1 //===- bolt/Rewrite/BoltDiff.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RewriteInstance methods related to comparing one instance to another, used
10 // by the boltdiff tool to print a report.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "bolt/Passes/IdenticalCodeFolding.h"
15 #include "bolt/Profile/ProfileReaderBase.h"
16 #include "bolt/Rewrite/RewriteInstance.h"
17 #include "llvm/Support/CommandLine.h"
18
19 #undef DEBUG_TYPE
20 #define DEBUG_TYPE "boltdiff"
21
22 using namespace llvm;
23 using namespace object;
24 using namespace bolt;
25
26 namespace opts {
27 extern cl::OptionCategory BoltDiffCategory;
28 extern cl::opt<bool> NeverPrint;
29 extern cl::opt<bool> ICF;
30
31 static cl::opt<bool> IgnoreLTOSuffix(
32 "ignore-lto-suffix",
33 cl::desc("ignore lto_priv or const suffixes when matching functions"),
34 cl::init(true), cl::cat(BoltDiffCategory));
35
36 static cl::opt<bool> PrintUnmapped(
37 "print-unmapped",
38 cl::desc("print functions of binary 2 that were not matched to any "
39 "function in binary 1"),
40 cl::cat(BoltDiffCategory));
41
42 static cl::opt<bool> PrintProfiledUnmapped(
43 "print-profiled-unmapped",
44 cl::desc("print functions that have profile in binary 1 but do not "
45 "in binary 2"),
46 cl::cat(BoltDiffCategory));
47
48 static cl::opt<bool> PrintDiffCFG(
49 "print-diff-cfg",
50 cl::desc("print the CFG of important functions that changed in "
51 "binary 2"),
52 cl::cat(BoltDiffCategory));
53
54 static cl::opt<bool>
55 PrintDiffBBs("print-diff-bbs",
56 cl::desc("print the basic blocks showed in top differences"),
57 cl::cat(BoltDiffCategory));
58
59 static cl::opt<bool> MatchByHash(
60 "match-by-hash",
61 cl::desc("match functions in binary 2 to binary 1 if they have the same "
62 "hash of a function in binary 1"),
63 cl::cat(BoltDiffCategory));
64
65 static cl::opt<bool> IgnoreUnchanged(
66 "ignore-unchanged",
67 cl::desc("do not diff functions whose contents have not been changed from "
68 "one binary to another"),
69 cl::cat(BoltDiffCategory));
70
71 static cl::opt<unsigned> DisplayCount(
72 "display-count",
73 cl::desc("number of functions to display when printing the top largest "
74 "differences in function activity"),
75 cl::init(10), cl::cat(BoltDiffCategory));
76
77 static cl::opt<bool> NormalizeByBin1(
78 "normalize-by-bin1",
79 cl::desc("show execution count of functions in binary 2 as a ratio of the "
80 "total samples in binary 1 - make sure both profiles have equal "
81 "collection time and sampling rate for this to make sense"),
82 cl::cat(BoltDiffCategory));
83
84 } // end namespace opts
85
86 namespace llvm {
87 namespace bolt {
88
89 namespace {
90
91 /// Helper used to print colored numbers
printColoredPercentage(double Perc)92 void printColoredPercentage(double Perc) {
93 if (outs().has_colors() && Perc > 0.0)
94 outs().changeColor(raw_ostream::RED);
95 else if (outs().has_colors() && Perc < 0.0)
96 outs().changeColor(raw_ostream::GREEN);
97 else if (outs().has_colors())
98 outs().changeColor(raw_ostream::YELLOW);
99 outs() << format("%.2f", Perc) << "%";
100 if (outs().has_colors())
101 outs().resetColor();
102 }
103
setLightColor()104 void setLightColor() {
105 if (opts::PrintDiffBBs && outs().has_colors())
106 outs().changeColor(raw_ostream::CYAN);
107 }
108
setTitleColor()109 void setTitleColor() {
110 if (outs().has_colors())
111 outs().changeColor(raw_ostream::WHITE, /*Bold=*/true);
112 }
113
setRegularColor()114 void setRegularColor() {
115 if (outs().has_colors())
116 outs().resetColor();
117 }
118
119 } // end anonymous namespace
120
121 /// Perform the comparison between two binaries with profiling information
122 class RewriteInstanceDiff {
123 typedef std::tuple<const BinaryBasicBlock *, const BinaryBasicBlock *, double>
124 EdgeTy;
125
126 RewriteInstance &RI1;
127 RewriteInstance &RI2;
128
129 // The map of functions keyed by functions in binary 2, providing its
130 // corresponding function in binary 1
131 std::map<const BinaryFunction *, const BinaryFunction *> FuncMap;
132
133 // The map of basic blocks correspondence, analogue to FuncMap for BBs,
134 // sorted by score difference
