1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/BinaryContext.h"
11 #include "bolt/Core/BinaryEmitter.h"
12 #include "bolt/Core/BinaryFunction.h"
13 #include "bolt/Core/DebugData.h"
14 #include "bolt/Core/Exceptions.h"
15 #include "bolt/Core/MCPlusBuilder.h"
16 #include "bolt/Core/ParallelUtilities.h"
17 #include "bolt/Core/Relocation.h"
18 #include "bolt/Passes/CacheMetrics.h"
19 #include "bolt/Passes/ReorderFunctions.h"
20 #include "bolt/Profile/BoltAddressTranslation.h"
21 #include "bolt/Profile/DataAggregator.h"
22 #include "bolt/Profile/DataReader.h"
23 #include "bolt/Profile/YAMLProfileReader.h"
24 #include "bolt/Profile/YAMLProfileWriter.h"
25 #include "bolt/Rewrite/BinaryPassManager.h"
26 #include "bolt/Rewrite/DWARFRewriter.h"
27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
30 #include "bolt/Utils/CommandLineOpts.h"
31 #include "bolt/Utils/Utils.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
35 #include "llvm/ExecutionEngine/RuntimeDyld.h"
36 #include "llvm/MC/MCAsmBackend.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCAsmLayout.h"
39 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
40 #include "llvm/MC/MCObjectStreamer.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/MC/TargetRegistry.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Support/Alignment.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/DataExtractor.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/Error.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/ManagedStatic.h"
54 #include "llvm/Support/Timer.h"
55 #include "llvm/Support/ToolOutputFile.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <fstream>
59 #include <memory>
60 #include <system_error>
61 
62 #undef  DEBUG_TYPE
63 #define DEBUG_TYPE "bolt"
64 
65 using namespace llvm;
66 using namespace object;
67 using namespace bolt;
68 
69 extern cl::opt<uint32_t> X86AlignBranchBoundary;
70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries;
71 
72 namespace opts {
73 
74 extern cl::opt<MacroFusionType> AlignMacroOpFusion;
75 extern cl::list<std::string> HotTextMoveSections;
76 extern cl::opt<bool> Hugify;
77 extern cl::opt<bool> Instrument;
78 extern cl::opt<JumpTableSupportLevel> JumpTables;
79 extern cl::list<std::string> ReorderData;
80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions;
81 extern cl::opt<bool> TimeBuild;
82 
83 static cl::opt<bool> ForceToDataRelocations(
84     "force-data-relocations",
85     cl::desc("force relocations to data sections to always be processed"),
86 
87     cl::Hidden, cl::cat(BoltCategory));
88 
89 cl::opt<std::string>
90     BoltID("bolt-id",
91            cl::desc("add any string to tag this execution in the "
92                     "output binary via bolt info section"),
93            cl::cat(BoltCategory));
94 
95 cl::opt<bool>
96 AllowStripped("allow-stripped",
97   cl::desc("allow processing of stripped binaries"),
98   cl::Hidden,
99   cl::cat(BoltCategory));
100 
101 cl::opt<bool> DumpDotAll(
102     "dump-dot-all",
103     cl::desc("dump function CFGs to graphviz format after each stage;"
104              "enable '-print-loops' for color-coded blocks"),
105     cl::Hidden, cl::cat(BoltCategory));
106 
107 static cl::list<std::string>
108 ForceFunctionNames("funcs",
109   cl::CommaSeparated,
110   cl::desc("limit optimizations to functions from the list"),
111   cl::value_desc("func1,func2,func3,..."),
112   cl::Hidden,
113   cl::cat(BoltCategory));
114 
115 static cl::opt<std::string>
116 FunctionNamesFile("funcs-file",
117   cl::desc("file with list of functions to optimize"),
118   cl::Hidden,
119   cl::cat(BoltCategory));
120 
121 static cl::list<std::string> ForceFunctionNamesNR(
122     "funcs-no-regex", cl::CommaSeparated,
123     cl::desc("limit optimizations to functions from the list (non-regex)"),
124     cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory));
125 
126 static cl::opt<std::string> FunctionNamesFileNR(
127     "funcs-file-no-regex",
128     cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden,
129     cl::cat(BoltCategory));
130 
131 cl::opt<bool>
132 KeepTmp("keep-tmp",
133   cl::desc("preserve intermediate .o file"),
134   cl::Hidden,
135   cl::cat(BoltCategory));
136 
137 cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"),
138                    cl::cat(BoltCategory));
139 
140 static cl::opt<unsigned>
141 LiteThresholdPct("lite-threshold-pct",
142   cl::desc("threshold (in percent) for selecting functions to process in lite "
143             "mode. Higher threshold means fewer functions to process. E.g "
144             "threshold of 90 means only top 10 percent of functions with "
145             "profile will be processed."),
146   cl::init(0),
147   cl::ZeroOrMore,
148   cl::Hidden,
149   cl::cat(BoltOptCategory));
150 
151 static cl::opt<unsigned> LiteThresholdCount(
152     "lite-threshold-count",
153     cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
154              "absolute function call count. I.e. limit processing to functions "
155              "executed at least the specified number of times."),
156     cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
157 
158 static cl::opt<unsigned>
159     MaxFunctions("max-funcs",
160                  cl::desc("maximum number of functions to process"), cl::Hidden,
161                  cl::cat(BoltCategory));
162 
163 static cl::opt<unsigned> MaxDataRelocations(
164     "max-data-relocations",
165     cl::desc("maximum number of data relocations to process"), cl::Hidden,
166     cl::cat(BoltCategory));
167 
168 cl::opt<bool> PrintAll("print-all",
169                        cl::desc("print functions after each stage"), cl::Hidden,
170                        cl::cat(BoltCategory));
171 
172 cl::opt<bool> PrintCFG("print-cfg",
173                        cl::desc("print functions after CFG construction"),
174                        cl::Hidden, cl::cat(BoltCategory));
175 
176 cl::opt<bool> PrintDisasm("print-disasm",
177                           cl::desc("print function after disassembly"),
178                           cl::Hidden, cl::cat(BoltCategory));
179 
180 static cl::opt<bool>
181     PrintGlobals("print-globals",
182                  cl::desc("print global symbols after disassembly"), cl::Hidden,
183                  cl::cat(BoltCategory));
184 
185 extern cl::opt<bool> PrintSections;
186 
187 static cl::opt<bool> PrintLoopInfo("print-loops",
188                                    cl::desc("print loop related information"),
189                                    cl::Hidden, cl::cat(BoltCategory));
190 
191 static cl::opt<bool> PrintSDTMarkers("print-sdt",
192                                      cl::desc("print all SDT markers"),
193                                      cl::Hidden, cl::cat(BoltCategory));
194 
195 enum PrintPseudoProbesOptions {
196   PPP_None = 0,
197   PPP_Probes_Section_Decode = 0x1,
198   PPP_Probes_Address_Conversion = 0x2,
199   PPP_Encoded_Probes = 0x3,
200   PPP_All = 0xf
201 };
202 
203 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes(
204     "print-pseudo-probes", cl::desc("print pseudo probe info"),
205     cl::init(PPP_None),
206     cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode",
207                           "decode probes section from binary"),
208                clEnumValN(PPP_Probes_Address_Conversion, "address_conversion",
209                           "update address2ProbesMap with output block address"),
210                clEnumValN(PPP_Encoded_Probes, "encoded_probes",
211                           "display the encoded probes in binary section"),
212                clEnumValN(PPP_All, "all", "enable all debugging printout")),
213     cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory));
214 
215 static cl::opt<cl::boolOrDefault> RelocationMode(
216     "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
217     cl::cat(BoltCategory));
218 
219 static cl::opt<std::string>
220 SaveProfile("w",
221   cl::desc("save recorded profile to a file"),
222   cl::cat(BoltOutputCategory));
223 
224 static cl::list<std::string>
225 SkipFunctionNames("skip-funcs",
226   cl::CommaSeparated,
227   cl::desc("list of functions to skip"),
228   cl::value_desc("func1,func2,func3,..."),
229   cl::Hidden,
230   cl::cat(BoltCategory));
231 
232 static cl::opt<std::string>
233 SkipFunctionNamesFile("skip-funcs-file",
234   cl::desc("file with list of functions to skip"),
235   cl::Hidden,
236   cl::cat(BoltCategory));
237 
238 cl::opt<bool>
239 TrapOldCode("trap-old-code",
240   cl::desc("insert traps in old function bodies (relocation mode)"),
241   cl::Hidden,
242   cl::cat(BoltCategory));
243 
244 static cl::opt<std::string> DWPPathName("dwp",
245                                         cl::desc("Path and name to DWP file."),
246                                         cl::Hidden, cl::init(""),
247                                         cl::cat(BoltCategory));
248 
249 static cl::opt<bool>
250 UseGnuStack("use-gnu-stack",
251   cl::desc("use GNU_STACK program header for new segment (workaround for "
252            "issues with strip/objcopy)"),
253   cl::ZeroOrMore,
254   cl::cat(BoltCategory));
255 
256 static cl::opt<bool>
257     TimeRewrite("time-rewrite",
258                 cl::desc("print time spent in rewriting passes"), cl::Hidden,
259                 cl::cat(BoltCategory));
260 
261 static cl::opt<bool>
262 SequentialDisassembly("sequential-disassembly",
263   cl::desc("performs disassembly sequentially"),
264   cl::init(false),
265   cl::cat(BoltOptCategory));
266 
267 static cl::opt<bool> WriteBoltInfoSection(
268     "bolt-info", cl::desc("write bolt info section in the output binary"),
269     cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory));
270 
271 } // namespace opts
272 
273 constexpr const char *RewriteInstance::SectionsToOverwrite[];
274 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = {
275     ".debug_abbrev", ".debug_aranges",  ".debug_line",   ".debug_line_str",
276     ".debug_loc",    ".debug_loclists", ".debug_ranges", ".debug_rnglists",
277     ".gdb_index",    ".debug_addr"};
278 
279 const char RewriteInstance::TimerGroupName[] = "rewrite";
280 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes";
281 
282 namespace llvm {
283 namespace bolt {
284 
285 extern const char *BoltRevision;
286 
287 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch,
288                                    const MCInstrAnalysis *Analysis,
289                                    const MCInstrInfo *Info,
290                                    const MCRegisterInfo *RegInfo) {
291 #ifdef X86_AVAILABLE
292   if (Arch == Triple::x86_64)
293     return createX86MCPlusBuilder(Analysis, Info, RegInfo);
294 #endif
295 
296 #ifdef AARCH64_AVAILABLE
297   if (Arch == Triple::aarch64)
298     return createAArch64MCPlusBuilder(Analysis, Info, RegInfo);
299 #endif
300 
301   llvm_unreachable("architecture unsupported by MCPlusBuilder");
302 }
303 
304 } // namespace bolt
305 } // namespace llvm
306 
307 namespace {
308 
309 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) {
310   auto Itr =
311       llvm::find_if(opts::ReorderData, [&](const std::string &SectionName) {
312         return (Section && Section->getName() == SectionName);
313       });
314   return Itr != opts::ReorderData.end();
315 }
316 
317 } // anonymous namespace
318 
319 Expected<std::unique_ptr<RewriteInstance>>
320 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc,
321                                        const char *const *Argv,
322                                        StringRef ToolPath) {
323   Error Err = Error::success();
324   auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err);
325   if (Err)
326     return std::move(Err);
327   return std::move(RI);
328 }
329 
330 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc,
331                                  const char *const *Argv, StringRef ToolPath,
332                                  Error &Err)
333     : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath),
334       SHStrTab(StringTableBuilder::ELF) {
335   ErrorAsOutParameter EAO(&Err);
336   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
337   if (!ELF64LEFile) {
338     Err = createStringError(errc::not_supported,
339                             "Only 64-bit LE ELF binaries are supported");
340     return;
341   }
342 
343   bool IsPIC = false;
344   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
345   if (Obj.getHeader().e_type != ELF::ET_EXEC) {
346     outs() << "BOLT-INFO: shared object or position-independent executable "
347               "detected\n";
348     IsPIC = true;
349   }
350 
351   auto BCOrErr = BinaryContext::createBinaryContext(
352       File, IsPIC,
353       DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore,
354                            nullptr, opts::DWPPathName,
355                            WithColor::defaultErrorHandler,
356                            WithColor::defaultWarningHandler));
357   if (Error E = BCOrErr.takeError()) {
358     Err = std::move(E);
359     return;
360   }
361   BC = std::move(BCOrErr.get());
362   BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder(
363       BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get())));
364 
365   BAT = std::make_unique<BoltAddressTranslation>(*BC);
366 
367   if (opts::UpdateDebugSections)
368     DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC);
369 
370   if (opts::Instrument)
371     BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>());
372   else if (opts::Hugify)
373     BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>());
374 }
375 
376 RewriteInstance::~RewriteInstance() {}
377 
378 Error RewriteInstance::setProfile(StringRef Filename) {
379   if (!sys::fs::exists(Filename))
380     return errorCodeToError(make_error_code(errc::no_such_file_or_directory));
381 
382   if (ProfileReader) {
383     // Already exists
384     return make_error<StringError>(Twine("multiple profiles specified: ") +
385                                        ProfileReader->getFilename() + " and " +
386                                        Filename,
387                                    inconvertibleErrorCode());
388   }
389 
390   // Spawn a profile reader based on file contents.
391   if (DataAggregator::checkPerfDataMagic(Filename))
392     ProfileReader = std::make_unique<DataAggregator>(Filename);
393   else if (YAMLProfileReader::isYAML(Filename))
394     ProfileReader = std::make_unique<YAMLProfileReader>(Filename);
395   else
396     ProfileReader = std::make_unique<DataReader>(Filename);
397 
398   return Error::success();
399 }
400 
401 /// Return true if the function \p BF should be disassembled.
402 static bool shouldDisassemble(const BinaryFunction &BF) {
403   if (BF.isPseudo())
404     return false;
405 
406   if (opts::processAllFunctions())
407     return true;
408 
409   return !BF.isIgnored();
410 }
411 
412 Error RewriteInstance::discoverStorage() {
413   NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName,
414                      TimerGroupDesc, opts::TimeRewrite);
415 
416   // Stubs are harmful because RuntimeDyld may try to increase the size of
417   // sections accounting for stubs when we need those sections to match the
418   // same size seen in the input binary, in case this section is a copy
419   // of the original one seen in the binary.
420   BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false));
421 
422   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
423   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
424 
425   BC->StartFunctionAddress = Obj.getHeader().e_entry;
426 
427   NextAvailableAddress = 0;
428   uint64_t NextAvailableOffset = 0;
429   Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers();
430   if (Error E = PHsOrErr.takeError())
431     return E;
432 
433   ELF64LE::PhdrRange PHs = PHsOrErr.get();
434   for (const ELF64LE::Phdr &Phdr : PHs) {
435     switch (Phdr.p_type) {
436     case ELF::PT_LOAD:
437       BC->FirstAllocAddress = std::min(BC->FirstAllocAddress,
438                                        static_cast<uint64_t>(Phdr.p_vaddr));
439       NextAvailableAddress = std::max(NextAvailableAddress,
440                                       Phdr.p_vaddr + Phdr.p_memsz);
441       NextAvailableOffset = std::max(NextAvailableOffset,
442                                      Phdr.p_offset + Phdr.p_filesz);
443 
444       BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
445                                                      Phdr.p_memsz,
446                                                      Phdr.p_offset,
447                                                      Phdr.p_filesz,
448                                                      Phdr.p_align};
449       break;
450     case ELF::PT_INTERP:
451       BC->HasInterpHeader = true;
452       break;
453     }
454   }
455 
456   for (const SectionRef &Section : InputFile->sections()) {
457     Expected<StringRef> SectionNameOrErr = Section.getName();
458     if (Error E = SectionNameOrErr.takeError())
459       return E;
460     StringRef SectionName = SectionNameOrErr.get();
461     if (SectionName == ".text") {
462       BC->OldTextSectionAddress = Section.getAddress();
463       BC->OldTextSectionSize = Section.getSize();
464 
465       Expected<StringRef> SectionContentsOrErr = Section.getContents();
466       if (Error E = SectionContentsOrErr.takeError())
467         return E;
468       StringRef SectionContents = SectionContentsOrErr.get();
469       BC->OldTextSectionOffset =
470           SectionContents.data() - InputFile->getData().data();
471     }
472 
473     if (!opts::HeatmapMode &&
474         !(opts::AggregateOnly && BAT->enabledFor(InputFile)) &&
475         (SectionName.startswith(getOrgSecPrefix()) ||
476          SectionName == getBOLTTextSectionName()))
477       return createStringError(
478           errc::function_not_supported,
479           "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
480   }
481 
482   if (!NextAvailableAddress || !NextAvailableOffset)
483     return createStringError(errc::executable_format_error,
484                              "no PT_LOAD pheader seen");
485 
486   outs() << "BOLT-INFO: first alloc address is 0x"
487          << Twine::utohexstr(BC->FirstAllocAddress) << '\n';
488 
489   FirstNonAllocatableOffset = NextAvailableOffset;
490 
491   NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign);
492   NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign);
493 
494   if (!opts::UseGnuStack) {
495     // This is where the black magic happens. Creating PHDR table in a segment
496     // other than that containing ELF header is tricky. Some loaders and/or
497     // parts of loaders will apply e_phoff from ELF header assuming both are in
498     // the same segment, while others will do the proper calculation.
499     // We create the new PHDR table in such a way that both of the methods
500     // of loading and locating the table work. There's a slight file size
501     // overhead because of that.
502     //
503     // NB: bfd's strip command cannot do the above and will corrupt the
504     //     binary during the process of stripping non-allocatable sections.
505     if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress)
506       NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress;
507     else
508       NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress;
509 
510     assert(NextAvailableOffset ==
511                NextAvailableAddress - BC->FirstAllocAddress &&
512            "PHDR table address calculation error");
513 
514     outs() << "BOLT-INFO: creating new program header table at address 0x"
515            << Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
516            << Twine::utohexstr(NextAvailableOffset) << '\n';
517 
518     PHDRTableAddress = NextAvailableAddress;
519     PHDRTableOffset = NextAvailableOffset;
520 
521     // Reserve space for 3 extra pheaders.
522     unsigned Phnum = Obj.getHeader().e_phnum;
523     Phnum += 3;
524 
525     NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy);
526     NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy);
527   }
528 
529   // Align at cache line.
530   NextAvailableAddress = alignTo(NextAvailableAddress, 64);
531   NextAvailableOffset = alignTo(NextAvailableOffset, 64);
532 
533   NewTextSegmentAddress = NextAvailableAddress;
534   NewTextSegmentOffset = NextAvailableOffset;
535   BC->LayoutStartAddress = NextAvailableAddress;
536 
537   // Tools such as objcopy can strip section contents but leave header
538   // entries. Check that at least .text is mapped in the file.
539   if (!getFileOffsetForAddress(BC->OldTextSectionAddress))
540     return createStringError(errc::executable_format_error,
541                              "BOLT-ERROR: input binary is not a valid ELF "
542                              "executable as its text section is not "
543                              "mapped to a valid segment");
544   return Error::success();
545 }
546 
547 void RewriteInstance::parseSDTNotes() {
548   if (!SDTSection)
549     return;
550 
551   StringRef Buf = SDTSection->getContents();
552   DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(),
553                                    BC->AsmInfo->getCodePointerSize());
554   uint64_t Offset = 0;
555 
556   while (DE.isValidOffset(Offset)) {
557     uint32_t NameSz = DE.getU32(&Offset);
558     DE.getU32(&Offset); // skip over DescSz
559     uint32_t Type = DE.getU32(&Offset);
560     Offset = alignTo(Offset, 4);
561 
562     if (Type != 3)
563       errs() << "BOLT-WARNING: SDT note type \"" << Type
564              << "\" is not expected\n";
565 
566     if (NameSz == 0)
567       errs() << "BOLT-WARNING: SDT note has empty name\n";
568 
569     StringRef Name = DE.getCStr(&Offset);
570 
571     if (!Name.equals("stapsdt"))
572       errs() << "BOLT-WARNING: SDT note name \"" << Name
573              << "\" is not expected\n";
574 
575     // Parse description
576     SDTMarkerInfo Marker;
577     Marker.PCOffset = Offset;
578     Marker.PC = DE.getU64(&Offset);
579     Marker.Base = DE.getU64(&Offset);
580     Marker.Semaphore = DE.getU64(&Offset);
581     Marker.Provider = DE.getCStr(&Offset);
582     Marker.Name = DE.getCStr(&Offset);
583     Marker.Args = DE.getCStr(&Offset);
584     Offset = alignTo(Offset, 4);
585     BC->SDTMarkers[Marker.PC] = Marker;
586   }
587 
588   if (opts::PrintSDTMarkers)
589     printSDTMarkers();
590 }
591 
592 void RewriteInstance::parsePseudoProbe() {
593   if (!PseudoProbeDescSection && !PseudoProbeSection) {
594     // pesudo probe is not added to binary. It is normal and no warning needed.
595     return;
596   }
597 
598   // If only one section is found, it might mean the ELF is corrupted.
599   if (!PseudoProbeDescSection) {
600     errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n";
601     return;
602   } else if (!PseudoProbeSection) {
603     errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n";
604     return;
605   }
606 
607   StringRef Contents = PseudoProbeDescSection->getContents();
608   if (!BC->ProbeDecoder.buildGUID2FuncDescMap(
609           reinterpret_cast<const uint8_t *>(Contents.data()),
610           Contents.size())) {
611     errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n";
612     return;
613   }
614   Contents = PseudoProbeSection->getContents();
615   if (!BC->ProbeDecoder.buildAddress2ProbeMap(
616           reinterpret_cast<const uint8_t *>(Contents.data()),
617           Contents.size())) {
618     BC->ProbeDecoder.getAddress2ProbesMap().clear();
619     errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n";
620     return;
621   }
622 
623   if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
624       opts::PrintPseudoProbes ==
625           opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) {
626     outs() << "Report of decoding input pseudo probe binaries \n";
627     BC->ProbeDecoder.printGUID2FuncDescMap(outs());
628     BC->ProbeDecoder.printProbesForAllAddresses(outs());
629   }
630 }
631 
632 void RewriteInstance::printSDTMarkers() {
633   outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size()
634          << "\n";
635   for (auto It : BC->SDTMarkers) {
636     SDTMarkerInfo &Marker = It.second;
637     outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC)
638            << ", Base: " << utohexstr(Marker.Base)
639            << ", Semaphore: " << utohexstr(Marker.Semaphore)
640            << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name
641            << ", Args: " << Marker.Args << "\n";
642   }
643 }
644 
645 void RewriteInstance::parseBuildID() {
646   if (!BuildIDSection)
647     return;
648 
649   StringRef Buf = BuildIDSection->getContents();
650 
651   // Reading notes section (see Portable Formats Specification, Version 1.1,
652   // pg 2-5, section "Note Section").
653   DataExtractor DE = DataExtractor(Buf, true, 8);
654   uint64_t Offset = 0;
655   if (!DE.isValidOffset(Offset))
656     return;
657   uint32_t NameSz = DE.getU32(&Offset);
658   if (!DE.isValidOffset(Offset))
659     return;
660   uint32_t DescSz = DE.getU32(&Offset);
661   if (!DE.isValidOffset(Offset))
662     return;
663   uint32_t Type = DE.getU32(&Offset);
664 
665   LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz
666                     << "; Type = " << Type << "\n");
667 
668   // Type 3 is a GNU build-id note section
669   if (Type != 3)
670     return;
671 
672   StringRef Name = Buf.slice(Offset, Offset + NameSz);
673   Offset = alignTo(Offset + NameSz, 4);
674   if (Name.substr(0, 3) != "GNU")
675     return;
676 
677   BuildID = Buf.slice(Offset, Offset + DescSz);
678 }
679 
680 Optional<std::string> RewriteInstance::getPrintableBuildID() const {
681   if (BuildID.empty())
682     return NoneType();
683 
684   std::string Str;
685   raw_string_ostream OS(Str);
686   const unsigned char *CharIter = BuildID.bytes_begin();
687   while (CharIter != BuildID.bytes_end()) {
688     if (*CharIter < 0x10)
689       OS << "0";
690     OS << Twine::utohexstr(*CharIter);
691     ++CharIter;
692   }
693   return OS.str();
694 }
695 
696 void RewriteInstance::patchBuildID() {
697   raw_fd_ostream &OS = Out->os();
698 
699   if (BuildID.empty())
700     return;
701 
702   size_t IDOffset = BuildIDSection->getContents().rfind(BuildID);
703   assert(IDOffset != StringRef::npos && "failed to patch build-id");
704 
705   uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress());
706   if (!FileOffset) {
707     errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
708     return;
709   }
710 
711   char LastIDByte = BuildID[BuildID.size() - 1];
712   LastIDByte ^= 1;
713   OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1);
714 
715   outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
716 }
717 
718 Error RewriteInstance::run() {
719   assert(BC && "failed to create a binary context");
720 
721   outs() << "BOLT-INFO: Target architecture: "
722          << Triple::getArchTypeName(
723                 (llvm::Triple::ArchType)InputFile->getArch())
724          << "\n";
725   outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n";
726 
727   if (Error E = discoverStorage())
728     return E;
729   if (Error E = readSpecialSections())
730     return E;
731   adjustCommandLineOptions();
732   discoverFileObjects();
733 
734   preprocessProfileData();
735 
736   // Skip disassembling if we have a translation table and we are running an
737   // aggregation job.
