1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * EMIF driver 4 * 5 * Copyright (C) 2012 Texas Instruments, Inc. 6 * 7 * Aneesh V <[email protected]> 8 * Santosh Shilimkar <[email protected]> 9 */ 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/reboot.h> 13 #include <linux/platform_data/emif_plat.h> 14 #include <linux/io.h> 15 #include <linux/device.h> 16 #include <linux/platform_device.h> 17 #include <linux/interrupt.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/debugfs.h> 21 #include <linux/seq_file.h> 22 #include <linux/module.h> 23 #include <linux/list.h> 24 #include <linux/spinlock.h> 25 #include <linux/pm.h> 26 27 #include "emif.h" 28 #include "jedec_ddr.h" 29 #include "of_memory.h" 30 31 /** 32 * struct emif_data - Per device static data for driver's use 33 * @duplicate: Whether the DDR devices attached to this EMIF 34 * instance are exactly same as that on EMIF1. In 35 * this case we can save some memory and processing 36 * @temperature_level: Maximum temperature of LPDDR2 devices attached 37 * to this EMIF - read from MR4 register. If there 38 * are two devices attached to this EMIF, this 39 * value is the maximum of the two temperature 40 * levels. 41 * @node: node in the device list 42 * @base: base address of memory-mapped IO registers. 43 * @dev: device pointer. 44 * @addressing table with addressing information from the spec 45 * @regs_cache: An array of 'struct emif_regs' that stores 46 * calculated register values for different 47 * frequencies, to avoid re-calculating them on 48 * each DVFS transition. 49 * @curr_regs: The set of register values used in the last 50 * frequency change (i.e. corresponding to the 51 * frequency in effect at the moment) 52 * @plat_data: Pointer to saved platform data. 53 * @debugfs_root: dentry to the root folder for EMIF in debugfs 54 * @np_ddr: Pointer to ddr device tree node 55 */ 56 struct emif_data { 57 u8 duplicate; 58 u8 temperature_level; 59 u8 lpmode; 60 struct list_head node; 61 unsigned long irq_state; 62 void __iomem *base; 63 struct device *dev; 64 const struct lpddr2_addressing *addressing; 65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 66 struct emif_regs *curr_regs; 67 struct emif_platform_data *plat_data; 68 struct dentry *debugfs_root; 69 struct device_node *np_ddr; 70 }; 71 72 static struct emif_data *emif1; 73 static spinlock_t emif_lock; 74 static unsigned long irq_state; 75 static u32 t_ck; /* DDR clock period in ps */ 76 static LIST_HEAD(device_list); 77 78 #ifdef CONFIG_DEBUG_FS 79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 80 struct emif_regs *regs) 81 { 82 u32 type = emif->plat_data->device_info->type; 83 u32 ip_rev = emif->plat_data->ip_rev; 84 85 seq_printf(s, "EMIF register cache dump for %dMHz\n", 86 regs->freq/1000000); 87 88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 92 93 if (ip_rev == EMIF_4D) { 94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 95 regs->read_idle_ctrl_shdw_normal); 96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 97 regs->read_idle_ctrl_shdw_volt_ramp); 98 } else if (ip_rev == EMIF_4D5) { 99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 100 regs->dll_calib_ctrl_shdw_normal); 101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 102 regs->dll_calib_ctrl_shdw_volt_ramp); 103 } 104 105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 107 regs->ref_ctrl_shdw_derated); 108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 109 regs->sdram_tim1_shdw_derated); 110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 111 regs->sdram_tim3_shdw_derated); 112 } 113 } 114 115 static int emif_regdump_show(struct seq_file *s, void *unused) 116 { 117 struct emif_data *emif = s->private; 118 struct emif_regs **regs_cache; 119 int i; 120 121 if (emif->duplicate) 122 regs_cache = emif1->regs_cache; 123 else 124 regs_cache = emif->regs_cache; 125 126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 127 do_emif_regdump_show(s, emif, regs_cache[i]); 128 seq_putc(s, '\n'); 129 } 130 131 return 0; 132 } 133 134 static int emif_regdump_open(struct inode *inode, struct file *file) 135 { 136 return single_open(file, emif_regdump_show, inode->i_private); 137 } 138 139 static const struct file_operations emif_regdump_fops = { 140 .open = emif_regdump_open, 141 .read = seq_read, 142 .release = single_release, 143 }; 144 145 static int emif_mr4_show(struct seq_file *s, void *unused) 146 { 147 struct emif_data *emif = s->private; 148 149 seq_printf(s, "MR4=%d\n", emif->temperature_level); 150 return 0; 151 } 152 153 static int emif_mr4_open(struct inode *inode, struct file *file) 154 { 155 return single_open(file, emif_mr4_show, inode->i_private); 156 } 157 158 static const struct file_operations emif_mr4_fops = { 159 .open = emif_mr4_open, 160 .read = seq_read, 161 .release = single_release, 162 }; 163 164 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 165 { 166 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL); 167 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif, 168 &emif_regdump_fops); 169 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif, 170 &emif_mr4_fops); 171 return 0; 172 } 173 174 static void __exit emif_debugfs_exit(struct emif_data *emif) 175 { 176 debugfs_remove_recursive(emif->debugfs_root); 177 emif->debugfs_root = NULL; 178 } 179 #else 180 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) 181 { 182 return 0; 183 } 184 185 static inline void __exit emif_debugfs_exit(struct emif_data *emif) 186 { 187 } 188 #endif 189 190 /* 191 * Calculate the period of DDR clock from frequency value 192 */ 193 static void set_ddr_clk_period(u32 freq) 194 { 195 /* Divide 10^12 by frequency to get period in ps */ 196 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 197 } 198 199 /* 200 * Get bus width used by EMIF. Note that this may be different from the 201 * bus width of the DDR devices used. For instance two 16-bit DDR devices 202 * may be connected to a given CS of EMIF. In this case bus width as far 203 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 204 */ 205 static u32 get_emif_bus_width(struct emif_data *emif) 206 { 207 u32 width; 208 void __iomem *base = emif->base; 209 210 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 211 >> NARROW_MODE_SHIFT; 212 width = width == 0 ? 32 : 16; 213 214 return width; 215 } 216 217 /* 218 * Get the CL from SDRAM_CONFIG register 219 */ 220 static u32 get_cl(struct emif_data *emif) 221 { 222 u32 cl; 223 void __iomem *base = emif->base; 224 225 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 226 227 return cl; 228 } 229 230 static void set_lpmode(struct emif_data *emif, u8 lpmode) 231 { 232 u32 temp; 233 void __iomem *base = emif->base; 234 235 /* 236 * Workaround for errata i743 - LPDDR2 Power-Down State is Not 237 * Efficient 238 * 239 * i743 DESCRIPTION: 240 * The EMIF supports power-down state for low power. The EMIF 241 * automatically puts the SDRAM into power-down after the memory is 242 * not accessed for a defined number of cycles and the 243 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4. 244 * As the EMIF supports automatic output impedance calibration, a ZQ 245 * calibration long command is issued every time it exits active 246 * power-down and precharge power-down modes. The EMIF waits and 247 * blocks any other command during this calibration. 