaryFunction *BF = 3478 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3479 if (!BF) 3480 continue; 3481 3482 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3483 if (NewAddress == 0) 3484 continue; 3485 3486 // Apply base address. 3487 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3488 NewAddress = NewAddress + 0xffffffff00000000; 3489 3490 if (OriginalAddress == NewAddress) 3491 continue; 3492 3493 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3494 StringRef SectionName = LKMarkerInfo.SectionName; 3495 SimpleBinaryPatcher *LKPatcher; 3496 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3497 assert(BSec && "missing section info for kernel section"); 3498 if (!BSec->getPatcher()) 3499 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3500 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3501 PatchCounts[std::string(SectionName)]++; 3502 if (LKMarkerInfo.IsPCRelative) 3503 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3504 NewAddress - OriginalAddress + 3505 LKMarkerInfo.PCRelativeOffset); 3506 else 3507 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3508 } 3509 } 3510 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3511 "section are as follows:\n"; 3512 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3513 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3514 << '\n'; 3515 } 3516 3517 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3518 mapCodeSections(RTDyld); 3519 mapDataSections(RTDyld); 3520 } 3521 3522 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3523 std::vector<BinarySection *> CodeSections; 3524 for (BinarySection &Section : BC->textSections()) 3525 if (Section.hasValidSectionID()) 3526 CodeSections.emplace_back(&Section); 3527 3528 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3529 // Place movers before anything else. 3530 if (A->getName() == BC->getHotTextMoverSectionName()) 3531 return true; 3532 if (B->getName() == BC->getHotTextMoverSectionName()) 3533 return false; 3534 3535 // Depending on the option, put main text at the beginning or at the end. 3536 if (opts::HotFunctionsAtEnd) 3537 return B->getName() == BC->getMainCodeSectionName(); 3538 else 3539 return A->getName() == BC->getMainCodeSectionName(); 3540 }; 3541 3542 // Determine the order of sections. 3543 std::stable_sort(CodeSections.begin(), CodeSections.end(), compareSections); 3544 3545 return CodeSections; 3546 } 3547 3548 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3549 if (BC->HasRelocations) { 3550 ErrorOr<BinarySection &> TextSection = 3551 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3552 assert(TextSection && ".text section not found in output"); 3553 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3554 3555 // Map sections for functions with pre-assigned addresses. 3556 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3557 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3558 if (!OutputAddress) 3559 continue; 3560 3561 ErrorOr<BinarySection &> FunctionSection = 3562 InjectedFunction->getCodeSection(); 3563 assert(FunctionSection && "function should have section"); 3564 FunctionSection->setOutputAddress(OutputAddress); 3565 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3566 OutputAddress); 3567 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3568 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3569 } 3570 3571 // Populate the list of sections to be allocated. 3572 std::vector<BinarySection *> CodeSections = getCodeSections(); 3573 3574 // Remove sections that were pre-allocated (patch sections). 3575 CodeSections.erase( 3576 std::remove_if(CodeSections.begin(), CodeSections.end(), 3577 [](BinarySection *Section) { 3578 return Section->getOutputAddress(); 3579 }), 3580 CodeSections.end()); 3581 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3582 for (const BinarySection *Section : CodeSections) 3583 dbgs() << Section->getName() << '\n'; 3584 ); 3585 3586 uint64_t PaddingSize = 0; // size of padding required at the end 3587 3588 // Allocate sections starting at a given Address. 3589 auto allocateAt = [&](uint64_t Address) { 3590 for (BinarySection *Section : CodeSections) { 3591 Address = alignTo(Address, Section->getAlignment()); 3592 Section->setOutputAddress(Address); 3593 Address += Section->getOutputSize(); 3594 } 3595 3596 // Make sure we allocate enough space for huge pages. 3597 if (opts::HotText) { 3598 uint64_t HotTextEnd = 3599 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3600 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3601 if (HotTextEnd > Address) { 3602 PaddingSize = HotTextEnd - Address; 3603 Address = HotTextEnd; 3604 } 3605 } 3606 return Address; 3607 }; 3608 3609 // Check if we can fit code in the original .text 3610 bool AllocationDone = false; 3611 if (opts::UseOldText) { 3612 const uint64_t CodeSize = 3613 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3614 3615 if (CodeSize <= BC->OldTextSectionSize) { 3616 outs() << "BOLT-INFO: using original .text for new code with 0x" 3617 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3618 AllocationDone = true; 3619 } else { 3620 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3621 << " using 0x" << Twine::utohexstr(opts::AlignText) 3622 << " alignment. " << CodeSize << " bytes needed, have " 3623 << BC->OldTextSectionSize << " bytes available.\n"; 3624 opts::UseOldText = false; 3625 } 3626 } 3627 3628 if (!AllocationDone) 3629 NextAvailableAddress = allocateAt(NextAvailableAddress); 3630 3631 // Do the mapping for ORC layer based on the allocation. 3632 for (BinarySection *Section : CodeSections) { 3633 LLVM_DEBUG( 3634 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3635 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3636 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3637 RTDyld.reassignSectionAddress(Section->getSectionID(), 3638 Section->getOutputAddress()); 3639 Section->setOutputFileOffset( 3640 getFileOffsetForAddress(Section->getOutputAddress())); 3641 } 3642 3643 // Check if we need to insert a padding section for hot text. 3644 if (PaddingSize && !opts::UseOldText) 3645 outs() << "BOLT-INFO: padding code to 0x" 3646 << Twine::utohexstr(NextAvailableAddress) 3647 << " to accommodate hot text\n"; 3648 3649 return; 3650 } 3651 3652 // Processing in non-relocation mode. 3653 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3654 3655 for (auto &BFI : BC->getBinaryFunctions()) { 3656 BinaryFunction &Function = BFI.second; 3657 if (!Function.isEmitted()) 3658 continue; 3659 3660 bool TooLarge = false; 3661 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3662 assert(FuncSection && "cannot find section for function"); 3663 FuncSection->setOutputAddress(Function.getAddress()); 3664 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3665 << Twine::utohexstr(FuncSection->getAllocAddress()) 3666 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3667 << '\n'); 3668 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3669 Function.getAddress()); 3670 Function.setImageAddress(FuncSection->getAllocAddress()); 3671 Function.setImageSize(FuncSection->getOutputSize()); 3672 if (Function.getImageSize() > Function.getMaxSize()) { 3673 TooLarge = true; 3674 FailedAddresses.emplace_back(Function.getAddress()); 3675 } 3676 3677 // Map jump tables if updating in-place. 3678 if (opts::JumpTables == JTS_BASIC) { 3679 for (auto &JTI : Function.JumpTables) { 3680 JumpTable *JT = JTI.second; 3681 BinarySection &Section = JT->getOutputSection(); 3682 Section.setOutputAddress(JT->getAddress()); 3683 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3684 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3685 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3686 << '\n'); 3687 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3688 } 3689 } 3690 3691 if (!Function.isSplit()) 3692 continue; 3693 3694 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3695 assert(ColdSection && "cannot find section for cold part"); 3696 // Cold fragments are aligned at 16 bytes. 3697 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3698 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3699 if (TooLarge) { 3700 // The corresponding FDE will refer to address 0. 3701 ColdPart.setAddress(0); 3702 ColdPart.setImageAddress(0); 3703 ColdPart.setImageSize(0); 3704 ColdPart.setFileOffset(0); 3705 } else { 3706 ColdPart.setAddress(NextAvailableAddress); 3707 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3708 ColdPart.setImageSize(ColdSection->getOutputSize()); 3709 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3710 ColdSection->setOutputAddress(ColdPart.getAddress()); 3711 } 3712 3713 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3714 << Twine::utohexstr(ColdPart.getImageAddress()) 3715 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3716 << " with size " 3717 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3718 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3719 ColdPart.getAddress()); 3720 3721 NextAvailableAddress += ColdPart.getImageSize(); 3722 } 3723 3724 // Add the new text section aggregating all existing code sections. 