738   if (opts::AggregateOnly && BAT->enabledFor(InputFile)) {
739     processProfileData();
740     return Error::success();
741   }
742 
743   selectFunctionsToProcess();
744 
745   readDebugInfo();
746 
747   disassembleFunctions();
748 
749   processProfileDataPreCFG();
750 
751   buildFunctionsCFG();
752 
753   processProfileData();
754 
755   postProcessFunctions();
756 
757   if (opts::DiffOnly)
758     return Error::success();
759 
760   runOptimizationPasses();
761 
762   emitAndLink();
763 
764   updateMetadata();
765 
766   if (opts::LinuxKernelMode) {
767     errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
768     return Error::success();
769   } else if (opts::OutputFilename == "/dev/null") {
770     outs() << "BOLT-INFO: skipping writing final binary to disk\n";
771     return Error::success();
772   }
773 
774   // Rewrite allocatable contents and copy non-allocatable parts with mods.
775   rewriteFile();
776   return Error::success();
777 }
778 
779 void RewriteInstance::discoverFileObjects() {
780   NamedRegionTimer T("discoverFileObjects", "discover file objects",
781                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
782   FileSymRefs.clear();
783   BC->getBinaryFunctions().clear();
784   BC->clearBinaryData();
785 
786   // For local symbols we want to keep track of associated FILE symbol name for
787   // disambiguation by combined name.
788   StringRef FileSymbolName;
789   bool SeenFileName = false;
790   struct SymbolRefHash {
791     size_t operator()(SymbolRef const &S) const {
792       return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
793     }
794   };
795   std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
796   for (const ELFSymbolRef &Symbol : InputFile->symbols()) {
797     Expected<StringRef> NameOrError = Symbol.getName();
798     if (NameOrError && NameOrError->startswith("__asan_init")) {
799       errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
800                 "support. Cannot optimize.\n";
801       exit(1);
802     }
803     if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) {
804       errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
805                 "support. Cannot optimize.\n";
806       exit(1);
807     }
808 
809     if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
810       continue;
811 
812     if (cantFail(Symbol.getType()) == SymbolRef::ST_File) {
813       StringRef Name =
814           cantFail(std::move(NameOrError), "cannot get symbol name for file");
815       // Ignore Clang LTO artificial FILE symbol as it is not always generated,
816       // and this uncertainty is causing havoc in function name matching.
817       if (Name == "ld-temp.o")
818         continue;
819       FileSymbolName = Name;
820       SeenFileName = true;
821       continue;
822     }
823     if (!FileSymbolName.empty() &&
824         !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global))
825       SymbolToFileName[Symbol] = FileSymbolName;
826   }
827 
828   // Sort symbols in the file by value. Ignore symbols from non-allocatable
829   // sections.
830   auto isSymbolInMemory = [this](const SymbolRef &Sym) {
831     if (cantFail(Sym.getType()) == SymbolRef::ST_File)
832       return false;
833     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute)
834       return true;
835     if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined)
836       return false;
837     BinarySection Section(*BC, *cantFail(Sym.getSection()));
838     return Section.isAllocatable();
839   };
840   std::vector<SymbolRef> SortedFileSymbols;
841   llvm::copy_if(InputFile->symbols(), std::back_inserter(SortedFileSymbols),
842                 isSymbolInMemory);
843   auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) {
844     // Marker symbols have the highest precedence, while
845     // SECTIONs have the lowest.
846     auto AddressA = cantFail(A.getAddress());
847     auto AddressB = cantFail(B.getAddress());
848     if (AddressA != AddressB)
849       return AddressA < AddressB;
850 
851     bool AMarker = BC->isMarker(A);
852     bool BMarker = BC->isMarker(B);
853     if (AMarker || BMarker) {
854       return AMarker && !BMarker;
855     }
856 
857     auto AType = cantFail(A.getType());
858     auto BType = cantFail(B.getType());
859     if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function)
860       return true;
861     if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug)
862       return true;
863 
864     return false;
865   };
866 
867   llvm::stable_sort(SortedFileSymbols, CompareSymbols);
868 
869   auto LastSymbol = SortedFileSymbols.end() - 1;
870 
871   // For aarch64, the ABI defines mapping symbols so we identify data in the
872   // code section (see IHI0056B). $d identifies data contents.
873   // Compilers usually merge multiple data objects in a single $d-$x interval,
874   // but we need every data object to be marked with $d. Because of that we
875   // create a vector of MarkerSyms with all locations of data objects.
876 
877   struct MarkerSym {
878     uint64_t Address;
879     MarkerSymType Type;
880   };
881 
882   std::vector<MarkerSym> SortedMarkerSymbols;
883   auto addExtraDataMarkerPerSymbol =
884       [this](const std::vector<SymbolRef> &SortedFileSymbols,
885              std::vector<MarkerSym> &SortedMarkerSymbols) {
886         bool IsData = false;
887         uint64_t LastAddr = 0;
888         for (auto Sym = SortedFileSymbols.begin();
889              Sym < SortedFileSymbols.end(); ++Sym) {
890           uint64_t Address = cantFail(Sym->getAddress());
891           if (LastAddr == Address) // don't repeat markers
892             continue;
893 
894           MarkerSymType MarkerType = BC->getMarkerType(*Sym);
895           if (MarkerType != MarkerSymType::NONE) {
896             SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType});
897             LastAddr = Address;
898             IsData = MarkerType == MarkerSymType::DATA;
899             continue;
900           }
901 
902           if (IsData) {
903             SortedMarkerSymbols.push_back(
904                 MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA});
905             LastAddr = Address;
906           }
907         }
908       };
909 
910   if (BC->isAArch64()) {
911     addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols);
912     LastSymbol = std::stable_partition(
913         SortedFileSymbols.begin(), SortedFileSymbols.end(),
914         [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); });
915     --LastSymbol;
916   }
917 
918   BinaryFunction *PreviousFunction = nullptr;
919   unsigned AnonymousId = 0;
920 
921   const auto SortedSymbolsEnd = std::next(LastSymbol);
922   for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd;
923        ++ISym) {
924     const SymbolRef &Symbol = *ISym;
925     // Keep undefined symbols for pretty printing?
926     if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined)
927       continue;
928 
929     const SymbolRef::Type SymbolType = cantFail(Symbol.getType());
930 
931     if (SymbolType == SymbolRef::ST_File)
932       continue;
933 
934     StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name");
935     uint64_t Address =
936         cantFail(Symbol.getAddress(), "cannot get symbol address");
937     if (Address == 0) {
938       if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function)
939         errs() << "BOLT-WARNING: function with 0 address seen\n";
940       continue;
941     }
942 
943     // Ignore input hot markers
944     if (SymName == "__hot_start" || SymName == "__hot_end")
945       continue;
946 
947     FileSymRefs[Address] = Symbol;
948 
949     // Skip section symbols that will be registered by disassemblePLT().
950     if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) {
951       ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address);
952       if (BSection && getPLTSectionInfo(BSection->getName()))
953         continue;
954     }
955 
956     /// It is possible we are seeing a globalized local. LLVM might treat it as
957     /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
958     /// change the prefix to enforce global scope of the symbol.
959     std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix())
960                            ? "PG" + std::string(SymName)
961                            : std::string(SymName);
962 
963     // Disambiguate all local symbols before adding to symbol table.
964     // Since we don't know if we will see a global with the same name,
965     // always modify the local name.
966     //
967     // NOTE: the naming convention for local symbols should match
968     //       the one we use for profile data.
969     std::string UniqueName;
970     std::string AlternativeName;
971     if (Name.empty()) {
972       UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++);
973     } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) {
974       assert(!BC->getBinaryDataByName(Name) && "global name not unique");
975       UniqueName = Name;
976     } else {
977       // If we have a local file name, we should create 2 variants for the
978       // function name. The reason is that perf profile might have been
979       // collected on a binary that did not have the local file name (e.g. as
980       // a side effect of stripping debug info from the binary):
981       //
982       //   primary:     <function>/<id>
983       //   alternative: <function>/<file>/<id2>
984       //
985       // The <id> field is used for disambiguation of local symbols since there
986       // could be identical function names coming from identical file names
987       // (e.g. from different directories).
988       std::string AltPrefix;
989       auto SFI = SymbolToFileName.find(Symbol);
990       if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end())
991         AltPrefix = Name + "/" + std::string(SFI->second);
992 
993       UniqueName = NR.uniquify(Name);
994       if (!AltPrefix.empty())
995         AlternativeName = NR.uniquify(AltPrefix);
996     }
997 
998     uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
999     uint64_t SymbolAlignment = Symbol.getAlignment();
1000     unsigned SymbolFlags = cantFail(Symbol.getFlags());
1001 
1002     auto registerName = [&](uint64_t FinalSize) {
1003       // Register names even if it's not a function, e.g. for an entry point.
1004       BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment,
1005                                 SymbolFlags);
1006       if (!AlternativeName.empty())
1007         BC->registerNameAtAddress(AlternativeName, Address, FinalSize,
1008                                   SymbolAlignment, SymbolFlags);
1009     };
1010 
1011     section_iterator Section =
1012         cantFail(Symbol.getSection(), "cannot get symbol section");
1013     if (Section == InputFile->section_end()) {
1014       // Could be an absolute symbol. Could record for pretty printing.
1015       LLVM_DEBUG(if (opts::Verbosity > 1) {
1016         dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n";
1017       });
1018       registerName(SymbolSize);
1019       continue;
1020     }
1021 
1022     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1023                       << " for function\n");
1024 
1025     if (!Section->isText()) {
1026       assert(SymbolType != SymbolRef::ST_Function &&
1027              "unexpected function inside non-code section");
1028       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1029       registerName(SymbolSize);
1030       continue;
1031     }
1032 
1033     // Assembly functions could be ST_NONE with 0 size. Check that the
1034     // corresponding section is a code section and they are not inside any
1035     // other known function to consider them.
1036     //
1037     // Sometimes assembly functions are not marked as functions and neither are
1038     // their local labels. The only way to tell them apart is to look at
1039     // symbol scope - global vs local.
1040     if (PreviousFunction && SymbolType != SymbolRef::ST_Function) {
1041       if (PreviousFunction->containsAddress(Address)) {
1042         if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1043           LLVM_DEBUG(dbgs()
1044                      << "BOLT-DEBUG: symbol is a function local symbol\n");
1045         } else if (Address == PreviousFunction->getAddress() && !SymbolSize) {
1046           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1047         } else if (opts::Verbosity > 1) {
1048           errs() << "BOLT-WARNING: symbol " << UniqueName
1049                  << " seen in the middle of function " << *PreviousFunction
1050                  << ". Could be a new entry.\n";
1051         }
1052         registerName(SymbolSize);
1053         continue;
1054       } else if (PreviousFunction->getSize() == 0 &&
1055                  PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1056         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1057         registerName(SymbolSize);
1058         continue;
1059       }
1060     }
1061 
1062     if (PreviousFunction && PreviousFunction->containsAddress(Address) &&
1063         PreviousFunction->getAddress() != Address) {
1064       if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
1065         if (opts::Verbosity >= 1)
1066           outs() << "BOLT-INFO: skipping possibly another entry for function "
1067                  << *PreviousFunction << " : " << UniqueName << '\n';
1068       } else {
1069         outs() << "BOLT-INFO: using " << UniqueName << " as another entry to "
1070                << "function " << *PreviousFunction << '\n';
1071 
1072         registerName(0);
1073 
1074         PreviousFunction->addEntryPointAtOffset(Address -
1075                                                 PreviousFunction->getAddress());
1076 
1077         // Remove the symbol from FileSymRefs so that we can skip it from
1078         // in the future.
1079         auto SI = FileSymRefs.find(Address);
1080         assert(SI != FileSymRefs.end() && "symbol expected to be present");
1081         assert(SI->second == Symbol && "wrong symbol found");
1082         FileSymRefs.erase(SI);
1083       }
1084       registerName(SymbolSize);
1085       continue;
1086     }
1087 
1088     // Checkout for conflicts with function data from FDEs.
1089     bool IsSimple = true;
1090     auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address);
1091     if (FDEI != CFIRdWrt->getFDEs().end()) {
1092       const dwarf::FDE &FDE = *FDEI->second;
1093       if (FDEI->first != Address) {
1094         // There's no matching starting address in FDE. Make sure the previous
1095         // FDE does not contain this address.
1096         if (FDEI != CFIRdWrt->getFDEs().begin()) {
1097           --FDEI;
1098           const dwarf::FDE &PrevFDE = *FDEI->second;
1099           uint64_t PrevStart = PrevFDE.getInitialLocation();
1100           uint64_t PrevLength = PrevFDE.getAddressRange();
1101           if (Address > PrevStart && Address < PrevStart + PrevLength) {
1102             errs() << "BOLT-ERROR: function " << UniqueName
1103                    << " is in conflict with FDE ["
1104                    << Twine::utohexstr(PrevStart) << ", "
1105                    << Twine::utohexstr(PrevStart + PrevLength)
1106                    << "). Skipping.\n";
1107             IsSimple = false;
1108           }
1109         }
1110       } else if (FDE.getAddressRange() != SymbolSize) {
1111         if (SymbolSize) {
1112           // Function addresses match but sizes differ.
1113           errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1114                  << ". FDE : " << FDE.getAddressRange()
1115                  << "; symbol table : " << SymbolSize << ". Using max size.\n";
1116         }
1117         SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
1118         if (BC->getBinaryDataAtAddress(Address)) {
1119           BC->setBinaryDataSize(Address, SymbolSize);
1120         } else {
1121           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1122                             << Twine::utohexstr(Address) << "\n");
1123         }
1124       }
1125     }
1126 
1127     BinaryFunction *BF = nullptr;
1128     // Since function may not have yet obtained its real size, do a search
1129     // using the list of registered functions instead of calling
1130     // getBinaryFunctionAtAddress().
1131     auto BFI = BC->getBinaryFunctions().find(Address);
1132     if (BFI != BC->getBinaryFunctions().end()) {
1133       BF = &BFI->second;
1134       // Duplicate the function name. Make sure everything matches before we add
1135       // an alternative name.
1136       if (SymbolSize != BF->getSize()) {
1137         if (opts::Verbosity >= 1) {
1138           if (SymbolSize && BF->getSize())
1139             errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1140                    << *BF << " and " << UniqueName << '\n';
1141           outs() << "BOLT-INFO: adjusting size of function " << *BF << " old "
1142                  << BF->getSize() << " new " << SymbolSize << "\n";
1143         }
1144         BF->setSize(std::max(SymbolSize, BF->getSize()));
1145         BC->setBinaryDataSize(Address, BF->getSize());
1146       }
1147       BF->addAlternativeName(UniqueName);
1148     } else {
1149       ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1150       // Skip symbols from invalid sections
1151       if (!Section) {
1152         errs() << "BOLT-WARNING: " << UniqueName << " (0x"
1153                << Twine::utohexstr(Address) << ") does not have any section\n";
1154         continue;
1155       }
1156       assert(Section && "section for functions must be registered");
1157 
1158       // Skip symbols from zero-sized sections.
1159       if (!Section->getSize())
1160         continue;
1161 
1162       BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize);
1163       if (!IsSimple)
1164         BF->setSimple(false);
1165     }
1166     if (!AlternativeName.empty())
1167       BF->addAlternativeName(AlternativeName);
1168 
1169     registerName(SymbolSize);
1170     PreviousFunction = BF;
1171   }
1172 
1173   // Read dynamic relocation first as their presence affects the way we process
1174   // static relocations. E.g. we will ignore a static relocation at an address
1175   // that is a subject to dynamic relocation processing.
1176   processDynamicRelocations();
1177 
1178   // Process PLT section.
1179   disassemblePLT();
1180 
1181   // See if we missed any functions marked by FDE.
1182   for (const auto &FDEI : CFIRdWrt->getFDEs()) {
1183     const uint64_t Address = FDEI.first;
1184     const dwarf::FDE *FDE = FDEI.second;
1185     const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address);
1186     if (BF)
1187       continue;
1188 
1189     BF = BC->getBinaryFunctionContainingAddress(Address);
1190     if (BF) {
1191       errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
1192              << Twine::utohexstr(Address + FDE->getAddressRange())
1193              << ") conflicts with function " << *BF << '\n';
1194       continue;
1195     }
1196 
1197     if (opts::Verbosity >= 1)
1198       errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
1199              << Twine::utohexstr(Address + FDE->getAddressRange())
1200              << ") has no corresponding symbol table entry\n";
1201 
1202     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
1203     assert(Section && "cannot get section for address from FDE");
1204     std::string FunctionName =
1205         "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
1206     BC->createBinaryFunction(FunctionName, *Section, Address,
1207                              FDE->getAddressRange());
1208   }
1209 
1210   BC->setHasSymbolsWithFileName(SeenFileName);
1211 
1212   // Now that all the functions were created - adjust their boundaries.
1213   adjustFunctionBoundaries();
1214 
1215   // Annotate functions with code/data markers in AArch64
1216   for (auto ISym = SortedMarkerSymbols.begin();
1217        ISym != SortedMarkerSymbols.end(); ++ISym) {
1218 
1219     auto *BF =
1220         BC->getBinaryFunctionContainingAddress(ISym->Address, true, true);
1221 
1222     if (!BF) {
1223       // Stray marker
1224       continue;
1225     }
1226     const auto EntryOffset = ISym->Address - BF->getAddress();
1227     if (ISym->Type == MarkerSymType::CODE) {
1228       BF->markCodeAtOffset(EntryOffset);
1229       continue;
1230     }
1231     if (ISym->Type == MarkerSymType::DATA) {
1232       BF->markDataAtOffset(EntryOffset);
1233       BC->AddressToConstantIslandMap[ISym->Address] = BF;
1234       continue;
1235     }
1236     llvm_unreachable("Unknown marker");
1237   }
1238 
1239   if (opts::LinuxKernelMode) {
1240     // Read all special linux kernel sections and their relocations
1241     processLKSections();
1242   } else {
1243     // Read all relocations now that we have binary functions mapped.
1244     processRelocations();
1245   }
1246 }
1247 
1248 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress,
1249                                               uint64_t EntryAddress,
1250                                               uint64_t EntrySize) {
1251   if (!TargetAddress)
1252     return;
1253 
1254   auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) {
1255     const unsigned PtrSize = BC->AsmInfo->getCodePointerSize();
1256     MCSymbol *TargetSymbol = BC->registerNameAtAddress(
1257         Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize);
1258     BF->setPLTSymbol(TargetSymbol);
1259   };
1260 
1261   BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress);
1262   if (BF && BC->isAArch64()) {
1263     // Handle IFUNC trampoline
1264     setPLTSymbol(BF, BF->getOneName());
1265     return;
1266   }
1267 
1268   const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress);
1269   if (!Rel || !Rel->Symbol)
1270     return;
1271 
1272   ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress);
1273   assert(Section && "cannot get section for address");
1274   BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section,
1275                                 EntryAddress, 0, EntrySize,
1276                                 Section->getAlignment());
1277   setPLTSymbol(BF, Rel->Symbol->getName());
1278 }
1279 
1280 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) {
1281   const uint64_t SectionAddress = Section.getAddress();
1282   const uint64_t SectionSize = Section.getSize();
1283   StringRef PLTContents = Section.getContents();
1284   ArrayRef<uint8_t> PLTData(
1285       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1286 
1287   auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1288                                     uint64_t &InstrSize) {
1289     const uint64_t InstrAddr = SectionAddress + InstrOffset;
1290     if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1291                                     PLTData.slice(InstrOffset), InstrAddr,
1292                                     nulls())) {
1293       errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1294              << Section.getName() << " at offset 0x"
1295              << Twine::utohexstr(InstrOffset) << '\n';
1296       exit(1);
1297     }
1298   };
1299 
1300   uint64_t InstrOffset = 0;
1301   // Locate new plt entry
1302   while (InstrOffset < SectionSize) {
1303     InstructionListType Instructions;
1304     MCInst Instruction;
1305     uint64_t EntryOffset = InstrOffset;
1306     uint64_t EntrySize = 0;
1307     uint64_t InstrSize;
1308     // Loop through entry instructions
1309     while (InstrOffset < SectionSize) {
1310       disassembleInstruction(InstrOffset, Instruction, InstrSize);
1311       EntrySize += InstrSize;
1312       if (!BC->MIB->isIndirectBranch(Instruction)) {
1313         Instructions.emplace_back(Instruction);
1314         InstrOffset += InstrSize;
1315         continue;
1316       }
1317 
1318       const uint64_t EntryAddress = SectionAddress + EntryOffset;
1319       const uint64_t TargetAddress = BC->MIB->analyzePLTEntry(
1320           Instruction, Instructions.begin(), Instructions.end(), EntryAddress);
1321 
1322       createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize);
1323       break;
1324     }
1325 
1326     // Branch instruction
1327     InstrOffset += InstrSize;
1328 
1329     // Skip nops if any
1330     while (InstrOffset < SectionSize) {
1331       disassembleInstruction(InstrOffset, Instruction, InstrSize);
1332       if (!BC->MIB->isNoop(Instruction))
1333         break;
1334 
1335       InstrOffset += InstrSize;
1336     }
1337   }
1338 }
1339 
1340 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section,
1341                                                uint64_t EntrySize) {
1342   const uint64_t SectionAddress = Section.getAddress();
1343   const uint64_t SectionSize = Section.getSize();
1344   StringRef PLTContents = Section.getContents();
1345   ArrayRef<uint8_t> PLTData(
1346       reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize);
1347 
1348   auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction,
1349                                     uint64_t &InstrSize) {
1350     const uint64_t InstrAddr = SectionAddress + InstrOffset;
1351     if (!BC->DisAsm->getInstruction(Instruction, InstrSize,
1352                                     PLTData.slice(InstrOffset), InstrAddr,
1353                                     nulls())) {
1354       errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1355              << Section.getName() << " at offset 0x"
1356              << Twine::utohexstr(InstrOffset) << '\n';
1357       exit(1);
1358     }
1359   };
1360 
1361   for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize;
1362        EntryOffset += EntrySize) {
1363     MCInst Instruction;
1364     uint64_t InstrSize, InstrOffset = EntryOffset;
1365     while (InstrOffset < EntryOffset + EntrySize) {
1366       disassembleInstruction(InstrOffset, Instruction, InstrSize);
1367       // Check if the entry size needs adjustment.
1368       if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) &&
1369           EntrySize == 8)
1370         EntrySize = 16;
1371 
1372       if (BC->MIB->isIndirectBranch(Instruction))
1373         break;
1374 
1375       InstrOffset += InstrSize;
1376     }
1377 
1378     if (InstrOffset + InstrSize > EntryOffset + EntrySize)
1379       continue;
1380 
1381     uint64_t TargetAddress;
1382     if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
1383                                            SectionAddress + InstrOffset,
1384                                            InstrSize)) {
1385       errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1386              << Twine::utohexstr(SectionAddress + InstrOffset) << '\n';
1387       exit(1);
1388     }
1389 
1390     createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset,
1391                             EntrySize);
1392   }
1393 }
1394 
1395 void RewriteInstance::disassemblePLT() {
1396   auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) {
1397     if (BC->isAArch64())
1398       return disassemblePLTSectionAArch64(Section);
1399     return disassemblePLTSectionX86(Section, EntrySize);
1400   };
1401 
1402   for (BinarySection &Section : BC->allocatableSections()) {
1403     const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName());
1404     if (!PLTSI)
1405       continue;
1406 
1407     analyzeOnePLTSection(Section, PLTSI->EntrySize);
1408     // If we did not register any function at the start of the section,
1409     // then it must be a general PLT entry. Add a function at the location.
1410     if (BC->getBinaryFunctions().find(Section.getAddress()) ==
1411         BC->getBinaryFunctions().end()) {
1412       BinaryFunction *BF = BC->createBinaryFunction(
1413           "__BOLT_PSEUDO_" + Section.getName().str(), Section,
1414           Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment());
1415       BF->setPseudo(true);
1416     }
1417   }
1418 }
1419 
1420 void RewriteInstance::adjustFunctionBoundaries() {
1421   for (auto BFI = BC->getBinaryFunctions().begin(),
1422             BFE = BC->getBinaryFunctions().end();
1423        BFI != BFE; ++BFI) {
1424     BinaryFunction &Function = BFI->second;
1425     const BinaryFunction *NextFunction = nullptr;
1426     if (std::next(BFI) != BFE)
1427       NextFunction = &std::next(BFI)->second;
1428 
1429     // Check if it's a fragment of a function.
1430     Optional<StringRef> FragName =
1431         Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?");
1432     if (FragName) {
1433       static bool PrintedWarning = false;
1434       if (BC->HasRelocations && !PrintedWarning) {
1435         errs() << "BOLT-WARNING: split function detected on input : "
1436                << *FragName << ". The support is limited in relocation mode.\n";
1437         PrintedWarning = true;
1438       }
1439       Function.IsFragment = true;
1440     }
1441 
1442     // Check if there's a symbol or a function with a larger address in the
1443     // same section. If there is - it determines the maximum size for the
1444     // current function. Otherwise, it is the size of a containing section
1445     // the defines it.
