1 //===--- ExtTSPReorderAlgorithm.cpp - Order basic blocks ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // ExtTSP - layout of basic blocks with i-cache optimization. 9 // 10 // The algorithm is a greedy heuristic that works with chains (ordered lists) 11 // of basic blocks. Initially all chains are isolated basic blocks. On every 12 // iteration, we pick a pair of chains whose merging yields the biggest increase 13 // in the ExtTSP value, which models how i-cache "friendly" a specific chain is. 14 // A pair of chains giving the maximum gain is merged into a new chain. The 15 // procedure stops when there is only one chain left, or when merging does not 16 // increase ExtTSP. In the latter case, the remaining chains are sorted by 17 // density in decreasing order. 18 // 19 // An important aspect is the way two chains are merged. Unlike earlier 20 // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two 21 // chains, X and Y, are first split into three, X1, X2, and Y. Then we 22 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 23 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 24 // This improves the quality of the final result (the search space is larger) 25 // while keeping the implementation sufficiently fast. 26 // 27 // Reference: 28 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 29 // IEEE Transactions on Computers, 2020 30 // https://arxiv.org/abs/1809.04676 31 //===----------------------------------------------------------------------===// 32 #include "bolt/Core/BinaryBasicBlock.h" 33 #include "bolt/Core/BinaryFunction.h" 34 #include "bolt/Passes/ReorderAlgorithm.h" 35 #include "llvm/Support/CommandLine.h" 36 37 using namespace llvm; 38 using namespace bolt; 39 namespace opts { 40 41 extern cl::OptionCategory BoltOptCategory; 42 extern cl::opt<bool> NoThreads; 43 44 cl::opt<unsigned> 45 ChainSplitThreshold("chain-split-threshold", 46 cl::desc("The maximum size of a chain to apply splitting"), 47 cl::init(128), 48 cl::ReallyHidden, 49 cl::ZeroOrMore, 50 cl::cat(BoltOptCategory)); 51 52 cl::opt<double> 53 ForwardWeight("forward-weight", 54 cl::desc("The weight of forward jumps for ExtTSP value"), 55 cl::init(0.1), 56 cl::ReallyHidden, 57 cl::ZeroOrMore, 58 cl::cat(BoltOptCategory)); 59 60 cl::opt<double> 61 BackwardWeight("backward-weight", 62 cl::desc("The weight of backward jumps for ExtTSP value"), 63 cl::init(0.1), 64 cl::ReallyHidden, 65 cl::ZeroOrMore, 66 cl::cat(BoltOptCategory)); 67 68 cl::opt<unsigned> 69 ForwardDistance("forward-distance", 70 cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"), 71 cl::init(1024), 72 cl::ReallyHidden, 73 cl::ZeroOrMore, 74 cl::cat(BoltOptCategory)); 75 76 cl::opt<unsigned> 77 BackwardDistance("backward-distance", 78 cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"), 79 cl::init(640), 80 cl::ReallyHidden, 81 cl::ZeroOrMore, 82 cl::cat(BoltOptCategory)); 83 84 } 85 86 namespace llvm { 87 namespace bolt { 88 89 // Epsilon for comparison of doubles 90 constexpr double EPS = 1e-8; 91 92 class Block; 93 class Chain; 94 class Edge; 95 96 // Calculate Ext-TSP value, which quantifies the expected number of i-cache 97 // misses for a given ordering of basic blocks 98 double extTSPScore(uint64_t SrcAddr, 99 uint64_t SrcSize, 100 uint64_t DstAddr, 101 uint64_t Count) { 102 assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE); 103 104 // Fallthrough 105 if (SrcAddr + SrcSize == DstAddr) { 106 // Assume that FallthroughWeight = 1.0 after normalization 107 return static_cast<double>(Count); 108 } 109 // Forward 110 if (SrcAddr + SrcSize < DstAddr) { 111 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); 112 if (Dist <= opts::ForwardDistance) { 113 double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance; 