1 //===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm is a greedy heuristic that works with chains (ordered lists)
12 // of basic blocks. Initially all chains are isolated basic blocks. On every
13 // iteration, we pick a pair of chains whose merging yields the biggest increase
14 // in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
15 // A pair of chains giving the maximum gain is merged into a new chain. The
16 // procedure stops when there is only one chain left, or when merging does not
17 // increase ExtTSP. In the latter case, the remaining chains are sorted by
18 // density in decreasing order.
19 //
20 // An important aspect is the way two chains are merged. Unlike earlier
21 // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two
22 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
23 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
24 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
25 // This improves the quality of the final result (the search space is larger)
26 // while keeping the implementation sufficiently fast.
27 //
28 // Reference:
29 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
30 // IEEE Transactions on Computers, 2020
31 // https://arxiv.org/abs/1809.04676
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "bolt/Core/BinaryBasicBlock.h"
36 #include "bolt/Core/BinaryFunction.h"
37 #include "bolt/Passes/ReorderAlgorithm.h"
38 #include "llvm/Support/CommandLine.h"
39
40 using namespace llvm;
41 using namespace bolt;
42
43 namespace opts {
44
45 extern cl::OptionCategory BoltOptCategory;
46 extern cl::opt<bool> NoThreads;
47
48 cl::opt<unsigned> ChainSplitThreshold(
49 "chain-split-threshold",
50 cl::desc("The maximum size of a chain to apply splitting"), cl::init(128),
51 cl::ReallyHidden, cl::cat(BoltOptCategory));
52
53 cl::opt<double>
54 ForwardWeight("forward-weight",
55 cl::desc("The weight of forward jumps for ExtTSP value"),
56 cl::init(0.1), cl::ReallyHidden, cl::cat(BoltOptCategory));
57
58 cl::opt<double>
59 BackwardWeight("backward-weight",
60 cl::desc("The weight of backward jumps for ExtTSP value"),
61 cl::init(0.1), cl::ReallyHidden, cl::cat(BoltOptCategory));
62
63 cl::opt<unsigned> ForwardDistance(
64 "forward-distance",
65 cl::desc(
66 "The maximum distance (in bytes) of forward jumps for ExtTSP value"),
67 cl::init(1024), cl::ReallyHidden, cl::cat(BoltOptCategory));
68
69 cl::opt<unsigned> BackwardDistance(
70 "backward-distance",
71 cl::desc(
72 "The maximum distance (in bytes) of backward jumps for ExtTSP value"),
73 cl::init(640), cl::ReallyHidden, cl::cat(BoltOptCategory));
74 }
75
76 namespace llvm {
77 namespace bolt {
78
79 // Epsilon for comparison of doubles
80 constexpr double EPS = 1e-8;
81
82 class Block;
83 class Chain;
84 class Edge;
85
86 // Calculate Ext-TSP value, which quantifies the expected number of i-cache
87 // misses for a given ordering of basic blocks
extTSPScore(uint64_t SrcAddr,uint64_t SrcSize,uint64_t DstAddr,uint64_t Count)88 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
89 uint64_t Count) {
90 assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
91
92 // Fallthrough
93 if (SrcAddr + SrcSize == DstAddr) {
94 // Assume that FallthroughWeight = 1.0 after normalization
95 return static_cast<double>(Count);
96 }
97 // Forward
98 if (SrcAddr + SrcSize < DstAddr) {
99 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
100 if (Dist <= opts::ForwardDistance) {
101 double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
102 return opts::ForwardWeight * Prob * Count;
103 }
104 return 0;
105 }
106 // Backward
107 const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
108 if (Dist <= opts::BackwardDistance) {
109 double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
110 return opts::BackwardWeight * Prob * Count;
111 }
112 return 0;
113 }
114
115 using BlockPair = std::pair<Block *, Block *>;
116 using JumpList = std::vector<std::pair<BlockPair, uint64_t>>;
117 using BlockIter = std::vector<Block *>::const_iterator;
118
119 enum MergeTypeTy {
120 X_Y = 0,
121 X1_Y_X2 = 1,
122 Y_X2_X1 = 2,
123 X2_X1_Y = 3,
124 };
125
126 class MergeGainTy {
127 public:
MergeGainTy()128 explicit MergeGainTy() {}
MergeGainTy(double Score,size_t MergeOffset,MergeTypeTy MergeType)129 explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
130 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
131
score() const132 double score() const { return Score; }
133
mergeOffset() const134 size_t mergeOffset() const { return MergeOffset; }
135
mergeType() const136 MergeTypeTy mergeType() const { return MergeType; }
137
138 // returns 'true' iff Other is preferred over this
operator <(const MergeGainTy & Other) const139 bool operator<(const MergeGainTy &Other) const {
140 return (Other.Score > EPS && Other.Score > Score + EPS);
141 }
142
143 private:
144 double Score{-1.0};
145 size_t MergeOffset{0};
146 MergeTypeTy MergeType{MergeTypeTy::X_Y};
147 };
148
149 // A node in CFG corresponding to a BinaryBasicBlock.