3725 // This is pseudo-section that serves a purpose of creating a corresponding 3726 // entry in section header table. 3727 int64_t NewTextSectionSize = 3728 NextAvailableAddress - NewTextSectionStartAddress; 3729 if (NewTextSectionSize) { 3730 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3731 /*IsText=*/true, 3732 /*IsAllocatable=*/true); 3733 BinarySection &Section = 3734 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3735 ELF::SHT_PROGBITS, 3736 Flags, 3737 /*Data=*/nullptr, 3738 NewTextSectionSize, 3739 16); 3740 Section.setOutputAddress(NewTextSectionStartAddress); 3741 Section.setOutputFileOffset( 3742 getFileOffsetForAddress(NewTextSectionStartAddress)); 3743 } 3744 } 3745 3746 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3747 // Map special sections to their addresses in the output image. 3748 // These are the sections that we generate via MCStreamer. 3749 // The order is important. 3750 std::vector<std::string> Sections = { 3751 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3752 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3753 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3754 RtLibrary->addRuntimeLibSections(Sections); 3755 3756 for (std::string &SectionName : Sections) { 3757 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3758 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3759 continue; 3760 NextAvailableAddress = 3761 alignTo(NextAvailableAddress, Section->getAlignment()); 3762 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3763 << Twine::utohexstr(Section->getAllocAddress()) 3764 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3765 << ":0x" 3766 << Twine::utohexstr(NextAvailableAddress + 3767 Section->getOutputSize()) 3768 << '\n'); 3769 3770 RTDyld.reassignSectionAddress(Section->getSectionID(), 3771 NextAvailableAddress); 3772 Section->setOutputAddress(NextAvailableAddress); 3773 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3774 3775 NextAvailableAddress += Section->getOutputSize(); 3776 } 3777 3778 // Handling for sections with relocations. 3779 for (BinarySection &Section : BC->sections()) { 3780 if (!Section.hasSectionRef()) 3781 continue; 3782 3783 StringRef SectionName = Section.getName(); 3784 ErrorOr<BinarySection &> OrgSection = 3785 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3786 if (!OrgSection || 3787 !OrgSection->isAllocatable() || 3788 !OrgSection->isFinalized() || 3789 !OrgSection->hasValidSectionID()) 3790 continue; 3791 3792 if (OrgSection->getOutputAddress()) { 3793 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3794 << " is already mapped at 0x" 3795 << Twine::utohexstr(OrgSection->getOutputAddress()) 3796 << '\n'); 3797 continue; 3798 } 3799 LLVM_DEBUG( 3800 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3801 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3802 << Twine::utohexstr(Section.getAddress()) << '\n'); 3803 3804 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3805 Section.getAddress()); 3806 3807 OrgSection->setOutputAddress(Section.getAddress()); 3808 OrgSection->setOutputFileOffset(Section.getContents().data() - 3809 InputFile->getData().data()); 3810 } 3811 } 3812 3813 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3814 for (BinarySection &Section : BC->allocatableSections()) { 3815 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3816 continue; 3817 NextAvailableAddress = 3818 alignTo(NextAvailableAddress, Section.getAlignment()); 3819 Section.setOutputAddress(NextAvailableAddress); 3820 NextAvailableAddress += Section.getOutputSize(); 3821 3822 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3823 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3824 << " to 0x" 3825 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3826 3827 RTDyld.reassignSectionAddress(Section.getSectionID(), 3828 Section.getOutputAddress()); 3829 Section.setOutputFileOffset( 3830 getFileOffsetForAddress(Section.getOutputAddress())); 3831 } 3832 } 3833 3834 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3835 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3836 Function->updateOutputValues(Layout); 3837 } 3838 3839 void RewriteInstance::patchELFPHDRTable() { 3840 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3841 if (!ELF64LEFile) { 3842 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3843 exit(1); 3844 } 3845 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3846 raw_fd_ostream &OS = Out->os(); 3847 3848 // Write/re-write program headers. 3849 Phnum = Obj.getHeader().e_phnum; 3850 if (PHDRTableOffset) { 3851 // Writing new pheader table. 3852 Phnum += 1; // only adding one new segment 3853 // Segment size includes the size of the PHDR area. 3854 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3855 } else { 3856 assert(!PHDRTableAddress && "unexpected address for program header table"); 3857 // Update existing table. 3858 PHDRTableOffset = Obj.getHeader().e_phoff; 3859 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3860 } 3861 OS.seek(PHDRTableOffset); 3862 3863 bool ModdedGnuStack = false; 3864 (void)ModdedGnuStack; 3865 bool AddedSegment = false; 3866 (void)AddedSegment; 3867 3868 auto createNewTextPhdr = [&]() { 3869 ELF64LEPhdrTy NewPhdr; 3870 NewPhdr.p_type = ELF::PT_LOAD; 3871 if (PHDRTableAddress) { 3872 NewPhdr.p_offset = PHDRTableOffset; 3873 NewPhdr.p_vaddr = PHDRTableAddress; 3874 NewPhdr.p_paddr = PHDRTableAddress; 3875 } else { 3876 NewPhdr.p_offset = NewTextSegmentOffset; 3877 NewPhdr.p_vaddr = NewTextSegmentAddress; 3878 NewPhdr.p_paddr = NewTextSegmentAddress; 3879 } 3880 NewPhdr.p_filesz = NewTextSegmentSize; 3881 NewPhdr.p_memsz = NewTextSegmentSize; 3882 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3883 // FIXME: Currently instrumentation is experimental and the runtime data 3884 // is emitted with code, thus everything needs to be writable 3885 if (opts::Instrument) 3886 NewPhdr.p_flags |= ELF::PF_W; 3887 NewPhdr.p_align = BC->PageAlign; 3888 3889 return NewPhdr; 3890 }; 3891 3892 // Copy existing program headers with modifications. 3893 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3894 ELF64LE::Phdr NewPhdr = Phdr; 3895 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3896 NewPhdr.p_offset = PHDRTableOffset; 3897 NewPhdr.p_vaddr = PHDRTableAddress; 3898 NewPhdr.p_paddr = PHDRTableAddress; 3899 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3900 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3901 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3902 ErrorOr<BinarySection &> EHFrameHdrSec = 3903 BC->getUniqueSectionByName(".eh_frame_hdr"); 3904 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3905 EHFrameHdrSec->isFinalized()) { 3906 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3907 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3908 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3909 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3910 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3911 } 3912 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3913 NewPhdr = createNewTextPhdr(); 3914 ModdedGnuStack = true; 3915 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3916 // Insert the new header before DYNAMIC. 3917 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3918 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3919 sizeof(NewTextPhdr)); 3920 AddedSegment = true; 3921 } 3922 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3923 } 3924 3925 if (!opts::UseGnuStack && !AddedSegment) { 3926 // Append the new header to the end of the table. 3927 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3928 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3929 } 3930 3931 assert((!opts::UseGnuStack || ModdedGnuStack) && 3932 "could not find GNU_STACK program header to modify"); 3933 } 3934 3935 namespace { 3936 3937 /// Write padding to \p OS such that its current \p Offset becomes aligned 3938 /// at \p Alignment. Return new (aligned) offset. 3939 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3940 uint64_t Alignment) { 3941 if (!Alignment) 3942 return Offset; 3943 3944 const uint64_t PaddingSize = 3945 offsetToAlignment(Offset, llvm::Align(Alignment)); 3946 for (unsigned I = 0; I < PaddingSize; ++I) 3947 OS.write((unsigned char)0); 3948 return Offset + PaddingSize; 3949 } 3950 3951 } 3952 3953 void RewriteInstance::rewriteNoteSections() { 3954 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3955 if (!ELF64LEFile) { 3956 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3957 exit(1); 3958 } 3959 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3960 raw_fd_ostream &OS = Out->os(); 3961 3962 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3963 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3964 "next available offset calculation failure"); 3965 OS.seek(NextAvailableOffset); 3966 3967 // Copy over non-allocatable section contents and update file offsets. 