248 * The EMIF does not allow selective disabling of ZQ calibration upon 249 * exit of power-down mode. Due to very short periods of power-down 250 * cycles, ZQ calibration overhead creates bandwidth issues and 251 * increases overall system power consumption. On the other hand, 252 * issuing ZQ calibration long commands when exiting self-refresh is 253 * still required. 254 * 255 * WORKAROUND 256 * Because there is no power consumption benefit of the power-down due 257 * to the calibration and there is a performance risk, the guideline 258 * is to not allow power-down state and, therefore, to not have set 259 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4. 260 */ 261 if ((emif->plat_data->ip_rev == EMIF_4D) && 262 (lpmode == EMIF_LP_MODE_PWR_DN)) { 263 WARN_ONCE(1, 264 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n"); 265 /* rollback LP_MODE to Self-refresh mode */ 266 lpmode = EMIF_LP_MODE_SELF_REFRESH; 267 } 268 269 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 270 temp &= ~LP_MODE_MASK; 271 temp |= (lpmode << LP_MODE_SHIFT); 272 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 273 } 274 275 static void do_freq_update(void) 276 { 277 struct emif_data *emif; 278 279 /* 280 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 281 * 282 * i728 DESCRIPTION: 283 * The EMIF automatically puts the SDRAM into self-refresh mode 284 * after the EMIF has not performed accesses during 285 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 286 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 287 * to 0x2. If during a small window the following three events 288 * occur: 289 * - The SR_TIMING counter expires 290 * - And frequency change is requested 291 * - And OCP access is requested 292 * Then it causes instable clock on the DDR interface. 293 * 294 * WORKAROUND 295 * To avoid the occurrence of the three events, the workaround 296 * is to disable the self-refresh when requesting a frequency 297 * change. Before requesting a frequency change the software must 298 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 299 * frequency change has been done, the software can reprogram 300 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 301 */ 302 list_for_each_entry(emif, &device_list, node) { 303 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 304 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 305 } 306 307 /* 308 * TODO: Do FREQ_UPDATE here when an API 309 * is available for this as part of the new 310 * clock framework 311 */ 312 313 list_for_each_entry(emif, &device_list, node) { 314 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 315 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 316 } 317 } 318 319 /* Find addressing table entry based on the device's type and density */ 320 static const struct lpddr2_addressing *get_addressing_table( 321 const struct ddr_device_info *device_info) 322 { 323 u32 index, type, density; 324 325 type = device_info->type; 326 density = device_info->density; 327 328 switch (type) { 329 case DDR_TYPE_LPDDR2_S4: 330 index = density - 1; 331 break; 332 case DDR_TYPE_LPDDR2_S2: 333 switch (density) { 334 case DDR_DENSITY_1Gb: 335 case DDR_DENSITY_2Gb: 336 index = density + 3; 337 break; 338 default: 339 index = density - 1; 340 } 341 break; 342 default: 343 return NULL; 344 } 345 346 return &lpddr2_jedec_addressing_table[index]; 347 } 348 349 /* 350 * Find the the right timing table from the array of timing 351 * tables of the device using DDR clock frequency 352 */ 353 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 354 u32 freq) 355 { 356 u32 i, min, max, freq_nearest; 357 const struct lpddr2_timings *timings = NULL; 358 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 359 struct device *dev = emif->dev; 360 361 /* Start with a very high frequency - 1GHz */ 362 freq_nearest = 1000000000; 363 364 /* 365 * Find the timings table such that: 366 * 1. the frequency range covers the required frequency(safe) AND 367 * 2. the max_freq is closest to the required frequency(optimal) 368 */ 369 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 370 max = timings_arr[i].max_freq; 371 min = timings_arr[i].min_freq; 372 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 373 freq_nearest = max; 374 timings = &timings_arr[i]; 375 } 376 } 377 378 if (!timings) 379 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 380 __func__, freq); 381 382 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 383 __func__, freq, freq_nearest); 384 385 return timings; 386 } 387 388 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 389 const struct lpddr2_addressing *addressing) 390 { 391 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 392 393 /* Scale down frequency and t_refi to avoid overflow */ 394 freq_khz = freq / 1000; 395 t_refi = addressing->tREFI_ns / 100; 396 397 /* 398 * refresh rate to be set is 'tREFI(in us) * freq in MHz 399 * division by 10000 to account for change in units 400 */ 401 val = t_refi * freq_khz / 10000; 402 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 403 404 return ref_ctrl_shdw; 405 } 406 407 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 408 const struct lpddr2_min_tck *min_tck, 409 const struct lpddr2_addressing *addressing) 410 { 411 u32 tim1 = 0, val = 0; 412 413 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 414 tim1 |= val << T_WTR_SHIFT; 415 416 if (addressing->num_banks == B8) 417 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 418 else 419 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 420 tim1 |= (val - 1) << T_RRD_SHIFT; 421 422 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 423 tim1 |= val << T_RC_SHIFT; 424 425 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 426 tim1 |= (val - 1) << T_RAS_SHIFT; 427 428 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 429 tim1 |= val << T_WR_SHIFT; 430 431 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 432 tim1 |= val << T_RCD_SHIFT; 433 434 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 435 tim1 |= val << T_RP_SHIFT; 436 437 return tim1; 438 } 439 440 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 441 const struct lpddr2_min_tck *min_tck, 442 const struct lpddr2_addressing *addressing) 443 { 444 u32 tim1 = 0, val = 0; 445 446 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 447 tim1 = val << T_WTR_SHIFT; 448 449 /* 450 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 451 * to tFAW for de-rating 452 */ 453 if (addressing->num_banks == B8) { 454 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 455 } else { 456 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 457 val = max(min_tck->tRRD, val) - 1; 458 } 459 tim1 |= val << T_RRD_SHIFT; 460 461 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 462 tim1 |= (val - 1) << T_RC_SHIFT; 463 464 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 465 val = max(min_tck->tRASmin, val) - 1; 466 tim1 |= val << T_RAS_SHIFT; 467 468 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 469 tim1 |= val << T_WR_SHIFT; 470 471 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 472 tim1 |= (val - 1) << T_RCD_SHIFT; 473 474 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 475 tim1 |= (val - 1) << T_RP_SHIFT; 476 477 return tim1; 478 } 479 480 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 481 const struct lpddr2_min_tck *min_tck, 482 const struct lpddr2_addressing *addressing, 483 u32 type) 484 { 485 u32 tim2 = 0, val = 0; 486 487 val = min_tck->tCKE - 1; 488 tim2 |= val << T_CKE_SHIFT; 489 490 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 491 tim2 |= val << T_RTP_SHIFT; 492 493 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 494 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 495 tim2 |= val << T_XSNR_SHIFT; 496 497 /* XSRD same as XSNR for LPDDR2 */ 498 tim2 |= val << T_XSRD_SHIFT; 499 500 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 501 tim2 |= val << T_XP_SHIFT; 502 503 return tim2; 504 } 505 506 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 507 const struct lpddr2_min_tck *min_tck, 508 const struct lpddr2_addressing *addressing, 509 u32 type, u32 ip_rev, u32 derated) 510 { 511 u32 tim3 = 0, val = 0, t_dqsck; 512 513 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 514 val = val > 0xF ? 