150 // The class wraps several mutable fields utilized in the ExtTSP algorithm
151 class Block {
152 public:
153 Block(const Block &) = delete;
154 Block(Block &&) = default;
155 Block &operator=(const Block &) = delete;
156 Block &operator=(Block &&) = default;
157
158 // Corresponding basic block
159 BinaryBasicBlock *BB{nullptr};
160 // Current chain of the basic block
161 Chain *CurChain{nullptr};
162 // (Estimated) size of the block in the binary
163 uint64_t Size{0};
164 // Execution count of the block in the binary
165 uint64_t ExecutionCount{0};
166 // An original index of the node in CFG
167 size_t Index{0};
168 // The index of the block in the current chain
169 size_t CurIndex{0};
170 // An offset of the block in the current chain
171 mutable uint64_t EstimatedAddr{0};
172 // Fallthrough successor of the node in CFG
173 Block *FallthroughSucc{nullptr};
174 // Fallthrough predecessor of the node in CFG
175 Block *FallthroughPred{nullptr};
176 // Outgoing jumps from the block
177 std::vector<std::pair<Block *, uint64_t>> OutJumps;
178 // Incoming jumps to the block
179 std::vector<std::pair<Block *, uint64_t>> InJumps;
180 // Total execution count of incoming jumps
181 uint64_t InWeight{0};
182 // Total execution count of outgoing jumps
183 uint64_t OutWeight{0};
184
185 public:
Block(BinaryBasicBlock * BB_,uint64_t Size_)186 explicit Block(BinaryBasicBlock *BB_, uint64_t Size_)
187 : BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()),
188 Index(BB->getLayoutIndex()) {}
189
adjacent(const Block * Other) const190 bool adjacent(const Block *Other) const {
191 return hasOutJump(Other) || hasInJump(Other);
192 }
193
hasOutJump(const Block * Other) const194 bool hasOutJump(const Block *Other) const {
195 for (std::pair<Block *, uint64_t> Jump : OutJumps) {
196 if (Jump.first == Other)
197 return true;
198 }
199 return false;
200 }
201
hasInJump(const Block * Other) const202 bool hasInJump(const Block *Other) const {
203 for (std::pair<Block *, uint64_t> Jump : InJumps) {
204 if (Jump.first == Other)
205 return true;
206 }
207 return false;
208 }
209 };
210
211 // A chain (ordered sequence) of CFG nodes (basic blocks)
212 class Chain {
213 public:
214 Chain(const Chain &) = delete;
215 Chain(Chain &&) = default;
216 Chain &operator=(const Chain &) = delete;
217 Chain &operator=(Chain &&) = default;
218
Chain(size_t Id,Block * Block)219 explicit Chain(size_t Id, Block *Block)
220 : Id(Id), IsEntry(Block->Index == 0),
221 ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0),
222 Blocks(1, Block) {}
223
id() const224 size_t id() const { return Id; }
225
size() const226 uint64_t size() const { return Size; }
227
density() const228 double density() const { return static_cast<double>(ExecutionCount) / Size; }
229
executionCount() const230 uint64_t executionCount() const { return ExecutionCount; }
231
isEntryPoint() const232 bool isEntryPoint() const { return IsEntry; }
233
score() const234 double score() const { return Score; }
235
setScore(double NewScore)236 void setScore(double NewScore) { Score = NewScore; }
237
blocks() const238 const std::vector<Block *> &blocks() const { return Blocks; }
239
edges() const240 const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; }
241
getEdge(Chain * Other) const242 Edge *getEdge(Chain *Other) const {
243 for (std::pair<Chain *, Edge *> It : Edges)
244 if (It.first == Other)
245 return It.second;
246 return nullptr;
247 }
248
removeEdge(Chain * Other)249 void removeEdge(Chain *Other) {
250 auto It = Edges.begin();
251 while (It != Edges.end()) {
252 if (It->first == Other) {
253 Edges.erase(It);
254 return;
255 }
256 It++;
257 }
258 }
259
addEdge(Chain * Other,Edge * Edge)260 void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }
261
merge(Chain * Other,const std::vector<Block * > & MergedBlocks)262 void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
263 Blocks = MergedBlocks;
264 IsEntry |= Other->IsEntry;
265 ExecutionCount += Other->ExecutionCount;
266 Size += Other->Size;
267 // Update block's chains
268 for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
269 Blocks[Idx]->CurChain = this;
270 Blocks[Idx]->CurIndex = Idx;
271 }
272 }
273
274 void mergeEdges(Chain *Other);
275
clear()276 void clear() {
277 Blocks.clear();
278 Edges.clear();
279 }
280
281 private:
282 size_t Id;
283 bool IsEntry;
284 uint64_t ExecutionCount;
285 uint64_t Size;
286 // Cached ext-tsp score for the chain
287 double Score;
288 // Blocks of the chain
289 std::vector<Block *> Blocks;
290 // Adjacent chains and corresponding edges (lists of jumps)
291 std::vector<std::pair<Chain *, Edge *>> Edges;
292 };
293
294 // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks.
295 // When blocks are merged into chains, the edges are combined too so that
296 // there is always at most one edge between a pair of chains
297 class Edge {
298 public:
299 Edge(const Edge &) = delete;
300 Edge(Edge &&) = default;
301 Edge &operator=(const Edge &) = delete;
302 Edge &operator=(Edge &&) = default;
303
Edge(Block * SrcBlock,Block * DstBlock,uint64_t EC)304 explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC)
305 : SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain),
306 Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {}
307
jumps() const308 const JumpList &jumps() const { return Jumps; }
309
changeEndpoint(Chain * From,Chain * To)310 void changeEndpoint(Chain *From, Chain *To) {
311 if (From == SrcChain)
312 SrcChain = To;
313 if (From == DstChain)
314 DstChain = To;
315 }
316
appendJump(Block * SrcBlock,Block * DstBlock,uint64_t EC)317 void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) {
318 Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC);
319 }
320
moveJumps(Edge * Other)321 void moveJumps(Edge *Other) {
322 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
323 Other->Jumps.clear();
324 }
325
hasCachedMergeGain(Chain * Src,Chain * Dst) const326 bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
327 return Src == SrcChain ? CacheValidForward : CacheValidBackward;
328 }
329
getCachedMergeGain(Chain * Src,Chain * Dst) const330 MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
331 return Src == SrcChain ? CachedGainForward : CachedGainBackward;
332 }
333
setCachedMergeGain(Chain * Src,Chain * Dst,MergeGainTy MergeGain)334 void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
335 if (Src == SrcChain) {
336 CachedGainForward = MergeGain;
337 CacheValidForward = true;
338 } else {
339 CachedGainBackward = MergeGain;
340 CacheValidBackward = true;
341 }
342 }
343
invalidateCache()344 void invalidateCache() {
345 CacheValidForward = false;
346 CacheValidBackward = false;
347 }
348
349 private:
350 Chain *SrcChain{nullptr};
351 Chain *DstChain{nullptr};
352 // Original jumps in the binary with correspinding execution counts
353 JumpList Jumps;
354 // Cached ext-tsp value for merging the pair of chains
355 // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
356 // we store both values here
357 MergeGainTy CachedGainForward;
358 MergeGainTy CachedGainBackward;
359 // Whether the cached value must be recomputed
360 bool CacheValidForward{false};
361 bool CacheValidBackward{false};
362 };
363
mergeEdges(Chain * Other)364 void Chain::mergeEdges(Chain *Other) {
365 assert(this != Other && "cannot merge a chain with itself");
366
367 // Update edges adjacent to chain Other
368 for (auto EdgeIt : Other->Edges) {
369 Chain *const DstChain = EdgeIt.first;
