1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "bolt/Rewrite/RewriteInstance.h" 10 #include "bolt/Core/BinaryContext.h" 11 #include "bolt/Core/BinaryEmitter.h" 12 #include "bolt/Core/BinaryFunction.h" 13 #include "bolt/Core/DebugData.h" 14 #include "bolt/Core/Exceptions.h" 15 #include "bolt/Core/MCPlusBuilder.h" 16 #include "bolt/Core/ParallelUtilities.h" 17 #include "bolt/Core/Relocation.h" 18 #include "bolt/Passes/CacheMetrics.h" 19 #include "bolt/Passes/ReorderFunctions.h" 20 #include "bolt/Profile/BoltAddressTranslation.h" 21 #include "bolt/Profile/DataAggregator.h" 22 #include "bolt/Profile/DataReader.h" 23 #include "bolt/Profile/YAMLProfileReader.h" 24 #include "bolt/Profile/YAMLProfileWriter.h" 25 #include "bolt/Rewrite/BinaryPassManager.h" 26 #include "bolt/Rewrite/DWARFRewriter.h" 27 #include "bolt/Rewrite/ExecutableFileMemoryManager.h" 28 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" 29 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 30 #include "bolt/Utils/CommandLineOpts.h" 31 #include "bolt/Utils/Utils.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 35 #include "llvm/ExecutionEngine/RuntimeDyld.h" 36 #include "llvm/MC/MCAsmBackend.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAsmLayout.h" 39 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Object/ObjectFile.h" 45 #include "llvm/Support/Alignment.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/DataExtractor.h" 49 #include "llvm/Support/Errc.h" 50 #include "llvm/Support/Error.h" 51 #include "llvm/Support/FileSystem.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/ManagedStatic.h" 54 #include "llvm/Support/Timer.h" 55 #include "llvm/Support/ToolOutputFile.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <fstream> 59 #include <memory> 60 #include <system_error> 61 62 #undef DEBUG_TYPE 63 #define DEBUG_TYPE "bolt" 64 65 using namespace llvm; 66 using namespace object; 67 using namespace bolt; 68 69 extern cl::opt<uint32_t> X86AlignBranchBoundary; 70 extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; 71 72 namespace opts { 73 74 extern cl::opt<MacroFusionType> AlignMacroOpFusion; 75 extern cl::list<std::string> HotTextMoveSections; 76 extern cl::opt<bool> Hugify; 77 extern cl::opt<bool> Instrument; 78 extern cl::opt<JumpTableSupportLevel> JumpTables; 79 extern cl::list<std::string> ReorderData; 80 extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; 81 extern cl::opt<bool> TimeBuild; 82 83 static cl::opt<bool> ForceToDataRelocations( 84 "force-data-relocations", 85 cl::desc("force relocations to data sections to always be processed"), 86 87 cl::Hidden, cl::cat(BoltCategory)); 88 89 cl::opt<std::string> 90 BoltID("bolt-id", 91 cl::desc("add any string to tag this execution in the " 92 "output binary via bolt info section"), 93 cl::cat(BoltCategory)); 94 95 cl::opt<bool> 96 AllowStripped("allow-stripped", 97 cl::desc("allow processing of stripped binaries"), 98 cl::Hidden, 99 cl::cat(BoltCategory)); 100 101 cl::opt<bool> DumpDotAll( 102 "dump-dot-all", 103 cl::desc("dump function CFGs to graphviz format after each stage;" 104 "enable '-print-loops' for color-coded blocks"), 105 cl::Hidden, cl::cat(BoltCategory)); 106 107 static cl::list<std::string> 108 ForceFunctionNames("funcs", 109 cl::CommaSeparated, 110 cl::desc("limit optimizations to functions from the list"), 111 cl::value_desc("func1,func2,func3,..."), 112 cl::Hidden, 113 cl::cat(BoltCategory)); 114 115 static cl::opt<std::string> 116 FunctionNamesFile("funcs-file", 117 cl::desc("file with list of functions to optimize"), 118 cl::Hidden, 119 cl::cat(BoltCategory)); 120 121 static cl::list<std::string> ForceFunctionNamesNR( 122 "funcs-no-regex", cl::CommaSeparated, 123 cl::desc("limit optimizations to functions from the list (non-regex)"), 124 cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); 125 126 static cl::opt<std::string> FunctionNamesFileNR( 127 "funcs-file-no-regex", 128 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, 129 cl::cat(BoltCategory)); 130 131 cl::opt<bool> 132 KeepTmp("keep-tmp", 133 cl::desc("preserve intermediate .o file"), 134 cl::Hidden, 135 cl::cat(BoltCategory)); 136 137 cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"), 138 cl::cat(BoltCategory)); 139 140 static cl::opt<unsigned> 141 LiteThresholdPct("lite-threshold-pct", 142 cl::desc("threshold (in percent) for selecting functions to process in lite " 143 "mode. Higher threshold means fewer functions to process. E.g " 144 "threshold of 90 means only top 10 percent of functions with " 145 "profile will be processed."), 146 cl::init(0), 147 cl::ZeroOrMore, 148 cl::Hidden, 149 cl::cat(BoltOptCategory)); 150 151 static cl::opt<unsigned> LiteThresholdCount( 152 "lite-threshold-count", 153 cl::desc("similar to '-lite-threshold-pct' but specify threshold using " 154 "absolute function call count. I.e. limit processing to functions " 155 "executed at least the specified number of times."), 156 cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); 157 158 static cl::opt<unsigned> 159 MaxFunctions("max-funcs", 160 cl::desc("maximum number of functions to process"), cl::Hidden, 161 cl::cat(BoltCategory)); 162 163 static cl::opt<unsigned> MaxDataRelocations( 164 "max-data-relocations", 165 cl::desc("maximum number of data relocations to process"), cl::Hidden, 166 cl::cat(BoltCategory)); 167 168 cl::opt<bool> PrintAll("print-all", 169 cl::desc("print functions after each stage"), cl::Hidden, 170 cl::cat(BoltCategory)); 171 172 cl::opt<bool> PrintCFG("print-cfg", 173 cl::desc("print functions after CFG construction"), 174 cl::Hidden, cl::cat(BoltCategory)); 175 176 cl::opt<bool> PrintDisasm("print-disasm", 177 cl::desc("print function after disassembly"), 178 cl::Hidden, cl::cat(BoltCategory)); 179 180 static cl::opt<bool> 181 PrintGlobals("print-globals", 182 cl::desc("print global symbols after disassembly"), cl::Hidden, 183 cl::cat(BoltCategory)); 184 185 extern cl::opt<bool> PrintSections; 186 187 static cl::opt<bool> PrintLoopInfo("print-loops", 188 cl::desc("print loop related information"), 189 cl::Hidden, cl::cat(BoltCategory)); 190 191 static cl::opt<bool> PrintSDTMarkers("print-sdt", 192 cl::desc("print all SDT markers"), 193 cl::Hidden, cl::cat(BoltCategory)); 194 195 enum PrintPseudoProbesOptions { 196 PPP_None = 0, 197 PPP_Probes_Section_Decode = 0x1, 198 PPP_Probes_Address_Conversion = 0x2, 199 PPP_Encoded_Probes = 0x3, 200 PPP_All = 0xf 201 }; 202 203 cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( 204 "print-pseudo-probes", cl::desc("print pseudo probe info"), 205 cl::init(PPP_None), 206 cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", 207 "decode probes section from binary"), 208 clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", 209 "update address2ProbesMap with output block address"), 210 clEnumValN(PPP_Encoded_Probes, "encoded_probes", 211 "display the encoded probes in binary section"), 212 clEnumValN(PPP_All, "all", "enable all debugging printout")), 213 cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); 214 215 static cl::opt<cl::boolOrDefault> RelocationMode( 216 "relocs", cl::desc("use relocations in the binary (default=autodetect)"), 217 cl::cat(BoltCategory)); 218 219 static cl::opt<std::string> 220 SaveProfile("w", 221 cl::desc("save recorded profile to a file"), 222 cl::cat(BoltOutputCategory)); 223 224 static cl::list<std::string> 225 SkipFunctionNames("skip-funcs", 226 cl::CommaSeparated, 227 cl::desc("list of functions to skip"), 228 cl::value_desc("func1,func2,func3,..."), 229 cl::Hidden, 230 cl::cat(BoltCategory)); 231 232 static cl::opt<std::string> 233 SkipFunctionNamesFile("skip-funcs-file", 234 cl::desc("file with list of functions to skip"), 235 cl::Hidden, 236 cl::cat(BoltCategory)); 237 238 cl::opt<bool> 239 TrapOldCode("trap-old-code", 240 cl::desc("insert traps in old function bodies (relocation mode)"), 241 cl::Hidden, 242 cl::cat(BoltCategory)); 243 244 static cl::opt<std::string> DWPPathName("dwp", 245 cl::desc("Path and name to DWP file."), 246 cl::Hidden, cl::init(""), 247 cl::cat(BoltCategory)); 248 249 static cl::opt<bool> 250 UseGnuStack("use-gnu-stack", 251 cl::desc("use GNU_STACK program header for new segment (workaround for " 252 "issues with strip/objcopy)"), 253 cl::ZeroOrMore, 254 cl::cat(BoltCategory)); 255 256 static cl::opt<bool> 257 TimeRewrite("time-rewrite", 258 cl::desc("print time spent in rewriting passes"), cl::Hidden, 259 cl::cat(BoltCategory)); 260 261 static cl::opt<bool> 262 SequentialDisassembly("sequential-disassembly", 263 cl::desc("performs disassembly sequentially"), 264 cl::init(false), 265 cl::cat(BoltOptCategory)); 266 267 static cl::opt<bool> WriteBoltInfoSection( 268 "bolt-info", cl::desc("write bolt info section in the output binary"), 269 cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); 270 271 } // namespace opts 272 273 constexpr const char *RewriteInstance::SectionsToOverwrite[]; 274 std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { 275 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", 276 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", 277 ".gdb_index", ".debug_addr"}; 278 279 const char RewriteInstance::TimerGroupName[] = "rewrite"; 280 const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; 281 282 namespace llvm { 283 namespace bolt { 284 285 extern const char *BoltRevision; 286 287 MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, 288 const MCInstrAnalysis *Analysis, 289 const MCInstrInfo *Info, 290 const MCRegisterInfo *RegInfo) { 291 #ifdef X86_AVAILABLE 292 if (Arch == Triple::x86_64) 293 return createX86MCPlusBuilder(Analysis, Info, RegInfo); 294 #endif 295 296 #ifdef AARCH64_AVAILABLE 297 if (Arch == Triple::aarch64) 298 return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); 299 #endif 300 301 llvm_unreachable("architecture unsupported by MCPlusBuilder"); 302 } 303 304 } // namespace bolt 305 } // namespace llvm 306 307 namespace { 308 309 bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { 310 auto Itr = 311 llvm::find_if(opts::ReorderData, [&](const std::string &SectionName) { 312 return (Section && Section->getName() == SectionName); 313 }); 314 return Itr != opts::ReorderData.end(); 315 } 316 317 } // anonymous namespace 318 319 Expected<std::unique_ptr<RewriteInstance>> 320 RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, 321 const char *const *Argv, 322 StringRef ToolPath) { 323 Error Err = Error::success(); 324 auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); 325 if (Err) 326 return std::move(Err); 327 return std::move(RI); 328 } 329 330 RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, 331 const char *const *Argv, StringRef ToolPath, 332 Error &Err) 333 : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), 334 SHStrTab(StringTableBuilder::ELF) { 335 ErrorAsOutParameter EAO(&Err); 336 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 337 if (!ELF64LEFile) { 338 Err = createStringError(errc::not_supported, 339 "Only 64-bit LE ELF binaries are supported"); 340 return; 341 } 342 343 bool IsPIC = false; 344 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 345 if (Obj.getHeader().e_type != ELF::ET_EXEC) { 346 outs() << "BOLT-INFO: shared object or position-independent executable " 347 "detected\n"; 348 IsPIC = true; 349 } 350 351 auto BCOrErr = BinaryContext::createBinaryContext( 352 File, IsPIC, 353 DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, 354 nullptr, opts::DWPPathName, 355 WithColor::defaultErrorHandler, 356 WithColor::defaultWarningHandler)); 357 if (Error E = BCOrErr.takeError()) { 358 Err = std::move(E); 359 return; 360 } 361 BC = std::move(BCOrErr.get()); 362 BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( 363 BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); 364 365 BAT = std::make_unique<BoltAddressTranslation>(*BC); 366 367 if (opts::UpdateDebugSections) 368 DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); 369 370 if (opts::Instrument) 371 BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); 372 else if (opts::Hugify) 373 BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); 374 } 375 376 RewriteInstance::~RewriteInstance() {} 377 378 Error RewriteInstance::setProfile(StringRef Filename) { 379 if (!sys::fs::exists(Filename)) 380 return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); 381 382 if (ProfileReader) { 383 // Already exists 384 return make_error<StringError>(Twine("multiple profiles specified: ") + 385 ProfileReader->getFilename() + " and " + 386 Filename, 387 inconvertibleErrorCode()); 388 } 389 390 // Spawn a profile reader based on file contents. 391 if (DataAggregator::checkPerfDataMagic(Filename)) 392 ProfileReader = std::make_unique<DataAggregator>(Filename); 393 else if (YAMLProfileReader::isYAML(Filename)) 394 ProfileReader = std::make_unique<YAMLProfileReader>(Filename); 395 else 396 ProfileReader = std::make_unique<DataReader>(Filename); 397 398 return Error::success(); 399 } 400 401 /// Return true if the function \p BF should be disassembled. 402 static bool shouldDisassemble(const BinaryFunction &BF) { 403 if (BF.isPseudo()) 404 return false; 405 406 if (opts::processAllFunctions()) 407 return true; 408 409 return !BF.isIgnored(); 410 } 411 412 Error RewriteInstance::discoverStorage() { 413 NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, 414 TimerGroupDesc, opts::TimeRewrite); 415 416 // Stubs are harmful because RuntimeDyld may try to increase the size of 417 // sections accounting for stubs when we need those sections to match the 418 // same size seen in the input binary, in case this section is a copy 419 // of the original one seen in the binary. 420 BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); 421 422 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 423 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 424 425 BC->StartFunctionAddress = Obj.getHeader().e_entry; 426 427 NextAvailableAddress = 0; 428 uint64_t NextAvailableOffset = 0; 429 Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); 430 if (Error E = PHsOrErr.takeError()) 431 return E; 432 433 ELF64LE::PhdrRange PHs = PHsOrErr.get(); 434 for (const ELF64LE::Phdr &Phdr : PHs) { 435 switch (Phdr.p_type) { 436 case ELF::PT_LOAD: 437 BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, 438 static_cast<uint64_t>(Phdr.p_vaddr)); 439 NextAvailableAddress = std::max(NextAvailableAddress, 440 Phdr.p_vaddr + Phdr.p_memsz); 441 NextAvailableOffset = std::max(NextAvailableOffset, 442 Phdr.p_offset + Phdr.p_filesz); 443 444 BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, 445 Phdr.p_memsz, 446 Phdr.p_offset, 447 Phdr.p_filesz, 448 Phdr.p_align}; 449 break; 450 case ELF::PT_INTERP: 451 BC->HasInterpHeader = true; 452 break; 453 } 454 } 455 456 for (const SectionRef &Section : InputFile->sections()) { 457 Expected<StringRef> SectionNameOrErr = Section.getName(); 458 if (Error E = SectionNameOrErr.takeError()) 459 return E; 460 StringRef SectionName = SectionNameOrErr.get(); 461 if (SectionName == ".text") { 462 BC->OldTextSectionAddress = Section.getAddress(); 463 BC->OldTextSectionSize = Section.getSize(); 464 465 Expected<StringRef> SectionContentsOrErr = Section.getContents(); 466 if (Error E = SectionContentsOrErr.takeError()) 467 return E; 468 StringRef SectionContents = SectionContentsOrErr.get(); 469 BC->OldTextSectionOffset = 470 SectionContents.data() - InputFile->getData().data(); 471 } 472 473 if (!opts::HeatmapMode && 474 !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && 475 (SectionName.startswith(getOrgSecPrefix()) || 476 SectionName == getBOLTTextSectionName())) 477 return createStringError( 478 errc::function_not_supported, 479 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); 480 } 481 482 if (!NextAvailableAddress || !NextAvailableOffset) 483 return createStringError(errc::executable_format_error, 484 "no PT_LOAD pheader seen"); 485 486 outs() << "BOLT-INFO: first alloc address is 0x" 487 << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; 488 489 FirstNonAllocatableOffset = NextAvailableOffset; 490 491 NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); 492 NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); 493 494 if (!opts::UseGnuStack) { 495 // This is where the black magic happens. Creating PHDR table in a segment 496 // other than that containing ELF header is tricky. Some loaders and/or 497 // parts of loaders will apply e_phoff from ELF header assuming both are in 498 // the same segment, while others will do the proper calculation. 499 // We create the new PHDR table in such a way that both of the methods 500 // of loading and locating the table work. There's a slight file size 501 // overhead because of that. 502 // 503 // NB: bfd's strip command cannot do the above and will corrupt the 504 // binary during the process of stripping non-allocatable sections. 505 if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) 506 NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; 507 else 508 NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; 509 510 assert(NextAvailableOffset == 511 NextAvailableAddress - BC->FirstAllocAddress && 512 "PHDR table address calculation error"); 513 514 outs() << "BOLT-INFO: creating new program header table at address 0x" 515 << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" 516 << Twine::utohexstr(NextAvailableOffset) << '\n'; 517 518 PHDRTableAddress = NextAvailableAddress; 519 PHDRTableOffset = NextAvailableOffset; 520 521 // Reserve space for 3 extra pheaders. 522 unsigned Phnum = Obj.getHeader().e_phnum; 523 Phnum += 3; 524 525 NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); 526 NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); 527 } 528 529 // Align at cache line. 530 NextAvailableAddress = alignTo(NextAvailableAddress, 64); 531 NextAvailableOffset = alignTo(NextAvailableOffset, 64); 532 533 NewTextSegmentAddress = NextAvailableAddress; 534 NewTextSegmentOffset = NextAvailableOffset; 535 BC->LayoutStartAddress = NextAvailableAddress; 536 537 // Tools such as objcopy can strip section contents but leave header 538 // entries. Check that at least .text is mapped in the file. 539 if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) 540 return createStringError(errc::executable_format_error, 541 "BOLT-ERROR: input binary is not a valid ELF " 542 "executable as its text section is not " 543 "mapped to a valid segment"); 544 return Error::success(); 545 } 546 547 void RewriteInstance::parseSDTNotes() { 548 if (!SDTSection) 549 return; 550 551 StringRef Buf = SDTSection->getContents(); 552 DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), 553 BC->AsmInfo->getCodePointerSize()); 554 uint64_t Offset = 0; 555 556 while (DE.isValidOffset(Offset)) { 557 uint32_t NameSz = DE.getU32(&Offset); 558 DE.getU32(&Offset); // skip over DescSz 559 uint32_t Type = DE.getU32(&Offset); 560 Offset = alignTo(Offset, 4); 561 562 if (Type != 3) 563 errs() << "BOLT-WARNING: SDT note type \"" << Type 564 << "\" is not expected\n"; 565 566 if (NameSz == 0) 567 errs() << "BOLT-WARNING: SDT note has empty name\n"; 568 569 StringRef Name = DE.getCStr(&Offset); 570 571 if (!Name.equals("stapsdt")) 572 errs() << "BOLT-WARNING: SDT note name \"" << Name 573 << "\" is not expected\n"; 574 575 // Parse description 576 SDTMarkerInfo Marker; 577 Marker.PCOffset = Offset; 578 Marker.PC = DE.getU64(&Offset); 579 Marker.Base = DE.getU64(&Offset); 580 Marker.Semaphore = DE.getU64(&Offset); 581 Marker.Provider = DE.getCStr(&Offset); 582 Marker.Name = DE.getCStr(&Offset); 583 Marker.Args = DE.getCStr(&Offset); 584 Offset = alignTo(Offset, 4); 585 BC->SDTMarkers[Marker.PC] = Marker; 586 } 587 588 if (opts::PrintSDTMarkers) 589 printSDTMarkers(); 590 } 591 592 void RewriteInstance::parsePseudoProbe() { 593 if (!PseudoProbeDescSection && !PseudoProbeSection) { 594 // pesudo probe is not added to binary. It is normal and no warning needed. 595 return; 596 } 597 598 // If only one section is found, it might mean the ELF is corrupted. 599 if (!PseudoProbeDescSection) { 600 errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; 601 return; 602 } else if (!PseudoProbeSection) { 603 errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; 604 return; 605 } 606 607 StringRef Contents = PseudoProbeDescSection->getContents(); 608 if (!BC->ProbeDecoder.buildGUID2FuncDescMap( 609 reinterpret_cast<const uint8_t *>(Contents.data()), 610 Contents.size())) { 611 errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; 612 return; 613 } 614 Contents = PseudoProbeSection->getContents(); 615 if (!BC->ProbeDecoder.buildAddress2ProbeMap( 616 reinterpret_cast<const uint8_t *>(Contents.data()), 617 Contents.size())) { 618 BC->ProbeDecoder.getAddress2ProbesMap().clear(); 619 errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; 620 return; 621 } 622 623 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 624 opts::PrintPseudoProbes == 625 opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { 626 outs() << "Report of decoding input pseudo probe binaries \n"; 627 BC->ProbeDecoder.printGUID2FuncDescMap(outs()); 628 BC->ProbeDecoder.printProbesForAllAddresses(outs()); 629 } 630 } 631 632 void RewriteInstance::printSDTMarkers() { 633 outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() 634 << "\n"; 635 for (auto It : BC->SDTMarkers) { 636 SDTMarkerInfo &Marker = It.second; 637 outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) 638 << ", Base: " << utohexstr(Marker.Base) 639 << ", Semaphore: " << utohexstr(Marker.Semaphore) 640 << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name 641 << ", Args: " << Marker.Args << "\n"; 642 } 643 } 644 645 void RewriteInstance::parseBuildID() { 646 if (!BuildIDSection) 647 return; 648 649 StringRef Buf = BuildIDSection->getContents(); 650 651 // Reading notes section (see Portable Formats Specification, Version 1.1, 652 // pg 2-5, section "Note Section"). 653 DataExtractor DE = DataExtractor(Buf, true, 8); 654 uint64_t Offset = 0; 655 if (!DE.isValidOffset(Offset)) 656 return; 657 uint32_t NameSz = DE.getU32(&Offset); 658 if (!DE.isValidOffset(Offset)) 659 return; 660 uint32_t DescSz = DE.getU32(&Offset); 661 if (!DE.isValidOffset(Offset)) 662 return; 663 uint32_t Type = DE.getU32(&Offset); 664 665 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz 666 << "; Type = " << Type << "\n"); 667 668 // Type 3 is a GNU build-id note section 669 if (Type != 3) 670 return; 671 672 StringRef Name = Buf.slice(Offset, Offset + NameSz); 673 Offset = alignTo(Offset + NameSz, 4); 674 if (Name.substr(0, 3) != "GNU") 675 return; 676 677 BuildID = Buf.slice(Offset, Offset + DescSz); 678 } 679 680 Optional<std::string> RewriteInstance::getPrintableBuildID() const { 681 if (BuildID.empty()) 682 return NoneType(); 683 684 std::string Str; 685 raw_string_ostream OS(Str); 686 const unsigned char *CharIter = BuildID.bytes_begin(); 687 while (CharIter != BuildID.bytes_end()) { 688 if (*CharIter < 0x10) 689 OS << "0"; 690 OS << Twine::utohexstr(*CharIter); 691 ++CharIter; 692 } 693 return OS.str(); 694 } 695 696 void RewriteInstance::patchBuildID() { 697 raw_fd_ostream &OS = Out->os(); 698 699 if (BuildID.empty()) 700 return; 701 702 size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); 703 assert(IDOffset != StringRef::npos && "failed to patch build-id"); 704 705 uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); 706 if (!FileOffset) { 707 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; 708 return; 709 } 710 711 char LastIDByte = BuildID[BuildID.size() - 1]; 712 LastIDByte ^= 1; 713 OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); 714 715 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; 716 } 717 718 Error RewriteInstance::run() { 719 assert(BC && "failed to create a binary context"); 720 721 outs() << "BOLT-INFO: Target architecture: " 722 << Triple::getArchTypeName( 723 (llvm::Triple::ArchType)InputFile->getArch()) 724 << "\n"; 725 outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; 726 727 if (Error E = discoverStorage()) 728 return E; 729 if (Error E = readSpecialSections()) 730 return E; 731 adjustCommandLineOptions(); 732 discoverFileObjects(); 733 734 preprocessProfileData(); 735 736 // Skip disassembling if we have a translation table and we are running an 737 // aggregation job. 738 if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { 739 processProfileData(); 740 return Error::success(); 741 } 742 743 selectFunctionsToProcess(); 744 745 readDebugInfo(); 746 747 disassembleFunctions(); 748 749 processProfileDataPreCFG(); 750 751 buildFunctionsCFG(); 752 753 processProfileData(); 754 755 postProcessFunctions(); 756 757 if (opts::DiffOnly) 758 return Error::success(); 759 760 runOptimizationPasses(); 761 762 emitAndLink(); 763 764 updateMetadata(); 765 766 if (opts::LinuxKernelMode) { 767 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; 768 return Error::success(); 769 } else if (opts::OutputFilename == "/dev/null") { 770 outs() << "BOLT-INFO: skipping writing final binary to disk\n"; 771 return Error::success(); 772 } 773 774 // Rewrite allocatable contents and copy non-allocatable parts with mods. 775 rewriteFile(); 776 return Error::success(); 777 } 778 779 void RewriteInstance::discoverFileObjects() { 780 NamedRegionTimer T("discoverFileObjects", "discover file objects", 781 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 782 FileSymRefs.clear(); 783 BC->getBinaryFunctions().clear(); 784 BC->clearBinaryData(); 785 786 // For local symbols we want to keep track of associated FILE symbol name for 787 // disambiguation by combined name. 788 StringRef FileSymbolName; 789 bool SeenFileName = false; 790 struct SymbolRefHash { 791 size_t operator()(SymbolRef const &S) const { 792 return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); 793 } 794 }; 795 std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; 796 for (const ELFSymbolRef &Symbol : InputFile->symbols()) { 797 Expected<StringRef> NameOrError = Symbol.getName(); 798 if (NameOrError && NameOrError->startswith("__asan_init")) { 799 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " 800 "support. Cannot optimize.