135 std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> BBMap;
136
137 // The map of edge correspondence
138 std::map<double, std::pair<EdgeTy, EdgeTy>> EdgeMap;
139
140 // Maps all known basic blocks back to their parent function
141 std::map<const BinaryBasicBlock *, const BinaryFunction *> BBToFuncMap;
142
143 // Accounting which functions were matched
144 std::set<const BinaryFunction *> Bin1MappedFuncs;
145 std::set<const BinaryFunction *> Bin2MappedFuncs;
146
147 // Structures for our 3 matching strategies: by name, by hash and by lto name,
148 // from the strongest to the weakest bind between two functions
149 StringMap<const BinaryFunction *> NameLookup;
150 DenseMap<size_t, const BinaryFunction *> HashLookup;
151 StringMap<const BinaryFunction *> LTONameLookup1;
152 StringMap<const BinaryFunction *> LTONameLookup2;
153
154 // Score maps used to order and find hottest functions
155 std::multimap<double, const BinaryFunction *> LargestBin1;
156 std::multimap<double, const BinaryFunction *> LargestBin2;
157
158 // Map multiple functions in the same LTO bucket to a single parent function
159 // representing all functions sharing the same prefix
160 std::map<const BinaryFunction *, const BinaryFunction *> LTOMap1;
161 std::map<const BinaryFunction *, const BinaryFunction *> LTOMap2;
162 std::map<const BinaryFunction *, double> LTOAggregatedScore1;
163 std::map<const BinaryFunction *, double> LTOAggregatedScore2;
164
165 // Map scores in bin2 and 1 keyed by a binary 2 function - post-matching
166 DenseMap<const BinaryFunction *, std::pair<double, double>> ScoreMap;
167
getNormalizedScore(const BinaryFunction & Function,const RewriteInstance & Ctx)168 double getNormalizedScore(const BinaryFunction &Function,
169 const RewriteInstance &Ctx) {
170 if (!opts::NormalizeByBin1)
171 return static_cast<double>(Function.getFunctionScore()) /
172 Ctx.getTotalScore();
173 return static_cast<double>(Function.getFunctionScore()) /
174 RI1.getTotalScore();
175 }
176
getNormalizedScore(const BinaryBasicBlock & BB,const RewriteInstance & Ctx)177 double getNormalizedScore(const BinaryBasicBlock &BB,
178 const RewriteInstance &Ctx) {
179 if (!opts::NormalizeByBin1)
180 return static_cast<double>(BB.getKnownExecutionCount()) /
181 Ctx.getTotalScore();
182 return static_cast<double>(BB.getKnownExecutionCount()) /
183 RI1.getTotalScore();
184 }
185
getNormalizedScore(BinaryBasicBlock::branch_info_iterator BIIter,const RewriteInstance & Ctx)186 double getNormalizedScore(BinaryBasicBlock::branch_info_iterator BIIter,
187 const RewriteInstance &Ctx) {
188 double Score =
189 BIIter->Count == BinaryBasicBlock::COUNT_NO_PROFILE ? 0 : BIIter->Count;
190 if (!opts::NormalizeByBin1)
191 return Score / Ctx.getTotalScore();
192 return Score / RI1.getTotalScore();
193 }
194
195 /// Initialize data structures used for function lookup in binary 1, used
196 /// later when matching functions in binary 2 to corresponding functions
197 /// in binary 1
buildLookupMaps()198 void buildLookupMaps() {
199 for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
200 StringRef LTOName;
201 const BinaryFunction &Function = BFI.second;
202 const double Score = getNormalizedScore(Function, RI1);
203 LargestBin1.insert(std::make_pair<>(Score, &Function));
204 for (const StringRef &Name : Function.getNames()) {
205 if (Optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
206 LTOName = *OptionalLTOName;
207 NameLookup[Name] = &Function;
208 }
209 if (opts::MatchByHash && Function.hasCFG())
210 HashLookup[Function.computeHash(/*UseDFS=*/true)] = &Function;
211 if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
212 if (!LTONameLookup1.count(LTOName))
213 LTONameLookup1[LTOName] = &Function;
214 LTOMap1[&Function] = LTONameLookup1[LTOName];
215 }
216 }
217
218 // Compute LTONameLookup2 and LargestBin2
219 for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
220 StringRef LTOName;
221 const BinaryFunction &Function = BFI.second;
222 const double Score = getNormalizedScore(Function, RI2);
223 LargestBin2.insert(std::make_pair<>(Score, &Function));
224 for (const StringRef &Name : Function.getNames()) {