3968 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 3969 if (Section.sh_type == ELF::SHT_NULL) 3970 continue; 3971 if (Section.sh_flags & ELF::SHF_ALLOC) 3972 continue; 3973 3974 StringRef SectionName = 3975 cantFail(Obj.getSectionName(Section), "cannot get section name"); 3976 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3977 3978 if (shouldStrip(Section, SectionName)) 3979 continue; 3980 3981 // Insert padding as needed. 3982 NextAvailableOffset = 3983 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 3984 3985 // New section size. 3986 uint64_t Size = 0; 3987 bool DataWritten = false; 3988 uint8_t *SectionData = nullptr; 3989 // Copy over section contents unless it's one of the sections we overwrite. 3990 if (!willOverwriteSection(SectionName)) { 3991 Size = Section.sh_size; 3992 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 3993 std::string Data; 3994 if (BSec && BSec->getPatcher()) { 3995 Data = BSec->getPatcher()->patchBinary(Dataref); 3996 Dataref = StringRef(Data); 3997 } 3998 3999 // Section was expanded, so need to treat it as overwrite. 4000 if (Size != Dataref.size()) { 4001 BSec = BC->registerOrUpdateNoteSection( 4002 SectionName, copyByteArray(Dataref), Dataref.size()); 4003 Size = 0; 4004 } else { 4005 OS << Dataref; 4006 DataWritten = true; 4007 4008 // Add padding as the section extension might rely on the alignment. 4009 Size = appendPadding(OS, Size, Section.sh_addralign); 4010 } 4011 } 4012 4013 // Perform section post-processing. 4014 if (BSec && !BSec->isAllocatable()) { 4015 assert(BSec->getAlignment() <= Section.sh_addralign && 4016 "alignment exceeds value in file"); 4017 4018 if (BSec->getAllocAddress()) { 4019 assert(!DataWritten && "Writing section twice."); 4020 SectionData = BSec->getOutputData(); 4021 4022 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4023 << " contents to section " << SectionName << '\n'); 4024 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4025 Size += BSec->getOutputSize(); 4026 } 4027 4028 BSec->setOutputFileOffset(NextAvailableOffset); 4029 BSec->flushPendingRelocations(OS, 4030 [this] (const MCSymbol *S) { 4031 return getNewValueForSymbol(S->getName()); 4032 }); 4033 } 4034 4035 // Set/modify section info. 4036 BinarySection &NewSection = 4037 BC->registerOrUpdateNoteSection(SectionName, 4038 SectionData, 4039 Size, 4040 Section.sh_addralign, 4041 BSec ? BSec->isReadOnly() : false, 4042 BSec ? BSec->getELFType() 4043 : ELF::SHT_PROGBITS); 4044 NewSection.setOutputAddress(0); 4045 NewSection.setOutputFileOffset(NextAvailableOffset); 4046 4047 NextAvailableOffset += Size; 4048 } 4049 4050 // Write new note sections. 4051 for (BinarySection &Section : BC->nonAllocatableSections()) { 4052 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4053 continue; 4054 4055 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4056 4057 NextAvailableOffset = 4058 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4059 Section.setOutputFileOffset(NextAvailableOffset); 4060 4061 LLVM_DEBUG( 4062 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4063 << " of size " << Section.getOutputSize() << " at offset 0x" 4064 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4065 4066 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4067 NextAvailableOffset += Section.getOutputSize(); 4068 } 4069 } 4070 4071 template <typename ELFT> 4072 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4073 using ELFShdrTy = typename ELFT::Shdr; 4074 const ELFFile<ELFT> &Obj = File->getELFFile(); 4075 4076 // Pre-populate section header string table. 4077 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4078 StringRef SectionName = 4079 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4080 SHStrTab.add(SectionName); 4081 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4082 if (OutputSectionName != SectionName) 4083 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4084 } 4085 for (const std::string &Str : SHStrTabPool) 4086 SHStrTab.add(Str); 4087 for (const BinarySection &Section : BC->sections()) 4088 SHStrTab.add(Section.getName()); 4089 SHStrTab.finalize(); 4090 4091 const size_t SHStrTabSize = SHStrTab.getSize(); 4092 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4093 memset(DataCopy, 0, SHStrTabSize); 4094 SHStrTab.write(DataCopy); 4095 BC->registerOrUpdateNoteSection(".shstrtab", 4096 DataCopy, 4097 SHStrTabSize, 4098 /*Alignment=*/1, 4099 /*IsReadOnly=*/true, 4100 ELF::SHT_STRTAB); 4101 } 4102 4103 void RewriteInstance::addBoltInfoSection() { 4104 std::string DescStr; 4105 raw_string_ostream DescOS(DescStr); 4106 4107 DescOS << "BOLT revision: " << BoltRevision << ", " 4108 << "command line:"; 4109 for (int I = 0; I < Argc; ++I) 4110 DescOS << " " << Argv[I]; 4111 DescOS.flush(); 4112 4113 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4114 const std::string BoltInfo = 4115 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4116 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4117 BoltInfo.size(), 4118 /*Alignment=*/1, 4119 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4120 } 4121 4122 void RewriteInstance::addBATSection() { 4123 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4124 0, 4125 /*Alignment=*/1, 4126 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4127 } 4128 4129 void RewriteInstance::encodeBATSection() { 4130 std::string DescStr; 4131 raw_string_ostream DescOS(DescStr); 4132 4133 BAT->write(DescOS); 4134 DescOS.flush(); 4135 4136 const std::string BoltInfo = 4137 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4138 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4139 copyByteArray(BoltInfo), BoltInfo.size(), 4140 /*Alignment=*/1, 4141 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4142 } 4143 4144 template <typename ELFObjType, typename ELFShdrTy> 4145 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4146 const ELFShdrTy &Section) { 4147 if (Section.sh_type == ELF::SHT_NULL) 4148 return ""; 4149 4150 StringRef SectionName = 4151 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4152 4153 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4154 return (getOrgSecPrefix() + SectionName).str(); 4155 4156 return std::string(SectionName); 4157 } 4158 4159 template <typename ELFShdrTy> 4160 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4161 StringRef SectionName) { 4162 // Strip non-allocatable relocation sections. 4163 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4164 return true; 4165 4166 // Strip debug sections if not updating them. 4167 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4168 return true; 4169 4170 // Strip symtab section if needed 4171 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4172 return true; 4173 4174 return false; 4175 } 4176 4177 template <typename ELFT> 4178 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4179 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4180 std::vector<uint32_t> &NewSectionIndex) { 4181 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4182 const ELFFile<ELFT> &Obj = File->getELFFile(); 4183 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4184 4185 // Keep track of section header entries together with their name. 4186 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4187 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4188 ELFShdrTy NewSection = Section; 4189 NewSection.sh_name = SHStrTab.getOffset(Name); 4190 OutputSections.emplace_back(Name, std::move(NewSection)); 4191 }; 4192 4193 // Copy over entries for original allocatable sections using modified name. 4194 for (const ELFShdrTy &Section : Sections) { 4195 // Always ignore this section. 4196 if (Section.sh_type == ELF::SHT_NULL) { 4197 OutputSections.emplace_back("", Section); 4198 continue; 4199 } 4200 4201 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4202 continue; 4203 4204 addSection(getOutputSectionName(Obj, Section), Section); 4205 } 4206 4207 for (const BinarySection &Section : BC->allocatableSections()) { 4208 if (!Section.isFinalized()) 4209 continue; 4210 4211 if (Section.getName().startswith(getOrgSecPrefix()) || 4212 Section.isAnonymous()) { 4213 if (opts::Verbosity) 4214 outs() << "BOLT-INFO: not writing section header for section " 4215 << Section.getName() << '\n'; 4216 continue; 4217 } 4218 4219 if (opts::Verbosity >= 1) 4220 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4221 << '\n'; 4222 ELFShdrTy NewSection; 4223 NewSection.sh_type = ELF::SHT_PROGBITS; 4224 NewSection.sh_addr = Section.getOutputAddress(); 4225 NewSection.sh_offset = Section.getOutputFileOffset(); 4226 NewSection.sh_size = Section.getOutputSize(); 4227 NewSection.sh_entsize = 0; 4228 NewSection.sh_flags = Section.getELFFlags(); 4229 NewSection.sh_link = 0; 4230 NewSection.sh_info = 0; 4231 NewSection.sh_addralign = Section.getAlignment(); 4232 addSection(std::string(Section.getName()), NewSection); 4233 } 4234 4235 // Sort all allocatable sections by their offset. 