\n"; 801 exit(1); 802 } 803 if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { 804 errs() << "BOLT-ERROR: input file was compiled or linked with coverage " 805 "support. Cannot optimize.\n"; 806 exit(1); 807 } 808 809 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 810 continue; 811 812 if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { 813 StringRef Name = 814 cantFail(std::move(NameOrError), "cannot get symbol name for file"); 815 // Ignore Clang LTO artificial FILE symbol as it is not always generated, 816 // and this uncertainty is causing havoc in function name matching. 817 if (Name == "ld-temp.o") 818 continue; 819 FileSymbolName = Name; 820 SeenFileName = true; 821 continue; 822 } 823 if (!FileSymbolName.empty() && 824 !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) 825 SymbolToFileName[Symbol] = FileSymbolName; 826 } 827 828 // Sort symbols in the file by value. Ignore symbols from non-allocatable 829 // sections. 830 auto isSymbolInMemory = [this](const SymbolRef &Sym) { 831 if (cantFail(Sym.getType()) == SymbolRef::ST_File) 832 return false; 833 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) 834 return true; 835 if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) 836 return false; 837 BinarySection Section(*BC, *cantFail(Sym.getSection())); 838 return Section.isAllocatable(); 839 }; 840 std::vector<SymbolRef> SortedFileSymbols; 841 llvm::copy_if(InputFile->symbols(), std::back_inserter(SortedFileSymbols), 842 isSymbolInMemory); 843 auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) { 844 // Marker symbols have the highest precedence, while 845 // SECTIONs have the lowest. 846 auto AddressA = cantFail(A.getAddress()); 847 auto AddressB = cantFail(B.getAddress()); 848 if (AddressA != AddressB) 849 return AddressA < AddressB; 850 851 bool AMarker = BC->isMarker(A); 852 bool BMarker = BC->isMarker(B); 853 if (AMarker || BMarker) { 854 return AMarker && !BMarker; 855 } 856 857 auto AType = cantFail(A.getType()); 858 auto BType = cantFail(B.getType()); 859 if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) 860 return true; 861 if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) 862 return true; 863 864 return false; 865 }; 866 867 llvm::stable_sort(SortedFileSymbols, CompareSymbols); 868 869 auto LastSymbol = SortedFileSymbols.end(); 870 if (!SortedFileSymbols.empty()) 871 --LastSymbol; 872 873 // For aarch64, the ABI defines mapping symbols so we identify data in the 874 // code section (see IHI0056B). $d identifies data contents. 875 // Compilers usually merge multiple data objects in a single $d-$x interval, 876 // but we need every data object to be marked with $d. Because of that we 877 // create a vector of MarkerSyms with all locations of data objects. 878 879 struct MarkerSym { 880 uint64_t Address; 881 MarkerSymType Type; 882 }; 883 884 std::vector<MarkerSym> SortedMarkerSymbols; 885 auto addExtraDataMarkerPerSymbol = 886 [this](const std::vector<SymbolRef> &SortedFileSymbols, 887 std::vector<MarkerSym> &SortedMarkerSymbols) { 888 bool IsData = false; 889 uint64_t LastAddr = 0; 890 for (auto Sym = SortedFileSymbols.begin(); 891 Sym < SortedFileSymbols.end(); ++Sym) { 892 uint64_t Address = cantFail(Sym->getAddress()); 893 if (LastAddr == Address) // don't repeat markers 894 continue; 895 896 MarkerSymType MarkerType = BC->getMarkerType(*Sym); 897 if (MarkerType != MarkerSymType::NONE) { 898 SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType}); 899 LastAddr = Address; 900 IsData = MarkerType == MarkerSymType::DATA; 901 continue; 902 } 903 904 if (IsData) { 905 SortedMarkerSymbols.push_back( 906 MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA}); 907 LastAddr = Address; 908 } 909 } 910 }; 911 912 if (BC->isAArch64()) { 913 addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols); 914 LastSymbol = std::stable_partition( 915 SortedFileSymbols.begin(), SortedFileSymbols.end(), 916 [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); }); 917 if (!SortedFileSymbols.empty()) 918 --LastSymbol; 919 } 920 921 BinaryFunction *PreviousFunction = nullptr; 922 unsigned AnonymousId = 0; 923 924 const auto SortedSymbolsEnd = LastSymbol == SortedFileSymbols.end() 925 ? LastSymbol 926 : std::next(LastSymbol); 927 for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd; 928 ++ISym) { 929 const SymbolRef &Symbol = *ISym; 930 // Keep undefined symbols for pretty printing? 931 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) 932 continue; 933 934 const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); 935 936 if (SymbolType == SymbolRef::ST_File) 937 continue; 938 939 StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); 940 uint64_t Address = 941 cantFail(Symbol.getAddress(), "cannot get symbol address"); 942 if (Address == 0) { 943 if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) 944 errs() << "BOLT-WARNING: function with 0 address seen\n"; 945 continue; 946 } 947 948 // Ignore input hot markers 949 if (SymName == "__hot_start" || SymName == "__hot_end") 950 continue; 951 952 FileSymRefs[Address] = Symbol; 953 954 // Skip section symbols that will be registered by disassemblePLT(). 955 if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { 956 ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); 957 if (BSection && getPLTSectionInfo(BSection->getName())) 958 continue; 959 } 960 961 /// It is possible we are seeing a globalized local. LLVM might treat it as 962 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to 963 /// change the prefix to enforce global scope of the symbol. 964 std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) 965 ? "PG" + std::string(SymName) 966 : std::string(SymName); 967 968 // Disambiguate all local symbols before adding to symbol table. 969 // Since we don't know if we will see a global with the same name, 970 // always modify the local name. 971 // 972 // NOTE: the naming convention for local symbols should match 973 // the one we use for profile data. 974 std::string UniqueName; 975 std::string AlternativeName; 976 if (Name.empty()) { 977 UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); 978 } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { 979 assert(!BC->getBinaryDataByName(Name) && "global name not unique"); 980 UniqueName = Name; 981 } else { 982 // If we have a local file name, we should create 2 variants for the 983 // function name. The reason is that perf profile might have been 984 // collected on a binary that did not have the local file name (e.g. as 985 // a side effect of stripping debug info from the binary): 986 // 987 // primary: <function>/<id> 988 // alternative: <function>/<file>/<id2> 989 // 990 // The <id> field is used for disambiguation of local symbols since there 991 // could be identical function names coming from identical file names 992 // (e.g. from different directories). 993 std::string AltPrefix; 994 auto SFI = SymbolToFileName.find(Symbol); 995 if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) 996 AltPrefix = Name + "/" + std::string(SFI->second); 997 998 UniqueName = NR.uniquify(Name); 999 if (!AltPrefix.empty()) 1000 AlternativeName = NR.uniquify(AltPrefix); 1001 } 1002 1003 uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1004 uint64_t SymbolAlignment = Symbol.getAlignment(); 1005 unsigned SymbolFlags = cantFail(Symbol.getFlags()); 1006 1007 auto registerName = [&](uint64_t FinalSize) { 1008 // Register names even if it's not a function, e.g. for an entry point. 1009 BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, 1010 SymbolFlags); 1011 if (!AlternativeName.empty()) 1012 BC->registerNameAtAddress(AlternativeName, Address, FinalSize, 1013 SymbolAlignment, SymbolFlags); 1014 }; 1015 1016 section_iterator Section = 1017 cantFail(Symbol.getSection(), "cannot get symbol section"); 1018 if (Section == InputFile->section_end()) { 1019 // Could be an absolute symbol. Could record for pretty printing. 1020 LLVM_DEBUG(if (opts::Verbosity > 1) { 1021 dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; 1022 }); 1023 registerName(SymbolSize); 1024 continue; 1025 } 1026 1027 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName 1028 << " for function\n"); 1029 1030 if (!Section->isText()) { 1031 assert(SymbolType != SymbolRef::ST_Function && 1032 "unexpected function inside non-code section"); 1033 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); 1034 registerName(SymbolSize); 1035 continue; 1036 } 1037 1038 // Assembly functions could be ST_NONE with 0 size. Check that the 1039 // corresponding section is a code section and they are not inside any 1040 // other known function to consider them. 1041 // 1042 // Sometimes assembly functions are not marked as functions and neither are 1043 // their local labels. The only way to tell them apart is to look at 1044 // symbol scope - global vs local. 1045 if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { 1046 if (PreviousFunction->containsAddress(Address)) { 1047 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1048 LLVM_DEBUG(dbgs() 1049 << "BOLT-DEBUG: symbol is a function local symbol\n"); 1050 } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { 1051 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); 1052 } else if (opts::Verbosity > 1) { 1053 errs() << "BOLT-WARNING: symbol " << UniqueName 1054 << " seen in the middle of function " << *PreviousFunction 1055 << ". Could be a new entry.\n"; 1056 } 1057 registerName(SymbolSize); 1058 continue; 1059 } else if (PreviousFunction->getSize() == 0 && 1060 PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1061 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); 1062 registerName(SymbolSize); 1063 continue; 1064 } 1065 } 1066 1067 if (PreviousFunction && PreviousFunction->containsAddress(Address) && 1068 PreviousFunction->getAddress() != Address) { 1069 if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { 1070 if (opts::Verbosity >= 1) 1071 outs() << "BOLT-INFO: skipping possibly another entry for function " 1072 << *PreviousFunction << " : " << UniqueName << '\n'; 1073 } else { 1074 outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " 1075 << "function " << *PreviousFunction << '\n'; 1076 1077 registerName(0); 1078 1079 PreviousFunction->addEntryPointAtOffset(Address - 1080 PreviousFunction->getAddress()); 1081 1082 // Remove the symbol from FileSymRefs so that we can skip it from 1083 // in the future. 1084 auto SI = FileSymRefs.find(Address); 1085 assert(SI != FileSymRefs.end() && "symbol expected to be present"); 1086 assert(SI->second == Symbol && "wrong symbol found"); 1087 FileSymRefs.erase(SI); 1088 } 1089 registerName(SymbolSize); 1090 continue; 1091 } 1092 1093 // Checkout for conflicts with function data from FDEs. 1094 bool IsSimple = true; 1095 auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); 1096 if (FDEI != CFIRdWrt->getFDEs().end()) { 1097 const dwarf::FDE &FDE = *FDEI->second; 1098 if (FDEI->first != Address) { 1099 // There's no matching starting address in FDE. Make sure the previous 1100 // FDE does not contain this address. 1101 if (FDEI != CFIRdWrt->getFDEs().begin()) { 1102 --FDEI; 1103 const dwarf::FDE &PrevFDE = *FDEI->second; 1104 uint64_t PrevStart = PrevFDE.getInitialLocation(); 1105 uint64_t PrevLength = PrevFDE.getAddressRange(); 1106 if (Address > PrevStart && Address < PrevStart + PrevLength) { 1107 errs() << "BOLT-ERROR: function " << UniqueName 1108 << " is in conflict with FDE [" 1109 << Twine::utohexstr(PrevStart) << ", " 1110 << Twine::utohexstr(PrevStart + PrevLength) 1111 << "). Skipping.\n"; 1112 IsSimple = false; 1113 } 1114 } 1115 } else if (FDE.getAddressRange() != SymbolSize) { 1116 if (SymbolSize) { 1117 // Function addresses match but sizes differ. 1118 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName 1119 << ". FDE : " << FDE.getAddressRange() 1120 << "; symbol table : " << SymbolSize << ". Using max size.\n"; 1121 } 1122 SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); 1123 if (BC->getBinaryDataAtAddress(Address)) { 1124 BC->setBinaryDataSize(Address, SymbolSize); 1125 } else { 1126 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" 1127 << Twine::utohexstr(Address) << "\n"); 1128 } 1129 } 1130 } 1131 1132 BinaryFunction *BF = nullptr; 1133 // Since function may not have yet obtained its real size, do a search 1134 // using the list of registered functions instead of calling 1135 // getBinaryFunctionAtAddress(). 1136 auto BFI = BC->getBinaryFunctions().find(Address); 1137 if (BFI != BC->getBinaryFunctions().end()) { 1138 BF = &BFI->second; 1139 // Duplicate the function name. Make sure everything matches before we add 1140 // an alternative name. 1141 if (SymbolSize != BF->getSize()) { 1142 if (opts::Verbosity >= 1) { 1143 if (SymbolSize && BF->getSize()) 1144 errs() << "BOLT-WARNING: size mismatch for duplicate entries " 1145 << *BF << " and " << UniqueName << '\n'; 1146 outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " 1147 << BF->getSize() << " new " << SymbolSize << "\n"; 1148 } 1149 BF->setSize(std::max(SymbolSize, BF->getSize())); 1150 BC->setBinaryDataSize(Address, BF->getSize()); 1151 } 1152 BF->addAlternativeName(UniqueName); 1153 } else { 1154 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1155 // Skip symbols from invalid sections 1156 if (!Section) { 1157 errs() << "BOLT-WARNING: " << UniqueName << " (0x" 1158 << Twine::utohexstr(Address) << ") does not have any section\n"; 1159 continue; 1160 } 1161 assert(Section && "section for functions must be registered"); 1162 1163 // Skip symbols from zero-sized sections. 1164 if (!Section->getSize()) 1165 continue; 1166 1167 BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); 1168 if (!IsSimple) 1169 BF->setSimple(false); 1170 } 1171 if (!AlternativeName.empty()) 1172 BF->addAlternativeName(AlternativeName); 1173 1174 registerName(SymbolSize); 1175 PreviousFunction = BF; 1176 } 1177 1178 // Read dynamic relocation first as their presence affects the way we process 1179 // static relocations. E.g. we will ignore a static relocation at an address 1180 // that is a subject to dynamic relocation processing. 1181 processDynamicRelocations(); 1182 1183 // Process PLT section. 1184 disassemblePLT(); 1185 1186 // See if we missed any functions marked by FDE. 1187 for (const auto &FDEI : CFIRdWrt->getFDEs()) { 1188 const uint64_t Address = FDEI.first; 1189 const dwarf::FDE *FDE = FDEI.second; 1190 const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); 1191 if (BF) 1192 continue; 1193 1194 BF = BC->getBinaryFunctionContainingAddress(Address); 1195 if (BF) { 1196 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1197 << Twine::utohexstr(Address + FDE->getAddressRange()) 1198 << ") conflicts with function " << *BF << '\n'; 1199 continue; 1200 } 1201 1202 if (opts::Verbosity >= 1) 1203 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" 1204 << Twine::utohexstr(Address + FDE->getAddressRange()) 1205 << ") has no corresponding symbol table entry\n"; 1206 1207 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 1208 assert(Section && "cannot get section for address from FDE"); 1209 std::string FunctionName = 1210 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); 1211 BC->createBinaryFunction(FunctionName, *Section, Address, 1212 FDE->getAddressRange()); 1213 } 1214 1215 BC->setHasSymbolsWithFileName(SeenFileName); 1216 1217 // Now that all the functions were created - adjust their boundaries. 1218 adjustFunctionBoundaries(); 1219 1220 // Annotate functions with code/data markers in AArch64 1221 for (auto ISym = SortedMarkerSymbols.begin(); 1222 ISym != SortedMarkerSymbols.end(); ++ISym) { 1223 1224 auto *BF = 1225 BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); 1226 1227 if (!BF) { 1228 // Stray marker 1229 continue; 1230 } 1231 const auto EntryOffset = ISym->Address - BF->getAddress(); 1232 if (ISym->Type == MarkerSymType::CODE) { 1233 BF->markCodeAtOffset(EntryOffset); 1234 continue; 1235 } 1236 if (ISym->Type == MarkerSymType::DATA) { 1237 BF->markDataAtOffset(EntryOffset); 1238 BC->AddressToConstantIslandMap[ISym->Address] = BF; 1239 continue; 1240 } 1241 llvm_unreachable("Unknown marker"); 1242 } 1243 1244 if (opts::LinuxKernelMode) { 1245 // Read all special linux kernel sections and their relocations 1246 processLKSections(); 1247 } else { 1248 // Read all relocations now that we have binary functions mapped. 1249 processRelocations(); 1250 } 1251 } 1252 1253 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, 1254 uint64_t EntryAddress, 1255 uint64_t EntrySize) { 1256 if (!TargetAddress) 1257 return; 1258 1259 auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { 1260 const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); 1261 MCSymbol *TargetSymbol = BC->registerNameAtAddress( 1262 Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); 1263 BF->setPLTSymbol(TargetSymbol); 1264 }; 1265 1266 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); 1267 if (BF && BC->isAArch64()) { 1268 // Handle IFUNC trampoline 1269 setPLTSymbol(BF, BF->getOneName()); 1270 return; 1271 } 1272 1273 const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); 1274 if (!Rel || !Rel->Symbol) 1275 return; 1276 1277 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); 1278 assert(Section && "cannot get section for address"); 1279 BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, 1280 EntryAddress, 0, EntrySize, 1281 Section->getAlignment()); 1282 setPLTSymbol(BF, Rel->Symbol->getName()); 1283 } 1284 1285 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { 1286 const uint64_t SectionAddress = Section.getAddress(); 1287 const uint64_t SectionSize = Section.getSize(); 1288 StringRef PLTContents = Section.getContents(); 1289 ArrayRef<uint8_t> PLTData( 1290 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1291 1292 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1293 uint64_t &InstrSize) { 1294 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1295 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1296 PLTData.slice(InstrOffset), InstrAddr, 1297 nulls())) { 1298 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1299 << Section.getName() << " at offset 0x" 1300 << Twine::utohexstr(InstrOffset) << '\n'; 1301 exit(1); 1302 } 1303 }; 1304 1305 uint64_t InstrOffset = 0; 1306 // Locate new plt entry 1307 while (InstrOffset < SectionSize) { 1308 InstructionListType Instructions; 1309 MCInst Instruction; 1310 uint64_t EntryOffset = InstrOffset; 1311 uint64_t EntrySize = 0; 1312 uint64_t InstrSize; 1313 // Loop through entry instructions 1314 while (InstrOffset < SectionSize) { 1315 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1316 EntrySize += InstrSize; 1317 if (!BC->MIB->isIndirectBranch(Instruction)) { 1318 Instructions.emplace_back(Instruction); 1319 InstrOffset += InstrSize; 1320 continue; 1321 } 1322 1323 const uint64_t EntryAddress = SectionAddress + EntryOffset; 1324 const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( 1325 Instruction, Instructions.begin(), Instructions.end(), EntryAddress); 1326 1327 createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); 1328 break; 1329 } 1330 1331 // Branch instruction 1332 InstrOffset += InstrSize; 1333 1334 // Skip nops if any 1335 while (InstrOffset < SectionSize) { 1336 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1337 if (!BC->MIB->isNoop(Instruction)) 1338 break; 1339 1340 InstrOffset += InstrSize; 1341 } 1342 } 1343 } 1344 1345 void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, 1346 uint64_t EntrySize) { 1347 const uint64_t SectionAddress = Section.getAddress(); 1348 const uint64_t SectionSize = Section.getSize(); 1349 StringRef PLTContents = Section.getContents(); 1350 ArrayRef<uint8_t> PLTData( 1351 reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); 1352 1353 auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, 1354 uint64_t &InstrSize) { 1355 const uint64_t InstrAddr = SectionAddress + InstrOffset; 1356 if (!BC->DisAsm->getInstruction(Instruction, InstrSize, 1357 PLTData.slice(InstrOffset), InstrAddr, 1358 nulls())) { 1359 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " 1360 << Section.getName() << " at offset 0x" 1361 << Twine::utohexstr(InstrOffset) << '\n'; 1362 exit(1); 1363 } 1364 }; 1365 1366 for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; 1367 EntryOffset += EntrySize) { 1368 MCInst Instruction; 1369 uint64_t InstrSize, InstrOffset = EntryOffset; 1370 while (InstrOffset < EntryOffset + EntrySize) { 1371 disassembleInstruction(InstrOffset, Instruction, InstrSize); 1372 // Check if the entry size needs adjustment. 1373 if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && 1374 EntrySize == 8) 1375 EntrySize = 16; 1376 1377 if (BC->MIB->isIndirectBranch(Instruction)) 1378 break; 1379 1380 InstrOffset += InstrSize; 1381 } 1382 1383 if (InstrOffset + InstrSize > EntryOffset + EntrySize) 1384 continue; 1385 1386 uint64_t TargetAddress; 1387 if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1388 SectionAddress + InstrOffset, 1389 InstrSize)) { 1390 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" 1391 << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; 1392 exit(1); 1393 } 1394 1395 createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, 1396 EntrySize); 1397 } 1398 } 1399 1400 void RewriteInstance::disassemblePLT() { 1401 auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { 1402 if (BC->isAArch64()) 1403 return disassemblePLTSectionAArch64(Section); 1404 return disassemblePLTSectionX86(Section, EntrySize); 1405 }; 1406 1407 for (BinarySection &Section : BC->allocatableSections()) { 1408 const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); 1409 if (!PLTSI) 1410 continue; 1411 1412 analyzeOnePLTSection(Section, PLTSI->EntrySize); 1413 // If we did not register any function at the start of the section, 1414 // then it must be a general PLT entry. Add a function at the location. 1415 if (BC->getBinaryFunctions().find(Section.getAddress()) == 1416 BC->getBinaryFunctions().end()) { 1417 BinaryFunction *BF = BC->createBinaryFunction( 1418 "__BOLT_PSEUDO_" + Section.getName().str(), Section, 1419 Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); 1420 BF->setPseudo(true); 1421 } 1422 } 1423 } 1424 1425 void RewriteInstance::adjustFunctionBoundaries() { 1426 for (auto BFI = BC->getBinaryFunctions().begin(), 1427 BFE = BC->getBinaryFunctions().end(); 1428 BFI != BFE; ++BFI) { 1429 BinaryFunction &Function = BFI->second; 1430 const BinaryFunction *NextFunction = nullptr; 1431 if (std::next(BFI) != BFE) 1432 NextFunction = &std::next(BFI)->second; 1433 1434 // Check if it's a fragment of a function. 1435 Optional<StringRef> FragName = 1436 Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); 1437 if (FragName) { 1438 static bool PrintedWarning = false; 1439 if (BC->HasRelocations && !PrintedWarning) { 1440 errs() << "BOLT-WARNING: split function detected on input : " 1441 << *FragName << ". The support is limited in relocation mode.