1 //===--- ExtTSPReorderAlgorithm.cpp - Order basic blocks ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // ExtTSP - layout of basic blocks with i-cache optimization. 9 // 10 // The algorithm is a greedy heuristic that works with chains (ordered lists) 11 // of basic blocks. Initially all chains are isolated basic blocks. On every 12 // iteration, we pick a pair of chains whose merging yields the biggest increase 13 // in the ExtTSP value, which models how i-cache "friendly" a specific chain is. 14 // A pair of chains giving the maximum gain is merged into a new chain. The 15 // procedure stops when there is only one chain left, or when merging does not 16 // increase ExtTSP. In the latter case, the remaining chains are sorted by 17 // density in decreasing order. 18 // 19 // An important aspect is the way two chains are merged. Unlike earlier 20 // algorithms (e.g., OptimizeCacheReorderAlgorithm or Pettis-Hansen), two 21 // chains, X and Y, are first split into three, X1, X2, and Y. Then we 22 // consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y, 23 // X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score. 24 // This improves the quality of the final result (the search space is larger) 25 // while keeping the implementation sufficiently fast. 26 // 27 // Reference: 28 // * A. Newell and S. Pupyrev, Improved Basic Block Reordering, 29 // IEEE Transactions on Computers, 2020 30 // https://arxiv.org/abs/1809.04676 31 //===----------------------------------------------------------------------===// 32 #include "bolt/Core/BinaryBasicBlock.h" 33 #include "bolt/Core/BinaryFunction.h" 34 #include "bolt/Passes/ReorderAlgorithm.h" 35 #include "llvm/Support/CommandLine.h" 36 37 using namespace llvm; 38 using namespace bolt; 39 namespace opts { 40 41 extern cl::OptionCategory BoltOptCategory; 42 extern cl::opt<bool> NoThreads; 43 44 cl::opt<unsigned> 45 ChainSplitThreshold("chain-split-threshold", 46 cl::desc("The maximum size of a chain to apply splitting"), 47 cl::init(128), 48 cl::ReallyHidden, 49 cl::ZeroOrMore, 50 cl::cat(BoltOptCategory)); 51 52 cl::opt<double> 53 ForwardWeight("forward-weight", 54 cl::desc("The weight of forward jumps for ExtTSP value"), 55 cl::init(0.1), 56 cl::ReallyHidden, 57 cl::ZeroOrMore, 58 cl::cat(BoltOptCategory)); 59 60 cl::opt<double> 61 BackwardWeight("backward-weight", 62 cl::desc("The weight of backward jumps for ExtTSP value"), 63 cl::init(0.1), 64 cl::ReallyHidden, 65 cl::ZeroOrMore, 66 cl::cat(BoltOptCategory)); 67 68 cl::opt<unsigned> 69 ForwardDistance("forward-distance", 70 cl::desc("The maximum distance (in bytes) of forward jumps for ExtTSP value"), 71 cl::init(1024), 72 cl::ReallyHidden, 73 cl::ZeroOrMore, 74 cl::cat(BoltOptCategory)); 75 76 cl::opt<unsigned> 77 BackwardDistance("backward-distance", 78 cl::desc("The maximum distance (in bytes) of backward jumps for ExtTSP value"), 79 cl::init(640), 80 cl::ReallyHidden, 81 cl::ZeroOrMore, 82 cl::cat(BoltOptCategory)); 83 84 } 85 86 namespace llvm { 87 namespace bolt { 88 89 // Epsilon for comparison of doubles 90 constexpr double EPS = 1e-8; 91 92 class Block; 93 class Chain; 94 class Edge; 95 96 // Calculate Ext-TSP value, which quantifies the expected number of i-cache 97 // misses for a given ordering of basic blocks 98 double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr, 99 uint64_t Count) { 100 assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE); 101 102 // Fallthrough 103 if (SrcAddr + SrcSize == DstAddr) { 104 // Assume that FallthroughWeight = 1.0 after normalization 105 return static_cast<double>(Count); 106 } 107 // Forward 108 if (SrcAddr + SrcSize < DstAddr) { 109 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize); 110 if (Dist <= opts::ForwardDistance) { 111 