1 //===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ExtTSP - layout of basic blocks with i-cache optimization.
10 //
11 // The algorithm is a greedy heuristic that works with chains (ordered lists)
12 // of basic blocks. Initially all chains are isolated basic blocks. On every
13 // iteration, we pick a pair of chains whose merging yields the biggest increase
14 // in the ExtTSP value, which models how i-cache "friendly" a specific chain is.
15 // A pair of chains giving the maximum gain is merged into a new chain. The
16 // procedure stops when there is only one chain left, or when merging does not
17 // increase ExtTSP. In the latter case, the remaining chains are sorted by
18 // density in decreasing order.
19 //
20 // An important aspect is the way two chains are merged. Unlike earlier
21 // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two
22 // chains, X and Y, are first split into three, X1, X2, and Y. Then we
23 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
24 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
25 // This improves the quality of the final result (the search space is larger)
26 // while keeping the implementation sufficiently fast.
27 //
28 // Reference:
29 //   * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
30 //     IEEE Transactions on Computers, 2020
31 //     https://arxiv.org/abs/1809.04676
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "bolt/Core/BinaryBasicBlock.h"
36 #include "bolt/Core/BinaryFunction.h"
37 #include "bolt/Passes/ReorderAlgorithm.h"
38 #include "llvm/Support/CommandLine.h"
39 
40 using namespace llvm;
41 using namespace bolt;
42 
43 namespace opts {
44 
45 extern cl::OptionCategory BoltOptCategory;
46 extern cl::opt<bool> NoThreads;
47 
48 cl::opt<unsigned> ChainSplitThreshold(
49     "chain-split-threshold",
50     cl::desc("The maximum size of a chain to apply splitting"), cl::init(128),
51     cl::ReallyHidden, cl::cat(BoltOptCategory));
52 
53 cl::opt<double>
54     ForwardWeight("forward-weight",
55                   cl::desc("The weight of forward jumps for ExtTSP value"),
56                   cl::init(0.1), cl::ReallyHidden, cl::cat(BoltOptCategory));
57 
58 cl::opt<double>
59     BackwardWeight("backward-weight",
60                    cl::desc("The weight of backward jumps for ExtTSP value"),
61                    cl::init(0.1), cl::ReallyHidden, cl::cat(BoltOptCategory));
62 
63 cl::opt<unsigned> ForwardDistance(
64     "forward-distance",
65     cl::desc(
66         "The maximum distance (in bytes) of forward jumps for ExtTSP value"),
67     cl::init(1024), cl::ReallyHidden, cl::cat(BoltOptCategory));
68 
69 cl::opt<unsigned> BackwardDistance(
70     "backward-distance",
71     cl::desc(
72         "The maximum distance (in bytes) of backward jumps for ExtTSP value"),
73     cl::init(640), cl::ReallyHidden, cl::cat(BoltOptCategory));
74 }
75 
76 namespace llvm {
77 namespace bolt {
78 
79 // Epsilon for comparison of doubles
80 constexpr double EPS = 1e-8;
81 
82 class Block;
83 class Chain;
84 class Edge;
85 
86 // Calculate Ext-TSP value, which quantifies the expected number of i-cache
87 // misses for a given ordering of basic blocks
extTSPScore(uint64_t SrcAddr,uint64_t SrcSize,uint64_t DstAddr,uint64_t Count)88 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
89                    uint64_t Count) {
90   assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
91 
92   // Fallthrough
93   if (SrcAddr + SrcSize == DstAddr) {
94     // Assume that FallthroughWeight = 1.0 after normalization
95     return static_cast<double>(Count);
96   }
97   // Forward
98   if (SrcAddr + SrcSize < DstAddr) {
99     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
100     if (Dist <= opts::ForwardDistance) {
101       double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
102       return opts::ForwardWeight * Prob * Count;
103     }
104     return 0;
105   }
106   // Backward
107   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
108   if (Dist <= opts::BackwardDistance) {
109     double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
110     return opts::BackwardWeight * Prob * Count;
111   }
112   return 0;
113 }
114 
115 using BlockPair = std::pair<Block *, Block *>;
116 using JumpList = std::vector<std::pair<BlockPair, uint64_t>>;
117 using BlockIter = std::vector<Block *>::const_iterator;
118 
119 enum MergeTypeTy {
120   X_Y = 0,
121   X1_Y_X2 = 1,
122   Y_X2_X1 = 2,
123   X2_X1_Y = 3,
124 };
125 
126 class MergeGainTy {
127 public:
MergeGainTy()128   explicit MergeGainTy() {}
MergeGainTy(double Score,size_t MergeOffset,MergeTypeTy MergeType)129   explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType)
130       : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
131 
score() const132   double score() const { return Score; }
133 
mergeOffset() const134   size_t mergeOffset() const { return MergeOffset; }
135 
mergeType() const136   MergeTypeTy mergeType() const { return MergeType; }
137 
138   // returns 'true' iff Other is preferred over this
operator <(const MergeGainTy & Other) const139   bool operator<(const MergeGainTy &Other) const {
140     return (Other.Score > EPS && Other.Score > Score + EPS);
141   }
142 
143 private:
144   double Score{-1.0};
145   size_t MergeOffset{0};
146   MergeTypeTy MergeType{MergeTypeTy::X_Y};
147 };
148 
149 // A node in CFG corresponding to a BinaryBasicBlock.