\n"; 1442 PrintedWarning = true; 1443 } 1444 Function.IsFragment = true; 1445 } 1446 1447 // Check if there's a symbol or a function with a larger address in the 1448 // same section. If there is - it determines the maximum size for the 1449 // current function. Otherwise, it is the size of a containing section 1450 // the defines it. 1451 // 1452 // NOTE: ignore some symbols that could be tolerated inside the body 1453 // of a function. 1454 auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); 1455 while (NextSymRefI != FileSymRefs.end()) { 1456 SymbolRef &Symbol = NextSymRefI->second; 1457 const uint64_t SymbolAddress = NextSymRefI->first; 1458 const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); 1459 1460 if (NextFunction && SymbolAddress >= NextFunction->getAddress()) 1461 break; 1462 1463 if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) 1464 break; 1465 1466 // This is potentially another entry point into the function. 1467 uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); 1468 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " 1469 << Function << " at offset 0x" 1470 << Twine::utohexstr(EntryOffset) << '\n'); 1471 Function.addEntryPointAtOffset(EntryOffset); 1472 1473 ++NextSymRefI; 1474 } 1475 1476 // Function runs at most till the end of the containing section. 1477 uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); 1478 // Or till the next object marked by a symbol. 1479 if (NextSymRefI != FileSymRefs.end()) 1480 NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); 1481 1482 // Or till the next function not marked by a symbol. 1483 if (NextFunction) 1484 NextObjectAddress = 1485 std::min(NextFunction->getAddress(), NextObjectAddress); 1486 1487 const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); 1488 if (MaxSize < Function.getSize()) { 1489 errs() << "BOLT-ERROR: symbol seen in the middle of the function " 1490 << Function << ". Skipping.\n"; 1491 Function.setSimple(false); 1492 Function.setMaxSize(Function.getSize()); 1493 continue; 1494 } 1495 Function.setMaxSize(MaxSize); 1496 if (!Function.getSize() && Function.isSimple()) { 1497 // Some assembly functions have their size set to 0, use the max 1498 // size as their real size. 1499 if (opts::Verbosity >= 1) 1500 outs() << "BOLT-INFO: setting size of function " << Function << " to " 1501 << Function.getMaxSize() << " (was 0)\n"; 1502 Function.setSize(Function.getMaxSize()); 1503 } 1504 } 1505 } 1506 1507 void RewriteInstance::relocateEHFrameSection() { 1508 assert(EHFrameSection && "non-empty .eh_frame section expected"); 1509 1510 DWARFDataExtractor DE(EHFrameSection->getContents(), 1511 BC->AsmInfo->isLittleEndian(), 1512 BC->AsmInfo->getCodePointerSize()); 1513 auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { 1514 if (DwarfType == dwarf::DW_EH_PE_omit) 1515 return; 1516 1517 // Only fix references that are relative to other locations. 1518 if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && 1519 !(DwarfType & dwarf::DW_EH_PE_textrel) && 1520 !(DwarfType & dwarf::DW_EH_PE_funcrel) && 1521 !(DwarfType & dwarf::DW_EH_PE_datarel)) 1522 return; 1523 1524 if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) 1525 return; 1526 1527 uint64_t RelType; 1528 switch (DwarfType & 0x0f) { 1529 default: 1530 llvm_unreachable("unsupported DWARF encoding type"); 1531 case dwarf::DW_EH_PE_sdata4: 1532 case dwarf::DW_EH_PE_udata4: 1533 RelType = Relocation::getPC32(); 1534 Offset -= 4; 1535 break; 1536 case dwarf::DW_EH_PE_sdata8: 1537 case dwarf::DW_EH_PE_udata8: 1538 RelType = Relocation::getPC64(); 1539 Offset -= 8; 1540 break; 1541 } 1542 1543 // Create a relocation against an absolute value since the goal is to 1544 // preserve the contents of the section independent of the new values 1545 // of referenced symbols. 1546 EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); 1547 }; 1548 1549 Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); 1550 check_error(std::move(E), "failed to patch EH frame"); 1551 } 1552 1553 ArrayRef<uint8_t> RewriteInstance::getLSDAData() { 1554 return ArrayRef<uint8_t>(LSDASection->getData(), 1555 LSDASection->getContents().size()); 1556 } 1557 1558 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } 1559 1560 Error RewriteInstance::readSpecialSections() { 1561 NamedRegionTimer T("readSpecialSections", "read special sections", 1562 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 1563 1564 bool HasTextRelocations = false; 1565 bool HasDebugInfo = false; 1566 1567 // Process special sections. 1568 for (const SectionRef &Section : InputFile->sections()) { 1569 Expected<StringRef> SectionNameOrErr = Section.getName(); 1570 check_error(SectionNameOrErr.takeError(), "cannot get section name"); 1571 StringRef SectionName = *SectionNameOrErr; 1572 1573 // Only register sections with names. 1574 if (!SectionName.empty()) { 1575 if (Error E = Section.getContents().takeError()) 1576 return E; 1577 BC->registerSection(Section); 1578 LLVM_DEBUG( 1579 dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" 1580 << Twine::utohexstr(Section.getAddress()) << ":0x" 1581 << Twine::utohexstr(Section.getAddress() + Section.getSize()) 1582 << "\n"); 1583 if (isDebugSection(SectionName)) 1584 HasDebugInfo = true; 1585 if (isKSymtabSection(SectionName)) 1586 opts::LinuxKernelMode = true; 1587 } 1588 } 1589 1590 if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { 1591 errs() << "BOLT-WARNING: debug info will be stripped from the binary. " 1592 "Use -update-debug-sections to keep it.\n"; 1593 } 1594 1595 HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); 1596 LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); 1597 EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); 1598 GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); 1599 RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); 1600 RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); 1601 BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); 1602 SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); 1603 PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); 1604 PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); 1605 1606 if (ErrorOr<BinarySection &> BATSec = 1607 BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { 1608 // Do not read BAT when plotting a heatmap 1609 if (!opts::HeatmapMode) { 1610 if (std::error_code EC = BAT->parse(BATSec->getContents())) { 1611 errs() << "BOLT-ERROR: failed to parse BOLT address translation " 1612 "table.\n"; 1613 exit(1); 1614 } 1615 } 1616 } 1617 1618 if (opts::PrintSections) { 1619 outs() << "BOLT-INFO: Sections from original binary:\n"; 1620 BC->printSections(outs()); 1621 } 1622 1623 if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { 1624 errs() << "BOLT-ERROR: relocations against code are missing from the input " 1625 "file. Cannot proceed in relocations mode (-relocs).\n"; 1626 exit(1); 1627 } 1628 1629 BC->HasRelocations = 1630 HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); 1631 1632 // Force non-relocation mode for heatmap generation 1633 if (opts::HeatmapMode) 1634 BC->HasRelocations = false; 1635 1636 if (BC->HasRelocations) 1637 outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") 1638 << "relocation mode\n"; 1639 1640 // Read EH frame for function boundaries info. 1641 Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); 1642 if (!EHFrameOrError) 1643 report_error("expected valid eh_frame section", EHFrameOrError.takeError()); 1644 CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); 1645 1646 // Parse build-id 1647 parseBuildID(); 1648 if (Optional<std::string> FileBuildID = getPrintableBuildID()) 1649 BC->setFileBuildID(*FileBuildID); 1650 1651 parseSDTNotes(); 1652 1653 // Read .dynamic/PT_DYNAMIC. 1654 return readELFDynamic(); 1655 } 1656 1657 void RewriteInstance::adjustCommandLineOptions() { 1658 if (BC->isAArch64() && !BC->HasRelocations) 1659 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " 1660 "supported\n"; 1661 1662 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 1663 RtLibrary->adjustCommandLineOptions(*BC); 1664 1665 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { 1666 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; 1667 opts::AlignMacroOpFusion = MFT_NONE; 1668 } 1669 1670 if (BC->isX86() && BC->MAB->allowAutoPadding()) { 1671 if (!BC->HasRelocations) { 1672 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " 1673 "non-relocation mode\n"; 1674 exit(1); 1675 } 1676 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " 1677 "may take several minutes\n"; 1678 opts::AlignMacroOpFusion = MFT_NONE; 1679 } 1680 1681 if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { 1682 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " 1683 "mode\n"; 1684 opts::AlignMacroOpFusion = MFT_NONE; 1685 } 1686 1687 if (opts::SplitEH && !BC->HasRelocations) { 1688 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; 1689 opts::SplitEH = false; 1690 } 1691 1692 if (opts::StrictMode && !BC->HasRelocations) { 1693 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " 1694 "mode\n"; 1695 opts::StrictMode = false; 1696 } 1697 1698 if (BC->HasRelocations && opts::AggregateOnly && 1699 !opts::StrictMode.getNumOccurrences()) { 1700 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " 1701 "purposes\n"; 1702 opts::StrictMode = true; 1703 } 1704 1705 if (BC->isX86() && BC->HasRelocations && 1706 opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { 1707 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " 1708 "was specified\n"; 1709 opts::AlignMacroOpFusion = MFT_ALL; 1710 } 1711 1712 if (!BC->HasRelocations && 1713 opts::ReorderFunctions != ReorderFunctions::RT_NONE) { 1714 errs() << "BOLT-ERROR: function reordering only works when " 1715 << "relocations are enabled\n"; 1716 exit(1); 1717 } 1718 1719 if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && 1720 !opts::HotText.getNumOccurrences()) { 1721 opts::HotText = true; 1722 } else if (opts::HotText && !BC->HasRelocations) { 1723 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; 1724 opts::HotText = false; 1725 } 1726 1727 if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { 1728 opts::HotTextMoveSections.addValue(".stub"); 1729 opts::HotTextMoveSections.addValue(".mover"); 1730 opts::HotTextMoveSections.addValue(".never_hugify"); 1731 } 1732 1733 if (opts::UseOldText && !BC->OldTextSectionAddress) { 1734 errs() << "BOLT-WARNING: cannot use old .text as the section was not found" 1735 "\n"; 1736 opts::UseOldText = false; 1737 } 1738 if (opts::UseOldText && !BC->HasRelocations) { 1739 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; 1740 opts::UseOldText = false; 1741 } 1742 1743 if (!opts::AlignText.getNumOccurrences()) 1744 opts::AlignText = BC->PageAlign; 1745 1746 if (opts::AlignText < opts::AlignFunctions) 1747 opts::AlignText = (unsigned)opts::AlignFunctions; 1748 1749 if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && 1750 !opts::UseOldText) 1751 opts::Lite = true; 1752 1753 if (opts::Lite && opts::UseOldText) { 1754 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " 1755 "Disabling -use-old-text.\n"; 1756 opts::UseOldText = false; 1757 } 1758 1759 if (opts::Lite && opts::StrictMode) { 1760 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; 1761 exit(1); 1762 } 1763 1764 if (opts::Lite) 1765 outs() << "BOLT-INFO: enabling lite mode\n"; 1766 1767 if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { 1768 errs() << "BOLT-ERROR: unable to save profile in YAML format for input " 1769 "file processed by BOLT. Please remove -w option and use branch " 1770 "profile.\n"; 1771 exit(1); 1772 } 1773 } 1774 1775 namespace { 1776 template <typename ELFT> 1777 int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, 1778 const RelocationRef &RelRef) { 1779 using ELFShdrTy = typename ELFT::Shdr; 1780 using Elf_Rela = typename ELFT::Rela; 1781 int64_t Addend = 0; 1782 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1783 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1784 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1785 switch (RelocationSection->sh_type) { 1786 default: 1787 llvm_unreachable("unexpected relocation section type"); 1788 case ELF::SHT_REL: 1789 break; 1790 case ELF::SHT_RELA: { 1791 const Elf_Rela *RelA = Obj->getRela(Rel); 1792 Addend = RelA->r_addend; 1793 break; 1794 } 1795 } 1796 1797 return Addend; 1798 } 1799 1800 int64_t getRelocationAddend(const ELFObjectFileBase *Obj, 1801 const RelocationRef &Rel) { 1802 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1803 return getRelocationAddend(ELF32LE, Rel); 1804 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1805 return getRelocationAddend(ELF64LE, Rel); 1806 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1807 return getRelocationAddend(ELF32BE, Rel); 1808 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1809 return getRelocationAddend(ELF64BE, Rel); 1810 } 1811 1812 template <typename ELFT> 1813 uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, 1814 const RelocationRef &RelRef) { 1815 using ELFShdrTy = typename ELFT::Shdr; 1816 uint32_t Symbol = 0; 1817 const ELFFile<ELFT> &EF = Obj->getELFFile(); 1818 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 1819 const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); 1820 switch (RelocationSection->sh_type) { 1821 default: 1822 llvm_unreachable("unexpected relocation section type"); 1823 case ELF::SHT_REL: 1824 Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); 1825 break; 1826 case ELF::SHT_RELA: 1827 Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); 1828 break; 1829 } 1830 1831 return Symbol; 1832 } 1833 1834 uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, 1835 const RelocationRef &Rel) { 1836 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 1837 return getRelocationSymbol(ELF32LE, Rel); 1838 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 1839 return getRelocationSymbol(ELF64LE, Rel); 1840 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 1841 return getRelocationSymbol(ELF32BE, Rel); 1842 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 1843 return getRelocationSymbol(ELF64BE, Rel); 1844 } 1845 } // anonymous namespace 1846 1847 bool RewriteInstance::analyzeRelocation( 1848 const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, 1849 bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, 1850 uint64_t &ExtractedValue, bool &Skip) const { 1851 Skip = false; 1852 if (!Relocation::isSupported(RType)) 1853 return false; 1854 1855 const bool IsAArch64 = BC->isAArch64(); 1856 1857 const size_t RelSize = Relocation::getSizeForType(RType); 1858 1859 ErrorOr<uint64_t> Value = 1860 BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); 1861 assert(Value && "failed to extract relocated value"); 1862 if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) 1863 return true; 1864 1865 ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); 1866 Addend = getRelocationAddend(InputFile, Rel); 1867 1868 const bool IsPCRelative = Relocation::isPCRelative(RType); 1869 const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; 1870 bool SkipVerification = false; 1871 auto SymbolIter = Rel.getSymbol(); 1872 if (SymbolIter == InputFile->symbol_end()) { 1873 SymbolAddress = ExtractedValue - Addend + PCRelOffset; 1874 MCSymbol *RelSymbol = 1875 BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); 1876 SymbolName = std::string(RelSymbol->getName()); 1877 IsSectionRelocation = false; 1878 } else { 1879 const SymbolRef &Symbol = *SymbolIter; 1880 SymbolName = std::string(cantFail(Symbol.getName())); 1881 SymbolAddress = cantFail(Symbol.getAddress()); 1882 SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); 1883 // Section symbols are marked as ST_Debug. 1884 IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); 1885 // Check for PLT entry registered with symbol name 1886 if (!SymbolAddress && IsAArch64) { 1887 const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); 1888 SymbolAddress = BD ? BD->getAddress() : 0; 1889 } 1890 } 1891 // For PIE or dynamic libs, the linker may choose not to put the relocation 1892 // result at the address if it is a X86_64_64 one because it will emit a 1893 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to 1894 // resolve it at run time. The static relocation result goes as the addend 1895 // of the dynamic relocation in this case. We can't verify these cases. 1896 // FIXME: perhaps we can try to find if it really emitted a corresponding 1897 // RELATIVE relocation at this offset with the correct value as the addend. 1898 if (!BC->HasFixedLoadAddress && RelSize == 8) 1899 SkipVerification = true; 1900 1901 if (IsSectionRelocation && !IsAArch64) { 1902 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 1903 assert(Section && "section expected for section relocation"); 1904 SymbolName = "section " + std::string(Section->getName()); 1905 // Convert section symbol relocations to regular relocations inside 1906 // non-section symbols. 1907 if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { 1908 SymbolAddress = ExtractedValue; 1909 Addend = 0; 1910 } else { 1911 Addend = ExtractedValue - (SymbolAddress - PCRelOffset); 1912 } 1913 } 1914 1915 // If no symbol has been found or if it is a relocation requiring the 1916 // creation of a GOT entry, do not link against the symbol but against 1917 // whatever address was extracted from the instruction itself. We are 1918 // not creating a GOT entry as this was already processed by the linker. 1919 // For GOT relocs, do not subtract addend as the addend does not refer 1920 // to this instruction's target, but it refers to the target in the GOT 1921 // entry. 1922 if (Relocation::isGOT(RType)) { 1923 Addend = 0; 1924 SymbolAddress = ExtractedValue + PCRelOffset; 1925 } else if (Relocation::isTLS(RType)) { 1926 SkipVerification = true; 1927 } else if (!SymbolAddress) { 1928 assert(!IsSectionRelocation); 1929 if (ExtractedValue || Addend == 0 || IsPCRelative) { 1930 SymbolAddress = 1931 truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); 1932 } else { 1933 // This is weird case. The extracted value is zero but the addend is 1934 // non-zero and the relocation is not pc-rel. Using the previous logic, 1935 // the SymbolAddress would end up as a huge number. Seen in 1936 // exceptions_pic.test. 1937 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" 1938 << Twine::utohexstr(Rel.getOffset()) 1939 << " value does not match addend for " 1940 << "relocation to undefined symbol.\n"); 1941 return true; 1942 } 1943 } 1944 1945 auto verifyExtractedValue = [&]() { 1946 if (SkipVerification) 1947 return true; 1948 1949 if (IsAArch64) 1950 return true; 1951 1952 if (SymbolName == "__hot_start" || SymbolName == "__hot_end") 1953 return true; 1954 1955 if (RType == ELF::R_X86_64_PLT32) 1956 return true; 1957 1958 return truncateToSize(ExtractedValue, RelSize) == 1959 truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); 1960 }; 1961 1962 (void)verifyExtractedValue; 1963 assert(verifyExtractedValue() && "mismatched extracted relocation value"); 1964 1965 return true; 1966 } 1967 1968 void RewriteInstance::processDynamicRelocations() { 1969 // Read relocations for PLT - DT_JMPREL. 1970 if (PLTRelocationsSize > 0) { 1971 ErrorOr<BinarySection &> PLTRelSectionOrErr = 1972 BC->getSectionForAddress(*PLTRelocationsAddress); 1973 if (!PLTRelSectionOrErr) 1974 report_error("unable to find section corresponding to DT_JMPREL", 1975 PLTRelSectionOrErr.getError()); 1976 if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) 1977 report_error("section size mismatch for DT_PLTRELSZ", 1978 errc::executable_format_error); 1979 readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), 1980 /*IsJmpRel*/ true); 1981 } 1982 1983 // The rest of dynamic relocations - DT_RELA. 1984 if (DynamicRelocationsSize > 0) { 1985 ErrorOr<BinarySection &> DynamicRelSectionOrErr = 1986 BC->getSectionForAddress(*DynamicRelocationsAddress); 1987 if (!DynamicRelSectionOrErr) 1988 report_error("unable to find section corresponding to DT_RELA", 1989 DynamicRelSectionOrErr.getError()); 1990 if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) 1991 report_error("section size mismatch for DT_RELASZ", 1992 errc::executable_format_error); 1993 readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), 1994 /*IsJmpRel*/ false); 1995 } 1996 } 1997 1998 void RewriteInstance::processRelocations() { 1999 if (!BC->HasRelocations) 2000 return; 2001 2002 for (const SectionRef &Section : InputFile->sections()) { 2003 if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && 2004 !BinarySection(*BC, Section).isAllocatable()) 2005 readRelocations(Section); 2006 } 2007 2008 if (NumFailedRelocations) 2009 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations 2010 << " relocations\n"; 2011 } 2012 2013 void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, 2014 int32_t PCRelativeOffset, 2015 bool IsPCRelative, StringRef SectionName) { 2016 BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ 2017 SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); 2018 } 2019 2020 void RewriteInstance::processLKSections() { 2021 assert(opts::LinuxKernelMode && 2022 "process Linux Kernel special sections and their relocations only in " 2023 "linux kernel mode.\n"); 2024 2025 processLKExTable(); 2026 processLKPCIFixup(); 2027 processLKKSymtab(); 2028 processLKKSymtab(true); 2029 processLKBugTable(); 2030 processLKSMPLocks(); 2031 } 2032 2033 /// Process __ex_table section of Linux Kernel. 2034 /// This section contains information regarding kernel level exception 2035 /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). 2036 /// More documentation is in arch/x86/include/asm/extable.h. 2037 /// 2038 /// The section is the list of the following structures: 2039 /// 2040 /// struct exception_table_entry { 2041 /// int insn; 2042 /// int fixup; 2043 /// int handler; 2044 /// }; 2045 /// 2046 void RewriteInstance::processLKExTable() { 2047 ErrorOr<BinarySection &> SectionOrError = 2048 BC->getUniqueSectionByName("__ex_table"); 2049 if (!SectionOrError) 2050 return; 2051 2052 const uint64_t SectionSize = SectionOrError->getSize(); 2053 const uint64_t SectionAddress = SectionOrError->getAddress(); 2054 assert((SectionSize % 12) == 0 && 2055 "The size of the __ex_table section should be a multiple of 12"); 2056 for (uint64_t I = 0; I < SectionSize; I += 4) { 2057 const uint64_t EntryAddress = SectionAddress + I; 2058 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2059 assert(Offset && "failed reading PC-relative offset for __ex_table"); 2060 int32_t SignedOffset = *Offset; 2061 const uint64_t RefAddress = EntryAddress + SignedOffset; 2062 2063 BinaryFunction *ContainingBF = 2064 BC->getBinaryFunctionContainingAddress(RefAddress); 2065 if (!ContainingBF) 2066 continue; 2067 2068 MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); 2069 const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); 2070 switch (I % 12) { 2071 default: 2072 llvm_unreachable("bad alignment of __ex_table"); 2073 break; 2074 case 0: 2075 // insn 2076 insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); 2077 break; 2078 case 4: 2079 // fixup 2080 if (FunctionOffset) 2081 ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); 2082 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2083 0, *Offset); 2084 break; 2085 case 8: 2086 // handler 2087 assert(!FunctionOffset && 2088 "__ex_table handler entry should point to function start"); 2089 BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), 2090 0, *Offset); 2091 break; 2092 } 2093 } 2094 } 2095 2096 /// Process .pci_fixup section of Linux Kernel. 2097 /// This section contains a list of entries for different PCI devices and their 2098 /// corresponding hook handler (code pointer where the fixup 2099 /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). 2100 /// Documentation is in include/linux/pci.h. 2101 void RewriteInstance::processLKPCIFixup() { 2102 ErrorOr<BinarySection &> SectionOrError = 2103 BC->getUniqueSectionByName(".pci_fixup"); 2104 assert(SectionOrError && 2105 ".pci_fixup section not found in Linux Kernel binary"); 2106 const uint64_t SectionSize = SectionOrError->getSize(); 2107 const uint64_t SectionAddress = SectionOrError->getAddress(); 2108 assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); 2109 2110 for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { 2111 const uint64_t PC = SectionAddress + I; 2112 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); 2113 assert(Offset && "cannot read value from .pci_fixup"); 2114 const int32_t SignedOffset = *Offset; 2115 const uint64_t HookupAddress = PC + SignedOffset; 2116 BinaryFunction *HookupFunction = 2117 BC->getBinaryFunctionAtAddress(HookupAddress); 2118 assert(HookupFunction && "expected function for entry in .pci_fixup"); 2119 BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, 2120 *Offset); 2121 } 2122 } 2123 2124 /// Process __ksymtab[_gpl] sections of Linux Kernel. 