double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance; 112 return opts::ForwardWeight * Prob * Count; 113 } 114 return 0; 115 } 116 // Backward 117 const uint64_t Dist = SrcAddr + SrcSize - DstAddr; 118 if (Dist <= opts::BackwardDistance) { 119 double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance; 120 return opts::BackwardWeight * Prob * Count; 121 } 122 return 0; 123 } 124 125 using BlockPair = std::pair<Block *, Block *>; 126 using JumpList = std::vector<std::pair<BlockPair, uint64_t>>; 127 using BlockIter = std::vector<Block *>::const_iterator; 128 129 enum MergeTypeTy { 130 X_Y = 0, 131 X1_Y_X2 = 1, 132 Y_X2_X1 = 2, 133 X2_X1_Y = 3, 134 }; 135 136 class MergeGainTy { 137 public: 138 explicit MergeGainTy() {} 139 explicit MergeGainTy(double Score, size_t MergeOffset, MergeTypeTy MergeType) 140 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {} 141 142 double score() const { return Score; } 143 144 size_t mergeOffset() const { return MergeOffset; } 145 146 MergeTypeTy mergeType() const { return MergeType; } 147 148 // returns 'true' iff Other is preferred over this 149 bool operator<(const MergeGainTy &Other) const { 150 return (Other.Score > EPS && Other.Score > Score + EPS); 151 } 152 153 private: 154 double Score{-1.0}; 155 size_t MergeOffset{0}; 156 MergeTypeTy MergeType{MergeTypeTy::X_Y}; 157 }; 158 159 // A node in CFG corresponding to a BinaryBasicBlock. 160 // The class wraps several mutable fields utilized in the ExtTSP algorithm 161 class Block { 162 public: 163 Block(const Block &) = delete; 164 Block(Block &&) = default; 165 Block &operator=(const Block &) = delete; 166 Block &operator=(Block &&) = default; 167 168 // Corresponding basic block 169 BinaryBasicBlock *BB{nullptr}; 170 // Current chain of the basic block 171 Chain *CurChain{nullptr}; 172 // (Estimated) size of the block in the binary 173 uint64_t Size{0}; 174 // Execution count of the block in the binary 175 uint64_t ExecutionCount{0}; 176 // An original index of the node in CFG 177 size_t Index{0}; 178 // The index of the block in the current chain 179 size_t CurIndex{0}; 180 // An offset of the block in the current chain 181 mutable uint64_t EstimatedAddr{0}; 182 // Fallthrough successor of the node in CFG 183 Block *FallthroughSucc{nullptr}; 184 // Fallthrough predecessor of the node in CFG 185 Block *FallthroughPred{nullptr}; 186 // Outgoing jumps from the block 187 std::vector<std::pair<Block *, uint64_t>> OutJumps; 188 // Incoming jumps to the block 189 std::vector<std::pair<Block *, uint64_t>> InJumps; 190 // Total execution count of incoming jumps 191 uint64_t InWeight{0}; 192 // Total execution count of outgoing jumps 193 uint64_t OutWeight{0}; 194 195 public: 196 explicit Block(BinaryBasicBlock *BB_, uint64_t Size_) 197 : BB(BB_), Size(Size_), ExecutionCount(BB_->getKnownExecutionCount()), 198 Index(BB->getLayoutIndex()) {} 199 200 bool adjacent(const Block *Other) const { 201 return hasOutJump(Other) || hasInJump(Other); 202 } 203 204 bool hasOutJump(const Block *Other) const { 205 for (std::pair<Block *, uint64_t> Jump : OutJumps) { 206 if (Jump.first == Other) 207 return true; 208 } 209 return false; 210 } 211 212 bool hasInJump(const Block *Other) const { 213 for (std::pair<Block *, uint64_t> Jump : InJumps) { 214 if (Jump.first == Other) 215 return true; 216 } 217 return false; 218 } 219 }; 220 221 // A chain (ordered sequence) of CFG nodes (basic blocks) 222 class Chain { 223 public: 224 Chain(const Chain &) = delete; 225 Chain(Chain &&) = default; 226 Chain &operator=(const Chain &) = delete; 227 Chain &operator=(Chain &&) = default; 228 229 explicit Chain(size_t Id, Block *Block) 230 : Id(Id), IsEntry(Block->Index == 0), 231 ExecutionCount(Block->ExecutionCount), Size(Block->Size), Score(0), 