150 // The class wraps several mutable fields utilized in the ExtTSP algorithm
151 class Block {
152 public:
153   Block(const Block &) = delete;
154   Block(Block &&) = default;
155   Block &operator=(const Block &) = delete;
156   Block &operator=(Block &&) = default;
157 
158   // Corresponding basic block
159   BinaryBasicBlock *BB{nullptr};
160   // Current chain of the basic block
161   Chain *CurChain{nullptr};
162   // (Estimated) size of the block in the binary
163   uint64_t Size{0};
164   // Execution count of the block in the binary
165   uint64_t ExecutionCount{0};
166   // An original index of the node in CFG
167   size_t Index{0};
168   // The index of the block in the current chain
169   size_t CurIndex{0};
170   // An offset of the block in the current chain
171   mutable uint64_t EstimatedAddr{0};
172   // Fallthrough successor of the node in CFG
173   Block *FallthroughSucc{nullptr};
174   // Fallthrough predecessor of the node in CFG
175   Block *FallthroughPred{nullptr};
176   // Outgoing jumps from the block
177   std::vector<std::pair<Block *, uint64_t>> OutJumps;
178   // Incoming jumps to the block
179   std::vector<std::pair<Block *, uint64_t>> InJumps;
180   // Total execution count of incoming jumps
181   uint64_t InWeight{0};
182   // Total execution count of outgoing jumps
183   uint64_t OutWeight{0};
184 
185 public:
Block(BinaryBasicBlock * BB_,uint64_t Size_)186   explicit Block(BinaryBasicBlock *BB_, uint64_t Size_)
187       : BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()),
188         Index(BB->getLayoutIndex()) {}
189 
adjacent(const Block * Other) const190   bool adjacent(const Block *Other) const {
191     return hasOutJump(Other) || hasInJump(Other);
192   }
193 
hasOutJump(const Block * Other) const194   bool hasOutJump(const Block *Other) const {
195     for (std::pair<Block *, uint64_t> Jump : OutJumps) {
196       if (Jump.first == Other)
197         return true;
198     }
199     return false;
200   }
201 
hasInJump(const Block * Other) const202   bool hasInJump(const Block *Other) const {
203     for (std::pair<Block *, uint64_t> Jump : InJumps) {
204       if (Jump.first == Other)
205         return true;
206     }
207     return false;
208   }
209 };
210 
211 // A chain (ordered sequence) of CFG nodes (basic blocks)
212 class Chain {
213 public:
214   Chain(const Chain &) = delete;
215   Chain(Chain &&) = default;
216   Chain &operator=(const Chain &) = delete;
217   Chain &operator=(Chain &&) = default;
218 
Chain(size_t Id,Block * Block)219   explicit Chain(size_t Id, Block *Block)
220       : Id(Id), IsEntry(Block->Index == 0),
221         ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0),
222         Blocks(1, Block) {}
223 
id() const224   size_t id() const { return Id; }
225 
size() const226   uint64_t size() const { return Size; }
227 
density() const228   double density() const { return static_cast<double>(ExecutionCount) / Size; }
229 
executionCount() const230   uint64_t executionCount() const { return ExecutionCount; }
231 
isEntryPoint() const232   bool isEntryPoint() const { return IsEntry; }
233 
score() const234   double score() const { return Score; }
235 
setScore(double NewScore)236   void setScore(double NewScore) { Score = NewScore; }
237 
blocks() const238   const std::vector<Block *> &blocks() const { return Blocks; }
239 
edges() const240   const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; }
241 
getEdge(Chain * Other) const242   Edge *getEdge(Chain *Other) const {
243     for (std::pair<Chain *, Edge *> It : Edges)
244       if (It.first == Other)
245         return It.second;
246     return nullptr;
247   }
248 
removeEdge(Chain * Other)249   void removeEdge(Chain *Other) {
250     auto It = Edges.begin();
251     while (It != Edges.end()) {
252       if (It->first == Other) {
253         Edges.erase(It);
254         return;
255       }
256       It++;
257     }
258   }
259 
addEdge(Chain * Other,Edge * Edge)260   void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }
261 
