xref: /lighttpd1.4/src/lemon.c (revision 8f84c7be)
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator.  The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
15 
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
22 
23 
24 #ifndef __WIN32__
25 #   if defined(_WIN32) || defined(WIN32)
26 #       define __WIN32__
27 #   endif
28 #endif
29 
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
36 }
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
41 
42 /* #define PRIVATE static */
43 #define PRIVATE
44 
45 #ifdef TEST
46 #define MAXRHS 5       /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
50 
51 extern void memory_error();
52 static int showPrecedenceConflict = 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
54 
55 /*
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada....  To work around the latest problems
58 ** we have to define the following variant of strlen().
59 */
60 #define lemonStrlen(X)   ((int)strlen(X))
61 
62 /*
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe.  So we define our own versions of those routines too.
65 **
66 ** There are three routines here:  lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
70 **
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
73 **
74 **   %d
75 **   %s
76 **   %.*s
77 **
78 */
lemon_addtext(char * zBuf,int * pnUsed,const char * zIn,int nIn,int iWidth)79 static void lemon_addtext(
80   char *zBuf,           /* The buffer to which text is added */
81   int *pnUsed,          /* Slots of the buffer used so far */
82   const char *zIn,      /* Text to add */
83   int nIn,              /* Bytes of text to add.  -1 to use strlen() */
84   int iWidth            /* Field width.  Negative to left justify */
85 ){
86   if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
87   while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
88   if( nIn==0 ) return;
89   memcpy(&zBuf[*pnUsed], zIn, nIn);
90   *pnUsed += nIn;
91   while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
92   zBuf[*pnUsed] = 0;
93 }
lemon_vsprintf(char * str,const char * zFormat,va_list ap)94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
95   int i, j, k, c;
96   int nUsed = 0;
97   const char *z;
98   char zTemp[50];
99   str[0] = 0;
100   for(i=j=0; (c = zFormat[i])!=0; i++){
101     if( c=='%' ){
102       int iWidth = 0;
103       lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
104       c = zFormat[++i];
105       if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
106         if( c=='-' ) i++;
107         while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
108         if( c=='-' ) iWidth = -iWidth;
109         c = zFormat[i];
110       }
111       if( c=='d' ){
112         int v = va_arg(ap, int);
113         if( v<0 ){
114           lemon_addtext(str, &nUsed, "-", 1, iWidth);
115           v = -v;
116         }else if( v==0 ){
117           lemon_addtext(str, &nUsed, "0", 1, iWidth);
118         }
119         k = 0;
120         while( v>0 ){
121           k++;
122           zTemp[sizeof(zTemp)-k] = (v%10) + '0';
123           v /= 10;
124         }
125         lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
126       }else if( c=='s' ){
127         z = va_arg(ap, const char*);
128         lemon_addtext(str, &nUsed, z, -1, iWidth);
129       }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
130         i += 2;
131         k = va_arg(ap, int);
132         z = va_arg(ap, const char*);
133         lemon_addtext(str, &nUsed, z, k, iWidth);
134       }else if( c=='%' ){
135         lemon_addtext(str, &nUsed, "%", 1, 0);
136       }else{
137         fprintf(stderr, "illegal format\n");
138         exit(1);
139       }
140       j = i+1;
141     }
142   }
143   lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
144   return nUsed;
145 }
lemon_sprintf(char * str,const char * format,...)146 static int lemon_sprintf(char *str, const char *format, ...){
147   va_list ap;
148   int rc;
149   va_start(ap, format);
150   rc = lemon_vsprintf(str, format, ap);
151   va_end(ap);
152   return rc;
153 }
lemon_strcpy(char * dest,const char * src)154 static void lemon_strcpy(char *dest, const char *src){
155   while( (*(dest++) = *(src++))!=0 ){}
156 }
lemon_strcat(char * dest,const char * src)157 static void lemon_strcat(char *dest, const char *src){
158   while( *dest ) dest++;
159   lemon_strcpy(dest, src);
160 }
161 
162 
163 /* a few forward declarations... */
164 struct rule;
165 struct lemon;
166 struct action;
167 
168 static struct action *Action_new(void);
169 static struct action *Action_sort(struct action *);
170 
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon*);
173 void FindFirstSets(struct lemon*);
174 void FindStates(struct lemon*);
175 void FindLinks(struct lemon*);
176 void FindFollowSets(struct lemon*);
177 void FindActions(struct lemon*);
178 
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config *Configlist_add(struct rule *, int);
182 struct config *Configlist_addbasis(struct rule *, int);
183 void Configlist_closure(struct lemon *);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config *Configlist_return(void);
187 struct config *Configlist_basis(void);
188 void Configlist_eat(struct config *);
189 void Configlist_reset(void);
190 
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
193 
194 /****** From the file "option.h" ******************************************/
195 enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
196          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
197 struct s_options {
198   enum option_type type;