0xF : val; 515 tim3 |= val << T_RAS_MAX_SHIFT; 516 517 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 518 tim3 |= val << T_RFC_SHIFT; 519 520 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 521 timings->tDQSCK_max_derated : timings->tDQSCK_max; 522 if (ip_rev == EMIF_4D5) 523 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 524 else 525 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 526 527 tim3 |= val << T_TDQSCKMAX_SHIFT; 528 529 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 530 tim3 |= val << ZQ_ZQCS_SHIFT; 531 532 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 533 val = max(min_tck->tCKESR, val) - 1; 534 tim3 |= val << T_CKESR_SHIFT; 535 536 if (ip_rev == EMIF_4D5) { 537 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 538 539 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 540 tim3 |= val << T_PDLL_UL_SHIFT; 541 } 542 543 return tim3; 544 } 545 546 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 547 bool cs1_used, bool cal_resistors_per_cs) 548 { 549 u32 zq = 0, val = 0; 550 551 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 552 zq |= val << ZQ_REFINTERVAL_SHIFT; 553 554 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 555 zq |= val << ZQ_ZQCL_MULT_SHIFT; 556 557 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 558 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 559 560 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 561 562 if (cal_resistors_per_cs) 563 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 564 else 565 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 566 567 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 568 569 val = cs1_used ? 1 : 0; 570 zq |= val << ZQ_CS1EN_SHIFT; 571 572 return zq; 573 } 574 575 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 576 const struct emif_custom_configs *custom_configs, bool cs1_used, 577 u32 sdram_io_width, u32 emif_bus_width) 578 { 579 u32 alert = 0, interval, devcnt; 580 581 if (custom_configs && (custom_configs->mask & 582 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 583 interval = custom_configs->temp_alert_poll_interval_ms; 584 else 585 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 586 587 interval *= 1000000; /* Convert to ns */ 588 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 589 alert |= (interval << TA_REFINTERVAL_SHIFT); 590 591 /* 592 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 593 * also to this form and subtract to get TA_DEVCNT, which is 594 * in log2(x) form. 595 */ 596 emif_bus_width = __fls(emif_bus_width) - 1; 597 devcnt = emif_bus_width - sdram_io_width; 598 alert |= devcnt << TA_DEVCNT_SHIFT; 599 600 /* DEVWDT is in 'log2(x) - 3' form */ 601 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 602 603 alert |= 1 << TA_SFEXITEN_SHIFT; 604 alert |= 1 << TA_CS0EN_SHIFT; 605 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 606 607 return alert; 608 } 609 610 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 611 { 612 u32 idle = 0, val = 0; 613 614 /* 615 * Maximum value in normal conditions and increased frequency 616 * when voltage is ramping 617 */ 618 if (volt_ramp) 619 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 620 else 621 val = 0x1FF; 622 623 /* 624 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 625 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 626 */ 627 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 628 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 629 630 return idle; 631 } 632 633 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 634 { 635 u32 calib = 0, val = 0; 636 637 if (volt_ramp == DDR_VOLTAGE_RAMPING) 638 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 639 else 640 val = 0; /* Disabled when voltage is stable */ 641 642 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 643 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 644 645 return calib; 646 } 647 648 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 649 u32 freq, u8 RL) 650 { 651 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 652 653 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 654 phy |= val << READ_LATENCY_SHIFT_4D; 655 656 if (freq <= 100000000) 657 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 658 else if (freq <= 200000000) 659 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 660 else 661 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 662 663 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 664 665 return phy; 666 } 667 668 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 669 { 670 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 671 672 /* 673 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 674 * half-delay is not needed else set half-delay 675 */ 676 if (freq >= 265000000 && freq < 267000000) 677 half_delay = 0; 678 else 679 half_delay = 1; 680 681 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 682 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 683 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 684 685 return phy; 686 } 687 688 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 689 { 690 u32 fifo_we_slave_ratio; 691 692 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 693 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 694 695 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 696 fifo_we_slave_ratio << 22; 697 } 698 699 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 700 { 701 u32 fifo_we_slave_ratio; 702 703 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 704 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 705 706 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 707 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 708 } 709 710 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 711 { 712 u32 fifo_we_slave_ratio; 713 714 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 715 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck); 716 717 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 718 fifo_we_slave_ratio << 13; 719 } 720 721 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 722 { 723 u32 pwr_mgmt_ctrl = 0, timeout; 724 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 725 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 726 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 727 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 728 u32 mask; 729 u8 shift; 730 731 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 732 733 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 734 lpmode = cust_cfgs->lpmode; 735 timeout_perf = cust_cfgs->lpmode_timeout_performance; 736 timeout_pwr = cust_cfgs->lpmode_timeout_power; 737 freq_threshold = cust_cfgs->lpmode_freq_threshold; 738 } 739 740 /* Timeout based on DDR frequency */ 741 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 742 743 /* 744 * The value to be set in register is "log2(timeout) - 3" 745 * if timeout < 16 load 0 in register 746 * if timeout is not a power of 2, round to next highest power of 2 747 */ 748 if (timeout < 16) { 749 timeout = 0; 750 } else { 751 if (timeout & (timeout - 1)) 752 timeout <<= 1; 753 timeout = __fls(timeout) - 3; 754 } 755 756 switch (lpmode) { 757 case EMIF_LP_MODE_CLOCK_STOP: 758 shift = CS_TIM_SHIFT; 759 mask = CS_TIM_MASK; 760 break; 761 case EMIF_LP_MODE_SELF_REFRESH: 762 /* Workaround for errata i735 */ 763 if (timeout < 6) 764 timeout = 6; 765 766 shift = SR_TIM_SHIFT; 767 mask = SR_TIM_MASK; 768 break; 769 case EMIF_LP_MODE_PWR_DN: 770 shift = PD_TIM_SHIFT; 771 mask = PD_TIM_MASK; 772 break; 773 case EMIF_LP_MODE_DISABLE: 774 default: 775 mask = 0; 776 shift = 0; 777 break; 778 } 779 /* Round to maximum in case of overflow, BUT warn! */ 780 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) { 781 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n", 782 lpmode, 783 timeout_perf, 784 timeout_pwr, 785 freq_threshold); 786 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n", 787 timeout, mask >> shift); 788 timeout = mask >> shift; 789 } 790 791 /* Setup required timing */ 792 pwr_mgmt_ctrl = (timeout << shift) & mask; 793 /* setup a default mask for rest of the modes */ 794 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) & 795 ~mask; 796 797 /* No CS_TIM in EMIF_4D5 */ 798 if (ip_rev == EMIF_4D5) 799 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 800 801 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 802 803 return pwr_mgmt_ctrl; 804 } 805 806 /* 807 * Get the temperature level of the EMIF instance: 808 * Reads the MR4 register of attached SDRAM parts to find out the temperature 809 * level. If there are two parts attached(one on each CS), then the temperature 810 * level for the EMIF instance is the higher of the two temperatures. 811 */ 812 static void get_temperature_level(struct emif_data *emif) 813 { 814 u32 temp, temperature_level; 815 void __iomem *base; 816 817 base = emif->base; 818 819 /* Read mode register 4 */ 820 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 821 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 822 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 823 MR4_SDRAM_REF_RATE_SHIFT; 824 825 if (emif->plat_data->device_info->cs1_used) { 826 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 827 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 828 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 829 >> MR4_SDRAM_REF_RATE_SHIFT; 830 temperature_level = max(temp, temperature_level); 831 } 832 833 /* treat everything less than nominal(3) in MR4 as nominal */ 834 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 835 temperature_level = SDRAM_TEMP_NOMINAL; 836 837 /* if we get reserved value in MR4 persist with the existing value */ 838 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 839 emif->temperature_level = temperature_level; 840 } 841 842 /* 843 * Program EMIF shadow registers that are not dependent on temperature 844 * or voltage 845 */ 846 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 847 { 848 void __iomem *base = emif->base; 849 850 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 851 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 852 writel(regs->pwr_mgmt_ctrl_shdw, 853 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW); 854 855 /* Settings specific for EMIF4D5 */ 856 if (emif->plat_data->ip_rev != EMIF_4D5) 857 return; 858 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 859 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 860 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 861 } 862 863 /* 864 * When voltage ramps dll calibration and forced read idle should 865 * happen more often 866 */ 867 static void setup_volt_sensitive_regs(struct emif_data *emif, 868 struct emif_regs *regs, u32 volt_state) 869 { 870 u32 calib_ctrl; 871 void __iomem *base = emif->base; 872 873 /* 874 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 875 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 876 * is an alias of the respective read_idle_ctrl_shdw_* (members of 877 * a union). So, the below code takes care of both cases 878 */ 879 if (volt_state == DDR_VOLTAGE_RAMPING) 880 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 881 else 882 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 883 884 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 885 } 886 887 /* 888 * setup_temperature_sensitive_regs() - set the timings for temperature 889 * sensitive registers. This happens once at initialisation time based 890 * on the temperature at boot time and subsequently based on the temperature 891 * alert interrupt. Temperature alert can happen when the temperature 892 * increases or drops. So this function can have the effect of either 893 * derating the timings or going back to nominal values. 894 */ 895 static void setup_temperature_sensitive_regs(struct emif_data *emif, 896 struct emif_regs *regs) 897 { 898 u32 tim1, tim3, ref_ctrl, type; 899 void __iomem *base = emif->base; 900 u32 temperature; 901 902 type = emif->plat_data->device_info->type; 903 904 tim1 = regs->sdram_tim1_shdw; 905 tim3 = regs->sdram_tim3_shdw; 906 ref_ctrl = regs->ref_ctrl_shdw; 907 908 /* No de-rating for non-lpddr2 devices */ 909 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 910 goto out; 911 912 temperature = emif->temperature_level; 913 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 914 ref_ctrl = regs->ref_ctrl_shdw_derated; 915 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 916 tim1 = regs->sdram_tim1_shdw_derated; 917 tim3 = regs->sdram_tim3_shdw_derated; 918 ref_ctrl = regs->ref_ctrl_shdw_derated; 919 } 920 921 out: 922 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 923 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 924 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 925 } 926 927 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 928 { 929 u32 old_temp_level; 930 irqreturn_t ret = IRQ_HANDLED; 931 struct emif_custom_configs *custom_configs; 932 933 spin_lock_irqsave(&emif_lock, irq_state); 934 old_temp_level = emif->temperature_level; 935 get_temperature_level(emif); 936 937 if (unlikely(emif->temperature_level == old_temp_level)) { 938 goto out; 939 } else if (!emif->curr_regs) { 940 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 941 goto out; 942 } 943 944 custom_configs = emif->plat_data->custom_configs; 945 946 /* 947 * IF we detect higher than "nominal rating" from DDR sensor 948 * on an unsupported DDR part, shutdown system 949 */ 950 if (custom_configs && !