114 return opts::ForwardWeight * Prob * Count; 115 } 116 return 0; 117 } 118 // Backward 119 const uint64_t Dist = SrcAddr + SrcSize - DstAddr; 120 if (Dist <= opts::BackwardDistance) { 121 double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance; 122 return opts::BackwardWeight * Prob * Count; 123 } 124 return 0; 125 } 126 127 using BlockPair = std::pair<Block *, Block *>; 128 using JumpList = std::vector<std::pair<BlockPair, uint64_t>>; 129 using BlockIter = std::vector<Block *>::const_iterator; 130 131 enum MergeTypeTy { 132 X_Y = 0, 133 X1_Y_X2 = 1, 134 Y_X2_X1 = 2, 135 X2_X1_Y = 3, 136 }; 137 138 class MergeGainTy { 139 public: 140 explicit MergeGainTy() {} 141 explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) 142 : Score(Score), 143 MergeOffset(MergeOffset), 144 MergeType(MergeType) {} 145 146 double score() const { 147 return Score; 148 } 149 150 size_t mergeOffset() const { 151 return MergeOffset; 152 } 153 154 MergeTypeTy mergeType() const { 155 return MergeType; 156 } 157 158 // returns 'true' iff Other is preferred over this 159 bool operator < (const MergeGainTy& Other) const { 160 return (Other.Score > EPS && Other.Score > Score + EPS); 161 } 162 163 private: 164 double Score{-1.0}; 165 size_t MergeOffset{0}; 166 MergeTypeTy MergeType{MergeTypeTy::X_Y}; 167 }; 168 169 // A node in CFG corresponding to a BinaryBasicBlock. 170 // The class wraps several mutable fields utilized in the ExtTSP algorithm 171 class Block { 172 public: 173 Block(const Block&) = delete; 174 Block(Block&&) = default; 175 Block& operator=(const Block&) = delete; 176 Block& operator=(Block&&) = default; 177 178 // Corresponding basic block 179 BinaryBasicBlock *BB{nullptr}; 180 // Current chain of the basic block 181 Chain *CurChain{nullptr}; 182 // (Estimated) size of the block in the binary 183 uint64_t Size{0}; 184 // Execution count of the block in the binary 185 uint64_t ExecutionCount{0}; 186 // An original index of the node in CFG 187 size_t Index{0}; 188 // The index of the block in the current chain 189 size_t CurIndex{0}; 190 // An offset of the block in the current chain 191 mutable uint64_t EstimatedAddr{0}; 192 // Fallthrough successor of the node in CFG 193 Block *FallthroughSucc{nullptr}; 194 // Fallthrough predecessor of the node in CFG 195 Block *FallthroughPred{nullptr}; 196 // Outgoing jumps from the block 197 std::vector<std::pair<Block *, uint64_t>> OutJumps; 198 // Incoming jumps to the block 199 std::vector<std::pair<Block *, uint64_t>> InJumps; 200 // Total execution count of incoming jumps 201 uint64_t InWeight{0}; 202 // Total execution count of outgoing jumps 203 uint64_t OutWeight{0}; 204 205 public: 206 explicit Block(BinaryBasicBlock *BB_, uint64_t Size_) 207 : BB(BB_), 208 Size(Size_), 209 ExecutionCount(BB_->getKnownExecutionCount()), 210 Index(BB->getLayoutIndex()) {} 211 212 bool adjacent(const Block *Other) const { 213 return hasOutJump(Other) || hasInJump(Other); 214 } 215 216 bool hasOutJump(const Block *Other) const { 217 for (std::pair<Block *, uint64_t> Jump : OutJumps) { 218 if (Jump.first == Other) 219 return true; 220 } 221 return false; 222 } 223 224 bool hasInJump(const Block *Other) const { 225 for (std::pair<Block *, uint64_t> Jump : InJumps) { 226 if (Jump.first == Other) 227 return true; 228 } 229 return false; 230 } 231 }; 232 233 // A chain (ordered sequence) of CFG nodes (basic blocks) 234 class Chain { 235 public: 236 Chain(const Chain&) = delete; 237 Chain(Chain&&) = default; 238 Chain& operator=(const Chain&) = delete; 239 Chain& operator=(Chain&&) = default; 240 241 explicit Chain(size_t Id, Block *Block) 242 : Id(Id), 243 IsEntry(Block->Index == 0), 244 ExecutionCount(Block->ExecutionCount), 245 