1 //===- bolt/Passes/ExtTSPReorderAlgorithm.cpp - Order basic blocks --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // ExtTSP - layout of basic blocks with i-cache optimization. 10 // 11 // The algorithm is a greedy heuristic that works with chains (ordered lists) 12 // of basic blocks. Initially all chains are isolated basic blocks. On every 13 // iteration, we pick a pair of chains whose merging yields the biggest increase 14 // in the ExtTSP value, which models how i-cache "friendly" a specific chain is. 15 // A pair of chains giving the maximum gain is merged into a new chain. The 16 // procedure stops when there is only one chain left, or when merging does not 17 // increase ExtTSP. In the latter case, the remaining chains are sorted by 18 // density in decreasing order. 19 // 20 // An important aspect is the way two chains are merged. Unlike earlier 21 // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two 22 // chains, X and Y, are first split into three, X1, X2, and Y. Then we 23 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 24 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 25 // This improves the quality of the final result (the search space is larger) 26 // while keeping the implementation sufficiently fast. 27 // 28 // Reference: 29 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 30 // IEEE Transactions on Computers, 2020 31 // https://arxiv.org/abs/1809.04676 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "bolt/Core/BinaryBasicBlock.h" 36 #include "bolt/Core/BinaryFunction.h" 37 #include "bolt/Passes/ReorderAlgorithm.h" 38 #include "llvm/Support/CommandLine.h" 39 40 using namespace llvm; 41 using namespace bolt; 42 43 namespace opts { 44 45 extern cl::OptionCategory BoltOptCategory; 46 extern cl::opt<bool> NoThreads; 47 48 cl::opt<unsigned> 49 ChainSplitThreshold("chain-split-threshold", 50 cl::desc("The maximum size of a chain to apply splitting"), 51 cl::init(128), 52 cl::ReallyHidden, 53 cl::ZeroOrMore, 54 cl::cat(BoltOptCategory)); 55 56 cl::opt<double> 57 ForwardWeight("forward-weight", 58 cl::desc("The weight of forward jumps for ExtTSP value"), 59 cl::init(0.1), 60 cl::ReallyHidden, 61 cl::ZeroOrMore, 62 cl::cat(BoltOptCategory)); 63 64 cl::opt<double> 65 BackwardWeight("backward-weight", 66 cl::desc("The weight of backward jumps for ExtTSP value"), 67 cl::init(0.1), 68 cl::ReallyHidden, 69 cl::ZeroOrMore, 70 cl::cat(BoltOptCategory)); 71 72 cl::opt<unsigned> 73 ForwardDistance("forward-distance", 74 cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"), 75 cl::init(1024), 76 cl::ReallyHidden, 77 cl::ZeroOrMore, 78 cl::cat(BoltOptCategory)); 79 80 cl::opt<unsigned> 81 BackwardDistance("backward-distance", 82 cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"), 83 cl::init(640), 84 cl::ReallyHidden, 85 cl::ZeroOrMore, 86 cl::cat(BoltOptCategory)); 87 88 } 89 90 namespace llvm { 91 namespace bolt { 92 93 // Epsilon for comparison of doubles 94 constexpr double EPS = 1e-8; 95 96 class Block; 97 class Chain; 98 class Edge; 99 100 // Calculate Ext-TSP value, which quantifies the expected number of i-cache 101 // misses for a given ordering of basic blocks 102 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, 103 uint64_t Count) { 104 assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE); 105 106 // Fallthrough 107 if (SrcAddr + SrcSize == DstAddr) { 108 // Assume that FallthroughWeight = 1.0 after normalization 109 return static_cast<double>(Count); 110 } 111 // Forward 112 if (SrcAddr + SrcSize < DstAddr) { 113 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); 114 if (Dist <= opts::ForwardDistance) { 115 double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance; 116 return opts::ForwardWeight * Prob * Count; 117 } 118 return 0; 119 } 120 // Backward 121 const uint64_t Dist = SrcAddr + SrcSize - DstAddr; 122 if (Dist <= opts::BackwardDistance) { 123 double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance; 124 return opts::BackwardWeight * Prob * Count; 125 } 126 return 0; 127 } 128 129 using BlockPair = std::pair<Block *, Block *>; 130 using JumpList = std::vector<std::pair<BlockPair, uint64_t>>; 131 using BlockIter = std::vector<Block *>::const_iterator; 132 133 enum MergeTypeTy { 134 X_Y = 0, 135 X1_Y_X2 = 1, 136 Y_X2_X1 = 2, 137 X2_X1_Y = 3, 138 }; 139 140 class MergeGainTy { 141 public: 142 explicit MergeGainTy() {} 143 explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) 144 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} 145 146 double score() const { return Score; } 147 148 size_t mergeOffset() const { return MergeOffset; } 149 150 MergeTypeTy mergeType() const { return MergeType; } 151 152 // returns 'true' iff Other is preferred over this 153 bool operator<(const MergeGainTy &Other) const { 154 return (Other.Score > EPS && Other.Score > Score + EPS); 155 } 156 157 private: 158 double Score{-1.0}; 159 size_t MergeOffset{0}; 160 MergeTypeTy MergeType{MergeTypeTy::X_Y}; 161 }; 162 163 // A node in CFG corresponding to a BinaryBasicBlock. 164 // The class wraps several mutable fields utilized in the ExtTSP algorithm 165 class Block { 166 public: 167 Block(const Block &) = delete; 168 Block(Block &&) = default; 169 Block &operator=(const Block &) = delete; 170 Block &operator=(Block &&) = default; 171 172 // Corresponding basic block 173 BinaryBasicBlock *BB{nullptr}; 174 // Current chain of the basic block 175 Chain *CurChain{nullptr}; 176 // (Estimated) size of the block in the binary 177 uint64_t Size{0}; 178 // Execution count of the block in the binary 179 uint64_t ExecutionCount{0}; 180 // An original index of the node in CFG 181 size_t Index{0}; 182 // The index of the block in the current chain 183 size_t CurIndex{0}; 184 // An offset of the block in the current chain 185 mutable uint64_t EstimatedAddr{0}; 186 // Fallthrough successor of the node in CFG 187 Block *FallthroughSucc{nullptr}; 188 // Fallthrough predecessor of the node in CFG 189 Block *FallthroughPred{nullptr}; 190 // Outgoing jumps from the block 191 std::vector<std::pair<Block *, uint64_t>> OutJumps; 192 // Incoming jumps to the block 193 std::vector<std::pair<Block *, uint64_t>> InJumps; 194 // Total execution count of incoming jumps 195 uint64_t InWeight{0}; 196 // Total execution count of outgoing jumps 197 uint64_t OutWeight{0}; 198 199 public: 200 explicit Block(BinaryBasicBlock *BB_, uint64_t Size_) 201 : BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()), 202 Index(BB->getLayoutIndex()) {} 203 204 bool adjacent(const Block *Other) const { 205 return hasOutJump(Other) || hasInJump(Other); 206 } 207 208 bool hasOutJump(const Block *Other) const { 209 for (std::pair<Block *, uint64_t> Jump : OutJumps) { 210 if (Jump.first == Other) 211 return true; 212 } 213 return false; 214 } 215 216 bool hasInJump(const Block *Other) const { 217 for (std::pair<Block *, uint64_t> Jump : InJumps) { 218 if (Jump.first == Other) 219 return true; 220 } 221 return false; 222 } 223 }; 224 225 // A chain (ordered sequence) of CFG nodes (basic blocks) 226 class Chain { 227 public: 228 Chain(const Chain &) = delete; 229 Chain(Chain &&) = default; 230 Chain &operator=(const Chain &) = delete; 231 Chain &operator=(Chain &&) = default; 232 233 explicit Chain(size_t Id, Block *Block) 234 : Id(Id), IsEntry(Block->Index == 0), 235 ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0), 236 Blocks(1, Block) {} 237 238 size_t id() const { return Id; } 239 240 uint64_t size() const { return Size; } 241 242 double density() const { return static_cast<double>(ExecutionCount) / Size; } 243 244 uint64_t executionCount() const { return ExecutionCount; } 245 246 bool isEntryPoint() const { return IsEntry; } 247 248 double score() const { return Score; } 249 250 void setScore(double NewScore) { Score = NewScore; } 251 252 const std::vector<Block *> &blocks() const { return Blocks; } 253 254 const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; } 255 256 Edge *getEdge(Chain *Other) const { 257 for (std::pair<Chain *, Edge *> It : Edges) 258 if (It.first == Other) 259 return It.second; 260 return nullptr; 261 } 262 263 void removeEdge(Chain *Other) { 264 auto It = Edges.begin(); 265 while (It != Edges.end()) { 266 if (It->first == Other) { 267 Edges.erase(It); 268 return; 269 } 270 It++; 271 } 272 } 273 274 void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); } 275 