merge(Chain * Other,const std::vector<Block * > & MergedBlocks)262   void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) {
263     Blocks = MergedBlocks;
264     IsEntry |= Other->IsEntry;
265     ExecutionCount += Other->ExecutionCount;
266     Size += Other->Size;
267     // Update block's chains
268     for (size_t Idx = 0; Idx < Blocks.size(); Idx++) {
269       Blocks[Idx]->CurChain = this;
270       Blocks[Idx]->CurIndex = Idx;
271     }
272   }
273 
274   void mergeEdges(Chain *Other);
275 
clear()276   void clear() {
277     Blocks.clear();
278     Edges.clear();
279   }
280 
281 private:
282   size_t Id;
283   bool IsEntry;
284   uint64_t ExecutionCount;
285   uint64_t Size;
286   // Cached ext-tsp score for the chain
287   double Score;
288   // Blocks of the chain
289   std::vector<Block *> Blocks;
290   // Adjacent chains and corresponding edges (lists of jumps)
291   std::vector<std::pair<Chain *, Edge *>> Edges;
292 };
293 
294 // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks.
295 // When blocks are merged into chains, the edges are combined too so that
296 // there is always at most one edge between a pair of chains
297 class Edge {
298 public:
299   Edge(const Edge &) = delete;
300   Edge(Edge &&) = default;
301   Edge &operator=(const Edge &) = delete;
302   Edge &operator=(Edge &&) = default;
303 
Edge(Block * SrcBlock,Block * DstBlock,uint64_t EC)304   explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC)
305       : SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain),
306         Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {}
307 
jumps() const308   const JumpList &jumps() const { return Jumps; }
309 
changeEndpoint(Chain * From,Chain * To)310   void changeEndpoint(Chain *From, Chain *To) {
311     if (From == SrcChain)
312       SrcChain = To;
313     if (From == DstChain)
314       DstChain = To;
315   }
316 
appendJump(Block * SrcBlock,Block * DstBlock,uint64_t EC)317   void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) {
318     Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC);
319   }
320 
moveJumps(Edge * Other)321   void moveJumps(Edge *Other) {
322     Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
323     Other->Jumps.clear();
324   }
325 
hasCachedMergeGain(Chain * Src,Chain * Dst) const326   bool hasCachedMergeGain(Chain *Src, Chain *Dst) const {
327     return Src == SrcChain ? CacheValidForward : CacheValidBackward;
328   }
329 
getCachedMergeGain(Chain * Src,Chain * Dst) const330   MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const {
331     return Src == SrcChain ? CachedGainForward : CachedGainBackward;
332   }
333 
setCachedMergeGain(Chain * Src,Chain * Dst,MergeGainTy MergeGain)334   void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) {
335     if (Src == SrcChain) {
336       CachedGainForward = MergeGain;
337       CacheValidForward = true;
338     } else {
339       CachedGainBackward = MergeGain;
340       CacheValidBackward = true;
341     }
342   }
343 
invalidateCache()344   void invalidateCache() {
345     CacheValidForward = false;
346     CacheValidBackward = false;
347   }
348 
349 private:
350   Chain *SrcChain{nullptr};
351   Chain *DstChain{nullptr};
352   // Original jumps in the binary with correspinding execution counts
353   JumpList Jumps;
354   // Cached ext-tsp value for merging the pair of chains
355   // Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
356   // we store both values here
357   MergeGainTy CachedGainForward;
358   MergeGainTy CachedGainBackward;
359   // Whether the cached value must be recomputed
360   bool CacheValidForward{false};
361   bool CacheValidBackward{false};
362 };
363 
mergeEdges(Chain * Other)364 void Chain::mergeEdges(Chain *Other) {
365   assert(this != Other && "cannot merge a chain with itself");
366 
367   // Update edges adjacent to chain Other
368   for (auto EdgeIt : Other->Edges) {
369     Chain *const DstChain = EdgeIt.first;
370     Edge *const DstEdge = EdgeIt.second;
371     Chain *const TargetChain = DstChain == Other ? this : DstChain;
372 
373     // Find the corresponding edge in the current chain