Size(Block->Size), 246 Score(0), 247 Blocks(1, Block) {} 248 249 size_t id() const { 250 return Id; 251 } 252 253 uint64_t size() const { 254 return Size; 255 } 256 257 double density() const { 258 return static_cast<double>(ExecutionCount) / Size; 259 } 260 261 uint64_t executionCount() const { 262 return ExecutionCount; 263 } 264 265 bool isEntryPoint() const { 266 return IsEntry; 267 } 268 269 double score() const { 270 return Score; 271 } 272 273 void setScore(double NewScore) { 274 Score = NewScore; 275 } 276 277 const std::vector<Block *> &blocks() const { 278 return Blocks; 279 } 280 281 const std::vector<std::pair<Chain *, Edge *>> &edges() const { 282 return Edges; 283 } 284 285 Edge *getEdge(Chain *Other) const { 286 for (std::pair<Chain *, Edge *> It : Edges) { 287 if (It.first == Other) 288 return It.second; 289 } 290 return nullptr; 291 } 292 293 void removeEdge(Chain *Other) { 294 auto It = Edges.begin(); 295 while (It != Edges.end()) { 296 if (It->first == Other) { 297 Edges.erase(It); 298 return; 299 } 300 It++; 301 } 302 } 303 304 void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); } 305 306 void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { 307 Blocks = MergedBlocks; 308 IsEntry |= Other->IsEntry; 309 ExecutionCount += Other->ExecutionCount; 310 Size += Other->Size; 311 // Update block's chains 312 for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { 313 Blocks[Idx]->CurChain = this; 314 Blocks[Idx]->CurIndex = Idx; 315 } 316 } 317 318 void mergeEdges(Chain *Other); 319 320 void clear() { 321 Blocks.clear(); 322 Edges.clear(); 323 } 324 325 private: 326 size_t Id; 327 bool IsEntry; 328 uint64_t ExecutionCount; 329 uint64_t Size; 330 // Cached ext-tsp score for the chain 331 double Score; 332 // Blocks of the chain 333 std::vector<Block *> Blocks; 334 // Adjacent chains and corresponding edges (lists of jumps) 335 std::vector<std::pair<Chain *, Edge *>> Edges; 336 }; 337 338 // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks. 339 // When blocks are merged into chains, the edges are combined too so that 340 // there is always at most one edge between a pair of chains 341 class Edge { 342 public: 343 Edge(const Edge&) = delete; 344 Edge(Edge&&) = default; 345 Edge& operator=(const Edge&) = delete; 346 Edge& operator=(Edge&&) = default; 347 348 explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC) 349 : SrcChain(SrcBlock->CurChain), 350 DstChain(DstBlock->CurChain), 351 Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {} 352 353 const JumpList &jumps() const { 354 return Jumps; 355 } 356 357 void changeEndpoint(Chain *From, Chain *To) { 358 if (From == SrcChain) 359 SrcChain = To; 360 if (From == DstChain) 361 DstChain = To; 362 } 363 364 void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) { 365 Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC); 366 } 367 368 void moveJumps(Edge *Other) { 369 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 370 Other->Jumps.clear(); 371 } 372 373 bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { 374 return Src == SrcChain ? CacheValidForward : CacheValidBackward; 375 } 376 377 MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { 378 return Src == SrcChain ? CachedGainForward : CachedGainBackward; 379 } 380 381 void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { 382 if (Src == SrcChain) { 383 CachedGainForward = MergeGain; 384 CacheValidForward = true; 385 } else { 386 CachedGainBackward = MergeGain; 387 CacheValidBackward = true; 388 } 389 } 390 391 void invalidateCache() { 392 CacheValidForward = false; 393 CacheValidBackward = false; 394 } 395 396 private: 397 Chain *SrcChain{nullptr}; 398 Chain *DstChain{nullptr}; 399 // Original jumps in the binary with correspinding