276 void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { 277 Blocks = MergedBlocks; 278 IsEntry |= Other->IsEntry; 279 ExecutionCount += Other->ExecutionCount; 280 Size += Other->Size; 281 // Update block's chains 282 for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { 283 Blocks[Idx]->CurChain = this; 284 Blocks[Idx]->CurIndex = Idx; 285 } 286 } 287 288 void mergeEdges(Chain *Other); 289 290 void clear() { 291 Blocks.clear(); 292 Edges.clear(); 293 } 294 295 private: 296 size_t Id; 297 bool IsEntry; 298 uint64_t ExecutionCount; 299 uint64_t Size; 300 // Cached ext-tsp score for the chain 301 double Score; 302 // Blocks of the chain 303 std::vector<Block *> Blocks; 304 // Adjacent chains and corresponding edges (lists of jumps) 305 std::vector<std::pair<Chain *, Edge *>> Edges; 306 }; 307 308 // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks. 309 // When blocks are merged into chains, the edges are combined too so that 310 // there is always at most one edge between a pair of chains 311 class Edge { 312 public: 313 Edge(const Edge &) = delete; 314 Edge(Edge &&) = default; 315 Edge &operator=(const Edge &) = delete; 316 Edge &operator=(Edge &&) = default; 317 318 explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC) 319 : SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain), 320 Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {} 321 322 const JumpList &jumps() const { return Jumps; } 323 324 void changeEndpoint(Chain *From, Chain *To) { 325 if (From == SrcChain) 326 SrcChain = To; 327 if (From == DstChain) 328 DstChain = To; 329 } 330 331 void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) { 332 Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC); 333 } 334 335 void moveJumps(Edge *Other) { 336 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 337 Other->Jumps.clear(); 338 } 339 340 bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { 341 return Src == SrcChain ? CacheValidForward : CacheValidBackward; 342 } 343 344 MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { 345 return Src == SrcChain ? CachedGainForward : CachedGainBackward; 346 } 347 348 void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { 349 if (Src == SrcChain) { 350 CachedGainForward = MergeGain; 351 CacheValidForward = true; 352 } else { 353 CachedGainBackward = MergeGain; 354 CacheValidBackward = true; 355 } 356 } 357 358 void invalidateCache() { 359 CacheValidForward = false; 360 CacheValidBackward = false; 361 } 362 363 private: 364 Chain *SrcChain{nullptr}; 365 Chain *DstChain{nullptr}; 366 // Original jumps in the binary with correspinding execution counts 367 JumpList Jumps; 368 // Cached ext-tsp value for merging the pair of chains 369 // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, 370 // we store both values here 371 MergeGainTy CachedGainForward; 372 MergeGainTy CachedGainBackward; 373 // Whether the cached value must be recomputed 374 bool CacheValidForward{false}; 375 bool CacheValidBackward{false}; 376 }; 377 378 void Chain::mergeEdges(Chain *Other) { 379 assert(this != Other && "cannot merge a chain with itself"); 380 381 // Update edges adjacent to chain Other 382 for (auto EdgeIt : Other->Edges) { 383 Chain *const DstChain = EdgeIt.first; 384 Edge *const DstEdge = EdgeIt.second; 385 Chain *const TargetChain = DstChain == Other ? this : DstChain; 386 387 // Find the corresponding edge in the current chain 388 Edge *curEdge = getEdge(TargetChain); 389 if (curEdge == nullptr) { 390 DstEdge->changeEndpoint(Other, this); 391 this->addEdge(TargetChain, DstEdge); 392 if (DstChain != this && DstChain != Other) 393 DstChain->addEdge(this, DstEdge); 394 } else { 395 curEdge->moveJumps(DstEdge); 396 } 397 // Cleanup leftover edge 398 if (DstChain != Other) 399 DstChain->removeEdge(Other); 400 } 401 } 402 403 // A wrapper around three chains of basic blocks; it is used to avoid extra 404 // instantiation of the vectors. 