1446     //
1447     // NOTE: ignore some symbols that could be tolerated inside the body
1448     //       of a function.
1449     auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
1450     while (NextSymRefI != FileSymRefs.end()) {
1451       SymbolRef &Symbol = NextSymRefI->second;
1452       const uint64_t SymbolAddress = NextSymRefI->first;
1453       const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize();
1454 
1455       if (NextFunction && SymbolAddress >= NextFunction->getAddress())
1456         break;
1457 
1458       if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
1459         break;
1460 
1461       // This is potentially another entry point into the function.
1462       uint64_t EntryOffset = NextSymRefI->first - Function.getAddress();
1463       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1464                         << Function << " at offset 0x"
1465                         << Twine::utohexstr(EntryOffset) << '\n');
1466       Function.addEntryPointAtOffset(EntryOffset);
1467 
1468       ++NextSymRefI;
1469     }
1470 
1471     // Function runs at most till the end of the containing section.
1472     uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress();
1473     // Or till the next object marked by a symbol.
1474     if (NextSymRefI != FileSymRefs.end())
1475       NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress);
1476 
1477     // Or till the next function not marked by a symbol.
1478     if (NextFunction)
1479       NextObjectAddress =
1480           std::min(NextFunction->getAddress(), NextObjectAddress);
1481 
1482     const uint64_t MaxSize = NextObjectAddress - Function.getAddress();
1483     if (MaxSize < Function.getSize()) {
1484       errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1485              << Function << ". Skipping.\n";
1486       Function.setSimple(false);
1487       Function.setMaxSize(Function.getSize());
1488       continue;
1489     }
1490     Function.setMaxSize(MaxSize);
1491     if (!Function.getSize() && Function.isSimple()) {
1492       // Some assembly functions have their size set to 0, use the max
1493       // size as their real size.
1494       if (opts::Verbosity >= 1)
1495         outs() << "BOLT-INFO: setting size of function " << Function << " to "
1496                << Function.getMaxSize() << " (was 0)\n";
1497       Function.setSize(Function.getMaxSize());
1498     }
1499   }
1500 }
1501 
1502 void RewriteInstance::relocateEHFrameSection() {
1503   assert(EHFrameSection && "non-empty .eh_frame section expected");
1504 
1505   DWARFDataExtractor DE(EHFrameSection->getContents(),
1506                         BC->AsmInfo->isLittleEndian(),
1507                         BC->AsmInfo->getCodePointerSize());
1508   auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
1509     if (DwarfType == dwarf::DW_EH_PE_omit)
1510       return;
1511 
1512     // Only fix references that are relative to other locations.
1513     if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
1514         !(DwarfType & dwarf::DW_EH_PE_textrel) &&
1515         !(DwarfType & dwarf::DW_EH_PE_funcrel) &&
1516         !(DwarfType & dwarf::DW_EH_PE_datarel))
1517       return;
1518 
1519     if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
1520       return;
1521 
1522     uint64_t RelType;
1523     switch (DwarfType & 0x0f) {
1524     default:
1525       llvm_unreachable("unsupported DWARF encoding type");
1526     case dwarf::DW_EH_PE_sdata4:
1527     case dwarf::DW_EH_PE_udata4:
1528       RelType = Relocation::getPC32();
1529       Offset -= 4;
1530       break;
1531     case dwarf::DW_EH_PE_sdata8:
1532     case dwarf::DW_EH_PE_udata8:
1533       RelType = Relocation::getPC64();
1534       Offset -= 8;
1535       break;
1536     }
1537 
1538     // Create a relocation against an absolute value since the goal is to
1539     // preserve the contents of the section independent of the new values
1540     // of referenced symbols.
1541     EHFrameSection->addRelocation(Offset, nullptr, RelType, Value);
1542   };
1543 
1544   Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc);
1545   check_error(std::move(E), "failed to patch EH frame");
1546 }
1547 
1548 ArrayRef<uint8_t> RewriteInstance::getLSDAData() {
1549   return ArrayRef<uint8_t>(LSDASection->getData(),
1550                            LSDASection->getContents().size());
1551 }
1552 
1553 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); }
1554 
1555 Error RewriteInstance::readSpecialSections() {
1556   NamedRegionTimer T("readSpecialSections", "read special sections",
1557                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
1558 
1559   bool HasTextRelocations = false;
1560   bool HasDebugInfo = false;
1561 
1562   // Process special sections.
1563   for (const SectionRef &Section : InputFile->sections()) {
1564     Expected<StringRef> SectionNameOrErr = Section.getName();
1565     check_error(SectionNameOrErr.takeError(), "cannot get section name");
1566     StringRef SectionName = *SectionNameOrErr;
1567 
1568     // Only register sections with names.
1569     if (!SectionName.empty()) {
1570       if (Error E = Section.getContents().takeError())
1571         return E;
1572       BC->registerSection(Section);
1573       LLVM_DEBUG(
1574           dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x"
1575                  << Twine::utohexstr(Section.getAddress()) << ":0x"
1576                  << Twine::utohexstr(Section.getAddress() + Section.getSize())
1577                  << "\n");
1578       if (isDebugSection(SectionName))
1579         HasDebugInfo = true;
1580       if (isKSymtabSection(SectionName))
1581         opts::LinuxKernelMode = true;
1582     }
1583   }
1584 
1585   if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) {
1586     errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1587               "Use -update-debug-sections to keep it.\n";
1588   }
1589 
1590   HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text");
1591   LSDASection = BC->getUniqueSectionByName(".gcc_except_table");
1592   EHFrameSection = BC->getUniqueSectionByName(".eh_frame");
1593   GOTPLTSection = BC->getUniqueSectionByName(".got.plt");
1594   RelaPLTSection = BC->getUniqueSectionByName(".rela.plt");
1595   RelaDynSection = BC->getUniqueSectionByName(".rela.dyn");
1596   BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id");
1597   SDTSection = BC->getUniqueSectionByName(".note.stapsdt");
1598   PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc");
1599   PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe");
1600 
1601   if (ErrorOr<BinarySection &> BATSec =
1602           BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) {
1603     // Do not read BAT when plotting a heatmap
1604     if (!opts::HeatmapMode) {
1605       if (std::error_code EC = BAT->parse(BATSec->getContents())) {
1606         errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1607                   "table.\n";
1608         exit(1);
1609       }
1610     }
1611   }
1612 
1613   if (opts::PrintSections) {
1614     outs() << "BOLT-INFO: Sections from original binary:\n";
1615     BC->printSections(outs());
1616   }
1617 
1618   if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) {
1619     errs() << "BOLT-ERROR: relocations against code are missing from the input "
1620               "file. Cannot proceed in relocations mode (-relocs).\n";
1621     exit(1);
1622   }
1623 
1624   BC->HasRelocations =
1625       HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE);
1626 
1627   // Force non-relocation mode for heatmap generation
1628   if (opts::HeatmapMode)
1629     BC->HasRelocations = false;
1630 
1631   if (BC->HasRelocations)
1632     outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "")
1633            << "relocation mode\n";
1634 
1635   // Read EH frame for function boundaries info.
1636   Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame();
1637   if (!EHFrameOrError)
1638     report_error("expected valid eh_frame section", EHFrameOrError.takeError());
1639   CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get()));
1640 
1641   // Parse build-id
1642   parseBuildID();
1643   if (Optional<std::string> FileBuildID = getPrintableBuildID())
1644     BC->setFileBuildID(*FileBuildID);
1645 
1646   parseSDTNotes();
1647 
1648   // Read .dynamic/PT_DYNAMIC.
1649   return readELFDynamic();
1650 }
1651 
1652 void RewriteInstance::adjustCommandLineOptions() {
1653   if (BC->isAArch64() && !BC->HasRelocations)
1654     errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
1655               "supported\n";
1656 
1657   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
1658     RtLibrary->adjustCommandLineOptions(*BC);
1659 
1660   if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) {
1661     outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
1662     opts::AlignMacroOpFusion = MFT_NONE;
1663   }
1664 
1665   if (BC->isX86() && BC->MAB->allowAutoPadding()) {
1666     if (!BC->HasRelocations) {
1667       errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
1668                 "non-relocation mode\n";
1669       exit(1);
1670     }
1671     outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
1672               "may take several minutes\n";
1673     opts::AlignMacroOpFusion = MFT_NONE;
1674   }
1675 
1676   if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) {
1677     outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
1678               "mode\n";
1679     opts::AlignMacroOpFusion = MFT_NONE;
1680   }
1681 
1682   if (opts::SplitEH && !BC->HasRelocations) {
1683     errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
1684     opts::SplitEH = false;
1685   }
1686 
1687   if (opts::StrictMode && !BC->HasRelocations) {
1688     errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
1689               "mode\n";
1690     opts::StrictMode = false;
1691   }
1692 
1693   if (BC->HasRelocations && opts::AggregateOnly &&
1694       !opts::StrictMode.getNumOccurrences()) {
1695     outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
1696               "purposes\n";
1697     opts::StrictMode = true;
1698   }
1699 
1700   if (BC->isX86() && BC->HasRelocations &&
1701       opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) {
1702     outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
1703               "was specified\n";
1704     opts::AlignMacroOpFusion = MFT_ALL;
1705   }
1706 
1707   if (!BC->HasRelocations &&
1708       opts::ReorderFunctions != ReorderFunctions::RT_NONE) {
1709     errs() << "BOLT-ERROR: function reordering only works when "
1710            << "relocations are enabled\n";
1711     exit(1);
1712   }
1713 
1714   if (opts::ReorderFunctions != ReorderFunctions::RT_NONE &&
1715       !opts::HotText.getNumOccurrences()) {
1716     opts::HotText = true;
1717   } else if (opts::HotText && !BC->HasRelocations) {
1718     errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
1719     opts::HotText = false;
1720   }
1721 
1722   if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) {
1723     opts::HotTextMoveSections.addValue(".stub");
1724     opts::HotTextMoveSections.addValue(".mover");
1725     opts::HotTextMoveSections.addValue(".never_hugify");
1726   }
1727 
1728   if (opts::UseOldText && !BC->OldTextSectionAddress) {
1729     errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
1730               "\n";
1731     opts::UseOldText = false;
1732   }
1733   if (opts::UseOldText && !BC->HasRelocations) {
1734     errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
1735     opts::UseOldText = false;
1736   }
1737 
1738   if (!opts::AlignText.getNumOccurrences())
1739     opts::AlignText = BC->PageAlign;
1740 
1741   if (opts::AlignText < opts::AlignFunctions)
1742     opts::AlignText = (unsigned)opts::AlignFunctions;
1743 
1744   if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode &&
1745       !opts::UseOldText)
1746     opts::Lite = true;
1747 
1748   if (opts::Lite && opts::UseOldText) {
1749     errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
1750               "Disabling -use-old-text.\n";
1751     opts::UseOldText = false;
1752   }
1753 
1754   if (opts::Lite && opts::StrictMode) {
1755     errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
1756     exit(1);
1757   }
1758 
1759   if (opts::Lite)
1760     outs() << "BOLT-INFO: enabling lite mode\n";
1761 
1762   if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) {
1763     errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
1764               "file processed by BOLT. Please remove -w option and use branch "
1765               "profile.\n";
1766     exit(1);
1767   }
1768 }
1769 
1770 namespace {
1771 template <typename ELFT>
1772 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
1773                             const RelocationRef &RelRef) {
1774   using ELFShdrTy = typename ELFT::Shdr;
1775   using Elf_Rela = typename ELFT::Rela;
1776   int64_t Addend = 0;
1777   const ELFFile<ELFT> &EF = Obj->getELFFile();
1778   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1779   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
1780   switch (RelocationSection->sh_type) {
1781   default:
1782     llvm_unreachable("unexpected relocation section type");
1783   case ELF::SHT_REL:
1784     break;
1785   case ELF::SHT_RELA: {
1786     const Elf_Rela *RelA = Obj->getRela(Rel);
1787     Addend = RelA->r_addend;
1788     break;
1789   }
1790   }
1791 
1792   return Addend;
1793 }
1794 
1795 int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
1796                             const RelocationRef &Rel) {
1797   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
1798     return getRelocationAddend(ELF32LE, Rel);
1799   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
1800     return getRelocationAddend(ELF64LE, Rel);
1801   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
1802     return getRelocationAddend(ELF32BE, Rel);
1803   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
1804   return getRelocationAddend(ELF64BE, Rel);
1805 }
1806 
1807 template <typename ELFT>
1808 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj,
1809                              const RelocationRef &RelRef) {
1810   using ELFShdrTy = typename ELFT::Shdr;
1811   uint32_t Symbol = 0;
1812   const ELFFile<ELFT> &EF = Obj->getELFFile();
1813   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1814   const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a));
1815   switch (RelocationSection->sh_type) {
1816   default:
1817     llvm_unreachable("unexpected relocation section type");
1818   case ELF::SHT_REL:
1819     Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL());
1820     break;
1821   case ELF::SHT_RELA:
1822     Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL());
1823     break;
1824   }
1825 
1826   return Symbol;
1827 }
1828 
1829 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj,
1830                              const RelocationRef &Rel) {
1831   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
1832     return getRelocationSymbol(ELF32LE, Rel);
1833   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
1834     return getRelocationSymbol(ELF64LE, Rel);
1835   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
1836     return getRelocationSymbol(ELF32BE, Rel);
1837   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
1838   return getRelocationSymbol(ELF64BE, Rel);
1839 }
1840 } // anonymous namespace
1841 
1842 bool RewriteInstance::analyzeRelocation(
1843     const RelocationRef &Rel, uint64_t RType, std::string &SymbolName,
1844     bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend,
1845     uint64_t &ExtractedValue, bool &Skip) const {
1846   Skip = false;
1847   if (!Relocation::isSupported(RType))
1848     return false;
1849 
1850   const bool IsAArch64 = BC->isAArch64();
1851 
1852   const size_t RelSize = Relocation::getSizeForType(RType);
1853 
1854   ErrorOr<uint64_t> Value =
1855       BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize);
1856   assert(Value && "failed to extract relocated value");
1857   if ((Skip = Relocation::skipRelocationProcess(RType, *Value)))
1858     return true;
1859 
1860   ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset());
1861   Addend = getRelocationAddend(InputFile, Rel);
1862 
1863   const bool IsPCRelative = Relocation::isPCRelative(RType);
1864   const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0;
1865   bool SkipVerification = false;
1866   auto SymbolIter = Rel.getSymbol();
1867   if (SymbolIter == InputFile->symbol_end()) {
1868     SymbolAddress = ExtractedValue - Addend + PCRelOffset;
1869     MCSymbol *RelSymbol =
1870         BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat");
1871     SymbolName = std::string(RelSymbol->getName());
1872     IsSectionRelocation = false;
1873   } else {
1874     const SymbolRef &Symbol = *SymbolIter;
1875     SymbolName = std::string(cantFail(Symbol.getName()));
1876     SymbolAddress = cantFail(Symbol.getAddress());
1877     SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other);
1878     // Section symbols are marked as ST_Debug.
1879     IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug);
1880     // Check for PLT entry registered with symbol name
1881     if (!SymbolAddress && IsAArch64) {
1882       const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName);
1883       SymbolAddress = BD ? BD->getAddress() : 0;
1884     }
1885   }
1886   // For PIE or dynamic libs, the linker may choose not to put the relocation
1887   // result at the address if it is a X86_64_64 one because it will emit a
1888   // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
1889   // resolve it at run time. The static relocation result goes as the addend
1890   // of the dynamic relocation in this case. We can't verify these cases.
1891   // FIXME: perhaps we can try to find if it really emitted a corresponding
1892   // RELATIVE relocation at this offset with the correct value as the addend.
1893   if (!BC->HasFixedLoadAddress && RelSize == 8)
1894     SkipVerification = true;
1895 
1896   if (IsSectionRelocation && !IsAArch64) {
1897     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
1898     assert(Section && "section expected for section relocation");
1899     SymbolName = "section " + std::string(Section->getName());
1900     // Convert section symbol relocations to regular relocations inside
1901     // non-section symbols.
1902     if (Section->containsAddress(ExtractedValue) && !IsPCRelative) {
1903       SymbolAddress = ExtractedValue;
1904       Addend = 0;
1905     } else {
1906       Addend = ExtractedValue - (SymbolAddress - PCRelOffset);
1907     }
1908   }
1909 
1910   // If no symbol has been found or if it is a relocation requiring the
1911   // creation of a GOT entry, do not link against the symbol but against
1912   // whatever address was extracted from the instruction itself. We are
1913   // not creating a GOT entry as this was already processed by the linker.
1914   // For GOT relocs, do not subtract addend as the addend does not refer
1915   // to this instruction's target, but it refers to the target in the GOT
1916   // entry.
1917   if (Relocation::isGOT(RType)) {
1918     Addend = 0;
1919     SymbolAddress = ExtractedValue + PCRelOffset;
1920   } else if (Relocation::isTLS(RType)) {
1921     SkipVerification = true;
1922   } else if (!SymbolAddress) {
1923     assert(!IsSectionRelocation);
1924     if (ExtractedValue || Addend == 0 || IsPCRelative) {
1925       SymbolAddress =
1926           truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize);
1927     } else {
1928       // This is weird case.  The extracted value is zero but the addend is
1929       // non-zero and the relocation is not pc-rel.  Using the previous logic,
1930       // the SymbolAddress would end up as a huge number.  Seen in
1931       // exceptions_pic.test.
1932       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
1933                         << Twine::utohexstr(Rel.getOffset())
1934                         << " value does not match addend for "
1935                         << "relocation to undefined symbol.\n");
1936       return true;
1937     }
1938   }
1939 
1940   auto verifyExtractedValue = [&]() {
1941     if (SkipVerification)
1942       return true;
1943 
1944     if (IsAArch64)
1945       return true;
1946 
1947     if (SymbolName == "__hot_start" || SymbolName == "__hot_end")
1948       return true;
1949 
1950     if (RType == ELF::R_X86_64_PLT32)
1951       return true;
1952 
1953     return truncateToSize(ExtractedValue, RelSize) ==
1954            truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize);
1955   };
1956 
1957   (void)verifyExtractedValue;
1958   assert(verifyExtractedValue() && "mismatched extracted relocation value");
1959 
1960   return true;
1961 }
1962 
1963 void RewriteInstance::processDynamicRelocations() {
1964   // Read relocations for PLT - DT_JMPREL.
1965   if (PLTRelocationsSize > 0) {
1966     ErrorOr<BinarySection &> PLTRelSectionOrErr =
1967         BC->getSectionForAddress(*PLTRelocationsAddress);
1968     if (!PLTRelSectionOrErr)
1969       report_error("unable to find section corresponding to DT_JMPREL",
1970                    PLTRelSectionOrErr.getError());
1971     if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize)
1972       report_error("section size mismatch for DT_PLTRELSZ",
1973                    errc::executable_format_error);
1974     readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(),
1975                            /*IsJmpRel*/ true);
1976   }
1977 
1978   // The rest of dynamic relocations - DT_RELA.
1979   if (DynamicRelocationsSize > 0) {
1980     ErrorOr<BinarySection &> DynamicRelSectionOrErr =
1981         BC->getSectionForAddress(*DynamicRelocationsAddress);
1982     if (!DynamicRelSectionOrErr)
1983       report_error("unable to find section corresponding to DT_RELA",
1984                    DynamicRelSectionOrErr.getError());
1985     if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize)
1986       report_error("section size mismatch for DT_RELASZ",
1987                    errc::executable_format_error);
1988     readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(),
1989                            /*IsJmpRel*/ false);
1990   }
1991 }
1992 
1993 void RewriteInstance::processRelocations() {
1994   if (!BC->HasRelocations)
1995     return;
1996 
1997   for (const SectionRef &Section : InputFile->sections()) {
1998     if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() &&
1999         !BinarySection(*BC, Section).isAllocatable())
2000       readRelocations(Section);
2001   }
2002 
2003   if (NumFailedRelocations)
2004     errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2005            << " relocations\n";
2006 }
2007 
2008 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
2009                                      int32_t PCRelativeOffset,
2010                                      bool IsPCRelative, StringRef SectionName) {
2011   BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
2012       SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
2013 }
2014 
2015 void RewriteInstance::processLKSections() {
2016   assert(opts::LinuxKernelMode &&
2017          "process Linux Kernel special sections and their relocations only in "
2018          "linux kernel mode.\n");
2019 
2020   processLKExTable();
2021   processLKPCIFixup();
2022   processLKKSymtab();
2023   processLKKSymtab(true);
2024   processLKBugTable();
2025   processLKSMPLocks();
2026 }
2027 
2028 /// Process __ex_table section of Linux Kernel.
2029 /// This section contains information regarding kernel level exception
2030 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html).
2031 /// More documentation is in arch/x86/include/asm/extable.h.
2032 ///
2033 /// The section is the list of the following structures:
2034 ///
2035 ///   struct exception_table_entry {
2036 ///     int insn;
2037 ///     int fixup;
2038 ///     int handler;
2039 ///   };
2040 ///
2041 void RewriteInstance::processLKExTable() {
2042   ErrorOr<BinarySection &> SectionOrError =
2043       BC->getUniqueSectionByName("__ex_table");
2044   if (!SectionOrError)
2045     return;
2046 
2047   const uint64_t SectionSize = SectionOrError->getSize();
2048   const uint64_t SectionAddress = SectionOrError->getAddress();
2049   assert((SectionSize % 12) == 0 &&
2050          "The size of the __ex_table section should be a multiple of 12");
2051   for (uint64_t I = 0; I < SectionSize; I += 4) {
2052     const uint64_t EntryAddress = SectionAddress + I;
2053     ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2054     assert(Offset && "failed reading PC-relative offset for __ex_table");
2055     int32_t SignedOffset = *Offset;
2056     const uint64_t RefAddress = EntryAddress + SignedOffset;
2057 
2058     BinaryFunction *ContainingBF =
2059         BC->getBinaryFunctionContainingAddress(RefAddress);
2060     if (!ContainingBF)
2061       continue;
2062 
2063     MCSymbol *ReferencedSymbol = ContainingBF->getSymbol();
2064     const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress();
2065     switch (I % 12) {
2066     default:
2067       llvm_unreachable("bad alignment of __ex_table");
2068       break;
2069     case 0:
2070       // insn
2071       insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table");
2072       break;
2073     case 4:
2074       // fixup
2075       if (FunctionOffset)
2076         ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset);
2077       BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
2078                         0, *Offset);
2079       break;
2080     case 8:
2081       // handler
2082       assert(!FunctionOffset &&
2083              "__ex_table handler entry should point to function start");
2084       BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(),
2085                         0, *Offset);
2086       break;
2087     }
2088   }
2089 }
2090 
2091 /// Process .pci_fixup section of Linux Kernel.
2092 /// This section contains a list of entries for different PCI devices and their
2093 /// corresponding hook handler (code pointer where the fixup
2094 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
2095 /// Documentation is in include/linux/pci.h.
2096 void RewriteInstance::processLKPCIFixup() {
2097   ErrorOr<BinarySection &> SectionOrError =
2098       BC->getUniqueSectionByName(".pci_fixup");
2099   assert(SectionOrError &&
2100          ".pci_fixup section not found in Linux Kernel binary");
2101   const uint64_t SectionSize = SectionOrError->getSize();
2102   const uint64_t SectionAddress = SectionOrError->getAddress();
2103   assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");
2104 
2105   for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
2106     const uint64_t PC = SectionAddress + I;
2107     ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4);
2108     assert(Offset && "cannot read value from .pci_fixup");
2109     const int32_t SignedOffset = *Offset;
2110     const uint64_t HookupAddress = PC + SignedOffset;
2111     BinaryFunction *HookupFunction =
2112         BC->getBinaryFunctionAtAddress(HookupAddress);
2113     assert(HookupFunction && "expected function for entry in .pci_fixup");
2114     BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
2115                       *Offset);
2116   }
2117 }
2118 
2119 /// Process __ksymtab[_gpl] sections of Linux Kernel.
2120 /// This section lists all the vmlinux symbols that kernel modules can access.
2121 ///
2122 /// All the entries are 4 bytes each and hence we can read them by one by one
2123 /// and ignore the ones that are not pointing to the .text section. All pointers
2124 /// are PC relative offsets. Always, points to the beginning of the function.
2125 void RewriteInstance::processLKKSymtab(bool IsGPL) {
2126   StringRef SectionName = "__ksymtab";
2127   if (IsGPL)
2128     SectionName = "__ksymtab_gpl";
2129   ErrorOr<BinarySection &> SectionOrError =
2130       BC->getUniqueSectionByName(SectionName);
2131   assert(SectionOrError &&
2132          "__ksymtab[_gpl] section not found in Linux Kernel binary");
2133   const uint64_t SectionSize = SectionOrError->getSize();
2134   const uint64_t SectionAddress = SectionOrError->getAddress();
2135   assert((SectionSize % 4) == 0 &&
2136          "The size of the __ksymtab[_gpl] section should be a multiple of 4");
2137 
2138   for (uint64_t I = 0; I < SectionSize; I += 4) {
2139     const uint64_t EntryAddress = SectionAddress + I;
2140     ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2141     assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
2142     const int32_t SignedOffset = *Offset;
2143     const uint64_t RefAddress = EntryAddress + SignedOffset;
2144     BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress);
2145     if (!BF)
2146       continue;
2147 
2148     BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
2149                       *Offset);
2150   }
2151 }
2152 
2153 /// Process __bug_table section.
