xref: /linux-6.15/include/linux/ktime.h (revision 166afb64)
1 /*
2  *  include/linux/ktime.h
3  *
4  *  ktime_t - nanosecond-resolution time format.
5  *
6  *   Copyright(C) 2005, Thomas Gleixner <[email protected]>
7  *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8  *
9  *  data type definitions, declarations, prototypes and macros.
10  *
11  *  Started by: Thomas Gleixner and Ingo Molnar
12  *
13  *  Credits:
14  *
15  *  	Roman Zippel provided the ideas and primary code snippets of
16  *  	the ktime_t union and further simplifications of the original
17  *  	code.
18  *
19  *  For licencing details see kernel-base/COPYING
20  */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23 
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26 
27 /*
28  * ktime_t:
29  *
30  * A single 64-bit variable is used to store the hrtimers
31  * internal representation of time values in scalar nanoseconds. The
32  * design plays out best on 64-bit CPUs, where most conversions are
33  * NOPs and most arithmetic ktime_t operations are plain arithmetic
34  * operations.
35  *
36  */
37 union ktime {
38 	s64	tv64;
39 };
40 
41 typedef union ktime ktime_t;		/* Kill this */
42 
43 /**
44  * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45  * @secs:	seconds to set
46  * @nsecs:	nanoseconds to set
47  *
48  * Return: The ktime_t representation of the value.
49  */
50 static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
51 {
52 #if (BITS_PER_LONG == 64)
53 	if (unlikely(secs >= KTIME_SEC_MAX))
54 		return (ktime_t){ .tv64 = KTIME_MAX };
55 #endif
56 	return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
57 }
58 
59 /* Subtract two ktime_t variables. rem = lhs -rhs: */
60 #define ktime_sub(lhs, rhs) \
61 		({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
62 
63 /* Add two ktime_t variables. res = lhs + rhs: */
64 #define ktime_add(lhs, rhs) \
65 		({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
66 
67 /*
68  * Add a ktime_t variable and a scalar nanosecond value.
69  * res = kt + nsval:
70  */
71 #define ktime_add_ns(kt, nsval) \
72 		({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
73 
74 /*
75  * Subtract a scalar nanosecod from a ktime_t variable
76  * res = kt - nsval:
77  */
78 #define ktime_sub_ns(kt, nsval) \
79 		({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
80 
81 /* convert a timespec to ktime_t format: */
82 static inline ktime_t timespec_to_ktime(struct timespec ts)
83 {
84 	return ktime_set(ts.tv_sec, ts.tv_nsec);
85 }
86 
87 /* convert a timeval to ktime_t format: */
88 static inline ktime_t timeval_to_ktime(struct timeval tv)
89 {
90 	return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
91 }
92 
93 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
94 #define ktime_to_timespec(kt)		ns_to_timespec((kt).tv64)
95 
96 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
97 #define ktime_to_timeval(kt)		ns_to_timeval((kt).tv64)
98 
99 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
100 #define ktime_to_ns(kt)			((kt).tv64)
101 
102 
103 /**
104  * ktime_equal - Compares two ktime_t variables to see if they are equal
105  * @cmp1:	comparable1
106  * @cmp2:	comparable2
107  *
108  * Compare two ktime_t variables.
109  *
110  * Return: 1 if equal.
111  */
112 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
113 {
114 	return cmp1.tv64 == cmp2.tv64;
115 }
116 
117 /**
118  * ktime_compare - Compares two ktime_t variables for less, greater or equal
119  * @cmp1:	comparable1
120  * @cmp2:	comparable2
121  *
122  * Return: ...
123  *   cmp1  < cmp2: return <0
124  *   cmp1 == cmp2: return 0
125  *   cmp1  > cmp2: return >0
126  */
127 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
128 {
129 	if (cmp1.tv64 < cmp2.tv64)
130 		return -1;
131 	if (cmp1.tv64 > cmp2.tv64)
132 		return 1;
133 	return 0;
134 }
135 
136 /**
137  * ktime_after - Compare if a ktime_t value is bigger than another one.
138  * @cmp1:	comparable1
139  * @cmp2:	comparable2
140  *
141  * Return: true if cmp1 happened after cmp2.
142  */
143 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
144 {
145 	return ktime_compare(cmp1, cmp2) > 0;
146 }
147 
148 /**
149  * ktime_before - Compare if a ktime_t value is smaller than another one.
150  * @cmp1:	comparable1
151  * @cmp2:	comparable2
152  *
153  * Return: true if cmp1 happened before cmp2.
154  */
155 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
156 {
157 	return ktime_compare(cmp1, cmp2) < 0;
158 }
159 
160 #if BITS_PER_LONG < 64
161 extern u64 ktime_divns(const ktime_t kt, s64 div);
162 #else /* BITS_PER_LONG < 64 */
163 # define ktime_divns(kt, div)		(u64)((kt).tv64 / (div))
164 #endif
165 
166 static inline s64 ktime_to_us(const ktime_t kt)
167 {
168 	return ktime_divns(kt, NSEC_PER_USEC);
169 }
170 
171 static inline s64 ktime_to_ms(const ktime_t kt)
172 {
173 	return ktime_divns(kt, NSEC_PER_MSEC);
174 }
175 
176 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
177 {
178        return ktime_to_us(ktime_sub(later, earlier));
179 }
180 
181 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
182 {
183 	return ktime_add_ns(kt, usec * NSEC_PER_USEC);
184 }
185 
186 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
187 {
188 	return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
189 }
190 
191 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
192 {
193 	return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
194 }
195 
196 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
197 
198 /**
199  * ktime_to_timespec_cond - convert a ktime_t variable to timespec
200  *			    format only if the variable contains data
201  * @kt:		the ktime_t variable to convert
202  * @ts:		the timespec variable to store the result in
203  *
204  * Return: %true if there was a successful conversion, %false if kt was 0.
205  */
206 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
207 						       struct timespec *ts)
208 {
209 	if (kt.tv64) {
210 		*ts = ktime_to_timespec(kt);
211 		return true;
212 	} else {
213 		return false;
214 	}
215 }
216 
217 /*
218  * The resolution of the clocks. The resolution value is returned in
219  * the clock_getres() system call to give application programmers an
220  * idea of the (in)accuracy of timers. Timer values are rounded up to
221  * this resolution values.
222  */
223 #define LOW_RES_NSEC		TICK_NSEC
224 #define KTIME_LOW_RES		(ktime_t){ .tv64 = LOW_RES_NSEC }
225 
226 /* Get the monotonic time in timespec format: */
227 extern void ktime_get_ts(struct timespec *ts);
228 
229 /* Get the real (wall-) time in timespec format: */
230 #define ktime_get_real_ts(ts)	getnstimeofday(ts)
231 
232 static inline ktime_t ns_to_ktime(u64 ns)
233 {
234 	static const ktime_t ktime_zero = { .tv64 = 0 };
235 
236 	return ktime_add_ns(ktime_zero, ns);
237 }
238 
239 static inline ktime_t ms_to_ktime(u64 ms)
240 {
241 	static const ktime_t ktime_zero = { .tv64 = 0 };
242 
243 	return ktime_add_ms(ktime_zero, ms);
244 }
245 
246 #endif
247