225 if (Optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
226 LTOName = *OptionalLTOName;
227 }
228 if (opts::IgnoreLTOSuffix && !LTOName.empty()) {
229 if (!LTONameLookup2.count(LTOName))
230 LTONameLookup2[LTOName] = &Function;
231 LTOMap2[&Function] = LTONameLookup2[LTOName];
232 }
233 }
234 }
235
236 /// Match functions in binary 2 with functions in binary 1
matchFunctions()237 void matchFunctions() {
238 outs() << "BOLT-DIFF: Mapping functions in Binary2 to Binary1\n";
239 uint64_t BothHaveProfile = 0ull;
240 std::set<const BinaryFunction *> Bin1ProfiledMapped;
241
242 for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
243 const BinaryFunction &Function2 = BFI2.second;
244 StringRef LTOName;
245 bool Match = false;
246 for (const StringRef &Name : Function2.getNames()) {
247 auto Iter = NameLookup.find(Name);
248 if (Optional<StringRef> OptionalLTOName = getLTOCommonName(Name))
249 LTOName = *OptionalLTOName;
250 if (Iter == NameLookup.end())
251 continue;
252 FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
253 Bin1MappedFuncs.insert(Iter->second);
254 Bin2MappedFuncs.insert(&Function2);
255 if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
256 ++BothHaveProfile;
257 Bin1ProfiledMapped.insert(Iter->second);
258 }
259 Match = true;
260 break;
261 }
262 if (Match || !Function2.hasCFG())
263 continue;
264 auto Iter = HashLookup.find(Function2.computeHash(/*UseDFS*/ true));
265 if (Iter != HashLookup.end()) {
266 FuncMap.insert(std::make_pair<>(&Function2, Iter->second));
267 Bin1MappedFuncs.insert(Iter->second);
268 Bin2MappedFuncs.insert(&Function2);
269 if (Function2.hasValidProfile() && Iter->second->hasValidProfile()) {
270 ++BothHaveProfile;
271 Bin1ProfiledMapped.insert(Iter->second);
272 }
273 continue;
274 }
275 if (LTOName.empty())
276 continue;
277 auto LTOIter = LTONameLookup1.find(LTOName);
278 if (LTOIter != LTONameLookup1.end()) {
279 FuncMap.insert(std::make_pair<>(&Function2, LTOIter->second));
280 Bin1MappedFuncs.insert(LTOIter->second);
281 Bin2MappedFuncs.insert(&Function2);
282 if (Function2.hasValidProfile() && LTOIter->second->hasValidProfile()) {
283 ++BothHaveProfile;
284 Bin1ProfiledMapped.insert(LTOIter->second);
285 }
286 }
287 }
288 PrintProgramStats PPS(opts::NeverPrint);
289 outs() << "* BOLT-DIFF: Starting print program stats pass for binary 1\n";
290 PPS.runOnFunctions(*RI1.BC);
291 outs() << "* BOLT-DIFF: Starting print program stats pass for binary 2\n";
292 PPS.runOnFunctions(*RI2.BC);
293 outs() << "=====\n";
294 outs() << "Inputs share " << BothHaveProfile
295 << " functions with valid profile.\n";
296 if (opts::PrintProfiledUnmapped) {
297 outs() << "\nFunctions in profile 1 that are missing in the profile 2:\n";
298 std::vector<const BinaryFunction *> Unmapped;
299 for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
300 const BinaryFunction &Function = BFI.second;
301 if (!Function.hasValidProfile() || Bin1ProfiledMapped.count(&Function))
302 continue;
303 Unmapped.emplace_back(&Function);
304 }
305 llvm::sort(Unmapped,
306 [&](const BinaryFunction *A, const BinaryFunction *B) {
307 return A->getFunctionScore() > B->getFunctionScore();
308 });
309 for (const BinaryFunction *Function : Unmapped) {
310 outs() << Function->getPrintName() << " : ";
311 outs() << Function->getFunctionScore() << "\n";
312 }
313 outs() << "=====\n";
314 }
315 }
316
317 /// Check if opcodes in BB1 match those in BB2
compareBBs(const BinaryBasicBlock & BB1,const BinaryBasicBlock & BB2) const318 bool compareBBs(const BinaryBasicBlock &BB1,
319 const BinaryBasicBlock &BB2) const {
320 auto Iter1 = BB1.begin();
321 auto Iter2 = BB2.begin();
322 if ((Iter1 == BB1.end() && Iter2 != BB2.end()) ||
323 (Iter1 != BB1.end() && Iter2 == BB2.end()))
324 return false;
325
326 while (Iter1 != BB1.end()) {
327 if (Iter2 == BB2.end() || Iter1->getOpcode() != Iter2->getOpcode())
328 return false;
329
330 ++Iter1;
331 ++Iter2;
332 }
333
334 if (Iter2 != BB2.end())
335 return false;
336 return true;
337 }
338
339 /// For a function in binary 2 that matched one in binary 1, now match each
340 /// individual basic block in it to its corresponding blocks in binary 1.