199   const char *label;
200   char *arg;
201   void(*fn)();
202   const char *message;
203 };
204 int    OptInit(char**,struct s_options*,FILE*);
205 int    OptNArgs(void);
206 char  *OptArg(int);
207 void   OptErr(int);
208 void   OptPrint(void);
209 
210 /******** From the file "parse.h" *****************************************/
211 void Parse(struct lemon *lemp);
212 
213 /********* From the file "plink.h" ***************************************/
214 struct plink *Plink_new(void);
215 void Plink_add(struct plink **, struct config *);
216 void Plink_copy(struct plink **, struct plink *);
217 void Plink_delete(struct plink *);
218 
219 /********** From the file "report.h" *************************************/
220 void Reprint(struct lemon *);
221 void ReportOutput(struct lemon *);
222 void ReportTable(struct lemon *, int, int);
223 void ReportHeader(struct lemon *);
224 void CompressTables(struct lemon *);
225 void ResortStates(struct lemon *);
226 
227 /********** From the file "set.h" ****************************************/
228 void  SetSize(int);             /* All sets will be of size N */
229 char *SetNew(void);               /* A new set for element 0..N */
230 void  SetFree(char*);             /* Deallocate a set */
231 int SetAdd(char*,int);            /* Add element to a set */
232 int SetUnion(char *,char *);    /* A <- A U B, thru element N */
233 #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
234 
235 /********** From the file "struct.h" *************************************/
236 /*
237 ** Principal data structures for the LEMON parser generator.
238 */
239 
240 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
241 
242 /* Symbols (terminals and nonterminals) of the grammar are stored
243 ** in the following: */
244 enum symbol_type {
245   TERMINAL,
246   NONTERMINAL,
247   MULTITERMINAL
248 };
249 enum e_assoc {
250     LEFT,
251     RIGHT,
252     NONE,
253     UNK
254 };
255 struct symbol {
256   const char *name;        /* Name of the symbol */
257   int index;               /* Index number for this symbol */
258   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
259   struct rule *rule;       /* Linked list of rules of this (if an NT) */
260   struct symbol *fallback; /* fallback token in case this token doesn't parse */
261   int prec;                /* Precedence if defined (-1 otherwise) */
262   enum e_assoc assoc;      /* Associativity if precedence is defined */
263   char *firstset;          /* First-set for all rules of this symbol */
264   Boolean lambda;          /* True if NT and can generate an empty string */
265   int useCnt;              /* Number of times used */
266   char *destructor;        /* Code which executes whenever this symbol is
267                            ** popped from the stack during error processing */
268   int destLineno;          /* Line number for start of destructor.  Set to
269                            ** -1 for duplicate destructors. */
270   char *datatype;          /* The data type of information held by this
271                            ** object. Only used if type==NONTERMINAL */
272   int dtnum;               /* The data type number.  In the parser, the value
273                            ** stack is a union.  The .yy%d element of this
274                            ** union is the correct data type for this object */
275   int bContent;            /* True if this symbol ever carries content - if
276                            ** it is ever more than just syntax */
277   /* The following fields are used by MULTITERMINALs only */
278   int nsubsym;             /* Number of constituent symbols in the MULTI */
279   struct symbol **subsym;  /* Array of constituent symbols */
280 };
281 
282 /* Each production rule in the grammar is stored in the following
283 ** structure.  */
284 struct rule {
285   struct symbol *lhs;      /* Left-hand side of the rule */
286   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
287   int lhsStart;            /* True if left-hand side is the start symbol */
288   int ruleline;            /* Line number for the rule */
289   int nrhs;                /* Number of RHS symbols */
290   struct symbol **rhs;     /* The RHS symbols */
291   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
292   int line;                /* Line number at which code begins */
293   const char *code;        /* The code executed when this rule is reduced */
294   const char *codePrefix;  /* Setup code before code[] above */
295   const char *codeSuffix;  /* Breakdown code after code[] above */
296   struct symbol *precsym;  /* Precedence symbol for this rule */
297   int index;               /* An index number for this rule */
298   int iRule;               /* Rule number as used in the generated tables */
299   Boolean noCode;          /* True if this rule has no associated C code */
300   Boolean codeEmitted;     /* True if the code has been emitted already */
301   Boolean canReduce;       /* True if this rule is ever reduced */
302   Boolean doesReduce;      /* Reduce actions occur after optimization */
303   Boolean neverReduce;     /* Reduce is theoretically possible, but prevented
304                            ** by actions or other outside implementation */
305   struct rule *nextlhs;    /* Next rule with the same LHS */
306   struct rule *next;       /* Next rule in the global list */
307 };
308 
309 /* A configuration is a production rule of the grammar together with
310 ** a mark (dot) showing how much of that rule has been processed so far.