370 Edge *const DstEdge = EdgeIt.second;
371 Chain *const TargetChain = DstChain == Other ? this : DstChain;
372
373 // Find the corresponding edge in the current chain
374 Edge *curEdge = getEdge(TargetChain);
375 if (curEdge == nullptr) {
376 DstEdge->changeEndpoint(Other, this);
377 this->addEdge(TargetChain, DstEdge);
378 if (DstChain != this && DstChain != Other)
379 DstChain->addEdge(this, DstEdge);
380 } else {
381 curEdge->moveJumps(DstEdge);
382 }
383 // Cleanup leftover edge
384 if (DstChain != Other)
385 DstChain->removeEdge(Other);
386 }
387 }
388
389 // A wrapper around three chains of basic blocks; it is used to avoid extra
390 // instantiation of the vectors.
391 class MergedChain {
392 public:
MergedChain(BlockIter Begin1,BlockIter End1,BlockIter Begin2=BlockIter (),BlockIter End2=BlockIter (),BlockIter Begin3=BlockIter (),BlockIter End3=BlockIter ())393 MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
394 BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
395 BlockIter End3 = BlockIter())
396 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
397 End3(End3) {}
398
forEach(const F & Func) const399 template <typename F> void forEach(const F &Func) const {
400 for (auto It = Begin1; It != End1; It++)
401 Func(*It);
402 for (auto It = Begin2; It != End2; It++)
403 Func(*It);
404 for (auto It = Begin3; It != End3; It++)
405 Func(*It);
406 }
407
getBlocks() const408 std::vector<Block *> getBlocks() const {
409 std::vector<Block *> Result;
410 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
411 std::distance(Begin3, End3));
412 Result.insert(Result.end(), Begin1, End1);
413 Result.insert(Result.end(), Begin2, End2);
414 Result.insert(Result.end(), Begin3, End3);
415 return Result;
416 }
417
getFirstBlock() const418 const Block *getFirstBlock() const { return *Begin1; }
419
420 private:
421 BlockIter Begin1;
422 BlockIter End1;
423 BlockIter Begin2;
424 BlockIter End2;
425 BlockIter Begin3;
426 BlockIter End3;
427 };
428
429 /// Deterministically compare pairs of chains
compareChainPairs(const Chain * A1,const Chain * B1,const Chain * A2,const Chain * B2)430 bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2,
431 const Chain *B2) {
432 const uint64_t Samples1 = A1->executionCount() + B1->executionCount();
433 const uint64_t Samples2 = A2->executionCount() + B2->executionCount();
434 if (Samples1 != Samples2)
435 return Samples1 < Samples2;
436
437 // Making the order deterministic
438 if (A1 != A2)
439 return A1->id() < A2->id();
440 return B1->id() < B2->id();
441 }
442 class ExtTSP {
443 public:
ExtTSP(const BinaryFunction & BF)444 ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); }
445
446 /// Run the algorithm and return an ordering of basic block
run(BinaryFunction::BasicBlockOrderType & Order)447 void run(BinaryFunction::BasicBlockOrderType &Order) {
448 // Pass 1: Merge blocks with their fallthrough successors
449 mergeFallthroughs();
450
451 // Pass 2: Merge pairs of chains while improving the ExtTSP objective
452 mergeChainPairs();
453
454 // Pass 3: Merge cold blocks to reduce code size
455 mergeColdChains();
456
457 // Collect blocks from all chains
458 concatChains(Order);
459 }
460
461 private:
462 /// Initialize algorithm's data structures
initialize()463 void initialize() {
464 // Create a separate MCCodeEmitter to allow lock-free execution
465 BinaryContext::IndependentCodeEmitter Emitter;
466 if (!opts::NoThreads)
467 Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter();
468
469 // Initialize CFG nodes
470 AllBlocks.reserve(BF.getLayout().block_size());
471 size_t LayoutIndex = 0;
472 for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
473 BB->setLayoutIndex(LayoutIndex++);