232 Blocks(1, Block) {} 233 234 size_t id() const { return Id; } 235 236 uint64_t size() const { return Size; } 237 238 double density() const { return static_cast<double>(ExecutionCount) / Size; } 239 240 uint64_t executionCount() const { return ExecutionCount; } 241 242 bool isEntryPoint() const { return IsEntry; } 243 244 double score() const { return Score; } 245 246 void setScore(double NewScore) { Score = NewScore; } 247 248 const std::vector<Block *> &blocks() const { return Blocks; } 249 250 const std::vector<std::pair<Chain *, Edge *>> &edges() const { return Edges; } 251 252 Edge *getEdge(Chain *Other) const { 253 for (std::pair<Chain *, Edge *> It : Edges) { 254 if (It.first == Other) 255 return It.second; 256 } 257 return nullptr; 258 } 259 260 void removeEdge(Chain *Other) { 261 auto It = Edges.begin(); 262 while (It != Edges.end()) { 263 if (It->first == Other) { 264 Edges.erase(It); 265 return; 266 } 267 It++; 268 } 269 } 270 271 void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); } 272 273 void merge(Chain *Other, const std::vector<Block *> &MergedBlocks) { 274 Blocks = MergedBlocks; 275 IsEntry |= Other->IsEntry; 276 ExecutionCount += Other->ExecutionCount; 277 Size += Other->Size; 278 // Update block's chains 279 for (size_t Idx = 0; Idx < Blocks.size(); Idx++) { 280 Blocks[Idx]->CurChain = this; 281 Blocks[Idx]->CurIndex = Idx; 282 } 283 } 284 285 void mergeEdges(Chain *Other); 286 287 void clear() { 288 Blocks.clear(); 289 Edges.clear(); 290 } 291 292 private: 293 size_t Id; 294 bool IsEntry; 295 uint64_t ExecutionCount; 296 uint64_t Size; 297 // Cached ext-tsp score for the chain 298 double Score; 299 // Blocks of the chain 300 std::vector<Block *> Blocks; 301 // Adjacent chains and corresponding edges (lists of jumps) 302 std::vector<std::pair<Chain *, Edge *>> Edges; 303 }; 304 305 // An edge in CFG reprsenting jumps between chains of BinaryBasicBlocks. 306 // When blocks are merged into chains, the edges are combined too so that 307 // there is always at most one edge between a pair of chains 308 class Edge { 309 public: 310 Edge(const Edge &) = delete; 311 Edge(Edge &&) = default; 312 Edge &operator=(const Edge &) = delete; 313 Edge &operator=(Edge &&) = default; 314 315 explicit Edge(Block *SrcBlock, Block *DstBlock, uint64_t EC) 316 : SrcChain(SrcBlock->CurChain), DstChain(DstBlock->CurChain), 317 Jumps(1, std::make_pair(std::make_pair(SrcBlock, DstBlock), EC)) {} 318 319 const JumpList &jumps() const { return Jumps; } 320 321 void changeEndpoint(Chain *From, Chain *To) { 322 if (From == SrcChain) 323 SrcChain = To; 324 if (From == DstChain) 325 DstChain = To; 326 } 327 328 void appendJump(Block *SrcBlock, Block *DstBlock, uint64_t EC) { 329 Jumps.emplace_back(std::make_pair(SrcBlock, DstBlock), EC); 330 } 331 332 void moveJumps(Edge *Other) { 333 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end()); 334 Other->Jumps.clear(); 335 } 336 337 bool hasCachedMergeGain(Chain *Src, Chain *Dst) const { 338 return Src == SrcChain ? CacheValidForward : CacheValidBackward; 339 } 340 341 MergeGainTy getCachedMergeGain(Chain *Src, Chain *Dst) const { 342 return Src == SrcChain ? CachedGainForward : CachedGainBackward; 343 } 344 345 void setCachedMergeGain(Chain *Src, Chain *Dst, MergeGainTy MergeGain) { 346 if (Src == SrcChain) { 347 CachedGainForward = MergeGain; 348 CacheValidForward = true; 349 } else { 350 CachedGainBackward = MergeGain; 351 CacheValidBackward = true; 352 } 353 } 354 355 void invalidateCache() { 356 CacheValidForward = false; 357 CacheValidBackward = false; 358 } 359 360 private: 361 Chain *SrcChain{nullptr}; 362 Chain *DstChain{nullptr}; 363 // Original jumps in the binary with correspinding execution counts 364 JumpList Jumps; 365 // Cached ext-tsp value for merging the pair of chains 366 // Since the gain of merging (Src, Dst) and (Dst, Src) might be different, 367 // we store both values here 368 MergeGainTy CachedGainForward; 369 MergeGainTy CachedGainBackward; 370 // Whether the cached value must be recomputed 371 bool CacheValidForward{false}; 372 bool CacheValidBackward{false}; 373 }; 374 375 void Chain::mergeEdges(Chain *Other) { 376 assert(this != Other && "cannot merge a chain with itself"); 377 378 // Update edges adjacent to chain Other 379 for (auto EdgeIt : Other->Edges) { 380 Chain *const DstChain = EdgeIt.first; 381 Edge *const DstEdge = EdgeIt.second; 382 Chain *const TargetChain = DstChain == Other ? this : DstChain; 383 384 // Find the corresponding edge in the current chain 385 Edge *curEdge = getEdge(TargetChain); 386 if (curEdge == nullptr) { 387 DstEdge->changeEndpoint(Other, this); 388 this->addEdge(TargetChain, DstEdge); 389 if (DstChain != this && DstChain != Other) { 390 DstChain->addEdge(this, DstEdge); 391 } 392 } else { 393 curEdge->moveJumps(DstEdge); 394 } 395 // Cleanup leftover edge 396 if (DstChain != Other) { 397 DstChain->removeEdge(Other); 398 } 399 } 400 } 401 402 // A wrapper around three chains of basic blocks; it is used to avoid extra 403 // instantiation of the vectors. 404 class MergedChain { 405 public: 406 MergedChain(BlockIter Begin1, BlockIter End1, BlockIter Begin2 = BlockIter(), 407 BlockIter End2 = BlockIter(), BlockIter Begin3 = BlockIter(), 408 BlockIter End3 = BlockIter()) 409 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3), 410 End3(End3) {} 411 412 template <typename F> void forEach(const F &Func) const { 413 for (auto It = Begin1; It != End1; It++) 414 Func(*It); 415 for (auto It = Begin2; It != End2; It++) 416 Func(*It); 417 for (auto It = Begin3; It != End3; It++) 418 Func(*It); 419 } 420 421 std::vector<Block *> getBlocks() const { 422 std::vector<Block *> Result; 423 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) + 424 std::distance(Begin3, End3)); 425 Result.insert(Result.end(), Begin1, End1); 426 Result.insert(Result.end(), Begin2, End2); 427 Result.insert(Result.end(), Begin3, End3); 428 return Result; 429 } 430 431 const Block *getFirstBlock() const { return *Begin1; } 432 433 private: 434 BlockIter Begin1; 435 BlockIter End1; 436 BlockIter Begin2; 437 BlockIter End2; 438 BlockIter Begin3; 439 BlockIter End3; 440 }; 441 442 /// Deterministically compare pairs of chains 443 bool compareChainPairs(const Chain *A1, const Chain *B1, const Chain *A2, 444 const Chain *B2) { 445 const uint64_t Samples1 = A1->executionCount() + B1->executionCount(); 446 const uint64_t Samples2 = A2->executionCount() + B2->executionCount(); 447 if (Samples1 != Samples2) 448 return Samples1 < Samples2; 449 450 // Making the order deterministic 451 if (A1 != A2) 452 return A1->id() < A2->id(); 453 return B1->id() < B2->id(); 454 } 455 class ExtTSP { 456 public: 457 ExtTSP(const BinaryFunction &BF) : BF(BF) { initialize(); } 458 459 /// Run the algorithm and return an ordering of basic block 460 void run(BinaryFunction::BasicBlockOrderType &Order) { 461 // Pass 1: Merge blocks with their fallthrough successors 462 mergeFallthroughs(); 463 464 // Pass 2: Merge pairs of chains while improving the ExtTSP objective 465 mergeChainPairs(); 466 467 // Pass 3: Merge cold blocks to reduce code size 468 mergeColdChains(); 469 470 // Collect blocks from all chains 471 concatChains(Order); 472 } 473 474 private: 475 /// Initialize algorithm's data structures 476 void initialize() { 477 // Create a separate MCCodeEmitter to allow lock-free execution 478 BinaryContext::IndependentCodeEmitter Emitter; 479 if (!opts::NoThreads) { 480 Emitter = BF.getBinaryContext().createIndependentMCCodeEmitter(); 