2154 /// This section contains information useful for kernel debugging.
2155 /// Each entry in the section is a struct bug_entry that contains a pointer to
2156 /// the ud2 instruction corresponding to the bug, corresponding file name (both
2157 /// pointers use PC relative offset addressing), line number, and flags.
2158 /// The definition of the struct bug_entry can be found in
2159 /// `include/asm-generic/bug.h`
2160 void RewriteInstance::processLKBugTable() {
2161   ErrorOr<BinarySection &> SectionOrError =
2162       BC->getUniqueSectionByName("__bug_table");
2163   if (!SectionOrError)
2164     return;
2165 
2166   const uint64_t SectionSize = SectionOrError->getSize();
2167   const uint64_t SectionAddress = SectionOrError->getAddress();
2168   assert((SectionSize % 12) == 0 &&
2169          "The size of the __bug_table section should be a multiple of 12");
2170   for (uint64_t I = 0; I < SectionSize; I += 12) {
2171     const uint64_t EntryAddress = SectionAddress + I;
2172     ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2173     assert(Offset &&
2174            "Reading valid PC-relative offset for a __bug_table entry");
2175     const int32_t SignedOffset = *Offset;
2176     const uint64_t RefAddress = EntryAddress + SignedOffset;
2177     assert(BC->getBinaryFunctionContainingAddress(RefAddress) &&
2178            "__bug_table entries should point to a function");
2179 
2180     insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table");
2181   }
2182 }
2183 
2184 /// .smp_locks section contains PC-relative references to instructions with LOCK
2185 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
2186 void RewriteInstance::processLKSMPLocks() {
2187   ErrorOr<BinarySection &> SectionOrError =
2188       BC->getUniqueSectionByName(".smp_locks");
2189   if (!SectionOrError)
2190     return;
2191 
2192   uint64_t SectionSize = SectionOrError->getSize();
2193   const uint64_t SectionAddress = SectionOrError->getAddress();
2194   assert((SectionSize % 4) == 0 &&
2195          "The size of the .smp_locks section should be a multiple of 4");
2196 
2197   for (uint64_t I = 0; I < SectionSize; I += 4) {
2198     const uint64_t EntryAddress = SectionAddress + I;
2199     ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4);
2200     assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
2201     int32_t SignedOffset = *Offset;
2202     uint64_t RefAddress = EntryAddress + SignedOffset;
2203 
2204     BinaryFunction *ContainingBF =
2205         BC->getBinaryFunctionContainingAddress(RefAddress);
2206     if (!ContainingBF)
2207       continue;
2208 
2209     insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
2210   }
2211 }
2212 
2213 void RewriteInstance::readDynamicRelocations(const SectionRef &Section,
2214                                              bool IsJmpRel) {
2215   assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected");
2216 
2217   LLVM_DEBUG({
2218     StringRef SectionName = cantFail(Section.getName());
2219     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2220            << ":\n";
2221   });
2222 
2223   for (const RelocationRef &Rel : Section.relocations()) {
2224     const uint64_t RType = Rel.getType();
2225     if (Relocation::isNone(RType))
2226       continue;
2227 
2228     StringRef SymbolName = "<none>";
2229     MCSymbol *Symbol = nullptr;
2230     uint64_t SymbolAddress = 0;
2231     const uint64_t Addend = getRelocationAddend(InputFile, Rel);
2232 
2233     symbol_iterator SymbolIter = Rel.getSymbol();
2234     if (SymbolIter != InputFile->symbol_end()) {
2235       SymbolName = cantFail(SymbolIter->getName());
2236       BinaryData *BD = BC->getBinaryDataByName(SymbolName);
2237       Symbol = BD ? BD->getSymbol()
2238                   : BC->getOrCreateUndefinedGlobalSymbol(SymbolName);
2239       SymbolAddress = cantFail(SymbolIter->getAddress());
2240       (void)SymbolAddress;
2241     }
2242 
2243     LLVM_DEBUG(
2244       SmallString<16> TypeName;
2245       Rel.getTypeName(TypeName);
2246       dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2247              << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName
2248              << " : " << SymbolName << " : " <<  Twine::utohexstr(SymbolAddress)
2249              << " : + 0x" << Twine::utohexstr(Addend) << '\n'
2250     );
2251 
2252     if (IsJmpRel)
2253       IsJmpRelocation[RType] = true;
2254 
2255     if (Symbol)
2256       SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel);
2257 
2258     BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend);
2259   }
2260 }
2261 
2262 void RewriteInstance::readRelocations(const SectionRef &Section) {
2263   LLVM_DEBUG({
2264     StringRef SectionName = cantFail(Section.getName());
2265     dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2266            << ":\n";
2267   });
2268   if (BinarySection(*BC, Section).isAllocatable()) {
2269     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2270     return;
2271   }
2272   section_iterator SecIter = cantFail(Section.getRelocatedSection());
2273   assert(SecIter != InputFile->section_end() && "relocated section expected");
2274   SectionRef RelocatedSection = *SecIter;
2275 
2276   StringRef RelocatedSectionName = cantFail(RelocatedSection.getName());
2277   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2278                     << RelocatedSectionName << '\n');
2279 
2280   if (!BinarySection(*BC, RelocatedSection).isAllocatable()) {
2281     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2282                       << "non-allocatable section\n");
2283     return;
2284   }
2285   const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
2286                               .Cases(".plt", ".rela.plt", ".got.plt",
2287                                      ".eh_frame", ".gcc_except_table", true)
2288                               .Default(false);
2289   if (SkipRelocs) {
2290     LLVM_DEBUG(
2291         dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2292     return;
2293   }
2294 
2295   const bool IsAArch64 = BC->isAArch64();
2296   const bool IsFromCode = RelocatedSection.isText();
2297 
2298   auto printRelocationInfo = [&](const RelocationRef &Rel,
2299                                  StringRef SymbolName,
2300                                  uint64_t SymbolAddress,
2301                                  uint64_t Addend,
2302                                  uint64_t ExtractedValue) {
2303     SmallString<16> TypeName;
2304     Rel.getTypeName(TypeName);
2305     const uint64_t Address = SymbolAddress + Addend;
2306     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress);
2307     dbgs() << "Relocation: offset = 0x"
2308            << Twine::utohexstr(Rel.getOffset())
2309            << "; type = " << TypeName
2310            << "; value = 0x" << Twine::utohexstr(ExtractedValue)
2311            << "; symbol = " << SymbolName
2312            << " (" << (Section ? Section->getName() : "") << ")"
2313            << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress)
2314            << "; addend = 0x" << Twine::utohexstr(Addend)
2315            << "; address = 0x" << Twine::utohexstr(Address)
2316            << "; in = ";
2317     if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress(
2318             Rel.getOffset(), false, IsAArch64))
2319       dbgs() << Func->getPrintName() << "\n";
2320     else
2321       dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n";
2322   };
2323 
2324   for (const RelocationRef &Rel : Section.relocations()) {
2325     SmallString<16> TypeName;
2326     Rel.getTypeName(TypeName);
2327     uint64_t RType = Rel.getType();
2328     if (Relocation::skipRelocationType(RType))
2329       continue;
2330 
2331     // Adjust the relocation type as the linker might have skewed it.
2332     if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) {
2333       if (opts::Verbosity >= 1)
2334         dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2335       RType &= ~ELF::R_X86_64_converted_reloc_bit;
2336     }
2337 
2338     if (Relocation::isTLS(RType)) {
2339       // No special handling required for TLS relocations on X86.
2340       if (BC->isX86())
2341         continue;
2342 
2343       // The non-got related TLS relocations on AArch64 also could be skipped.
2344       if (!Relocation::isGOT(RType))
2345         continue;
2346     }
2347 
2348     if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) {
2349       LLVM_DEBUG(
2350           dbgs() << "BOLT-DEBUG: address 0x"
2351                  << Twine::utohexstr(Rel.getOffset())
2352                  << " has a dynamic relocation against it. Ignoring static "
2353                     "relocation.\n");
2354       continue;
2355     }
2356 
2357     std::string SymbolName;
2358     uint64_t SymbolAddress;
2359     int64_t Addend;
2360     uint64_t ExtractedValue;
2361     bool IsSectionRelocation;
2362     bool Skip;
2363     if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation,
2364                            SymbolAddress, Addend, ExtractedValue, Skip)) {
2365       LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ "
2366                         << "offset = 0x" << Twine::utohexstr(Rel.getOffset())
2367                         << "; type name = " << TypeName << '\n');
2368       ++NumFailedRelocations;
2369       continue;
2370     }
2371 
2372     if (Skip) {
2373       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x"
2374                         << Twine::utohexstr(Rel.getOffset())
2375                         << "; type name = " << TypeName << '\n');
2376       continue;
2377     }
2378 
2379     const uint64_t Address = SymbolAddress + Addend;
2380 
2381     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo(
2382                    Rel, SymbolName, SymbolAddress, Addend, ExtractedValue));
2383 
2384     BinaryFunction *ContainingBF = nullptr;
2385     if (IsFromCode) {
2386       ContainingBF =
2387           BC->getBinaryFunctionContainingAddress(Rel.getOffset(),
2388                                                  /*CheckPastEnd*/ false,
2389                                                  /*UseMaxSize*/ true);
2390       assert(ContainingBF && "cannot find function for address in code");
2391       if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) {
2392         if (opts::Verbosity >= 1)
2393           outs() << "BOLT-INFO: " << *ContainingBF
2394                  << " has relocations in padding area\n";
2395         ContainingBF->setSize(ContainingBF->getMaxSize());
2396         ContainingBF->setSimple(false);
2397         continue;
2398       }
2399     }
2400 
2401     MCSymbol *ReferencedSymbol = nullptr;
2402     if (!IsSectionRelocation)
2403       if (BinaryData *BD = BC->getBinaryDataByName(SymbolName))
2404         ReferencedSymbol = BD->getSymbol();
2405 
2406     ErrorOr<BinarySection &> ReferencedSection =
2407         BC->getSectionForAddress(SymbolAddress);
2408 
2409     const bool IsToCode = ReferencedSection && ReferencedSection->isText();
2410 
2411     // Special handling of PC-relative relocations.
2412     if (!IsAArch64 && Relocation::isPCRelative(RType)) {
2413       if (!IsFromCode && IsToCode) {
2414         // PC-relative relocations from data to code are tricky since the
2415         // original information is typically lost after linking, even with
2416         // '--emit-relocs'. Such relocations are normally used by PIC-style
2417         // jump tables and they reference both the jump table and jump
2418         // targets by computing the difference between the two. If we blindly
2419         // apply the relocation, it will appear that it references an arbitrary
2420         // location in the code, possibly in a different function from the one
2421         // containing the jump table.
2422         //
2423         // For that reason, we only register the fact that there is a
2424         // PC-relative relocation at a given address against the code.
2425         // The actual referenced label/address will be determined during jump
2426         // table analysis.
2427         BC->addPCRelativeDataRelocation(Rel.getOffset());
2428       } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) {
2429         // If we know the referenced symbol, register the relocation from
2430         // the code. It's required  to properly handle cases where
2431         // "symbol + addend" references an object different from "symbol".
2432         ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2433                                     Addend, ExtractedValue);
2434       } else {
2435         LLVM_DEBUG(
2436             dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x"
2437                    << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName
2438                    << "\n");
2439       }
2440 
2441       continue;
2442     }
2443 
2444     bool ForceRelocation = BC->forceSymbolRelocations(SymbolName);
2445     if (BC->isAArch64() && Relocation::isGOT(RType))
2446       ForceRelocation = true;
2447 
2448     if (!ReferencedSection && !ForceRelocation) {
2449       LLVM_DEBUG(
2450           dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2451       continue;
2452     }
2453 
2454     // Occasionally we may see a reference past the last byte of the function
2455     // typically as a result of __builtin_unreachable(). Check it here.
2456     BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress(
2457         Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64);
2458 
2459     if (!IsSectionRelocation) {
2460       if (BinaryFunction *BF =
2461               BC->getBinaryFunctionContainingAddress(SymbolAddress)) {
2462         if (BF != ReferencedBF) {
2463           // It's possible we are referencing a function without referencing any
2464           // code, e.g. when taking a bitmask action on a function address.
2465           errs() << "BOLT-WARNING: non-standard function reference (e.g. "
2466                     "bitmask) detected against function "
2467                  << *BF;
2468           if (IsFromCode)
2469             errs() << " from function " << *ContainingBF << '\n';
2470           else
2471             errs() << " from data section at 0x"
2472                    << Twine::utohexstr(Rel.getOffset()) << '\n';
2473           LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend,
2474                                          ExtractedValue));
2475           ReferencedBF = BF;
2476         }
2477       }
2478     } else if (ReferencedBF) {
2479       assert(ReferencedSection && "section expected for section relocation");
2480       if (*ReferencedBF->getOriginSection() != *ReferencedSection) {
2481         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2482         ReferencedBF = nullptr;
2483       }
2484     }
2485 
2486     // Workaround for a member function pointer de-virtualization bug. We check
2487     // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2488     if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) &&
2489         (!ReferencedBF || (ReferencedBF->getAddress() != Address))) {
2490       if (const BinaryFunction *RogueBF =
2491               BC->getBinaryFunctionAtAddress(Address + 1)) {
2492         // Do an extra check that the function was referenced previously.
2493         // It's a linear search, but it should rarely happen.
2494         bool Found = false;
2495         for (const auto &RelKV : ContainingBF->Relocations) {
2496           const Relocation &Rel = RelKV.second;
2497           if (Rel.Symbol == RogueBF->getSymbol() &&
2498               !Relocation::isPCRelative(Rel.Type)) {
2499             Found = true;
2500             break;
2501           }
2502         }
2503 
2504         if (Found) {
2505           errs() << "BOLT-WARNING: detected possible compiler "
2506                     "de-virtualization bug: -1 addend used with "
2507                     "non-pc-relative relocation against function "
2508                  << *RogueBF << " in function " << *ContainingBF << '\n';
2509           continue;
2510         }
2511       }
2512     }
2513 
2514     if (ForceRelocation) {
2515       std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName;
2516       ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0);
2517       SymbolAddress = 0;
2518       if (Relocation::isGOT(RType))
2519         Addend = Address;
2520       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2521                         << SymbolName << " with addend " << Addend << '\n');
2522     } else if (ReferencedBF) {
2523       ReferencedSymbol = ReferencedBF->getSymbol();
2524       uint64_t RefFunctionOffset = 0;
2525 
2526       // Adjust the point of reference to a code location inside a function.
2527       if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) {
2528         RefFunctionOffset = Address - ReferencedBF->getAddress();
2529         if (RefFunctionOffset) {
2530           if (ContainingBF && ContainingBF != ReferencedBF) {
2531             ReferencedSymbol =
2532                 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset);
2533           } else {
2534             ReferencedSymbol =
2535                 ReferencedBF->getOrCreateLocalLabel(Address,
2536                                                     /*CreatePastEnd =*/true);
2537             ReferencedBF->registerReferencedOffset(RefFunctionOffset);
2538           }
2539           if (opts::Verbosity > 1 &&
2540               !BinarySection(*BC, RelocatedSection).isReadOnly())
2541             errs() << "BOLT-WARNING: writable reference into the middle of "
2542                    << "the function " << *ReferencedBF
2543                    << " detected at address 0x"
2544                    << Twine::utohexstr(Rel.getOffset()) << '\n';
2545         }
2546         SymbolAddress = Address;
2547         Addend = 0;
2548       }
2549       LLVM_DEBUG(
2550         dbgs() << "  referenced function " << *ReferencedBF;
2551         if (Address != ReferencedBF->getAddress())
2552           dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset);
2553         dbgs() << '\n'
2554       );
2555     } else {
2556       if (IsToCode && SymbolAddress) {
2557         // This can happen e.g. with PIC-style jump tables.
2558         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2559                              "relocation against code\n");
2560       }
2561 
2562       // In AArch64 there are zero reasons to keep a reference to the
2563       // "original" symbol plus addend. The original symbol is probably just a
2564       // section symbol. If we are here, this means we are probably accessing
2565       // data, so it is imperative to keep the original address.
2566       if (IsAArch64) {
2567         SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str();
2568         SymbolAddress = Address;
2569         Addend = 0;
2570       }
2571 
2572       if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) {
2573         // Note: this assertion is trying to check sanity of BinaryData objects
2574         // but AArch64 has inferred and incomplete object locations coming from
2575         // GOT/TLS or any other non-trivial relocation (that requires creation
2576         // of sections and whose symbol address is not really what should be
2577         // encoded in the instruction). So we essentially disabled this check
2578         // for AArch64 and live with bogus names for objects.
2579         assert((IsAArch64 || IsSectionRelocation ||
2580                 BD->nameStartsWith(SymbolName) ||
2581                 BD->nameStartsWith("PG" + SymbolName) ||
2582                 (BD->nameStartsWith("ANONYMOUS") &&
2583                  (BD->getSectionName().startswith(".plt") ||
2584                   BD->getSectionName().endswith(".plt")))) &&
2585                "BOLT symbol names of all non-section relocations must match "
2586                "up with symbol names referenced in the relocation");
2587 
2588         if (IsSectionRelocation)
2589           BC->markAmbiguousRelocations(*BD, Address);
2590 
2591         ReferencedSymbol = BD->getSymbol();
2592         Addend += (SymbolAddress - BD->getAddress());
2593         SymbolAddress = BD->getAddress();
2594         assert(Address == SymbolAddress + Addend);
2595       } else {
2596         // These are mostly local data symbols but undefined symbols
2597         // in relocation sections can get through here too, from .plt.
2598         assert(
2599             (IsAArch64 || IsSectionRelocation ||
2600              BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) &&
2601             "known symbols should not resolve to anonymous locals");
2602 
2603         if (IsSectionRelocation) {
2604           ReferencedSymbol =
2605               BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat");
2606         } else {
2607           SymbolRef Symbol = *Rel.getSymbol();
2608           const uint64_t SymbolSize =
2609               IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize();
2610           const uint64_t SymbolAlignment =
2611               IsAArch64 ? 1 : Symbol.getAlignment();
2612           const uint32_t SymbolFlags = cantFail(Symbol.getFlags());
2613           std::string Name;
2614           if (SymbolFlags & SymbolRef::SF_Global) {
2615             Name = SymbolName;
2616           } else {
2617             if (StringRef(SymbolName)
2618                     .startswith(BC->AsmInfo->getPrivateGlobalPrefix()))
2619               Name = NR.uniquify("PG" + SymbolName);
2620             else
2621               Name = NR.uniquify(SymbolName);
2622           }
2623           ReferencedSymbol = BC->registerNameAtAddress(
2624               Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags);
2625         }
2626 
2627         if (IsSectionRelocation) {
2628           BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName());
2629           BC->markAmbiguousRelocations(*BD, Address);
2630         }
2631       }
2632     }
2633 
2634     auto checkMaxDataRelocations = [&]() {
2635       ++NumDataRelocations;
2636       if (opts::MaxDataRelocations &&
2637           NumDataRelocations + 1 == opts::MaxDataRelocations) {
2638         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2639                           << NumDataRelocations << ": ");
2640         printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress,
2641                             Addend, ExtractedValue);
2642       }
2643 
2644       return (!opts::MaxDataRelocations ||
2645               NumDataRelocations < opts::MaxDataRelocations);
2646     };
2647 
2648     if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) ||
2649         (opts::ForceToDataRelocations && checkMaxDataRelocations()))
2650       ForceRelocation = true;
2651 
2652     if (IsFromCode) {
2653       ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType,
2654                                   Addend, ExtractedValue);
2655     } else if (IsToCode || ForceRelocation) {
2656       BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend,
2657                         ExtractedValue);
2658     } else {
2659       LLVM_DEBUG(
2660           dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2661     }
2662   }
2663 }
2664 
2665 void RewriteInstance::selectFunctionsToProcess() {
2666   // Extend the list of functions to process or skip from a file.
2667   auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
2668                                   cl::list<std::string> &FunctionNames) {
2669     if (FunctionNamesFile.empty())
2670       return;
2671     std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
2672     std::string FuncName;
2673     while (std::getline(FuncsFile, FuncName))
2674       FunctionNames.push_back(FuncName);
2675   };
2676   populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames);
2677   populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames);
2678   populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR);
2679 
2680   // Make a set of functions to process to speed up lookups.
2681   std::unordered_set<std::string> ForceFunctionsNR(
2682       opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end());
2683 
2684   if ((!opts::ForceFunctionNames.empty() ||
2685        !opts::ForceFunctionNamesNR.empty()) &&
2686       !opts::SkipFunctionNames.empty()) {
2687     errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
2688               "same time. Please use only one type of selection.\n";
2689     exit(1);
2690   }
2691 
2692   uint64_t LiteThresholdExecCount = 0;
2693   if (opts::LiteThresholdPct) {
2694     if (opts::LiteThresholdPct > 100)
2695       opts::LiteThresholdPct = 100;
2696 
2697     std::vector<const BinaryFunction *> TopFunctions;
2698     for (auto &BFI : BC->getBinaryFunctions()) {
2699       const BinaryFunction &Function = BFI.second;
2700       if (ProfileReader->mayHaveProfileData(Function))
2701         TopFunctions.push_back(&Function);
2702     }
2703     llvm::sort(
2704         TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) {
2705           return A->getKnownExecutionCount() < B->getKnownExecutionCount();
2706         });
2707 
2708     size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100;
2709     if (Index)
2710       --Index;
2711     LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount();
2712     outs() << "BOLT-INFO: limiting processing to functions with at least "
2713            << LiteThresholdExecCount << " invocations\n";
2714   }
2715   LiteThresholdExecCount = std::max(
2716       LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount));
2717 
2718   uint64_t NumFunctionsToProcess = 0;
2719   auto shouldProcess = [&](const BinaryFunction &Function) {
2720     if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions)
2721       return false;
2722 
2723     // If the list is not empty, only process functions from the list.
2724     if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) {
2725       // Regex check (-funcs and -funcs-file options).
2726       for (std::string &Name : opts::ForceFunctionNames)
2727         if (Function.hasNameRegex(Name))
2728           return true;
2729 
2730       // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
2731       Optional<StringRef> Match =
2732           Function.forEachName([&ForceFunctionsNR](StringRef Name) {
2733             return ForceFunctionsNR.count(Name.str());
2734           });
2735       return Match.hasValue();
2736     }
2737 
2738     for (std::string &Name : opts::SkipFunctionNames)
2739       if (Function.hasNameRegex(Name))
2740         return false;
2741 
2742     if (opts::Lite) {
2743       if (ProfileReader && !ProfileReader->mayHaveProfileData(Function))
2744         return false;
2745 
2746       if (Function.getKnownExecutionCount() < LiteThresholdExecCount)
2747         return false;
2748     }
2749 
2750     return true;
2751   };
2752 
2753   for (auto &BFI : BC->getBinaryFunctions()) {
2754     BinaryFunction &Function = BFI.second;
2755 
2756     // Pseudo functions are explicitly marked by us not to be processed.
2757     if (Function.isPseudo()) {
2758       Function.IsIgnored = true;
2759       Function.HasExternalRefRelocations = true;
2760       continue;
2761     }
2762 
2763     if (!shouldProcess(Function)) {
2764       LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function "
2765                         << Function << " per user request\n");
2766       Function.setIgnored();
2767     } else {
2768       ++NumFunctionsToProcess;
2769       if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions)
2770         outs() << "BOLT-INFO: processing ending on " << Function << '\n';
2771     }
2772   }
2773 }
2774 
2775 void RewriteInstance::readDebugInfo() {
2776   NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName,
2777                      TimerGroupDesc, opts::TimeRewrite);
2778   if (!opts::UpdateDebugSections)
2779     return;
2780 
2781   BC->preprocessDebugInfo();
2782 }
2783 
2784 void RewriteInstance::preprocessProfileData() {
2785   if (!ProfileReader)
2786     return;
2787 
2788   NamedRegionTimer T("preprocessprofile", "pre-process profile data",
2789                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2790 
2791   outs() << "BOLT-INFO: pre-processing profile using "
2792          << ProfileReader->getReaderName() << '\n';
2793 
2794   if (BAT->enabledFor(InputFile)) {
2795     outs() << "BOLT-INFO: profile collection done on a binary already "
2796               "processed by BOLT\n";
2797     ProfileReader->setBAT(&*BAT);
2798   }
2799 
2800   if (Error E = ProfileReader->preprocessProfile(*BC.get()))
2801     report_error("cannot pre-process profile", std::move(E));
2802 
2803   if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() &&
2804       !opts::AllowStripped) {
2805     errs() << "BOLT-ERROR: input binary does not have local file symbols "
2806               "but profile data includes function names with embedded file "
2807               "names. It appears that the input binary was stripped while a "
2808               "profiled binary was not. If you know what you are doing and "
2809               "wish to proceed, use -allow-stripped option.\n";
2810     exit(1);
2811   }
2812 }
2813 
2814 void RewriteInstance::processProfileDataPreCFG() {
2815   if (!ProfileReader)
2816     return;
2817 
2818   NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG",
2819                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2820 
2821   if (Error E = ProfileReader->readProfilePreCFG(*BC.get()))
2822     report_error("cannot read profile pre-CFG", std::move(E));
2823 }
2824 
2825 void RewriteInstance::processProfileData() {
2826   if (!ProfileReader)
2827     return;
2828 
2829   NamedRegionTimer T("processprofile", "process profile data", TimerGroupName,
2830                      TimerGroupDesc, opts::TimeRewrite);
2831 
2832   if (Error E = ProfileReader->readProfile(*BC.get()))
2833     report_error("cannot read profile", std::move(E));
2834 
2835   if (!opts::SaveProfile.empty()) {
2836     YAMLProfileWriter PW(opts::SaveProfile);
2837     PW.writeProfile(*this);
2838   }
2839 
2840   // Release memory used by profile reader.