374     Edge *curEdge = getEdge(TargetChain);
375     if (curEdge == nullptr) {
376       DstEdge->changeEndpoint(Other, this);
377       this->addEdge(TargetChain, DstEdge);
378       if (DstChain != this && DstChain != Other)
379         DstChain->addEdge(this, DstEdge);
380     } else {
381       curEdge->moveJumps(DstEdge);
382     }
383     // Cleanup leftover edge
384     if (DstChain != Other)
385       DstChain->removeEdge(Other);
386   }
387 }
388 
389 // A wrapper around three chains of basic blocks; it is used to avoid extra
390 // instantiation of the vectors.
391 class MergedChain {
392 public:
MergedChain(BlockIter Begin1,BlockIter End1,BlockIter Begin2=BlockIter (),BlockIter End2=BlockIter (),BlockIter Begin3=BlockIter (),BlockIter End3=BlockIter ())393   MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(),
394               BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(),
395               BlockIter End3 = BlockIter())
396       : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
397         End3(End3) {}
398 
forEach(const F & Func) const399   template <typename F> void forEach(const F &Func) const {
400     for (auto It = Begin1; It != End1; It++)
401       Func(*It);
402     for (auto It = Begin2; It != End2; It++)
403       Func(*It);
404     for (auto It = Begin3; It != End3; It++)
405       Func(*It);
406   }
407 
getBlocks() const408   std::vector<Block *> getBlocks() const {
409     std::vector<Block *> Result;
410     Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
411                    std::distance(Begin3, End3));
412     Result.insert(Result.end(), Begin1, End1);
413     Result.insert(Result.end(), Begin2, End2);
414     Result.insert(Result.end(), Begin3, End3);
415     return Result;
416   }
417 
getFirstBlock() const418   const Block *getFirstBlock() const { return *Begin1; }
419 
420 private:
421   BlockIter Begin1;
422   BlockIter End1;
423   BlockIter Begin2;
424   BlockIter End2;
425   BlockIter Begin3;
426   BlockIter End3;
427 };
428 
429 /// Deterministically compare pairs of chains
compareChainPairs(const Chain * A1,const Chain * B1,const Chain * A2,const Chain * B2)430 bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2,
431                        const Chain *B2) {
432   const uint64_t Samples1 = A1->executionCount() + B1->executionCount();
433   const uint64_t Samples2 = A2->executionCount() + B2->executionCount();
434   if (Samples1 != Samples2)
435     return Samples1 < Samples2;
436 
437   // Making the order deterministic
438   if (A1 != A2)
439     return A1->id() < A2->id();
440   return B1->id() < B2->id();
441 }
442 class ExtTSP {
443 public:
ExtTSP(const BinaryFunction & BF)444   ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); }
445 
446   /// Run the algorithm and return an ordering of basic block
run(BinaryFunction::BasicBlockOrderType & Order)447   void run(BinaryFunction::BasicBlockOrderType &Order) {
448     // Pass 1: Merge blocks with their fallthrough successors
449     mergeFallthroughs();
450 
451     // Pass 2: Merge pairs of chains while improving the ExtTSP objective
452     mergeChainPairs();
453 
454     // Pass 3: Merge cold blocks to reduce code size
455     mergeColdChains();
456 
457     // Collect blocks from all chains
458     concatChains(Order);
459   }
460 
461 private:
462   /// Initialize algorithm's data structures
initialize()463   void initialize() {
464     // Create a separate MCCodeEmitter to allow lock-free execution
465     BinaryContext::IndependentCodeEmitter Emitter;
466     if (!opts::NoThreads)
467       Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter();
468 
469     // Initialize CFG nodes
470     AllBlocks.reserve(BF.getLayout().block_size());
471     size_t LayoutIndex = 0;
472     for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
473       BB->setLayoutIndex(LayoutIndex++);
474       uint64_t Size =
475           std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1);
476       AllBlocks.emplace_back(BB, Size);
477     }
478 
479     // Initialize edges for the blocks and compute their total in/out weights
