xref: /linux-6.15/arch/mips/kernel/process.c (revision 7895d662)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle ([email protected])
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/mipsregs.h>
46 #include <asm/processor.h>
47 #include <asm/reg.h>
48 #include <linux/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/elf.h>
51 #include <asm/isadep.h>
52 #include <asm/inst.h>
53 #include <asm/stacktrace.h>
54 #include <asm/irq_regs.h>
55 
56 #ifdef CONFIG_HOTPLUG_CPU
57 void arch_cpu_idle_dead(void)
58 {
59 	play_dead();
60 }
61 #endif
62 
63 asmlinkage void ret_from_fork(void);
64 asmlinkage void ret_from_kernel_thread(void);
65 
66 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
67 {
68 	unsigned long status;
69 
70 	/* New thread loses kernel privileges. */
71 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
72 	status |= KU_USER;
73 	regs->cp0_status = status;
74 	lose_fpu(0);
75 	clear_thread_flag(TIF_MSA_CTX_LIVE);
76 	clear_used_math();
77 #ifdef CONFIG_MIPS_FP_SUPPORT
78 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
79 #endif
80 	init_dsp();
81 	regs->cp0_epc = pc;
82 	regs->regs[29] = sp;
83 }
84 
85 void exit_thread(struct task_struct *tsk)
86 {
87 	/*
88 	 * User threads may have allocated a delay slot emulation frame.
89 	 * If so, clean up that allocation.
90 	 */
91 	if (!(current->flags & PF_KTHREAD))
92 		dsemul_thread_cleanup(tsk);
93 }
94 
95 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
96 {
97 	/*
98 	 * Save any process state which is live in hardware registers to the
99 	 * parent context prior to duplication. This prevents the new child
100 	 * state becoming stale if the parent is preempted before copy_thread()
101 	 * gets a chance to save the parent's live hardware registers to the
102 	 * child context.
103 	 */
104 	preempt_disable();
105 
106 	if (is_msa_enabled())
107 		save_msa(current);
108 	else if (is_fpu_owner())
109 		_save_fp(current);
110 
111 	save_dsp(current);
112 
113 	preempt_enable();
114 
115 	*dst = *src;
116 	return 0;
117 }
118 
119 /*
120  * Copy architecture-specific thread state
121  */
122 int copy_thread(unsigned long clone_flags, unsigned long usp,
123 		unsigned long kthread_arg, struct task_struct *p,
124 		unsigned long tls)
125 {
126 	struct thread_info *ti = task_thread_info(p);
127 	struct pt_regs *childregs, *regs = current_pt_regs();
128 	unsigned long childksp;
129 
130 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
131 
132 	/* set up new TSS. */
133 	childregs = (struct pt_regs *) childksp - 1;
134 	/*  Put the stack after the struct pt_regs.  */
135 	childksp = (unsigned long) childregs;
136 	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
137 	if (unlikely(p->flags & PF_KTHREAD)) {
138 		/* kernel thread */
139 		unsigned long status = p->thread.cp0_status;
140 		memset(childregs, 0, sizeof(struct pt_regs));
141 		ti->addr_limit = KERNEL_DS;
142 		p->thread.reg16 = usp; /* fn */
143 		p->thread.reg17 = kthread_arg;
144 		p->thread.reg29 = childksp;
145 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
146 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
147 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
148 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
149 #else
150 		status |= ST0_EXL;
151 #endif
152 		childregs->cp0_status = status;
153 		return 0;
154 	}
155 
156 	/* user thread */
157 	*childregs = *regs;
158 	childregs->regs[7] = 0; /* Clear error flag */
159 	childregs->regs[2] = 0; /* Child gets zero as return value */
160 	if (usp)
161 		childregs->regs[29] = usp;
162 	ti->addr_limit = USER_DS;
163 
164 	p->thread.reg29 = (unsigned long) childregs;
165 	p->thread.reg31 = (unsigned long) ret_from_fork;
166 
167 	/*
168 	 * New tasks lose permission to use the fpu. This accelerates context
169 	 * switching for most programs since they don't use the fpu.