2841   ProfileReader.reset();
2842 
2843   if (opts::AggregateOnly)
2844     exit(0);
2845 }
2846 
2847 void RewriteInstance::disassembleFunctions() {
2848   NamedRegionTimer T("disassembleFunctions", "disassemble functions",
2849                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
2850   for (auto &BFI : BC->getBinaryFunctions()) {
2851     BinaryFunction &Function = BFI.second;
2852 
2853     ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData();
2854     if (!FunctionData) {
2855       errs() << "BOLT-ERROR: corresponding section is non-executable or "
2856              << "empty for function " << Function << '\n';
2857       exit(1);
2858     }
2859 
2860     // Treat zero-sized functions as non-simple ones.
2861     if (Function.getSize() == 0) {
2862       Function.setSimple(false);
2863       continue;
2864     }
2865 
2866     // Offset of the function in the file.
2867     const auto *FileBegin =
2868         reinterpret_cast<const uint8_t *>(InputFile->getData().data());
2869     Function.setFileOffset(FunctionData->begin() - FileBegin);
2870 
2871     if (!shouldDisassemble(Function)) {
2872       NamedRegionTimer T("scan", "scan functions", "buildfuncs",
2873                          "Scan Binary Functions", opts::TimeBuild);
2874       Function.scanExternalRefs();
2875       Function.setSimple(false);
2876       continue;
2877     }
2878 
2879     if (!Function.disassemble()) {
2880       if (opts::processAllFunctions())
2881         BC->exitWithBugReport("function cannot be properly disassembled. "
2882                               "Unable to continue in relocation mode.",
2883                               Function);
2884       if (opts::Verbosity >= 1)
2885         outs() << "BOLT-INFO: could not disassemble function " << Function
2886                << ". Will ignore.\n";
2887       // Forcefully ignore the function.
2888       Function.setIgnored();
2889       continue;
2890     }
2891 
2892     if (opts::PrintAll || opts::PrintDisasm)
2893       Function.print(outs(), "after disassembly", true);
2894 
2895     BC->processInterproceduralReferences(Function);
2896   }
2897 
2898   BC->clearJumpTableOffsets();
2899   BC->populateJumpTables();
2900   BC->skipMarkedFragments();
2901 
2902   for (auto &BFI : BC->getBinaryFunctions()) {
2903     BinaryFunction &Function = BFI.second;
2904 
2905     if (!shouldDisassemble(Function))
2906       continue;
2907 
2908     Function.postProcessEntryPoints();
2909     Function.postProcessJumpTables();
2910   }
2911 
2912   BC->adjustCodePadding();
2913 
2914   for (auto &BFI : BC->getBinaryFunctions()) {
2915     BinaryFunction &Function = BFI.second;
2916 
2917     if (!shouldDisassemble(Function))
2918       continue;
2919 
2920     if (!Function.isSimple()) {
2921       assert((!BC->HasRelocations || Function.getSize() == 0 ||
2922               Function.hasSplitJumpTable()) &&
2923              "unexpected non-simple function in relocation mode");
2924       continue;
2925     }
2926 
2927     // Fill in CFI information for this function
2928     if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) {
2929       if (BC->HasRelocations) {
2930         BC->exitWithBugReport("unable to fill CFI.", Function);
2931       } else {
2932         errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
2933                << ". Skipping.\n";
2934         Function.setSimple(false);
2935         continue;
2936       }
2937     }
2938 
2939     // Parse LSDA.
2940     if (Function.getLSDAAddress() != 0)
2941       Function.parseLSDA(getLSDAData(), getLSDAAddress());
2942   }
2943 }
2944 
2945 void RewriteInstance::buildFunctionsCFG() {
2946   NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs",
2947                      "Build Binary Functions", opts::TimeBuild);
2948 
2949   // Create annotation indices to allow lock-free execution
2950   BC->MIB->getOrCreateAnnotationIndex("JTIndexReg");
2951   BC->MIB->getOrCreateAnnotationIndex("NOP");
2952   BC->MIB->getOrCreateAnnotationIndex("Size");
2953 
2954   ParallelUtilities::WorkFuncWithAllocTy WorkFun =
2955       [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) {
2956         if (!BF.buildCFG(AllocId))
2957           return;
2958 
2959         if (opts::PrintAll) {
2960           auto L = BC->scopeLock();
2961           BF.print(outs(), "while building cfg", true);
2962         }
2963       };
2964 
2965   ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
2966     return !shouldDisassemble(BF) || !BF.isSimple();
2967   };
2968 
2969   ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
2970       *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
2971       SkipPredicate, "disassembleFunctions-buildCFG",
2972       /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll);
2973 
2974   BC->postProcessSymbolTable();
2975 }
2976 
2977 void RewriteInstance::postProcessFunctions() {
2978   BC->TotalScore = 0;
2979   BC->SumExecutionCount = 0;
2980   for (auto &BFI : BC->getBinaryFunctions()) {
2981     BinaryFunction &Function = BFI.second;
2982 
2983     if (Function.empty())
2984       continue;
2985 
2986     Function.postProcessCFG();
2987 
2988     if (opts::PrintAll || opts::PrintCFG)
2989       Function.print(outs(), "after building cfg", true);
2990 
2991     if (opts::DumpDotAll)
2992       Function.dumpGraphForPass("00_build-cfg");
2993 
2994     if (opts::PrintLoopInfo) {
2995       Function.calculateLoopInfo();
2996       Function.printLoopInfo(outs());
2997     }
2998 
2999     BC->TotalScore += Function.getFunctionScore();
3000     BC->SumExecutionCount += Function.getKnownExecutionCount();
3001   }
3002 
3003   if (opts::PrintGlobals) {
3004     outs() << "BOLT-INFO: Global symbols:\n";
3005     BC->printGlobalSymbols(outs());
3006   }
3007 }
3008 
3009 void RewriteInstance::runOptimizationPasses() {
3010   NamedRegionTimer T("runOptimizationPasses", "run optimization passes",
3011                      TimerGroupName, TimerGroupDesc, opts::TimeRewrite);
3012   BinaryFunctionPassManager::runAllPasses(*BC);
3013 }
3014 
3015 namespace {
3016 
3017 class BOLTSymbolResolver : public JITSymbolResolver {
3018   BinaryContext &BC;
3019 
3020 public:
3021   BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {}
3022 
3023   // We are responsible for all symbols
3024   Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override {
3025     return Symbols;
3026   }
3027 
3028   // Some of our symbols may resolve to zero and this should not be an error
3029   bool allowsZeroSymbols() override { return true; }
3030 
3031   /// Resolves the address of each symbol requested
3032   void lookup(const LookupSet &Symbols,
3033               OnResolvedFunction OnResolved) override {
3034     JITSymbolResolver::LookupResult AllResults;
3035 
3036     if (BC.EFMM->ObjectsLoaded) {
3037       for (const StringRef &Symbol : Symbols) {
3038         std::string SymName = Symbol.str();
3039         LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
3040         // Resolve to a PLT entry if possible
3041         if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) {
3042           AllResults[Symbol] =
3043               JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags());
3044           continue;
3045         }
3046         OnResolved(make_error<StringError>(
3047             "Symbol not found required by runtime: " + Symbol,
3048             inconvertibleErrorCode()));
3049         return;
3050       }
3051       OnResolved(std::move(AllResults));
3052       return;
3053     }
3054 
3055     for (const StringRef &Symbol : Symbols) {
3056       std::string SymName = Symbol.str();
3057       LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n");
3058 
3059       if (BinaryData *I = BC.getBinaryDataByName(SymName)) {
3060         uint64_t Address = I->isMoved() && !I->isJumpTable()
3061                                ? I->getOutputAddress()
3062                                : I->getAddress();
3063         LLVM_DEBUG(dbgs() << "Resolved to address 0x"
3064                           << Twine::utohexstr(Address) << "\n");
3065         AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags());
3066         continue;
3067       }
3068       LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n");
3069       AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags());
3070     }
3071 
3072     OnResolved(std::move(AllResults));
3073   }
3074 };
3075 
3076 } // anonymous namespace
3077 
3078 void RewriteInstance::emitAndLink() {
3079   NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName,
3080                      TimerGroupDesc, opts::TimeRewrite);
3081   std::error_code EC;
3082 
3083   // This is an object file, which we keep for debugging purposes.
3084   // Once we decide it's useless, we should create it in memory.
3085   SmallString<128> OutObjectPath;
3086   sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath);
3087   std::unique_ptr<ToolOutputFile> TempOut =
3088       std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None);
3089   check_error(EC, "cannot create output object file");
3090 
3091   std::unique_ptr<buffer_ostream> BOS =
3092       std::make_unique<buffer_ostream>(TempOut->os());
3093   raw_pwrite_stream *OS = BOS.get();
3094 
3095   // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3096   // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3097   // two instances.
3098   std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS);
3099 
3100   if (EHFrameSection) {
3101     if (opts::UseOldText || opts::StrictMode) {
3102       // The section is going to be regenerated from scratch.
3103       // Empty the contents, but keep the section reference.
3104       EHFrameSection->clearContents();
3105     } else {
3106       // Make .eh_frame relocatable.
3107       relocateEHFrameSection();
3108     }
3109   }
3110 
3111   emitBinaryContext(*Streamer, *BC, getOrgSecPrefix());
3112 
3113   Streamer->finish();
3114   if (Streamer->getContext().hadError()) {
3115     errs() << "BOLT-ERROR: Emission failed.\n";
3116     exit(1);
3117   }
3118 
3119   //////////////////////////////////////////////////////////////////////////////
3120   // Assign addresses to new sections.
3121   //////////////////////////////////////////////////////////////////////////////
3122 
3123   // Get output object as ObjectFile.
3124   std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
3125       MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false);
3126   std::unique_ptr<object::ObjectFile> Obj = cantFail(
3127       object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()),
3128       "error creating in-memory object");
3129 
3130   BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC);
3131 
3132   MCAsmLayout FinalLayout(
3133       static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler());
3134 
3135   RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver));
3136   RTDyld->setProcessAllSections(false);
3137   RTDyld->loadObject(*Obj);
3138 
3139   // Assign addresses to all sections. If key corresponds to the object
3140   // created by ourselves, call our regular mapping function. If we are
3141   // loading additional objects as part of runtime libraries for
3142   // instrumentation, treat them as extra sections.
3143   mapFileSections(*RTDyld);
3144 
3145   RTDyld->finalizeWithMemoryManagerLocking();
3146   if (RTDyld->hasError()) {
3147     errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n";
3148     exit(1);
3149   }
3150 
3151   // Update output addresses based on the new section map and
3152   // layout. Only do this for the object created by ourselves.
3153   updateOutputValues(FinalLayout);
3154 
3155   if (opts::UpdateDebugSections)
3156     DebugInfoRewriter->updateLineTableOffsets(FinalLayout);
3157 
3158   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3159     RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) {
3160       this->mapExtraSections(*RTDyld);
3161     });
3162 
3163   // Once the code is emitted, we can rename function sections to actual
3164   // output sections and de-register sections used for emission.
3165   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
3166     ErrorOr<BinarySection &> Section = Function->getCodeSection();
3167     if (Section &&
3168         (Function->getImageAddress() == 0 || Function->getImageSize() == 0))
3169       continue;
3170 
3171     // Restore origin section for functions that were emitted or supposed to
3172     // be emitted to patch sections.
3173     if (Section)
3174       BC->deregisterSection(*Section);
3175     assert(Function->getOriginSectionName() && "expected origin section");
3176     Function->CodeSectionName = std::string(*Function->getOriginSectionName());
3177     if (Function->isSplit()) {
3178       if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection())
3179         BC->deregisterSection(*ColdSection);
3180       Function->ColdCodeSectionName = std::string(getBOLTTextSectionName());
3181     }
3182   }
3183 
3184   if (opts::PrintCacheMetrics) {
3185     outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3186     CacheMetrics::printAll(BC->getSortedFunctions());
3187   }
3188 
3189   if (opts::KeepTmp) {
3190     TempOut->keep();
3191     outs() << "BOLT-INFO: intermediary output object file saved for debugging "
3192               "purposes: "
3193            << OutObjectPath << "\n";
3194   }
3195 }
3196 
3197 void RewriteInstance::updateMetadata() {
3198   updateSDTMarkers();
3199   updateLKMarkers();
3200   parsePseudoProbe();
3201   updatePseudoProbes();
3202 
3203   if (opts::UpdateDebugSections) {
3204     NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName,
3205                        TimerGroupDesc, opts::TimeRewrite);
3206     DebugInfoRewriter->updateDebugInfo();
3207   }
3208 
3209   if (opts::WriteBoltInfoSection)
3210     addBoltInfoSection();
3211 }
3212 
3213 void RewriteInstance::updatePseudoProbes() {
3214   // check if there is pseudo probe section decoded
3215   if (BC->ProbeDecoder.getAddress2ProbesMap().empty())
3216     return;
3217   // input address converted to output
3218   AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap();
3219   const GUIDProbeFunctionMap &GUID2Func =
3220       BC->ProbeDecoder.getGUID2FuncDescMap();
3221 
3222   for (auto &AP : Address2ProbesMap) {
3223     BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first);
3224     // If F is removed, eliminate all probes inside it from inline tree
3225     // Setting probes' addresses as INT64_MAX means elimination
3226     if (!F) {
3227       for (MCDecodedPseudoProbe &Probe : AP.second)
3228         Probe.setAddress(INT64_MAX);
3229       continue;
3230     }
3231     // If F is not emitted, the function will remain in the same address as its
3232     // input
3233     if (!F->isEmitted())
3234       continue;
3235 
3236     uint64_t Offset = AP.first - F->getAddress();
3237     const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset);
3238     uint64_t BlkOutputAddress = BB->getOutputAddressRange().first;
3239     // Check if block output address is defined.
3240     // If not, such block is removed from binary. Then remove the probes from
3241     // inline tree
3242     if (BlkOutputAddress == 0) {
3243       for (MCDecodedPseudoProbe &Probe : AP.second)
3244         Probe.setAddress(INT64_MAX);
3245       continue;
3246     }
3247 
3248     unsigned ProbeTrack = AP.second.size();
3249     std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin();
3250     while (ProbeTrack != 0) {
3251       if (Probe->isBlock()) {
3252         Probe->setAddress(BlkOutputAddress);
3253       } else if (Probe->isCall()) {
3254         // A call probe may be duplicated due to ICP
3255         // Go through output of InputOffsetToAddressMap to collect all related
3256         // probes
3257         const InputOffsetToAddressMapTy &Offset2Addr =
3258             F->getInputOffsetToAddressMap();
3259         auto CallOutputAddresses = Offset2Addr.equal_range(Offset);
3260         auto CallOutputAddress = CallOutputAddresses.first;
3261         if (CallOutputAddress == CallOutputAddresses.second) {
3262           Probe->setAddress(INT64_MAX);
3263         } else {
3264           Probe->setAddress(CallOutputAddress->second);
3265           CallOutputAddress = std::next(CallOutputAddress);
3266         }
3267 
3268         while (CallOutputAddress != CallOutputAddresses.second) {
3269           AP.second.push_back(*Probe);
3270           AP.second.back().setAddress(CallOutputAddress->second);
3271           Probe->getInlineTreeNode()->addProbes(&(AP.second.back()));
3272           CallOutputAddress = std::next(CallOutputAddress);
3273         }
3274       }
3275       Probe = std::next(Probe);
3276       ProbeTrack--;
3277     }
3278   }
3279 
3280   if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
3281       opts::PrintPseudoProbes ==
3282           opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) {
3283     outs() << "Pseudo Probe Address Conversion results:\n";
3284     // table that correlates address to block
3285     std::unordered_map<uint64_t, StringRef> Addr2BlockNames;
3286     for (auto &F : BC->getBinaryFunctions())
3287       for (BinaryBasicBlock &BinaryBlock : F.second)
3288         Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] =
3289             BinaryBlock.getName();
3290 
3291     // scan all addresses -> correlate probe to block when print out
3292     std::vector<uint64_t> Addresses;
3293     for (auto &Entry : Address2ProbesMap)
3294       Addresses.push_back(Entry.first);
3295     llvm::sort(Addresses);
3296     for (uint64_t Key : Addresses) {
3297       for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) {
3298         if (Probe.getAddress() == INT64_MAX)
3299           outs() << "Deleted Probe: ";
3300         else
3301           outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " ";
3302         Probe.print(outs(), GUID2Func, true);
3303         // print block name only if the probe is block type and undeleted.
3304         if (Probe.isBlock() && Probe.getAddress() != INT64_MAX)
3305           outs() << format_hex(Probe.getAddress(), 8) << " Probe is in "
3306                  << Addr2BlockNames[Probe.getAddress()] << "\n";
3307       }
3308     }
3309     outs() << "=======================================\n";
3310   }
3311 
3312   // encode pseudo probes with updated addresses
3313   encodePseudoProbes();
3314 }
3315 
3316 template <typename F>
3317 static void emitLEB128IntValue(F encode, uint64_t Value,
3318                                SmallString<8> &Contents) {
3319   SmallString<128> Tmp;
3320   raw_svector_ostream OSE(Tmp);
3321   encode(Value, OSE);
3322   Contents.append(OSE.str().begin(), OSE.str().end());
3323 }
3324 
3325 void RewriteInstance::encodePseudoProbes() {
3326   // Buffer for new pseudo probes section
3327   SmallString<8> Contents;
3328   MCDecodedPseudoProbe *LastProbe = nullptr;
3329 
3330   auto EmitInt = [&](uint64_t Value, uint32_t Size) {
3331     const bool IsLittleEndian = BC->AsmInfo->isLittleEndian();
3332     uint64_t Swapped = support::endian::byte_swap(
3333         Value, IsLittleEndian ? support::little : support::big);
3334     unsigned Index = IsLittleEndian ? 0 : 8 - Size;
3335     auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size);
3336     Contents.append(Entry.begin(), Entry.end());
3337   };
3338 
3339   auto EmitULEB128IntValue = [&](uint64_t Value) {
3340     SmallString<128> Tmp;
3341     raw_svector_ostream OSE(Tmp);
3342     encodeULEB128(Value, OSE, 0);
3343     Contents.append(OSE.str().begin(), OSE.str().end());
3344   };
3345 
3346   auto EmitSLEB128IntValue = [&](int64_t Value) {
3347     SmallString<128> Tmp;
3348     raw_svector_ostream OSE(Tmp);
3349     encodeSLEB128(Value, OSE);
3350     Contents.append(OSE.str().begin(), OSE.str().end());
3351   };
3352 
3353   // Emit indiviual pseudo probes in a inline tree node
3354   // Probe index, type, attribute, address type and address are encoded
3355   // Address of the first probe is absolute.
3356   // Other probes' address are represented by delta
3357   auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) {
3358     EmitULEB128IntValue(CurProbe->getIndex());
3359     uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4);
3360     uint8_t Flag =
3361         LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
3362     EmitInt(Flag | PackedType, 1);
3363     if (LastProbe) {
3364       // Emit the delta between the address label and LastProbe.
3365       int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress();
3366       EmitSLEB128IntValue(Delta);
3367     } else {
3368       // Emit absolute address for encoding the first pseudo probe.
3369       uint32_t AddrSize = BC->AsmInfo->getCodePointerSize();
3370       EmitInt(CurProbe->getAddress(), AddrSize);
3371     }
3372   };
3373 
3374   std::map<InlineSite, MCDecodedPseudoProbeInlineTree *,
3375            std::greater<InlineSite>>
3376       Inlinees;
3377 
3378   // DFS of inline tree to emit pseudo probes in all tree node
3379   // Inline site index of a probe is emitted first.
3380   // Then tree node Guid, size of pseudo probes and children nodes, and detail
3381   // of contained probes are emitted Deleted probes are skipped Root node is not
3382   // encoded to binaries. It's a "wrapper" of inline trees of each function.
3383   std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes;
3384   const MCDecodedPseudoProbeInlineTree &Root =
3385       BC->ProbeDecoder.getDummyInlineRoot();
3386   for (auto Child = Root.getChildren().begin();
3387        Child != Root.getChildren().end(); ++Child)
3388     Inlinees[Child->first] = Child->second.get();
3389 
3390   for (auto Inlinee : Inlinees)
3391     // INT64_MAX is "placeholder" of unused callsite index field in the pair
3392     NextNodes.push_back({INT64_MAX, Inlinee.second});
3393 
3394   Inlinees.clear();
3395 
3396   while (!NextNodes.empty()) {
3397     uint64_t ProbeIndex = NextNodes.back().first;
3398     MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second;
3399     NextNodes.pop_back();
3400 
3401     if (Cur->Parent && !Cur->Parent->isRoot())
3402       // Emit probe inline site
3403       EmitULEB128IntValue(ProbeIndex);
3404 
3405     // Emit probes grouped by GUID.
3406     LLVM_DEBUG({
3407       dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
3408       dbgs() << "GUID: " << Cur->Guid << "\n";
3409     });
3410     // Emit Guid
3411     EmitInt(Cur->Guid, 8);
3412     // Emit number of probes in this node
3413     uint64_t Deleted = 0;
3414     for (MCDecodedPseudoProbe *&Probe : Cur->getProbes())
3415       if (Probe->getAddress() == INT64_MAX)
3416         Deleted++;
3417     LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n");
3418     uint64_t ProbesSize = Cur->getProbes().size() - Deleted;
3419     EmitULEB128IntValue(ProbesSize);
3420     // Emit number of direct inlinees
3421     EmitULEB128IntValue(Cur->getChildren().size());
3422     // Emit probes in this group
3423     for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) {
3424       if (Probe->getAddress() == INT64_MAX)
3425         continue;
3426       EmitDecodedPseudoProbe(Probe);
3427       LastProbe = Probe;
3428     }
3429 
3430     for (auto Child = Cur->getChildren().begin();
3431          Child != Cur->getChildren().end(); ++Child)
3432       Inlinees[Child->first] = Child->second.get();
3433     for (const auto &Inlinee : Inlinees) {
3434       assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid");
3435       NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second});
3436       LLVM_DEBUG({
3437         dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
3438         dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
3439       });
3440     }
3441     Inlinees.clear();
3442   }
3443 
3444   // Create buffer for new contents for the section
3445   // Freed when parent section is destroyed
3446   uint8_t *Output = new uint8_t[Contents.str().size()];
3447   memcpy(Output, Contents.str().data(), Contents.str().size());
3448   addToDebugSectionsToOverwrite(".pseudo_probe");
3449   BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(),
3450                               PseudoProbeSection->getELFFlags(), Output,
3451                               Contents.str().size(), 1);
3452   if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All ||
3453       opts::PrintPseudoProbes ==
3454           opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) {
3455     // create a dummy decoder;
3456     MCPseudoProbeDecoder DummyDecoder;
3457     StringRef DescContents = PseudoProbeDescSection->getContents();
3458     DummyDecoder.buildGUID2FuncDescMap(
3459         reinterpret_cast<const uint8_t *>(DescContents.data()),
3460         DescContents.size());
3461     StringRef ProbeContents = PseudoProbeSection->getOutputContents();
3462     DummyDecoder.buildAddress2ProbeMap(
3463         reinterpret_cast<const uint8_t *>(ProbeContents.data()),
3464         ProbeContents.size());
3465     DummyDecoder.printProbesForAllAddresses(outs());
3466   }
3467 }
3468 
3469 void RewriteInstance::updateSDTMarkers() {
3470   NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName,
3471                      TimerGroupDesc, opts::TimeRewrite);
3472 
3473   if (!SDTSection)
3474     return;
3475   SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
3476 
3477   SimpleBinaryPatcher *SDTNotePatcher =
3478       static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher());
3479   for (auto &SDTInfoKV : BC->SDTMarkers) {
3480     const uint64_t OriginalAddress = SDTInfoKV.first;
3481     SDTMarkerInfo &SDTInfo = SDTInfoKV.second;
3482     const BinaryFunction *F =
3483         BC->getBinaryFunctionContainingAddress(OriginalAddress);
3484     if (!F)
3485       continue;
3486     const uint64_t NewAddress =
3487         F->translateInputToOutputAddress(OriginalAddress);
3488     SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress);
3489   }
3490 }
3491 
3492 void RewriteInstance::updateLKMarkers() {
3493   if (BC->LKMarkers.size() == 0)
3494     return;
3495 
3496   NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName,
3497                      TimerGroupDesc, opts::TimeRewrite);
3498 
3499   std::unordered_map<std::string, uint64_t> PatchCounts;
3500   for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
3501            &LKMarkerInfoKV : BC->LKMarkers) {
3502     const uint64_t OriginalAddress = LKMarkerInfoKV.first;
3503     const BinaryFunction *BF =
3504         BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true);
3505     if (!BF)
3506       continue;
3507 
3508     uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
3509     if (NewAddress == 0)
3510       continue;
3511 
3512     // Apply base address.