474 uint64_t Size =
475 std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1);
476 AllBlocks.emplace_back(BB, Size);
477 }
478
479 // Initialize edges for the blocks and compute their total in/out weights
480 size_t NumEdges = 0;
481 for (Block &Block : AllBlocks) {
482 auto BI = Block.BB->branch_info_begin();
483 for (BinaryBasicBlock *SuccBB : Block.BB->successors()) {
484 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
485 "missing profile for a jump");
486 if (SuccBB != Block.BB && BI->Count > 0) {
487 class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()];
488 uint64_t Count = BI->Count;
489 SuccBlock.InWeight += Count;
490 SuccBlock.InJumps.emplace_back(&Block, Count);
491 Block.OutWeight += Count;
492 Block.OutJumps.emplace_back(&SuccBlock, Count);
493 NumEdges++;
494 }
495 ++BI;
496 }
497 }
498
499 // Initialize execution count for every basic block, which is the
500 // maximum over the sums of all in and out edge weights.
501 // Also execution count of the entry point is set to at least 1
502 for (Block &Block : AllBlocks) {
503 size_t Index = Block.Index;
504 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight);
505 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight);
506 if (Index == 0 && Block.ExecutionCount == 0)
507 Block.ExecutionCount = 1;
508 }
509
510 // Initialize chains
511 AllChains.reserve(BF.getLayout().block_size());
512 HotChains.reserve(BF.getLayout().block_size());
513 for (Block &Block : AllBlocks) {
514 AllChains.emplace_back(Block.Index, &Block);
515 Block.CurChain = &AllChains.back();
516 if (Block.ExecutionCount > 0)
517 HotChains.push_back(&AllChains.back());
518 }
519
520 // Initialize edges
521 AllEdges.reserve(NumEdges);
522 for (Block &Block : AllBlocks) {
523 for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) {
524 class Block *const SuccBlock = Jump.first;
525 Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
526 // this edge is already present in the graph
527 if (CurEdge != nullptr) {
528 assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
529 CurEdge->appendJump(&Block, SuccBlock, Jump.second);
530 continue;
531 }
532 // this is a new edge
533 AllEdges.emplace_back(&Block, SuccBlock, Jump.second);
534 Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
535 SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
536 }
537 }
538 assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges");
539 }
540
541 /// For a pair of blocks, A and B, block B is the fallthrough successor of A,
542 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
543 /// to B are from A. Such blocks should be adjacent in an optimal ordering;
544 /// the method finds and merges such pairs of blocks
mergeFallthroughs()545 void mergeFallthroughs() {
546 // Find fallthroughs based on edge weights
547 for (Block &Block : AllBlocks) {
548 if (Block.BB->succ_size() == 1 &&
549 Block.BB->getSuccessor()->pred_size() == 1 &&
550 Block.BB->getSuccessor()->getLayoutIndex() != 0) {
551 size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex();
552 Block.FallthroughSucc = &AllBlocks[SuccIndex];
553 AllBlocks[SuccIndex].FallthroughPred = &Block;
554 continue;
555 }
556
557 if (Block.OutWeight == 0)
558 continue;
559 for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) {
560 class Block *const SuccBlock = Edge.first;
561 // Successor cannot be the first BB, which is pinned
562 if (Block.OutWeight == Edge.second &&
563 SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) {
564 Block.FallthroughSucc = SuccBlock;
565 SuccBlock->FallthroughPred = &Block;
566 break;
567 }
568 }
569 }
570
571 // There might be 'cycles' in the fallthrough dependencies (since profile
572 // data isn't 100% accurate).