4236 std::stable_sort(OutputSections.begin(), OutputSections.end(), 4237 [] (const std::pair<std::string, ELFShdrTy> &A, 4238 const std::pair<std::string, ELFShdrTy> &B) { 4239 return A.second.sh_offset < B.second.sh_offset; 4240 }); 4241 4242 // Fix section sizes to prevent overlapping. 4243 ELFShdrTy *PrevSection = nullptr; 4244 StringRef PrevSectionName; 4245 for (auto &SectionKV : OutputSections) { 4246 ELFShdrTy &Section = SectionKV.second; 4247 4248 // TBSS section does not take file or memory space. Ignore it for layout 4249 // purposes. 4250 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4251 continue; 4252 4253 if (PrevSection && 4254 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4255 if (opts::Verbosity > 1) 4256 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4257 << '\n'; 4258 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4259 ? Section.sh_addr - PrevSection->sh_addr 4260 : 0; 4261 } 4262 4263 PrevSection = &Section; 4264 PrevSectionName = SectionKV.first; 4265 } 4266 4267 uint64_t LastFileOffset = 0; 4268 4269 // Copy over entries for non-allocatable sections performing necessary 4270 // adjustments. 4271 for (const ELFShdrTy &Section : Sections) { 4272 if (Section.sh_type == ELF::SHT_NULL) 4273 continue; 4274 if (Section.sh_flags & ELF::SHF_ALLOC) 4275 continue; 4276 4277 StringRef SectionName = 4278 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4279 4280 if (shouldStrip(Section, SectionName)) 4281 continue; 4282 4283 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4284 assert(BSec && "missing section info for non-allocatable section"); 4285 4286 ELFShdrTy NewSection = Section; 4287 NewSection.sh_offset = BSec->getOutputFileOffset(); 4288 NewSection.sh_size = BSec->getOutputSize(); 4289 4290 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4291 NewSection.sh_info = NumLocalSymbols; 4292 4293 addSection(std::string(SectionName), NewSection); 4294 4295 LastFileOffset = BSec->getOutputFileOffset(); 4296 } 4297 4298 // Create entries for new non-allocatable sections. 4299 for (BinarySection &Section : BC->nonAllocatableSections()) { 4300 if (Section.getOutputFileOffset() <= LastFileOffset) 4301 continue; 4302 4303 if (opts::Verbosity >= 1) 4304 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4305 << '\n'; 4306 4307 ELFShdrTy NewSection; 4308 NewSection.sh_type = Section.getELFType(); 4309 NewSection.sh_addr = 0; 4310 NewSection.sh_offset = Section.getOutputFileOffset(); 4311 NewSection.sh_size = Section.getOutputSize(); 4312 NewSection.sh_entsize = 0; 4313 NewSection.sh_flags = Section.getELFFlags(); 4314 NewSection.sh_link = 0; 4315 NewSection.sh_info = 0; 4316 NewSection.sh_addralign = Section.getAlignment(); 4317 4318 addSection(std::string(Section.getName()), NewSection); 4319 } 4320 4321 // Assign indices to sections. 4322 std::unordered_map<std::string, uint64_t> NameToIndex; 4323 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4324 const std::string &SectionName = OutputSections[Index].first; 4325 NameToIndex[SectionName] = Index; 4326 if (ErrorOr<BinarySection &> Section = 4327 BC->getUniqueSectionByName(SectionName)) 4328 Section->setIndex(Index); 4329 } 4330 4331 // Update section index mapping 4332 NewSectionIndex.clear(); 4333 NewSectionIndex.resize(Sections.size(), 0); 4334 for (const ELFShdrTy &Section : Sections) { 4335 if (Section.sh_type == ELF::SHT_NULL) 4336 continue; 4337 4338 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4339 std::string SectionName = getOutputSectionName(Obj, Section); 4340 4341 // Some sections are stripped 4342 if (!NameToIndex.count(SectionName)) 4343 continue; 4344 4345 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4346 } 4347 4348 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4349 std::transform(OutputSections.begin(), OutputSections.end(), 4350 SectionsOnly.begin(), 4351 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4352 return SectionInfo.second; 4353 }); 4354 4355 return SectionsOnly; 4356 } 4357 4358 // Rewrite section header table inserting new entries as needed. The sections 4359 // header table size itself may affect the offsets of other sections, 4360 // so we are placing it at the end of the binary. 4361 // 4362 // As we rewrite entries we need to track how many sections were inserted 4363 // as it changes the sh_link value. We map old indices to new ones for 4364 // existing sections. 4365 template <typename ELFT> 4366 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4367 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4368 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4369 raw_fd_ostream &OS = Out->os(); 4370 const ELFFile<ELFT> &Obj = File->getELFFile(); 4371 4372 std::vector<uint32_t> NewSectionIndex; 4373 std::vector<ELFShdrTy> OutputSections = 4374 getOutputSections(File, NewSectionIndex); 4375 LLVM_DEBUG( 4376 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4377 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4378 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4379 ); 4380 4381 // Align starting address for section header table. 4382 uint64_t SHTOffset = OS.tell(); 4383 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4384 4385 // Write all section header entries while patching section references. 4386 for (ELFShdrTy &Section : OutputSections) { 4387 Section.sh_link = NewSectionIndex[Section.sh_link]; 4388 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4389 if (Section.sh_info) 4390 Section.sh_info = NewSectionIndex[Section.sh_info]; 4391 } 4392 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4393 } 4394 4395 // Fix ELF header. 4396 ELFEhdrTy NewEhdr = Obj.getHeader(); 4397 4398 if (BC->HasRelocations) { 4399 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4400 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4401 else 4402 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4403 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4404 "cannot find new address for entry point"); 4405 } 4406 NewEhdr.e_phoff = PHDRTableOffset; 4407 NewEhdr.e_phnum = Phnum; 4408 NewEhdr.e_shoff = SHTOffset; 4409 NewEhdr.e_shnum = OutputSections.size(); 4410 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4411 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4412 } 4413 4414 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4415 void RewriteInstance::updateELFSymbolTable( 4416 ELFObjectFile<ELFT> *File, bool IsDynSym, 4417 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4418 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4419 StrTabFuncTy AddToStrTab) { 4420 const ELFFile<ELFT> &Obj = File->getELFFile(); 4421 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4422 4423 StringRef StringSection = 4424 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4425 4426 unsigned NumHotTextSymsUpdated = 0; 4427 unsigned NumHotDataSymsUpdated = 0; 4428 4429 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4430 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4431 auto Itr = IslandSizes.find(&BF); 4432 if (Itr != IslandSizes.end()) 4433 return Itr->second; 4434 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4435 }; 4436 4437 // Symbols for the new symbol table. 4438 std::vector<ELFSymTy> Symbols; 4439 4440 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4441 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4442 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4443 4444 // We may have stripped the section that dynsym was referencing due to 4445 // the linker bug. In that case return the old index avoiding marking 4446 // the symbol as undefined. 4447 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4448 return OldIndex; 4449 return NewIndex; 4450 }; 4451 4452 // Add extra symbols for the function. 4453 // 4454 // Note that addExtraSymbols() could be called multiple times for the same 4455 // function with different FunctionSymbol matching the main function entry 4456 // point. 