3513     if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
3514       NewAddress = NewAddress + 0xffffffff00000000;
3515 
3516     if (OriginalAddress == NewAddress)
3517       continue;
3518 
3519     for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
3520       StringRef SectionName = LKMarkerInfo.SectionName;
3521       SimpleBinaryPatcher *LKPatcher;
3522       ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
3523       assert(BSec && "missing section info for kernel section");
3524       if (!BSec->getPatcher())
3525         BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
3526       LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
3527       PatchCounts[std::string(SectionName)]++;
3528       if (LKMarkerInfo.IsPCRelative)
3529         LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
3530                                 NewAddress - OriginalAddress +
3531                                     LKMarkerInfo.PCRelativeOffset);
3532       else
3533         LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
3534     }
3535   }
3536   outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
3537             "section are as follows:\n";
3538   for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
3539     outs() << "  Section: " << KV.first << ", patch-counts: " << KV.second
3540            << '\n';
3541 }
3542 
3543 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) {
3544   mapCodeSections(RTDyld);
3545   mapDataSections(RTDyld);
3546 }
3547 
3548 std::vector<BinarySection *> RewriteInstance::getCodeSections() {
3549   std::vector<BinarySection *> CodeSections;
3550   for (BinarySection &Section : BC->textSections())
3551     if (Section.hasValidSectionID())
3552       CodeSections.emplace_back(&Section);
3553 
3554   auto compareSections = [&](const BinarySection *A, const BinarySection *B) {
3555     // Place movers before anything else.
3556     if (A->getName() == BC->getHotTextMoverSectionName())
3557       return true;
3558     if (B->getName() == BC->getHotTextMoverSectionName())
3559       return false;
3560 
3561     // Depending on the option, put main text at the beginning or at the end.
3562     if (opts::HotFunctionsAtEnd)
3563       return B->getName() == BC->getMainCodeSectionName();
3564     else
3565       return A->getName() == BC->getMainCodeSectionName();
3566   };
3567 
3568   // Determine the order of sections.
3569   llvm::stable_sort(CodeSections, compareSections);
3570 
3571   return CodeSections;
3572 }
3573 
3574 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) {
3575   if (BC->HasRelocations) {
3576     ErrorOr<BinarySection &> TextSection =
3577         BC->getUniqueSectionByName(BC->getMainCodeSectionName());
3578     assert(TextSection && ".text section not found in output");
3579     assert(TextSection->hasValidSectionID() && ".text section should be valid");
3580 
3581     // Map sections for functions with pre-assigned addresses.
3582     for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) {
3583       const uint64_t OutputAddress = InjectedFunction->getOutputAddress();
3584       if (!OutputAddress)
3585         continue;
3586 
3587       ErrorOr<BinarySection &> FunctionSection =
3588           InjectedFunction->getCodeSection();
3589       assert(FunctionSection && "function should have section");
3590       FunctionSection->setOutputAddress(OutputAddress);
3591       RTDyld.reassignSectionAddress(FunctionSection->getSectionID(),
3592                                     OutputAddress);
3593       InjectedFunction->setImageAddress(FunctionSection->getAllocAddress());
3594       InjectedFunction->setImageSize(FunctionSection->getOutputSize());
3595     }
3596 
3597     // Populate the list of sections to be allocated.
3598     std::vector<BinarySection *> CodeSections = getCodeSections();
3599 
3600     // Remove sections that were pre-allocated (patch sections).
3601     llvm::erase_if(CodeSections, [](BinarySection *Section) {
3602       return Section->getOutputAddress();
3603     });
3604     LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3605       for (const BinarySection *Section : CodeSections)
3606         dbgs() << Section->getName() << '\n';
3607     );
3608 
3609     uint64_t PaddingSize = 0; // size of padding required at the end
3610 
3611     // Allocate sections starting at a given Address.
3612     auto allocateAt = [&](uint64_t Address) {
3613       for (BinarySection *Section : CodeSections) {
3614         Address = alignTo(Address, Section->getAlignment());
3615         Section->setOutputAddress(Address);
3616         Address += Section->getOutputSize();
3617       }
3618 
3619       // Make sure we allocate enough space for huge pages.
3620       if (opts::HotText) {
3621         uint64_t HotTextEnd =
3622             TextSection->getOutputAddress() + TextSection->getOutputSize();
3623         HotTextEnd = alignTo(HotTextEnd, BC->PageAlign);
3624         if (HotTextEnd > Address) {
3625           PaddingSize = HotTextEnd - Address;
3626           Address = HotTextEnd;
3627         }
3628       }
3629       return Address;
3630     };
3631 
3632     // Check if we can fit code in the original .text
3633     bool AllocationDone = false;
3634     if (opts::UseOldText) {
3635       const uint64_t CodeSize =
3636           allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress;
3637 
3638       if (CodeSize <= BC->OldTextSectionSize) {
3639         outs() << "BOLT-INFO: using original .text for new code with 0x"
3640                << Twine::utohexstr(opts::AlignText) << " alignment\n";
3641         AllocationDone = true;
3642       } else {
3643         errs() << "BOLT-WARNING: original .text too small to fit the new code"
3644                << " using 0x" << Twine::utohexstr(opts::AlignText)
3645                << " alignment. " << CodeSize << " bytes needed, have "
3646                << BC->OldTextSectionSize << " bytes available.\n";
3647         opts::UseOldText = false;
3648       }
3649     }
3650 
3651     if (!AllocationDone)
3652       NextAvailableAddress = allocateAt(NextAvailableAddress);
3653 
3654     // Do the mapping for ORC layer based on the allocation.
3655     for (BinarySection *Section : CodeSections) {
3656       LLVM_DEBUG(
3657           dbgs() << "BOLT: mapping " << Section->getName() << " at 0x"
3658                  << Twine::utohexstr(Section->getAllocAddress()) << " to 0x"
3659                  << Twine::utohexstr(Section->getOutputAddress()) << '\n');
3660       RTDyld.reassignSectionAddress(Section->getSectionID(),
3661                                     Section->getOutputAddress());
3662       Section->setOutputFileOffset(
3663           getFileOffsetForAddress(Section->getOutputAddress()));
3664     }
3665 
3666     // Check if we need to insert a padding section for hot text.
3667     if (PaddingSize && !opts::UseOldText)
3668       outs() << "BOLT-INFO: padding code to 0x"
3669              << Twine::utohexstr(NextAvailableAddress)
3670              << " to accommodate hot text\n";
3671 
3672     return;
3673   }
3674 
3675   // Processing in non-relocation mode.
3676   uint64_t NewTextSectionStartAddress = NextAvailableAddress;
3677 
3678   for (auto &BFI : BC->getBinaryFunctions()) {
3679     BinaryFunction &Function = BFI.second;
3680     if (!Function.isEmitted())
3681       continue;
3682 
3683     bool TooLarge = false;
3684     ErrorOr<BinarySection &> FuncSection = Function.getCodeSection();
3685     assert(FuncSection && "cannot find section for function");
3686     FuncSection->setOutputAddress(Function.getAddress());
3687     LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3688                       << Twine::utohexstr(FuncSection->getAllocAddress())
3689                       << " to 0x" << Twine::utohexstr(Function.getAddress())
3690                       << '\n');
3691     RTDyld.reassignSectionAddress(FuncSection->getSectionID(),
3692                                   Function.getAddress());
3693     Function.setImageAddress(FuncSection->getAllocAddress());
3694     Function.setImageSize(FuncSection->getOutputSize());
3695     if (Function.getImageSize() > Function.getMaxSize()) {
3696       TooLarge = true;
3697       FailedAddresses.emplace_back(Function.getAddress());
3698     }
3699 
3700     // Map jump tables if updating in-place.
3701     if (opts::JumpTables == JTS_BASIC) {
3702       for (auto &JTI : Function.JumpTables) {
3703         JumpTable *JT = JTI.second;
3704         BinarySection &Section = JT->getOutputSection();
3705         Section.setOutputAddress(JT->getAddress());
3706         Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress()));
3707         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName()
3708                           << " to 0x" << Twine::utohexstr(JT->getAddress())
3709                           << '\n');
3710         RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress());
3711       }
3712     }
3713 
3714     if (!Function.isSplit())
3715       continue;
3716 
3717     ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection();
3718     assert(ColdSection && "cannot find section for cold part");
3719     // Cold fragments are aligned at 16 bytes.
3720     NextAvailableAddress = alignTo(NextAvailableAddress, 16);
3721     BinaryFunction::FragmentInfo &ColdPart = Function.cold();
3722     if (TooLarge) {
3723       // The corresponding FDE will refer to address 0.
3724       ColdPart.setAddress(0);
3725       ColdPart.setImageAddress(0);
3726       ColdPart.setImageSize(0);
3727       ColdPart.setFileOffset(0);
3728     } else {
3729       ColdPart.setAddress(NextAvailableAddress);
3730       ColdPart.setImageAddress(ColdSection->getAllocAddress());
3731       ColdPart.setImageSize(ColdSection->getOutputSize());
3732       ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3733       ColdSection->setOutputAddress(ColdPart.getAddress());
3734     }
3735 
3736     LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x"
3737                       << Twine::utohexstr(ColdPart.getImageAddress())
3738                       << " to 0x" << Twine::utohexstr(ColdPart.getAddress())
3739                       << " with size "
3740                       << Twine::utohexstr(ColdPart.getImageSize()) << '\n');
3741     RTDyld.reassignSectionAddress(ColdSection->getSectionID(),
3742                                   ColdPart.getAddress());
3743 
3744     NextAvailableAddress += ColdPart.getImageSize();
3745   }
3746 
3747   // Add the new text section aggregating all existing code sections.
3748   // This is pseudo-section that serves a purpose of creating a corresponding
3749   // entry in section header table.
3750   int64_t NewTextSectionSize =
3751       NextAvailableAddress - NewTextSectionStartAddress;
3752   if (NewTextSectionSize) {
3753     const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
3754                                                    /*IsText=*/true,
3755                                                    /*IsAllocatable=*/true);
3756     BinarySection &Section =
3757       BC->registerOrUpdateSection(getBOLTTextSectionName(),
3758                                   ELF::SHT_PROGBITS,
3759                                   Flags,
3760                                   /*Data=*/nullptr,
3761                                   NewTextSectionSize,
3762                                   16);
3763     Section.setOutputAddress(NewTextSectionStartAddress);
3764     Section.setOutputFileOffset(
3765         getFileOffsetForAddress(NewTextSectionStartAddress));
3766   }
3767 }
3768 
3769 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) {
3770   // Map special sections to their addresses in the output image.
3771   // These are the sections that we generate via MCStreamer.
3772   // The order is important.
3773   std::vector<std::string> Sections = {
3774       ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(),
3775       ".gcc_except_table", ".rodata", ".rodata.cold"};
3776   if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
3777     RtLibrary->addRuntimeLibSections(Sections);
3778 
3779   for (std::string &SectionName : Sections) {
3780     ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
3781     if (!Section || !Section->isAllocatable() || !Section->isFinalized())
3782       continue;
3783     NextAvailableAddress =
3784         alignTo(NextAvailableAddress, Section->getAlignment());
3785     LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x"
3786                       << Twine::utohexstr(Section->getAllocAddress())
3787                       << ") to 0x" << Twine::utohexstr(NextAvailableAddress)
3788                       << ":0x"
3789                       << Twine::utohexstr(NextAvailableAddress +
3790                                           Section->getOutputSize())
3791                       << '\n');
3792 
3793     RTDyld.reassignSectionAddress(Section->getSectionID(),
3794                                   NextAvailableAddress);
3795     Section->setOutputAddress(NextAvailableAddress);
3796     Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress));
3797 
3798     NextAvailableAddress += Section->getOutputSize();
3799   }
3800 
3801   // Handling for sections with relocations.
3802   for (BinarySection &Section : BC->sections()) {
3803     if (!Section.hasSectionRef())
3804       continue;
3805 
3806     StringRef SectionName = Section.getName();
3807     ErrorOr<BinarySection &> OrgSection =
3808         BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str());
3809     if (!OrgSection ||
3810         !OrgSection->isAllocatable() ||
3811         !OrgSection->isFinalized() ||
3812         !OrgSection->hasValidSectionID())
3813       continue;
3814 
3815     if (OrgSection->getOutputAddress()) {
3816       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName
3817                         << " is already mapped at 0x"
3818                         << Twine::utohexstr(OrgSection->getOutputAddress())
3819                         << '\n');
3820       continue;
3821     }
3822     LLVM_DEBUG(
3823         dbgs() << "BOLT: mapping original section " << SectionName << " (0x"
3824                << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x"
3825                << Twine::utohexstr(Section.getAddress()) << '\n');
3826 
3827     RTDyld.reassignSectionAddress(OrgSection->getSectionID(),
3828                                   Section.getAddress());
3829 
3830     OrgSection->setOutputAddress(Section.getAddress());
3831     OrgSection->setOutputFileOffset(Section.getContents().data() -
3832                                     InputFile->getData().data());
3833   }
3834 }
3835 
3836 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) {
3837   for (BinarySection &Section : BC->allocatableSections()) {
3838     if (Section.getOutputAddress() || !Section.hasValidSectionID())
3839       continue;
3840     NextAvailableAddress =
3841         alignTo(NextAvailableAddress, Section.getAlignment());
3842     Section.setOutputAddress(NextAvailableAddress);
3843     NextAvailableAddress += Section.getOutputSize();
3844 
3845     LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName()
3846                       << " at 0x" << Twine::utohexstr(Section.getAllocAddress())
3847                       << " to 0x"
3848                       << Twine::utohexstr(Section.getOutputAddress()) << '\n');
3849 
3850     RTDyld.reassignSectionAddress(Section.getSectionID(),
3851                                   Section.getOutputAddress());
3852     Section.setOutputFileOffset(
3853         getFileOffsetForAddress(Section.getOutputAddress()));
3854   }
3855 }
3856 
3857 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) {
3858   for (BinaryFunction *Function : BC->getAllBinaryFunctions())
3859     Function->updateOutputValues(Layout);
3860 }
3861 
3862 void RewriteInstance::patchELFPHDRTable() {
3863   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
3864   if (!ELF64LEFile) {
3865     errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
3866     exit(1);
3867   }
3868   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3869   raw_fd_ostream &OS = Out->os();
3870 
3871   // Write/re-write program headers.
3872   Phnum = Obj.getHeader().e_phnum;
3873   if (PHDRTableOffset) {
3874     // Writing new pheader table.
3875     Phnum += 1; // only adding one new segment
3876     // Segment size includes the size of the PHDR area.
3877     NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
3878   } else {
3879     assert(!PHDRTableAddress && "unexpected address for program header table");
3880     // Update existing table.
3881     PHDRTableOffset = Obj.getHeader().e_phoff;
3882     NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
3883   }
3884   OS.seek(PHDRTableOffset);
3885 
3886   bool ModdedGnuStack = false;
3887   (void)ModdedGnuStack;
3888   bool AddedSegment = false;
3889   (void)AddedSegment;
3890 
3891   auto createNewTextPhdr = [&]() {
3892     ELF64LEPhdrTy NewPhdr;
3893     NewPhdr.p_type = ELF::PT_LOAD;
3894     if (PHDRTableAddress) {
3895       NewPhdr.p_offset = PHDRTableOffset;
3896       NewPhdr.p_vaddr = PHDRTableAddress;
3897       NewPhdr.p_paddr = PHDRTableAddress;
3898     } else {
3899       NewPhdr.p_offset = NewTextSegmentOffset;
3900       NewPhdr.p_vaddr = NewTextSegmentAddress;
3901       NewPhdr.p_paddr = NewTextSegmentAddress;
3902     }
3903     NewPhdr.p_filesz = NewTextSegmentSize;
3904     NewPhdr.p_memsz = NewTextSegmentSize;
3905     NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
3906     // FIXME: Currently instrumentation is experimental and the runtime data
3907     // is emitted with code, thus everything needs to be writable
3908     if (opts::Instrument)
3909       NewPhdr.p_flags |= ELF::PF_W;
3910     NewPhdr.p_align = BC->PageAlign;
3911 
3912     return NewPhdr;
3913   };
3914 
3915   // Copy existing program headers with modifications.
3916   for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) {
3917     ELF64LE::Phdr NewPhdr = Phdr;
3918     if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) {
3919       NewPhdr.p_offset = PHDRTableOffset;
3920       NewPhdr.p_vaddr = PHDRTableAddress;
3921       NewPhdr.p_paddr = PHDRTableAddress;
3922       NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
3923       NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
3924     } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
3925       ErrorOr<BinarySection &> EHFrameHdrSec =
3926           BC->getUniqueSectionByName(".eh_frame_hdr");
3927       if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() &&
3928           EHFrameHdrSec->isFinalized()) {
3929         NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset();
3930         NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress();
3931         NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress();
3932         NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize();
3933         NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize();
3934       }
3935     } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) {
3936       NewPhdr = createNewTextPhdr();
3937       ModdedGnuStack = true;
3938     } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) {
3939       // Insert the new header before DYNAMIC.
3940       ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
3941       OS.write(reinterpret_cast<const char *>(&NewTextPhdr),
3942                sizeof(NewTextPhdr));
3943       AddedSegment = true;
3944     }
3945     OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
3946   }
3947 
3948   if (!opts::UseGnuStack && !AddedSegment) {
3949     // Append the new header to the end of the table.
3950     ELF64LE::Phdr NewTextPhdr = createNewTextPhdr();
3951     OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr));
3952   }
3953 
3954   assert((!opts::UseGnuStack || ModdedGnuStack) &&
3955          "could not find GNU_STACK program header to modify");
3956 }
3957 
3958 namespace {
3959 
3960 /// Write padding to \p OS such that its current \p Offset becomes aligned
3961 /// at \p Alignment. Return new (aligned) offset.
3962 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset,
3963                        uint64_t Alignment) {
3964   if (!Alignment)
3965     return Offset;
3966 
3967   const uint64_t PaddingSize =
3968       offsetToAlignment(Offset, llvm::Align(Alignment));
3969   for (unsigned I = 0; I < PaddingSize; ++I)
3970     OS.write((unsigned char)0);
3971   return Offset + PaddingSize;
3972 }
3973 
3974 }
3975 
3976 void RewriteInstance::rewriteNoteSections() {
3977   auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
3978   if (!ELF64LEFile) {
3979     errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
3980     exit(1);
3981   }
3982   const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile();
3983   raw_fd_ostream &OS = Out->os();
3984 
3985   uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
3986   assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
3987          "next available offset calculation failure");
3988   OS.seek(NextAvailableOffset);
3989 
3990   // Copy over non-allocatable section contents and update file offsets.
3991   for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) {
3992     if (Section.sh_type == ELF::SHT_NULL)
3993       continue;
3994     if (Section.sh_flags & ELF::SHF_ALLOC)
3995       continue;
3996 
3997     StringRef SectionName =
3998         cantFail(Obj.getSectionName(Section), "cannot get section name");
3999     ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
4000 
4001     if (shouldStrip(Section, SectionName))
4002       continue;
4003 
4004     // Insert padding as needed.
4005     NextAvailableOffset =
4006         appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
4007 
4008     // New section size.
4009     uint64_t Size = 0;
4010     bool DataWritten = false;
4011     uint8_t *SectionData = nullptr;
4012     // Copy over section contents unless it's one of the sections we overwrite.
4013     if (!willOverwriteSection(SectionName)) {
4014       Size = Section.sh_size;
4015       StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size);
4016       std::string Data;
4017       if (BSec && BSec->getPatcher()) {
4018         Data = BSec->getPatcher()->patchBinary(Dataref);
4019         Dataref = StringRef(Data);
4020       }
4021 
4022       // Section was expanded, so need to treat it as overwrite.
4023       if (Size != Dataref.size()) {
4024         BSec = BC->registerOrUpdateNoteSection(
4025             SectionName, copyByteArray(Dataref), Dataref.size());
4026         Size = 0;
4027       } else {
4028         OS << Dataref;
4029         DataWritten = true;
4030 
4031         // Add padding as the section extension might rely on the alignment.
4032         Size = appendPadding(OS, Size, Section.sh_addralign);
4033       }
4034     }
4035 
4036     // Perform section post-processing.
4037     if (BSec && !BSec->isAllocatable()) {
4038       assert(BSec->getAlignment() <= Section.sh_addralign &&
4039              "alignment exceeds value in file");
4040 
4041       if (BSec->getAllocAddress()) {
4042         assert(!DataWritten && "Writing section twice.");
4043         (void)DataWritten;
4044         SectionData = BSec->getOutputData();
4045 
4046         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
4047                           << " contents to section " << SectionName << '\n');
4048         OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize());
4049         Size += BSec->getOutputSize();
4050       }
4051 
4052       BSec->setOutputFileOffset(NextAvailableOffset);
4053       BSec->flushPendingRelocations(OS,
4054         [this] (const MCSymbol *S) {
4055           return getNewValueForSymbol(S->getName());
4056         });
4057     }
4058 
4059     // Set/modify section info.
4060     BinarySection &NewSection =
4061       BC->registerOrUpdateNoteSection(SectionName,
4062                                       SectionData,
4063                                       Size,
4064                                       Section.sh_addralign,
4065                                       BSec ? BSec->isReadOnly() : false,
4066                                       BSec ? BSec->getELFType()
4067                                            : ELF::SHT_PROGBITS);
4068     NewSection.setOutputAddress(0);
4069     NewSection.setOutputFileOffset(NextAvailableOffset);
4070 
4071     NextAvailableOffset += Size;
4072   }
4073 
4074   // Write new note sections.
4075   for (BinarySection &Section : BC->nonAllocatableSections()) {
4076     if (Section.getOutputFileOffset() || !Section.getAllocAddress())
4077       continue;
4078 
4079     assert(!Section.hasPendingRelocations() && "cannot have pending relocs");
4080 
4081     NextAvailableOffset =
4082         appendPadding(OS, NextAvailableOffset, Section.getAlignment());
4083     Section.setOutputFileOffset(NextAvailableOffset);
4084 
4085     LLVM_DEBUG(
4086         dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName()
4087                << " of size " << Section.getOutputSize() << " at offset 0x"
4088                << Twine::utohexstr(Section.getOutputFileOffset()) << '\n');
4089 
4090     OS.write(Section.getOutputContents().data(), Section.getOutputSize());
4091     NextAvailableOffset += Section.getOutputSize();
4092   }
4093 }
4094 
4095 template <typename ELFT>
4096 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
4097   using ELFShdrTy = typename ELFT::Shdr;
4098   const ELFFile<ELFT> &Obj = File->getELFFile();
4099 
4100   // Pre-populate section header string table.
4101   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4102     StringRef SectionName =
4103         cantFail(Obj.getSectionName(Section), "cannot get section name");
4104     SHStrTab.add(SectionName);
4105     std::string OutputSectionName = getOutputSectionName(Obj, Section);
4106     if (OutputSectionName != SectionName)
4107       SHStrTabPool.emplace_back(std::move(OutputSectionName));
4108   }
4109   for (const std::string &Str : SHStrTabPool)
4110     SHStrTab.add(Str);
4111   for (const BinarySection &Section : BC->sections())
4112     SHStrTab.add(Section.getName());
4113   SHStrTab.finalize();
4114 
4115   const size_t SHStrTabSize = SHStrTab.getSize();
4116   uint8_t *DataCopy = new uint8_t[SHStrTabSize];
4117   memset(DataCopy, 0, SHStrTabSize);
4118   SHStrTab.write(DataCopy);
4119   BC->registerOrUpdateNoteSection(".shstrtab",
4120                                   DataCopy,
4121                                   SHStrTabSize,
4122                                   /*Alignment=*/1,
4123                                   /*IsReadOnly=*/true,
4124                                   ELF::SHT_STRTAB);
4125 }
4126 
4127 void RewriteInstance::addBoltInfoSection() {
4128   std::string DescStr;
4129   raw_string_ostream DescOS(DescStr);
4130 
4131   DescOS << "BOLT revision: " << BoltRevision << ", "
4132          << "command line:";
4133   for (int I = 0; I < Argc; ++I)
4134     DescOS << " " << Argv[I];
4135   DescOS.flush();
4136 
4137   // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4138   const std::string BoltInfo =
4139       BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/);
4140   BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo),
4141                                   BoltInfo.size(),
4142                                   /*Alignment=*/1,
4143                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4144 }
4145 
4146 void RewriteInstance::addBATSection() {
4147   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr,
4148                                   0,
4149                                   /*Alignment=*/1,
4150                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4151 }
4152 
4153 void RewriteInstance::encodeBATSection() {
4154   std::string DescStr;
4155   raw_string_ostream DescOS(DescStr);
4156 
4157   BAT->write(DescOS);
4158   DescOS.flush();
4159 
4160   const std::string BoltInfo =
4161       BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT);
4162   BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME,
4163                                   copyByteArray(BoltInfo), BoltInfo.size(),
4164                                   /*Alignment=*/1,
4165                                   /*IsReadOnly=*/true, ELF::SHT_NOTE);
4166 }
4167 
4168 template <typename ELFObjType, typename ELFShdrTy>
4169 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj,
4170                                                   const ELFShdrTy &Section) {
4171   if (Section.sh_type == ELF::SHT_NULL)
4172     return "";
4173 
4174   StringRef SectionName =
4175       cantFail(Obj.getSectionName(Section), "cannot get section name");
4176 
4177   if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName))
4178     return (getOrgSecPrefix() + SectionName).str();
4179 
4180   return std::string(SectionName);
4181 }
4182 
4183 template <typename ELFShdrTy>
4184 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section,
4185                                   StringRef SectionName) {
4186   // Strip non-allocatable relocation sections.