480     size_t NumEdges = 0;
481     for (Block &Block : AllBlocks) {
482       auto BI = Block.BB->branch_info_begin();
483       for (BinaryBasicBlock *SuccBB : Block.BB->successors()) {
484         assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
485                "missing profile for a jump");
486         if (SuccBB != Block.BB && BI->Count > 0) {
487           class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()];
488           uint64_t Count = BI->Count;
489           SuccBlock.InWeight += Count;
490           SuccBlock.InJumps.emplace_back(&Block, Count);
491           Block.OutWeight += Count;
492           Block.OutJumps.emplace_back(&SuccBlock, Count);
493           NumEdges++;
494         }
495         ++BI;
496       }
497     }
498 
499     // Initialize execution count for every basic block, which is the
500     // maximum over the sums of all in and out edge weights.
501     // Also execution count of the entry point is set to at least 1
502     for (Block &Block : AllBlocks) {
503       size_t Index = Block.Index;
504       Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight);
505       Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight);
506       if (Index == 0 && Block.ExecutionCount == 0)
507         Block.ExecutionCount = 1;
508     }
509 
510     // Initialize chains
511     AllChains.reserve(BF.getLayout().block_size());
512     HotChains.reserve(BF.getLayout().block_size());
513     for (Block &Block : AllBlocks) {
514       AllChains.emplace_back(Block.Index, &Block);
515       Block.CurChain = &AllChains.back();
516       if (Block.ExecutionCount > 0)
517         HotChains.push_back(&AllChains.back());
518     }
519 
520     // Initialize edges
521     AllEdges.reserve(NumEdges);
522     for (Block &Block : AllBlocks) {
523       for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) {
524         class Block *const SuccBlock = Jump.first;
525         Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain);
526         // this edge is already present in the graph
527         if (CurEdge != nullptr) {
528           assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr);
529           CurEdge->appendJump(&Block, SuccBlock, Jump.second);
530           continue;
531         }
532         // this is a new edge
533         AllEdges.emplace_back(&Block, SuccBlock, Jump.second);
534         Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back());
535         SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back());
536       }
537     }
538     assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges");
539   }
540 
541   /// For a pair of blocks, A and B, block B is the fallthrough successor of A,
542   /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
543   /// to B are from A. Such blocks should be adjacent in an optimal ordering;
544   /// the method finds and merges such pairs of blocks
mergeFallthroughs()545   void mergeFallthroughs() {
546     // Find fallthroughs based on edge weights
547     for (Block &Block : AllBlocks) {
548       if (Block.BB->succ_size() == 1 &&
549           Block.BB->getSuccessor()->pred_size() == 1 &&
550           Block.BB->getSuccessor()->getLayoutIndex() != 0) {
551         size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex();
552         Block.FallthroughSucc = &AllBlocks[SuccIndex];
553         AllBlocks[SuccIndex].FallthroughPred = &Block;
554         continue;
555       }
556 
557       if (Block.OutWeight == 0)
558         continue;
559       for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) {
560         class Block *const SuccBlock = Edge.first;
561         // Successor cannot be the first BB, which is pinned
562         if (Block.OutWeight == Edge.second &&
563             SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) {
564           Block.FallthroughSucc = SuccBlock;
565           SuccBlock->FallthroughPred = &Block;
566           break;
567         }
568       }
569     }
570 
571     // There might be 'cycles' in the fallthrough dependencies (since profile
572     // data isn't 100% accurate).