4457 auto addExtraSymbols = [&](const BinaryFunction &Function, 4458 const ELFSymTy &FunctionSymbol) { 4459 if (Function.isFolded()) { 4460 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4461 while (ICFParent->isFolded()) 4462 ICFParent = ICFParent->getFoldedIntoFunction(); 4463 ELFSymTy ICFSymbol = FunctionSymbol; 4464 SmallVector<char, 256> Buf; 4465 ICFSymbol.st_name = 4466 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4467 .concat(".icf.0") 4468 .toStringRef(Buf)); 4469 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4470 ICFSymbol.st_size = ICFParent->getOutputSize(); 4471 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4472 Symbols.emplace_back(ICFSymbol); 4473 } 4474 if (Function.isSplit() && Function.cold().getAddress()) { 4475 ELFSymTy NewColdSym = FunctionSymbol; 4476 SmallVector<char, 256> Buf; 4477 NewColdSym.st_name = 4478 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4479 .concat(".cold.0") 4480 .toStringRef(Buf)); 4481 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4482 NewColdSym.st_value = Function.cold().getAddress(); 4483 NewColdSym.st_size = Function.cold().getImageSize(); 4484 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4485 Symbols.emplace_back(NewColdSym); 4486 } 4487 if (Function.hasConstantIsland()) { 4488 uint64_t DataMark = Function.getOutputDataAddress(); 4489 uint64_t CISize = getConstantIslandSize(Function); 4490 uint64_t CodeMark = DataMark + CISize; 4491 ELFSymTy DataMarkSym = FunctionSymbol; 4492 DataMarkSym.st_name = AddToStrTab("$d"); 4493 DataMarkSym.st_value = DataMark; 4494 DataMarkSym.st_size = 0; 4495 DataMarkSym.setType(ELF::STT_NOTYPE); 4496 DataMarkSym.setBinding(ELF::STB_LOCAL); 4497 ELFSymTy CodeMarkSym = DataMarkSym; 4498 CodeMarkSym.st_name = AddToStrTab("$x"); 4499 CodeMarkSym.st_value = CodeMark; 4500 Symbols.emplace_back(DataMarkSym); 4501 Symbols.emplace_back(CodeMarkSym); 4502 } 4503 if (Function.hasConstantIsland() && Function.isSplit()) { 4504 uint64_t DataMark = Function.getOutputColdDataAddress(); 4505 uint64_t CISize = getConstantIslandSize(Function); 4506 uint64_t CodeMark = DataMark + CISize; 4507 ELFSymTy DataMarkSym = FunctionSymbol; 4508 DataMarkSym.st_name = AddToStrTab("$d"); 4509 DataMarkSym.st_value = DataMark; 4510 DataMarkSym.st_size = 0; 4511 DataMarkSym.setType(ELF::STT_NOTYPE); 4512 DataMarkSym.setBinding(ELF::STB_LOCAL); 4513 ELFSymTy CodeMarkSym = DataMarkSym; 4514 CodeMarkSym.st_name = AddToStrTab("$x"); 4515 CodeMarkSym.st_value = CodeMark; 4516 Symbols.emplace_back(DataMarkSym); 4517 Symbols.emplace_back(CodeMarkSym); 4518 } 4519 }; 4520 4521 // For regular (non-dynamic) symbol table, exclude symbols referring 4522 // to non-allocatable sections. 4523 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4524 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4525 return false; 4526 4527 // If we cannot link the symbol to a section, leave it as is. 4528 Expected<const typename ELFT::Shdr *> Section = 4529 Obj.getSection(Symbol.st_shndx); 4530 if (!Section) 4531 return false; 4532 4533 // Remove the section symbol iif the corresponding section was stripped. 4534 if (Symbol.getType() == ELF::STT_SECTION) { 4535 if (!getNewSectionIndex(Symbol.st_shndx)) 4536 return true; 4537 return false; 4538 } 4539 4540 // Symbols in non-allocatable sections are typically remnants of relocations 4541 // emitted under "-emit-relocs" linker option. Delete those as we delete 4542 // relocations against non-allocatable sections. 4543 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4544 return true; 4545 4546 return false; 4547 }; 4548 4549 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4550 // For regular (non-dynamic) symbol table strip unneeded symbols. 4551 if (!IsDynSym && shouldStrip(Symbol)) 4552 continue; 4553 4554 const BinaryFunction *Function = 4555 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4556 // Ignore false function references, e.g. when the section address matches 4557 // the address of the function. 4558 if (Function && Symbol.getType() == ELF::STT_SECTION) 4559 Function = nullptr; 4560 4561 // For non-dynamic symtab, make sure the symbol section matches that of 4562 // the function. It can mismatch e.g. if the symbol is a section marker 4563 // in which case we treat the symbol separately from the function. 4564 // For dynamic symbol table, the section index could be wrong on the input, 4565 // and its value is ignored by the runtime if it's different from 4566 // SHN_UNDEF and SHN_ABS. 4567 if (!IsDynSym && Function && 4568 Symbol.st_shndx != 4569 Function->getOriginSection()->getSectionRef().getIndex()) 4570 Function = nullptr; 4571 4572 // Create a new symbol based on the existing symbol. 4573 ELFSymTy NewSymbol = Symbol; 4574 4575 if (Function) { 4576 // If the symbol matched a function that was not emitted, update the 4577 // corresponding section index but otherwise leave it unchanged. 4578 if (Function->isEmitted()) { 4579 NewSymbol.st_value = Function->getOutputAddress(); 4580 NewSymbol.st_size = Function->getOutputSize(); 4581 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4582 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4583 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4584 } 4585 4586 // Add new symbols to the symbol table if necessary. 4587 if (!IsDynSym) 4588 addExtraSymbols(*Function, NewSymbol); 4589 } else { 4590 // Check if the function symbol matches address inside a function, i.e. 4591 // it marks a secondary entry point. 4592 Function = 4593 (Symbol.getType() == ELF::STT_FUNC) 4594 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4595 /*CheckPastEnd=*/false, 4596 /*UseMaxSize=*/true) 4597 : nullptr; 4598 4599 if (Function && Function->isEmitted()) { 4600 const uint64_t OutputAddress = 4601 Function->translateInputToOutputAddress(Symbol.st_value); 4602 4603 NewSymbol.st_value = OutputAddress; 4604 // Force secondary entry points to have zero size. 4605 NewSymbol.st_size = 0; 4606 NewSymbol.st_shndx = 4607 OutputAddress >= Function->cold().getAddress() && 4608 OutputAddress < Function->cold().getImageSize() 4609 ? Function->getColdCodeSection()->getIndex() 4610 : Function->getCodeSection()->getIndex(); 4611 } else { 4612 // Check if the symbol belongs to moved data object and update it. 4613 BinaryData *BD = opts::ReorderData.empty() 4614 ? nullptr 4615 : BC->getBinaryDataAtAddress(Symbol.st_value); 4616 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4617 assert((!BD->getSize() || !Symbol.st_size || 4618 Symbol.st_size == BD->getSize()) && 4619 "sizes must match"); 4620 4621 BinarySection &OutputSection = BD->getOutputSection(); 4622 assert(OutputSection.getIndex()); 4623 LLVM_DEBUG(dbgs() 4624 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4625 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4626 << Symbol.st_shndx << ") to " << OutputSection.getName() 4627 << " (" << OutputSection.getIndex() << ")\n"); 4628 NewSymbol.st_shndx = OutputSection.getIndex(); 4629 NewSymbol.st_value = BD->getOutputAddress(); 4630 } else { 4631 // Otherwise just update the section for the symbol. 4632 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4633 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4634 } 4635 4636 // Detect local syms in the text section that we didn't update 4637 // and that were preserved by the linker to support relocations against 4638 // .text. Remove them from the symtab. 4639 if (Symbol.getType() == ELF::STT_NOTYPE && 4640 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4641 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4642 /*CheckPastEnd=*/false, 4643 /*UseMaxSize=*/true)) { 4644 // Can only delete the symbol if not patching. Such symbols should 4645 // not exist in the dynamic symbol table. 4646 assert(!IsDynSym && "cannot delete symbol"); 4647 continue; 4648 } 4649 } 4650 } 4651 } 4652 4653 // Handle special symbols based on their name. 4654 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4655 assert(SymbolName && "cannot get symbol name"); 4656 4657 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4658 NewSymbol.st_value = getNewValueForSymbol(Name); 4659 NewSymbol.st_shndx = ELF::SHN_ABS; 4660 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4661 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4662 ++IsUpdated; 4663 }; 4664 4665 if (opts::HotText && 4666 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4667 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4668 4669 if (opts::HotData && 4670 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4671 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4672 4673 if (*SymbolName == "_end") { 4674 unsigned Ignored; 4675 updateSymbolValue(*SymbolName, Ignored); 4676 } 4677 4678 if (IsDynSym) 4679 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4680 sizeof(ELFSymTy), 4681 NewSymbol); 4682 else 4683 Symbols.emplace_back(NewSymbol); 4684 } 4685 4686 if (IsDynSym) { 4687 assert(Symbols.empty()); 4688 return; 4689 } 4690 4691 // Add symbols of injected functions 4692 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4693 ELFSymTy NewSymbol; 4694 BinarySection *OriginSection = Function->getOriginSection(); 4695 NewSymbol.st_shndx = 4696 OriginSection 4697 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4698 : Function->getCodeSection()->getIndex(); 4699 NewSymbol.st_value = Function->getOutputAddress(); 4700 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4701 NewSymbol.st_size = Function->getOutputSize(); 4702 NewSymbol.st_other = 0; 4703 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4704 Symbols.emplace_back(NewSymbol); 4705 4706 if (Function->isSplit()) { 4707 ELFSymTy NewColdSym = NewSymbol; 4708 NewColdSym.setType(ELF::STT_NOTYPE); 4709 SmallVector<char, 256> Buf; 4710 NewColdSym.st_name = AddToStrTab( 4711 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4712 NewColdSym.st_value = Function->cold().getAddress(); 4713 NewColdSym.st_size = Function->cold().getImageSize(); 4714 Symbols.emplace_back(NewColdSym); 4715 } 4716 } 4717 4718 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4719 "either none or both __hot_start/__hot_end symbols were expected"); 4720 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4721 "either none or both __hot_data_start/__hot_data_end symbols were " 4722 "expected"); 4723 4724 auto addSymbol = [&](const std::string &Name) { 4725 ELFSymTy Symbol; 4726 Symbol.st_value = getNewValueForSymbol(Name); 4727 Symbol.st_shndx = ELF::SHN_ABS; 4728 Symbol.st_name = AddToStrTab(Name); 4729 Symbol.st_size = 0; 4730 Symbol.st_other = 0; 4731 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4732 4733 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4734 << Twine::utohexstr(Symbol.st_value) << '\n'; 4735 4736 Symbols.emplace_back(Symbol); 4737 }; 4738 4739 if (opts::HotText && !NumHotTextSymsUpdated) { 4740 addSymbol("__hot_start"); 4741 addSymbol("__hot_end"); 4742 } 4743 4744 if (opts::HotData && !NumHotDataSymsUpdated) { 4745 addSymbol("__hot_data_start"); 4746 addSymbol("__hot_data_end"); 4747 } 4748 4749 // Put local symbols at the beginning. 4750 std::stable_sort(Symbols.begin(), Symbols.end(), 4751 [](const ELFSymTy &A, const ELFSymTy &B) { 4752 if (A.getBinding() == ELF::STB_LOCAL && 4753 B.getBinding() != ELF::STB_LOCAL) 4754 return true; 4755 return false; 4756 }); 4757 4758 for (const ELFSymTy &Symbol : Symbols) 4759 Write(0, Symbol); 4760 } 4761 4762 template <typename ELFT> 4763 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4764 const ELFFile<ELFT> &Obj = File->getELFFile(); 4765 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4766 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4767 4768 // Compute a preview of how section indices will change after rewriting, so 4769 // we can properly update the symbol table based on new section indices. 4770 std::vector<uint32_t> NewSectionIndex; 4771 getOutputSections(File, NewSectionIndex); 4772 4773 // Set pointer at the end of the output file, so we can pwrite old symbol 4774 // tables if we need to. 4775 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4776 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4777 "next available offset calculation failure"); 4778 Out->os().seek(NextAvailableOffset); 4779 4780 // Update dynamic symbol table. 4781 const ELFShdrTy *DynSymSection = nullptr; 4782 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4783 if (Section.sh_type == ELF::SHT_DYNSYM) { 4784 DynSymSection = &Section; 4785 break; 4786 } 4787 } 4788 assert((DynSymSection || BC->IsStaticExecutable) && 4789 "dynamic symbol table expected"); 4790 if (DynSymSection) { 4791 updateELFSymbolTable( 4792 File, 4793 /*IsDynSym=*/true, 4794 *DynSymSection, 4795 NewSectionIndex, 4796 [&](size_t Offset, const ELFSymTy &Sym) { 4797 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4798 sizeof(ELFSymTy), 4799 DynSymSection->sh_offset + Offset); 4800 }, 4801 [](StringRef) -> size_t { return 0; }); 4802 } 4803 4804 if (opts::RemoveSymtab) 4805 return; 4806 4807 // (re)create regular symbol table. 4808 const ELFShdrTy *SymTabSection = nullptr; 4809 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4810 if (Section.sh_type == ELF::SHT_SYMTAB) { 4811 SymTabSection = &Section; 4812 break; 4813 } 4814 } 4815 if (!SymTabSection) { 4816 errs() << "BOLT-WARNING: no symbol table found\n"; 4817 return; 4818 } 4819 4820 const ELFShdrTy *StrTabSection = 4821 cantFail(Obj.getSection(SymTabSection->sh_link)); 4822 std::string NewContents; 4823 std::string NewStrTab = std::string( 4824 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4825 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4826 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4827 4828 NumLocalSymbols = 0; 4829 updateELFSymbolTable( 4830 File, 4831 /*IsDynSym=*/false, 4832 *SymTabSection, 4833 NewSectionIndex, 4834 [&](size_t Offset, const ELFSymTy &Sym) { 4835 if (Sym.getBinding() == ELF::STB_LOCAL) 4836 ++NumLocalSymbols; 4837 NewContents.append(reinterpret_cast<const char *>(&Sym), 4838 sizeof(ELFSymTy)); 4839 }, 4840 [&](StringRef Str) { 4841 size_t Idx = NewStrTab.size(); 4842 NewStrTab.append(NameResolver::restore(Str).str()); 4843 NewStrTab.append(1, '\0'); 4844 return Idx; 4845 }); 4846 4847 BC->registerOrUpdateNoteSection(SecName, 4848 copyByteArray(NewContents), 4849 NewContents.size(), 4850 /*Alignment=*/1, 4851 /*IsReadOnly=*/true, 4852 ELF::SHT_SYMTAB); 4853 4854 BC->registerOrUpdateNoteSection(StrSecName, 4855 copyByteArray(NewStrTab), 4856 NewStrTab.size(), 4857 /*Alignment=*/1, 4858 /*IsReadOnly=*/true, 4859 ELF::SHT_STRTAB); 4860 } 4861 4862 template <typename ELFT> 4863 void 4864 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4865 using Elf_Rela = typename ELFT::Rela; 4866 raw_fd_ostream &OS = Out->os(); 4867 const ELFFile<ELFT> &EF = File->getELFFile(); 4868 4869 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4870 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4871 4872 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4873 uint64_t &End) { 4874 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4875 Start = Section->getInputFileOffset(); 4876 End = Start + Section->getSize(); 4877 }; 4878 4879 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4880 return; 4881 4882 if (DynamicRelocationsAddress) 4883 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4884 RelDynEndOffset); 4885 4886 if (PLTRelocationsAddress) 4887 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4888 RelPltEndOffset); 4889 4890 DynamicRelativeRelocationsCount = 0; 4891 4892 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4893 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4894 Offset += sizeof(*RelA); 4895 }; 4896 4897 auto writeRelocations = [&](bool PatchRelative) { 4898 for (BinarySection &Section : BC->allocatableSections()) { 4899 for (const Relocation &Rel : Section.dynamicRelocations()) { 4900 const bool IsRelative = Rel.isRelative(); 4901 if (PatchRelative != IsRelative) 4902 continue; 4903 4904 if (IsRelative) 4905 ++DynamicRelativeRelocationsCount; 4906 4907 Elf_Rela NewRelA; 4908 uint64_t SectionAddress = Section.getOutputAddress(); 4909 SectionAddress = 4910 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4911 MCSymbol *Symbol = Rel.Symbol; 4912 uint32_t SymbolIdx = 0; 4913 uint64_t Addend = Rel.Addend; 4914 4915 if (Rel.Symbol) { 4916 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4917 } else { 4918 // Usually this case is used for R_*_(I)RELATIVE relocations 4919 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4920 if (Address) 4921 Addend = Address; 4922 } 4923 4924 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4925 NewRelA.r_offset = SectionAddress + Rel.Offset; 4926 NewRelA.r_addend = Addend; 4927 4928 const bool IsJmpRel = 4929 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4930 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4931 const uint64_t &EndOffset = 4932 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4933 if (!Offset || !EndOffset) { 4934 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4935 exit(1); 4936 } 4937 4938 if (Offset + sizeof(NewRelA) > EndOffset) { 4939 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4940 exit(1); 4941 } 4942 4943 writeRela(&NewRelA, Offset); 4944 } 4945 } 4946 }; 4947 4948 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4949 writeRelocations(/* PatchRelative */ true); 4950 writeRelocations(/* PatchRelative */ false); 4951 4952 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4953 if (!Offset) 4954 return; 4955 4956 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4957 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4958 RelA.r_offset = 0; 4959 RelA.r_addend = 0; 4960 while (Offset < EndOffset) 4961 writeRela(&RelA, Offset); 4962 4963 assert(Offset == EndOffset && "Unexpected section overflow"); 4964 }; 4965 4966 // Fill the rest of the sections with R_*_NONE relocations 4967 fillNone(RelDynOffset, RelDynEndOffset); 4968 fillNone(RelPltOffset, RelPltEndOffset); 4969 } 4970 4971 template <typename ELFT> 4972 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 