311 ** Configurations also contain a follow-set which is a list of terminal
312 ** symbols which are allowed to immediately follow the end of the rule.
313 ** Every configuration is recorded as an instance of the following: */
314 enum cfgstatus {
315   COMPLETE,
316   INCOMPLETE
317 };
318 struct config {
319   struct rule *rp;         /* The rule upon which the configuration is based */
320   int dot;                 /* The parse point */
321   char *fws;               /* Follow-set for this configuration only */
322   struct plink *fplp;      /* Follow-set forward propagation links */
323   struct plink *bplp;      /* Follow-set backwards propagation links */
324   struct state *stp;       /* Pointer to state which contains this */
325   enum cfgstatus status;   /* used during followset and shift computations */
326   struct config *next;     /* Next configuration in the state */
327   struct config *bp;       /* The next basis configuration */
328 };
329 
330 enum e_action {
331   SHIFT,
332   ACCEPT,
333   REDUCE,
334   ERROR,
335   SSCONFLICT,              /* A shift/shift conflict */
336   SRCONFLICT,              /* Was a reduce, but part of a conflict */
337   RRCONFLICT,              /* Was a reduce, but part of a conflict */
338   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
339   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
340   NOT_USED,                /* Deleted by compression */
341   SHIFTREDUCE              /* Shift first, then reduce */
342 };
343 
344 /* Every shift or reduce operation is stored as one of the following */
345 struct action {
346   struct symbol *sp;       /* The look-ahead symbol */
347   enum e_action type;
348   union {
349     struct state *stp;     /* The new state, if a shift */
350     struct rule *rp;       /* The rule, if a reduce */
351   } x;
352   struct symbol *spOpt;    /* SHIFTREDUCE optimization to this symbol */
353   struct action *next;     /* Next action for this state */
354   struct action *collide;  /* Next action with the same hash */
355 };
356 
357 /* Each state of the generated parser's finite state machine
358 ** is encoded as an instance of the following structure. */
359 struct state {
360   struct config *bp;       /* The basis configurations for this state */
361   struct config *cfp;      /* All configurations in this set */
362   int statenum;            /* Sequential number for this state */
363   struct action *ap;       /* List of actions for this state */
364   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
365   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
366   int iDfltReduce;         /* Default action is to REDUCE by this rule */
367   struct rule *pDfltReduce;/* The default REDUCE rule. */
368   int autoReduce;          /* True if this is an auto-reduce state */
369 };
370 #define NO_OFFSET (-2147483647)
371 
372 /* A followset propagation link indicates that the contents of one
373 ** configuration followset should be propagated to another whenever
374 ** the first changes. */
375 struct plink {
376   struct config *cfp;      /* The configuration to which linked */
377   struct plink *next;      /* The next propagate link */
378 };
379 
380 /* The state vector for the entire parser generator is recorded as
381 ** follows.  (LEMON uses no global variables and makes little use of
382 ** static variables.  Fields in the following structure can be thought
383 ** of as begin global variables in the program.) */
384 struct lemon {
385   struct state **sorted;   /* Table of states sorted by state number */
386   struct rule *rule;       /* List of all rules */
387   struct rule *startRule;  /* First rule */
388   int nstate;              /* Number of states */
389   int nxstate;             /* nstate with tail degenerate states removed */
390   int nrule;               /* Number of rules */
391   int nruleWithAction;     /* Number of rules with actions */
392   int nsymbol;             /* Number of terminal and nonterminal symbols */
393   int nterminal;           /* Number of terminal symbols */
394   int minShiftReduce;      /* Minimum shift-reduce action value */
395   int errAction;           /* Error action value */
396   int accAction;           /* Accept action value */
397   int noAction;            /* No-op action value */
