1 /* 2 * include/linux/ktime.h 3 * 4 * ktime_t - nanosecond-resolution time format. 5 * 6 * Copyright(C) 2005, Thomas Gleixner <[email protected]> 7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 8 * 9 * data type definitions, declarations, prototypes and macros. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * Credits: 14 * 15 * Roman Zippel provided the ideas and primary code snippets of 16 * the ktime_t union and further simplifications of the original 17 * code. 18 * 19 * For licencing details see kernel-base/COPYING 20 */ 21 #ifndef _LINUX_KTIME_H 22 #define _LINUX_KTIME_H 23 24 #include <linux/time.h> 25 #include <linux/jiffies.h> 26 27 /* 28 * ktime_t: 29 * 30 * A single 64-bit variable is used to store the hrtimers 31 * internal representation of time values in scalar nanoseconds. The 32 * design plays out best on 64-bit CPUs, where most conversions are 33 * NOPs and most arithmetic ktime_t operations are plain arithmetic 34 * operations. 35 * 36 */ 37 union ktime { 38 s64 tv64; 39 }; 40 41 typedef union ktime ktime_t; /* Kill this */ 42 43 /** 44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value 45 * @secs: seconds to set 46 * @nsecs: nanoseconds to set 47 * 48 * Return: The ktime_t representation of the value. 49 */ 50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) 51 { 52 if (unlikely(secs >= KTIME_SEC_MAX)) 53 return (ktime_t){ .tv64 = KTIME_MAX }; 54 55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs }; 56 } 57 58 /* Subtract two ktime_t variables. rem = lhs -rhs: */ 59 #define ktime_sub(lhs, rhs) \ 60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) 61 62 /* Add two ktime_t variables. res = lhs + rhs: */ 63 #define ktime_add(lhs, rhs) \ 64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) 65 66 /* 67 * Same as ktime_add(), but avoids undefined behaviour on overflow; however, 68 * this means that you must check the result for overflow yourself. 69 */ 70 #define ktime_add_unsafe(lhs, rhs) \ 71 ({ (ktime_t){ .tv64 = (u64) (lhs).tv64 + (rhs).tv64 }; }) 72 73 /* 74 * Add a ktime_t variable and a scalar nanosecond value. 75 * res = kt + nsval: 76 */ 77 #define ktime_add_ns(kt, nsval) \ 78 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) 79 80 /* 81 * Subtract a scalar nanosecod from a ktime_t variable 82 * res = kt - nsval: 83 */ 84 #define ktime_sub_ns(kt, nsval) \ 85 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; }) 86 87 /* convert a timespec to ktime_t format: */ 88 static inline ktime_t timespec_to_ktime(struct timespec ts) 89 { 90 return ktime_set(ts.tv_sec, ts.tv_nsec); 91 } 92 93 /* convert a timespec64 to ktime_t format: */ 94 static inline ktime_t timespec64_to_ktime(struct timespec64 ts) 95 { 96 return ktime_set(ts.tv_sec, ts.tv_nsec); 97 } 98 99 /* convert a timeval to ktime_t format: */ 100 static inline ktime_t timeval_to_ktime(struct timeval tv) 101 { 102 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC); 103 } 104 105 /* Map the ktime_t to timespec conversion to ns_to_timespec function */ 106 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) 107 108 /* Map the ktime_t to timespec conversion to ns_to_timespec function */ 109 #define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64) 110 111 /* Map the ktime_t to timeval conversion to ns_to_timeval function */ 112 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) 113 114 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ 115 #define ktime_to_ns(kt) ((kt).tv64) 116 117 118 /** 119 * ktime_equal - Compares two ktime_t variables to see if they are equal 120 * @cmp1: comparable1 121 * @cmp2: comparable2 122 * 123 * Compare two ktime_t variables. 124 * 125 * Return: 1 if equal. 126 */ 127 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2) 128 { 129 return cmp1.tv64 == cmp2.tv64; 130 } 131 132 /** 133 * ktime_compare - Compares two ktime_t variables for less, greater or equal 134 * @cmp1: comparable1 135 * @cmp2: comparable2 136 * 137 * Return: ... 138 * cmp1 < cmp2: return <0 139 * cmp1 == cmp2: return 0 140 * cmp1 > cmp2: return >0 141 */ 142 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) 143 { 144 if (cmp1.tv64 < cmp2.tv64) 145 return -1; 146 if (cmp1.tv64 > cmp2.tv64) 147 return 1; 148 return 0; 149 } 150 151 /** 152 * ktime_after - Compare if a ktime_t value is bigger than another one. 153 * @cmp1: comparable1 154 * @cmp2: comparable2 155 * 156 * Return: true if cmp1 happened after cmp2. 