4187   if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA)
4188     return true;
4189 
4190   // Strip debug sections if not updating them.
4191   if (isDebugSection(SectionName) && !opts::UpdateDebugSections)
4192     return true;
4193 
4194   // Strip symtab section if needed
4195   if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB)
4196     return true;
4197 
4198   return false;
4199 }
4200 
4201 template <typename ELFT>
4202 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr>
4203 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
4204                                    std::vector<uint32_t> &NewSectionIndex) {
4205   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4206   const ELFFile<ELFT> &Obj = File->getELFFile();
4207   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
4208 
4209   // Keep track of section header entries together with their name.
4210   std::vector<std::pair<std::string, ELFShdrTy>> OutputSections;
4211   auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) {
4212     ELFShdrTy NewSection = Section;
4213     NewSection.sh_name = SHStrTab.getOffset(Name);
4214     OutputSections.emplace_back(Name, std::move(NewSection));
4215   };
4216 
4217   // Copy over entries for original allocatable sections using modified name.
4218   for (const ELFShdrTy &Section : Sections) {
4219     // Always ignore this section.
4220     if (Section.sh_type == ELF::SHT_NULL) {
4221       OutputSections.emplace_back("", Section);
4222       continue;
4223     }
4224 
4225     if (!(Section.sh_flags & ELF::SHF_ALLOC))
4226       continue;
4227 
4228     addSection(getOutputSectionName(Obj, Section), Section);
4229   }
4230 
4231   for (const BinarySection &Section : BC->allocatableSections()) {
4232     if (!Section.isFinalized())
4233       continue;
4234 
4235     if (Section.getName().startswith(getOrgSecPrefix()) ||
4236         Section.isAnonymous()) {
4237       if (opts::Verbosity)
4238         outs() << "BOLT-INFO: not writing section header for section "
4239                << Section.getName() << '\n';
4240       continue;
4241     }
4242 
4243     if (opts::Verbosity >= 1)
4244       outs() << "BOLT-INFO: writing section header for " << Section.getName()
4245              << '\n';
4246     ELFShdrTy NewSection;
4247     NewSection.sh_type = ELF::SHT_PROGBITS;
4248     NewSection.sh_addr = Section.getOutputAddress();
4249     NewSection.sh_offset = Section.getOutputFileOffset();
4250     NewSection.sh_size = Section.getOutputSize();
4251     NewSection.sh_entsize = 0;
4252     NewSection.sh_flags = Section.getELFFlags();
4253     NewSection.sh_link = 0;
4254     NewSection.sh_info = 0;
4255     NewSection.sh_addralign = Section.getAlignment();
4256     addSection(std::string(Section.getName()), NewSection);
4257   }
4258 
4259   // Sort all allocatable sections by their offset.
4260   llvm::stable_sort(OutputSections,
4261                     [](const std::pair<std::string, ELFShdrTy> &A,
4262                        const std::pair<std::string, ELFShdrTy> &B) {
4263                       return A.second.sh_offset < B.second.sh_offset;
4264                     });
4265 
4266   // Fix section sizes to prevent overlapping.
4267   ELFShdrTy *PrevSection = nullptr;
4268   StringRef PrevSectionName;
4269   for (auto &SectionKV : OutputSections) {
4270     ELFShdrTy &Section = SectionKV.second;
4271 
4272     // TBSS section does not take file or memory space. Ignore it for layout
4273     // purposes.
4274     if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS))
4275       continue;
4276 
4277     if (PrevSection &&
4278         PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) {
4279       if (opts::Verbosity > 1)
4280         outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName
4281                << '\n';
4282       PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr
4283                                  ? Section.sh_addr - PrevSection->sh_addr
4284                                  : 0;
4285     }
4286 
4287     PrevSection = &Section;
4288     PrevSectionName = SectionKV.first;
4289   }
4290 
4291   uint64_t LastFileOffset = 0;
4292 
4293   // Copy over entries for non-allocatable sections performing necessary
4294   // adjustments.
4295   for (const ELFShdrTy &Section : Sections) {
4296     if (Section.sh_type == ELF::SHT_NULL)
4297       continue;
4298     if (Section.sh_flags & ELF::SHF_ALLOC)
4299       continue;
4300 
4301     StringRef SectionName =
4302         cantFail(Obj.getSectionName(Section), "cannot get section name");
4303 
4304     if (shouldStrip(Section, SectionName))
4305       continue;
4306 
4307     ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName);
4308     assert(BSec && "missing section info for non-allocatable section");
4309 
4310     ELFShdrTy NewSection = Section;
4311     NewSection.sh_offset = BSec->getOutputFileOffset();
4312     NewSection.sh_size = BSec->getOutputSize();
4313 
4314     if (NewSection.sh_type == ELF::SHT_SYMTAB)
4315       NewSection.sh_info = NumLocalSymbols;
4316 
4317     addSection(std::string(SectionName), NewSection);
4318 
4319     LastFileOffset = BSec->getOutputFileOffset();
4320   }
4321 
4322   // Create entries for new non-allocatable sections.
4323   for (BinarySection &Section : BC->nonAllocatableSections()) {
4324     if (Section.getOutputFileOffset() <= LastFileOffset)
4325       continue;
4326 
4327     if (opts::Verbosity >= 1)
4328       outs() << "BOLT-INFO: writing section header for " << Section.getName()
4329              << '\n';
4330 
4331     ELFShdrTy NewSection;
4332     NewSection.sh_type = Section.getELFType();
4333     NewSection.sh_addr = 0;
4334     NewSection.sh_offset = Section.getOutputFileOffset();
4335     NewSection.sh_size = Section.getOutputSize();
4336     NewSection.sh_entsize = 0;
4337     NewSection.sh_flags = Section.getELFFlags();
4338     NewSection.sh_link = 0;
4339     NewSection.sh_info = 0;
4340     NewSection.sh_addralign = Section.getAlignment();
4341 
4342     addSection(std::string(Section.getName()), NewSection);
4343   }
4344 
4345   // Assign indices to sections.
4346   std::unordered_map<std::string, uint64_t> NameToIndex;
4347   for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) {
4348     const std::string &SectionName = OutputSections[Index].first;
4349     NameToIndex[SectionName] = Index;
4350     if (ErrorOr<BinarySection &> Section =
4351             BC->getUniqueSectionByName(SectionName))
4352       Section->setIndex(Index);
4353   }
4354 
4355   // Update section index mapping
4356   NewSectionIndex.clear();
4357   NewSectionIndex.resize(Sections.size(), 0);
4358   for (const ELFShdrTy &Section : Sections) {
4359     if (Section.sh_type == ELF::SHT_NULL)
4360       continue;
4361 
4362     size_t OrgIndex = std::distance(Sections.begin(), &Section);
4363     std::string SectionName = getOutputSectionName(Obj, Section);
4364 
4365     // Some sections are stripped
4366     if (!NameToIndex.count(SectionName))
4367       continue;
4368 
4369     NewSectionIndex[OrgIndex] = NameToIndex[SectionName];
4370   }
4371 
4372   std::vector<ELFShdrTy> SectionsOnly(OutputSections.size());
4373   llvm::transform(OutputSections, SectionsOnly.begin(),
4374                   [](std::pair<std::string, ELFShdrTy> &SectionInfo) {
4375                     return SectionInfo.second;
4376                   });
4377 
4378   return SectionsOnly;
4379 }
4380 
4381 // Rewrite section header table inserting new entries as needed. The sections
4382 // header table size itself may affect the offsets of other sections,
4383 // so we are placing it at the end of the binary.
4384 //
4385 // As we rewrite entries we need to track how many sections were inserted
4386 // as it changes the sh_link value. We map old indices to new ones for
4387 // existing sections.
4388 template <typename ELFT>
4389 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
4390   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4391   using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr;
4392   raw_fd_ostream &OS = Out->os();
4393   const ELFFile<ELFT> &Obj = File->getELFFile();
4394 
4395   std::vector<uint32_t> NewSectionIndex;
4396   std::vector<ELFShdrTy> OutputSections =
4397       getOutputSections(File, NewSectionIndex);
4398   LLVM_DEBUG(
4399     dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4400     for (uint64_t I = 0; I < NewSectionIndex.size(); ++I)
4401       dbgs() << "  " << I << " -> " << NewSectionIndex[I] << '\n';
4402   );
4403 
4404   // Align starting address for section header table.
4405   uint64_t SHTOffset = OS.tell();
4406   SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy));
4407 
4408   // Write all section header entries while patching section references.
4409   for (ELFShdrTy &Section : OutputSections) {
4410     Section.sh_link = NewSectionIndex[Section.sh_link];
4411     if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) {
4412       if (Section.sh_info)
4413         Section.sh_info = NewSectionIndex[Section.sh_info];
4414     }
4415     OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
4416   }
4417 
4418   // Fix ELF header.
4419   ELFEhdrTy NewEhdr = Obj.getHeader();
4420 
4421   if (BC->HasRelocations) {
4422     if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary())
4423       NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress();
4424     else
4425       NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
4426     assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) &&
4427            "cannot find new address for entry point");
4428   }
4429   NewEhdr.e_phoff = PHDRTableOffset;
4430   NewEhdr.e_phnum = Phnum;
4431   NewEhdr.e_shoff = SHTOffset;
4432   NewEhdr.e_shnum = OutputSections.size();
4433   NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
4434   OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
4435 }
4436 
4437 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy>
4438 void RewriteInstance::updateELFSymbolTable(
4439     ELFObjectFile<ELFT> *File, bool IsDynSym,
4440     const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection,
4441     const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write,
4442     StrTabFuncTy AddToStrTab) {
4443   const ELFFile<ELFT> &Obj = File->getELFFile();
4444   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4445 
4446   StringRef StringSection =
4447       cantFail(Obj.getStringTableForSymtab(SymTabSection));
4448 
4449   unsigned NumHotTextSymsUpdated = 0;
4450   unsigned NumHotDataSymsUpdated = 0;
4451 
4452   std::map<const BinaryFunction *, uint64_t> IslandSizes;
4453   auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) {
4454     auto Itr = IslandSizes.find(&BF);
4455     if (Itr != IslandSizes.end())
4456       return Itr->second;
4457     return IslandSizes[&BF] = BF.estimateConstantIslandSize();
4458   };
4459 
4460   // Symbols for the new symbol table.
4461   std::vector<ELFSymTy> Symbols;
4462 
4463   auto getNewSectionIndex = [&](uint32_t OldIndex) {
4464     assert(OldIndex < NewSectionIndex.size() && "section index out of bounds");
4465     const uint32_t NewIndex = NewSectionIndex[OldIndex];
4466 
4467     // We may have stripped the section that dynsym was referencing due to
4468     // the linker bug. In that case return the old index avoiding marking
4469     // the symbol as undefined.
4470     if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF)
4471       return OldIndex;
4472     return NewIndex;
4473   };
4474 
4475   // Add extra symbols for the function.
4476   //
4477   // Note that addExtraSymbols() could be called multiple times for the same
4478   // function with different FunctionSymbol matching the main function entry
4479   // point.
4480   auto addExtraSymbols = [&](const BinaryFunction &Function,
4481                              const ELFSymTy &FunctionSymbol) {
4482     if (Function.isFolded()) {
4483       BinaryFunction *ICFParent = Function.getFoldedIntoFunction();
4484       while (ICFParent->isFolded())
4485         ICFParent = ICFParent->getFoldedIntoFunction();
4486       ELFSymTy ICFSymbol = FunctionSymbol;
4487       SmallVector<char, 256> Buf;
4488       ICFSymbol.st_name =
4489           AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4490                           .concat(".icf.0")
4491                           .toStringRef(Buf));
4492       ICFSymbol.st_value = ICFParent->getOutputAddress();
4493       ICFSymbol.st_size = ICFParent->getOutputSize();
4494       ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex();
4495       Symbols.emplace_back(ICFSymbol);
4496     }
4497     if (Function.isSplit() && Function.cold().getAddress()) {
4498       ELFSymTy NewColdSym = FunctionSymbol;
4499       SmallVector<char, 256> Buf;
4500       NewColdSym.st_name =
4501           AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection)))
4502                           .concat(".cold.0")
4503                           .toStringRef(Buf));
4504       NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex();
4505       NewColdSym.st_value = Function.cold().getAddress();
4506       NewColdSym.st_size = Function.cold().getImageSize();
4507       NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4508       Symbols.emplace_back(NewColdSym);
4509     }
4510     if (Function.hasConstantIsland()) {
4511       uint64_t DataMark = Function.getOutputDataAddress();
4512       uint64_t CISize = getConstantIslandSize(Function);
4513       uint64_t CodeMark = DataMark + CISize;
4514       ELFSymTy DataMarkSym = FunctionSymbol;
4515       DataMarkSym.st_name = AddToStrTab("$d");
4516       DataMarkSym.st_value = DataMark;
4517       DataMarkSym.st_size = 0;
4518       DataMarkSym.setType(ELF::STT_NOTYPE);
4519       DataMarkSym.setBinding(ELF::STB_LOCAL);
4520       ELFSymTy CodeMarkSym = DataMarkSym;
4521       CodeMarkSym.st_name = AddToStrTab("$x");
4522       CodeMarkSym.st_value = CodeMark;
4523       Symbols.emplace_back(DataMarkSym);
4524       Symbols.emplace_back(CodeMarkSym);
4525     }
4526     if (Function.hasConstantIsland() && Function.isSplit()) {
4527       uint64_t DataMark = Function.getOutputColdDataAddress();
4528       uint64_t CISize = getConstantIslandSize(Function);
4529       uint64_t CodeMark = DataMark + CISize;
4530       ELFSymTy DataMarkSym = FunctionSymbol;
4531       DataMarkSym.st_name = AddToStrTab("$d");
4532       DataMarkSym.st_value = DataMark;
4533       DataMarkSym.st_size = 0;
4534       DataMarkSym.setType(ELF::STT_NOTYPE);
4535       DataMarkSym.setBinding(ELF::STB_LOCAL);
4536       ELFSymTy CodeMarkSym = DataMarkSym;
4537       CodeMarkSym.st_name = AddToStrTab("$x");
4538       CodeMarkSym.st_value = CodeMark;
4539       Symbols.emplace_back(DataMarkSym);
4540       Symbols.emplace_back(CodeMarkSym);
4541     }
4542   };
4543 
4544   // For regular (non-dynamic) symbol table, exclude symbols referring
4545   // to non-allocatable sections.
4546   auto shouldStrip = [&](const ELFSymTy &Symbol) {
4547     if (Symbol.isAbsolute() || !Symbol.isDefined())
4548       return false;
4549 
4550     // If we cannot link the symbol to a section, leave it as is.
4551     Expected<const typename ELFT::Shdr *> Section =
4552         Obj.getSection(Symbol.st_shndx);
4553     if (!Section)
4554       return false;
4555 
4556     // Remove the section symbol iif the corresponding section was stripped.
4557     if (Symbol.getType() == ELF::STT_SECTION) {
4558       if (!getNewSectionIndex(Symbol.st_shndx))
4559         return true;
4560       return false;
4561     }
4562 
4563     // Symbols in non-allocatable sections are typically remnants of relocations
4564     // emitted under "-emit-relocs" linker option. Delete those as we delete
4565     // relocations against non-allocatable sections.
4566     if (!((*Section)->sh_flags & ELF::SHF_ALLOC))
4567       return true;
4568 
4569     return false;
4570   };
4571 
4572   for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) {
4573     // For regular (non-dynamic) symbol table strip unneeded symbols.
4574     if (!IsDynSym && shouldStrip(Symbol))
4575       continue;
4576 
4577     const BinaryFunction *Function =
4578         BC->getBinaryFunctionAtAddress(Symbol.st_value);
4579     // Ignore false function references, e.g. when the section address matches
4580     // the address of the function.
4581     if (Function && Symbol.getType() == ELF::STT_SECTION)
4582       Function = nullptr;
4583 
4584     // For non-dynamic symtab, make sure the symbol section matches that of
4585     // the function. It can mismatch e.g. if the symbol is a section marker
4586     // in which case we treat the symbol separately from the function.
4587     // For dynamic symbol table, the section index could be wrong on the input,
4588     // and its value is ignored by the runtime if it's different from
4589     // SHN_UNDEF and SHN_ABS.
4590     if (!IsDynSym && Function &&
4591         Symbol.st_shndx !=
4592             Function->getOriginSection()->getSectionRef().getIndex())
4593       Function = nullptr;
4594 
4595     // Create a new symbol based on the existing symbol.
4596     ELFSymTy NewSymbol = Symbol;
4597 
4598     if (Function) {
4599       // If the symbol matched a function that was not emitted, update the
4600       // corresponding section index but otherwise leave it unchanged.
4601       if (Function->isEmitted()) {
4602         NewSymbol.st_value = Function->getOutputAddress();
4603         NewSymbol.st_size = Function->getOutputSize();
4604         NewSymbol.st_shndx = Function->getCodeSection()->getIndex();
4605       } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) {
4606         NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4607       }
4608 
4609       // Add new symbols to the symbol table if necessary.
4610       if (!IsDynSym)
4611         addExtraSymbols(*Function, NewSymbol);
4612     } else {
4613       // Check if the function symbol matches address inside a function, i.e.
4614       // it marks a secondary entry point.
4615       Function =
4616           (Symbol.getType() == ELF::STT_FUNC)
4617               ? BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4618                                                        /*CheckPastEnd=*/false,
4619                                                        /*UseMaxSize=*/true)
4620               : nullptr;
4621 
4622       if (Function && Function->isEmitted()) {
4623         const uint64_t OutputAddress =
4624             Function->translateInputToOutputAddress(Symbol.st_value);
4625 
4626         NewSymbol.st_value = OutputAddress;
4627         // Force secondary entry points to have zero size.
4628         NewSymbol.st_size = 0;
4629         NewSymbol.st_shndx =
4630             OutputAddress >= Function->cold().getAddress() &&
4631                     OutputAddress < Function->cold().getImageSize()
4632                 ? Function->getColdCodeSection()->getIndex()
4633                 : Function->getCodeSection()->getIndex();
4634       } else {
4635         // Check if the symbol belongs to moved data object and update it.
4636         BinaryData *BD = opts::ReorderData.empty()
4637                              ? nullptr
4638                              : BC->getBinaryDataAtAddress(Symbol.st_value);
4639         if (BD && BD->isMoved() && !BD->isJumpTable()) {
4640           assert((!BD->getSize() || !Symbol.st_size ||
4641                   Symbol.st_size == BD->getSize()) &&
4642                  "sizes must match");
4643 
4644           BinarySection &OutputSection = BD->getOutputSection();
4645           assert(OutputSection.getIndex());
4646           LLVM_DEBUG(dbgs()
4647                      << "BOLT-DEBUG: moving " << BD->getName() << " from "
4648                      << *BC->getSectionNameForAddress(Symbol.st_value) << " ("
4649                      << Symbol.st_shndx << ") to " << OutputSection.getName()
4650                      << " (" << OutputSection.getIndex() << ")\n");
4651           NewSymbol.st_shndx = OutputSection.getIndex();
4652           NewSymbol.st_value = BD->getOutputAddress();
4653         } else {
4654           // Otherwise just update the section for the symbol.
4655           if (Symbol.st_shndx < ELF::SHN_LORESERVE)
4656             NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx);
4657         }
4658 
4659         // Detect local syms in the text section that we didn't update
4660         // and that were preserved by the linker to support relocations against
4661         // .text. Remove them from the symtab.
4662         if (Symbol.getType() == ELF::STT_NOTYPE &&
4663             Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) {
4664           if (BC->getBinaryFunctionContainingAddress(Symbol.st_value,
4665                                                      /*CheckPastEnd=*/false,
4666                                                      /*UseMaxSize=*/true)) {
4667             // Can only delete the symbol if not patching. Such symbols should
4668             // not exist in the dynamic symbol table.
4669             assert(!IsDynSym && "cannot delete symbol");
4670             continue;
4671           }
4672         }
4673       }
4674     }
4675 
4676     // Handle special symbols based on their name.
4677     Expected<StringRef> SymbolName = Symbol.getName(StringSection);
4678     assert(SymbolName && "cannot get symbol name");
4679 
4680     auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) {
4681       NewSymbol.st_value = getNewValueForSymbol(Name);
4682       NewSymbol.st_shndx = ELF::SHN_ABS;
4683       outs() << "BOLT-INFO: setting " << Name << " to 0x"
4684              << Twine::utohexstr(NewSymbol.st_value) << '\n';
4685       ++IsUpdated;
4686     };
4687 
4688     if (opts::HotText &&
4689         (*SymbolName == "__hot_start" || *SymbolName == "__hot_end"))
4690       updateSymbolValue(*SymbolName, NumHotTextSymsUpdated);
4691 
4692     if (opts::HotData &&
4693         (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end"))
4694       updateSymbolValue(*SymbolName, NumHotDataSymsUpdated);
4695 
4696     if (*SymbolName == "_end") {
4697       unsigned Ignored;
4698       updateSymbolValue(*SymbolName, Ignored);
4699     }
4700 
4701     if (IsDynSym)
4702       Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) *
4703                 sizeof(ELFSymTy),
4704             NewSymbol);
4705     else
4706       Symbols.emplace_back(NewSymbol);
4707   }
4708 
4709   if (IsDynSym) {
4710     assert(Symbols.empty());
4711     return;
4712   }
4713 
4714   // Add symbols of injected functions
4715   for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) {
4716     ELFSymTy NewSymbol;
4717     BinarySection *OriginSection = Function->getOriginSection();
4718     NewSymbol.st_shndx =
4719         OriginSection
4720             ? getNewSectionIndex(OriginSection->getSectionRef().getIndex())
4721             : Function->getCodeSection()->getIndex();
4722     NewSymbol.st_value = Function->getOutputAddress();
4723     NewSymbol.st_name = AddToStrTab(Function->getOneName());
4724     NewSymbol.st_size = Function->getOutputSize();
4725     NewSymbol.st_other = 0;
4726     NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC);
4727     Symbols.emplace_back(NewSymbol);
4728 
4729     if (Function->isSplit()) {
4730       ELFSymTy NewColdSym = NewSymbol;
4731       NewColdSym.setType(ELF::STT_NOTYPE);
4732       SmallVector<char, 256> Buf;
4733       NewColdSym.st_name = AddToStrTab(
4734           Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf));
4735       NewColdSym.st_value = Function->cold().getAddress();
4736       NewColdSym.st_size = Function->cold().getImageSize();
4737       Symbols.emplace_back(NewColdSym);
4738     }
4739   }
4740 
4741   assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) &&
4742          "either none or both __hot_start/__hot_end symbols were expected");
4743   assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) &&
4744          "either none or both __hot_data_start/__hot_data_end symbols were "
4745          "expected");
4746 
4747   auto addSymbol = [&](const std::string &Name) {
4748     ELFSymTy Symbol;
4749     Symbol.st_value = getNewValueForSymbol(Name);
4750     Symbol.st_shndx = ELF::SHN_ABS;
4751     Symbol.st_name = AddToStrTab(Name);
4752     Symbol.st_size = 0;
4753     Symbol.st_other = 0;
4754     Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE);
4755 
4756     outs() << "BOLT-INFO: setting " << Name << " to 0x"
4757            << Twine::utohexstr(Symbol.st_value) << '\n';
4758 
4759     Symbols.emplace_back(Symbol);
4760   };
4761 
4762   if (opts::HotText && !NumHotTextSymsUpdated) {
4763     addSymbol("__hot_start");
4764     addSymbol("__hot_end");
4765   }
4766 
4767   if (opts::HotData && !NumHotDataSymsUpdated) {
4768     addSymbol("__hot_data_start");
4769     addSymbol("__hot_data_end");
4770   }
4771 
4772   // Put local symbols at the beginning.
4773   llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) {
4774     if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL)
4775       return true;
4776     return false;
4777   });
4778 
4779   for (const ELFSymTy &Symbol : Symbols)
4780     Write(0, Symbol);
4781 }
4782 
4783 template <typename ELFT>
4784 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
4785   const ELFFile<ELFT> &Obj = File->getELFFile();
4786   using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr;
4787   using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym;
4788 
4789   // Compute a preview of how section indices will change after rewriting, so
4790   // we can properly update the symbol table based on new section indices.
4791   std::vector<uint32_t> NewSectionIndex;
4792   getOutputSections(File, NewSectionIndex);
4793 
4794   // Set pointer at the end of the output file, so we can pwrite old symbol
4795   // tables if we need to.
4796   uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
4797   assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
4798          "next available offset calculation failure");
4799   Out->os().seek(NextAvailableOffset);
4800 
4801   // Update dynamic symbol table.