398   int minReduce;           /* Minimum reduce action */
399   int maxAction;           /* Maximum action value of any kind */
400   struct symbol **symbols; /* Sorted array of pointers to symbols */
401   int errorcnt;            /* Number of errors */
402   struct symbol *errsym;   /* The error symbol */
403   struct symbol *wildcard; /* Token that matches anything */
404   char *name;              /* Name of the generated parser */
405   char *arg;               /* Declaration of the 3rd argument to parser */
406   char *ctx;               /* Declaration of 2nd argument to constructor */
407   char *tokentype;         /* Type of terminal symbols in the parser stack */
408   char *vartype;           /* The default type of non-terminal symbols */
409   char *start;             /* Name of the start symbol for the grammar */
410   char *stacksize;         /* Size of the parser stack */
411   char *include;           /* Code to put at the start of the C file */
412   char *error;             /* Code to execute when an error is seen */
413   char *overflow;          /* Code to execute on a stack overflow */
414   char *failure;           /* Code to execute on parser failure */
415   char *accept;            /* Code to execute when the parser excepts */
416   char *extracode;         /* Code appended to the generated file */
417   char *tokendest;         /* Code to execute to destroy token data */
418   char *vardest;           /* Code for the default non-terminal destructor */
419   char *filename;          /* Name of the input file */
420   char *outname;           /* Name of the current output file */
421   char *tokenprefix;       /* A prefix added to token names in the .h file */
422   int nconflict;           /* Number of parsing conflicts */
423   int nactiontab;          /* Number of entries in the yy_action[] table */
424   int nlookaheadtab;       /* Number of entries in yy_lookahead[] */
425   int tablesize;           /* Total table size of all tables in bytes */
426   int basisflag;           /* Print only basis configurations */
427   int printPreprocessed;   /* Show preprocessor output on stdout */
428   int has_fallback;        /* True if any %fallback is seen in the grammar */
429   int nolinenosflag;       /* True if #line statements should not be printed */
430   char *argv0;             /* Name of the program */
431 };
432 
433 #define MemoryCheck(X) if((X)==0){ \
434   extern void memory_error(); \
435   memory_error(); \
436 }
437 
438 /**************** From the file "table.h" *********************************/
439 /*
440 ** All code in this file has been automatically generated
441 ** from a specification in the file
442 **              "table.q"
443 ** by the associative array code building program "aagen".
444 ** Do not edit this file!  Instead, edit the specification
445 ** file, then rerun aagen.
446 */
447 /*
448 ** Code for processing tables in the LEMON parser generator.
449 */
450 /* Routines for handling a strings */
451 
452 const char *Strsafe(const char *);
453 
454 void Strsafe_init(void);
455 int Strsafe_insert(const char *);
456 const char *Strsafe_find(const char *);
457 
458 /* Routines for handling symbols of the grammar */
459 
460 struct symbol *Symbol_new(const char *);
461 int Symbolcmpp(const void *, const void *);
462 void Symbol_init(void);
463 int Symbol_insert(struct symbol *, const char *);
464 struct symbol *Symbol_find(const char *);
465 struct symbol *Symbol_Nth(int);
466 int Symbol_count(void);
467 struct symbol **Symbol_arrayof(void);
468 
469 /* Routines to manage the state table */
470 
471 int Configcmp(const char *, const char *);
472 struct state *State_new(void);
473 void State_init(void);
474 int State_insert(struct state *, struct config *);
475 struct state *State_find(struct config *);
476 struct state **State_arrayof(void);
477 
478 /* Routines used for efficiency in Configlist_add */
479 
480 void Configtable_init(void);
481 int Configtable_insert(struct config *);
482 struct config *Configtable_find(struct config *);
483 void Configtable_clear(int(*)(struct config *));
484 
485 /****************** From the file "action.c" *******************************/
486 /*
487 ** Routines processing parser actions in the LEMON parser generator.