execution counts 400 JumpList Jumps; 401 // Cached ext-tsp value for merging the pair of chains 402 // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, 403 // we store both values here 404 MergeGainTy CachedGainForward; 405 MergeGainTy CachedGainBackward; 406 // Whether the cached value must be recomputed 407 bool CacheValidForward{false}; 408 bool CacheValidBackward{false}; 409 }; 410 411 void Chain::mergeEdges(Chain *Other) { 412 assert(this != Other && "cannot merge a chain with itself"); 413 414 // Update edges adjacent to chain Other 415 for (auto EdgeIt : Other->Edges) { 416 Chain *const DstChain = EdgeIt.first; 417 Edge *const DstEdge = EdgeIt.second; 418 Chain *const TargetChain = DstChain == Other ? this : DstChain; 419 420 // Find the corresponding edge in the current chain 421 Edge *curEdge = getEdge(TargetChain); 422 if (curEdge == nullptr) { 423 DstEdge->changeEndpoint(Other, this); 424 this->addEdge(TargetChain, DstEdge); 425 if (DstChain != this && DstChain != Other) { 426 DstChain->addEdge(this, DstEdge); 427 } 428 } else { 429 curEdge->moveJumps(DstEdge); 430 } 431 // Cleanup leftover edge 432 if (DstChain != Other) { 433 DstChain->removeEdge(Other); 434 } 435 } 436 } 437 438 // A wrapper around three chains of basic blocks; it is used to avoid extra 439 // instantiation of the vectors. 440 class MergedChain { 441 public: 442 MergedChain(BlockIter Begin1, 443 BlockIter End1, 444 BlockIter Begin2 = BlockIter(), 445 BlockIter End2 = BlockIter(), 446 BlockIter Begin3 = BlockIter(), 447 BlockIter End3 = BlockIter()) 448 : Begin1(Begin1), 449 End1(End1), 450 Begin2(Begin2), 451 End2(End2), 452 Begin3(Begin3), 453 End3(End3) {} 454 455 template<typename F> 456 void forEach(const F &Func) const { 457 for (auto It = Begin1; It != End1; It++) 458 Func(*It); 459 for (auto It = Begin2; It != End2; It++) 460 Func(*It); 461 for (auto It = Begin3; It != End3; It++) 462 Func(*It); 463 } 464 465 std::vector<Block *> getBlocks() const { 466 std::vector<Block *> Result; 467 Result.reserve(std::distance(Begin1, End1) + 468 std::distance(Begin2, End2) + 469 std::distance(Begin3, End3)); 470 Result.insert(Result.end(), Begin1, End1); 471 Result.insert(Result.end(), Begin2, End2); 472 Result.insert(Result.end(), Begin3, End3); 473 return Result; 474 } 475 476 const Block *getFirstBlock() const { 477 return *Begin1; 478 } 479 480 private: 481 BlockIter Begin1; 482 BlockIter End1; 483 BlockIter Begin2; 484 BlockIter End2; 485 BlockIter Begin3; 486 BlockIter End3; 487 }; 488 489 /// Deterministically compare pairs of chains 490 bool compareChainPairs(const Chain *A1, const Chain *B1, 491 const Chain *A2, const Chain *B2) { 492 const uint64_t Samples1 = A1->executionCount() + B1->executionCount(); 493 const uint64_t Samples2 = A2->executionCount() + B2->executionCount(); 494 if (Samples1 != Samples2) 495 return Samples1 < Samples2; 496 497 // Making the order deterministic 498 if (A1 != A2) 499 return A1->id() < A2->id(); 500 return B1->id() < B2->id(); 501 } 502 class ExtTSP { 503 public: 504 ExtTSP(const BinaryFunction &BF) : BF(BF) { 505 initialize(); 506 } 507 508 /// Run the algorithm and return an ordering of basic block 509 void run(BinaryFunction::BasicBlockOrderType &Order) { 510 // Pass 1: Merge blocks with their fallthrough successors 511 mergeFallthroughs(); 512 513 // Pass 2: Merge pairs of chains while improving the ExtTSP objective 514 mergeChainPairs(); 515 516 // Pass 3: Merge cold blocks to reduce code size 517 mergeColdChains(); 518 519 // Collect blocks from all chains 520 concatChains(Order); 521 } 522 523 private: 524 /// Initialize algorithm's data structures 525 void initialize() { 526 // Create a separate MCCodeEmitter to allow lock-free execution 