573     // Break the cycles by choosing the block with smallest index as the tail
574     for (Block &Block : AllBlocks) {
575       if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr)
576         continue;
577 
578       class Block *SuccBlock = Block.FallthroughSucc;
579       while (SuccBlock != nullptr && SuccBlock != &Block)
580         SuccBlock = SuccBlock->FallthroughSucc;
581 
582       if (SuccBlock == nullptr)
583         continue;
584       // break the cycle
585       AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr;
586       Block.FallthroughPred = nullptr;
587     }
588 
589     // Merge blocks with their fallthrough successors
590     for (Block &Block : AllBlocks) {
591       if (Block.FallthroughPred == nullptr &&
592           Block.FallthroughSucc != nullptr) {
593         class Block *CurBlock = &Block;
594         while (CurBlock->FallthroughSucc != nullptr) {
595           class Block *const NextBlock = CurBlock->FallthroughSucc;
596           mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y);
597           CurBlock = NextBlock;
598         }
599       }
600     }
601   }
602 
603   /// Merge pairs of chains while improving the ExtTSP objective
mergeChainPairs()604   void mergeChainPairs() {
605     while (HotChains.size() > 1) {
606       Chain *BestChainPred = nullptr;
607       Chain *BestChainSucc = nullptr;
608       auto BestGain = MergeGainTy();
609       // Iterate over all pairs of chains
610       for (Chain *ChainPred : HotChains) {
611         // Get candidates for merging with the current chain
612         for (auto EdgeIter : ChainPred->edges()) {
613           Chain *ChainSucc = EdgeIter.first;
614           Edge *ChainEdge = EdgeIter.second;
615           // Ignore loop edges
616           if (ChainPred == ChainSucc)
617             continue;
618 
619           // Compute the gain of merging the two chains
620           MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
621           if (CurGain.score() <= EPS)
622             continue;
623 
624           if (BestGain < CurGain ||
625               (std::abs(CurGain.score() - BestGain.score()) < EPS &&
626                compareChainPairs(ChainPred, ChainSucc, BestChainPred,
627                                  BestChainSucc))) {
628             BestGain = CurGain;
629             BestChainPred = ChainPred;
630             BestChainSucc = ChainSucc;
631           }
632         }
633       }
634 
635       // Stop merging when there is no improvement
636       if (BestGain.score() <= EPS)
637         break;
638 
639       // Merge the best pair of chains
640       mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
641                   BestGain.mergeType());
642     }
643   }
644 
645   /// Merge remaining blocks into chains w/o taking jump counts into
646   /// consideration. This allows to maintain the original block order in the
647   /// absense of profile data
mergeColdChains()648   void mergeColdChains() {
649     for (BinaryBasicBlock *SrcBB : BF.getLayout().blocks()) {
650       // Iterating in reverse order to make sure original fallthrough jumps are
651       // merged first; this might be beneficial for code size.
652       for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) {
653         BinaryBasicBlock *DstBB = *Itr;
654         size_t SrcIndex = SrcBB->getLayoutIndex();
655         size_t DstIndex = DstBB->getLayoutIndex();
656         Chain *SrcChain = AllBlocks[SrcIndex].CurChain;
657         Chain *DstChain = AllBlocks[DstIndex].CurChain;
658         bool IsColdSrc = SrcChain->executionCount() == 0;
659         bool IsColdDst = DstChain->executionCount() == 0;
660         if (SrcChain != DstChain && !DstChain->isEntryPoint() &&
661             SrcChain->blocks().back()->Index == SrcIndex &&
662             DstChain->blocks().front()->Index == DstIndex &&
663             IsColdSrc == IsColdDst)
664           mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y);
665       }
666     }
667   }
668 
669   /// Compute ExtTSP score for a given order of basic blocks
score(const MergedChain & MergedBlocks,const JumpList & Jumps) const670   double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const {
671     if (Jumps.empty())
672       return 0.0;
673     uint64_t CurAddr = 0;
674     MergedBlocks.forEach(
675       [&](const Block *BB) {
676         BB->EstimatedAddr = CurAddr;
677         CurAddr += BB->Size;
678       }
679     );
680 
681     double Score = 0;
682     for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) {
683       const Block *SrcBlock = Jump.first.first;
684       const Block *DstBlock = Jump.first.second;
685       Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
686                            DstBlock->EstimatedAddr, Jump.second);
687     }
688     return Score;
689   }
690 
691   /// Compute the gain of merging two chains
692   ///
693   /// The function considers all possible ways of merging two chains and
694   /// computes the one having the largest increase in ExtTSP objective. The
695   /// result is a pair with the first element being the gain and the second
696   /// element being the corresponding merging type.