2125 /// This section lists all the vmlinux symbols that kernel modules can access. 2126 /// 2127 /// All the entries are 4 bytes each and hence we can read them by one by one 2128 /// and ignore the ones that are not pointing to the .text section. All pointers 2129 /// are PC relative offsets. Always, points to the beginning of the function. 2130 void RewriteInstance::processLKKSymtab(bool IsGPL) { 2131 StringRef SectionName = "__ksymtab"; 2132 if (IsGPL) 2133 SectionName = "__ksymtab_gpl"; 2134 ErrorOr<BinarySection &> SectionOrError = 2135 BC->getUniqueSectionByName(SectionName); 2136 assert(SectionOrError && 2137 "__ksymtab[_gpl] section not found in Linux Kernel binary"); 2138 const uint64_t SectionSize = SectionOrError->getSize(); 2139 const uint64_t SectionAddress = SectionOrError->getAddress(); 2140 assert((SectionSize % 4) == 0 && 2141 "The size of the __ksymtab[_gpl] section should be a multiple of 4"); 2142 2143 for (uint64_t I = 0; I < SectionSize; I += 4) { 2144 const uint64_t EntryAddress = SectionAddress + I; 2145 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2146 assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); 2147 const int32_t SignedOffset = *Offset; 2148 const uint64_t RefAddress = EntryAddress + SignedOffset; 2149 BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); 2150 if (!BF) 2151 continue; 2152 2153 BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, 2154 *Offset); 2155 } 2156 } 2157 2158 /// Process __bug_table section. 2159 /// This section contains information useful for kernel debugging. 2160 /// Each entry in the section is a struct bug_entry that contains a pointer to 2161 /// the ud2 instruction corresponding to the bug, corresponding file name (both 2162 /// pointers use PC relative offset addressing), line number, and flags. 2163 /// The definition of the struct bug_entry can be found in 2164 /// `include/asm-generic/bug.h` 2165 void RewriteInstance::processLKBugTable() { 2166 ErrorOr<BinarySection &> SectionOrError = 2167 BC->getUniqueSectionByName("__bug_table"); 2168 if (!SectionOrError) 2169 return; 2170 2171 const uint64_t SectionSize = SectionOrError->getSize(); 2172 const uint64_t SectionAddress = SectionOrError->getAddress(); 2173 assert((SectionSize % 12) == 0 && 2174 "The size of the __bug_table section should be a multiple of 12"); 2175 for (uint64_t I = 0; I < SectionSize; I += 12) { 2176 const uint64_t EntryAddress = SectionAddress + I; 2177 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2178 assert(Offset && 2179 "Reading valid PC-relative offset for a __bug_table entry"); 2180 const int32_t SignedOffset = *Offset; 2181 const uint64_t RefAddress = EntryAddress + SignedOffset; 2182 assert(BC->getBinaryFunctionContainingAddress(RefAddress) && 2183 "__bug_table entries should point to a function"); 2184 2185 insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); 2186 } 2187 } 2188 2189 /// .smp_locks section contains PC-relative references to instructions with LOCK 2190 /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. 2191 void RewriteInstance::processLKSMPLocks() { 2192 ErrorOr<BinarySection &> SectionOrError = 2193 BC->getUniqueSectionByName(".smp_locks"); 2194 if (!SectionOrError) 2195 return; 2196 2197 uint64_t SectionSize = SectionOrError->getSize(); 2198 const uint64_t SectionAddress = SectionOrError->getAddress(); 2199 assert((SectionSize % 4) == 0 && 2200 "The size of the .smp_locks section should be a multiple of 4"); 2201 2202 for (uint64_t I = 0; I < SectionSize; I += 4) { 2203 const uint64_t EntryAddress = SectionAddress + I; 2204 ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); 2205 assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); 2206 int32_t SignedOffset = *Offset; 2207 uint64_t RefAddress = EntryAddress + SignedOffset; 2208 2209 BinaryFunction *ContainingBF = 2210 BC->getBinaryFunctionContainingAddress(RefAddress); 2211 if (!ContainingBF) 2212 continue; 2213 2214 insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); 2215 } 2216 } 2217 2218 void RewriteInstance::readDynamicRelocations(const SectionRef &Section, 2219 bool IsJmpRel) { 2220 assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); 2221 2222 LLVM_DEBUG({ 2223 StringRef SectionName = cantFail(Section.getName()); 2224 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2225 << ":\n"; 2226 }); 2227 2228 for (const RelocationRef &Rel : Section.relocations()) { 2229 const uint64_t RType = Rel.getType(); 2230 if (Relocation::isNone(RType)) 2231 continue; 2232 2233 StringRef SymbolName = "<none>"; 2234 MCSymbol *Symbol = nullptr; 2235 uint64_t SymbolAddress = 0; 2236 const uint64_t Addend = getRelocationAddend(InputFile, Rel); 2237 2238 symbol_iterator SymbolIter = Rel.getSymbol(); 2239 if (SymbolIter != InputFile->symbol_end()) { 2240 SymbolName = cantFail(SymbolIter->getName()); 2241 BinaryData *BD = BC->getBinaryDataByName(SymbolName); 2242 Symbol = BD ? BD->getSymbol() 2243 : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); 2244 SymbolAddress = cantFail(SymbolIter->getAddress()); 2245 (void)SymbolAddress; 2246 } 2247 2248 LLVM_DEBUG( 2249 SmallString<16> TypeName; 2250 Rel.getTypeName(TypeName); 2251 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" 2252 << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName 2253 << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) 2254 << " : + 0x" << Twine::utohexstr(Addend) << '\n' 2255 ); 2256 2257 if (IsJmpRel) 2258 IsJmpRelocation[RType] = true; 2259 2260 if (Symbol) 2261 SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); 2262 2263 BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); 2264 } 2265 } 2266 2267 void RewriteInstance::readRelocations(const SectionRef &Section) { 2268 LLVM_DEBUG({ 2269 StringRef SectionName = cantFail(Section.getName()); 2270 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName 2271 << ":\n"; 2272 }); 2273 if (BinarySection(*BC, Section).isAllocatable()) { 2274 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); 2275 return; 2276 } 2277 section_iterator SecIter = cantFail(Section.getRelocatedSection()); 2278 assert(SecIter != InputFile->section_end() && "relocated section expected"); 2279 SectionRef RelocatedSection = *SecIter; 2280 2281 StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); 2282 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " 2283 << RelocatedSectionName << '\n'); 2284 2285 if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { 2286 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " 2287 << "non-allocatable section\n"); 2288 return; 2289 } 2290 const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) 2291 .Cases(".plt", ".rela.plt", ".got.plt", 2292 ".eh_frame", ".gcc_except_table", true) 2293 .Default(false); 2294 if (SkipRelocs) { 2295 LLVM_DEBUG( 2296 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); 2297 return; 2298 } 2299 2300 const bool IsAArch64 = BC->isAArch64(); 2301 const bool IsFromCode = RelocatedSection.isText(); 2302 2303 auto printRelocationInfo = [&](const RelocationRef &Rel, 2304 StringRef SymbolName, 2305 uint64_t SymbolAddress, 2306 uint64_t Addend, 2307 uint64_t ExtractedValue) { 2308 SmallString<16> TypeName; 2309 Rel.getTypeName(TypeName); 2310 const uint64_t Address = SymbolAddress + Addend; 2311 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); 2312 dbgs() << "Relocation: offset = 0x" 2313 << Twine::utohexstr(Rel.getOffset()) 2314 << "; type = " << TypeName 2315 << "; value = 0x" << Twine::utohexstr(ExtractedValue) 2316 << "; symbol = " << SymbolName 2317 << " (" << (Section ? Section->getName() : "") << ")" 2318 << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) 2319 << "; addend = 0x" << Twine::utohexstr(Addend) 2320 << "; address = 0x" << Twine::utohexstr(Address) 2321 << "; in = "; 2322 if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( 2323 Rel.getOffset(), false, IsAArch64)) 2324 dbgs() << Func->getPrintName() << "\n"; 2325 else 2326 dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; 2327 }; 2328 2329 for (const RelocationRef &Rel : Section.relocations()) { 2330 SmallString<16> TypeName; 2331 Rel.getTypeName(TypeName); 2332 uint64_t RType = Rel.getType(); 2333 if (Relocation::skipRelocationType(RType)) 2334 continue; 2335 2336 // Adjust the relocation type as the linker might have skewed it. 2337 if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { 2338 if (opts::Verbosity >= 1) 2339 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; 2340 RType &= ~ELF::R_X86_64_converted_reloc_bit; 2341 } 2342 2343 if (Relocation::isTLS(RType)) { 2344 // No special handling required for TLS relocations on X86. 2345 if (BC->isX86()) 2346 continue; 2347 2348 // The non-got related TLS relocations on AArch64 also could be skipped. 2349 if (!Relocation::isGOT(RType)) 2350 continue; 2351 } 2352 2353 if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { 2354 LLVM_DEBUG( 2355 dbgs() << "BOLT-DEBUG: address 0x" 2356 << Twine::utohexstr(Rel.getOffset()) 2357 << " has a dynamic relocation against it. Ignoring static " 2358 "relocation.\n"); 2359 continue; 2360 } 2361 2362 std::string SymbolName; 2363 uint64_t SymbolAddress; 2364 int64_t Addend; 2365 uint64_t ExtractedValue; 2366 bool IsSectionRelocation; 2367 bool Skip; 2368 if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, 2369 SymbolAddress, Addend, ExtractedValue, Skip)) { 2370 LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " 2371 << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) 2372 << "; type name = " << TypeName << '\n'); 2373 ++NumFailedRelocations; 2374 continue; 2375 } 2376 2377 if (Skip) { 2378 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" 2379 << Twine::utohexstr(Rel.getOffset()) 2380 << "; type name = " << TypeName << '\n'); 2381 continue; 2382 } 2383 2384 const uint64_t Address = SymbolAddress + Addend; 2385 2386 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( 2387 Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); 2388 2389 BinaryFunction *ContainingBF = nullptr; 2390 if (IsFromCode) { 2391 ContainingBF = 2392 BC->getBinaryFunctionContainingAddress(Rel.getOffset(), 2393 /*CheckPastEnd*/ false, 2394 /*UseMaxSize*/ true); 2395 assert(ContainingBF && "cannot find function for address in code"); 2396 if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { 2397 if (opts::Verbosity >= 1) 2398 outs() << "BOLT-INFO: " << *ContainingBF 2399 << " has relocations in padding area\n"; 2400 ContainingBF->setSize(ContainingBF->getMaxSize()); 2401 ContainingBF->setSimple(false); 2402 continue; 2403 } 2404 } 2405 2406 MCSymbol *ReferencedSymbol = nullptr; 2407 if (!IsSectionRelocation) 2408 if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) 2409 ReferencedSymbol = BD->getSymbol(); 2410 2411 ErrorOr<BinarySection &> ReferencedSection = 2412 BC->getSectionForAddress(SymbolAddress); 2413 2414 const bool IsToCode = ReferencedSection && ReferencedSection->isText(); 2415 2416 // Special handling of PC-relative relocations. 2417 if (!IsAArch64 && Relocation::isPCRelative(RType)) { 2418 if (!IsFromCode && IsToCode) { 2419 // PC-relative relocations from data to code are tricky since the 2420 // original information is typically lost after linking, even with 2421 // '--emit-relocs'. Such relocations are normally used by PIC-style 2422 // jump tables and they reference both the jump table and jump 2423 // targets by computing the difference between the two. If we blindly 2424 // apply the relocation, it will appear that it references an arbitrary 2425 // location in the code, possibly in a different function from the one 2426 // containing the jump table. 2427 // 2428 // For that reason, we only register the fact that there is a 2429 // PC-relative relocation at a given address against the code. 2430 // The actual referenced label/address will be determined during jump 2431 // table analysis. 2432 BC->addPCRelativeDataRelocation(Rel.getOffset()); 2433 } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { 2434 // If we know the referenced symbol, register the relocation from 2435 // the code. It's required to properly handle cases where 2436 // "symbol + addend" references an object different from "symbol". 2437 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2438 Addend, ExtractedValue); 2439 } else { 2440 LLVM_DEBUG( 2441 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" 2442 << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName 2443 << "\n"); 2444 } 2445 2446 continue; 2447 } 2448 2449 bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); 2450 if (BC->isAArch64() && Relocation::isGOT(RType)) 2451 ForceRelocation = true; 2452 2453 if (!ReferencedSection && !ForceRelocation) { 2454 LLVM_DEBUG( 2455 dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); 2456 continue; 2457 } 2458 2459 // Occasionally we may see a reference past the last byte of the function 2460 // typically as a result of __builtin_unreachable(). Check it here. 2461 BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( 2462 Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); 2463 2464 if (!IsSectionRelocation) { 2465 if (BinaryFunction *BF = 2466 BC->getBinaryFunctionContainingAddress(SymbolAddress)) { 2467 if (BF != ReferencedBF) { 2468 // It's possible we are referencing a function without referencing any 2469 // code, e.g. when taking a bitmask action on a function address. 2470 errs() << "BOLT-WARNING: non-standard function reference (e.g. " 2471 "bitmask) detected against function " 2472 << *BF; 2473 if (IsFromCode) 2474 errs() << " from function " << *ContainingBF << '\n'; 2475 else 2476 errs() << " from data section at 0x" 2477 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2478 LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, 2479 ExtractedValue)); 2480 ReferencedBF = BF; 2481 } 2482 } 2483 } else if (ReferencedBF) { 2484 assert(ReferencedSection && "section expected for section relocation"); 2485 if (*ReferencedBF->getOriginSection() != *ReferencedSection) { 2486 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); 2487 ReferencedBF = nullptr; 2488 } 2489 } 2490 2491 // Workaround for a member function pointer de-virtualization bug. We check 2492 // if a non-pc-relative relocation in the code is pointing to (fptr - 1). 2493 if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && 2494 (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { 2495 if (const BinaryFunction *RogueBF = 2496 BC->getBinaryFunctionAtAddress(Address + 1)) { 2497 // Do an extra check that the function was referenced previously. 2498 // It's a linear search, but it should rarely happen. 2499 bool Found = false; 2500 for (const auto &RelKV : ContainingBF->Relocations) { 2501 const Relocation &Rel = RelKV.second; 2502 if (Rel.Symbol == RogueBF->getSymbol() && 2503 !Relocation::isPCRelative(Rel.Type)) { 2504 Found = true; 2505 break; 2506 } 2507 } 2508 2509 if (Found) { 2510 errs() << "BOLT-WARNING: detected possible compiler " 2511 "de-virtualization bug: -1 addend used with " 2512 "non-pc-relative relocation against function " 2513 << *RogueBF << " in function " << *ContainingBF << '\n'; 2514 continue; 2515 } 2516 } 2517 } 2518 2519 if (ForceRelocation) { 2520 std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; 2521 ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); 2522 SymbolAddress = 0; 2523 if (Relocation::isGOT(RType)) 2524 Addend = Address; 2525 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " 2526 << SymbolName << " with addend " << Addend << '\n'); 2527 } else if (ReferencedBF) { 2528 ReferencedSymbol = ReferencedBF->getSymbol(); 2529 uint64_t RefFunctionOffset = 0; 2530 2531 // Adjust the point of reference to a code location inside a function. 2532 if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { 2533 RefFunctionOffset = Address - ReferencedBF->getAddress(); 2534 if (RefFunctionOffset) { 2535 if (ContainingBF && ContainingBF != ReferencedBF) { 2536 ReferencedSymbol = 2537 ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); 2538 } else { 2539 ReferencedSymbol = 2540 ReferencedBF->getOrCreateLocalLabel(Address, 2541 /*CreatePastEnd =*/true); 2542 ReferencedBF->registerReferencedOffset(RefFunctionOffset); 2543 } 2544 if (opts::Verbosity > 1 && 2545 !BinarySection(*BC, RelocatedSection).isReadOnly()) 2546 errs() << "BOLT-WARNING: writable reference into the middle of " 2547 << "the function " << *ReferencedBF 2548 << " detected at address 0x" 2549 << Twine::utohexstr(Rel.getOffset()) << '\n'; 2550 } 2551 SymbolAddress = Address; 2552 Addend = 0; 2553 } 2554 LLVM_DEBUG( 2555 dbgs() << " referenced function " << *ReferencedBF; 2556 if (Address != ReferencedBF->getAddress()) 2557 dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); 2558 dbgs() << '\n' 2559 ); 2560 } else { 2561 if (IsToCode && SymbolAddress) { 2562 // This can happen e.g. with PIC-style jump tables. 2563 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " 2564 "relocation against code\n"); 2565 } 2566 2567 // In AArch64 there are zero reasons to keep a reference to the 2568 // "original" symbol plus addend. The original symbol is probably just a 2569 // section symbol. If we are here, this means we are probably accessing 2570 // data, so it is imperative to keep the original address. 2571 if (IsAArch64) { 2572 SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); 2573 SymbolAddress = Address; 2574 Addend = 0; 2575 } 2576 2577 if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { 2578 // Note: this assertion is trying to check sanity of BinaryData objects 2579 // but AArch64 has inferred and incomplete object locations coming from 2580 // GOT/TLS or any other non-trivial relocation (that requires creation 2581 // of sections and whose symbol address is not really what should be 2582 // encoded in the instruction). So we essentially disabled this check 2583 // for AArch64 and live with bogus names for objects. 2584 assert((IsAArch64 || IsSectionRelocation || 2585 BD->nameStartsWith(SymbolName) || 2586 BD->nameStartsWith("PG" + SymbolName) || 2587 (BD->nameStartsWith("ANONYMOUS") && 2588 (BD->getSectionName().startswith(".plt") || 2589 BD->getSectionName().endswith(".plt")))) && 2590 "BOLT symbol names of all non-section relocations must match " 2591 "up with symbol names referenced in the relocation"); 2592 2593 if (IsSectionRelocation) 2594 BC->markAmbiguousRelocations(*BD, Address); 2595 2596 ReferencedSymbol = BD->getSymbol(); 2597 Addend += (SymbolAddress - BD->getAddress()); 2598 SymbolAddress = BD->getAddress(); 2599 assert(Address == SymbolAddress + Addend); 2600 } else { 2601 // These are mostly local data symbols but undefined symbols 2602 // in relocation sections can get through here too, from .plt. 2603 assert( 2604 (IsAArch64 || IsSectionRelocation || 2605 BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && 2606 "known symbols should not resolve to anonymous locals"); 2607 2608 if (IsSectionRelocation) { 2609 ReferencedSymbol = 2610 BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); 2611 } else { 2612 SymbolRef Symbol = *Rel.getSymbol(); 2613 const uint64_t SymbolSize = 2614 IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); 2615 const uint64_t SymbolAlignment = 2616 IsAArch64 ? 1 : Symbol.getAlignment(); 2617 const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); 2618 std::string Name; 2619 if (SymbolFlags & SymbolRef::SF_Global) { 2620 Name = SymbolName; 2621 } else { 2622 if (StringRef(SymbolName) 2623 .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) 2624 Name = NR.uniquify("PG" + SymbolName); 2625 else 2626 Name = NR.uniquify(SymbolName); 2627 } 2628 ReferencedSymbol = BC->registerNameAtAddress( 2629 Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); 2630 } 2631 2632 if (IsSectionRelocation) { 2633 BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); 2634 BC->markAmbiguousRelocations(*BD, Address); 2635 } 2636 } 2637 } 2638 2639 auto checkMaxDataRelocations = [&]() { 2640 ++NumDataRelocations; 2641 if (opts::MaxDataRelocations && 2642 NumDataRelocations + 1 == opts::MaxDataRelocations) { 2643 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " 2644 << NumDataRelocations << ": "); 2645 printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, 2646 Addend, ExtractedValue); 2647 } 2648 2649 return (!opts::MaxDataRelocations || 2650 NumDataRelocations < opts::MaxDataRelocations); 2651 }; 2652 2653 if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || 2654 (opts::ForceToDataRelocations && checkMaxDataRelocations())) 2655 ForceRelocation = true; 2656 2657 if (IsFromCode) { 2658 ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, 2659 Addend, ExtractedValue); 2660 } else if (IsToCode || ForceRelocation) { 2661 BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, 2662 ExtractedValue); 2663 } else { 2664 LLVM_DEBUG( 2665 dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); 2666 } 2667 } 2668 } 2669 2670 void RewriteInstance::selectFunctionsToProcess() { 2671 // Extend the list of functions to process or skip from a file. 2672 auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, 2673 cl::list<std::string> &FunctionNames) { 2674 if (FunctionNamesFile.empty()) 2675 return; 2676 std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); 2677 std::string FuncName; 2678 while (std::getline(FuncsFile, FuncName)) 2679 FunctionNames.push_back(FuncName); 2680 }; 2681 populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); 2682 populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); 2683 populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); 2684 2685 // Make a set of functions to process to speed up lookups. 2686 std::unordered_set<std::string> ForceFunctionsNR( 2687 opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); 2688 2689 if ((!opts::ForceFunctionNames.empty() || 2690 !opts::ForceFunctionNamesNR.empty()) && 2691 !opts::SkipFunctionNames.empty()) { 2692 errs() << "BOLT-ERROR: cannot select functions to process and skip at the " 2693 "same time. Please use only one type of selection.\n"; 2694 exit(1); 2695 } 2696 2697 uint64_t LiteThresholdExecCount = 0; 2698 if (opts::LiteThresholdPct) { 2699 if (opts::LiteThresholdPct > 100) 2700 opts::LiteThresholdPct = 100; 2701 2702 std::vector<const BinaryFunction *> TopFunctions; 2703 for (auto &BFI : BC->getBinaryFunctions()) { 2704 const BinaryFunction &Function = BFI.second; 2705 if (ProfileReader->mayHaveProfileData(Function)) 2706 TopFunctions.push_back(&Function); 2707 } 2708 llvm::sort( 2709 TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { 2710 return A->getKnownExecutionCount() < B->getKnownExecutionCount(); 2711 }); 2712 2713 size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; 2714 if (Index) 2715 --Index; 2716 LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); 2717 outs() << "BOLT-INFO: limiting processing to functions with at least " 2718 << LiteThresholdExecCount << " invocations\n"; 2719 } 2720 LiteThresholdExecCount = std::max( 2721 LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); 2722 2723 uint64_t NumFunctionsToProcess = 0; 2724 auto shouldProcess = [&](const BinaryFunction &Function) { 2725 if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) 2726 return false; 2727 2728 // If the list is not empty, only process functions from the list. 2729 if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { 2730 // Regex check (-funcs and -funcs-file options). 2731 for (std::string &Name : opts::ForceFunctionNames) 2732 if (Function.hasNameRegex(Name)) 2733 return true; 2734 2735 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). 2736 Optional<StringRef> Match = 2737 Function.forEachName([&ForceFunctionsNR](StringRef Name) { 2738 return ForceFunctionsNR.count(Name.str()); 2739 }); 2740 return Match.hasValue(); 2741 } 2742 2743 for (std::string &Name : opts::SkipFunctionNames) 2744 if (Function.hasNameRegex(Name)) 2745 return false; 2746 2747 if (opts::Lite) { 2748 if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) 2749 return false; 2750 2751 if (Function.getKnownExecutionCount() < LiteThresholdExecCount) 2752 return false; 2753 } 2754 2755 return true; 2756 }; 2757 2758 for (auto &BFI : BC->getBinaryFunctions()) { 2759 BinaryFunction &Function = BFI.second; 2760 2761 // Pseudo functions are explicitly marked by us not to be processed. 