(custom_configs->mask & 951 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) { 952 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) { 953 dev_err(emif->dev, 954 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n", 955 __func__, emif->temperature_level); 956 /* 957 * Temperature far too high - do kernel_power_off() 958 * from thread context 959 */ 960 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN; 961 ret = IRQ_WAKE_THREAD; 962 goto out; 963 } 964 } 965 966 if (emif->temperature_level < old_temp_level || 967 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 968 /* 969 * Temperature coming down - defer handling to thread OR 970 * Temperature far too high - do kernel_power_off() from 971 * thread context 972 */ 973 ret = IRQ_WAKE_THREAD; 974 } else { 975 /* Temperature is going up - handle immediately */ 976 setup_temperature_sensitive_regs(emif, emif->curr_regs); 977 do_freq_update(); 978 } 979 980 out: 981 spin_unlock_irqrestore(&emif_lock, irq_state); 982 return ret; 983 } 984 985 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 986 { 987 u32 interrupts; 988 struct emif_data *emif = dev_id; 989 void __iomem *base = emif->base; 990 struct device *dev = emif->dev; 991 irqreturn_t ret = IRQ_HANDLED; 992 993 /* Save the status and clear it */ 994 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 995 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 996 997 /* 998 * Handle temperature alert 999 * Temperature alert should be same for all ports 1000 * So, it's enough to process it only for one of the ports 1001 */ 1002 if (interrupts & TA_SYS_MASK) 1003 ret = handle_temp_alert(base, emif); 1004 1005 if (interrupts & ERR_SYS_MASK) 1006 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 1007 1008 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1009 /* Save the status and clear it */ 1010 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 1011 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 1012 1013 if (interrupts & ERR_LL_MASK) 1014 dev_err(dev, "Access error from LL port - %x\n", 1015 interrupts); 1016 } 1017 1018 return ret; 1019 } 1020 1021 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 1022 { 1023 struct emif_data *emif = dev_id; 1024 1025 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 1026 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1027 1028 /* If we have Power OFF ability, use it, else try restarting */ 1029 if (pm_power_off) { 1030 kernel_power_off(); 1031 } else { 1032 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n"); 1033 kernel_restart("SDRAM Over-temp Emergency restart"); 1034 } 1035 return IRQ_HANDLED; 1036 } 1037 1038 spin_lock_irqsave(&emif_lock, irq_state); 1039 1040 if (emif->curr_regs) { 1041 setup_temperature_sensitive_regs(emif, emif->curr_regs); 1042 do_freq_update(); 1043 } else { 1044 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 1045 } 1046 1047 spin_unlock_irqrestore(&emif_lock, irq_state); 1048 1049 return IRQ_HANDLED; 1050 } 1051 1052 static void clear_all_interrupts(struct emif_data *emif) 1053 { 1054 void __iomem *base = emif->base; 1055 1056 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 1057 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 1058 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1059 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 1060 base + EMIF_LL_OCP_INTERRUPT_STATUS); 1061 } 1062 1063 static void disable_and_clear_all_interrupts(struct emif_data *emif) 1064 { 1065 void __iomem *base = emif->base; 1066 1067 /* Disable all interrupts */ 1068 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 1069 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 1070 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1071 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 1072 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 1073 1074 /* Clear all interrupts */ 1075 clear_all_interrupts(emif); 1076 } 1077 1078 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 1079 { 1080 u32 interrupts, type; 1081 void __iomem *base = emif->base; 1082 1083 type = emif->plat_data->device_info->type; 1084 1085 clear_all_interrupts(emif); 1086 1087 /* Enable interrupts for SYS interface */ 1088 interrupts = EN_ERR_SYS_MASK; 1089 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1090 interrupts |= EN_TA_SYS_MASK; 1091 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1092 1093 /* Enable interrupts for LL interface */ 1094 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1095 /* TA need not be enabled for LL */ 1096 interrupts = EN_ERR_LL_MASK; 1097 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1098 } 1099 1100 /* setup IRQ handlers */ 1101 return devm_request_threaded_irq(emif->dev, irq, 1102 emif_interrupt_handler, 1103 emif_threaded_isr, 1104 0, dev_name(emif->dev), 1105 emif); 1106 1107 } 1108 1109 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1110 { 1111 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1112 void __iomem *base = emif->base; 1113 const struct lpddr2_addressing *addressing; 1114 const struct ddr_device_info *device_info; 1115 1116 device_info = emif->plat_data->device_info; 1117 addressing = get_addressing_table(device_info); 1118 1119 /* 1120 * Init power management settings 1121 * We don't know the frequency yet. Use a high frequency 1122 * value for a conservative timeout setting 1123 */ 1124 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1125 emif->plat_data->ip_rev); 1126 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1127 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1128 1129 /* Init ZQ calibration settings */ 1130 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1131 device_info->cal_resistors_per_cs); 1132 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1133 1134 /* Check temperature level temperature level*/ 1135 get_temperature_level(emif); 1136 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1137 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1138 1139 /* Init temperature polling */ 1140 temp_alert_cfg = get_temp_alert_config(addressing, 1141 emif->plat_data->custom_configs, device_info->cs1_used, 1142 device_info->io_width, get_emif_bus_width(emif)); 1143 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1144 1145 /* 1146 * Program external PHY control registers that are not frequency 1147 * dependent 1148 */ 1149 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1150 return; 1151 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1152 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1153 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1154 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1155 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1156 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1157 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1158 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1159 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1160 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1161 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1162 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1163 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1164 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1165 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1166 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1167 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1168 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1169 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1170 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1171 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1172 } 1173 1174 static void get_default_timings(struct emif_data *emif) 1175 { 1176 struct emif_platform_data *pd = emif->plat_data; 1177 1178 pd->timings = lpddr2_jedec_timings; 1179 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1180 1181 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1182 } 1183 1184 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1185 u32 ip_rev, struct device *dev) 1186 { 1187 int valid; 1188 1189 valid = (type == DDR_TYPE_LPDDR2_S4 || 1190 type == DDR_TYPE_LPDDR2_S2) 1191 && (density >= DDR_DENSITY_64Mb 1192 && density <= DDR_DENSITY_8Gb) 1193 && (io_width >= DDR_IO_WIDTH_8 1194 && io_width <= DDR_IO_WIDTH_32); 1195 1196 /* Combinations of EMIF and PHY revisions that we support today */ 1197 switch (ip_rev) { 1198 case EMIF_4D: 1199 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1200 break; 1201 case EMIF_4D5: 1202 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1203 break; 1204 default: 1205 valid = 0; 1206 } 1207 1208 if (!valid) 1209 dev_err(dev, "%s: invalid DDR details\n", __func__); 1210 return valid; 1211 } 1212 1213 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1214 struct device *dev) 1215 { 1216 int valid = 1; 1217 1218 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1219 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1220 valid = cust_cfgs->lpmode_freq_threshold && 1221 cust_cfgs->lpmode_timeout_performance && 1222 cust_cfgs->lpmode_timeout_power; 1223 1224 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1225 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1226 1227 if (!valid) 1228 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1229 1230 return valid; 1231 } 1232 1233 #if defined(CONFIG_OF) 1234 static void __init_or_module of_get_custom_configs(struct device_node *np_emif, 1235 struct emif_data *emif) 1236 { 1237 struct emif_custom_configs *cust_cfgs = NULL; 1238 int len; 1239 const __be32 *lpmode, *poll_intvl; 1240 1241 lpmode = of_get_property(np_emif, "low-power-mode", &len); 1242 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); 1243 1244 if (lpmode || poll_intvl) 1245 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), 1246 GFP_KERNEL); 1247 1248 if (!cust_cfgs) 1249 return; 1250 1251 if (lpmode) { 1252 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; 1253 cust_cfgs->lpmode = be32_to_cpup(lpmode); 1254 of_property_read_u32(np_emif, 1255 "low-power-mode-timeout-performance", 1256 &cust_cfgs->lpmode_timeout_performance); 1257 of_property_read_u32(np_emif, 1258 "low-power-mode-timeout-power", 1259 &cust_cfgs->lpmode_timeout_power); 1260 of_property_read_u32(np_emif, 1261 "low-power-mode-freq-threshold", 1262 &cust_cfgs->lpmode_freq_threshold); 1263 } 1264 1265 if (poll_intvl) { 1266 cust_cfgs->mask |= 1267 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; 1268 cust_cfgs->temp_alert_poll_interval_ms = 1269 be32_to_cpup(poll_intvl); 1270 } 1271 1272 if (of_find_property(np_emif, "extended-temp-part", &len)) 1273 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART; 1274 1275 if (!is_custom_config_valid(cust_cfgs, emif->dev)) { 1276 devm_kfree(emif->dev, cust_cfgs); 1277 return; 1278 } 1279 1280 emif->plat_data->custom_configs = cust_cfgs; 1281 } 1282 1283 static void __init_or_module of_get_ddr_info(struct device_node *np_emif, 1284 struct device_node *np_ddr, 1285 struct ddr_device_info *dev_info) 1286 { 1287 u32 density = 0, io_width = 0; 1288 int len; 1289 1290 if (of_find_property(np_emif, "cs1-used", &len)) 1291 dev_info->cs1_used = true; 1292 1293 if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) 1294 dev_info->cal_resistors_per_cs = true; 1295 1296 if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4")) 1297 dev_info->type = DDR_TYPE_LPDDR2_S4; 1298 else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2")) 1299 dev_info->type = DDR_TYPE_LPDDR2_S2; 1300 1301 of_property_read_u32(np_ddr, "density", &density); 1302 of_property_read_u32(np_ddr, "io-width", &io_width); 1303 1304 /* Convert from density in Mb to the density encoding in jedc_ddr.h */ 1305 if (density & (density - 1)) 1306 dev_info->density = 0; 1307 else 1308 dev_info->density = __fls(density) - 5; 1309 1310 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ 1311 if (io_width & (io_width - 1)) 1312 dev_info->io_width = 0; 1313 else 1314 dev_info->io_width = __fls(io_width) - 1; 1315 } 1316 1317 static struct emif_data * __init_or_module of_get_memory_device_details( 1318 struct device_node *np_emif, struct device *dev) 1319 { 1320 struct emif_data *emif = NULL; 1321 struct ddr_device_info *dev_info = NULL; 1322 struct emif_platform_data *pd = NULL; 1323 struct device_node *np_ddr; 1324 int len; 1325 1326 np_ddr = of_parse_phandle(np_emif, "device-handle", 0); 1327 if (!np_ddr) 1328 goto error; 1329 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); 1330 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1331 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1332 1333 if (!emif || !pd || !dev_info) { 1334 dev_err(dev, "%s: Out of memory!!\n", 1335 __func__); 1336 goto error; 1337 } 1338 1339 emif->plat_data = pd; 1340 pd->device_info = dev_info; 1341 emif->dev = dev; 1342 emif->np_ddr = np_ddr; 1343 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1344 1345 if (of_device_is_compatible(np_emif, "ti,emif-4d")) 1346 emif->plat_data->ip_rev = EMIF_4D; 1347 else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) 1348 emif->plat_data->ip_rev = EMIF_4D5; 1349 1350 of_property_read_u32(np_emif, "phy-type", &pd->phy_type); 1351 1352 if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) 1353 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; 1354 1355 of_get_ddr_info(np_emif, np_ddr, dev_info); 1356 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, 1357 pd->device_info->io_width, pd->phy_type, pd->ip_rev, 1358 emif->dev)) { 1359 dev_err(dev, "%s: invalid device data!!\n", __func__); 1360 goto error; 1361 } 1362 /* 1363 * For EMIF instances other than EMIF1 see if the devices connected 1364 * are exactly same as on EMIF1(which is typically the case). If so, 1365 * mark it as a duplicate of EMIF1. This will save some memory and 1366 * computation. 1367 */ 1368 if (emif1 && emif1->np_ddr == np_ddr) { 1369 emif->duplicate = true; 1370 goto out; 1371 } else if (emif1) { 1372 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1373 __func__); 1374 } 1375 1376 of_get_custom_configs(np_emif, emif); 1377 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, 1378 emif->plat_data->device_info->type, 1379 &emif->plat_data->timings_arr_size); 1380 1381 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); 1382 goto out; 1383 1384 error: 1385 return NULL; 1386 out: 1387 return emif; 1388 } 1389 1390 #else 1391 1392 static struct emif_data * __init_or_module of_get_memory_device_details( 1393 struct device_node *np_emif, struct device *dev) 1394 { 1395 return NULL; 1396 } 1397 #endif 1398 1399 static struct emif_data *__init_or_module get_device_details( 1400 struct platform_device *pdev) 1401 { 1402 u32 size; 1403 struct emif_data *emif = NULL; 1404 struct ddr_device_info *dev_info; 1405 struct emif_custom_configs *cust_cfgs; 1406 struct emif_platform_data *pd; 1407 struct device *dev; 1408 void *temp; 1409 1410 pd = pdev->dev.platform_data; 1411 dev = &pdev->dev; 1412 1413 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1414 pd->device_info->density, pd->device_info->io_width, 1415 pd->phy_type, pd->ip_rev, dev))) { 1416 dev_err(dev, "%s: invalid device data\n", __func__); 1417 goto error; 1418 } 1419 1420 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1421 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1422 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1423 1424 if (!emif || !pd || !dev_info) { 1425 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1426 goto error; 1427 } 1428 1429 memcpy(temp, pd, sizeof(*pd)); 1430 pd = temp; 1431 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1432 1433 pd->device_info = dev_info; 1434 emif->plat_data = pd; 1435 emif->dev = dev; 1436 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1437 1438 /* 1439 * For EMIF instances other than EMIF1 see if the devices connected 1440 * are exactly same as on EMIF1(which is typically the case). If so, 1441 * mark it as a duplicate of EMIF1 and skip copying timings data. 1442 * This will save some memory and some computation later. 