1 /* 2 * include/linux/ktime.h 3 * 4 * ktime_t - nanosecond-resolution time format. 5 * 6 * Copyright(C) 2005, Thomas Gleixner <[email protected]> 7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 8 * 9 * data type definitions, declarations, prototypes and macros. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * Credits: 14 * 15 * Roman Zippel provided the ideas and primary code snippets of 16 * the ktime_t union and further simplifications of the original 17 * code. 18 * 19 * For licencing details see kernel-base/COPYING 20 */ 21 #ifndef _LINUX_KTIME_H 22 #define _LINUX_KTIME_H 23 24 #include <linux/time.h> 25 #include <linux/jiffies.h> 26 27 /* 28 * ktime_t: 29 * 30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers 31 * internal representation of time values in scalar nanoseconds. The 32 * design plays out best on 64-bit CPUs, where most conversions are 33 * NOPs and most arithmetic ktime_t operations are plain arithmetic 34 * operations. 35 * 36 * On 32-bit CPUs an optimized representation of the timespec structure 37 * is used to avoid expensive conversions from and to timespecs. The 38 * endian-aware order of the tv struct members is chosen to allow 39 * mathematical operations on the tv64 member of the union too, which 40 * for certain operations produces better code. 41 * 42 * For architectures with efficient support for 64/32-bit conversions the 43 * plain scalar nanosecond based representation can be selected by the 44 * config switch CONFIG_KTIME_SCALAR. 45 */ 46 union ktime { 47 s64 tv64; 48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR) 49 struct { 50 # ifdef __BIG_ENDIAN 51 s32 sec, nsec; 52 # else 53 s32 nsec, sec; 54 # endif 55 } tv; 56 #endif 57 }; 58 59 typedef union ktime ktime_t; /* Kill this */ 60 61 /* 62 * ktime_t definitions when using the 64-bit scalar representation: 63 */ 64 65 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR) 66 67 /** 68 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value 69 * @secs: seconds to set 70 * @nsecs: nanoseconds to set 71 * 72 * Return: The ktime_t representation of the value. 73 */ 74 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 75 { 76 #if (BITS_PER_LONG == 64) 77 if (unlikely(secs >= KTIME_SEC_MAX)) 78 return (ktime_t){ .tv64 = KTIME_MAX }; 79 #endif 80 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs }; 81 } 82 83 /* Subtract two ktime_t variables. rem = lhs -rhs: */ 84 #define ktime_sub(lhs, rhs) \ 85 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) 86 87 /* Add two ktime_t variables. res = lhs + rhs: */ 88 #define ktime_add(lhs, rhs) \ 89 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) 90 91 /* 92 * Add a ktime_t variable and a scalar nanosecond value. 93 * res = kt + nsval: 94 */ 95 #define ktime_add_ns(kt, nsval) \ 96 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) 97 98 /* 99 * Subtract a scalar nanosecod from a ktime_t variable 100 * res = kt - nsval: 101 */ 102 #define ktime_sub_ns(kt, nsval) \ 103 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; }) 104 105 /* convert a timespec to ktime_t format: */ 106 static inline ktime_t timespec_to_ktime(struct timespec ts) 107 { 108 return ktime_set(ts.tv_sec, ts.tv_nsec); 109 } 110 111 /* convert a timeval to ktime_t format: */ 112 static inline ktime_t timeval_to_ktime(struct timeval tv) 113 { 114 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC); 115 } 116 117 /* Map the ktime_t to timespec conversion to ns_to_timespec function */ 118 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) 119 120 /* Map the ktime_t to timeval conversion to ns_to_timeval function */ 121 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) 122 123 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ 124 #define ktime_to_ns(kt) ((kt).tv64) 125 126 #else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */ 127 128 /* 129 * Helper macros/inlines to get the ktime_t math right in the timespec 130 * representation. The macros are sometimes ugly - their actual use is 131 * pretty okay-ish, given the circumstances. We do all this for 132 * performance reasons. The pure scalar nsec_t based code was nice and 133 * simple, but created too many 64-bit / 32-bit conversions and divisions. 134 * 135 * Be especially aware that negative values are represented in a way 136 * that the tv.sec field is negative and the tv.nsec field is greater 137 * or equal to zero but less than nanoseconds per second. This is the 138 * same representation which is used by timespecs. 139 * 140 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC 141 */ 142 143 /* Set a ktime_t variable to a value in sec/nsec representation: */ 144 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 145 { 146 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } }; 147 } 148 149 /** 150 * ktime_sub - subtract two ktime_t variables 151 * @lhs: minuend 152 * @rhs: subtrahend 153 * 154 * Return: The remainder of the subtraction. 155 */ 156 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs) 157 { 158 ktime_t res; 159 160 res.tv64 = lhs.tv64 - rhs.tv64; 161 if (res.tv.nsec < 0) 162 res.tv.nsec += NSEC_PER_SEC; 163 164 return res; 165 } 166 167 /** 168 * ktime_add - add two ktime_t variables 169 * @add1: addend1 170 * @add2: addend2 171 * 172 * Return: The sum of @add1 and @add2. 173 */ 174 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2) 175 { 176 ktime_t res; 177 178 res.tv64 = add1.tv64 + add2.tv64; 179 /* 180 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx 181 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit. 182 * 183 * it's equivalent to: 184 * tv.nsec -= NSEC_PER_SEC 185 * tv.sec ++; 186 */ 187 if (res.tv.nsec >= NSEC_PER_SEC) 188 res.tv64 += (u32)-NSEC_PER_SEC; 189 190 return res; 191 } 192 193 /** 194 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 195 * @kt: addend 196 * @nsec: the scalar nsec value to add 197 * 198 * Return: The sum of @kt and @nsec in ktime_t format. 