481 } 482 483 // Initialize CFG nodes 484 AllBlocks.reserve(BF.layout_size()); 485 size_t LayoutIndex = 0; 486 for (BinaryBasicBlock *BB : BF.layout()) { 487 BB->setLayoutIndex(LayoutIndex++); 488 uint64_t Size = 489 std::max<uint64_t>(BB->estimateSize(Emitter.MCE.get()), 1); 490 AllBlocks.emplace_back(BB, Size); 491 } 492 493 // Initialize edges for the blocks and compute their total in/out weights 494 size_t NumEdges = 0; 495 for (Block &Block : AllBlocks) { 496 auto BI = Block.BB->branch_info_begin(); 497 for (BinaryBasicBlock *SuccBB : Block.BB->successors()) { 498 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 499 "missing profile for a jump"); 500 if (SuccBB != Block.BB && BI->Count > 0) { 501 class Block &SuccBlock = AllBlocks[SuccBB->getLayoutIndex()]; 502 uint64_t Count = BI->Count; 503 SuccBlock.InWeight += Count; 504 SuccBlock.InJumps.emplace_back(&Block, Count); 505 Block.OutWeight += Count; 506 Block.OutJumps.emplace_back(&SuccBlock, Count); 507 NumEdges++; 508 } 509 ++BI; 510 } 511 } 512 513 // Initialize execution count for every basic block, which is the 514 // maximum over the sums of all in and out edge weights. 515 // Also execution count of the entry point is set to at least 1 516 for (Block &Block : AllBlocks) { 517 size_t Index = Block.Index; 518 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.InWeight); 519 Block.ExecutionCount = std::max(Block.ExecutionCount, Block.OutWeight); 520 if (Index == 0 && Block.ExecutionCount == 0) 521 Block.ExecutionCount = 1; 522 } 523 524 // Initialize chains 525 AllChains.reserve(BF.layout_size()); 526 HotChains.reserve(BF.layout_size()); 527 for (Block &Block : AllBlocks) { 528 AllChains.emplace_back(Block.Index, &Block); 529 Block.CurChain = &AllChains.back(); 530 if (Block.ExecutionCount > 0) { 531 HotChains.push_back(&AllChains.back()); 532 } 533 } 534 535 // Initialize edges 536 AllEdges.reserve(NumEdges); 537 for (Block &Block : AllBlocks) { 538 for (std::pair<class Block *, uint64_t> &Jump : Block.OutJumps) { 539 class Block *const SuccBlock = Jump.first; 540 Edge *CurEdge = Block.CurChain->getEdge(SuccBlock->CurChain); 541 // this edge is already present in the graph 542 if (CurEdge != nullptr) { 543 assert(SuccBlock->CurChain->getEdge(Block.CurChain) != nullptr); 544 CurEdge->appendJump(&Block, SuccBlock, Jump.second); 545 continue; 546 } 547 // this is a new edge 548 AllEdges.emplace_back(&Block, SuccBlock, Jump.second); 549 Block.CurChain->addEdge(SuccBlock->CurChain, &AllEdges.back()); 550 SuccBlock->CurChain->addEdge(Block.CurChain, &AllEdges.back()); 551 } 552 } 553 assert(AllEdges.size() <= NumEdges && "Incorrect number of created edges"); 554 } 555 556 /// For a pair of blocks, A and B, block B is the fallthrough successor of A, 557 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps 558 /// to B are from A. Such blocks should be adjacent in an optimal ordering; 559 /// the method finds and merges such pairs of blocks 560 void mergeFallthroughs() { 561 // Find fallthroughs based on edge weights 562 for (Block &Block : AllBlocks) { 563 if (Block.BB->succ_size() == 1 && 564 Block.BB->getSuccessor()->pred_size() == 1 && 565 Block.BB->getSuccessor()->getLayoutIndex() != 0) { 566 size_t SuccIndex = Block.BB->getSuccessor()->getLayoutIndex(); 567 Block.FallthroughSucc = &AllBlocks[SuccIndex]; 568 AllBlocks[SuccIndex].FallthroughPred = &Block; 569 continue; 570 } 571 572 if (Block.OutWeight == 0) 573 continue; 574 for (std::pair<class Block *, uint64_t> &Edge : Block.OutJumps) { 575 class Block *const SuccBlock = Edge.first; 576 // Successor cannot be the first BB, which is pinned 577 if (Block.OutWeight == Edge.second && 578 SuccBlock->InWeight == Edge.second && SuccBlock->Index != 0) { 579 Block.FallthroughSucc = SuccBlock; 580 SuccBlock->FallthroughPred = &Block; 581 break; 582 } 583 } 584 } 585 586 // There might be 'cycles' in the fallthrough dependencies (since profile 587 // data isn't 100% accurate). 