405 class MergedChain { 406 public: 407 MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), 408 BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), 409 BlockIter End3 = BlockIter()) 410 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), 411 End3(End3) {} 412 413 template <typename F> void forEach(const F &Func) const { 414 for (auto It = Begin1; It != End1; It++) 415 Func(*It); 416 for (auto It = Begin2; It != End2; It++) 417 Func(*It); 418 for (auto It = Begin3; It != End3; It++) 419 Func(*It); 420 } 421 422 std::vector<Block *> getBlocks() const { 423 std::vector<Block *> Result; 424 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + 425 std::distance(Begin3, End3)); 426 Result.insert(Result.end(), Begin1, End1); 427 Result.insert(Result.end(), Begin2, End2); 428 Result.insert(Result.end(), Begin3, End3); 429 return Result; 430 } 431 432 const Block *getFirstBlock() const { return *Begin1; } 433 434 private: 435 BlockIter Begin1; 436 BlockIter End1; 437 BlockIter Begin2; 438 BlockIter End2; 439 BlockIter Begin3; 440 BlockIter End3; 441 }; 442 443 /// Deterministically compare pairs of chains 444 bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2, 445 const Chain *B2) { 446 const uint64_t Samples1 = A1->executionCount() + B1->executionCount(); 447 const uint64_t Samples2 = A2->executionCount() + B2->executionCount(); 448 if (Samples1 != Samples2) 449 return Samples1 < Samples2; 450 451 // Making the order deterministic 452 if (A1 != A2) 453 return A1->id() < A2->id(); 454 return B1->id() < B2->id(); 455 } 456 class ExtTSP { 457 public: 458 ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); } 459 460 /// Run the algorithm and return an ordering of basic block 461 void run(BinaryFunction::BasicBlockOrderType &Order) { 462 // Pass 1: Merge blocks with their fallthrough successors 463 mergeFallthroughs(); 464 465 // Pass 2: Merge pairs of chains while improving the ExtTSP objective 466 mergeChainPairs(); 467 468 // Pass 3: Merge cold blocks to reduce code size 469 mergeColdChains(); 470 471 // Collect blocks from all chains 472 concatChains(Order); 473 } 474 475 private: 476 /// Initialize algorithm's data structures 477 void initialize() { 478 // Create a separate MCCodeEmitter to allow lock-free execution 479 BinaryContext::IndependentCodeEmitter Emitter; 480 if (!opts::NoThreads) 481 Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter(); 482 483 // Initialize CFG nodes 484 AllBlocks.reserve(BF.layout_size()); 485 size_t LayoutIndex = 0; 486 for (BinaryBasicBlock *BB : BF.layout()) { 487 BB->setLayoutIndex(LayoutIndex++); 488 uint64_t Size = 489 std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1); 490 AllBlocks.emplace_back(BB, Size); 491 } 492 493 // Initialize edges for the blocks and compute their total in/out weights 494 size_t NumEdges = 0; 495 for (Block &Block : AllBlocks) { 496 auto BI = Block.BB->branch_info_begin(); 497 for (BinaryBasicBlock *SuccBB : Block.BB->successors()) { 498 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 499 "missing profile for a jump"); 500 if (SuccBB != Block.BB && BI->Count > 0) { 501 class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()]; 502 uint64_t Count = BI->Count; 503 SuccBlock.InWeight += Count; 504 SuccBlock.InJumps.emplace_back(&Block, Count); 505 Block.OutWeight += Count; 506 Block.OutJumps.emplace_back(&SuccBlock, Count); 507 NumEdges++; 508 } 509 ++BI; 510 } 511 } 512 513 // Initialize execution count for every basic block, which is the 514 // maximum over the sums of all in and out edge weights. 515 // Also execution count of the entry point is set to at least 1 516 for (Block &Block : AllBlocks) { 517 size_t Index = Block.Index; 518 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight); 519 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight); 520 if (Index == 0 && Block.ExecutionCount == 0) 521 Block.ExecutionCount = 1; 522 } 523 524 // Initialize chains 525 AllChains.reserve(BF.layout_size()); 526 HotChains.reserve(BF.layout_size()); 527 for (Block &Block : AllBlocks) { 528 AllChains.emplace_back(Block.Index, &Block); 529 Block.CurChain = &AllChains.back(); 530 if (Block.ExecutionCount > 0) 531 HotChains.push_back(&AllChains.back()); 532 } 533 534 // Initialize edges 535 AllEdges.reserve(NumEdges); 536 for (Block &Block : AllBlocks) { 537 for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) { 538 class Block *const SuccBlock = Jump.first; 539 Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); 540 // this edge is already present in the graph 541 if (CurEdge != nullptr) { 542 assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); 543 CurEdge->appendJump(&Block, SuccBlock, Jump.second); 544 continue; 545 } 546 // this is a new edge 547 AllEdges.emplace_back(&Block, SuccBlock, Jump.second); 548 Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); 549 SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); 550 } 551 } 552 assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges"); 553 } 554 555 /// For a pair of blocks, A and B, block B is the fallthrough successor of A, 556 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 557 /// to B are from A. Such blocks should be adjacent in an optimal ordering; 558 /// the method finds and merges such pairs of blocks 559 void mergeFallthroughs() { 560 // Find fallthroughs based on edge weights 561 for (Block &Block : AllBlocks) { 562 if (Block.BB->succ_size() == 1 && 563 Block.BB->getSuccessor()->pred_size() == 1 && 564 Block.BB->getSuccessor()->getLayoutIndex() != 0) { 565 size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex(); 566 Block.FallthroughSucc = &AllBlocks[SuccIndex]; 567 AllBlocks[SuccIndex].FallthroughPred = &Block; 568 continue; 569 } 570 571 if (Block.OutWeight == 0) 572 continue; 573 for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) { 574 class Block *const SuccBlock = Edge.first; 575 // Successor cannot be the first BB, which is pinned 576 if (Block.OutWeight == Edge.second && 577 SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) { 578 Block.FallthroughSucc = SuccBlock; 579 SuccBlock->FallthroughPred = &Block; 580 break; 581 } 582 } 583 } 584 585 // There might be 'cycles' in the fallthrough dependencies (since profile 586 // data isn't 100% accurate). 587 // Break the cycles by choosing the block with smallest index as the tail 588 for (Block &Block : AllBlocks) { 589 if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr) 590 continue; 591 592 class Block *SuccBlock = Block.FallthroughSucc; 593 while (SuccBlock != nullptr && SuccBlock != &Block) 594 SuccBlock = SuccBlock->FallthroughSucc; 595 596 if (SuccBlock == nullptr) 597 continue; 598 // break the cycle 599 AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr; 600 Block.FallthroughPred = nullptr; 601 } 602 603 // Merge blocks with their fallthrough successors 604 for (Block &Block : AllBlocks) { 605 if (Block.FallthroughPred == nullptr && 606 Block.FallthroughSucc != nullptr) { 607 class Block *CurBlock = &Block; 608 while (CurBlock->FallthroughSucc != nullptr) { 609 class Block *const NextBlock = CurBlock->FallthroughSucc; 610 mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); 611 CurBlock = NextBlock; 612 } 613 } 614 } 615 } 616 617 /// Merge pairs of chains while improving the ExtTSP objective 618 void mergeChainPairs() { 619 while (HotChains.size() > 1) { 620 Chain *BestChainPred = nullptr; 621 Chain *BestChainSucc = nullptr; 622 auto BestGain = MergeGainTy(); 623 // Iterate over all pairs of chains 624 for (Chain *ChainPred : HotChains) { 625 // Get candidates for merging with the current chain 626 for (auto EdgeIter : ChainPred->edges()) { 627 Chain *ChainSucc = EdgeIter.first; 628 Edge *ChainEdge = EdgeIter.second; 629 // Ignore loop edges 630 if (ChainPred == ChainSucc) 631 continue; 632 633 // Compute the gain of merging the two chains 634 MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge); 635 if (CurGain.score() <= EPS) 636 continue; 637 638 if (BestGain < CurGain || 639 (std::abs(CurGain.score() - BestGain.score()) < EPS && 640 compareChainPairs(ChainPred, ChainSucc, BestChainPred, 641 BestChainSucc))) { 642 BestGain = CurGain; 643 BestChainPred = ChainPred; 644 BestChainSucc = ChainSucc; 645 } 646 } 647 } 648 649 // Stop merging when there is no improvement 650 if (BestGain.score() <= EPS) 651 break; 652 653 // Merge the best pair of chains 654 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), 655 BestGain.mergeType()); 656 } 657 } 658 659 /// Merge cold blocks to reduce code size 660 void mergeColdChains() { 661 for (BinaryBasicBlock *SrcBB : BF.layout()) { 662 // Iterating