488 */
489 
490 /* Allocate a new parser action */
Action_new(void)491 static struct action *Action_new(void){
492   static struct action *actionfreelist = 0;
493   struct action *newaction;
494 
495   if( actionfreelist==0 ){
496     int i;
497     int amt = 100;
498     actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
499     if( actionfreelist==0 ){
500       fprintf(stderr,"Unable to allocate memory for a new parser action.");
501       exit(1);
502     }
503     for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1];
504     actionfreelist[amt-1].next = 0;
505   }
506   newaction = actionfreelist;
507   actionfreelist = actionfreelist->next;
508   return newaction;
509 }
510 
511 /* Compare two actions for sorting purposes.  Return negative, zero, or
512 ** positive if the first action is less than, equal to, or greater than
513 ** the first
514 */
actioncmp(struct action * ap1,struct action * ap2)515 static int actioncmp(
516   struct action *ap1,
517   struct action *ap2
518 ){
519   int rc;
520   rc = ap1->sp->index - ap2->sp->index;
521   if( rc==0 ){
522     rc = (int)ap1->type - (int)ap2->type;
523   }
524   if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
525     rc = ap1->x.rp->index - ap2->x.rp->index;
526   }
527   if( rc==0 ){
528     rc = (int) (ap2 - ap1);
529   }
530   return rc;
531 }
532 
533 /* Sort parser actions */
Action_sort(struct action * ap)534 static struct action *Action_sort(
535   struct action *ap
536 ){
537   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
538                               (int(*)(const char*,const char*))actioncmp);
539   return ap;
540 }
541 
Action_add(struct action ** app,enum e_action type,struct symbol * sp,char * arg)542 void Action_add(
543   struct action **app,
544   enum e_action type,
545   struct symbol *sp,
546   char *arg
547 ){
548   struct action *newaction;
549   newaction = Action_new();
550   newaction->next = *app;
551   *app = newaction;
552   newaction->type = type;
553   newaction->sp = sp;
554   newaction->spOpt = 0;
555   if( type==SHIFT ){
556     newaction->x.stp = (struct state *)arg;
557   }else{
558     newaction->x.rp = (struct rule *)arg;
559   }
560 }
561 /********************** New code to implement the "acttab" module ***********/
562 /*
563 ** This module implements routines use to construct the yy_action[] table.
564 */
565 
566 /*
567 ** The state of the yy_action table under construction is an instance of
568 ** the following structure.
569 **
570 ** The yy_action table maps the pair (state_number, lookahead) into an
571 ** action_number.  The table is an array of integers pairs.  The state_number
572 ** determines an initial offset into the yy_action array.  The lookahead
573 ** value is then added to this initial offset to get an index X into the
574 ** yy_action array. If the aAction[X].lookahead equals the value of the
575 ** of the lookahead input, then the value of the action_number output is
576 ** aAction[X].action.  If the lookaheads do not match then the
577 ** default action for the state_number is returned.
578 **
579 ** All actions associated with a single state_number are first entered
580 ** into aLookahead[] using multiple calls to acttab_action().  Then the
581 ** actions for that single state_number are placed into the aAction[]
582 ** array with a single call to acttab_insert().  The acttab_insert() call
583 ** also resets the aLookahead[] array in preparation for the next
584 ** state number.
585 */
586 struct lookahead_action {
587   int lookahead;             /* Value of the lookahead token */
588   int action;                /* Action to take on the given lookahead */
589 };
590 typedef struct acttab acttab;
591 struct acttab {
592   int nAction;                 /* Number of used slots in aAction[] */
593   int nActionAlloc;            /* Slots allocated for aAction[] */
594   struct lookahead_action
595     *aAction,                  /* The yy_action[] table under construction */
596     *aLookahead;               /* A single new transaction set */
597   int mnLookahead;             /* Minimum aLookahead[].lookahead */
598   int mnAction;                /* Action associated with mnLookahead */
599   int mxLookahead;             /* Maximum aLookahead[].lookahead */
600   int nLookahead;              /* Used slots in aLookahead[] */
601   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
602   int nterminal;               /* Number of terminal symbols */
603   int nsymbol;                 /* total number of symbols */
604 };
605 
606 /* Return the number of entries in the yy_action table */
607 #define acttab_lookahead_size(X) ((X)->nAction)
608 
609 /* The value for the N-th entry in yy_action */
610 #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
611 
612 /* The value for the N-th entry in yy_lookahead */
613 #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
614 
615 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)616 void acttab_free(acttab *p){
617   free( p->aAction );
618   free( p->aLookahead );
619   free( p );
620 }
621 
622 /* Allocate a new acttab structure */
acttab_alloc(int nsymbol,int nterminal)623 acttab *acttab_alloc(int nsymbol, int nterminal){
624   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
625   if( p==0 ){
626     fprintf(stderr,"Unable to allocate memory for a new acttab.");
627     exit(1);
628   }
629   memset(p, 0, sizeof(*p));
630   p->nsymbol = nsymbol;
631   p->nterminal = nterminal;
632   return p;
633 }
634 
635 /* Add a new action to the current transaction set.