341 /// Also match each edge in binary 2 to the corresponding ones in binary 1.
matchBasicBlocks()342 void matchBasicBlocks() {
343 for (const auto &MapEntry : FuncMap) {
344 const BinaryFunction *const &Func1 = MapEntry.second;
345 const BinaryFunction *const &Func2 = MapEntry.first;
346
347 auto Iter1 = Func1->getLayout().block_begin();
348 auto Iter2 = Func2->getLayout().block_begin();
349
350 bool Match = true;
351 std::map<const BinaryBasicBlock *, const BinaryBasicBlock *> Map;
352 std::map<double, std::pair<EdgeTy, EdgeTy>> EMap;
353 while (Iter1 != Func1->getLayout().block_end()) {
354 if (Iter2 == Func2->getLayout().block_end()) {
355 Match = false;
356 break;
357 }
358 if (!compareBBs(**Iter1, **Iter2)) {
359 Match = false;
360 break;
361 }
362 Map.insert(std::make_pair<>(*Iter2, *Iter1));
363
364 auto SuccIter1 = (*Iter1)->succ_begin();
365 auto SuccIter2 = (*Iter2)->succ_begin();
366 auto BIIter1 = (*Iter1)->branch_info_begin();
367 auto BIIter2 = (*Iter2)->branch_info_begin();
368 while (SuccIter1 != (*Iter1)->succ_end()) {
369 if (SuccIter2 == (*Iter2)->succ_end()) {
370 Match = false;
371 break;
372 }
373 const double ScoreEdge1 = getNormalizedScore(BIIter1, RI1);
374 const double ScoreEdge2 = getNormalizedScore(BIIter2, RI2);
375 EMap.insert(std::make_pair<>(
376 std::abs(ScoreEdge2 - ScoreEdge1),
377 std::make_pair<>(
378 std::make_tuple<>(*Iter2, *SuccIter2, ScoreEdge2),
379 std::make_tuple<>(*Iter1, *SuccIter1, ScoreEdge1))));
380
381 ++SuccIter1;
382 ++SuccIter2;
383 ++BIIter1;
384 ++BIIter2;
385 }
386 if (SuccIter2 != (*Iter2)->succ_end())
387 Match = false;
388 if (!Match)
389 break;
390
391 BBToFuncMap[*Iter1] = Func1;
392 BBToFuncMap[*Iter2] = Func2;
393 ++Iter1;
394 ++Iter2;
395 }
396 if (!Match || Iter2 != Func2->getLayout().block_end())
397 continue;
398
399 BBMap.insert(Map.begin(), Map.end());
400 EdgeMap.insert(EMap.begin(), EMap.end());
401 }
402 }
403
404 /// Print the largest differences in basic block performance from binary 1
405 /// to binary 2
reportHottestBBDiffs()406 void reportHottestBBDiffs() {
407 std::map<double, const BinaryBasicBlock *> LargestDiffs;
408 for (const auto &MapEntry : BBMap) {
409 const BinaryBasicBlock *BB2 = MapEntry.first;
410 const BinaryBasicBlock *BB1 = MapEntry.second;
411 LargestDiffs.insert(
412 std::make_pair<>(std::abs(getNormalizedScore(*BB2, RI2) -
413 getNormalizedScore(*BB1, RI1)),
414 BB2));
415 }
416
417 unsigned Printed = 0;
418 setTitleColor();
419 outs()
420 << "\nTop " << opts::DisplayCount
421 << " largest differences in basic block performance bin 2 -> bin 1:\n";
422 outs() << "=========================================================\n";
423 setRegularColor();