170 	 */
171 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
172 
173 	clear_tsk_thread_flag(p, TIF_USEDFPU);
174 	clear_tsk_thread_flag(p, TIF_USEDMSA);
175 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
176 
177 #ifdef CONFIG_MIPS_MT_FPAFF
178 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
179 #endif /* CONFIG_MIPS_MT_FPAFF */
180 
181 #ifdef CONFIG_MIPS_FP_SUPPORT
182 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
183 #endif
184 
185 	if (clone_flags & CLONE_SETTLS)
186 		ti->tp_value = tls;
187 
188 	return 0;
189 }
190 
191 #ifdef CONFIG_STACKPROTECTOR
192 #include <linux/stackprotector.h>
193 unsigned long __stack_chk_guard __read_mostly;
194 EXPORT_SYMBOL(__stack_chk_guard);
195 #endif
196 
197 struct mips_frame_info {
198 	void		*func;
199 	unsigned long	func_size;
200 	int		frame_size;
201 	int		pc_offset;
202 };
203 
204 #define J_TARGET(pc,target)	\
205 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
206 
207 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
208 {
209 #ifdef CONFIG_CPU_MICROMIPS
210 	/*
211 	 * swsp ra,offset
212 	 * swm16 reglist,offset(sp)
213 	 * swm32 reglist,offset(sp)
214 	 * sw32 ra,offset(sp)
215 	 * jradiussp - NOT SUPPORTED
216 	 *
217 	 * microMIPS is way more fun...
218 	 */
219 	if (mm_insn_16bit(ip->word >> 16)) {
220 		switch (ip->mm16_r5_format.opcode) {
221 		case mm_swsp16_op:
222 			if (ip->mm16_r5_format.rt != 31)
223 				return 0;
224 
225 			*poff = ip->mm16_r5_format.imm;
226 			*poff = (*poff << 2) / sizeof(ulong);
227 			return 1;
228 
229 		case mm_pool16c_op:
230 			switch (ip->mm16_m_format.func) {
231 			case mm_swm16_op:
232 				*poff = ip->mm16_m_format.imm;
233 				*poff += 1 + ip->mm16_m_format.rlist;
234 				*poff = (*poff << 2) / sizeof(ulong);
235 				return 1;
236 
237 			default:
238 				return 0;
239 			}
240 
241 		default:
242 			return 0;
243 		}
244 	}
245 
246 	switch (ip->i_format.opcode) {
247 	case mm_sw32_op:
248 		if (ip->i_format.rs != 29)
249 			return 0;
250 		if (ip->i_format.rt != 31)
251 			return 0;
252 
253 		*poff = ip->i_format.simmediate / sizeof(ulong);
254 		return 1;
255 
256 	case mm_pool32b_op:
257 		switch (ip->mm_m_format.func) {
258 		case mm_swm32_func:
259 			if (ip->mm_m_format.rd < 0x10)
260 				return 0;
261 			if (ip->mm_m_format.base != 29)
262 				return 0;
263 
264 			*poff = ip->mm_m_format.simmediate;
265 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
266 			*poff /= sizeof(ulong);
267 			return 1;
268 		default:
269 			return 0;
270 		}
271 
272 	default:
273 		return 0;
274 	}
275 #else
276 	/* sw / sd $ra, offset($sp) */
277 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
278 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
279 		*poff = ip->i_format.simmediate / sizeof(ulong);
280 		return 1;
281 	}
282 #ifdef CONFIG_CPU_LOONGSON64
283 	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
284 		      (ip->loongson3_lswc2_format.ls == 1) &&
285 		      (ip->loongson3_lswc2_format.fr == 0) &&
286 		      (ip->loongson3_lswc2_format.base == 29)) {
287 		if (ip->loongson3_lswc2_format.rt == 31) {
288 			*poff = ip->loongson3_lswc2_format.offset << 1;
289 			return 1;
290 		}
291 		if (ip->loongson3_lswc2_format.rq == 31) {
292 			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
293 			return 1;
294 		}
295 	}
296 #endif
297 	return 0;
298 #endif
299 }
300 
301 static inline int is_jump_ins(union mips_instruction *ip)
302 {
303 #ifdef CONFIG_CPU_MICROMIPS
304 	/*
305 	 * jr16,jrc,jalr16,jalr16
306 	 * jal
307 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
308 	 * jraddiusp - NOT SUPPORTED
309 	 *
310 	 * microMIPS is kind of more fun...