mergeGain(Chain * ChainPred,Chain * ChainSucc,Edge * Edge) const697   MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
698     if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
699       return Edge->getCachedMergeGain(ChainPred, ChainSucc);
700 
701     // Precompute jumps between ChainPred and ChainSucc
702     JumpList Jumps = Edge->jumps();
703     class Edge *EdgePP = ChainPred->getEdge(ChainPred);
704     if (EdgePP != nullptr)
705       Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
706     assert(Jumps.size() > 0 && "trying to merge chains w/o jumps");
707 
708     MergeGainTy Gain = MergeGainTy();
709     // Try to concatenate two chains w/o splitting
710     Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0,
711                             MergeTypeTy::X_Y);
712 
713     // Try to break ChainPred in various ways and concatenate with ChainSucc
714     if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) {
715       for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) {
716         Block *BB1 = ChainPred->blocks()[Offset - 1];
717         Block *BB2 = ChainPred->blocks()[Offset];
718         // Does the splitting break FT successors?
719         if (BB1->FallthroughSucc != nullptr) {
720           (void)BB2;
721           assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved");
722           continue;
723         }
724 
725         Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
726                                 MergeTypeTy::X1_Y_X2);
727         Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
728                                 MergeTypeTy::Y_X2_X1);
729         Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset,
730                                 MergeTypeTy::X2_X1_Y);
731       }
732     }
733 
734     Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
735     return Gain;
736   }
737 
738   /// Merge two chains and update the best Gain
computeMergeGain(const MergeGainTy & CurGain,const Chain * ChainPred,const Chain * ChainSucc,const JumpList & Jumps,size_t MergeOffset,MergeTypeTy MergeType) const739   MergeGainTy computeMergeGain(const MergeGainTy &CurGain,
740                                const Chain *ChainPred, const Chain *ChainSucc,
741                                const JumpList &Jumps, size_t MergeOffset,
742                                MergeTypeTy MergeType) const {
743     MergedChain MergedBlocks = mergeBlocks(
744         ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType);
745 
746     // Do not allow a merge that does not preserve the original entry block
747     if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) &&
748         MergedBlocks.getFirstBlock()->Index != 0)
749       return CurGain;
750 
751     // The gain for the new chain
752     const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score();
753     auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType);
754     return CurGain < NewGain ? NewGain : CurGain;
755   }
756 
757   /// Merge two chains of blocks respecting a given merge 'type' and 'offset'
758   ///
759   /// If MergeType == 0, then the result is a concatentation of two chains.
760   /// Otherwise, the first chain is cut into two sub-chains at the offset,
761   /// and merged using all possible ways of concatenating three chains.