2762 if (Function.isPseudo()) { 2763 Function.IsIgnored = true; 2764 Function.HasExternalRefRelocations = true; 2765 continue; 2766 } 2767 2768 if (!shouldProcess(Function)) { 2769 LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " 2770 << Function << " per user request\n"); 2771 Function.setIgnored(); 2772 } else { 2773 ++NumFunctionsToProcess; 2774 if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) 2775 outs() << "BOLT-INFO: processing ending on " << Function << '\n'; 2776 } 2777 } 2778 } 2779 2780 void RewriteInstance::readDebugInfo() { 2781 NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, 2782 TimerGroupDesc, opts::TimeRewrite); 2783 if (!opts::UpdateDebugSections) 2784 return; 2785 2786 BC->preprocessDebugInfo(); 2787 } 2788 2789 void RewriteInstance::preprocessProfileData() { 2790 if (!ProfileReader) 2791 return; 2792 2793 NamedRegionTimer T("preprocessprofile", "pre-process profile data", 2794 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2795 2796 outs() << "BOLT-INFO: pre-processing profile using " 2797 << ProfileReader->getReaderName() << '\n'; 2798 2799 if (BAT->enabledFor(InputFile)) { 2800 outs() << "BOLT-INFO: profile collection done on a binary already " 2801 "processed by BOLT\n"; 2802 ProfileReader->setBAT(&*BAT); 2803 } 2804 2805 if (Error E = ProfileReader->preprocessProfile(*BC.get())) 2806 report_error("cannot pre-process profile", std::move(E)); 2807 2808 if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && 2809 !opts::AllowStripped) { 2810 errs() << "BOLT-ERROR: input binary does not have local file symbols " 2811 "but profile data includes function names with embedded file " 2812 "names. It appears that the input binary was stripped while a " 2813 "profiled binary was not. If you know what you are doing and " 2814 "wish to proceed, use -allow-stripped option.\n"; 2815 exit(1); 2816 } 2817 } 2818 2819 void RewriteInstance::processProfileDataPreCFG() { 2820 if (!ProfileReader) 2821 return; 2822 2823 NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", 2824 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2825 2826 if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) 2827 report_error("cannot read profile pre-CFG", std::move(E)); 2828 } 2829 2830 void RewriteInstance::processProfileData() { 2831 if (!ProfileReader) 2832 return; 2833 2834 NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, 2835 TimerGroupDesc, opts::TimeRewrite); 2836 2837 if (Error E = ProfileReader->readProfile(*BC.get())) 2838 report_error("cannot read profile", std::move(E)); 2839 2840 if (!opts::SaveProfile.empty()) { 2841 YAMLProfileWriter PW(opts::SaveProfile); 2842 PW.writeProfile(*this); 2843 } 2844 2845 // Release memory used by profile reader. 2846 ProfileReader.reset(); 2847 2848 if (opts::AggregateOnly) 2849 exit(0); 2850 } 2851 2852 void RewriteInstance::disassembleFunctions() { 2853 NamedRegionTimer T("disassembleFunctions", "disassemble functions", 2854 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 2855 for (auto &BFI : BC->getBinaryFunctions()) { 2856 BinaryFunction &Function = BFI.second; 2857 2858 ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); 2859 if (!FunctionData) { 2860 errs() << "BOLT-ERROR: corresponding section is non-executable or " 2861 << "empty for function " << Function << '\n'; 2862 exit(1); 2863 } 2864 2865 // Treat zero-sized functions as non-simple ones. 2866 if (Function.getSize() == 0) { 2867 Function.setSimple(false); 2868 continue; 2869 } 2870 2871 // Offset of the function in the file. 2872 const auto *FileBegin = 2873 reinterpret_cast<const uint8_t *>(InputFile->getData().data()); 2874 Function.setFileOffset(FunctionData->begin() - FileBegin); 2875 2876 if (!shouldDisassemble(Function)) { 2877 NamedRegionTimer T("scan", "scan functions", "buildfuncs", 2878 "Scan Binary Functions", opts::TimeBuild); 2879 Function.scanExternalRefs(); 2880 Function.setSimple(false); 2881 continue; 2882 } 2883 2884 if (!Function.disassemble()) { 2885 if (opts::processAllFunctions()) 2886 BC->exitWithBugReport("function cannot be properly disassembled. " 2887 "Unable to continue in relocation mode.", 2888 Function); 2889 if (opts::Verbosity >= 1) 2890 outs() << "BOLT-INFO: could not disassemble function " << Function 2891 << ". Will ignore.\n"; 2892 // Forcefully ignore the function. 2893 Function.setIgnored(); 2894 continue; 2895 } 2896 2897 if (opts::PrintAll || opts::PrintDisasm) 2898 Function.print(outs(), "after disassembly", true); 2899 } 2900 2901 BC->processInterproceduralReferences(); 2902 BC->populateJumpTables(); 2903 2904 for (auto &BFI : BC->getBinaryFunctions()) { 2905 BinaryFunction &Function = BFI.second; 2906 2907 if (!shouldDisassemble(Function)) 2908 continue; 2909 2910 Function.postProcessEntryPoints(); 2911 Function.postProcessJumpTables(); 2912 } 2913 2914 BC->clearJumpTableTempData(); 2915 BC->adjustCodePadding(); 2916 2917 for (auto &BFI : BC->getBinaryFunctions()) { 2918 BinaryFunction &Function = BFI.second; 2919 2920 if (!shouldDisassemble(Function)) 2921 continue; 2922 2923 if (!Function.isSimple()) { 2924 assert((!BC->HasRelocations || Function.getSize() == 0 || 2925 Function.hasIndirectTargetToSplitFragment()) && 2926 "unexpected non-simple function in relocation mode"); 2927 continue; 2928 } 2929 2930 // Fill in CFI information for this function 2931 if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { 2932 if (BC->HasRelocations) { 2933 BC->exitWithBugReport("unable to fill CFI.", Function); 2934 } else { 2935 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function 2936 << ". Skipping.\n"; 2937 Function.setSimple(false); 2938 continue; 2939 } 2940 } 2941 2942 // Parse LSDA. 2943 if (Function.getLSDAAddress() != 0 && 2944 !BC->getFragmentsToSkip().count(&Function)) 2945 Function.parseLSDA(getLSDAData(), getLSDAAddress()); 2946 } 2947 } 2948 2949 void RewriteInstance::buildFunctionsCFG() { 2950 NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", 2951 "Build Binary Functions", opts::TimeBuild); 2952 2953 // Create annotation indices to allow lock-free execution 2954 BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); 2955 BC->MIB->getOrCreateAnnotationIndex("NOP"); 2956 BC->MIB->getOrCreateAnnotationIndex("Size"); 2957 2958 ParallelUtilities::WorkFuncWithAllocTy WorkFun = 2959 [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { 2960 if (!BF.buildCFG(AllocId)) 2961 return; 2962 2963 if (opts::PrintAll) { 2964 auto L = BC->scopeLock(); 2965 BF.print(outs(), "while building cfg", true); 2966 } 2967 }; 2968 2969 ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { 2970 return !shouldDisassemble(BF) || !BF.isSimple(); 2971 }; 2972 2973 ParallelUtilities::runOnEachFunctionWithUniqueAllocId( 2974 *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, 2975 SkipPredicate, "disassembleFunctions-buildCFG", 2976 /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); 2977 2978 BC->postProcessSymbolTable(); 2979 } 2980 2981 void RewriteInstance::postProcessFunctions() { 2982 // We mark fragments as non-simple here, not during disassembly, 2983 // So we can build their CFGs. 2984 BC->skipMarkedFragments(); 2985 BC->clearFragmentsToSkip(); 2986 2987 BC->TotalScore = 0; 2988 BC->SumExecutionCount = 0; 2989 for (auto &BFI : BC->getBinaryFunctions()) { 2990 BinaryFunction &Function = BFI.second; 2991 2992 if (Function.empty()) 2993 continue; 2994 2995 Function.postProcessCFG(); 2996 2997 if (opts::PrintAll || opts::PrintCFG) 2998 Function.print(outs(), "after building cfg", true); 2999 3000 if (opts::DumpDotAll) 3001 Function.dumpGraphForPass("00_build-cfg"); 3002 3003 if (opts::PrintLoopInfo) { 3004 Function.calculateLoopInfo(); 3005 Function.printLoopInfo(outs()); 3006 } 3007 3008 BC->TotalScore += Function.getFunctionScore(); 3009 BC->SumExecutionCount += Function.getKnownExecutionCount(); 3010 } 3011 3012 if (opts::PrintGlobals) { 3013 outs() << "BOLT-INFO: Global symbols:\n"; 3014 BC->printGlobalSymbols(outs()); 3015 } 3016 } 3017 3018 void RewriteInstance::runOptimizationPasses() { 3019 NamedRegionTimer T("runOptimizationPasses", "run optimization passes", 3020 TimerGroupName, TimerGroupDesc, opts::TimeRewrite); 3021 BinaryFunctionPassManager::runAllPasses(*BC); 3022 } 3023 3024 namespace { 3025 3026 class BOLTSymbolResolver : public JITSymbolResolver { 3027 BinaryContext &BC; 3028 3029 public: 3030 BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} 3031 3032 // We are responsible for all symbols 3033 Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { 3034 return Symbols; 3035 } 3036 3037 // Some of our symbols may resolve to zero and this should not be an error 3038 bool allowsZeroSymbols() override { return true; } 3039 3040 /// Resolves the address of each symbol requested 3041 void lookup(const LookupSet &Symbols, 3042 OnResolvedFunction OnResolved) override { 3043 JITSymbolResolver::LookupResult AllResults; 3044 3045 if (BC.EFMM->ObjectsLoaded) { 3046 for (const StringRef &Symbol : Symbols) { 3047 std::string SymName = Symbol.str(); 3048 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3049 // Resolve to a PLT entry if possible 3050 if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) { 3051 AllResults[Symbol] = 3052 JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); 3053 continue; 3054 } 3055 OnResolved(make_error<StringError>( 3056 "Symbol not found required by runtime: " + Symbol, 3057 inconvertibleErrorCode())); 3058 return; 3059 } 3060 OnResolved(std::move(AllResults)); 3061 return; 3062 } 3063 3064 for (const StringRef &Symbol : Symbols) { 3065 std::string SymName = Symbol.str(); 3066 LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); 3067 3068 if (BinaryData *I = BC.getBinaryDataByName(SymName)) { 3069 uint64_t Address = I->isMoved() && !I->isJumpTable() 3070 ? I->getOutputAddress() 3071 : I->getAddress(); 3072 LLVM_DEBUG(dbgs() << "Resolved to address 0x" 3073 << Twine::utohexstr(Address) << "\n"); 3074 AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); 3075 continue; 3076 } 3077 LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); 3078 AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); 3079 } 3080 3081 OnResolved(std::move(AllResults)); 3082 } 3083 }; 3084 3085 } // anonymous namespace 3086 3087 void RewriteInstance::emitAndLink() { 3088 NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, 3089 TimerGroupDesc, opts::TimeRewrite); 3090 std::error_code EC; 3091 3092 // This is an object file, which we keep for debugging purposes. 3093 // Once we decide it's useless, we should create it in memory. 3094 SmallString<128> OutObjectPath; 3095 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); 3096 std::unique_ptr<ToolOutputFile> TempOut = 3097 std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); 3098 check_error(EC, "cannot create output object file"); 3099 3100 std::unique_ptr<buffer_ostream> BOS = 3101 std::make_unique<buffer_ostream>(TempOut->os()); 3102 raw_pwrite_stream *OS = BOS.get(); 3103 3104 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) 3105 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these 3106 // two instances. 3107 std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); 3108 3109 if (EHFrameSection) { 3110 if (opts::UseOldText || opts::StrictMode) { 3111 // The section is going to be regenerated from scratch. 3112 // Empty the contents, but keep the section reference. 3113 EHFrameSection->clearContents(); 3114 } else { 3115 // Make .eh_frame relocatable. 3116 relocateEHFrameSection(); 3117 } 3118 } 3119 3120 emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); 3121 3122 Streamer->finish(); 3123 if (Streamer->getContext().hadError()) { 3124 errs() << "BOLT-ERROR: Emission failed.\n"; 3125 exit(1); 3126 } 3127 3128 ////////////////////////////////////////////////////////////////////////////// 3129 // Assign addresses to new sections. 3130 ////////////////////////////////////////////////////////////////////////////// 3131 3132 // Get output object as ObjectFile. 3133 std::unique_ptr<MemoryBuffer> ObjectMemBuffer = 3134 MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); 3135 std::unique_ptr<object::ObjectFile> Obj = cantFail( 3136 object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), 3137 "error creating in-memory object"); 3138 3139 BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); 3140 3141 MCAsmLayout FinalLayout( 3142 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); 3143 3144 RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); 3145 RTDyld->setProcessAllSections(false); 3146 RTDyld->loadObject(*Obj); 3147 3148 // Assign addresses to all sections. If key corresponds to the object 3149 // created by ourselves, call our regular mapping function. If we are 3150 // loading additional objects as part of runtime libraries for 3151 // instrumentation, treat them as extra sections. 3152 mapFileSections(*RTDyld); 3153 3154 RTDyld->finalizeWithMemoryManagerLocking(); 3155 if (RTDyld->hasError()) { 3156 errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; 3157 exit(1); 3158 } 3159 3160 // Update output addresses based on the new section map and 3161 // layout. Only do this for the object created by ourselves. 3162 updateOutputValues(FinalLayout); 3163 3164 if (opts::UpdateDebugSections) 3165 DebugInfoRewriter->updateLineTableOffsets(FinalLayout); 3166 3167 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3168 RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { 3169 this->mapExtraSections(*RTDyld); 3170 }); 3171 3172 // Once the code is emitted, we can rename function sections to actual 3173 // output sections and de-register sections used for emission. 3174 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 3175 ErrorOr<BinarySection &> Section = Function->getCodeSection(); 3176 if (Section && 3177 (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) 3178 continue; 3179 3180 // Restore origin section for functions that were emitted or supposed to 3181 // be emitted to patch sections. 3182 if (Section) 3183 BC->deregisterSection(*Section); 3184 assert(Function->getOriginSectionName() && "expected origin section"); 3185 Function->CodeSectionName = std::string(*Function->getOriginSectionName()); 3186 if (Function->isSplit()) { 3187 if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) 3188 BC->deregisterSection(*ColdSection); 3189 Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); 3190 } 3191 } 3192 3193 if (opts::PrintCacheMetrics) { 3194 outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; 3195 CacheMetrics::printAll(BC->getSortedFunctions()); 3196 } 3197 3198 if (opts::KeepTmp) { 3199 TempOut->keep(); 3200 outs() << "BOLT-INFO: intermediary output object file saved for debugging " 3201 "purposes: " 3202 << OutObjectPath << "\n"; 3203 } 3204 } 3205 3206 void RewriteInstance::updateMetadata() { 3207 updateSDTMarkers(); 3208 updateLKMarkers(); 3209 parsePseudoProbe(); 3210 updatePseudoProbes(); 3211 3212 if (opts::UpdateDebugSections) { 3213 NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, 3214 TimerGroupDesc, opts::TimeRewrite); 3215 DebugInfoRewriter->updateDebugInfo(); 3216 } 3217 3218 if (opts::WriteBoltInfoSection) 3219 addBoltInfoSection(); 3220 } 3221 3222 void RewriteInstance::updatePseudoProbes() { 3223 // check if there is pseudo probe section decoded 3224 if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) 3225 return; 3226 // input address converted to output 3227 AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); 3228 const GUIDProbeFunctionMap &GUID2Func = 3229 BC->ProbeDecoder.getGUID2FuncDescMap(); 3230 3231 for (auto &AP : Address2ProbesMap) { 3232 BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); 3233 // If F is removed, eliminate all probes inside it from inline tree 3234 // Setting probes' addresses as INT64_MAX means elimination 3235 if (!F) { 3236 for (MCDecodedPseudoProbe &Probe : AP.second) 3237 Probe.setAddress(INT64_MAX); 3238 continue; 3239 } 3240 // If F is not emitted, the function will remain in the same address as its 3241 // input 3242 if (!F->isEmitted()) 3243 continue; 3244 3245 uint64_t Offset = AP.first - F->getAddress(); 3246 const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); 3247 uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; 3248 // Check if block output address is defined. 3249 // If not, such block is removed from binary. Then remove the probes from 3250 // inline tree 3251 if (BlkOutputAddress == 0) { 3252 for (MCDecodedPseudoProbe &Probe : AP.second) 3253 Probe.setAddress(INT64_MAX); 3254 continue; 3255 } 3256 3257 unsigned ProbeTrack = AP.second.size(); 3258 std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); 3259 while (ProbeTrack != 0) { 3260 if (Probe->isBlock()) { 3261 Probe->setAddress(BlkOutputAddress); 3262 } else if (Probe->isCall()) { 3263 // A call probe may be duplicated due to ICP 3264 // Go through output of InputOffsetToAddressMap to collect all related 3265 // probes 3266 const InputOffsetToAddressMapTy &Offset2Addr = 3267 F->getInputOffsetToAddressMap(); 3268 auto CallOutputAddresses = Offset2Addr.equal_range(Offset); 3269 auto CallOutputAddress = CallOutputAddresses.first; 3270 if (CallOutputAddress == CallOutputAddresses.second) { 3271 Probe->setAddress(INT64_MAX); 3272 } else { 3273 Probe->setAddress(CallOutputAddress->second); 3274 CallOutputAddress = std::next(CallOutputAddress); 3275 } 3276 3277 while (CallOutputAddress != CallOutputAddresses.second) { 3278 AP.second.push_back(*Probe); 3279 AP.second.back().setAddress(CallOutputAddress->second); 3280 Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); 3281 CallOutputAddress = std::next(CallOutputAddress); 3282 } 3283 } 3284 Probe = std::next(Probe); 3285 ProbeTrack--; 3286 } 3287 } 3288 3289 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3290 opts::PrintPseudoProbes == 3291 opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { 3292 outs() << "Pseudo Probe Address Conversion results:\n"; 3293 // table that correlates address to block 3294 std::unordered_map<uint64_t, StringRef> Addr2BlockNames; 3295 for (auto &F : BC->getBinaryFunctions()) 3296 for (BinaryBasicBlock &BinaryBlock : F.second) 3297 Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = 3298 BinaryBlock.getName(); 3299 3300 // scan all addresses -> correlate probe to block when print out 3301 std::vector<uint64_t> Addresses; 3302 for (auto &Entry : Address2ProbesMap) 3303 Addresses.push_back(Entry.first); 3304 llvm::sort(Addresses); 3305 for (uint64_t Key : Addresses) { 3306 for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { 3307 if (Probe.getAddress() == INT64_MAX) 3308 outs() << "Deleted Probe: "; 3309 else 3310 outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; 3311 Probe.print(outs(), GUID2Func, true); 3312 // print block name only if the probe is block type and undeleted. 3313 if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) 3314 outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " 3315 << Addr2BlockNames[Probe.getAddress()] << "\n"; 3316 } 3317 } 3318 outs() << "=======================================\n"; 3319 } 3320 3321 // encode pseudo probes with updated addresses 3322 encodePseudoProbes(); 3323 } 3324 3325 template <typename F> 3326 static void emitLEB128IntValue(F encode, uint64_t Value, 3327 SmallString<8> &Contents) { 3328 SmallString<128> Tmp; 3329 raw_svector_ostream OSE(Tmp); 3330 encode(Value, OSE); 3331 Contents.append(OSE.str().begin(), OSE.str().end()); 3332 } 3333 3334 void RewriteInstance::encodePseudoProbes() { 3335 // Buffer for new pseudo probes section 3336 SmallString<8> Contents; 3337 MCDecodedPseudoProbe *LastProbe = nullptr; 3338 3339 auto EmitInt = [&](uint64_t Value, uint32_t Size) { 3340 const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); 3341 uint64_t Swapped = support::endian::byte_swap( 3342 Value, IsLittleEndian ? support::little : support::big); 3343 unsigned Index = IsLittleEndian ? 0 : 8 - Size; 3344 auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); 3345 Contents.append(Entry.begin(), Entry.end()); 3346 }; 3347 3348 auto EmitULEB128IntValue = [&](uint64_t Value) { 3349 SmallString<128> Tmp; 3350 raw_svector_ostream OSE(Tmp); 3351 encodeULEB128(Value, OSE, 0); 3352 Contents.append(OSE.str().begin(), OSE.str().end()); 3353 }; 3354 3355 auto EmitSLEB128IntValue = [&](int64_t Value) { 3356 SmallString<128> Tmp; 3357 raw_svector_ostream OSE(Tmp); 3358 encodeSLEB128(Value, OSE); 3359 Contents.append(OSE.str().begin(), OSE.str().end()); 3360 }; 3361 3362 // Emit indiviual pseudo probes in a inline tree node 3363 // Probe index, type, attribute, address type and address are encoded 3364 // Address of the first probe is absolute. 3365 // Other probes' address are represented by delta 3366 auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { 3367 EmitULEB128IntValue(CurProbe->getIndex()); 3368 uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); 3369 uint8_t Flag = 3370 LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; 3371 EmitInt(Flag | PackedType, 1); 3372 if (LastProbe) { 3373 // Emit the delta between the address label and LastProbe. 3374 int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); 3375 EmitSLEB128IntValue(Delta); 3376 } else { 3377 // Emit absolute address for encoding the first pseudo probe. 3378 uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); 3379 EmitInt(CurProbe->getAddress(), AddrSize); 3380 } 3381 }; 3382 3383 std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, 3384 std::greater<InlineSite>> 3385 Inlinees; 3386 3387 // DFS of inline tree to emit pseudo probes in all tree node 3388 // Inline site index of a probe is emitted first. 3389 // Then tree node Guid, size of pseudo probes and children nodes, and detail 3390 // of contained probes are emitted Deleted probes are skipped Root node is not 3391 // encoded to binaries. It's a "wrapper" of inline trees of each function. 3392 std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; 3393 const MCDecodedPseudoProbeInlineTree &Root = 3394 BC->ProbeDecoder.getDummyInlineRoot(); 3395 for (auto Child = Root.getChildren().begin(); 3396 Child != Root.getChildren().end(); ++Child) 3397 Inlinees[Child->first] = Child->second.get(); 3398 3399 for (auto Inlinee : Inlinees) 3400 // INT64_MAX is "placeholder" of unused callsite index field in the pair 3401 NextNodes.push_back({INT64_MAX, Inlinee.second}); 3402 3403 Inlinees.clear(); 3404 3405 while (!NextNodes.empty()) { 3406 uint64_t ProbeIndex = NextNodes.back().first; 3407 MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; 3408 NextNodes.pop_back(); 3409 3410 if (Cur->Parent && !Cur->Parent->isRoot()) 3411 // Emit probe inline site 3412 EmitULEB128IntValue(ProbeIndex); 3413 3414 // Emit probes grouped by GUID. 3415 LLVM_DEBUG({ 3416 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3417 dbgs() << "GUID: " << Cur->Guid << "\n"; 3418 }); 3419 // Emit Guid 3420 EmitInt(Cur->Guid, 8); 3421 // Emit number of probes in this node 3422 uint64_t Deleted = 0; 3423 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) 3424 if (Probe->getAddress() == INT64_MAX) 3425 Deleted++; 3426 LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); 3427 uint64_t ProbesSize = Cur->getProbes().size() - Deleted; 3428 EmitULEB128IntValue(ProbesSize); 3429 // Emit number of direct inlinees 3430 EmitULEB128IntValue(Cur->getChildren().size()); 3431 // Emit probes in this group 3432 for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { 3433 if (Probe->getAddress() == INT64_MAX) 3434 continue; 3435 EmitDecodedPseudoProbe(Probe); 3436 LastProbe = Probe; 3437 } 3438 3439 for (auto Child = Cur->getChildren().begin(); 3440 Child != Cur->getChildren().end(); ++Child) 3441 Inlinees[Child->first] = Child->second.get(); 3442 for (const auto &Inlinee : Inlinees) { 3443 assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); 3444 NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); 3445 LLVM_DEBUG({ 3446 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); 3447 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; 3448 }); 3449 } 3450 Inlinees.clear(); 3451 } 3452 3453 // Create buffer for new contents for the section 3454 // Freed when parent section is destroyed 3455 uint8_t *Output = new uint8_t[Contents.str().size()]; 3456 memcpy(Output, Contents.str().data(), Contents.str().size()); 3457 addToDebugSectionsToOverwrite(".pseudo_probe"); 3458 BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), 3459 PseudoProbeSection->getELFFlags(), Output, 3460 Contents.str().size(), 1); 3461 if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || 3462 opts::PrintPseudoProbes == 3463 opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { 3464 // create a dummy decoder; 3465 MCPseudoProbeDecoder DummyDecoder; 3466 StringRef DescContents = PseudoProbeDescSection->getContents(); 3467 DummyDecoder.buildGUID2FuncDescMap( 3468 reinterpret_cast<const uint8_t *>(DescContents.data()), 3469 DescContents.size()); 3470 StringRef ProbeContents = PseudoProbeSection->getOutputContents(); 3471 DummyDecoder.buildAddress2ProbeMap( 3472 reinterpret_cast<const uint8_t *>(ProbeContents.data()), 3473 ProbeContents.size()); 3474 DummyDecoder.printProbesForAllAddresses(outs()); 3475 } 3476 } 3477 3478 void RewriteInstance::updateSDTMarkers() { 3479 NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, 3480 TimerGroupDesc, opts::TimeRewrite); 3481 3482 if (!SDTSection) 3483 return; 3484 SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3485 3486 SimpleBinaryPatcher *SDTNotePatcher = 3487 static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); 3488 for (auto &SDTInfoKV : BC->SDTMarkers) { 3489 const uint64_t OriginalAddress = SDTInfoKV.first; 3490 SDTMarkerInfo &SDTInfo = SDTInfoKV.second; 3491 const BinaryFunction *F = 3492 BC->getBinaryFunctionContainingAddress(OriginalAddress); 3493 if (!F) 3494 continue; 3495 const uint64_t NewAddress = 3496 F->translateInputToOutputAddress(OriginalAddress); 3497 SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); 3498 } 3499 } 3500 3501 void RewriteInstance::updateLKMarkers() { 3502 if (BC->LKMarkers.size() == 0) 3503 return; 3504 3505 NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, 3506 TimerGroupDesc, opts::TimeRewrite); 3507 3508 std::unordered_map<std::string, uint64_t> PatchCounts; 3509 for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> 3510 &LKMarkerInfoKV : BC->LKMarkers) { 3511 const uint64_t OriginalAddress = LKMarkerInfoKV.first; 3512 const BinaryFunction *BF = 3513 BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); 3514 if (!BF) 3515 continue; 3516 3517 uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); 3518 if (NewAddress == 0) 3519 continue; 3520 3521 // Apply base address. 