573 // Break the cycles by choosing the block with smallest index as the tail
574 for (Block &Block : AllBlocks) {
575 if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr)
576 continue;
577
578 class Block *SuccBlock = Block.FallthroughSucc;
579 while (SuccBlock != nullptr && SuccBlock != &Block)
580 SuccBlock = SuccBlock->FallthroughSucc;
581
582 if (SuccBlock == nullptr)
583 continue;
584 // break the cycle
585 AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr;
586 Block.FallthroughPred = nullptr;
587 }
588
589 // Merge blocks with their fallthrough successors
590 for (Block &Block : AllBlocks) {
591 if (Block.FallthroughPred == nullptr &&
592 Block.FallthroughSucc != nullptr) {
593 class Block *CurBlock = &Block;
594 while (CurBlock->FallthroughSucc != nullptr) {
595 class Block *const NextBlock = CurBlock->FallthroughSucc;
596 mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
597 CurBlock = NextBlock;
598 }
599 }
600 }
601 }
602
603 /// Merge pairs of chains while improving the ExtTSP objective
mergeChainPairs()604 void mergeChainPairs() {
605 while (HotChains.size() > 1) {
606 Chain *BestChainPred = nullptr;
607 Chain *BestChainSucc = nullptr;
608 auto BestGain = MergeGainTy();
609 // Iterate over all pairs of chains
610 for (Chain *ChainPred : HotChains) {
611 // Get candidates for merging with the current chain
612 for (auto EdgeIter : ChainPred->edges()) {
613 Chain *ChainSucc = EdgeIter.first;
614 Edge *ChainEdge = EdgeIter.second;
615 // Ignore loop edges
616 if (ChainPred == ChainSucc)
617 continue;
618
619 // Compute the gain of merging the two chains
620 MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
621 if (CurGain.score() <= EPS)
622 continue;
623
624 if (BestGain < CurGain ||
625 (std::abs(CurGain.score() - BestGain.score()) < EPS &&
626 compareChainPairs(ChainPred, ChainSucc, BestChainPred,
627 BestChainSucc))) {
628 BestGain = CurGain;
629 BestChainPred = ChainPred;
630 BestChainSucc = ChainSucc;
631 }
632 }
633 }
634
635 // Stop merging when there is no improvement
636 if (BestGain.score() <= EPS)
637 break;
638
639 // Merge the best pair of chains
640 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
641 BestGain.mergeType());
642 }
643 }
644
645 /// Merge remaining blocks into chains w/o taking jump counts into
646 /// consideration. This allows to maintain the original block order in the
647 /// absense of profile data
mergeColdChains()648 void mergeColdChains() {
649 for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
650 // Iterating in reverse order to make sure original fallthrough jumps are
651 // merged first; this might be beneficial for code size.
652 for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) {
653 BinaryBasicBlock *DstBB = *Itr;
654 size_t SrcIndex = SrcBB->getLayoutIndex();
655 size_t DstIndex = DstBB->getLayoutIndex();
656 Chain *SrcChain = AllBlocks[SrcIndex].CurChain;
657 Chain *DstChain = AllBlocks[DstIndex].CurChain;
658 bool IsColdSrc = SrcChain->executionCount() == 0;
659 bool IsColdDst = DstChain->executionCount() == 0;
660 if (SrcChain != DstChain && !DstChain->isEntryPoint() &&
661 SrcChain->blocks().back()->Index == SrcIndex &&
662 DstChain->blocks().front()->Index == DstIndex &&
663 IsColdSrc == IsColdDst)
664 mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
665 }
666 }
667 }
668
669 /// Compute ExtTSP score for a given order of basic blocks
score(const MergedChain & MergedBlocks,const JumpList & Jumps) const670 double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const {
671 if (Jumps.empty())
672 return 0.0;
673 uint64_t CurAddr = 0;
674 MergedBlocks.forEach(
675 [&](const Block *BB) {
676 BB->EstimatedAddr = CurAddr;
677 CurAddr += BB->Size;
678 }
679 );
680
681 double Score = 0;
682 for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) {
683 const Block *SrcBlock = Jump.first.first;
684 const Block *DstBlock = Jump.first.second;
685 Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
686 DstBlock->EstimatedAddr, Jump.second);
687 }
688 return Score;
689 }
690
691 /// Compute the gain of merging two chains
692 ///
693 /// The function considers all possible ways of merging two chains and
694 /// computes the one having the largest increase in ExtTSP objective. The
695 /// result is a pair with the first element being the gain and the second
696 /// element being the corresponding merging type.