4973 raw_fd_ostream &OS = Out->os(); 4974 4975 SectionRef GOTSection; 4976 for (const SectionRef &Section : File->sections()) { 4977 StringRef SectionName = cantFail(Section.getName()); 4978 if (SectionName == ".got") { 4979 GOTSection = Section; 4980 break; 4981 } 4982 } 4983 if (!GOTSection.getObject()) { 4984 if (!BC->IsStaticExecutable) 4985 errs() << "BOLT-INFO: no .got section found\n"; 4986 return; 4987 } 4988 4989 StringRef GOTContents = cantFail(GOTSection.getContents()); 4990 for (const uint64_t *GOTEntry = 4991 reinterpret_cast<const uint64_t *>(GOTContents.data()); 4992 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 4993 GOTContents.size()); 4994 ++GOTEntry) { 4995 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 4996 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 4997 << Twine::utohexstr(*GOTEntry) << " with 0x" 4998 << Twine::utohexstr(NewAddress) << '\n'); 4999 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5000 reinterpret_cast<const char *>(GOTEntry) - 5001 File->getData().data()); 5002 } 5003 } 5004 } 5005 5006 template <typename ELFT> 5007 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5008 if (BC->IsStaticExecutable) 5009 return; 5010 5011 const ELFFile<ELFT> &Obj = File->getELFFile(); 5012 raw_fd_ostream &OS = Out->os(); 5013 5014 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5015 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5016 5017 // Locate DYNAMIC by looking through program headers. 5018 uint64_t DynamicOffset = 0; 5019 const Elf_Phdr *DynamicPhdr = 0; 5020 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5021 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5022 DynamicOffset = Phdr.p_offset; 5023 DynamicPhdr = &Phdr; 5024 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5025 break; 5026 } 5027 } 5028 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5029 5030 bool ZNowSet = false; 5031 5032 // Go through all dynamic entries and patch functions addresses with 5033 // new ones. 5034 typename ELFT::DynRange DynamicEntries = 5035 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5036 auto DTB = DynamicEntries.begin(); 5037 for (const Elf_Dyn &Dyn : DynamicEntries) { 5038 Elf_Dyn NewDE = Dyn; 5039 bool ShouldPatch = true; 5040 switch (Dyn.d_tag) { 5041 default: 5042 ShouldPatch = false; 5043 break; 5044 case ELF::DT_RELACOUNT: 5045 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5046 break; 5047 case ELF::DT_INIT: 5048 case ELF::DT_FINI: { 5049 if (BC->HasRelocations) { 5050 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5051 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5052 << Dyn.getTag() << '\n'); 5053 NewDE.d_un.d_ptr = NewAddress; 5054 } 5055 } 5056 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5057 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5058 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5059 NewDE.d_un.d_ptr = Addr; 5060 } 5061 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5062 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5063 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5064 << Twine::utohexstr(Addr) << '\n'); 5065 NewDE.d_un.d_ptr = Addr; 5066 } 5067 } 5068 break; 5069 } 5070 case ELF::DT_FLAGS: 5071 if (BC->RequiresZNow) { 5072 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5073 ZNowSet = true; 5074 } 5075 break; 5076 case ELF::DT_FLAGS_1: 5077 if (BC->RequiresZNow) { 5078 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5079 ZNowSet = true; 5080 } 5081 break; 5082 } 5083 if (ShouldPatch) 5084 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5085 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5086 } 5087 5088 if (BC->RequiresZNow && !ZNowSet) { 5089 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5090 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5091 ".dynamic. Please re-link the binary with -znow.\n"; 5092 exit(1); 5093 } 5094 } 5095 5096 template <typename ELFT> 5097 void RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5098 const ELFFile<ELFT> &Obj = File->getELFFile(); 5099 5100 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5101 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5102 5103 // Locate DYNAMIC by looking through program headers. 5104 const Elf_Phdr *DynamicPhdr = 0; 5105 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5106 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5107 DynamicPhdr = &Phdr; 5108 break; 5109 } 5110 } 5111 5112 if (!DynamicPhdr) { 5113 outs() << "BOLT-INFO: static input executable detected\n"; 5114 // TODO: static PIE executable might have dynamic header 5115 BC->IsStaticExecutable = true; 5116 return; 5117 } 5118 5119 assert(DynamicPhdr->p_memsz == DynamicPhdr->p_filesz && 5120 "dynamic section sizes should match"); 5121 5122 // Go through all dynamic entries to locate entries of interest. 5123 typename ELFT::DynRange DynamicEntries = 5124 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5125 5126 for (const Elf_Dyn &Dyn : DynamicEntries) { 5127 switch (Dyn.d_tag) { 5128 case ELF::DT_INIT: 5129 if (!BC->HasInterpHeader) { 5130 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5131 BC->StartFunctionAddress = Dyn.getPtr(); 5132 } 5133 break; 5134 case ELF::DT_FINI: 5135 BC->FiniFunctionAddress = Dyn.getPtr(); 5136 break; 5137 case ELF::DT_RELA: 5138 DynamicRelocationsAddress = Dyn.getPtr(); 5139 break; 5140 case ELF::DT_RELASZ: 5141 DynamicRelocationsSize = Dyn.getVal(); 5142 break; 5143 case ELF::DT_JMPREL: 5144 PLTRelocationsAddress = Dyn.getPtr(); 5145 break; 5146 case ELF::DT_PLTRELSZ: 5147 PLTRelocationsSize = Dyn.getVal(); 5148 break; 5149 case ELF::DT_RELACOUNT: 5150 DynamicRelativeRelocationsCount = Dyn.getVal(); 5151 break; 5152 } 5153 } 5154 5155 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5156 DynamicRelocationsAddress.reset(); 5157 DynamicRelocationsSize = 0; 5158 } 5159 5160 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5161 PLTRelocationsAddress.reset(); 5162 PLTRelocationsSize = 0; 5163 } 5164 } 5165 5166 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5167 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5168 if (!Function) 5169 return 0; 5170 5171 assert(!Function->isFragment() && "cannot get new address for a fragment"); 5172 5173 return Function->getOutputAddress(); 5174 } 5175 5176 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5177 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5178 return Function; 5179 5180 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5181 if (BD && BD->isMoved()) 5182 return BD->getOutputAddress(); 5183 5184 return 0; 5185 } 5186 5187 void RewriteInstance::rewriteFile() { 5188 std::error_code EC; 5189 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5190 sys::fs::OF_None); 5191 check_error(EC, "cannot create output executable file"); 5192 5193 raw_fd_ostream &OS = Out->os(); 5194 5195 // Copy allocatable part of the input. 5196 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5197 5198 // We obtain an asm-specific writer so that we can emit nops in an 5199 // architecture-specific way at the end of the function. 5200 std::unique_ptr<MCAsmBackend> MAB( 5201 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5202 auto Streamer = BC->createStreamer(OS); 5203 // Make sure output stream has enough reserved space, otherwise 5204 // pwrite() will fail. 5205 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5206 (void)Offset; 5207 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5208 "error resizing output file"); 5209 5210 // Overwrite functions with fixed output address. This is mostly used by 5211 // non-relocation mode, with one exception: injected functions are covered 5212 // here in both modes. 5213 uint64_t CountOverwrittenFunctions = 0; 5214 uint64_t OverwrittenScore = 0; 5215 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5216 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5217 continue; 5218 5219 if (Function->getImageSize() > Function->getMaxSize()) { 5220 if (opts::Verbosity >= 1) 5221 errs() << "BOLT-WARNING: new function size (0x" 5222 << Twine::utohexstr(Function->getImageSize()) 5223 << ") is larger than maximum allowed size (0x" 5224 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5225 << *Function << '\n'; 5226 5227 // Remove jump table sections that this function owns in non-reloc mode 5228 // because we don't want to write them anymore. 5229 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5230 for (auto &JTI : Function->JumpTables) { 5231 JumpTable *JT = JTI.second; 5232 BinarySection &Section = JT->getOutputSection(); 5233 BC->deregisterSection(Section); 5234 } 5235 } 5236 continue; 5237 } 5238 5239 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5240 Function->cold().getImageSize() == 0)) 5241 continue; 5242 5243 OverwrittenScore += Function->getFunctionScore(); 5244 // Overwrite function in the output file. 5245 if (opts::Verbosity >= 2) 5246 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5247 5248 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5249 Function->getImageSize(), Function->getFileOffset()); 5250 5251 // Write nops at the end of the function. 