mergeBlocks(const std::vector<Block * > & X,const std::vector<Block * > & Y,size_t MergeOffset,MergeTypeTy MergeType) const762   MergedChain mergeBlocks(const std::vector<Block *> &X,
763                           const std::vector<Block *> &Y, size_t MergeOffset,
764                           MergeTypeTy MergeType) const {
765     // Split the first chain, X, into X1 and X2
766     BlockIter BeginX1 = X.begin();
767     BlockIter EndX1 = X.begin() + MergeOffset;
768     BlockIter BeginX2 = X.begin() + MergeOffset;
769     BlockIter EndX2 = X.end();
770     BlockIter BeginY = Y.begin();
771     BlockIter EndY = Y.end();
772 
773     // Construct a new chain from the three existing ones
774     switch (MergeType) {
775     case MergeTypeTy::X_Y:
776       return MergedChain(BeginX1, EndX2, BeginY, EndY);
777     case MergeTypeTy::X1_Y_X2:
778       return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
779     case MergeTypeTy::Y_X2_X1:
780       return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
781     case MergeTypeTy::X2_X1_Y:
782       return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
783     }
784 
785     llvm_unreachable("unexpected merge type");
786   }
787 
788   /// Merge chain From into chain Into, update the list of active chains,
789   /// adjacency information, and the corresponding cached values
mergeChains(Chain * Into,Chain * From,size_t MergeOffset,MergeTypeTy MergeType)790   void mergeChains(Chain *Into, Chain *From, size_t MergeOffset,
791                    MergeTypeTy MergeType) {
792     assert(Into != From && "a chain cannot be merged with itself");
793 
794     // Merge the blocks
795     MergedChain MergedBlocks =
796         mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType);
797     Into->merge(From, MergedBlocks.getBlocks());
798     Into->mergeEdges(From);
799     From->clear();
800 
801     // Update cached ext-tsp score for the new chain
802     Edge *SelfEdge = Into->getEdge(Into);
803     if (SelfEdge != nullptr) {
804       MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end());
805       Into->setScore(score(MergedBlocks, SelfEdge->jumps()));
806     }
807 
808     // Remove chain From from the list of active chains
809     llvm::erase_value(HotChains, From);
810 
811     // Invalidate caches
812     for (std::pair<Chain *, Edge *> EdgeIter : Into->edges())
813       EdgeIter.second->invalidateCache();
814   }
815 
816   /// Concatenate all chains into a final order
concatChains(BinaryFunction::BasicBlockOrderType & Order)817   void concatChains(BinaryFunction::BasicBlockOrderType &Order) {
818     // Collect chains
819     std::vector<Chain *> SortedChains;
820     for (Chain &Chain : AllChains)
821       if (Chain.blocks().size() > 0)
822         SortedChains.push_back(&Chain);
823 
824     // Sorting chains by density in decreasing order
825     llvm::stable_sort(SortedChains, [](const Chain *C1, const Chain *C2) {
826       // Original entry point to the front
827       if (C1->isEntryPoint() != C2->isEntryPoint()) {
828         if (C1->isEntryPoint())
829           return true;
830         if (C2->isEntryPoint())
831           return false;
832       }
833 
834       const double D1 = C1->density();
835       const double D2 = C2->density();
836       if (D1 != D2)
837         return D1 > D2;
838 
839       // Making the order deterministic
840       return C1->id() < C2->id();
841     });
842 
843     // Collect the basic blocks in the order specified by their chains
844     Order.reserve(BF.getLayout().block_size());
845     for (Chain *Chain : SortedChains)
846       for (Block *Block : Chain->blocks())
847         Order.push_back(Block->BB);
848   }
849 
850 private:
851   // The binary function
852   const BinaryFunction &BF;
853 
854   // All CFG nodes (basic blocks)
855   std::vector<Block> AllBlocks;
856 
857   // All chains of blocks
858   std::vector<Chain> AllChains;
859 
860   // Active chains. The vector gets updated at runtime when chains are merged
861   std::vector<Chain *> HotChains;
862 
863   // All edges between chains
864   std::vector<Edge> AllEdges;
865 };
866 
reorderBasicBlocks(const BinaryFunction & BF,BasicBlockOrder & Order) const867 void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF,
868                                                 BasicBlockOrder &Order) const {
869   if (BF.getLayout().block_empty())
870     return;
871 
872   // Do not change layout of functions w/o profile information
873   if (!BF.hasValidProfile() || BF.getLayout().block_size() <= 2) {
874     for (BinaryBasicBlock *BB : BF.getLayout().blocks())
875       Order.push_back(BB);
876     return;
877   }
878 
879   // Apply the algorithm
880   ExtTSP(BF).run(Order);
881 
882   // Verify correctness
883   assert(Order[0]->isEntryPoint() && "Original entry point is not preserved");
884   assert(Order.size() == BF.getLayout().block_size() &&
885          "Wrong size of reordered layout");
886 }
887 
888 } // namespace bolt
889 } // namespace llvm
890