xref: /linux-6.15/include/linux/ktime.h (revision de2fe5e0)
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <[email protected]>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *  	Roman Zippel provided the ideas and primary code snippets of
16  *  	the ktime_t union and further simplifications of the original
17  *  	code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23 
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26 
27 /*
28  * ktime_t:
29  *
30  * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  * On 32-bit CPUs an optimized representation of the timespec structure
37  * is used to avoid expensive conversions from and to timespecs. The
38  * endian-aware order of the tv struct members is choosen to allow
39  * mathematical operations on the tv64 member of the union too, which
40  * for certain operations produces better code.
41  *
42  * For architectures with efficient support for 64/32-bit conversions the
43  * plain scalar nanosecond based representation can be selected by the
44  * config switch CONFIG_KTIME_SCALAR.
45  */
46 typedef union {
47 	s64	tv64;
48 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
49 	struct {
50 # ifdef __BIG_ENDIAN
51 	s32	sec, nsec;
52 # else
53 	s32	nsec, sec;
54 # endif
55 	} tv;
56 #endif
57 } ktime_t;
58 
59 #define KTIME_MAX			(~((u64)1 << 63))
60 
61 /*
62  * ktime_t definitions when using the 64-bit scalar representation:
63  */
64 
65 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
66 
67 /**
68  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
69  *
70  * @secs:	seconds to set
71  * @nsecs:	nanoseconds to set
72  *
73  * Return the ktime_t representation of the value
74  */
75 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
76 {
77 	return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
78 }
79 
80 /* Subtract two ktime_t variables. rem = lhs -rhs: */
81 #define ktime_sub(lhs, rhs) \
82 		({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
83 
84 /* Add two ktime_t variables. res = lhs + rhs: */
85 #define ktime_add(lhs, rhs) \
86 		({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
87 
88 /*
89  * Add a ktime_t variable and a scalar nanosecond value.
90  * res = kt + nsval:
91  */
92 #define ktime_add_ns(kt, nsval) \
93 		({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
94 
95 /* convert a timespec to ktime_t format: */
96 static inline ktime_t timespec_to_ktime(struct timespec ts)
97 {
98 	return ktime_set(ts.tv_sec, ts.tv_nsec);
99 }
100 
101 /* convert a timeval to ktime_t format: */
102 static inline ktime_t timeval_to_ktime(struct timeval tv)
103 {
104 	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
105 }
106 
107 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
108 #define ktime_to_timespec(kt)		ns_to_timespec((kt).tv64)
109 
110 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
111 #define ktime_to_timeval(kt)		ns_to_timeval((kt).tv64)
112 
113 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
114 #define ktime_to_ns(kt)			((kt).tv64)
115 
116 #else
117 
118 /*
119  * Helper macros/inlines to get the ktime_t math right in the timespec
120  * representation. The macros are sometimes ugly - their actual use is
121  * pretty okay-ish, given the circumstances. We do all this for
122  * performance reasons. The pure scalar nsec_t based code was nice and
123  * simple, but created too many 64-bit / 32-bit conversions and divisions.
124  *
125  * Be especially aware that negative values are represented in a way
126  * that the tv.sec field is negative and the tv.nsec field is greater
127  * or equal to zero but less than nanoseconds per second. This is the
128  * same representation which is used by timespecs.
129  *
130  *   tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
131  */
132 
133 /* Set a ktime_t variable to a value in sec/nsec representation: */
134 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
135 {
136 	return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
137 }
138 
139 /**
140  * ktime_sub - subtract two ktime_t variables
141  *
142  * @lhs:	minuend
143  * @rhs:	subtrahend
144  *
145  * Returns the remainder of the substraction
146  */
147 static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
148 {
149 	ktime_t res;
150 
151 	res.tv64 = lhs.tv64 - rhs.tv64;
152 	if (res.tv.nsec < 0)
153 		res.tv.nsec += NSEC_PER_SEC;
154 
155 	return res;
156 }
157 
158 /**
159  * ktime_add - add two ktime_t variables
160  *
161  * @add1:	addend1
162  * @add2:	addend2
163  *
164  * Returns the sum of addend1 and addend2
165  */
166 static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
167 {
168 	ktime_t res;
169 
170 	res.tv64 = add1.tv64 + add2.tv64;
171 	/*
172 	 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
173 	 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
174 	 *
175 	 * it's equivalent to:
176 	 *   tv.nsec -= NSEC_PER_SEC
177 	 *   tv.sec ++;
178 	 */
179 	if (res.tv.nsec >= NSEC_PER_SEC)
180 		res.tv64 += (u32)-NSEC_PER_SEC;
181 
182 	return res;
183 }
184 
185 /**
186  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
187  *
188  * @kt:		addend
189  * @nsec:	the scalar nsec value to add
190  *
191  * Returns the sum of kt and nsec in ktime_t format
192  */
193 extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
194 
195 /**
196  * timespec_to_ktime - convert a timespec to ktime_t format
197  *
198  * @ts:		the timespec variable to convert
199  *
200  * Returns a ktime_t variable with the converted timespec value
201  */
202 static inline ktime_t timespec_to_ktime(const struct timespec ts)
203 {
204 	return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
205 			   	   .nsec = (s32)ts.tv_nsec } };
206 }
207 
208 /**
209  * timeval_to_ktime - convert a timeval to ktime_t format
210  *
211  * @tv:		the timeval variable to convert
212  *
213  * Returns a ktime_t variable with the converted timeval value
214  */
215 static inline ktime_t timeval_to_ktime(const struct timeval tv)
216 {
217 	return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
218 				   .nsec = (s32)tv.tv_usec * 1000 } };
219 }
220 
221 /**
222  * ktime_to_timespec - convert a ktime_t variable to timespec format
223  *
224  * @kt:		the ktime_t variable to convert
225  *
226  * Returns the timespec representation of the ktime value
227  */
228 static inline struct timespec ktime_to_timespec(const ktime_t kt)
229 {
230 	return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
231 				   .tv_nsec = (long) kt.tv.nsec };
232 }
233 
234 /**
235  * ktime_to_timeval - convert a ktime_t variable to timeval format
236  *
237  * @kt:		the ktime_t variable to convert
238  *
239  * Returns the timeval representation of the ktime value
240  */
241 static inline struct timeval ktime_to_timeval(const ktime_t kt)
242 {
243 	return (struct timeval) {
244 		.tv_sec = (time_t) kt.tv.sec,
245 		.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
246 }
247 
248 /**
249  * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
250  * @kt:		the ktime_t variable to convert
251  *
252  * Returns the scalar nanoseconds representation of kt
253  */
254 static inline u64 ktime_to_ns(const ktime_t kt)
255 {
256 	return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
257 }
258 
259 #endif
260 
261 /*
262  * The resolution of the clocks. The resolution value is returned in
263  * the clock_getres() system call to give application programmers an
264  * idea of the (in)accuracy of timers. Timer values are rounded up to
265  * this resolution values.
266  */
267 #define KTIME_REALTIME_RES	(ktime_t){ .tv64 = TICK_NSEC }
268 #define KTIME_MONOTONIC_RES	(ktime_t){ .tv64 = TICK_NSEC }
269 
270 /* Get the monotonic time in timespec format: */
271 extern void ktime_get_ts(struct timespec *ts);
272 
273 /* Get the real (wall-) time in timespec format: */
274 #define ktime_get_real_ts(ts)	getnstimeofday(ts)
275 
276 #endif
277