588 // Break the cycles by choosing the block with smallest index as the tail 589 for (Block &Block : AllBlocks) { 590 if (Block.FallthroughSucc == nullptr || Block.FallthroughPred == nullptr) 591 continue; 592 593 class Block *SuccBlock = Block.FallthroughSucc; 594 while (SuccBlock != nullptr && SuccBlock != &Block) { 595 SuccBlock = SuccBlock->FallthroughSucc; 596 } 597 if (SuccBlock == nullptr) 598 continue; 599 // break the cycle 600 AllBlocks[Block.FallthroughPred->Index].FallthroughSucc = nullptr; 601 Block.FallthroughPred = nullptr; 602 } 603 604 // Merge blocks with their fallthrough successors 605 for (Block &Block : AllBlocks) { 606 if (Block.FallthroughPred == nullptr && 607 Block.FallthroughSucc != nullptr) { 608 class Block *CurBlock = &Block; 609 while (CurBlock->FallthroughSucc != nullptr) { 610 class Block *const NextBlock = CurBlock->FallthroughSucc; 611 mergeChains(Block.CurChain, NextBlock->CurChain, 0, MergeTypeTy::X_Y); 612 CurBlock = NextBlock; 613 } 614 } 615 } 616 } 617 618 /// Merge pairs of chains while improving the ExtTSP objective 619 void mergeChainPairs() { 620 while (HotChains.size() > 1) { 621 Chain *BestChainPred = nullptr; 622 Chain *BestChainSucc = nullptr; 623 auto BestGain = MergeGainTy(); 624 // Iterate over all pairs of chains 625 for (Chain *ChainPred : HotChains) { 626 // Get candidates for merging with the current chain 627 for (auto EdgeIter : ChainPred->edges()) { 628 Chain *ChainSucc = EdgeIter.first; 629 Edge *ChainEdge = EdgeIter.second; 630 // Ignore loop edges 631 if (ChainPred == ChainSucc) 632 continue; 633 634 // Compute the gain of merging the two chains 635 MergeGainTy CurGain = mergeGain(ChainPred, ChainSucc, ChainEdge); 636 if (CurGain.score() <= EPS) 637 continue; 638 639 if (BestGain < CurGain || 640 (std::abs(CurGain.score() - BestGain.score()) < EPS && 641 compareChainPairs(ChainPred, ChainSucc, BestChainPred, 642 BestChainSucc))) { 643 BestGain = CurGain; 644 BestChainPred = ChainPred; 645 BestChainSucc = ChainSucc; 646 } 647 } 648 } 649 650 // Stop merging when there is no improvement 651 if (BestGain.score() <= EPS) 652 break; 653 654 // Merge the best pair of chains 655 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(), 656 BestGain.mergeType()); 657 } 658 } 659 660 /// Merge cold blocks to reduce code size 661 void mergeColdChains() { 662 for (BinaryBasicBlock *SrcBB : BF.layout()) { 663 // Iterating in reverse order to make sure original fallthrough jumps are 664 // merged first 665 for (auto Itr = SrcBB->succ_rbegin(); Itr != SrcBB->succ_rend(); ++Itr) { 666 BinaryBasicBlock *DstBB = *Itr; 667 size_t SrcIndex = SrcBB->getLayoutIndex(); 668 size_t DstIndex = DstBB->getLayoutIndex(); 669 Chain *SrcChain = AllBlocks[SrcIndex].CurChain; 670 Chain *DstChain = AllBlocks[DstIndex].CurChain; 671 if (SrcChain != DstChain && !DstChain->isEntryPoint() && 672 SrcChain->blocks().back()->Index == SrcIndex && 673 DstChain->blocks().front()->Index == DstIndex) { 674 mergeChains(SrcChain, DstChain, 0, MergeTypeTy::X_Y); 675 } 676 } 677 } 678 } 679 680 /// Compute ExtTSP score for a given order of basic blocks 681 double score(const MergedChain &MergedBlocks, const JumpList &Jumps) const { 682 if (Jumps.empty()) 683 return 0.0; 684 uint64_t CurAddr = 0; 685 MergedBlocks.forEach( 686 [&](const Block *BB) { 687 BB->EstimatedAddr = CurAddr; 688 CurAddr += BB->Size; 689 } 690 ); 691 692 double Score = 0; 693 for (const std::pair<std::pair<Block *, Block *>, uint64_t> &Jump : Jumps) { 694 const Block *SrcBlock = Jump.first.first; 695 const Block *DstBlock = Jump.first.second; 696 Score += extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size, 697 DstBlock->EstimatedAddr, Jump.second); 698 } 699 return Score; 700 } 701 702 /// Compute the gain of merging two chains 703 /// 704 /// The function considers all possible ways of merging two chains and 705 /// computes the one having the largest increase in ExtTSP objective. The 706 /// result is a pair with the first element being the gain and the second 707 /// element being the corresponding merging type. 708 MergeGainTy mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const { 709 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) { 710 return Edge->getCachedMergeGain(ChainPred, ChainSucc); 711 } 712 713 // Precompute jumps between ChainPred and ChainSucc 714 JumpList Jumps = Edge->jumps(); 715 class Edge *EdgePP = ChainPred->getEdge(ChainPred); 716 if (EdgePP != nullptr) 717 Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end()); 718 assert(Jumps.size() > 0 && "trying to merge chains w/o jumps"); 719 720 MergeGainTy Gain = MergeGainTy(); 721 // Try to concatenate two chains w/o splitting 722 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, 0, 723 MergeTypeTy::X_Y); 724 725 // Try to break ChainPred in various ways and concatenate with ChainSucc 726 if (ChainPred->blocks().size() <= opts::ChainSplitThreshold) { 727 for (size_t Offset = 1; Offset < ChainPred->blocks().size(); Offset++) { 728 Block *BB1 = ChainPred->blocks()[Offset - 1]; 729 Block *BB2 = ChainPred->blocks()[Offset]; 730 // Does the splitting break FT successors? 731 if (BB1->FallthroughSucc != nullptr) { 732 (void)BB2; 733 assert(BB1->FallthroughSucc == BB2 && "Fallthrough not preserved"); 734 continue; 735 } 736 737 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 738 MergeTypeTy::X1_Y_X2); 739 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 740 MergeTypeTy::Y_X2_X1); 741 Gain = computeMergeGain(Gain, ChainPred, ChainSucc, Jumps, Offset, 742 MergeTypeTy::X2_X1_Y); 743 } 744 } 745 746 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain); 747 return Gain; 748 } 749 750 /// Merge two chains and update the best Gain 751 MergeGainTy computeMergeGain(const MergeGainTy &CurGain, 752 const Chain *ChainPred, const Chain *ChainSucc, 753 const JumpList &Jumps, size_t MergeOffset, 754 MergeTypeTy MergeType) const { 755 MergedChain MergedBlocks = mergeBlocks( 756 ChainPred->blocks(), ChainSucc->blocks(), MergeOffset, MergeType); 757 758 // Do not allow a merge that does not preserve the original entry block 759 if ((ChainPred->isEntryPoint() || ChainSucc->isEntryPoint()) && 760 MergedBlocks.getFirstBlock()->Index != 0) 761 return CurGain; 762 763 // The gain for the new chain 764 const double NewScore = score(MergedBlocks, Jumps) - ChainPred->score(); 765 auto NewGain = MergeGainTy(NewScore, MergeOffset, MergeType); 766 return CurGain < NewGain ? NewGain : CurGain; 767 } 768 769 /// Merge two chains of blocks respecting a given merge 'type' and 'offset' 770 /// 771 /// If MergeType == 0, then the result is a concatentation of two chains. 772 /// Otherwise, the first chain is cut into two sub-chains at the offset, 773 /// and merged using all possible ways of concatenating three chains. 