in reverse order to make sure original fallthrough jumps are 663 // merged first 664 for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) { 665 BinaryBasicBlock *DstBB = *Itr; 666 size_t SrcIndex = SrcBB->getLayoutIndex(); 667 size_t DstIndex = DstBB->getLayoutIndex(); 668 Chain *SrcChain = AllBlocks[SrcIndex].CurChain; 669 Chain *DstChain = AllBlocks[DstIndex].CurChain; 670 if (SrcChain != DstChain && !DstChain->isEntryPoint() && 671 SrcChain->blocks().back()->Index == SrcIndex && 672 DstChain->blocks().front()->Index == DstIndex) 673 mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); 674 } 675 } 676 } 677 678 /// Compute ExtTSP score for a given order of basic blocks 679 double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const { 680 if (Jumps.empty()) 681 return 0.0; 682 uint64_t CurAddr = 0; 683 MergedBlocks.forEach( 684 [&](const Block *BB) { 685 BB->EstimatedAddr = CurAddr; 686 CurAddr += BB->Size; 687 } 688 ); 689 690 double Score = 0; 691 for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) { 692 const Block *SrcBlock = Jump.first.first; 693 const Block *DstBlock = Jump.first.second; 694 Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, 695 DstBlock->EstimatedAddr, Jump.second); 696 } 697 return Score; 698 } 699 700 /// Compute the gain of merging two chains 701 /// 702 /// The function considers all possible ways of merging two chains and 703 /// computes the one having the largest increase in ExtTSP objective. The 704 /// result is a pair with the first element being the gain and the second 705 /// element being the corresponding merging type. 706 MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const { 707 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) 708 return Edge->getCachedMergeGain(ChainPred, ChainSucc); 709 710 // Precompute jumps between ChainPred and ChainSucc 711 JumpList Jumps = Edge->jumps(); 712 class Edge *EdgePP = ChainPred->getEdge(ChainPred); 713 if (EdgePP != nullptr) 714 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 715 assert(Jumps.size() > 0 && "trying to merge chains w/o jumps"); 716 717 MergeGainTy Gain = MergeGainTy(); 718 // Try to concatenate two chains w/o splitting 719 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0, 720 MergeTypeTy::X_Y); 721 722 // Try to break ChainPred in various ways and concatenate with ChainSucc 723 if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) { 724 for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { 725 Block *BB1 = ChainPred->blocks()[Offset - 1]; 726 Block *BB2 = ChainPred->blocks()[Offset]; 727 // Does the splitting break FT successors? 728 if (BB1->FallthroughSucc != nullptr) { 729 (void)BB2; 730 assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved"); 731 continue; 732 } 733 734 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 735 MergeTypeTy::X1_Y_X2); 736 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 737 MergeTypeTy::Y_X2_X1); 738 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 739 MergeTypeTy::X2_X1_Y); 740 } 741 } 742 743 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 744 return Gain; 745 } 746 747 /// Merge two chains and update the best Gain 748 MergeGainTy computeMergeGain(const MergeGainTy &CurGain, 749 const Chain *ChainPred, const Chain *ChainSucc, 750 const JumpList &Jumps, size_t MergeOffset, 751 MergeTypeTy MergeType) const { 752 MergedChain MergedBlocks = mergeBlocks( 753 ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType); 754 755 // Do not allow a merge that does not preserve the original entry block 756 if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) && 757 MergedBlocks.getFirstBlock()->Index != 0) 758 return CurGain; 759 760 // The gain for the new chain 761 const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score(); 762 auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType); 763 return CurGain < NewGain ? NewGain : CurGain; 764 } 765 766 /// Merge two chains of blocks respecting a given merge 'type' and 'offset' 767 /// 768 /// If MergeType == 0, then the result is a concatentation of two chains. 769 /// Otherwise, the first chain is cut into two sub-chains at the offset, 770 /// and merged using all possible ways of concatenating three chains. 