527 BinaryContext::IndependentCodeEmitter Emitter; 528 if (!opts::NoThreads) { 529 Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter(); 530 } 531 532 // Initialize CFG nodes 533 AllBlocks.reserve(BF.layout_size()); 534 size_t LayoutIndex = 0; 535 for (BinaryBasicBlock *BB : BF.layout()) { 536 BB->setLayoutIndex(LayoutIndex++); 537 uint64_t Size = 538 std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1); 539 AllBlocks.emplace_back(BB, Size); 540 } 541 542 // Initialize edges for the blocks and compute their total in/out weights 543 size_t NumEdges = 0; 544 for (Block &Block : AllBlocks) { 545 auto BI = Block.BB->branch_info_begin(); 546 for (BinaryBasicBlock *SuccBB : Block.BB->successors()) { 547 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 548 "missing profile for a jump"); 549 if (SuccBB != Block.BB && BI->Count > 0) { 550 class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()]; 551 uint64_t Count = BI->Count; 552 SuccBlock.InWeight += Count; 553 SuccBlock.InJumps.emplace_back(&Block, Count); 554 Block.OutWeight += Count; 555 Block.OutJumps.emplace_back(&SuccBlock, Count); 556 NumEdges++; 557 } 558 ++BI; 559 } 560 } 561 562 // Initialize execution count for every basic block, which is the 563 // maximum over the sums of all in and out edge weights. 564 // Also execution count of the entry point is set to at least 1 565 for (Block &Block : AllBlocks) { 566 size_t Index = Block.Index; 567 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight); 568 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight); 569 if (Index == 0 && Block.ExecutionCount == 0) 570 Block.ExecutionCount = 1; 571 } 572 573 // Initialize chains 574 AllChains.reserve(BF.layout_size()); 575 HotChains.reserve(BF.layout_size()); 576 for (Block &Block : AllBlocks) { 577 AllChains.emplace_back(Block.Index, &Block); 578 Block.CurChain = &AllChains.back(); 579 if (Block.ExecutionCount > 0) { 580 HotChains.push_back(&AllChains.back()); 581 } 582 } 583 584 // Initialize edges 585 AllEdges.reserve(NumEdges); 586 for (Block &Block : AllBlocks) { 587 for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) { 588 class Block *const SuccBlock = Jump.first; 589 Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); 590 // this edge is already present in the graph 591 if (CurEdge != nullptr) { 592 assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); 593 CurEdge->appendJump(&Block, SuccBlock, Jump.second); 594 continue; 595 } 596 // this is a new edge 597 AllEdges.emplace_back(&Block, SuccBlock, Jump.second); 598 Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); 599 SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); 600 } 601 } 602 assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges"); 603 } 604 605 /// For a pair of blocks, A and B, block B is the fallthrough successor of A, 606 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 607 /// to B are from A. Such blocks should be adjacent in an optimal ordering; 608 /// the method finds and merges such pairs of blocks 609 void mergeFallthroughs() { 610 // Find fallthroughs based on edge weights 611 for (Block &Block : AllBlocks) { 612 if (Block.BB->succ_size() == 1 && 613 Block.BB->getSuccessor()->pred_size() == 1 && 614 Block.BB->getSuccessor()->getLayoutIndex() != 0) { 615 size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex(); 616 Block.FallthroughSucc = &AllBlocks[SuccIndex]; 617 AllBlocks[SuccIndex].FallthroughPred = &Block; 618 continue; 619 } 620 621 if (Block.OutWeight == 0) 622 continue; 623 for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) { 624 class Block *const SuccBlock = Edge.first; 625 // Successor cannot be the first BB, which is pinned 626 if (Block.OutWeight == Edge.second && 627 SuccBlock->InWeight == Edge.second && 628 SuccBlock->Index != 0) { 629 Block.FallthroughSucc = SuccBlock; 630 SuccBlock->FallthroughPred = &Block; 631 break; 632 } 633 } 634 } 635 636 // There might be 'cycles' in the fallthrough dependencies (since profile 637 // data isn't 100% accurate). 