mergeGain(Chain * ChainPred,Chain * ChainSucc,Edge * Edge) const697 MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
698 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
699 return Edge->getCachedMergeGain(ChainPred, ChainSucc);
700
701 // Precompute jumps between ChainPred and ChainSucc
702 JumpList Jumps = Edge->jumps();
703 class Edge *EdgePP = ChainPred->getEdge(ChainPred);
704 if (EdgePP != nullptr)
705 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
706 assert(Jumps.size() > 0 && "trying to merge chains w/o jumps");
707
708 MergeGainTy Gain = MergeGainTy();
709 // Try to concatenate two chains w/o splitting
710 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0,
711 MergeTypeTy::X_Y);
712
713 // Try to break ChainPred in various ways and concatenate with ChainSucc
714 if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) {
715 for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
716 Block *BB1 = ChainPred->blocks()[Offset - 1];
717 Block *BB2 = ChainPred->blocks()[Offset];
718 // Does the splitting break FT successors?
719 if (BB1->FallthroughSucc != nullptr) {
720 (void)BB2;
721 assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved");
722 continue;
723 }
724
725 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
726 MergeTypeTy::X1_Y_X2);
727 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
728 MergeTypeTy::Y_X2_X1);
729 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
730 MergeTypeTy::X2_X1_Y);
731 }
732 }
733
734 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
735 return Gain;
736 }
737
738 /// Merge two chains and update the best Gain
computeMergeGain(const MergeGainTy & CurGain,const Chain * ChainPred,const Chain * ChainSucc,const JumpList & Jumps,size_t MergeOffset,MergeTypeTy MergeType) const739 MergeGainTy computeMergeGain(const MergeGainTy &CurGain,
740 const Chain *ChainPred, const Chain *ChainSucc,
741 const JumpList &Jumps, size_t MergeOffset,
742 MergeTypeTy MergeType) const {
743 MergedChain MergedBlocks = mergeBlocks(
744 ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType);
745
746 // Do not allow a merge that does not preserve the original entry block
747 if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) &&
748 MergedBlocks.getFirstBlock()->Index != 0)
749 return CurGain;
750
751 // The gain for the new chain
752 const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score();
753 auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType);
754 return CurGain < NewGain ? NewGain : CurGain;
755 }
756
757 /// Merge two chains of blocks respecting a given merge 'type' and 'offset'
758 ///
759 /// If MergeType == 0, then the result is a concatentation of two chains.
760 /// Otherwise, the first chain is cut into two sub-chains at the offset,
761 /// and merged using all possible ways of concatenating three chains.