311 	 */
312 	if (mm_insn_16bit(ip->word >> 16)) {
313 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
314 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
315 			return 1;
316 		return 0;
317 	}
318 
319 	if (ip->j_format.opcode == mm_j32_op)
320 		return 1;
321 	if (ip->j_format.opcode == mm_jal32_op)
322 		return 1;
323 	if (ip->r_format.opcode != mm_pool32a_op ||
324 			ip->r_format.func != mm_pool32axf_op)
325 		return 0;
326 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
327 #else
328 	if (ip->j_format.opcode == j_op)
329 		return 1;
330 	if (ip->j_format.opcode == jal_op)
331 		return 1;
332 	if (ip->r_format.opcode != spec_op)
333 		return 0;
334 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
335 #endif
336 }
337 
338 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
339 {
340 #ifdef CONFIG_CPU_MICROMIPS
341 	unsigned short tmp;
342 
343 	/*
344 	 * addiusp -imm
345 	 * addius5 sp,-imm
346 	 * addiu32 sp,sp,-imm
347 	 * jradiussp - NOT SUPPORTED
348 	 *
349 	 * microMIPS is not more fun...
350 	 */
351 	if (mm_insn_16bit(ip->word >> 16)) {
352 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
353 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
354 			tmp = ip->mm_b0_format.simmediate >> 1;
355 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
356 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
357 				tmp ^= 0x100;
358 			*frame_size = -(signed short)(tmp << 2);
359 			return 1;
360 		}
361 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
362 		    ip->mm16_r5_format.rt == 29) {
363 			tmp = ip->mm16_r5_format.imm >> 1;
364 			*frame_size = -(signed short)(tmp & 0xf);
365 			return 1;
366 		}
367 		return 0;
368 	}
369 
370 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
371 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
372 		*frame_size = -ip->i_format.simmediate;
373 		return 1;
374 	}
375 #else
376 	/* addiu/daddiu sp,sp,-imm */
377 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
378 		return 0;
379 
380 	if (ip->i_format.opcode == addiu_op ||
381 	    ip->i_format.opcode == daddiu_op) {
382 		*frame_size = -ip->i_format.simmediate;
383 		return 1;
384 	}
385 #endif
386 	return 0;
387 }
388 
389 static int get_frame_info(struct mips_frame_info *info)
390 {
391 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
392 	union mips_instruction insn, *ip;
393 	const unsigned int max_insns = 128;
394 	unsigned int last_insn_size = 0;
395 	unsigned int i;
396 	bool saw_jump = false;
397 
398 	info->pc_offset = -1;
399 	info->frame_size = 0;
400 
401 	ip = (void *)msk_isa16_mode((ulong)info->func);
402 	if (!ip)
403 		goto err;
404 
405 	for (i = 0; i < max_insns; i++) {
406 		ip = (void *)ip + last_insn_size;
407 
408 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
409 			insn.word = ip->halfword[0] << 16;
410 			last_insn_size = 2;
411 		} else if (is_mmips) {
412 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
413 			last_insn_size = 4;
414 		} else {
415 			insn.word = ip->word;
416 			last_insn_size = 4;
417 		}
418 
419 		if (!info->frame_size) {
420 			is_sp_move_ins(&insn, &info->frame_size);
421 			continue;
422 		} else if (!saw_jump && is_jump_ins(ip)) {
423 			/*
424 			 * If we see a jump instruction, we are finished
425 			 * with the frame save.
426 			 *
427 			 * Some functions can have a shortcut return at
428 			 * the beginning of the function, so don't start
429 			 * looking for jump instruction until we see the
430 			 * frame setup.
431 			 *
432 			 * The RA save instruction can get put into the
433 			 * delay slot of the jump instruction, so look
434 			 * at the next instruction, too.