638 // Break the cycles by choosing the block with smallest index as the tail 639 for (Block &Block : AllBlocks) { 640 if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr) 641 continue; 642 643 class Block *SuccBlock = Block.FallthroughSucc; 644 while (SuccBlock != nullptr && SuccBlock != &Block) { 645 SuccBlock = SuccBlock->FallthroughSucc; 646 } 647 if (SuccBlock == nullptr) 648 continue; 649 // break the cycle 650 AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr; 651 Block.FallthroughPred = nullptr; 652 } 653 654 // Merge blocks with their fallthrough successors 655 for (Block &Block : AllBlocks) { 656 if (Block.FallthroughPred == nullptr && 657 Block.FallthroughSucc != nullptr) { 658 class Block *CurBlock = &Block; 659 while (CurBlock->FallthroughSucc != nullptr) { 660 class Block *const NextBlock = CurBlock->FallthroughSucc; 661 mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); 662 CurBlock = NextBlock; 663 } 664 } 665 } 666 } 667 668 /// Merge pairs of chains while improving the ExtTSP objective 669 void mergeChainPairs() { 670 while (HotChains.size() > 1) { 671 Chain *BestChainPred = nullptr; 672 Chain *BestChainSucc = nullptr; 673 auto BestGain = MergeGainTy(); 674 // Iterate over all pairs of chains 675 for (Chain *ChainPred : HotChains) { 676 // Get candidates for merging with the current chain 677 for (auto EdgeIter : ChainPred->edges()) { 678 Chain *ChainSucc = EdgeIter.first; 679 Edge *ChainEdge = EdgeIter.second; 680 // Ignore loop edges 681 if (ChainPred == ChainSucc) 682 continue; 683 684 // Compute the gain of merging the two chains 685 MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge); 686 if (CurGain.score() <= EPS) 687 continue; 688 689 if (BestGain < CurGain || 690 (std::abs(CurGain.score() - BestGain.score()) < EPS && 691 compareChainPairs(ChainPred, 692 ChainSucc, 693 BestChainPred, 694 BestChainSucc))) { 695 BestGain = CurGain; 696 BestChainPred = ChainPred; 697 BestChainSucc = ChainSucc; 698 } 699 } 700 } 701 702 // Stop merging when there is no improvement 703 if (BestGain.score() <= EPS) 704 break; 705 706 // Merge the best pair of chains 707 mergeChains(BestChainPred, 708 BestChainSucc, 709 BestGain.mergeOffset(), 710 BestGain.mergeType()); 711 } 712 } 713 714 /// Merge cold blocks to reduce code size 715 void mergeColdChains() { 716 for (BinaryBasicBlock *SrcBB : BF.layout()) { 717 // Iterating in reverse order to make sure original fallthrough jumps are 718 // merged first 719 for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) { 720 BinaryBasicBlock *DstBB = *Itr; 721 size_t SrcIndex = SrcBB->getLayoutIndex(); 722 size_t DstIndex = DstBB->getLayoutIndex(); 723 Chain *SrcChain = AllBlocks[SrcIndex].CurChain; 724 Chain *DstChain = AllBlocks[DstIndex].CurChain; 725 if (SrcChain != DstChain && !DstChain->isEntryPoint() && 726 SrcChain->blocks().back()->Index == SrcIndex && 727 DstChain->blocks().front()->Index == DstIndex) { 728 mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); 729 } 730 } 731 } 732 } 733 734 /// Compute ExtTSP score for a given order of basic blocks 735 double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const { 736 if (Jumps.empty()) 737 return 0.0; 738 uint64_t CurAddr = 0; 739 MergedBlocks.forEach( 740 [&](const Block *BB) { 741 BB->EstimatedAddr = CurAddr; 742 CurAddr += BB->Size; 743 } 744 ); 745 746 double Score = 0; 747 for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) { 748 const Block *SrcBlock = Jump.first.first; 749 const Block *DstBlock = Jump.first.second; 750 Score += extTSPScore(SrcBlock->EstimatedAddr, 751 SrcBlock->Size, 752 DstBlock->EstimatedAddr, 753 Jump.second); 754 } 755 return Score; 756 } 757 758 /// Compute the gain of merging two chains 759 /// 760 /// The function considers all possible ways of merging two chains and 761 /// computes the one having the largest increase in ExtTSP objective. The 762 /// result is a pair with the first element being the gain and the second 763 /// element being the corresponding merging type. 764 MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const { 765 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { 766 return Edge->getCachedMergeGain(ChainPred, ChainSucc); 767 } 768 769 // Precompute jumps between ChainPred and ChainSucc 770 JumpList Jumps = Edge->jumps(); 771 class Edge *EdgePP = ChainPred->getEdge(ChainPred); 772 if (EdgePP != nullptr) 773 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 774 assert(Jumps.size() > 0 && "trying to merge chains w/o jumps"); 775 776 MergeGainTy Gain = MergeGainTy(); 777 // Try to concatenate two chains w/o splitting 778 Gain = computeMergeGain( 779 Gain, ChainPred, ChainSucc, Jumps, 0, MergeTypeTy::X_Y); 780 781 // Try to break ChainPred in various ways and concatenate with ChainSucc 782 if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) { 783 for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { 784 Block *BB1 = ChainPred->blocks()[Offset - 1]; 785 Block *BB2 = ChainPred->blocks()[Offset]; 786 // Does the splitting break FT successors? 787 if (BB1->FallthroughSucc != nullptr) { 788 (void)BB2; 789 assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved"); 790 continue; 791 } 792 793 Gain = computeMergeGain( 794 Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::X1_Y_X2); 795 Gain = computeMergeGain( 796 Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::Y_X2_X1); 797 Gain = computeMergeGain( 798 Gain, ChainPred, ChainSucc, Jumps, Offset, MergeTypeTy::X2_X1_Y); 799 } 800 } 801 802 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 803 return Gain; 804 } 805 806 /// Merge two chains and update the best Gain 807 MergeGainTy computeMergeGain(const MergeGainTy &CurGain, 808 const Chain *ChainPred, 809 const Chain *ChainSucc, 810 const JumpList &Jumps, 811 size_t MergeOffset, 812 MergeTypeTy MergeType) const { 813 MergedChain MergedBlocks = mergeBlocks( 814 ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType); 815 816 // Do not allow a merge that does not preserve the original entry block 817 if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) && 818 MergedBlocks.getFirstBlock()->Index != 0) 819 return CurGain; 820 821 // The gain for the new chain 822 const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score(); 823 auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType); 824 return CurGain < NewGain ? NewGain : CurGain; 825 } 826 827 /// Merge two chains of blocks respecting a given merge 'type' and 'offset' 828 /// 829 /// If MergeType == 0, then the result is a concatentation of two chains. 830 /// Otherwise, the first chain is cut into two sub-chains at the offset, 831 /// and merged using all possible ways of concatenating three chains. 