424 outs() << " * Functions with different contents do not appear here\n\n";
425 for (auto I = LargestDiffs.rbegin(), E = LargestDiffs.rend(); I != E; ++I) {
426 const BinaryBasicBlock *BB2 = I->second;
427 const double Score2 = getNormalizedScore(*BB2, RI2);
428 const double Score1 = getNormalizedScore(*BBMap[BB2], RI1);
429 outs() << "BB " << BB2->getName() << " from "
430 << BBToFuncMap[BB2]->getDemangledName()
431 << "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
432 << "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
433 outs() << "%\t(Difference: ";
434 printColoredPercentage((Score2 - Score1) * 100.0);
435 outs() << ")\n";
436 if (opts::PrintDiffBBs) {
437 setLightColor();
438 BB2->dump();
439 setRegularColor();
440 }
441 if (Printed++ == opts::DisplayCount)
442 break;
443 }
444 }
445
446 /// Print the largest differences in edge counts from one binary to another
reportHottestEdgeDiffs()447 void reportHottestEdgeDiffs() {
448 unsigned Printed = 0;
449 setTitleColor();
450 outs() << "\nTop " << opts::DisplayCount
451 << " largest differences in edge hotness bin 2 -> bin 1:\n";
452 outs() << "=========================================================\n";
453 setRegularColor();
454 outs() << " * Functions with different contents do not appear here\n";
455 for (auto I = EdgeMap.rbegin(), E = EdgeMap.rend(); I != E; ++I) {
456 std::tuple<const BinaryBasicBlock *, const BinaryBasicBlock *, double>
457 &Edge2 = I->second.first;
458 std::tuple<const BinaryBasicBlock *, const BinaryBasicBlock *, double>
459 &Edge1 = I->second.second;
460 const double Score2 = std::get<2>(Edge2);
461 const double Score1 = std::get<2>(Edge1);
462 outs() << "Edge (" << std::get<0>(Edge2)->getName() << " -> "
463 << std::get<1>(Edge2)->getName() << ") in "
464 << BBToFuncMap[std::get<0>(Edge2)]->getDemangledName()
465 << "\n\tScore bin1 = " << format("%.4f", Score1 * 100.0)
466 << "%\n\tScore bin2 = " << format("%.4f", Score2 * 100.0);
467 outs() << "%\t(Difference: ";
468 printColoredPercentage((Score2 - Score1) * 100.0);
469 outs() << ")\n";
470 if (opts::PrintDiffBBs) {
471 setLightColor();
472 std::get<0>(Edge2)->dump();
473 std::get<1>(Edge2)->dump();
474 setRegularColor();
475 }
476 if (Printed++ == opts::DisplayCount)
477 break;
478 }
479 }
480
481 /// For LTO functions sharing the same prefix (for example, func1.lto_priv.1
482 /// and func1.lto_priv.2 share the func1.lto_priv prefix), compute aggregated
483 /// scores for them. This is used to avoid reporting all LTO functions as
484 /// having a large difference in performance because hotness shifted from
485 /// LTO variant 1 to variant 2, even though they represent the same function.