4802   const ELFShdrTy *DynSymSection = nullptr;
4803   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4804     if (Section.sh_type == ELF::SHT_DYNSYM) {
4805       DynSymSection = &Section;
4806       break;
4807     }
4808   }
4809   assert((DynSymSection || BC->IsStaticExecutable) &&
4810          "dynamic symbol table expected");
4811   if (DynSymSection) {
4812     updateELFSymbolTable(
4813         File,
4814         /*IsDynSym=*/true,
4815         *DynSymSection,
4816         NewSectionIndex,
4817         [&](size_t Offset, const ELFSymTy &Sym) {
4818           Out->os().pwrite(reinterpret_cast<const char *>(&Sym),
4819                            sizeof(ELFSymTy),
4820                            DynSymSection->sh_offset + Offset);
4821         },
4822         [](StringRef) -> size_t { return 0; });
4823   }
4824 
4825   if (opts::RemoveSymtab)
4826     return;
4827 
4828   // (re)create regular symbol table.
4829   const ELFShdrTy *SymTabSection = nullptr;
4830   for (const ELFShdrTy &Section : cantFail(Obj.sections())) {
4831     if (Section.sh_type == ELF::SHT_SYMTAB) {
4832       SymTabSection = &Section;
4833       break;
4834     }
4835   }
4836   if (!SymTabSection) {
4837     errs() << "BOLT-WARNING: no symbol table found\n";
4838     return;
4839   }
4840 
4841   const ELFShdrTy *StrTabSection =
4842       cantFail(Obj.getSection(SymTabSection->sh_link));
4843   std::string NewContents;
4844   std::string NewStrTab = std::string(
4845       File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size));
4846   StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection));
4847   StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection));
4848 
4849   NumLocalSymbols = 0;
4850   updateELFSymbolTable(
4851       File,
4852       /*IsDynSym=*/false,
4853       *SymTabSection,
4854       NewSectionIndex,
4855       [&](size_t Offset, const ELFSymTy &Sym) {
4856         if (Sym.getBinding() == ELF::STB_LOCAL)
4857           ++NumLocalSymbols;
4858         NewContents.append(reinterpret_cast<const char *>(&Sym),
4859                            sizeof(ELFSymTy));
4860       },
4861       [&](StringRef Str) {
4862         size_t Idx = NewStrTab.size();
4863         NewStrTab.append(NameResolver::restore(Str).str());
4864         NewStrTab.append(1, '\0');
4865         return Idx;
4866       });
4867 
4868   BC->registerOrUpdateNoteSection(SecName,
4869                                   copyByteArray(NewContents),
4870                                   NewContents.size(),
4871                                   /*Alignment=*/1,
4872                                   /*IsReadOnly=*/true,
4873                                   ELF::SHT_SYMTAB);
4874 
4875   BC->registerOrUpdateNoteSection(StrSecName,
4876                                   copyByteArray(NewStrTab),
4877                                   NewStrTab.size(),
4878                                   /*Alignment=*/1,
4879                                   /*IsReadOnly=*/true,
4880                                   ELF::SHT_STRTAB);
4881 }
4882 
4883 template <typename ELFT>
4884 void
4885 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) {
4886   using Elf_Rela = typename ELFT::Rela;
4887   raw_fd_ostream &OS = Out->os();
4888   const ELFFile<ELFT> &EF = File->getELFFile();
4889 
4890   uint64_t RelDynOffset = 0, RelDynEndOffset = 0;
4891   uint64_t RelPltOffset = 0, RelPltEndOffset = 0;
4892 
4893   auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start,
4894                                    uint64_t &End) {
4895     ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address);
4896     Start = Section->getInputFileOffset();
4897     End = Start + Section->getSize();
4898   };
4899 
4900   if (!DynamicRelocationsAddress && !PLTRelocationsAddress)
4901     return;
4902 
4903   if (DynamicRelocationsAddress)
4904     setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset,
4905                           RelDynEndOffset);
4906 
4907   if (PLTRelocationsAddress)
4908     setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset,
4909                           RelPltEndOffset);
4910 
4911   DynamicRelativeRelocationsCount = 0;
4912 
4913   auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) {
4914     OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset);
4915     Offset += sizeof(*RelA);
4916   };
4917 
4918   auto writeRelocations = [&](bool PatchRelative) {
4919     for (BinarySection &Section : BC->allocatableSections()) {
4920       for (const Relocation &Rel : Section.dynamicRelocations()) {
4921         const bool IsRelative = Rel.isRelative();
4922         if (PatchRelative != IsRelative)
4923           continue;
4924 
4925         if (IsRelative)
4926           ++DynamicRelativeRelocationsCount;
4927 
4928         Elf_Rela NewRelA;
4929         uint64_t SectionAddress = Section.getOutputAddress();
4930         SectionAddress =
4931             SectionAddress == 0 ? Section.getAddress() : SectionAddress;
4932         MCSymbol *Symbol = Rel.Symbol;
4933         uint32_t SymbolIdx = 0;
4934         uint64_t Addend = Rel.Addend;
4935 
4936         if (Rel.Symbol) {
4937           SymbolIdx = getOutputDynamicSymbolIndex(Symbol);
4938         } else {
4939           // Usually this case is used for R_*_(I)RELATIVE relocations
4940           const uint64_t Address = getNewFunctionOrDataAddress(Addend);
4941           if (Address)
4942             Addend = Address;
4943         }
4944 
4945         NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL());
4946         NewRelA.r_offset = SectionAddress + Rel.Offset;
4947         NewRelA.r_addend = Addend;
4948 
4949         const bool IsJmpRel =
4950             !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end());
4951         uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset;
4952         const uint64_t &EndOffset =
4953             IsJmpRel ? RelPltEndOffset : RelDynEndOffset;
4954         if (!Offset || !EndOffset) {
4955           errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
4956           exit(1);
4957         }
4958 
4959         if (Offset + sizeof(NewRelA) > EndOffset) {
4960           errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
4961           exit(1);
4962         }
4963 
4964         writeRela(&NewRelA, Offset);
4965       }
4966     }
4967   };
4968 
4969   // The dynamic linker expects R_*_RELATIVE relocations to be emitted first
4970   writeRelocations(/* PatchRelative */ true);
4971   writeRelocations(/* PatchRelative */ false);
4972 
4973   auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) {
4974     if (!Offset)
4975       return;
4976 
4977     typename ELFObjectFile<ELFT>::Elf_Rela RelA;
4978     RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL());
4979     RelA.r_offset = 0;
4980     RelA.r_addend = 0;
4981     while (Offset < EndOffset)
4982       writeRela(&RelA, Offset);
4983 
4984     assert(Offset == EndOffset && "Unexpected section overflow");
4985   };
4986 
4987   // Fill the rest of the sections with R_*_NONE relocations
4988   fillNone(RelDynOffset, RelDynEndOffset);
4989   fillNone(RelPltOffset, RelPltEndOffset);
4990 }
4991 
4992 template <typename ELFT>
4993 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
4994   raw_fd_ostream &OS = Out->os();
4995 
4996   SectionRef GOTSection;
4997   for (const SectionRef &Section : File->sections()) {
4998     StringRef SectionName = cantFail(Section.getName());
4999     if (SectionName == ".got") {
5000       GOTSection = Section;
5001       break;
5002     }
5003   }
5004   if (!GOTSection.getObject()) {
5005     if (!BC->IsStaticExecutable)
5006       errs() << "BOLT-INFO: no .got section found\n";
5007     return;
5008   }
5009 
5010   StringRef GOTContents = cantFail(GOTSection.getContents());
5011   for (const uint64_t *GOTEntry =
5012            reinterpret_cast<const uint64_t *>(GOTContents.data());
5013        GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
5014                                                      GOTContents.size());
5015        ++GOTEntry) {
5016     if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) {
5017       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5018                         << Twine::utohexstr(*GOTEntry) << " with 0x"
5019                         << Twine::utohexstr(NewAddress) << '\n');
5020       OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
5021                 reinterpret_cast<const char *>(GOTEntry) -
5022                     File->getData().data());
5023     }
5024   }
5025 }
5026 
5027 template <typename ELFT>
5028 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
5029   if (BC->IsStaticExecutable)
5030     return;
5031 
5032   const ELFFile<ELFT> &Obj = File->getELFFile();
5033   raw_fd_ostream &OS = Out->os();
5034 
5035   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5036   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5037 
5038   // Locate DYNAMIC by looking through program headers.
5039   uint64_t DynamicOffset = 0;
5040   const Elf_Phdr *DynamicPhdr = 0;
5041   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5042     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5043       DynamicOffset = Phdr.p_offset;
5044       DynamicPhdr = &Phdr;
5045       assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
5046       break;
5047     }
5048   }
5049   assert(DynamicPhdr && "missing dynamic in ELF binary");
5050 
5051   bool ZNowSet = false;
5052 
5053   // Go through all dynamic entries and patch functions addresses with
5054   // new ones.
5055   typename ELFT::DynRange DynamicEntries =
5056       cantFail(Obj.dynamicEntries(), "error accessing dynamic table");
5057   auto DTB = DynamicEntries.begin();
5058   for (const Elf_Dyn &Dyn : DynamicEntries) {
5059     Elf_Dyn NewDE = Dyn;
5060     bool ShouldPatch = true;
5061     switch (Dyn.d_tag) {
5062     default:
5063       ShouldPatch = false;
5064       break;
5065     case ELF::DT_RELACOUNT:
5066       NewDE.d_un.d_val = DynamicRelativeRelocationsCount;
5067       break;
5068     case ELF::DT_INIT:
5069     case ELF::DT_FINI: {
5070       if (BC->HasRelocations) {
5071         if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) {
5072           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5073                             << Dyn.getTag() << '\n');
5074           NewDE.d_un.d_ptr = NewAddress;
5075         }
5076       }
5077       RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary();
5078       if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) {
5079         if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress())
5080           NewDE.d_un.d_ptr = Addr;
5081       }
5082       if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) {
5083         if (auto Addr = RtLibrary->getRuntimeStartAddress()) {
5084           LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5085                             << Twine::utohexstr(Addr) << '\n');
5086           NewDE.d_un.d_ptr = Addr;
5087         }
5088       }
5089       break;
5090     }
5091     case ELF::DT_FLAGS:
5092       if (BC->RequiresZNow) {
5093         NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
5094         ZNowSet = true;
5095       }
5096       break;
5097     case ELF::DT_FLAGS_1:
5098       if (BC->RequiresZNow) {
5099         NewDE.d_un.d_val |= ELF::DF_1_NOW;
5100         ZNowSet = true;
5101       }
5102       break;
5103     }
5104     if (ShouldPatch)
5105       OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
5106                 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn));
5107   }
5108 
5109   if (BC->RequiresZNow && !ZNowSet) {
5110     errs() << "BOLT-ERROR: output binary requires immediate relocation "
5111               "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5112               ".dynamic. Please re-link the binary with -znow.\n";
5113     exit(1);
5114   }
5115 }
5116 
5117 template <typename ELFT>
5118 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) {
5119   const ELFFile<ELFT> &Obj = File->getELFFile();
5120 
5121   using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
5122   using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
5123 
5124   // Locate DYNAMIC by looking through program headers.
5125   const Elf_Phdr *DynamicPhdr = 0;
5126   for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) {
5127     if (Phdr.p_type == ELF::PT_DYNAMIC) {
5128       DynamicPhdr = &Phdr;
5129       break;
5130     }
5131   }
5132 
5133   if (!DynamicPhdr) {
5134     outs() << "BOLT-INFO: static input executable detected\n";
5135     // TODO: static PIE executable might have dynamic header
5136     BC->IsStaticExecutable = true;
5137     return Error::success();
5138   }
5139 
5140   if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz)
5141     return createStringError(errc::executable_format_error,
5142                              "dynamic section sizes should match");
5143 
5144   // Go through all dynamic entries to locate entries of interest.
5145   auto DynamicEntriesOrErr = Obj.dynamicEntries();
5146   if (!DynamicEntriesOrErr)
5147     return DynamicEntriesOrErr.takeError();
5148   typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get();
5149 
5150   for (const Elf_Dyn &Dyn : DynamicEntries) {
5151     switch (Dyn.d_tag) {
5152     case ELF::DT_INIT:
5153       if (!BC->HasInterpHeader) {
5154         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5155         BC->StartFunctionAddress = Dyn.getPtr();
5156       }
5157       break;
5158     case ELF::DT_FINI:
5159       BC->FiniFunctionAddress = Dyn.getPtr();
5160       break;
5161     case ELF::DT_RELA:
5162       DynamicRelocationsAddress = Dyn.getPtr();
5163       break;
5164     case ELF::DT_RELASZ:
5165       DynamicRelocationsSize = Dyn.getVal();
5166       break;
5167     case ELF::DT_JMPREL:
5168       PLTRelocationsAddress = Dyn.getPtr();
5169       break;
5170     case ELF::DT_PLTRELSZ:
5171       PLTRelocationsSize = Dyn.getVal();
5172       break;
5173     case ELF::DT_RELACOUNT:
5174       DynamicRelativeRelocationsCount = Dyn.getVal();
5175       break;
5176     }
5177   }
5178 
5179   if (!DynamicRelocationsAddress || !DynamicRelocationsSize) {
5180     DynamicRelocationsAddress.reset();
5181     DynamicRelocationsSize = 0;
5182   }
5183 
5184   if (!PLTRelocationsAddress || !PLTRelocationsSize) {
5185     PLTRelocationsAddress.reset();
5186     PLTRelocationsSize = 0;
5187   }
5188   return Error::success();
5189 }
5190 
5191 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
5192   const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress);
5193   if (!Function)
5194     return 0;
5195 
5196   return Function->getOutputAddress();
5197 }
5198 
5199 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) {
5200   if (uint64_t Function = getNewFunctionAddress(OldAddress))
5201     return Function;
5202 
5203   const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress);
5204   if (BD && BD->isMoved())
5205     return BD->getOutputAddress();
5206 
5207   return 0;
5208 }
5209 
5210 void RewriteInstance::rewriteFile() {
5211   std::error_code EC;
5212   Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC,
5213                                          sys::fs::OF_None);
5214   check_error(EC, "cannot create output executable file");
5215 
5216   raw_fd_ostream &OS = Out->os();
5217 
5218   // Copy allocatable part of the input.
5219   OS << InputFile->getData().substr(0, FirstNonAllocatableOffset);
5220 
5221   // We obtain an asm-specific writer so that we can emit nops in an
5222   // architecture-specific way at the end of the function.
5223   std::unique_ptr<MCAsmBackend> MAB(
5224       BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions()));
5225   auto Streamer = BC->createStreamer(OS);
5226   // Make sure output stream has enough reserved space, otherwise
5227   // pwrite() will fail.
5228   uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress));
5229   (void)Offset;
5230   assert(Offset == getFileOffsetForAddress(NextAvailableAddress) &&
5231          "error resizing output file");
5232 
5233   // Overwrite functions with fixed output address. This is mostly used by
5234   // non-relocation mode, with one exception: injected functions are covered
5235   // here in both modes.
5236   uint64_t CountOverwrittenFunctions = 0;
5237   uint64_t OverwrittenScore = 0;
5238   for (BinaryFunction *Function : BC->getAllBinaryFunctions()) {
5239     if (Function->getImageAddress() == 0 || Function->getImageSize() == 0)
5240       continue;
5241 
5242     if (Function->getImageSize() > Function->getMaxSize()) {
5243       if (opts::Verbosity >= 1)
5244         errs() << "BOLT-WARNING: new function size (0x"
5245                << Twine::utohexstr(Function->getImageSize())
5246                << ") is larger than maximum allowed size (0x"
5247                << Twine::utohexstr(Function->getMaxSize()) << ") for function "
5248                << *Function << '\n';
5249 
5250       // Remove jump table sections that this function owns in non-reloc mode
5251       // because we don't want to write them anymore.
5252       if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) {
5253         for (auto &JTI : Function->JumpTables) {
5254           JumpTable *JT = JTI.second;
5255           BinarySection &Section = JT->getOutputSection();
5256           BC->deregisterSection(Section);
5257         }
5258       }
5259       continue;
5260     }
5261 
5262     if (Function->isSplit() && (Function->cold().getImageAddress() == 0 ||
5263                                 Function->cold().getImageSize() == 0))
5264       continue;
5265 
5266     OverwrittenScore += Function->getFunctionScore();
5267     // Overwrite function in the output file.
5268     if (opts::Verbosity >= 2)
5269       outs() << "BOLT: rewriting function \"" << *Function << "\"\n";
5270 
5271     OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()),
5272               Function->getImageSize(), Function->getFileOffset());
5273 
5274     // Write nops at the end of the function.
5275     if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) {
5276       uint64_t Pos = OS.tell();
5277       OS.seek(Function->getFileOffset() + Function->getImageSize());
5278       MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(),
5279                         &*BC->STI);
5280 
5281       OS.seek(Pos);
5282     }
5283 
5284     if (!Function->isSplit()) {
5285       ++CountOverwrittenFunctions;
5286       if (opts::MaxFunctions &&
5287           CountOverwrittenFunctions == opts::MaxFunctions) {
5288         outs() << "BOLT: maximum number of functions reached\n";
5289         break;
5290       }
5291       continue;
5292     }
5293 
5294     // Write cold part
5295     if (opts::Verbosity >= 2)
5296       outs() << "BOLT: rewriting function \"" << *Function
5297              << "\" (cold part)\n";
5298 
5299     OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()),
5300               Function->cold().getImageSize(),
5301               Function->cold().getFileOffset());
5302 
5303     ++CountOverwrittenFunctions;
5304     if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) {
5305       outs() << "BOLT: maximum number of functions reached\n";
5306       break;
5307     }
5308   }
5309 
5310   // Print function statistics for non-relocation mode.
5311   if (!BC->HasRelocations) {
5312     outs() << "BOLT: " << CountOverwrittenFunctions << " out of "
5313            << BC->getBinaryFunctions().size()
5314            << " functions were overwritten.\n";
5315     if (BC->TotalScore != 0) {
5316       double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0;
5317       outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage)
5318              << "% of the execution count of simple functions of "
5319                 "this binary\n";
5320     }
5321   }
5322 
5323   if (BC->HasRelocations && opts::TrapOldCode) {
5324     uint64_t SavedPos = OS.tell();
5325     // Overwrite function body to make sure we never execute these instructions.
5326     for (auto &BFI : BC->getBinaryFunctions()) {
5327       BinaryFunction &BF = BFI.second;
5328       if (!BF.getFileOffset() || !BF.isEmitted())
5329         continue;
5330       OS.seek(BF.getFileOffset());
5331       for (unsigned I = 0; I < BF.getMaxSize(); ++I)
5332         OS.write((unsigned char)BC->MIB->getTrapFillValue());
5333     }
5334     OS.seek(SavedPos);
5335   }
5336 
5337   // Write all allocatable sections - reloc-mode text is written here as well
5338   for (BinarySection &Section : BC->allocatableSections()) {
5339     if (!Section.isFinalized() || !Section.getOutputData())
5340       continue;
5341 
5342     if (opts::Verbosity >= 1)
5343       outs() << "BOLT: writing new section " << Section.getName()
5344              << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress())
5345              << "\n of size " << Section.getOutputSize() << "\n at offset "
5346              << Section.getOutputFileOffset() << '\n';
5347     OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()),
5348               Section.getOutputSize(), Section.getOutputFileOffset());
5349   }
5350 
5351   for (BinarySection &Section : BC->allocatableSections())
5352     Section.flushPendingRelocations(OS, [this](const MCSymbol *S) {
5353       return getNewValueForSymbol(S->getName());
5354     });
5355 
5356   // If .eh_frame is present create .eh_frame_hdr.
5357   if (EHFrameSection && EHFrameSection->isFinalized())
5358     writeEHFrameHeader();
5359 
5360   // Add BOLT Addresses Translation maps to allow profile collection to
5361   // happen in the output binary
5362   if (opts::EnableBAT)
5363     addBATSection();
5364 
5365   // Patch program header table.
5366   patchELFPHDRTable();
5367 
5368   // Finalize memory image of section string table.
5369   finalizeSectionStringTable();
5370 
5371   // Update symbol tables.
5372   patchELFSymTabs();
5373 
5374   patchBuildID();
5375 
5376   if (opts::EnableBAT)
5377     encodeBATSection();
5378 
5379   // Copy non-allocatable sections once allocatable part is finished.
5380   rewriteNoteSections();
5381 
5382   if (BC->HasRelocations) {
5383     patchELFAllocatableRelaSections();
5384     patchELFGOT();
5385   }
5386 
5387   // Patch dynamic section/segment.
5388   patchELFDynamic();
5389 
5390   // Update ELF book-keeping info.
5391   patchELFSectionHeaderTable();
5392 
5393   if (opts::PrintSections) {
5394     outs() << "BOLT-INFO: Sections after processing:\n";
5395     BC->printSections(outs());
5396   }
5397 
5398   Out->keep();
5399   EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all);
5400   check_error(EC, "cannot set permissions of output file");
5401 }
5402 
5403 void RewriteInstance::writeEHFrameHeader() {
5404   DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true,
5405                              EHFrameSection->getOutputAddress());
5406   Error E = NewEHFrame.parse(DWARFDataExtractor(
5407       EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(),
5408       BC->AsmInfo->getCodePointerSize()));
5409   check_error(std::move(E), "failed to parse EH frame");
5410 
5411   uint64_t OldEHFrameAddress = 0;
5412   StringRef OldEHFrameContents;
5413   ErrorOr<BinarySection &> OldEHFrameSection =
5414       BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str());
5415   if (OldEHFrameSection) {
5416     OldEHFrameAddress = OldEHFrameSection->getOutputAddress();
5417     OldEHFrameContents = OldEHFrameSection->getOutputContents();
5418   }
5419   DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress);
5420   Error Er = OldEHFrame.parse(
5421       DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(),
5422                          BC->AsmInfo->getCodePointerSize()));
5423   check_error(std::move(Er), "failed to parse EH frame");
5424 
5425   LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
5426 
5427   NextAvailableAddress =
5428       appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
5429 
5430   const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress;
5431   const uint64_t EHFrameHdrFileOffset =
5432       getFileOffsetForAddress(NextAvailableAddress);
5433 
5434   std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader(
5435       OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses);
5436 
5437   assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch");
5438   Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size());
5439 
5440   const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true,
5441                                                  /*IsText=*/false,
5442                                                  /*IsAllocatable=*/true);
5443   BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection(
5444       ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(),
5445       /*Alignment=*/1);
5446   EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset);
5447   EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress);
5448 
5449   NextAvailableAddress += EHFrameHdrSec.getOutputSize();
5450 
5451   // Merge new .eh_frame with original so that gdb can locate all FDEs.
5452   if (OldEHFrameSection) {
5453     const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() +
5454                                          OldEHFrameSection->getOutputSize() -
5455                                          EHFrameSection->getOutputAddress());
5456     EHFrameSection =
5457       BC->registerOrUpdateSection(".eh_frame",
5458                                   EHFrameSection->getELFType(),
5459                                   EHFrameSection->getELFFlags(),
5460                                   EHFrameSection->getOutputData(),
5461                                   EHFrameSectionSize,
5462                                   EHFrameSection->getAlignment());
5463     BC->deregisterSection(*OldEHFrameSection);
5464   }
5465 
5466   LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5467                     << EHFrameSection->getOutputSize() << '\n');
5468 }
5469 
5470 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) {
5471   uint64_t Value = RTDyld->getSymbol(Name).getAddress();
5472   if (Value != 0)
5473     return Value;
5474 
5475   // Return the original value if we haven't emitted the symbol.
5476   BinaryData *BD = BC->getBinaryDataByName(Name);
5477   if (!BD)
5478     return 0;
5479 
5480   return BD->getAddress();
5481 }
5482 
5483 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
5484   // Check if it's possibly part of the new segment.
5485   if (Address >= NewTextSegmentAddress)
5486     return Address - NewTextSegmentAddress + NewTextSegmentOffset;
5487 
5488   // Find an existing segment that matches the address.
5489   const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address);
5490   if (SegmentInfoI == BC->SegmentMapInfo.begin())
5491     return 0;
5492 
5493   const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second;
5494   if (Address < SegmentInfo.Address ||
5495       Address >= SegmentInfo.Address + SegmentInfo.FileSize)
5496     return 0;
5497 
5498   return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
5499 }
5500 
5501 bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
5502   for (const char *const &OverwriteName : SectionsToOverwrite)
5503     if (SectionName == OverwriteName)
5504       return true;
5505   for (std::string &OverwriteName : DebugSectionsToOverwrite)
5506     if (SectionName == OverwriteName)
5507       return true;
5508 
5509   ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName);
5510   return Section && Section->isAllocatable() && Section->isFinalized();
5511 }
5512 
5513 bool RewriteInstance::isDebugSection(StringRef SectionName) {
5514   if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") ||
5515       SectionName == ".gdb_index" || SectionName == ".stab" ||
5516       SectionName == ".stabstr")
5517     return true;
5518 
5519   return false;
5520 }
5521 
5522 bool RewriteInstance::isKSymtabSection(StringRef SectionName) {
5523   if (SectionName.startswith("__ksymtab"))
5524     return true;
5525 
5526   return false;
5527 }
5528