435 			 */
436 			saw_jump = true;
437 			continue;
438 		}
439 		if (info->pc_offset == -1 &&
440 		    is_ra_save_ins(&insn, &info->pc_offset))
441 			break;
442 		if (saw_jump)
443 			break;
444 	}
445 	if (info->frame_size && info->pc_offset >= 0) /* nested */
446 		return 0;
447 	if (info->pc_offset < 0) /* leaf */
448 		return 1;
449 	/* prologue seems bogus... */
450 err:
451 	return -1;
452 }
453 
454 static struct mips_frame_info schedule_mfi __read_mostly;
455 
456 #ifdef CONFIG_KALLSYMS
457 static unsigned long get___schedule_addr(void)
458 {
459 	return kallsyms_lookup_name("__schedule");
460 }
461 #else
462 static unsigned long get___schedule_addr(void)
463 {
464 	union mips_instruction *ip = (void *)schedule;
465 	int max_insns = 8;
466 	int i;
467 
468 	for (i = 0; i < max_insns; i++, ip++) {
469 		if (ip->j_format.opcode == j_op)
470 			return J_TARGET(ip, ip->j_format.target);
471 	}
472 	return 0;
473 }
474 #endif
475 
476 static int __init frame_info_init(void)
477 {
478 	unsigned long size = 0;
479 #ifdef CONFIG_KALLSYMS
480 	unsigned long ofs;
481 #endif
482 	unsigned long addr;
483 
484 	addr = get___schedule_addr();
485 	if (!addr)
486 		addr = (unsigned long)schedule;
487 
488 #ifdef CONFIG_KALLSYMS
489 	kallsyms_lookup_size_offset(addr, &size, &ofs);
490 #endif
491 	schedule_mfi.func = (void *)addr;
492 	schedule_mfi.func_size = size;
493 
494 	get_frame_info(&schedule_mfi);
495 
496 	/*
497 	 * Without schedule() frame info, result given by
498 	 * thread_saved_pc() and get_wchan() are not reliable.
499 	 */
500 	if (schedule_mfi.pc_offset < 0)
501 		printk("Can't analyze schedule() prologue at %p\n", schedule);
502 
503 	return 0;
504 }
505 
506 arch_initcall(frame_info_init);
507 
508 /*
509  * Return saved PC of a blocked thread.
510  */
511 static unsigned long thread_saved_pc(struct task_struct *tsk)
512 {
513 	struct thread_struct *t = &tsk->thread;
514 
515 	/* New born processes are a special case */
516 	if (t->reg31 == (unsigned long) ret_from_fork)
517 		return t->reg31;
518 	if (schedule_mfi.pc_offset < 0)
519 		return 0;
520 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
521 }
522 
523 
524 #ifdef CONFIG_KALLSYMS
525 /* generic stack unwinding function */
526 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
527 					      unsigned long *sp,
528 					      unsigned long pc,
529 					      unsigned long *ra)
530 {
531 	unsigned long low, high, irq_stack_high;
532 	struct mips_frame_info info;
533 	unsigned long size, ofs;
534 	struct pt_regs *regs;
535 	int leaf;
536 
537 	if (!stack_page)
538 		return 0;
539 
540 	/*
541 	 * IRQ stacks start at IRQ_STACK_START
542 	 * task stacks at THREAD_SIZE - 32
543 	 */
544 	low = stack_page;
545 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
546 		high = stack_page + IRQ_STACK_START;
547 		irq_stack_high = high;
548 	} else {
549 		high = stack_page + THREAD_SIZE - 32;
550 		irq_stack_high = 0;
551 	}
552 
553 	/*
554 	 * If we reached the top of the interrupt stack, start unwinding
555 	 * the interrupted task stack.
556 	 */
557 	if (unlikely(*sp == irq_stack_high)) {
558 		unsigned long task_sp = *(unsigned long *)*sp;
559 
560 		/*
561 		 * Check that the pointer saved in the IRQ stack head points to
562 		 * something within the stack of the current task
563 		 */
564 		if (!object_is_on_stack((void *)task_sp))
565 			return 0;
566 
567 		/*
568 		 * Follow pointer to tasks kernel stack frame where interrupted
569 		 * state was saved.
570 		 */
571 		regs = (struct pt_regs *)task_sp;
572 		pc = regs->cp0_epc;
573 		if (!user_mode(regs) && __kernel_text_address(pc)) {
574 			*sp = regs->regs[29];
575 			*ra = regs->regs[31];
576 			return pc;
577 		}
578 		return 0;
579 	}
580 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
581 		return 0;
582 	/*
583 	 * Return ra if an exception occurred at the first instruction
584 	 */
585 	if (unlikely(ofs == 0)) {
586 		pc = *ra;
587 		*ra = 0;
588 		return pc;
589 	}
590 
591 	info.func = (void *)(pc - ofs);
592 	info.func_size = ofs;	/* analyze from start to ofs */
593 	leaf = get_frame_info(&info);
594 	if (leaf < 0)
595 		return 0;
596 
597 	if (*sp < low || *sp + info.frame_size > high)
598 		return 0;
599 
600 	if (leaf)
601 		/*
602 		 * For some extreme cases, get_frame_info() can
603 		 * consider wrongly a nested function as a leaf
604 		 * one. In that cases avoid to return always the
605 		 * same value.
