xref: /linux-6.15/include/linux/ktime.h (revision 41fbf3b3)
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <[email protected]>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *  	Roman Zippel provided the ideas and primary code snippets of
16  *  	the ktime_t union and further simplifications of the original
17  *  	code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23 
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26 
27 /*
28  * ktime_t:
29  *
30  * A single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  */
37 union ktime {
38 	s64	tv64;
39 };
40 
41 typedef union ktime ktime_t;		/* Kill this */
42 
43 /**
44  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45  * @secs:	seconds to set
46  * @nsecs:	nanoseconds to set
47  *
48  * Return: The ktime_t representation of the value.
49  */
50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
51 {
52 	if (unlikely(secs >= KTIME_SEC_MAX))
53 		return (ktime_t){ .tv64 = KTIME_MAX };
54 
55 	return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
56 }
57 
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 		({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
61 
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 		({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
65 
66 /*
67  * Add a ktime_t variable and a scalar nanosecond value.
68  * res = kt + nsval:
69  */
70 #define ktime_add_ns(kt, nsval) \
71 		({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
72 
73 /*
74  * Subtract a scalar nanosecod from a ktime_t variable
75  * res = kt - nsval:
76  */
77 #define ktime_sub_ns(kt, nsval) \
78 		({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
79 
80 /* convert a timespec to ktime_t format: */
81 static inline ktime_t timespec_to_ktime(struct timespec ts)
82 {
83 	return ktime_set(ts.tv_sec, ts.tv_nsec);
84 }
85 
86 /* convert a timespec64 to ktime_t format: */
87 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
88 {
89 	return ktime_set(ts.tv_sec, ts.tv_nsec);
90 }
91 
92 /* convert a timeval to ktime_t format: */
93 static inline ktime_t timeval_to_ktime(struct timeval tv)
94 {
95 	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
96 }
97 
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt)		ns_to_timespec((kt).tv64)
100 
101 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
102 #define ktime_to_timespec64(kt)		ns_to_timespec64((kt).tv64)
103 
104 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
105 #define ktime_to_timeval(kt)		ns_to_timeval((kt).tv64)
106 
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt)			((kt).tv64)
109 
110 
111 /**
112  * ktime_equal - Compares two ktime_t variables to see if they are equal
113  * @cmp1:	comparable1
114  * @cmp2:	comparable2
115  *
116  * Compare two ktime_t variables.
117  *
118  * Return: 1 if equal.
119  */
120 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
121 {
122 	return cmp1.tv64 == cmp2.tv64;
123 }
124 
125 /**
126  * ktime_compare - Compares two ktime_t variables for less, greater or equal
127  * @cmp1:	comparable1
128  * @cmp2:	comparable2
129  *
130  * Return: ...
131  *   cmp1  < cmp2: return <0
132  *   cmp1 == cmp2: return 0
133  *   cmp1  > cmp2: return >0
134  */
135 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
136 {
137 	if (cmp1.tv64 < cmp2.tv64)
138 		return -1;
139 	if (cmp1.tv64 > cmp2.tv64)
140 		return 1;
141 	return 0;
142 }
143 
144 /**
145  * ktime_after - Compare if a ktime_t value is bigger than another one.
146  * @cmp1:	comparable1
147  * @cmp2:	comparable2
148  *
149  * Return: true if cmp1 happened after cmp2.
150  */
151 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
152 {
153 	return ktime_compare(cmp1, cmp2) > 0;
154 }
155 
156 /**
157  * ktime_before - Compare if a ktime_t value is smaller than another one.
158  * @cmp1:	comparable1
159  * @cmp2:	comparable2
160  *
161  * Return: true if cmp1 happened before cmp2.
162  */
163 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
164 {
165 	return ktime_compare(cmp1, cmp2) < 0;
166 }
167 
168 #if BITS_PER_LONG < 64
169 extern u64 ktime_divns(const ktime_t kt, s64 div);
170 #else /* BITS_PER_LONG < 64 */
171 # define ktime_divns(kt, div)		(u64)((kt).tv64 / (div))
172 #endif
173 
174 static inline s64 ktime_to_us(const ktime_t kt)
175 {
176 	return ktime_divns(kt, NSEC_PER_USEC);
177 }
178 
179 static inline s64 ktime_to_ms(const ktime_t kt)
180 {
181 	return ktime_divns(kt, NSEC_PER_MSEC);
182 }
183 
184 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
185 {
186        return ktime_to_us(ktime_sub(later, earlier));
187 }
188 
189 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
190 {
191 	return ktime_to_ms(ktime_sub(later, earlier));
192 }
193 
194 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
195 {
196 	return ktime_add_ns(kt, usec * NSEC_PER_USEC);
197 }
198 
199 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
200 {
201 	return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
202 }
203 
204 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
205 {
206 	return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
207 }
208 
209 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
210 
211 /**
212  * ktime_to_timespec_cond - convert a ktime_t variable to timespec
213  *			    format only if the variable contains data
214  * @kt:		the ktime_t variable to convert
215  * @ts:		the timespec variable to store the result in
216  *
217  * Return: %true if there was a successful conversion, %false if kt was 0.
218  */
219 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
220 						       struct timespec *ts)
221 {
222 	if (kt.tv64) {
223 		*ts = ktime_to_timespec(kt);
224 		return true;
225 	} else {
226 		return false;
227 	}
228 }
229 
230 /**
231  * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
232  *			    format only if the variable contains data
233  * @kt:		the ktime_t variable to convert
234  * @ts:		the timespec variable to store the result in
235  *
236  * Return: %true if there was a successful conversion, %false if kt was 0.
237  */
238 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
239 						       struct timespec64 *ts)
240 {
241 	if (kt.tv64) {
242 		*ts = ktime_to_timespec64(kt);
243 		return true;
244 	} else {
245 		return false;
246 	}
247 }
248 
249 /*
250  * The resolution of the clocks. The resolution value is returned in
251  * the clock_getres() system call to give application programmers an
252  * idea of the (in)accuracy of timers. Timer values are rounded up to
253  * this resolution values.
254  */
255 #define LOW_RES_NSEC		TICK_NSEC
256 #define KTIME_LOW_RES		(ktime_t){ .tv64 = LOW_RES_NSEC }
257 
258 static inline ktime_t ns_to_ktime(u64 ns)
259 {
260 	static const ktime_t ktime_zero = { .tv64 = 0 };
261 
262 	return ktime_add_ns(ktime_zero, ns);
263 }
264 
265 static inline ktime_t ms_to_ktime(u64 ms)
266 {
267 	static const ktime_t ktime_zero = { .tv64 = 0 };
268 
269 	return ktime_add_ms(ktime_zero, ms);
270 }
271 
272 # include <linux/timekeeping.h>
273 
274 #endif
275