3522 if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) 3523 NewAddress = NewAddress + 0xffffffff00000000; 3524 3525 if (OriginalAddress == NewAddress) 3526 continue; 3527 3528 for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { 3529 StringRef SectionName = LKMarkerInfo.SectionName; 3530 SimpleBinaryPatcher *LKPatcher; 3531 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 3532 assert(BSec && "missing section info for kernel section"); 3533 if (!BSec->getPatcher()) 3534 BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); 3535 LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); 3536 PatchCounts[std::string(SectionName)]++; 3537 if (LKMarkerInfo.IsPCRelative) 3538 LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, 3539 NewAddress - OriginalAddress + 3540 LKMarkerInfo.PCRelativeOffset); 3541 else 3542 LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); 3543 } 3544 } 3545 outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " 3546 "section are as follows:\n"; 3547 for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) 3548 outs() << " Section: " << KV.first << ", patch-counts: " << KV.second 3549 << '\n'; 3550 } 3551 3552 void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { 3553 mapCodeSections(RTDyld); 3554 mapDataSections(RTDyld); 3555 } 3556 3557 std::vector<BinarySection *> RewriteInstance::getCodeSections() { 3558 std::vector<BinarySection *> CodeSections; 3559 for (BinarySection &Section : BC->textSections()) 3560 if (Section.hasValidSectionID()) 3561 CodeSections.emplace_back(&Section); 3562 3563 auto compareSections = [&](const BinarySection *A, const BinarySection *B) { 3564 // Place movers before anything else. 3565 if (A->getName() == BC->getHotTextMoverSectionName()) 3566 return true; 3567 if (B->getName() == BC->getHotTextMoverSectionName()) 3568 return false; 3569 3570 // Depending on the option, put main text at the beginning or at the end. 3571 if (opts::HotFunctionsAtEnd) 3572 return B->getName() == BC->getMainCodeSectionName(); 3573 else 3574 return A->getName() == BC->getMainCodeSectionName(); 3575 }; 3576 3577 // Determine the order of sections. 3578 llvm::stable_sort(CodeSections, compareSections); 3579 3580 return CodeSections; 3581 } 3582 3583 void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { 3584 if (BC->HasRelocations) { 3585 ErrorOr<BinarySection &> TextSection = 3586 BC->getUniqueSectionByName(BC->getMainCodeSectionName()); 3587 assert(TextSection && ".text section not found in output"); 3588 assert(TextSection->hasValidSectionID() && ".text section should be valid"); 3589 3590 // Map sections for functions with pre-assigned addresses. 3591 for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { 3592 const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); 3593 if (!OutputAddress) 3594 continue; 3595 3596 ErrorOr<BinarySection &> FunctionSection = 3597 InjectedFunction->getCodeSection(); 3598 assert(FunctionSection && "function should have section"); 3599 FunctionSection->setOutputAddress(OutputAddress); 3600 RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), 3601 OutputAddress); 3602 InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); 3603 InjectedFunction->setImageSize(FunctionSection->getOutputSize()); 3604 } 3605 3606 // Populate the list of sections to be allocated. 3607 std::vector<BinarySection *> CodeSections = getCodeSections(); 3608 3609 // Remove sections that were pre-allocated (patch sections). 3610 llvm::erase_if(CodeSections, [](BinarySection *Section) { 3611 return Section->getOutputAddress(); 3612 }); 3613 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; 3614 for (const BinarySection *Section : CodeSections) 3615 dbgs() << Section->getName() << '\n'; 3616 ); 3617 3618 uint64_t PaddingSize = 0; // size of padding required at the end 3619 3620 // Allocate sections starting at a given Address. 3621 auto allocateAt = [&](uint64_t Address) { 3622 for (BinarySection *Section : CodeSections) { 3623 Address = alignTo(Address, Section->getAlignment()); 3624 Section->setOutputAddress(Address); 3625 Address += Section->getOutputSize(); 3626 } 3627 3628 // Make sure we allocate enough space for huge pages. 3629 if (opts::HotText) { 3630 uint64_t HotTextEnd = 3631 TextSection->getOutputAddress() + TextSection->getOutputSize(); 3632 HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); 3633 if (HotTextEnd > Address) { 3634 PaddingSize = HotTextEnd - Address; 3635 Address = HotTextEnd; 3636 } 3637 } 3638 return Address; 3639 }; 3640 3641 // Check if we can fit code in the original .text 3642 bool AllocationDone = false; 3643 if (opts::UseOldText) { 3644 const uint64_t CodeSize = 3645 allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; 3646 3647 if (CodeSize <= BC->OldTextSectionSize) { 3648 outs() << "BOLT-INFO: using original .text for new code with 0x" 3649 << Twine::utohexstr(opts::AlignText) << " alignment\n"; 3650 AllocationDone = true; 3651 } else { 3652 errs() << "BOLT-WARNING: original .text too small to fit the new code" 3653 << " using 0x" << Twine::utohexstr(opts::AlignText) 3654 << " alignment. " << CodeSize << " bytes needed, have " 3655 << BC->OldTextSectionSize << " bytes available.\n"; 3656 opts::UseOldText = false; 3657 } 3658 } 3659 3660 if (!AllocationDone) 3661 NextAvailableAddress = allocateAt(NextAvailableAddress); 3662 3663 // Do the mapping for ORC layer based on the allocation. 3664 for (BinarySection *Section : CodeSections) { 3665 LLVM_DEBUG( 3666 dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" 3667 << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" 3668 << Twine::utohexstr(Section->getOutputAddress()) << '\n'); 3669 RTDyld.reassignSectionAddress(Section->getSectionID(), 3670 Section->getOutputAddress()); 3671 Section->setOutputFileOffset( 3672 getFileOffsetForAddress(Section->getOutputAddress())); 3673 } 3674 3675 // Check if we need to insert a padding section for hot text. 3676 if (PaddingSize && !opts::UseOldText) 3677 outs() << "BOLT-INFO: padding code to 0x" 3678 << Twine::utohexstr(NextAvailableAddress) 3679 << " to accommodate hot text\n"; 3680 3681 return; 3682 } 3683 3684 // Processing in non-relocation mode. 3685 uint64_t NewTextSectionStartAddress = NextAvailableAddress; 3686 3687 for (auto &BFI : BC->getBinaryFunctions()) { 3688 BinaryFunction &Function = BFI.second; 3689 if (!Function.isEmitted()) 3690 continue; 3691 3692 bool TooLarge = false; 3693 ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); 3694 assert(FuncSection && "cannot find section for function"); 3695 FuncSection->setOutputAddress(Function.getAddress()); 3696 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" 3697 << Twine::utohexstr(FuncSection->getAllocAddress()) 3698 << " to 0x" << Twine::utohexstr(Function.getAddress()) 3699 << '\n'); 3700 RTDyld.reassignSectionAddress(FuncSection->getSectionID(), 3701 Function.getAddress()); 3702 Function.setImageAddress(FuncSection->getAllocAddress()); 3703 Function.setImageSize(FuncSection->getOutputSize()); 3704 if (Function.getImageSize() > Function.getMaxSize()) { 3705 TooLarge = true; 3706 FailedAddresses.emplace_back(Function.getAddress()); 3707 } 3708 3709 // Map jump tables if updating in-place. 3710 if (opts::JumpTables == JTS_BASIC) { 3711 for (auto &JTI : Function.JumpTables) { 3712 JumpTable *JT = JTI.second; 3713 BinarySection &Section = JT->getOutputSection(); 3714 Section.setOutputAddress(JT->getAddress()); 3715 Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); 3716 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() 3717 << " to 0x" << Twine::utohexstr(JT->getAddress()) 3718 << '\n'); 3719 RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); 3720 } 3721 } 3722 3723 if (!Function.isSplit()) 3724 continue; 3725 3726 ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); 3727 assert(ColdSection && "cannot find section for cold part"); 3728 // Cold fragments are aligned at 16 bytes. 3729 NextAvailableAddress = alignTo(NextAvailableAddress, 16); 3730 BinaryFunction::FragmentInfo &ColdPart = Function.cold(); 3731 if (TooLarge) { 3732 // The corresponding FDE will refer to address 0. 3733 ColdPart.setAddress(0); 3734 ColdPart.setImageAddress(0); 3735 ColdPart.setImageSize(0); 3736 ColdPart.setFileOffset(0); 3737 } else { 3738 ColdPart.setAddress(NextAvailableAddress); 3739 ColdPart.setImageAddress(ColdSection->getAllocAddress()); 3740 ColdPart.setImageSize(ColdSection->getOutputSize()); 3741 ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3742 ColdSection->setOutputAddress(ColdPart.getAddress()); 3743 } 3744 3745 LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" 3746 << Twine::utohexstr(ColdPart.getImageAddress()) 3747 << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) 3748 << " with size " 3749 << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); 3750 RTDyld.reassignSectionAddress(ColdSection->getSectionID(), 3751 ColdPart.getAddress()); 3752 3753 NextAvailableAddress += ColdPart.getImageSize(); 3754 } 3755 3756 // Add the new text section aggregating all existing code sections. 3757 // This is pseudo-section that serves a purpose of creating a corresponding 3758 // entry in section header table. 3759 int64_t NewTextSectionSize = 3760 NextAvailableAddress - NewTextSectionStartAddress; 3761 if (NewTextSectionSize) { 3762 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 3763 /*IsText=*/true, 3764 /*IsAllocatable=*/true); 3765 BinarySection &Section = 3766 BC->registerOrUpdateSection(getBOLTTextSectionName(), 3767 ELF::SHT_PROGBITS, 3768 Flags, 3769 /*Data=*/nullptr, 3770 NewTextSectionSize, 3771 16); 3772 Section.setOutputAddress(NewTextSectionStartAddress); 3773 Section.setOutputFileOffset( 3774 getFileOffsetForAddress(NewTextSectionStartAddress)); 3775 } 3776 } 3777 3778 void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { 3779 // Map special sections to their addresses in the output image. 3780 // These are the sections that we generate via MCStreamer. 3781 // The order is important. 3782 std::vector<std::string> Sections = { 3783 ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), 3784 ".gcc_except_table", ".rodata", ".rodata.cold"}; 3785 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 3786 RtLibrary->addRuntimeLibSections(Sections); 3787 3788 for (std::string &SectionName : Sections) { 3789 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 3790 if (!Section || !Section->isAllocatable() || !Section->isFinalized()) 3791 continue; 3792 NextAvailableAddress = 3793 alignTo(NextAvailableAddress, Section->getAlignment()); 3794 LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" 3795 << Twine::utohexstr(Section->getAllocAddress()) 3796 << ") to 0x" << Twine::utohexstr(NextAvailableAddress) 3797 << ":0x" 3798 << Twine::utohexstr(NextAvailableAddress + 3799 Section->getOutputSize()) 3800 << '\n'); 3801 3802 RTDyld.reassignSectionAddress(Section->getSectionID(), 3803 NextAvailableAddress); 3804 Section->setOutputAddress(NextAvailableAddress); 3805 Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); 3806 3807 NextAvailableAddress += Section->getOutputSize(); 3808 } 3809 3810 // Handling for sections with relocations. 3811 for (BinarySection &Section : BC->sections()) { 3812 if (!Section.hasSectionRef()) 3813 continue; 3814 3815 StringRef SectionName = Section.getName(); 3816 ErrorOr<BinarySection &> OrgSection = 3817 BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); 3818 if (!OrgSection || 3819 !OrgSection->isAllocatable() || 3820 !OrgSection->isFinalized() || 3821 !OrgSection->hasValidSectionID()) 3822 continue; 3823 3824 if (OrgSection->getOutputAddress()) { 3825 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName 3826 << " is already mapped at 0x" 3827 << Twine::utohexstr(OrgSection->getOutputAddress()) 3828 << '\n'); 3829 continue; 3830 } 3831 LLVM_DEBUG( 3832 dbgs() << "BOLT: mapping original section " << SectionName << " (0x" 3833 << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" 3834 << Twine::utohexstr(Section.getAddress()) << '\n'); 3835 3836 RTDyld.reassignSectionAddress(OrgSection->getSectionID(), 3837 Section.getAddress()); 3838 3839 OrgSection->setOutputAddress(Section.getAddress()); 3840 OrgSection->setOutputFileOffset(Section.getContents().data() - 3841 InputFile->getData().data()); 3842 } 3843 } 3844 3845 void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { 3846 for (BinarySection &Section : BC->allocatableSections()) { 3847 if (Section.getOutputAddress() || !Section.hasValidSectionID()) 3848 continue; 3849 NextAvailableAddress = 3850 alignTo(NextAvailableAddress, Section.getAlignment()); 3851 Section.setOutputAddress(NextAvailableAddress); 3852 NextAvailableAddress += Section.getOutputSize(); 3853 3854 LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() 3855 << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) 3856 << " to 0x" 3857 << Twine::utohexstr(Section.getOutputAddress()) << '\n'); 3858 3859 RTDyld.reassignSectionAddress(Section.getSectionID(), 3860 Section.getOutputAddress()); 3861 Section.setOutputFileOffset( 3862 getFileOffsetForAddress(Section.getOutputAddress())); 3863 } 3864 } 3865 3866 void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { 3867 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) 3868 Function->updateOutputValues(Layout); 3869 } 3870 3871 void RewriteInstance::patchELFPHDRTable() { 3872 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3873 if (!ELF64LEFile) { 3874 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3875 exit(1); 3876 } 3877 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3878 raw_fd_ostream &OS = Out->os(); 3879 3880 // Write/re-write program headers. 3881 Phnum = Obj.getHeader().e_phnum; 3882 if (PHDRTableOffset) { 3883 // Writing new pheader table. 3884 Phnum += 1; // only adding one new segment 3885 // Segment size includes the size of the PHDR area. 3886 NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; 3887 } else { 3888 assert(!PHDRTableAddress && "unexpected address for program header table"); 3889 // Update existing table. 3890 PHDRTableOffset = Obj.getHeader().e_phoff; 3891 NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; 3892 } 3893 OS.seek(PHDRTableOffset); 3894 3895 bool ModdedGnuStack = false; 3896 (void)ModdedGnuStack; 3897 bool AddedSegment = false; 3898 (void)AddedSegment; 3899 3900 auto createNewTextPhdr = [&]() { 3901 ELF64LEPhdrTy NewPhdr; 3902 NewPhdr.p_type = ELF::PT_LOAD; 3903 if (PHDRTableAddress) { 3904 NewPhdr.p_offset = PHDRTableOffset; 3905 NewPhdr.p_vaddr = PHDRTableAddress; 3906 NewPhdr.p_paddr = PHDRTableAddress; 3907 } else { 3908 NewPhdr.p_offset = NewTextSegmentOffset; 3909 NewPhdr.p_vaddr = NewTextSegmentAddress; 3910 NewPhdr.p_paddr = NewTextSegmentAddress; 3911 } 3912 NewPhdr.p_filesz = NewTextSegmentSize; 3913 NewPhdr.p_memsz = NewTextSegmentSize; 3914 NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; 3915 // FIXME: Currently instrumentation is experimental and the runtime data 3916 // is emitted with code, thus everything needs to be writable 3917 if (opts::Instrument) 3918 NewPhdr.p_flags |= ELF::PF_W; 3919 NewPhdr.p_align = BC->PageAlign; 3920 3921 return NewPhdr; 3922 }; 3923 3924 // Copy existing program headers with modifications. 3925 for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { 3926 ELF64LE::Phdr NewPhdr = Phdr; 3927 if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { 3928 NewPhdr.p_offset = PHDRTableOffset; 3929 NewPhdr.p_vaddr = PHDRTableAddress; 3930 NewPhdr.p_paddr = PHDRTableAddress; 3931 NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; 3932 NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; 3933 } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { 3934 ErrorOr<BinarySection &> EHFrameHdrSec = 3935 BC->getUniqueSectionByName(".eh_frame_hdr"); 3936 if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && 3937 EHFrameHdrSec->isFinalized()) { 3938 NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); 3939 NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); 3940 NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); 3941 NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); 3942 NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); 3943 } 3944 } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { 3945 NewPhdr = createNewTextPhdr(); 3946 ModdedGnuStack = true; 3947 } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { 3948 // Insert the new header before DYNAMIC. 3949 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3950 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), 3951 sizeof(NewTextPhdr)); 3952 AddedSegment = true; 3953 } 3954 OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); 3955 } 3956 3957 if (!opts::UseGnuStack && !AddedSegment) { 3958 // Append the new header to the end of the table. 3959 ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); 3960 OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); 3961 } 3962 3963 assert((!opts::UseGnuStack || ModdedGnuStack) && 3964 "could not find GNU_STACK program header to modify"); 3965 } 3966 3967 namespace { 3968 3969 /// Write padding to \p OS such that its current \p Offset becomes aligned 3970 /// at \p Alignment. Return new (aligned) offset. 3971 uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, 3972 uint64_t Alignment) { 3973 if (!Alignment) 3974 return Offset; 3975 3976 const uint64_t PaddingSize = 3977 offsetToAlignment(Offset, llvm::Align(Alignment)); 3978 for (unsigned I = 0; I < PaddingSize; ++I) 3979 OS.write((unsigned char)0); 3980 return Offset + PaddingSize; 3981 } 3982 3983 } 3984 3985 void RewriteInstance::rewriteNoteSections() { 3986 auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); 3987 if (!ELF64LEFile) { 3988 errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; 3989 exit(1); 3990 } 3991 const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); 3992 raw_fd_ostream &OS = Out->os(); 3993 3994 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 3995 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 3996 "next available offset calculation failure"); 3997 OS.seek(NextAvailableOffset); 3998 3999 // Copy over non-allocatable section contents and update file offsets. 4000 for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { 4001 if (Section.sh_type == ELF::SHT_NULL) 4002 continue; 4003 if (Section.sh_flags & ELF::SHF_ALLOC) 4004 continue; 4005 4006 StringRef SectionName = 4007 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4008 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4009 4010 if (shouldStrip(Section, SectionName)) 4011 continue; 4012 4013 // Insert padding as needed. 4014 NextAvailableOffset = 4015 appendPadding(OS, NextAvailableOffset, Section.sh_addralign); 4016 4017 // New section size. 4018 uint64_t Size = 0; 4019 bool DataWritten = false; 4020 uint8_t *SectionData = nullptr; 4021 // Copy over section contents unless it's one of the sections we overwrite. 4022 if (!willOverwriteSection(SectionName)) { 4023 Size = Section.sh_size; 4024 StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); 4025 std::string Data; 4026 if (BSec && BSec->getPatcher()) { 4027 Data = BSec->getPatcher()->patchBinary(Dataref); 4028 Dataref = StringRef(Data); 4029 } 4030 4031 // Section was expanded, so need to treat it as overwrite. 4032 if (Size != Dataref.size()) { 4033 BSec = BC->registerOrUpdateNoteSection( 4034 SectionName, copyByteArray(Dataref), Dataref.size()); 4035 Size = 0; 4036 } else { 4037 OS << Dataref; 4038 DataWritten = true; 4039 4040 // Add padding as the section extension might rely on the alignment. 4041 Size = appendPadding(OS, Size, Section.sh_addralign); 4042 } 4043 } 4044 4045 // Perform section post-processing. 4046 if (BSec && !BSec->isAllocatable()) { 4047 assert(BSec->getAlignment() <= Section.sh_addralign && 4048 "alignment exceeds value in file"); 4049 4050 if (BSec->getAllocAddress()) { 4051 assert(!DataWritten && "Writing section twice."); 4052 (void)DataWritten; 4053 SectionData = BSec->getOutputData(); 4054 4055 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") 4056 << " contents to section " << SectionName << '\n'); 4057 OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); 4058 Size += BSec->getOutputSize(); 4059 } 4060 4061 BSec->setOutputFileOffset(NextAvailableOffset); 4062 BSec->flushPendingRelocations(OS, 4063 [this] (const MCSymbol *S) { 4064 return getNewValueForSymbol(S->getName()); 4065 }); 4066 } 4067 4068 // Set/modify section info. 4069 BinarySection &NewSection = 4070 BC->registerOrUpdateNoteSection(SectionName, 4071 SectionData, 4072 Size, 4073 Section.sh_addralign, 4074 BSec ? BSec->isReadOnly() : false, 4075 BSec ? BSec->getELFType() 4076 : ELF::SHT_PROGBITS); 4077 NewSection.setOutputAddress(0); 4078 NewSection.setOutputFileOffset(NextAvailableOffset); 4079 4080 NextAvailableOffset += Size; 4081 } 4082 4083 // Write new note sections. 4084 for (BinarySection &Section : BC->nonAllocatableSections()) { 4085 if (Section.getOutputFileOffset() || !Section.getAllocAddress()) 4086 continue; 4087 4088 assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); 4089 4090 NextAvailableOffset = 4091 appendPadding(OS, NextAvailableOffset, Section.getAlignment()); 4092 Section.setOutputFileOffset(NextAvailableOffset); 4093 4094 LLVM_DEBUG( 4095 dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() 4096 << " of size " << Section.getOutputSize() << " at offset 0x" 4097 << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); 4098 4099 OS.write(Section.getOutputContents().data(), Section.getOutputSize()); 4100 NextAvailableOffset += Section.getOutputSize(); 4101 } 4102 } 4103 4104 template <typename ELFT> 4105 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { 4106 using ELFShdrTy = typename ELFT::Shdr; 4107 const ELFFile<ELFT> &Obj = File->getELFFile(); 4108 4109 // Pre-populate section header string table. 