5252 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5253 uint64_t Pos = OS.tell(); 5254 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5255 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5256 &*BC->STI); 5257 5258 OS.seek(Pos); 5259 } 5260 5261 if (!Function->isSplit()) { 5262 ++CountOverwrittenFunctions; 5263 if (opts::MaxFunctions && 5264 CountOverwrittenFunctions == opts::MaxFunctions) { 5265 outs() << "BOLT: maximum number of functions reached\n"; 5266 break; 5267 } 5268 continue; 5269 } 5270 5271 // Write cold part 5272 if (opts::Verbosity >= 2) 5273 outs() << "BOLT: rewriting function \"" << *Function 5274 << "\" (cold part)\n"; 5275 5276 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5277 Function->cold().getImageSize(), 5278 Function->cold().getFileOffset()); 5279 5280 ++CountOverwrittenFunctions; 5281 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5282 outs() << "BOLT: maximum number of functions reached\n"; 5283 break; 5284 } 5285 } 5286 5287 // Print function statistics for non-relocation mode. 5288 if (!BC->HasRelocations) { 5289 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5290 << BC->getBinaryFunctions().size() 5291 << " functions were overwritten.\n"; 5292 if (BC->TotalScore != 0) { 5293 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5294 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5295 << "% of the execution count of simple functions of " 5296 "this binary\n"; 5297 } 5298 } 5299 5300 if (BC->HasRelocations && opts::TrapOldCode) { 5301 uint64_t SavedPos = OS.tell(); 5302 // Overwrite function body to make sure we never execute these instructions. 5303 for (auto &BFI : BC->getBinaryFunctions()) { 5304 BinaryFunction &BF = BFI.second; 5305 if (!BF.getFileOffset() || !BF.isEmitted()) 5306 continue; 5307 OS.seek(BF.getFileOffset()); 5308 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5309 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5310 } 5311 OS.seek(SavedPos); 5312 } 5313 5314 // Write all allocatable sections - reloc-mode text is written here as well 5315 for (BinarySection &Section : BC->allocatableSections()) { 5316 if (!Section.isFinalized() || !Section.getOutputData()) 5317 continue; 5318 5319 if (opts::Verbosity >= 1) 5320 outs() << "BOLT: writing new section " << Section.getName() 5321 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5322 << "\n of size " << Section.getOutputSize() << "\n at offset " 5323 << Section.getOutputFileOffset() << '\n'; 5324 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5325 Section.getOutputSize(), Section.getOutputFileOffset()); 5326 } 5327 5328 for (BinarySection &Section : BC->allocatableSections()) 5329 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5330 return getNewValueForSymbol(S->getName()); 5331 }); 5332 5333 // If .eh_frame is present create .eh_frame_hdr. 5334 if (EHFrameSection && EHFrameSection->isFinalized()) 5335 writeEHFrameHeader(); 5336 5337 // Add BOLT Addresses Translation maps to allow profile collection to 5338 // happen in the output binary 5339 if (opts::EnableBAT) 5340 addBATSection(); 5341 5342 // Patch program header table. 5343 patchELFPHDRTable(); 5344 5345 // Finalize memory image of section string table. 5346 finalizeSectionStringTable(); 5347 5348 // Update symbol tables. 5349 patchELFSymTabs(); 5350 5351 patchBuildID(); 5352 5353 if (opts::EnableBAT) 5354 encodeBATSection(); 5355 5356 // Copy non-allocatable sections once allocatable part is finished. 5357 rewriteNoteSections(); 5358 5359 if (BC->HasRelocations) { 5360 patchELFAllocatableRelaSections(); 5361 patchELFGOT(); 5362 } 5363 5364 // Patch dynamic section/segment. 5365 patchELFDynamic(); 5366 5367 // Update ELF book-keeping info. 5368 patchELFSectionHeaderTable(); 5369 5370 if (opts::PrintSections) { 5371 outs() << "BOLT-INFO: Sections after processing:\n"; 5372 BC->printSections(outs()); 5373 } 5374 5375 Out->keep(); 5376 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5377 check_error(EC, "cannot set permissions of output file"); 5378 } 5379 5380 void RewriteInstance::writeEHFrameHeader() { 5381 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5382 EHFrameSection->getOutputAddress()); 5383 Error E = NewEHFrame.parse(DWARFDataExtractor( 5384 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5385 BC->AsmInfo->getCodePointerSize())); 5386 check_error(std::move(E), "failed to parse EH frame"); 5387 5388 uint64_t OldEHFrameAddress = 0; 5389 StringRef OldEHFrameContents; 5390 ErrorOr<BinarySection &> OldEHFrameSection = 5391 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5392 if (OldEHFrameSection) { 5393 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5394 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5395 } 5396 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5397 Error Er = OldEHFrame.parse( 5398 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5399 BC->AsmInfo->getCodePointerSize())); 5400 check_error(std::move(Er), "failed to parse EH frame"); 5401 5402 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5403 5404 NextAvailableAddress = 5405 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5406 5407 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5408 const uint64_t EHFrameHdrFileOffset = 5409 getFileOffsetForAddress(NextAvailableAddress); 5410 5411 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5412 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5413 5414 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5415 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5416 5417 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5418 /*IsText=*/false, 5419 /*IsAllocatable=*/true); 5420 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5421 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5422 /*Alignment=*/1); 5423 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5424 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5425 5426 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5427 5428 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5429 if (OldEHFrameSection) { 5430 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5431 OldEHFrameSection->getOutputSize() - 5432 EHFrameSection->getOutputAddress()); 5433 EHFrameSection = 5434 BC->registerOrUpdateSection(".eh_frame", 5435 EHFrameSection->getELFType(), 5436 EHFrameSection->getELFFlags(), 5437 EHFrameSection->getOutputData(), 5438 EHFrameSectionSize, 5439 EHFrameSection->getAlignment()); 5440 BC->deregisterSection(*OldEHFrameSection); 5441 } 5442 5443 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5444 << EHFrameSection->getOutputSize() << '\n'); 5445 } 5446 5447 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5448 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5449 if (Value != 0) 5450 return Value; 5451 5452 // Return the original value if we haven't emitted the symbol. 5453 BinaryData *BD = BC->getBinaryDataByName(Name); 5454 if (!BD) 5455 return 0; 5456 5457 return BD->getAddress(); 5458 } 5459 5460 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5461 // Check if it's possibly part of the new segment. 5462 if (Address >= NewTextSegmentAddress) 5463 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5464 5465 // Find an existing segment that matches the address. 5466 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5467 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5468 return 0; 5469 5470 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5471 if (Address < SegmentInfo.Address || 5472 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5473 return 0; 5474 5475 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5476 } 5477 5478 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5479 for (const char *const &OverwriteName : SectionsToOverwrite) 5480 if (SectionName == OverwriteName) 5481 return true; 5482 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5483 if (SectionName == OverwriteName) 5484 return true; 5485 5486 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5487 return Section && Section->isAllocatable() && Section->isFinalized(); 5488 } 5489 5490 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5491 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5492 SectionName == ".gdb_index" || SectionName == ".stab" || 5493 SectionName == ".stabstr") 5494 return true; 5495 5496 return false; 5497 } 5498 5499 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5500 if (SectionName.startswith("__ksymtab")) 5501 return true; 5502 5503 return false; 5504 } 5505