1443 */ 1444 emif->duplicate = emif1 && (memcmp(dev_info, 1445 emif1->plat_data->device_info, 1446 sizeof(struct ddr_device_info)) == 0); 1447 1448 if (emif->duplicate) { 1449 pd->timings = NULL; 1450 pd->min_tck = NULL; 1451 goto out; 1452 } else if (emif1) { 1453 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1454 __func__); 1455 } 1456 1457 /* 1458 * Copy custom configs - ignore allocation error, if any, as 1459 * custom_configs is not very critical 1460 */ 1461 cust_cfgs = pd->custom_configs; 1462 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1463 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1464 if (temp) 1465 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1466 else 1467 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1468 __LINE__); 1469 pd->custom_configs = temp; 1470 } 1471 1472 /* 1473 * Copy timings and min-tck values from platform data. If it is not 1474 * available or if memory allocation fails, use JEDEC defaults 1475 */ 1476 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1477 if (pd->timings) { 1478 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1479 if (temp) { 1480 memcpy(temp, pd->timings, size); 1481 pd->timings = temp; 1482 } else { 1483 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1484 __LINE__); 1485 get_default_timings(emif); 1486 } 1487 } else { 1488 get_default_timings(emif); 1489 } 1490 1491 if (pd->min_tck) { 1492 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1493 if (temp) { 1494 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1495 pd->min_tck = temp; 1496 } else { 1497 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1498 __LINE__); 1499 pd->min_tck = &lpddr2_jedec_min_tck; 1500 } 1501 } else { 1502 pd->min_tck = &lpddr2_jedec_min_tck; 1503 } 1504 1505 out: 1506 return emif; 1507 1508 error: 1509 return NULL; 1510 } 1511 1512 static int __init_or_module emif_probe(struct platform_device *pdev) 1513 { 1514 struct emif_data *emif; 1515 struct resource *res; 1516 int irq; 1517 1518 if (pdev->dev.of_node) 1519 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); 1520 else 1521 emif = get_device_details(pdev); 1522 1523 if (!emif) { 1524 pr_err("%s: error getting device data\n", __func__); 1525 goto error; 1526 } 1527 1528 list_add(&emif->node, &device_list); 1529 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1530 1531 /* Save pointers to each other in emif and device structures */ 1532 emif->dev = &pdev->dev; 1533 platform_set_drvdata(pdev, emif); 1534 1535 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1536 emif->base = devm_ioremap_resource(emif->dev, res); 1537 if (IS_ERR(emif->base)) 1538 goto error; 1539 1540 irq = platform_get_irq(pdev, 0); 1541 if (irq < 0) 1542 goto error; 1543 1544 emif_onetime_settings(emif); 1545 emif_debugfs_init(emif); 1546 disable_and_clear_all_interrupts(emif); 1547 setup_interrupts(emif, irq); 1548 1549 /* One-time actions taken on probing the first device */ 1550 if (!emif1) { 1551 emif1 = emif; 1552 spin_lock_init(&emif_lock); 1553 1554 /* 1555 * TODO: register notifiers for frequency and voltage 1556 * change here once the respective frameworks are 1557 * available 1558 */ 1559 } 1560 1561 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1562 __func__, emif->base, irq); 1563 1564 return 0; 1565 error: 1566 return -ENODEV; 1567 } 1568 1569 static int __exit emif_remove(struct platform_device *pdev) 1570 { 1571 struct emif_data *emif = platform_get_drvdata(pdev); 1572 1573 emif_debugfs_exit(emif); 1574 1575 return 0; 1576 } 1577 1578 static void emif_shutdown(struct platform_device *pdev) 1579 { 1580 struct emif_data *emif = platform_get_drvdata(pdev); 1581 1582 disable_and_clear_all_interrupts(emif); 1583 } 1584 1585 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1586 struct emif_regs *regs) 1587 { 1588 u32 ip_rev, phy_type; 1589 u32 cl, type; 1590 const struct lpddr2_timings *timings; 1591 const struct lpddr2_min_tck *min_tck; 1592 const struct ddr_device_info *device_info; 1593 const struct lpddr2_addressing *addressing; 1594 struct emif_data *emif_for_calc; 1595 struct device *dev; 1596 1597 dev = emif->dev; 1598 /* 1599 * If the devices on this EMIF instance is duplicate of EMIF1, 1600 * use EMIF1 details for the calculation 1601 */ 1602 emif_for_calc = emif->duplicate ? emif1 : emif; 1603 timings = get_timings_table(emif_for_calc, freq); 1604 addressing = emif_for_calc->addressing; 1605 if (!timings || !addressing) { 1606 dev_err(dev, "%s: not enough data available for %dHz", 1607 __func__, freq); 1608 return -1; 1609 } 1610 1611 device_info = emif_for_calc->plat_data->device_info; 1612 type = device_info->type; 1613 ip_rev = emif_for_calc->plat_data->ip_rev; 1614 phy_type = emif_for_calc->plat_data->phy_type; 1615 1616 min_tck = emif_for_calc->plat_data->min_tck; 1617 1618 set_ddr_clk_period(freq); 1619 1620 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1621 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1622 addressing); 1623 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1624 addressing, type); 1625 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1626 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1627 1628 cl = get_cl(emif); 1629 1630 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1631 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1632 timings, freq, cl); 1633 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1634 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1635 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1636 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1637 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1638 } else { 1639 return -1; 1640 } 1641 1642 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1643 regs->pwr_mgmt_ctrl_shdw = 1644 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1645 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1646 1647 if (ip_rev & EMIF_4D) { 1648 regs->read_idle_ctrl_shdw_normal = 1649 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1650 1651 regs->read_idle_ctrl_shdw_volt_ramp = 1652 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1653 } else if (ip_rev & EMIF_4D5) { 1654 regs->dll_calib_ctrl_shdw_normal = 1655 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1656 1657 regs->dll_calib_ctrl_shdw_volt_ramp = 1658 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1659 } 1660 1661 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1662 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1663 addressing); 1664 1665 regs->sdram_tim1_shdw_derated = 1666 get_sdram_tim_1_shdw_derated(timings, min_tck, 1667 addressing); 1668 1669 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1670 min_tck, addressing, type, ip_rev, 1671 EMIF_DERATED_TIMINGS); 1672 } 1673 1674 regs->freq = freq; 1675 1676 return 0; 1677 } 1678 1679 /* 1680 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1681 * given frequency(freq): 1682 * 1683 * As an optimisation, every EMIF instance other than EMIF1 shares the 1684 * register cache with EMIF1 if the devices connected on this instance 1685 * are same as that on EMIF1(indicated by the duplicate flag) 1686 * 1687 * If we do not have an entry corresponding to the frequency given, we 1688 * allocate a new entry and calculate the values 1689 * 1690 * Upon finding the right reg dump, save it in curr_regs. It can be 1691 * directly used for thermal de-rating and voltage ramping changes. 