774 MergedChain mergeBlocks(const std::vector<Block *> &X, 775 const std::vector<Block *> &Y, size_t MergeOffset, 776 MergeTypeTy MergeType) const { 777 // Split the first chain, X, into X1 and X2 778 BlockIter BeginX1 = X.begin(); 779 BlockIter EndX1 = X.begin() + MergeOffset; 780 BlockIter BeginX2 = X.begin() + MergeOffset; 781 BlockIter EndX2 = X.end(); 782 BlockIter BeginY = Y.begin(); 783 BlockIter EndY = Y.end(); 784 785 // Construct a new chain from the three existing ones 786 switch (MergeType) { 787 case MergeTypeTy::X_Y: 788 return MergedChain(BeginX1, EndX2, BeginY, EndY); 789 case MergeTypeTy::X1_Y_X2: 790 return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2); 791 case MergeTypeTy::Y_X2_X1: 792 return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1); 793 case MergeTypeTy::X2_X1_Y: 794 return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY); 795 } 796 797 llvm_unreachable("unexpected merge type"); 798 } 799 800 /// Merge chain From into chain Into, update the list of active chains, 801 /// adjacency information, and the corresponding cached values 802 void mergeChains(Chain *Into, Chain *From, size_t MergeOffset, 803 MergeTypeTy MergeType) { 804 assert(Into != From && "a chain cannot be merged with itself"); 805 806 // Merge the blocks 807 MergedChain MergedBlocks = 808 mergeBlocks(Into->blocks(), From->blocks(), MergeOffset, MergeType); 809 Into->merge(From, MergedBlocks.getBlocks()); 810 Into->mergeEdges(From); 811 From->clear(); 812 813 // Update cached ext-tsp score for the new chain 814 Edge *SelfEdge = Into->getEdge(Into); 815 if (SelfEdge != nullptr) { 816 MergedBlocks = MergedChain(Into->blocks().begin(), Into->blocks().end()); 817 Into->setScore(score(MergedBlocks, SelfEdge->jumps())); 818 } 819 820 // Remove chain From from the list of active chains 821 auto Iter = std::remove(HotChains.begin(), HotChains.end(), From); 822 HotChains.erase(Iter, HotChains.end()); 823 824 // Invalidate caches 825 for (std::pair<Chain *, Edge *> EdgeIter : Into->edges()) { 826 EdgeIter.second->invalidateCache(); 827 } 828 } 829 830 /// Concatenate all chains into a final order 831 void concatChains(BinaryFunction::BasicBlockOrderType &Order) { 832 // Collect chains 833 std::vector<Chain *> SortedChains; 834 for (Chain &Chain : AllChains) { 835 if (Chain.blocks().size() > 0) { 836 SortedChains.push_back(&Chain); 837 } 838 } 839 840 // Sorting chains by density in decreasing order 841 std::stable_sort( 842 SortedChains.begin(), SortedChains.end(), 843 [](const Chain *C1, const Chain *C2) { 844 // Original entry point to the front 845 if (C1->isEntryPoint() != C2->isEntryPoint()) { 846 if (C1->isEntryPoint()) 847 return true; 848 if (C2->isEntryPoint()) 849 return false; 850 } 851 852 const double D1 = C1->density(); 853 const double D2 = C2->density(); 854 if (D1 != D2) 855 return D1 > D2; 856 857 // Making the order deterministic 858 return C1->id() < C2->id(); 859 } 860 ); 861 862 // Collect the basic blocks in the order specified by their chains 863 Order.reserve(BF.layout_size()); 864 for (Chain *Chain : SortedChains) { 865 for (Block *Block : Chain->blocks()) { 866 Order.push_back(Block->BB); 867 } 868 } 869 } 870 871 private: 872 // The binary function 873 const BinaryFunction &BF; 874 875 // All CFG nodes (basic blocks) 876 std::vector<Block> AllBlocks; 877 878 // All chains of blocks 879 std::vector<Chain> AllChains; 880 881 // Active chains. The vector gets updated at runtime when chains are merged 882 std::vector<Chain *> HotChains; 883 884 // All edges between chains 885 std::vector<Edge> AllEdges; 886 }; 887 888 void ExtTSPReorderAlgorithm::reorderBasicBlocks(const BinaryFunction &BF, 889 BasicBlockOrder &Order) const { 890 if (BF.layout_empty()) 891 return; 892 893 // Do not change layout of functions w/o profile information 894 if (!BF.hasValidProfile() || BF.layout_size() <= 2) { 895 for (BinaryBasicBlock *BB : BF.layout()) { 896 Order.push_back(BB); 897 } 898 return; 899 } 900 901 // Apply the algorithm 902 ExtTSP(BF).run(Order); 903 904 // Verify correctness 905 assert(Order[0]->isEntryPoint() && "Original entry point is not preserved"); 906 assert(Order.size() == BF.layout_size() && "Wrong size of reordered layout"); 907 } 908 909 } // namespace bolt 910 } // namespace llvm 911