mergeBlocks(const std::vector<Block * > & X,const std::vector<Block * > & Y,size_t MergeOffset,MergeTypeTy MergeType) const762 MergedChain mergeBlocks(const std::vector<Block *> &X,
763 const std::vector<Block *> &Y, size_t MergeOffset,
764 MergeTypeTy MergeType) const {
765 // Split the first chain, X, into X1 and X2
766 BlockIter BeginX1 = X.begin();
767 BlockIter EndX1 = X.begin() + MergeOffset;
768 BlockIter BeginX2 = X.begin() + MergeOffset;
769 BlockIter EndX2 = X.end();
770 BlockIter BeginY = Y.begin();
771 BlockIter EndY = Y.end();
772
773 // Construct a new chain from the three existing ones
774 switch (MergeType) {
775 case MergeTypeTy::X_Y:
776 return MergedChain(BeginX1, EndX2, BeginY, EndY);
777 case MergeTypeTy::X1_Y_X2:
778 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
779 case MergeTypeTy::Y_X2_X1:
780 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
781 case MergeTypeTy::X2_X1_Y:
782 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
783 }
784
785 llvm_unreachable("unexpected merge type");
786 }
787
788 /// Merge chain From into chain Into, update the list of active chains,
789 /// adjacency information, and the corresponding cached values
mergeChains(Chain * Into,Chain * From,size_t MergeOffset,MergeTypeTy MergeType)790 void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
791 MergeTypeTy MergeType) {
792 assert(Into != From && "a chain cannot be merged with itself");
793
794 // Merge the blocks
795 MergedChain MergedBlocks =
796 mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
797 Into->merge(From, MergedBlocks.getBlocks());
798 Into->mergeEdges(From);
799 From->clear();
800
801 // Update cached ext-tsp score for the new chain
802 Edge *SelfEdge = Into->getEdge(Into);
803 if (SelfEdge != nullptr) {
804 MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
805 Into->setScore(score(MergedBlocks, SelfEdge->jumps()));
806 }
807
808 // Remove chain From from the list of active chains
809 llvm::erase_value(HotChains, From);
810
811 // Invalidate caches
812 for (std::pair<Chain *, Edge *> EdgeIter : Into->edges())
813 EdgeIter.second->invalidateCache();
814 }
815
816 /// Concatenate all chains into a final order
concatChains(BinaryFunction::BasicBlockOrderType & Order)817 void concatChains(BinaryFunction::BasicBlockOrderType &Order) {
818 // Collect chains
819 std::vector<Chain *> SortedChains;
820 for (Chain &Chain : AllChains)
821 if (Chain.blocks().size() > 0)
822 SortedChains.push_back(&Chain);
823
824 // Sorting chains by density in decreasing order
825 llvm::stable_sort(SortedChains, [](const Chain *C1, const Chain *C2) {
826 // Original entry point to the front
827 if (C1->isEntryPoint() != C2->isEntryPoint()) {
828 if (C1->isEntryPoint())
829 return true;
830 if (C2->isEntryPoint())
831 return false;
832 }
833
834 const double D1 = C1->density();
835 const double D2 = C2->density();
836 if (D1 != D2)
837 return D1 > D2;
838
839 // Making the order deterministic
840 return C1->id() < C2->id();
841 });
842
843 // Collect the basic blocks in the order specified by their chains
844 Order.reserve(BF.getLayout().block_size());
845 for (Chain *Chain : SortedChains)
846 for (Block *Block : Chain->blocks())
847 Order.push_back(Block->BB);
848 }
849
850 private:
851 // The binary function
852 const BinaryFunction &BF;
853
854 // All CFG nodes (basic blocks)
855 std::vector<Block> AllBlocks;
856
857 // All chains of blocks
858 std::vector<Chain> AllChains;
859
860 // Active chains. The vector gets updated at runtime when chains are merged
861 std::vector<Chain *> HotChains;
862
863 // All edges between chains
864 std::vector<Edge> AllEdges;
865 };
866
reorderBasicBlocks(const BinaryFunction & BF,BasicBlockOrder & Order) const867 void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
868 BasicBlockOrder &Order) const {
869 if (BF.getLayout().block_empty())
870 return;
871
872 // Do not change layout of functions w/o profile information
873 if (!BF.hasValidProfile() || BF.getLayout().block_size() <= 2) {
874 for (BinaryBasicBlock *BB : BF.getLayout().blocks())
875 Order.push_back(BB);
876 return;
877 }
878
879 // Apply the algorithm
880 ExtTSP(BF).run(Order);
881
882 // Verify correctness
883 assert(Order[0]->isEntryPoint() && "Original entry point is not preserved");
884 assert(Order.size() == BF.getLayout().block_size() &&
885 "Wrong size of reordered layout");
886 }
887
888 } // namespace bolt
889 } // namespace llvm
890