4110 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4111 StringRef SectionName = 4112 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4113 SHStrTab.add(SectionName); 4114 std::string OutputSectionName = getOutputSectionName(Obj, Section); 4115 if (OutputSectionName != SectionName) 4116 SHStrTabPool.emplace_back(std::move(OutputSectionName)); 4117 } 4118 for (const std::string &Str : SHStrTabPool) 4119 SHStrTab.add(Str); 4120 for (const BinarySection &Section : BC->sections()) 4121 SHStrTab.add(Section.getName()); 4122 SHStrTab.finalize(); 4123 4124 const size_t SHStrTabSize = SHStrTab.getSize(); 4125 uint8_t *DataCopy = new uint8_t[SHStrTabSize]; 4126 memset(DataCopy, 0, SHStrTabSize); 4127 SHStrTab.write(DataCopy); 4128 BC->registerOrUpdateNoteSection(".shstrtab", 4129 DataCopy, 4130 SHStrTabSize, 4131 /*Alignment=*/1, 4132 /*IsReadOnly=*/true, 4133 ELF::SHT_STRTAB); 4134 } 4135 4136 void RewriteInstance::addBoltInfoSection() { 4137 std::string DescStr; 4138 raw_string_ostream DescOS(DescStr); 4139 4140 DescOS << "BOLT revision: " << BoltRevision << ", " 4141 << "command line:"; 4142 for (int I = 0; I < Argc; ++I) 4143 DescOS << " " << Argv[I]; 4144 DescOS.flush(); 4145 4146 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' 4147 const std::string BoltInfo = 4148 BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); 4149 BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), 4150 BoltInfo.size(), 4151 /*Alignment=*/1, 4152 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4153 } 4154 4155 void RewriteInstance::addBATSection() { 4156 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 4157 0, 4158 /*Alignment=*/1, 4159 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4160 } 4161 4162 void RewriteInstance::encodeBATSection() { 4163 std::string DescStr; 4164 raw_string_ostream DescOS(DescStr); 4165 4166 BAT->write(DescOS); 4167 DescOS.flush(); 4168 4169 const std::string BoltInfo = 4170 BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); 4171 BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, 4172 copyByteArray(BoltInfo), BoltInfo.size(), 4173 /*Alignment=*/1, 4174 /*IsReadOnly=*/true, ELF::SHT_NOTE); 4175 } 4176 4177 template <typename ELFObjType, typename ELFShdrTy> 4178 std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, 4179 const ELFShdrTy &Section) { 4180 if (Section.sh_type == ELF::SHT_NULL) 4181 return ""; 4182 4183 StringRef SectionName = 4184 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4185 4186 if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) 4187 return (getOrgSecPrefix() + SectionName).str(); 4188 4189 return std::string(SectionName); 4190 } 4191 4192 template <typename ELFShdrTy> 4193 bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, 4194 StringRef SectionName) { 4195 // Strip non-allocatable relocation sections. 4196 if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) 4197 return true; 4198 4199 // Strip debug sections if not updating them. 4200 if (isDebugSection(SectionName) && !opts::UpdateDebugSections) 4201 return true; 4202 4203 // Strip symtab section if needed 4204 if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) 4205 return true; 4206 4207 return false; 4208 } 4209 4210 template <typename ELFT> 4211 std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> 4212 RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, 4213 std::vector<uint32_t> &NewSectionIndex) { 4214 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4215 const ELFFile<ELFT> &Obj = File->getELFFile(); 4216 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 4217 4218 // Keep track of section header entries together with their name. 4219 std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; 4220 auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { 4221 ELFShdrTy NewSection = Section; 4222 NewSection.sh_name = SHStrTab.getOffset(Name); 4223 OutputSections.emplace_back(Name, std::move(NewSection)); 4224 }; 4225 4226 // Copy over entries for original allocatable sections using modified name. 4227 for (const ELFShdrTy &Section : Sections) { 4228 // Always ignore this section. 4229 if (Section.sh_type == ELF::SHT_NULL) { 4230 OutputSections.emplace_back("", Section); 4231 continue; 4232 } 4233 4234 if (!(Section.sh_flags & ELF::SHF_ALLOC)) 4235 continue; 4236 4237 addSection(getOutputSectionName(Obj, Section), Section); 4238 } 4239 4240 for (const BinarySection &Section : BC->allocatableSections()) { 4241 if (!Section.isFinalized()) 4242 continue; 4243 4244 if (Section.getName().startswith(getOrgSecPrefix()) || 4245 Section.isAnonymous()) { 4246 if (opts::Verbosity) 4247 outs() << "BOLT-INFO: not writing section header for section " 4248 << Section.getName() << '\n'; 4249 continue; 4250 } 4251 4252 if (opts::Verbosity >= 1) 4253 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4254 << '\n'; 4255 ELFShdrTy NewSection; 4256 NewSection.sh_type = ELF::SHT_PROGBITS; 4257 NewSection.sh_addr = Section.getOutputAddress(); 4258 NewSection.sh_offset = Section.getOutputFileOffset(); 4259 NewSection.sh_size = Section.getOutputSize(); 4260 NewSection.sh_entsize = 0; 4261 NewSection.sh_flags = Section.getELFFlags(); 4262 NewSection.sh_link = 0; 4263 NewSection.sh_info = 0; 4264 NewSection.sh_addralign = Section.getAlignment(); 4265 addSection(std::string(Section.getName()), NewSection); 4266 } 4267 4268 // Sort all allocatable sections by their offset. 4269 llvm::stable_sort(OutputSections, 4270 [](const std::pair<std::string, ELFShdrTy> &A, 4271 const std::pair<std::string, ELFShdrTy> &B) { 4272 return A.second.sh_offset < B.second.sh_offset; 4273 }); 4274 4275 // Fix section sizes to prevent overlapping. 4276 ELFShdrTy *PrevSection = nullptr; 4277 StringRef PrevSectionName; 4278 for (auto &SectionKV : OutputSections) { 4279 ELFShdrTy &Section = SectionKV.second; 4280 4281 // TBSS section does not take file or memory space. Ignore it for layout 4282 // purposes. 4283 if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) 4284 continue; 4285 4286 if (PrevSection && 4287 PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { 4288 if (opts::Verbosity > 1) 4289 outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName 4290 << '\n'; 4291 PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr 4292 ? Section.sh_addr - PrevSection->sh_addr 4293 : 0; 4294 } 4295 4296 PrevSection = &Section; 4297 PrevSectionName = SectionKV.first; 4298 } 4299 4300 uint64_t LastFileOffset = 0; 4301 4302 // Copy over entries for non-allocatable sections performing necessary 4303 // adjustments. 4304 for (const ELFShdrTy &Section : Sections) { 4305 if (Section.sh_type == ELF::SHT_NULL) 4306 continue; 4307 if (Section.sh_flags & ELF::SHF_ALLOC) 4308 continue; 4309 4310 StringRef SectionName = 4311 cantFail(Obj.getSectionName(Section), "cannot get section name"); 4312 4313 if (shouldStrip(Section, SectionName)) 4314 continue; 4315 4316 ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); 4317 assert(BSec && "missing section info for non-allocatable section"); 4318 4319 ELFShdrTy NewSection = Section; 4320 NewSection.sh_offset = BSec->getOutputFileOffset(); 4321 NewSection.sh_size = BSec->getOutputSize(); 4322 4323 if (NewSection.sh_type == ELF::SHT_SYMTAB) 4324 NewSection.sh_info = NumLocalSymbols; 4325 4326 addSection(std::string(SectionName), NewSection); 4327 4328 LastFileOffset = BSec->getOutputFileOffset(); 4329 } 4330 4331 // Create entries for new non-allocatable sections. 4332 for (BinarySection &Section : BC->nonAllocatableSections()) { 4333 if (Section.getOutputFileOffset() <= LastFileOffset) 4334 continue; 4335 4336 if (opts::Verbosity >= 1) 4337 outs() << "BOLT-INFO: writing section header for " << Section.getName() 4338 << '\n'; 4339 4340 ELFShdrTy NewSection; 4341 NewSection.sh_type = Section.getELFType(); 4342 NewSection.sh_addr = 0; 4343 NewSection.sh_offset = Section.getOutputFileOffset(); 4344 NewSection.sh_size = Section.getOutputSize(); 4345 NewSection.sh_entsize = 0; 4346 NewSection.sh_flags = Section.getELFFlags(); 4347 NewSection.sh_link = 0; 4348 NewSection.sh_info = 0; 4349 NewSection.sh_addralign = Section.getAlignment(); 4350 4351 addSection(std::string(Section.getName()), NewSection); 4352 } 4353 4354 // Assign indices to sections. 4355 std::unordered_map<std::string, uint64_t> NameToIndex; 4356 for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { 4357 const std::string &SectionName = OutputSections[Index].first; 4358 NameToIndex[SectionName] = Index; 4359 if (ErrorOr<BinarySection &> Section = 4360 BC->getUniqueSectionByName(SectionName)) 4361 Section->setIndex(Index); 4362 } 4363 4364 // Update section index mapping 4365 NewSectionIndex.clear(); 4366 NewSectionIndex.resize(Sections.size(), 0); 4367 for (const ELFShdrTy &Section : Sections) { 4368 if (Section.sh_type == ELF::SHT_NULL) 4369 continue; 4370 4371 size_t OrgIndex = std::distance(Sections.begin(), &Section); 4372 std::string SectionName = getOutputSectionName(Obj, Section); 4373 4374 // Some sections are stripped 4375 if (!NameToIndex.count(SectionName)) 4376 continue; 4377 4378 NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; 4379 } 4380 4381 std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); 4382 llvm::transform(OutputSections, SectionsOnly.begin(), 4383 [](std::pair<std::string, ELFShdrTy> &SectionInfo) { 4384 return SectionInfo.second; 4385 }); 4386 4387 return SectionsOnly; 4388 } 4389 4390 // Rewrite section header table inserting new entries as needed. The sections 4391 // header table size itself may affect the offsets of other sections, 4392 // so we are placing it at the end of the binary. 4393 // 4394 // As we rewrite entries we need to track how many sections were inserted 4395 // as it changes the sh_link value. We map old indices to new ones for 4396 // existing sections. 4397 template <typename ELFT> 4398 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { 4399 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4400 using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; 4401 raw_fd_ostream &OS = Out->os(); 4402 const ELFFile<ELFT> &Obj = File->getELFFile(); 4403 4404 std::vector<uint32_t> NewSectionIndex; 4405 std::vector<ELFShdrTy> OutputSections = 4406 getOutputSections(File, NewSectionIndex); 4407 LLVM_DEBUG( 4408 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; 4409 for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) 4410 dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; 4411 ); 4412 4413 // Align starting address for section header table. 4414 uint64_t SHTOffset = OS.tell(); 4415 SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); 4416 4417 // Write all section header entries while patching section references. 4418 for (ELFShdrTy &Section : OutputSections) { 4419 Section.sh_link = NewSectionIndex[Section.sh_link]; 4420 if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { 4421 if (Section.sh_info) 4422 Section.sh_info = NewSectionIndex[Section.sh_info]; 4423 } 4424 OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); 4425 } 4426 4427 // Fix ELF header. 4428 ELFEhdrTy NewEhdr = Obj.getHeader(); 4429 4430 if (BC->HasRelocations) { 4431 if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) 4432 NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); 4433 else 4434 NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); 4435 assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && 4436 "cannot find new address for entry point"); 4437 } 4438 NewEhdr.e_phoff = PHDRTableOffset; 4439 NewEhdr.e_phnum = Phnum; 4440 NewEhdr.e_shoff = SHTOffset; 4441 NewEhdr.e_shnum = OutputSections.size(); 4442 NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; 4443 OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); 4444 } 4445 4446 template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> 4447 void RewriteInstance::updateELFSymbolTable( 4448 ELFObjectFile<ELFT> *File, bool IsDynSym, 4449 const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, 4450 const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, 4451 StrTabFuncTy AddToStrTab) { 4452 const ELFFile<ELFT> &Obj = File->getELFFile(); 4453 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4454 4455 StringRef StringSection = 4456 cantFail(Obj.getStringTableForSymtab(SymTabSection)); 4457 4458 unsigned NumHotTextSymsUpdated = 0; 4459 unsigned NumHotDataSymsUpdated = 0; 4460 4461 std::map<const BinaryFunction *, uint64_t> IslandSizes; 4462 auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { 4463 auto Itr = IslandSizes.find(&BF); 4464 if (Itr != IslandSizes.end()) 4465 return Itr->second; 4466 return IslandSizes[&BF] = BF.estimateConstantIslandSize(); 4467 }; 4468 4469 // Symbols for the new symbol table. 4470 std::vector<ELFSymTy> Symbols; 4471 4472 auto getNewSectionIndex = [&](uint32_t OldIndex) { 4473 // For dynamic symbol table, the section index could be wrong on the input, 4474 // and its value is ignored by the runtime if it's different from 4475 // SHN_UNDEF and SHN_ABS. 4476 // However, we still need to update dynamic symbol table, so return a 4477 // section index, even though the index is broken. 4478 if (IsDynSym && OldIndex >= NewSectionIndex.size()) 4479 return OldIndex; 4480 4481 assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); 4482 const uint32_t NewIndex = NewSectionIndex[OldIndex]; 4483 4484 // We may have stripped the section that dynsym was referencing due to 4485 // the linker bug. In that case return the old index avoiding marking 4486 // the symbol as undefined. 4487 if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) 4488 return OldIndex; 4489 return NewIndex; 4490 }; 4491 4492 // Add extra symbols for the function. 4493 // 4494 // Note that addExtraSymbols() could be called multiple times for the same 4495 // function with different FunctionSymbol matching the main function entry 4496 // point. 4497 auto addExtraSymbols = [&](const BinaryFunction &Function, 4498 const ELFSymTy &FunctionSymbol) { 4499 if (Function.isFolded()) { 4500 BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); 4501 while (ICFParent->isFolded()) 4502 ICFParent = ICFParent->getFoldedIntoFunction(); 4503 ELFSymTy ICFSymbol = FunctionSymbol; 4504 SmallVector<char, 256> Buf; 4505 ICFSymbol.st_name = 4506 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4507 .concat(".icf.0") 4508 .toStringRef(Buf)); 4509 ICFSymbol.st_value = ICFParent->getOutputAddress(); 4510 ICFSymbol.st_size = ICFParent->getOutputSize(); 4511 ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); 4512 Symbols.emplace_back(ICFSymbol); 4513 } 4514 if (Function.isSplit() && Function.cold().getAddress()) { 4515 ELFSymTy NewColdSym = FunctionSymbol; 4516 SmallVector<char, 256> Buf; 4517 NewColdSym.st_name = 4518 AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) 4519 .concat(".cold.0") 4520 .toStringRef(Buf)); 4521 NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); 4522 NewColdSym.st_value = Function.cold().getAddress(); 4523 NewColdSym.st_size = Function.cold().getImageSize(); 4524 NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4525 Symbols.emplace_back(NewColdSym); 4526 } 4527 if (Function.hasConstantIsland()) { 4528 uint64_t DataMark = Function.getOutputDataAddress(); 4529 uint64_t CISize = getConstantIslandSize(Function); 4530 uint64_t CodeMark = DataMark + CISize; 4531 ELFSymTy DataMarkSym = FunctionSymbol; 4532 DataMarkSym.st_name = AddToStrTab("$d"); 4533 DataMarkSym.st_value = DataMark; 4534 DataMarkSym.st_size = 0; 4535 DataMarkSym.setType(ELF::STT_NOTYPE); 4536 DataMarkSym.setBinding(ELF::STB_LOCAL); 4537 ELFSymTy CodeMarkSym = DataMarkSym; 4538 CodeMarkSym.st_name = AddToStrTab("$x"); 4539 CodeMarkSym.st_value = CodeMark; 4540 Symbols.emplace_back(DataMarkSym); 4541 Symbols.emplace_back(CodeMarkSym); 4542 } 4543 if (Function.hasConstantIsland() && Function.isSplit()) { 4544 uint64_t DataMark = Function.getOutputColdDataAddress(); 4545 uint64_t CISize = getConstantIslandSize(Function); 4546 uint64_t CodeMark = DataMark + CISize; 4547 ELFSymTy DataMarkSym = FunctionSymbol; 4548 DataMarkSym.st_name = AddToStrTab("$d"); 4549 DataMarkSym.st_value = DataMark; 4550 DataMarkSym.st_size = 0; 4551 DataMarkSym.setType(ELF::STT_NOTYPE); 4552 DataMarkSym.setBinding(ELF::STB_LOCAL); 4553 ELFSymTy CodeMarkSym = DataMarkSym; 4554 CodeMarkSym.st_name = AddToStrTab("$x"); 4555 CodeMarkSym.st_value = CodeMark; 4556 Symbols.emplace_back(DataMarkSym); 4557 Symbols.emplace_back(CodeMarkSym); 4558 } 4559 }; 4560 4561 // For regular (non-dynamic) symbol table, exclude symbols referring 4562 // to non-allocatable sections. 4563 auto shouldStrip = [&](const ELFSymTy &Symbol) { 4564 if (Symbol.isAbsolute() || !Symbol.isDefined()) 4565 return false; 4566 4567 // If we cannot link the symbol to a section, leave it as is. 4568 Expected<const typename ELFT::Shdr *> Section = 4569 Obj.getSection(Symbol.st_shndx); 4570 if (!Section) 4571 return false; 4572 4573 // Remove the section symbol iif the corresponding section was stripped. 4574 if (Symbol.getType() == ELF::STT_SECTION) { 4575 if (!getNewSectionIndex(Symbol.st_shndx)) 4576 return true; 4577 return false; 4578 } 4579 4580 // Symbols in non-allocatable sections are typically remnants of relocations 4581 // emitted under "-emit-relocs" linker option. Delete those as we delete 4582 // relocations against non-allocatable sections. 4583 if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) 4584 return true; 4585 4586 return false; 4587 }; 4588 4589 for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { 4590 // For regular (non-dynamic) symbol table strip unneeded symbols. 4591 if (!IsDynSym && shouldStrip(Symbol)) 4592 continue; 4593 4594 const BinaryFunction *Function = 4595 BC->getBinaryFunctionAtAddress(Symbol.st_value); 4596 // Ignore false function references, e.g. when the section address matches 4597 // the address of the function. 4598 if (Function && Symbol.getType() == ELF::STT_SECTION) 4599 Function = nullptr; 4600 4601 // For non-dynamic symtab, make sure the symbol section matches that of 4602 // the function. It can mismatch e.g. if the symbol is a section marker 4603 // in which case we treat the symbol separately from the function. 4604 // For dynamic symbol table, the section index could be wrong on the input, 4605 // and its value is ignored by the runtime if it's different from 4606 // SHN_UNDEF and SHN_ABS. 4607 if (!IsDynSym && Function && 4608 Symbol.st_shndx != 4609 Function->getOriginSection()->getSectionRef().getIndex()) 4610 Function = nullptr; 4611 4612 // Create a new symbol based on the existing symbol. 4613 ELFSymTy NewSymbol = Symbol; 4614 4615 if (Function) { 4616 // If the symbol matched a function that was not emitted, update the 4617 // corresponding section index but otherwise leave it unchanged. 4618 if (Function->isEmitted()) { 4619 NewSymbol.st_value = Function->getOutputAddress(); 4620 NewSymbol.st_size = Function->getOutputSize(); 4621 NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); 4622 } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { 4623 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4624 } 4625 4626 // Add new symbols to the symbol table if necessary. 4627 if (!IsDynSym) 4628 addExtraSymbols(*Function, NewSymbol); 4629 } else { 4630 // Check if the function symbol matches address inside a function, i.e. 4631 // it marks a secondary entry point. 4632 Function = 4633 (Symbol.getType() == ELF::STT_FUNC) 4634 ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4635 /*CheckPastEnd=*/false, 4636 /*UseMaxSize=*/true) 4637 : nullptr; 4638 4639 if (Function && Function->isEmitted()) { 4640 const uint64_t OutputAddress = 4641 Function->translateInputToOutputAddress(Symbol.st_value); 4642 4643 NewSymbol.st_value = OutputAddress; 4644 // Force secondary entry points to have zero size. 4645 NewSymbol.st_size = 0; 4646 NewSymbol.st_shndx = 4647 OutputAddress >= Function->cold().getAddress() && 4648 OutputAddress < Function->cold().getImageSize() 4649 ? Function->getColdCodeSection()->getIndex() 4650 : Function->getCodeSection()->getIndex(); 4651 } else { 4652 // Check if the symbol belongs to moved data object and update it. 4653 BinaryData *BD = opts::ReorderData.empty() 4654 ? nullptr 4655 : BC->getBinaryDataAtAddress(Symbol.st_value); 4656 if (BD && BD->isMoved() && !BD->isJumpTable()) { 4657 assert((!BD->getSize() || !Symbol.st_size || 4658 Symbol.st_size == BD->getSize()) && 4659 "sizes must match"); 4660 4661 BinarySection &OutputSection = BD->getOutputSection(); 4662 assert(OutputSection.getIndex()); 4663 LLVM_DEBUG(dbgs() 4664 << "BOLT-DEBUG: moving " << BD->getName() << " from " 4665 << *BC->getSectionNameForAddress(Symbol.st_value) << " (" 4666 << Symbol.st_shndx << ") to " << OutputSection.getName() 4667 << " (" << OutputSection.getIndex() << ")\n"); 4668 NewSymbol.st_shndx = OutputSection.getIndex(); 4669 NewSymbol.st_value = BD->getOutputAddress(); 4670 } else { 4671 // Otherwise just update the section for the symbol. 4672 if (Symbol.st_shndx < ELF::SHN_LORESERVE) 4673 NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); 4674 } 4675 4676 // Detect local syms in the text section that we didn't update 4677 // and that were preserved by the linker to support relocations against 4678 // .text. Remove them from the symtab. 4679 if (Symbol.getType() == ELF::STT_NOTYPE && 4680 Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { 4681 if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, 4682 /*CheckPastEnd=*/false, 4683 /*UseMaxSize=*/true)) { 4684 // Can only delete the symbol if not patching. Such symbols should 4685 // not exist in the dynamic symbol table. 4686 assert(!IsDynSym && "cannot delete symbol"); 4687 continue; 4688 } 4689 } 4690 } 4691 } 4692 4693 // Handle special symbols based on their name. 4694 Expected<StringRef> SymbolName = Symbol.getName(StringSection); 4695 assert(SymbolName && "cannot get symbol name"); 4696 4697 auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { 4698 NewSymbol.st_value = getNewValueForSymbol(Name); 4699 NewSymbol.st_shndx = ELF::SHN_ABS; 4700 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4701 << Twine::utohexstr(NewSymbol.st_value) << '\n'; 4702 ++IsUpdated; 4703 }; 4704 4705 if (opts::HotText && 4706 (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) 4707 updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); 4708 4709 if (opts::HotData && 4710 (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) 4711 updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); 4712 4713 if (*SymbolName == "_end") { 4714 unsigned Ignored; 4715 updateSymbolValue(*SymbolName, Ignored); 4716 } 4717 4718 if (IsDynSym) 4719 Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * 4720 sizeof(ELFSymTy), 4721 NewSymbol); 4722 else 4723 Symbols.emplace_back(NewSymbol); 4724 } 4725 4726 if (IsDynSym) { 4727 assert(Symbols.empty()); 4728 return; 4729 } 4730 4731 // Add symbols of injected functions 4732 for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { 4733 ELFSymTy NewSymbol; 4734 BinarySection *OriginSection = Function->getOriginSection(); 4735 NewSymbol.st_shndx = 4736 OriginSection 4737 ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) 4738 : Function->getCodeSection()->getIndex(); 4739 NewSymbol.st_value = Function->getOutputAddress(); 4740 NewSymbol.st_name = AddToStrTab(Function->getOneName()); 4741 NewSymbol.st_size = Function->getOutputSize(); 4742 NewSymbol.st_other = 0; 4743 NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); 4744 Symbols.emplace_back(NewSymbol); 4745 4746 if (Function->isSplit()) { 4747 ELFSymTy NewColdSym = NewSymbol; 4748 NewColdSym.setType(ELF::STT_NOTYPE); 4749 SmallVector<char, 256> Buf; 4750 NewColdSym.st_name = AddToStrTab( 4751 Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); 4752 NewColdSym.st_value = Function->cold().getAddress(); 4753 NewColdSym.st_size = Function->cold().getImageSize(); 4754 Symbols.emplace_back(NewColdSym); 4755 } 4756 } 4757 4758 assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && 4759 "either none or both __hot_start/__hot_end symbols were expected"); 4760 assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && 4761 "either none or both __hot_data_start/__hot_data_end symbols were " 4762 "expected"); 4763 4764 auto addSymbol = [&](const std::string &Name) { 4765 ELFSymTy Symbol; 4766 Symbol.st_value = getNewValueForSymbol(Name); 4767 Symbol.st_shndx = ELF::SHN_ABS; 4768 Symbol.st_name = AddToStrTab(Name); 4769 Symbol.st_size = 0; 4770 Symbol.st_other = 0; 4771 Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); 4772 4773 outs() << "BOLT-INFO: setting " << Name << " to 0x" 4774 << Twine::utohexstr(Symbol.st_value) << '\n'; 4775 4776 Symbols.emplace_back(Symbol); 4777 }; 4778 4779 if (opts::HotText && !NumHotTextSymsUpdated) { 4780 addSymbol("__hot_start"); 4781 addSymbol("__hot_end"); 4782 } 4783 4784 if (opts::HotData && !NumHotDataSymsUpdated) { 4785 addSymbol("__hot_data_start"); 4786 addSymbol("__hot_data_end"); 4787 } 4788 4789 // Put local symbols at the beginning. 4790 llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { 4791 if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) 4792 return true; 4793 return false; 4794 }); 4795 4796 for (const ELFSymTy &Symbol : Symbols) 4797 Write(0, Symbol); 4798 } 4799 4800 template <typename ELFT> 4801 void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { 4802 const ELFFile<ELFT> &Obj = File->getELFFile(); 4803 using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; 4804 using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; 4805 4806 // Compute a preview of how section indices will change after rewriting, so 4807 // we can properly update the symbol table based on new section indices. 