832 MergedChain mergeBlocks(const std::vector<Block *> &X, 833 const std::vector<Block *> &Y, 834 size_t MergeOffset, 835 MergeTypeTy MergeType) const { 836 // Split the first chain, X, into X1 and X2 837 BlockIter BeginX1 = X.begin(); 838 BlockIter EndX1 = X.begin() + MergeOffset; 839 BlockIter BeginX2 = X.begin() + MergeOffset; 840 BlockIter EndX2 = X.end(); 841 BlockIter BeginY = Y.begin(); 842 BlockIter EndY = Y.end(); 843 844 // Construct a new chain from the three existing ones 845 switch(MergeType) { 846 case MergeTypeTy::X_Y: 847 return MergedChain(BeginX1, EndX2, BeginY, EndY); 848 case MergeTypeTy::X1_Y_X2: 849 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 850 case MergeTypeTy::Y_X2_X1: 851 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 852 case MergeTypeTy::X2_X1_Y: 853 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 854 } 855 856 llvm_unreachable("unexpected merge type"); 857 } 858 859 /// Merge chain From into chain Into, update the list of active chains, 860 /// adjacency information, and the corresponding cached values 861 void mergeChains(Chain *Into, 862 Chain *From, 863 size_t MergeOffset, 864 MergeTypeTy MergeType) { 865 assert(Into != From && "a chain cannot be merged with itself"); 866 867 // Merge the blocks 868 MergedChain MergedBlocks = 869 mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); 870 Into->merge(From, MergedBlocks.getBlocks()); 871 Into->mergeEdges(From); 872 From->clear(); 873 874 // Update cached ext-tsp score for the new chain 875 Edge *SelfEdge = Into->getEdge(Into); 876 if (SelfEdge != nullptr) { 877 MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); 878 Into->setScore(score(MergedBlocks, SelfEdge->jumps())); 879 } 880 881 // Remove chain From from the list of active chains 882 auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); 883 HotChains.erase(Iter, HotChains.end()); 884 885 // Invalidate caches 886 for (std::pair<Chain *, Edge *> EdgeIter : Into->edges()) { 887 EdgeIter.second->invalidateCache(); 888 } 889 } 890 891 /// Concatenate all chains into a final order 892 void concatChains(BinaryFunction::BasicBlockOrderType &Order) { 893 // Collect chains 894 std::vector<Chain *> SortedChains; 895 for (Chain &Chain : AllChains) { 896 if (Chain.blocks().size() > 0) { 897 SortedChains.push_back(&Chain); 898 } 899 } 900 901 // Sorting chains by density in decreasing order 902 std::stable_sort( 903 SortedChains.begin(), SortedChains.end(), 904 [](const Chain *C1, const Chain *C2) { 905 // Original entry point to the front 906 if (C1->isEntryPoint() != C2->isEntryPoint()) { 907 if (C1->isEntryPoint()) 908 return true; 909 if (C2->isEntryPoint()) 910 return false; 911 } 912 913 const double D1 = C1->density(); 914 const double D2 = C2->density(); 915 if (D1 != D2) 916 return D1 > D2; 917 918 // Making the order deterministic 919 return C1->id() < C2->id(); 920 } 921 ); 922 923 // Collect the basic blocks in the order specified by their chains 924 Order.reserve(BF.layout_size()); 925 for (Chain *Chain : SortedChains) { 926 for (Block *Block : Chain->blocks()) { 927 Order.push_back(Block->BB); 928 } 929 } 930 } 931 932 private: 933 // The binary function 934 const BinaryFunction &BF; 935 936 // All CFG nodes (basic blocks) 937 std::vector<Block> AllBlocks; 938 939 // All chains of blocks 940 std::vector<Chain> AllChains; 941 942 // Active chains. The vector gets updated at runtime when chains are merged 943 std::vector<Chain *> HotChains; 944 945 // All edges between chains 946 std::vector<Edge> AllEdges; 947 }; 948 949 void ExtTSPReorderAlgorithm::reorderBasicBlocks( 950 const BinaryFunction &BF, BasicBlockOrder &Order) const { 951 if (BF.layout_empty()) 952 return; 953 954 // Do not change layout of functions w/o profile information 955 if (!BF.hasValidProfile() || BF.layout_size() <= 2) { 956 for (BinaryBasicBlock *BB : BF.layout()) { 957 Order.push_back(BB); 958 } 959 return; 960 } 961 962 // Apply the algorithm 963 ExtTSP(BF).run(Order); 964 965 // Verify correctness 966 assert(Order[0]->isEntryPoint() && "Original entry point is not preserved"); 967 assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout"); 968 } 969 970 } // namespace bolt 971 } // namespace llvm 972