computeAggregatedLTOScore()486 void computeAggregatedLTOScore() {
487 for (const auto &BFI : RI1.BC->getBinaryFunctions()) {
488 const BinaryFunction &Function = BFI.second;
489 double Score = getNormalizedScore(Function, RI1);
490 auto Iter = LTOMap1.find(&Function);
491 if (Iter == LTOMap1.end())
492 continue;
493 LTOAggregatedScore1[Iter->second] += Score;
494 }
495
496 double UnmappedScore = 0;
497 for (const auto &BFI : RI2.BC->getBinaryFunctions()) {
498 const BinaryFunction &Function = BFI.second;
499 bool Matched = FuncMap.find(&Function) != FuncMap.end();
500 double Score = getNormalizedScore(Function, RI2);
501 auto Iter = LTOMap2.find(&Function);
502 if (Iter == LTOMap2.end()) {
503 if (!Matched)
504 UnmappedScore += Score;
505 continue;
506 }
507 LTOAggregatedScore2[Iter->second] += Score;
508 if (FuncMap.find(Iter->second) == FuncMap.end())
509 UnmappedScore += Score;
510 }
511 int64_t Unmapped =
512 RI2.BC->getBinaryFunctions().size() - Bin2MappedFuncs.size();
513 outs() << "BOLT-DIFF: " << Unmapped
514 << " functions in Binary2 have no correspondence to any other "
515 "function in Binary1.\n";
516
517 // Print the hotness score of functions in binary 2 that were not matched
518 // to any function in binary 1
519 outs() << "BOLT-DIFF: These unmapped functions in Binary2 represent "
520 << format("%.2f", UnmappedScore * 100.0) << "% of execution.\n";
521 }
522
523 /// Print the largest hotness differences from binary 2 to binary 1
reportHottestFuncDiffs()524 void reportHottestFuncDiffs() {
525 std::multimap<double, decltype(FuncMap)::value_type> LargestDiffs;
526 for (const auto &MapEntry : FuncMap) {
527 const BinaryFunction *const &Func1 = MapEntry.second;
528 const BinaryFunction *const &Func2 = MapEntry.first;
529 double Score1 = getNormalizedScore(*Func1, RI1);
530 auto Iter1 = LTOMap1.find(Func1);
531 if (Iter1 != LTOMap1.end())
532 Score1 = LTOAggregatedScore1[Iter1->second];
533 double Score2 = getNormalizedScore(*Func2, RI2);
534 auto Iter2 = LTOMap2.find(Func2);
535 if (Iter2 != LTOMap2.end())
536 Score2 = LTOAggregatedScore2[Iter2->second];
537 if (Score1 == 0.0 || Score2 == 0.0)
538 continue;
539 LargestDiffs.insert(
540 std::make_pair<>(std::abs(Score1 - Score2), MapEntry));
541 ScoreMap[Func2] = std::make_pair<>(Score1, Score2);
542 }
543
544 unsigned Printed = 0;
545 setTitleColor();
546 outs() << "\nTop " << opts::DisplayCount
547 << " largest differences in performance bin 2 -> bin 1:\n";
548 outs() << "=========================================================\n";
549 setRegularColor();
550 for (auto I = LargestDiffs.rbegin(), E = LargestDiffs.rend(); I != E; ++I) {
551 const std::pair<const BinaryFunction *const, const BinaryFunction *>
552 &MapEntry = I->second;
553 if (opts::IgnoreUnchanged &&
554 MapEntry.second->computeHash(/*UseDFS=*/true) ==
555 MapEntry.first->computeHash(/*UseDFS=*/true))
556 continue;
557 const std::pair<double, double> &Scores = ScoreMap[MapEntry.first];
558 outs() << "Function " << MapEntry.first->getDemangledName();
559 if (MapEntry.first->getDemangledName() !=
560 MapEntry.second->getDemangledName())
561 outs() << "\nmatched " << MapEntry.second->getDemangledName();
562 outs() << "\n\tScore bin1 = " << format("%.2f", Scores.first * 100.0)
563 << "%\n\tScore bin2 = " << format("%.2f", Scores.second * 100.0)
564 << "%\t(Difference: ";
565 printColoredPercentage((Scores.second - Scores.first) * 100.0);
566 outs() << ")";
567 if (MapEntry.second->computeHash(/*UseDFS=*/true) !=
568 MapEntry.first->computeHash(/*UseDFS=*/true)) {
569 outs() << "\t[Functions have different contents]";
570 if (opts::PrintDiffCFG) {
571 outs() << "\n *** CFG for function in binary 1:\n";
572 setLightColor();
573 MapEntry.second->dump();
574 setRegularColor();
575 outs() << "\n *** CFG for function in binary 2:\n";
576 setLightColor();
577 MapEntry.first->dump();
578 setRegularColor();
579 }
580 }
581 outs() << "\n";
582 if (Printed++ == opts::DisplayCount)
583 break;
584 }
585 }
586