771 MergedChain mergeBlocks(const std::vector<Block *> &X, 772 const std::vector<Block *> &Y, size_t MergeOffset, 773 MergeTypeTy MergeType) const { 774 // Split the first chain, X, into X1 and X2 775 BlockIter BeginX1 = X.begin(); 776 BlockIter EndX1 = X.begin() + MergeOffset; 777 BlockIter BeginX2 = X.begin() + MergeOffset; 778 BlockIter EndX2 = X.end(); 779 BlockIter BeginY = Y.begin(); 780 BlockIter EndY = Y.end(); 781 782 // Construct a new chain from the three existing ones 783 switch (MergeType) { 784 case MergeTypeTy::X_Y: 785 return MergedChain(BeginX1, EndX2, BeginY, EndY); 786 case MergeTypeTy::X1_Y_X2: 787 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 788 case MergeTypeTy::Y_X2_X1: 789 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 790 case MergeTypeTy::X2_X1_Y: 791 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 792 } 793 794 llvm_unreachable("unexpected merge type"); 795 } 796 797 /// Merge chain From into chain Into, update the list of active chains, 798 /// adjacency information, and the corresponding cached values 799 void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, 800 MergeTypeTy MergeType) { 801 assert(Into != From && "a chain cannot be merged with itself"); 802 803 // Merge the blocks 804 MergedChain MergedBlocks = 805 mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); 806 Into->merge(From, MergedBlocks.getBlocks()); 807 Into->mergeEdges(From); 808 From->clear(); 809 810 // Update cached ext-tsp score for the new chain 811 Edge *SelfEdge = Into->getEdge(Into); 812 if (SelfEdge != nullptr) { 813 MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); 814 Into->setScore(score(MergedBlocks, SelfEdge->jumps())); 815 } 816 817 // Remove chain From from the list of active chains 818 auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); 819 HotChains.erase(Iter, HotChains.end()); 820 821 // Invalidate caches 822 for (std::pair<Chain *, Edge *> EdgeIter : Into->edges()) 823 EdgeIter.second->invalidateCache(); 824 } 825 826 /// Concatenate all chains into a final order 827 void concatChains(BinaryFunction::BasicBlockOrderType &Order) { 828 // Collect chains 829 std::vector<Chain *> SortedChains; 830 for (Chain &Chain : AllChains) 831 if (Chain.blocks().size() > 0) 832 SortedChains.push_back(&Chain); 833 834 // Sorting chains by density in decreasing order 835 std::stable_sort( 836 SortedChains.begin(), SortedChains.end(), 837 [](const Chain *C1, const Chain *C2) { 838 // Original entry point to the front 839 if (C1->isEntryPoint() != C2->isEntryPoint()) { 840 if (C1->isEntryPoint()) 841 return true; 842 if (C2->isEntryPoint()) 843 return false; 844 } 845 846 const double D1 = C1->density(); 847 const double D2 = C2->density(); 848 if (D1 != D2) 849 return D1 > D2; 850 851 // Making the order deterministic 852 return C1->id() < C2->id(); 853 } 854 ); 855 856 // Collect the basic blocks in the order specified by their chains 857 Order.reserve(BF.layout_size()); 858 for (Chain *Chain : SortedChains) 859 for (Block *Block : Chain->blocks()) 860 Order.push_back(Block->BB); 861 } 862 863 private: 864 // The binary function 865 const BinaryFunction &BF; 866 867 // All CFG nodes (basic blocks) 868 std::vector<Block> AllBlocks; 869 870 // All chains of blocks 871 std::vector<Chain> AllChains; 872 873 // Active chains. The vector gets updated at runtime when chains are merged 874 std::vector<Chain *> HotChains; 875 876 // All edges between chains 877 std::vector<Edge> AllEdges; 878 }; 879 880 void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF, 881 BasicBlockOrder &Order) const { 882 if (BF.layout_empty()) 883 return; 884 885 // Do not change layout of functions w/o profile information 886 if (!BF.hasValidProfile() || BF.layout_size() <= 2) { 887 for (BinaryBasicBlock *BB : BF.layout()) 888 Order.push_back(BB); 889 return; 890 } 891 892 // Apply the algorithm 893 ExtTSP(BF).run(Order); 894 895 // Verify correctness 896 assert(Order[0]->isEntryPoint() && "Original entry point is not preserved"); 897 assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout"); 898 } 899 900 } // namespace bolt 901 } // namespace llvm 902