4808 std::vector<uint32_t> NewSectionIndex; 4809 getOutputSections(File, NewSectionIndex); 4810 4811 // Set pointer at the end of the output file, so we can pwrite old symbol 4812 // tables if we need to. 4813 uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); 4814 assert(NextAvailableOffset >= FirstNonAllocatableOffset && 4815 "next available offset calculation failure"); 4816 Out->os().seek(NextAvailableOffset); 4817 4818 // Update dynamic symbol table. 4819 const ELFShdrTy *DynSymSection = nullptr; 4820 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4821 if (Section.sh_type == ELF::SHT_DYNSYM) { 4822 DynSymSection = &Section; 4823 break; 4824 } 4825 } 4826 assert((DynSymSection || BC->IsStaticExecutable) && 4827 "dynamic symbol table expected"); 4828 if (DynSymSection) { 4829 updateELFSymbolTable( 4830 File, 4831 /*IsDynSym=*/true, 4832 *DynSymSection, 4833 NewSectionIndex, 4834 [&](size_t Offset, const ELFSymTy &Sym) { 4835 Out->os().pwrite(reinterpret_cast<const char *>(&Sym), 4836 sizeof(ELFSymTy), 4837 DynSymSection->sh_offset + Offset); 4838 }, 4839 [](StringRef) -> size_t { return 0; }); 4840 } 4841 4842 if (opts::RemoveSymtab) 4843 return; 4844 4845 // (re)create regular symbol table. 4846 const ELFShdrTy *SymTabSection = nullptr; 4847 for (const ELFShdrTy &Section : cantFail(Obj.sections())) { 4848 if (Section.sh_type == ELF::SHT_SYMTAB) { 4849 SymTabSection = &Section; 4850 break; 4851 } 4852 } 4853 if (!SymTabSection) { 4854 errs() << "BOLT-WARNING: no symbol table found\n"; 4855 return; 4856 } 4857 4858 const ELFShdrTy *StrTabSection = 4859 cantFail(Obj.getSection(SymTabSection->sh_link)); 4860 std::string NewContents; 4861 std::string NewStrTab = std::string( 4862 File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); 4863 StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); 4864 StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); 4865 4866 NumLocalSymbols = 0; 4867 updateELFSymbolTable( 4868 File, 4869 /*IsDynSym=*/false, 4870 *SymTabSection, 4871 NewSectionIndex, 4872 [&](size_t Offset, const ELFSymTy &Sym) { 4873 if (Sym.getBinding() == ELF::STB_LOCAL) 4874 ++NumLocalSymbols; 4875 NewContents.append(reinterpret_cast<const char *>(&Sym), 4876 sizeof(ELFSymTy)); 4877 }, 4878 [&](StringRef Str) { 4879 size_t Idx = NewStrTab.size(); 4880 NewStrTab.append(NameResolver::restore(Str).str()); 4881 NewStrTab.append(1, '\0'); 4882 return Idx; 4883 }); 4884 4885 BC->registerOrUpdateNoteSection(SecName, 4886 copyByteArray(NewContents), 4887 NewContents.size(), 4888 /*Alignment=*/1, 4889 /*IsReadOnly=*/true, 4890 ELF::SHT_SYMTAB); 4891 4892 BC->registerOrUpdateNoteSection(StrSecName, 4893 copyByteArray(NewStrTab), 4894 NewStrTab.size(), 4895 /*Alignment=*/1, 4896 /*IsReadOnly=*/true, 4897 ELF::SHT_STRTAB); 4898 } 4899 4900 template <typename ELFT> 4901 void 4902 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { 4903 using Elf_Rela = typename ELFT::Rela; 4904 raw_fd_ostream &OS = Out->os(); 4905 const ELFFile<ELFT> &EF = File->getELFFile(); 4906 4907 uint64_t RelDynOffset = 0, RelDynEndOffset = 0; 4908 uint64_t RelPltOffset = 0, RelPltEndOffset = 0; 4909 4910 auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, 4911 uint64_t &End) { 4912 ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); 4913 Start = Section->getInputFileOffset(); 4914 End = Start + Section->getSize(); 4915 }; 4916 4917 if (!DynamicRelocationsAddress && !PLTRelocationsAddress) 4918 return; 4919 4920 if (DynamicRelocationsAddress) 4921 setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, 4922 RelDynEndOffset); 4923 4924 if (PLTRelocationsAddress) 4925 setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, 4926 RelPltEndOffset); 4927 4928 DynamicRelativeRelocationsCount = 0; 4929 4930 auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { 4931 OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); 4932 Offset += sizeof(*RelA); 4933 }; 4934 4935 auto writeRelocations = [&](bool PatchRelative) { 4936 for (BinarySection &Section : BC->allocatableSections()) { 4937 for (const Relocation &Rel : Section.dynamicRelocations()) { 4938 const bool IsRelative = Rel.isRelative(); 4939 if (PatchRelative != IsRelative) 4940 continue; 4941 4942 if (IsRelative) 4943 ++DynamicRelativeRelocationsCount; 4944 4945 Elf_Rela NewRelA; 4946 uint64_t SectionAddress = Section.getOutputAddress(); 4947 SectionAddress = 4948 SectionAddress == 0 ? Section.getAddress() : SectionAddress; 4949 MCSymbol *Symbol = Rel.Symbol; 4950 uint32_t SymbolIdx = 0; 4951 uint64_t Addend = Rel.Addend; 4952 4953 if (Rel.Symbol) { 4954 SymbolIdx = getOutputDynamicSymbolIndex(Symbol); 4955 } else { 4956 // Usually this case is used for R_*_(I)RELATIVE relocations 4957 const uint64_t Address = getNewFunctionOrDataAddress(Addend); 4958 if (Address) 4959 Addend = Address; 4960 } 4961 4962 NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); 4963 NewRelA.r_offset = SectionAddress + Rel.Offset; 4964 NewRelA.r_addend = Addend; 4965 4966 const bool IsJmpRel = 4967 !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); 4968 uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; 4969 const uint64_t &EndOffset = 4970 IsJmpRel ? RelPltEndOffset : RelDynEndOffset; 4971 if (!Offset || !EndOffset) { 4972 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; 4973 exit(1); 4974 } 4975 4976 if (Offset + sizeof(NewRelA) > EndOffset) { 4977 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; 4978 exit(1); 4979 } 4980 4981 writeRela(&NewRelA, Offset); 4982 } 4983 } 4984 }; 4985 4986 // The dynamic linker expects R_*_RELATIVE relocations to be emitted first 4987 writeRelocations(/* PatchRelative */ true); 4988 writeRelocations(/* PatchRelative */ false); 4989 4990 auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { 4991 if (!Offset) 4992 return; 4993 4994 typename ELFObjectFile<ELFT>::Elf_Rela RelA; 4995 RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); 4996 RelA.r_offset = 0; 4997 RelA.r_addend = 0; 4998 while (Offset < EndOffset) 4999 writeRela(&RelA, Offset); 5000 5001 assert(Offset == EndOffset && "Unexpected section overflow"); 5002 }; 5003 5004 // Fill the rest of the sections with R_*_NONE relocations 5005 fillNone(RelDynOffset, RelDynEndOffset); 5006 fillNone(RelPltOffset, RelPltEndOffset); 5007 } 5008 5009 template <typename ELFT> 5010 void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { 5011 raw_fd_ostream &OS = Out->os(); 5012 5013 SectionRef GOTSection; 5014 for (const SectionRef &Section : File->sections()) { 5015 StringRef SectionName = cantFail(Section.getName()); 5016 if (SectionName == ".got") { 5017 GOTSection = Section; 5018 break; 5019 } 5020 } 5021 if (!GOTSection.getObject()) { 5022 if (!BC->IsStaticExecutable) 5023 errs() << "BOLT-INFO: no .got section found\n"; 5024 return; 5025 } 5026 5027 StringRef GOTContents = cantFail(GOTSection.getContents()); 5028 for (const uint64_t *GOTEntry = 5029 reinterpret_cast<const uint64_t *>(GOTContents.data()); 5030 GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + 5031 GOTContents.size()); 5032 ++GOTEntry) { 5033 if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { 5034 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" 5035 << Twine::utohexstr(*GOTEntry) << " with 0x" 5036 << Twine::utohexstr(NewAddress) << '\n'); 5037 OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), 5038 reinterpret_cast<const char *>(GOTEntry) - 5039 File->getData().data()); 5040 } 5041 } 5042 } 5043 5044 template <typename ELFT> 5045 void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { 5046 if (BC->IsStaticExecutable) 5047 return; 5048 5049 const ELFFile<ELFT> &Obj = File->getELFFile(); 5050 raw_fd_ostream &OS = Out->os(); 5051 5052 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5053 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5054 5055 // Locate DYNAMIC by looking through program headers. 5056 uint64_t DynamicOffset = 0; 5057 const Elf_Phdr *DynamicPhdr = 0; 5058 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5059 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5060 DynamicOffset = Phdr.p_offset; 5061 DynamicPhdr = &Phdr; 5062 assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); 5063 break; 5064 } 5065 } 5066 assert(DynamicPhdr && "missing dynamic in ELF binary"); 5067 5068 bool ZNowSet = false; 5069 5070 // Go through all dynamic entries and patch functions addresses with 5071 // new ones. 5072 typename ELFT::DynRange DynamicEntries = 5073 cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); 5074 auto DTB = DynamicEntries.begin(); 5075 for (const Elf_Dyn &Dyn : DynamicEntries) { 5076 Elf_Dyn NewDE = Dyn; 5077 bool ShouldPatch = true; 5078 switch (Dyn.d_tag) { 5079 default: 5080 ShouldPatch = false; 5081 break; 5082 case ELF::DT_RELACOUNT: 5083 NewDE.d_un.d_val = DynamicRelativeRelocationsCount; 5084 break; 5085 case ELF::DT_INIT: 5086 case ELF::DT_FINI: { 5087 if (BC->HasRelocations) { 5088 if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { 5089 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " 5090 << Dyn.getTag() << '\n'); 5091 NewDE.d_un.d_ptr = NewAddress; 5092 } 5093 } 5094 RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); 5095 if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { 5096 if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) 5097 NewDE.d_un.d_ptr = Addr; 5098 } 5099 if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { 5100 if (auto Addr = RtLibrary->getRuntimeStartAddress()) { 5101 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" 5102 << Twine::utohexstr(Addr) << '\n'); 5103 NewDE.d_un.d_ptr = Addr; 5104 } 5105 } 5106 break; 5107 } 5108 case ELF::DT_FLAGS: 5109 if (BC->RequiresZNow) { 5110 NewDE.d_un.d_val |= ELF::DF_BIND_NOW; 5111 ZNowSet = true; 5112 } 5113 break; 5114 case ELF::DT_FLAGS_1: 5115 if (BC->RequiresZNow) { 5116 NewDE.d_un.d_val |= ELF::DF_1_NOW; 5117 ZNowSet = true; 5118 } 5119 break; 5120 } 5121 if (ShouldPatch) 5122 OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), 5123 DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); 5124 } 5125 5126 if (BC->RequiresZNow && !ZNowSet) { 5127 errs() << "BOLT-ERROR: output binary requires immediate relocation " 5128 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " 5129 ".dynamic. Please re-link the binary with -znow.\n"; 5130 exit(1); 5131 } 5132 } 5133 5134 template <typename ELFT> 5135 Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { 5136 const ELFFile<ELFT> &Obj = File->getELFFile(); 5137 5138 using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; 5139 using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; 5140 5141 // Locate DYNAMIC by looking through program headers. 5142 const Elf_Phdr *DynamicPhdr = 0; 5143 for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { 5144 if (Phdr.p_type == ELF::PT_DYNAMIC) { 5145 DynamicPhdr = &Phdr; 5146 break; 5147 } 5148 } 5149 5150 if (!DynamicPhdr) { 5151 outs() << "BOLT-INFO: static input executable detected\n"; 5152 // TODO: static PIE executable might have dynamic header 5153 BC->IsStaticExecutable = true; 5154 return Error::success(); 5155 } 5156 5157 if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) 5158 return createStringError(errc::executable_format_error, 5159 "dynamic section sizes should match"); 5160 5161 // Go through all dynamic entries to locate entries of interest. 5162 auto DynamicEntriesOrErr = Obj.dynamicEntries(); 5163 if (!DynamicEntriesOrErr) 5164 return DynamicEntriesOrErr.takeError(); 5165 typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); 5166 5167 for (const Elf_Dyn &Dyn : DynamicEntries) { 5168 switch (Dyn.d_tag) { 5169 case ELF::DT_INIT: 5170 if (!BC->HasInterpHeader) { 5171 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); 5172 BC->StartFunctionAddress = Dyn.getPtr(); 5173 } 5174 break; 5175 case ELF::DT_FINI: 5176 BC->FiniFunctionAddress = Dyn.getPtr(); 5177 break; 5178 case ELF::DT_RELA: 5179 DynamicRelocationsAddress = Dyn.getPtr(); 5180 break; 5181 case ELF::DT_RELASZ: 5182 DynamicRelocationsSize = Dyn.getVal(); 5183 break; 5184 case ELF::DT_JMPREL: 5185 PLTRelocationsAddress = Dyn.getPtr(); 5186 break; 5187 case ELF::DT_PLTRELSZ: 5188 PLTRelocationsSize = Dyn.getVal(); 5189 break; 5190 case ELF::DT_RELACOUNT: 5191 DynamicRelativeRelocationsCount = Dyn.getVal(); 5192 break; 5193 } 5194 } 5195 5196 if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { 5197 DynamicRelocationsAddress.reset(); 5198 DynamicRelocationsSize = 0; 5199 } 5200 5201 if (!PLTRelocationsAddress || !PLTRelocationsSize) { 5202 PLTRelocationsAddress.reset(); 5203 PLTRelocationsSize = 0; 5204 } 5205 return Error::success(); 5206 } 5207 5208 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { 5209 const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); 5210 if (!Function) 5211 return 0; 5212 5213 return Function->getOutputAddress(); 5214 } 5215 5216 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { 5217 if (uint64_t Function = getNewFunctionAddress(OldAddress)) 5218 return Function; 5219 5220 const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); 5221 if (BD && BD->isMoved()) 5222 return BD->getOutputAddress(); 5223 5224 return 0; 5225 } 5226 5227 void RewriteInstance::rewriteFile() { 5228 std::error_code EC; 5229 Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, 5230 sys::fs::OF_None); 5231 check_error(EC, "cannot create output executable file"); 5232 5233 raw_fd_ostream &OS = Out->os(); 5234 5235 // Copy allocatable part of the input. 5236 OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); 5237 5238 // We obtain an asm-specific writer so that we can emit nops in an 5239 // architecture-specific way at the end of the function. 5240 std::unique_ptr<MCAsmBackend> MAB( 5241 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 5242 auto Streamer = BC->createStreamer(OS); 5243 // Make sure output stream has enough reserved space, otherwise 5244 // pwrite() will fail. 5245 uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); 5246 (void)Offset; 5247 assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && 5248 "error resizing output file"); 5249 5250 // Overwrite functions with fixed output address. This is mostly used by 5251 // non-relocation mode, with one exception: injected functions are covered 5252 // here in both modes. 5253 uint64_t CountOverwrittenFunctions = 0; 5254 uint64_t OverwrittenScore = 0; 5255 for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { 5256 if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) 5257 continue; 5258 5259 if (Function->getImageSize() > Function->getMaxSize()) { 5260 if (opts::Verbosity >= 1) 5261 errs() << "BOLT-WARNING: new function size (0x" 5262 << Twine::utohexstr(Function->getImageSize()) 5263 << ") is larger than maximum allowed size (0x" 5264 << Twine::utohexstr(Function->getMaxSize()) << ") for function " 5265 << *Function << '\n'; 5266 5267 // Remove jump table sections that this function owns in non-reloc mode 5268 // because we don't want to write them anymore. 5269 if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { 5270 for (auto &JTI : Function->JumpTables) { 5271 JumpTable *JT = JTI.second; 5272 BinarySection &Section = JT->getOutputSection(); 5273 BC->deregisterSection(Section); 5274 } 5275 } 5276 continue; 5277 } 5278 5279 if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || 5280 Function->cold().getImageSize() == 0)) 5281 continue; 5282 5283 OverwrittenScore += Function->getFunctionScore(); 5284 // Overwrite function in the output file. 5285 if (opts::Verbosity >= 2) 5286 outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; 5287 5288 OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), 5289 Function->getImageSize(), Function->getFileOffset()); 5290 5291 // Write nops at the end of the function. 5292 if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { 5293 uint64_t Pos = OS.tell(); 5294 OS.seek(Function->getFileOffset() + Function->getImageSize()); 5295 MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), 5296 &*BC->STI); 5297 5298 OS.seek(Pos); 5299 } 5300 5301 if (!Function->isSplit()) { 5302 ++CountOverwrittenFunctions; 5303 if (opts::MaxFunctions && 5304 CountOverwrittenFunctions == opts::MaxFunctions) { 5305 outs() << "BOLT: maximum number of functions reached\n"; 5306 break; 5307 } 5308 continue; 5309 } 5310 5311 // Write cold part 5312 if (opts::Verbosity >= 2) 5313 outs() << "BOLT: rewriting function \"" << *Function 5314 << "\" (cold part)\n"; 5315 5316 OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), 5317 Function->cold().getImageSize(), 5318 Function->cold().getFileOffset()); 5319 5320 ++CountOverwrittenFunctions; 5321 if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { 5322 outs() << "BOLT: maximum number of functions reached\n"; 5323 break; 5324 } 5325 } 5326 5327 // Print function statistics for non-relocation mode. 5328 if (!BC->HasRelocations) { 5329 outs() << "BOLT: " << CountOverwrittenFunctions << " out of " 5330 << BC->getBinaryFunctions().size() 5331 << " functions were overwritten.\n"; 5332 if (BC->TotalScore != 0) { 5333 double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; 5334 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) 5335 << "% of the execution count of simple functions of " 5336 "this binary\n"; 5337 } 5338 } 5339 5340 if (BC->HasRelocations && opts::TrapOldCode) { 5341 uint64_t SavedPos = OS.tell(); 5342 // Overwrite function body to make sure we never execute these instructions. 5343 for (auto &BFI : BC->getBinaryFunctions()) { 5344 BinaryFunction &BF = BFI.second; 5345 if (!BF.getFileOffset() || !BF.isEmitted()) 5346 continue; 5347 OS.seek(BF.getFileOffset()); 5348 for (unsigned I = 0; I < BF.getMaxSize(); ++I) 5349 OS.write((unsigned char)BC->MIB->getTrapFillValue()); 5350 } 5351 OS.seek(SavedPos); 5352 } 5353 5354 // Write all allocatable sections - reloc-mode text is written here as well 5355 for (BinarySection &Section : BC->allocatableSections()) { 5356 if (!Section.isFinalized() || !Section.getOutputData()) 5357 continue; 5358 5359 if (opts::Verbosity >= 1) 5360 outs() << "BOLT: writing new section " << Section.getName() 5361 << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) 5362 << "\n of size " << Section.getOutputSize() << "\n at offset " 5363 << Section.getOutputFileOffset() << '\n'; 5364 OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), 5365 Section.getOutputSize(), Section.getOutputFileOffset()); 5366 } 5367 5368 for (BinarySection &Section : BC->allocatableSections()) 5369 Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { 5370 return getNewValueForSymbol(S->getName()); 5371 }); 5372 5373 // If .eh_frame is present create .eh_frame_hdr. 5374 if (EHFrameSection && EHFrameSection->isFinalized()) 5375 writeEHFrameHeader(); 5376 5377 // Add BOLT Addresses Translation maps to allow profile collection to 5378 // happen in the output binary 5379 if (opts::EnableBAT) 5380 addBATSection(); 5381 5382 // Patch program header table. 5383 patchELFPHDRTable(); 5384 5385 // Finalize memory image of section string table. 5386 finalizeSectionStringTable(); 5387 5388 // Update symbol tables. 5389 patchELFSymTabs(); 5390 5391 patchBuildID(); 5392 5393 if (opts::EnableBAT) 5394 encodeBATSection(); 5395 5396 // Copy non-allocatable sections once allocatable part is finished. 5397 rewriteNoteSections(); 5398 5399 if (BC->HasRelocations) { 5400 patchELFAllocatableRelaSections(); 5401 patchELFGOT(); 5402 } 5403 5404 // Patch dynamic section/segment. 5405 patchELFDynamic(); 5406 5407 // Update ELF book-keeping info. 5408 patchELFSectionHeaderTable(); 5409 5410 if (opts::PrintSections) { 5411 outs() << "BOLT-INFO: Sections after processing:\n"; 5412 BC->printSections(outs()); 5413 } 5414 5415 Out->keep(); 5416 EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); 5417 check_error(EC, "cannot set permissions of output file"); 5418 } 5419 5420 void RewriteInstance::writeEHFrameHeader() { 5421 DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, 5422 EHFrameSection->getOutputAddress()); 5423 Error E = NewEHFrame.parse(DWARFDataExtractor( 5424 EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), 5425 BC->AsmInfo->getCodePointerSize())); 5426 check_error(std::move(E), "failed to parse EH frame"); 5427 5428 uint64_t OldEHFrameAddress = 0; 5429 StringRef OldEHFrameContents; 5430 ErrorOr<BinarySection &> OldEHFrameSection = 5431 BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); 5432 if (OldEHFrameSection) { 5433 OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); 5434 OldEHFrameContents = OldEHFrameSection->getOutputContents(); 5435 } 5436 DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); 5437 Error Er = OldEHFrame.parse( 5438 DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), 5439 BC->AsmInfo->getCodePointerSize())); 5440 check_error(std::move(Er), "failed to parse EH frame"); 5441 5442 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); 5443 5444 NextAvailableAddress = 5445 appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); 5446 5447 const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; 5448 const uint64_t EHFrameHdrFileOffset = 5449 getFileOffsetForAddress(NextAvailableAddress); 5450 5451 std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( 5452 OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); 5453 5454 assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); 5455 Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); 5456 5457 const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, 5458 /*IsText=*/false, 5459 /*IsAllocatable=*/true); 5460 BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( 5461 ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), 5462 /*Alignment=*/1); 5463 EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); 5464 EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); 5465 5466 NextAvailableAddress += EHFrameHdrSec.getOutputSize(); 5467 5468 // Merge new .eh_frame with original so that gdb can locate all FDEs. 5469 if (OldEHFrameSection) { 5470 const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + 5471 OldEHFrameSection->getOutputSize() - 5472 EHFrameSection->getOutputAddress()); 5473 EHFrameSection = 5474 BC->registerOrUpdateSection(".eh_frame", 5475 EHFrameSection->getELFType(), 5476 EHFrameSection->getELFFlags(), 5477 EHFrameSection->getOutputData(), 5478 EHFrameSectionSize, 5479 EHFrameSection->getAlignment()); 5480 BC->deregisterSection(*OldEHFrameSection); 5481 } 5482 5483 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " 5484 << EHFrameSection->getOutputSize() << '\n'); 5485 } 5486 5487 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { 5488 uint64_t Value = RTDyld->getSymbol(Name).getAddress(); 5489 if (Value != 0) 5490 return Value; 5491 5492 // Return the original value if we haven't emitted the symbol. 5493 BinaryData *BD = BC->getBinaryDataByName(Name); 5494 if (!BD) 5495 return 0; 5496 5497 return BD->getAddress(); 5498 } 5499 5500 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { 5501 // Check if it's possibly part of the new segment. 5502 if (Address >= NewTextSegmentAddress) 5503 return Address - NewTextSegmentAddress + NewTextSegmentOffset; 5504 5505 // Find an existing segment that matches the address. 5506 const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); 5507 if (SegmentInfoI == BC->SegmentMapInfo.begin()) 5508 return 0; 5509 5510 const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; 5511 if (Address < SegmentInfo.Address || 5512 Address >= SegmentInfo.Address + SegmentInfo.FileSize) 5513 return 0; 5514 5515 return SegmentInfo.FileOffset + Address - SegmentInfo.Address; 5516 } 5517 5518 bool RewriteInstance::willOverwriteSection(StringRef SectionName) { 5519 for (const char *const &OverwriteName : SectionsToOverwrite) 5520 if (SectionName == OverwriteName) 5521 return true; 5522 for (std::string &OverwriteName : DebugSectionsToOverwrite) 5523 if (SectionName == OverwriteName) 5524 return true; 5525 5526 ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); 5527 return Section && Section->isAllocatable() && Section->isFinalized(); 5528 } 5529 5530 bool RewriteInstance::isDebugSection(StringRef SectionName) { 5531 if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || 5532 SectionName == ".gdb_index" || SectionName == ".stab" || 5533 SectionName == ".stabstr") 5534 return true; 5535 5536 return false; 5537 } 5538 5539 bool RewriteInstance::isKSymtabSection(StringRef SectionName) { 5540 if (SectionName.startswith("__ksymtab")) 5541 return true; 5542 5543 return false; 5544 } 5545