199 */ 200 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec); 201 202 /** 203 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable 204 * @kt: minuend 205 * @nsec: the scalar nsec value to subtract 206 * 207 * Return: The subtraction of @nsec from @kt in ktime_t format. 208 */ 209 extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec); 210 211 /** 212 * timespec_to_ktime - convert a timespec to ktime_t format 213 * @ts: the timespec variable to convert 214 * 215 * Return: A ktime_t variable with the converted timespec value. 216 */ 217 static inline ktime_t timespec_to_ktime(const struct timespec ts) 218 { 219 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec, 220 .nsec = (s32)ts.tv_nsec } }; 221 } 222 223 /** 224 * timeval_to_ktime - convert a timeval to ktime_t format 225 * @tv: the timeval variable to convert 226 * 227 * Return: A ktime_t variable with the converted timeval value. 228 */ 229 static inline ktime_t timeval_to_ktime(const struct timeval tv) 230 { 231 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec, 232 .nsec = (s32)(tv.tv_usec * 233 NSEC_PER_USEC) } }; 234 } 235 236 /** 237 * ktime_to_timespec - convert a ktime_t variable to timespec format 238 * @kt: the ktime_t variable to convert 239 * 240 * Return: The timespec representation of the ktime value. 241 */ 242 static inline struct timespec ktime_to_timespec(const ktime_t kt) 243 { 244 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec, 245 .tv_nsec = (long) kt.tv.nsec }; 246 } 247 248 /** 249 * ktime_to_timeval - convert a ktime_t variable to timeval format 250 * @kt: the ktime_t variable to convert 251 * 252 * Return: The timeval representation of the ktime value. 253 */ 254 static inline struct timeval ktime_to_timeval(const ktime_t kt) 255 { 256 return (struct timeval) { 257 .tv_sec = (time_t) kt.tv.sec, 258 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) }; 259 } 260 261 /** 262 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds 263 * @kt: the ktime_t variable to convert 264 * 265 * Return: The scalar nanoseconds representation of @kt. 266 */ 267 static inline s64 ktime_to_ns(const ktime_t kt) 268 { 269 return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec; 270 } 271 272 #endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */ 273 274 /** 275 * ktime_equal - Compares two ktime_t variables to see if they are equal 276 * @cmp1: comparable1 277 * @cmp2: comparable2 278 * 279 * Compare two ktime_t variables. 280 * 281 * Return: 1 if equal. 282 */ 283 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2) 284 { 285 return cmp1.tv64 == cmp2.tv64; 286 } 287 288 /** 289 * ktime_compare - Compares two ktime_t variables for less, greater or equal 290 * @cmp1: comparable1 291 * @cmp2: comparable2 292 * 293 * Return: ... 294 * cmp1 < cmp2: return <0 295 * cmp1 == cmp2: return 0 296 * cmp1 > cmp2: return >0 297 */ 298 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) 299 { 300 if (cmp1.tv64 < cmp2.tv64) 301 return -1; 302 if (cmp1.tv64 > cmp2.tv64) 303 return 1; 304 return 0; 305 } 306 307 static inline s64 ktime_to_us(const ktime_t kt) 308 { 309 struct timeval tv = ktime_to_timeval(kt); 310 return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec; 311 } 312 313 static inline s64 ktime_to_ms(const ktime_t kt) 314 { 315 struct timeval tv = ktime_to_timeval(kt); 316 return (s64) tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC; 317 } 318 319 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) 320 { 321 return ktime_to_us(ktime_sub(later, earlier)); 322 } 323 324 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) 325 { 326 return ktime_add_ns(kt, usec * NSEC_PER_USEC); 327 } 328 329 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) 330 { 331 return ktime_add_ns(kt, msec * NSEC_PER_MSEC); 332 } 333 334 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) 335 { 336 return ktime_sub_ns(kt, usec * NSEC_PER_USEC); 337 } 338 339 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); 340 341 /** 342 * ktime_to_timespec_cond - convert a ktime_t variable to timespec 343 * format only if the variable contains data 344 * @kt: the ktime_t variable to convert 345 * @ts: the timespec variable to store the result in 346 * 347 * Return: %true if there was a successful conversion, %false if kt was 0. 348 */ 349 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt, 350 struct timespec *ts) 351 { 352 if (kt.tv64) { 353 *ts = ktime_to_timespec(kt); 354 return true; 355 } else { 356 return false; 357 } 358 } 359 360 /* 361 * The resolution of the clocks. The resolution value is returned in 362 * the clock_getres() system call to give application programmers an 363 * idea of the (in)accuracy of timers. Timer values are rounded up to 364 * this resolution values. 365 */ 366 #define LOW_RES_NSEC TICK_NSEC 367 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC } 368 369 /* Get the monotonic time in timespec format: */ 370 extern void ktime_get_ts(struct timespec *ts); 371 372 /* Get the real (wall-) time in timespec format: */ 373 #define ktime_get_real_ts(ts) getnstimeofday(ts) 374 375 static inline ktime_t ns_to_ktime(u64 ns) 376 { 377 static const ktime_t ktime_zero = { .tv64 = 0 }; 378 379 return ktime_add_ns(ktime_zero, ns); 380 } 381 382 static inline ktime_t ms_to_ktime(u64 ms) 383 { 384 static const ktime_t ktime_zero = { .tv64 = 0 }; 385 386 return ktime_add_ms(ktime_zero, ms); 387 } 388 389 #endif 390