587 /// Print hottest functions from each binary
reportHottestFuncs()588 void reportHottestFuncs() {
589 unsigned Printed = 0;
590 setTitleColor();
591 outs() << "\nTop " << opts::DisplayCount
592 << " hottest functions in binary 2:\n";
593 outs() << "=====================================\n";
594 setRegularColor();
595 for (auto I = LargestBin2.rbegin(), E = LargestBin2.rend(); I != E; ++I) {
596 const std::pair<const double, const BinaryFunction *> &MapEntry = *I;
597 outs() << "Function " << MapEntry.second->getDemangledName() << "\n";
598 auto Iter = ScoreMap.find(MapEntry.second);
599 if (Iter != ScoreMap.end())
600 outs() << "\tScore bin1 = "
601 << format("%.2f", Iter->second.first * 100.0) << "%\n";
602 outs() << "\tScore bin2 = " << format("%.2f", MapEntry.first * 100.0)
603 << "%\n";
604 if (Printed++ == opts::DisplayCount)
605 break;
606 }
607
608 Printed = 0;
609 setTitleColor();
610 outs() << "\nTop " << opts::DisplayCount
611 << " hottest functions in binary 1:\n";
612 outs() << "=====================================\n";
613 setRegularColor();
614 for (auto I = LargestBin1.rbegin(), E = LargestBin1.rend(); I != E; ++I) {
615 const std::pair<const double, const BinaryFunction *> &MapEntry = *I;
616 outs() << "Function " << MapEntry.second->getDemangledName()
617 << "\n\tScore bin1 = " << format("%.2f", MapEntry.first * 100.0)
618 << "%\n";
619 if (Printed++ == opts::DisplayCount)
620 break;
621 }
622 }
623
624 /// Print functions in binary 2 that did not match anything in binary 1.
625 /// Unfortunately, in an LTO build, even a small change can lead to several
626 /// LTO variants being unmapped, corresponding to local functions that never
627 /// appear in one of the binaries because they were previously inlined.
reportUnmapped()628 void reportUnmapped() {
629 outs() << "List of functions from binary 2 that were not matched with any "
630 << "function in binary 1:\n";
631 for (const auto &BFI2 : RI2.BC->getBinaryFunctions()) {
632 const BinaryFunction &Function2 = BFI2.second;
633 if (Bin2MappedFuncs.count(&Function2))
634 continue;
635 outs() << Function2.getPrintName() << "\n";
636 }
637 }
638
639 public:
640 /// Main entry point: coordinate all tasks necessary to compare two binaries
compareAndReport()641 void compareAndReport() {
642 buildLookupMaps();
643 matchFunctions();
644 if (opts::IgnoreLTOSuffix)
645 computeAggregatedLTOScore();
646 matchBasicBlocks();
647 reportHottestFuncDiffs();
648 reportHottestBBDiffs();
649 reportHottestEdgeDiffs();
650 reportHottestFuncs();
651 if (!opts::PrintUnmapped)
652 return;
653 reportUnmapped();
654 }
655
RewriteInstanceDiff(RewriteInstance & RI1,RewriteInstance & RI2)656 RewriteInstanceDiff(RewriteInstance &RI1, RewriteInstance &RI2)
657 : RI1(RI1), RI2(RI2) {
658 compareAndReport();
659 }
660
661 };
662
663 } // end nampespace bolt
664 } // end namespace llvm
665
compare(RewriteInstance & RI2)666 void RewriteInstance::compare(RewriteInstance &RI2) {
667 outs() << "BOLT-DIFF: ======== Binary1 vs. Binary2 ========\n";
668 outs() << "Trace for binary 1 has " << this->getTotalScore()
669 << " instructions executed.\n";
670 outs() << "Trace for binary 2 has " << RI2.getTotalScore()
671 << " instructions executed.\n";
672 if (opts::NormalizeByBin1) {
673 double Diff2to1 =
674 static_cast<double>(RI2.getTotalScore() - this->getTotalScore()) /
675 this->getTotalScore();
676 outs() << "Binary2 change in score with respect to Binary1: ";
677 printColoredPercentage(Diff2to1 * 100.0);
678 outs() << "\n";
679 }
680
681 if (!this->getTotalScore() || !RI2.getTotalScore()) {
682 outs() << "BOLT-DIFF: Both binaries must have recorded activity in known "
683 "functions.\n";
684 return;
685 }
686
687 // Pre-pass ICF
688 if (opts::ICF) {
689 IdenticalCodeFolding ICF(opts::NeverPrint);
690 outs() << "BOLT-DIFF: Starting ICF pass for binary 1";
691 ICF.runOnFunctions(*BC);
692 outs() << "BOLT-DIFF: Starting ICF pass for binary 2";
693 ICF.runOnFunctions(*RI2.BC);
694 }
695
696 RewriteInstanceDiff RID(*this, RI2);
697 }
698