606 		 */
607 		pc = pc != *ra ? *ra : 0;
608 	else
609 		pc = ((unsigned long *)(*sp))[info.pc_offset];
610 
611 	*sp += info.frame_size;
612 	*ra = 0;
613 	return __kernel_text_address(pc) ? pc : 0;
614 }
615 EXPORT_SYMBOL(unwind_stack_by_address);
616 
617 /* used by show_backtrace() */
618 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
619 			   unsigned long pc, unsigned long *ra)
620 {
621 	unsigned long stack_page = 0;
622 	int cpu;
623 
624 	for_each_possible_cpu(cpu) {
625 		if (on_irq_stack(cpu, *sp)) {
626 			stack_page = (unsigned long)irq_stack[cpu];
627 			break;
628 		}
629 	}
630 
631 	if (!stack_page)
632 		stack_page = (unsigned long)task_stack_page(task);
633 
634 	return unwind_stack_by_address(stack_page, sp, pc, ra);
635 }
636 #endif
637 
638 /*
639  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
640  */
641 unsigned long get_wchan(struct task_struct *task)
642 {
643 	unsigned long pc = 0;
644 #ifdef CONFIG_KALLSYMS
645 	unsigned long sp;
646 	unsigned long ra = 0;
647 #endif
648 
649 	if (!task || task == current || task->state == TASK_RUNNING)
650 		goto out;
651 	if (!task_stack_page(task))
652 		goto out;
653 
654 	pc = thread_saved_pc(task);
655 
656 #ifdef CONFIG_KALLSYMS
657 	sp = task->thread.reg29 + schedule_mfi.frame_size;
658 
659 	while (in_sched_functions(pc))
660 		pc = unwind_stack(task, &sp, pc, &ra);
661 #endif
662 
663 out:
664 	return pc;
665 }
666 
667 unsigned long mips_stack_top(void)
668 {
669 	unsigned long top = TASK_SIZE & PAGE_MASK;
670 
671 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
672 		/* One page for branch delay slot "emulation" */
673 		top -= PAGE_SIZE;
674 	}
675 
676 	/* Space for the VDSO, data page & GIC user page */
677 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
678 	top -= PAGE_SIZE;
679 	top -= mips_gic_present() ? PAGE_SIZE : 0;
680 
681 	/* Space for cache colour alignment */
682 	if (cpu_has_dc_aliases)
683 		top -= shm_align_mask + 1;
684 
685 	/* Space to randomize the VDSO base */
686 	if (current->flags & PF_RANDOMIZE)
687 		top -= VDSO_RANDOMIZE_SIZE;
688 
689 	return top;
690 }
691 
692 /*
693  * Don't forget that the stack pointer must be aligned on a 8 bytes
694  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
695  */
696 unsigned long arch_align_stack(unsigned long sp)
697 {
698 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
699 		sp -= get_random_int() & ~PAGE_MASK;
700 
701 	return sp & ALMASK;
702 }
703 
704 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
705 static struct cpumask backtrace_csd_busy;
706 
707 static void handle_backtrace(void *info)
708 {
709 	nmi_cpu_backtrace(get_irq_regs());
710 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
711 }
712 
713 static void raise_backtrace(cpumask_t *mask)
714 {
715 	call_single_data_t *csd;
716 	int cpu;
717 
718 	for_each_cpu(cpu, mask) {
719 		/*
720 		 * If we previously sent an IPI to the target CPU & it hasn't
721 		 * cleared its bit in the busy cpumask then it didn't handle
722 		 * our previous IPI & it's not safe for us to reuse the
723 		 * call_single_data_t.