157 */ 158 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) 159 { 160 return ktime_compare(cmp1, cmp2) > 0; 161 } 162 163 /** 164 * ktime_before - Compare if a ktime_t value is smaller than another one. 165 * @cmp1: comparable1 166 * @cmp2: comparable2 167 * 168 * Return: true if cmp1 happened before cmp2. 169 */ 170 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) 171 { 172 return ktime_compare(cmp1, cmp2) < 0; 173 } 174 175 #if BITS_PER_LONG < 64 176 extern s64 __ktime_divns(const ktime_t kt, s64 div); 177 static inline s64 ktime_divns(const ktime_t kt, s64 div) 178 { 179 /* 180 * Negative divisors could cause an inf loop, 181 * so bug out here. 182 */ 183 BUG_ON(div < 0); 184 if (__builtin_constant_p(div) && !(div >> 32)) { 185 s64 ns = kt.tv64; 186 u64 tmp = ns < 0 ? -ns : ns; 187 188 do_div(tmp, div); 189 return ns < 0 ? -tmp : tmp; 190 } else { 191 return __ktime_divns(kt, div); 192 } 193 } 194 #else /* BITS_PER_LONG < 64 */ 195 static inline s64 ktime_divns(const ktime_t kt, s64 div) 196 { 197 /* 198 * 32-bit implementation cannot handle negative divisors, 199 * so catch them on 64bit as well. 200 */ 201 WARN_ON(div < 0); 202 return kt.tv64 / div; 203 } 204 #endif 205 206 static inline s64 ktime_to_us(const ktime_t kt) 207 { 208 return ktime_divns(kt, NSEC_PER_USEC); 209 } 210 211 static inline s64 ktime_to_ms(const ktime_t kt) 212 { 213 return ktime_divns(kt, NSEC_PER_MSEC); 214 } 215 216 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) 217 { 218 return ktime_to_us(ktime_sub(later, earlier)); 219 } 220 221 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) 222 { 223 return ktime_to_ms(ktime_sub(later, earlier)); 224 } 225 226 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) 227 { 228 return ktime_add_ns(kt, usec * NSEC_PER_USEC); 229 } 230 231 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) 232 { 233 return ktime_add_ns(kt, msec * NSEC_PER_MSEC); 234 } 235 236 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) 237 { 238 return ktime_sub_ns(kt, usec * NSEC_PER_USEC); 239 } 240 241 static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec) 242 { 243 return ktime_sub_ns(kt, msec * NSEC_PER_MSEC); 244 } 245 246 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); 247 248 /** 249 * ktime_to_timespec_cond - convert a ktime_t variable to timespec 250 * format only if the variable contains data 251 * @kt: the ktime_t variable to convert 252 * @ts: the timespec variable to store the result in 253 * 254 * Return: %true if there was a successful conversion, %false if kt was 0. 255 */ 256 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt, 257 struct timespec *ts) 258 { 259 if (kt.tv64) { 260 *ts = ktime_to_timespec(kt); 261 return true; 262 } else { 263 return false; 264 } 265 } 266 267 /** 268 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 269 * format only if the variable contains data 270 * @kt: the ktime_t variable to convert 271 * @ts: the timespec variable to store the result in 272 * 273 * Return: %true if there was a successful conversion, %false if kt was 0. 274 */ 275 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, 276 struct timespec64 *ts) 277 { 278 if (kt.tv64) { 279 *ts = ktime_to_timespec64(kt); 280 return true; 281 } else { 282 return false; 283 } 284 } 285 286 /* 287 * The resolution of the clocks. The resolution value is returned in 288 * the clock_getres() system call to give application programmers an 289 * idea of the (in)accuracy of timers. Timer values are rounded up to 290 * this resolution values. 291 */ 292 #define LOW_RES_NSEC TICK_NSEC 293 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC } 294 295 static inline ktime_t ns_to_ktime(u64 ns) 296 { 297 static const ktime_t ktime_zero = { .tv64 = 0 }; 298 299 return ktime_add_ns(ktime_zero, ns); 300 } 301 302 static inline ktime_t ms_to_ktime(u64 ms) 303 { 304 static const ktime_t ktime_zero = { .tv64 = 0 }; 305 306 return ktime_add_ms(ktime_zero, ms); 307 } 308 309 # include <linux/timekeeping.h> 310 311 #endif 312