1692 */ 1693 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1694 { 1695 int i; 1696 struct emif_regs **regs_cache; 1697 struct emif_regs *regs = NULL; 1698 struct device *dev; 1699 1700 dev = emif->dev; 1701 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1702 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1703 return emif->curr_regs; 1704 } 1705 1706 if (emif->duplicate) 1707 regs_cache = emif1->regs_cache; 1708 else 1709 regs_cache = emif->regs_cache; 1710 1711 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1712 if (regs_cache[i]->freq == freq) { 1713 regs = regs_cache[i]; 1714 dev_dbg(dev, 1715 "%s: reg dump found in reg cache for %u Hz\n", 1716 __func__, freq); 1717 break; 1718 } 1719 } 1720 1721 /* 1722 * If we don't have an entry for this frequency in the cache create one 1723 * and calculate the values 1724 */ 1725 if (!regs) { 1726 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1727 if (!regs) 1728 return NULL; 1729 1730 if (get_emif_reg_values(emif, freq, regs)) { 1731 devm_kfree(emif->dev, regs); 1732 return NULL; 1733 } 1734 1735 /* 1736 * Now look for an un-used entry in the cache and save the 1737 * newly created struct. If there are no free entries 1738 * over-write the last entry 1739 */ 1740 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1741 ; 1742 1743 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1744 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1745 __func__); 1746 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1747 devm_kfree(emif->dev, regs_cache[i]); 1748 } 1749 regs_cache[i] = regs; 1750 } 1751 1752 return regs; 1753 } 1754 1755 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1756 { 1757 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1758 volt_state); 1759 1760 if (!emif->curr_regs) { 1761 dev_err(emif->dev, 1762 "%s: volt-notify before registers are ready: %d\n", 1763 __func__, volt_state); 1764 return; 1765 } 1766 1767 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1768 } 1769 1770 /* 1771 * TODO: voltage notify handling should be hooked up to 1772 * regulator framework as soon as the necessary support 1773 * is available in mainline kernel. This function is un-used 1774 * right now. 1775 */ 1776 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1777 { 1778 struct emif_data *emif; 1779 1780 spin_lock_irqsave(&emif_lock, irq_state); 1781 1782 list_for_each_entry(emif, &device_list, node) 1783 do_volt_notify_handling(emif, volt_state); 1784 do_freq_update(); 1785 1786 spin_unlock_irqrestore(&emif_lock, irq_state); 1787 } 1788 1789 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1790 { 1791 struct emif_regs *regs; 1792 1793 regs = get_regs(emif, new_freq); 1794 if (!regs) 1795 return; 1796 1797 emif->curr_regs = regs; 1798 1799 /* 1800 * Update the shadow registers: 1801 * Temperature and voltage-ramp sensitive settings are also configured 1802 * in terms of DDR cycles. So, we need to update them too when there 1803 * is a freq change 1804 */ 1805 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1806 __func__, new_freq); 1807 setup_registers(emif, regs); 1808 setup_temperature_sensitive_regs(emif, regs); 1809 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1810 1811 /* 1812 * Part of workaround for errata i728. See do_freq_update() 1813 * for more details 1814 */ 1815 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1816 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1817 } 1818 1819 /* 1820 * TODO: frequency notify handling should be hooked up to 1821 * clock framework as soon as the necessary support is 1822 * available in mainline kernel. This function is un-used 1823 * right now. 1824 */ 1825 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1826 { 1827 struct emif_data *emif; 1828 1829 /* 1830 * NOTE: we are taking the spin-lock here and releases it 1831 * only in post-notifier. This doesn't look good and 1832 * Sparse complains about it, but this seems to be 1833 * un-avoidable. We need to lock a sequence of events 1834 * that is split between EMIF and clock framework. 1835 * 1836 * 1. EMIF driver updates EMIF timings in shadow registers in the 1837 * frequency pre-notify callback from clock framework 1838 * 2. clock framework sets up the registers for the new frequency 1839 * 3. clock framework initiates a hw-sequence that updates 1840 * the frequency EMIF timings synchronously. 1841 * 1842 * All these 3 steps should be performed as an atomic operation 1843 * vis-a-vis similar sequence in the EMIF interrupt handler 1844 * for temperature events. Otherwise, there could be race 1845 * conditions that could result in incorrect EMIF timings for 1846 * a given frequency 1847 */ 1848 spin_lock_irqsave(&emif_lock, irq_state); 1849 1850 list_for_each_entry(emif, &device_list, node) 1851 do_freq_pre_notify_handling(emif, new_freq); 1852 } 1853 1854 static void do_freq_post_notify_handling(struct emif_data *emif) 1855 { 1856 /* 1857 * Part of workaround for errata i728. See do_freq_update() 1858 * for more details 1859 */ 1860 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1861 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1862 } 1863 1864 /* 1865 * TODO: frequency notify handling should be hooked up to 1866 * clock framework as soon as the necessary support is 1867 * available in mainline kernel. This function is un-used 1868 * right now. 1869 */ 1870 static void __attribute__((unused)) freq_post_notify_handling(void) 1871 { 1872 struct emif_data *emif; 1873 1874 list_for_each_entry(emif, &device_list, node) 1875 do_freq_post_notify_handling(emif); 1876 1877 /* 1878 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1879 * for more details 1880 */ 1881 spin_unlock_irqrestore(&emif_lock, irq_state); 1882 } 1883 1884 #if defined(CONFIG_OF) 1885 static const struct of_device_id emif_of_match[] = { 1886 { .compatible = "ti,emif-4d" }, 1887 { .compatible = "ti,emif-4d5" }, 1888 {}, 1889 }; 1890 MODULE_DEVICE_TABLE(of, emif_of_match); 1891 #endif 1892 1893 static struct platform_driver emif_driver = { 1894 .remove = __exit_p(emif_remove), 1895 .shutdown = emif_shutdown, 1896 .driver = { 1897 .name = "emif", 1898 .of_match_table = of_match_ptr(emif_of_match), 1899 }, 1900 }; 1901 1902 module_platform_driver_probe(emif_driver, emif_probe); 1903 1904 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1905 MODULE_LICENSE("GPL"); 1906 MODULE_ALIAS("platform:emif"); 1907 MODULE_AUTHOR("Texas Instruments Inc"); 1908