724 		 */
725 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
726 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
727 				cpu);
728 			continue;
729 		}
730 
731 		csd = &per_cpu(backtrace_csd, cpu);
732 		csd->func = handle_backtrace;
733 		smp_call_function_single_async(cpu, csd);
734 	}
735 }
736 
737 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
738 {
739 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
740 }
741 
742 int mips_get_process_fp_mode(struct task_struct *task)
743 {
744 	int value = 0;
745 
746 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
747 		value |= PR_FP_MODE_FR;
748 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
749 		value |= PR_FP_MODE_FRE;
750 
751 	return value;
752 }
753 
754 static long prepare_for_fp_mode_switch(void *unused)
755 {
756 	/*
757 	 * This is icky, but we use this to simply ensure that all CPUs have
758 	 * context switched, regardless of whether they were previously running
759 	 * kernel or user code. This ensures that no CPU that a mode-switching
760 	 * program may execute on keeps its FPU enabled (& in the old mode)
761 	 * throughout the mode switch.
762 	 */
763 	return 0;
764 }
765 
766 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
767 {
768 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
769 	struct task_struct *t;
770 	struct cpumask process_cpus;
771 	int cpu;
772 
773 	/* If nothing to change, return right away, successfully.  */
774 	if (value == mips_get_process_fp_mode(task))
775 		return 0;
776 
777 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
778 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
779 		return -EOPNOTSUPP;
780 
781 	/* And only for o32 tasks.  */
782 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
783 		return -EOPNOTSUPP;
784 
785 	/* Check the value is valid */
786 	if (value & ~known_bits)
787 		return -EOPNOTSUPP;
788 
789 	/* Setting FRE without FR is not supported.  */
790 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
791 		return -EOPNOTSUPP;
792 
793 	/* Avoid inadvertently triggering emulation */
794 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
795 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
796 		return -EOPNOTSUPP;
797 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
798 		return -EOPNOTSUPP;
799 
800 	/* FR = 0 not supported in MIPS R6 */
801 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
802 		return -EOPNOTSUPP;
803 
804 	/* Indicate the new FP mode in each thread */
805 	for_each_thread(task, t) {
806 		/* Update desired FP register width */
807 		if (value & PR_FP_MODE_FR) {
808 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
809 		} else {
810 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
811 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
812 		}
813 
814 		/* Update desired FP single layout */
815 		if (value & PR_FP_MODE_FRE)
816 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
817 		else
818 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
819 	}
820 
821 	/*
822 	 * We need to ensure that all threads in the process have switched mode
823 	 * before returning, in order to allow userland to not worry about
824 	 * races. We can do this by forcing all CPUs that any thread in the
825 	 * process may be running on to schedule something else - in this case
826 	 * prepare_for_fp_mode_switch().
827 	 *
828 	 * We begin by generating a mask of all CPUs that any thread in the
829 	 * process may be running on.
830 	 */
831 	cpumask_clear(&process_cpus);
832 	for_each_thread(task, t)
833 		cpumask_set_cpu(task_cpu(t), &process_cpus);
834 
835 	/*
836 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
837 	 *
838 	 * The CPUs may have rescheduled already since we switched mode or
839 	 * generated the cpumask, but that doesn't matter. If the task in this
840 	 * process is scheduled out then our scheduling
841 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
842 	 * scheduled in then it will already have picked up the new FP mode
843 	 * whilst doing so.
844 	 */
845 	get_online_cpus();
846 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
847 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
848 	put_online_cpus();
849 
850 	return 0;
851 }
852 
853 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
854 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
855 {
856 	unsigned int i;
857 
858 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
859 		/* k0/k1 are copied as zero. */
860 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
861 			uregs[i] = 0;
862 		else
863 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
864 	}
865 
866 	uregs[MIPS32_EF_LO] = regs->lo;
867 	uregs[MIPS32_EF_HI] = regs->hi;
868 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
869 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
870 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
871 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
872 }
873 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
874 
875 #ifdef CONFIG_64BIT
876 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
877 {
878 	unsigned int i;
879 
880 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
881 		/* k0/k1 are copied as zero. */
882 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
883 			uregs[i] = 0;
884 		else
885 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
886 	}
887 
888 	uregs[MIPS64_EF_LO] = regs->lo;
889 	uregs[MIPS64_EF_HI] = regs->hi;
890 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
891 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
892 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
893 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
894 }
895 #endif /* CONFIG_64BIT */
896