636 **
637 ** This routine is called once for each lookahead for a particular
638 ** state.
639 */
acttab_action(acttab * p,int lookahead,int action)640 void acttab_action(acttab *p, int lookahead, int action){
641   if( p->nLookahead>=p->nLookaheadAlloc ){
642     p->nLookaheadAlloc += 25;
643     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
644                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
645     if( p->aLookahead==0 ){
646       fprintf(stderr,"malloc failed\n");
647       exit(1);
648     }
649   }
650   if( p->nLookahead==0 ){
651     p->mxLookahead = lookahead;
652     p->mnLookahead = lookahead;
653     p->mnAction = action;
654   }else{
655     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
656     if( p->mnLookahead>lookahead ){
657       p->mnLookahead = lookahead;
658       p->mnAction = action;
659     }
660   }
661   p->aLookahead[p->nLookahead].lookahead = lookahead;
662   p->aLookahead[p->nLookahead].action = action;
663   p->nLookahead++;
664 }
665 
666 /*
667 ** Add the transaction set built up with prior calls to acttab_action()
668 ** into the current action table.  Then reset the transaction set back
669 ** to an empty set in preparation for a new round of acttab_action() calls.
670 **
671 ** Return the offset into the action table of the new transaction.
672 **
673 ** If the makeItSafe parameter is true, then the offset is chosen so that
674 ** it is impossible to overread the yy_lookaside[] table regardless of
675 ** the lookaside token.  This is done for the terminal symbols, as they
676 ** come from external inputs and can contain syntax errors.  When makeItSafe
677 ** is false, there is more flexibility in selecting offsets, resulting in
678 ** a smaller table.  For non-terminal symbols, which are never syntax errors,
679 ** makeItSafe can be false.
680 */
acttab_insert(acttab * p,int makeItSafe)681 int acttab_insert(acttab *p, int makeItSafe){
682   int i, j, k, n, end;
683   assert( p->nLookahead>0 );
684 
685   /* Make sure we have enough space to hold the expanded action table
686   ** in the worst case.  The worst case occurs if the transaction set
687   ** must be appended to the current action table
688   */
689   n = p->nsymbol + 1;
690   if( p->nAction + n >= p->nActionAlloc ){
691     int oldAlloc = p->nActionAlloc;
692     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
693     p->aAction = (struct lookahead_action *) realloc( p->aAction,
694                           sizeof(p->aAction[0])*p->nActionAlloc);
695     if( p->aAction==0 ){
696       fprintf(stderr,"malloc failed\n");
697       exit(1);
698     }
699     for(i=oldAlloc; i<p->nActionAlloc; i++){
700       p->aAction[i].lookahead = -1;
701       p->aAction[i].action = -1;
702     }
703   }
704 
705   /* Scan the existing action table looking for an offset that is a
706   ** duplicate of the current transaction set.  Fall out of the loop
707   ** if and when the duplicate is found.
708   **
709   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
710   */
711   end = makeItSafe ? p->mnLookahead : 0;
712   for(i=p->nAction-1; i>=end; i--){
713     if( p->aAction[i].lookahead==p->mnLookahead ){
714       /* All lookaheads and actions in the aLookahead[] transaction
715       ** must match against the candidate aAction[i] entry. */
716       if( p->aAction[i].action!=p->mnAction ) continue;
717       for(j=0; j<p->nLookahead; j++){
718         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
719         if( k<0 || k>=p->nAction ) break;
720         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
721         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
722       }
723       if( j<p->nLookahead ) continue;
724 
725       /* No possible lookahead value that is not in the aLookahead[]
726       ** transaction is allowed to match aAction[i] */
727       n = 0;
728       for(j=0; j<p->nAction; j++){
729         if( p->aAction[j].lookahead<0 ) continue;
730         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
731       }
732       if( n==p->nLookahead ){
733         break;  /* An exact match is found at offset i */
734       }
735     }
736   }
737 
738   /* If no existing offsets exactly match the current transaction, find an
739   ** an empty offset in the aAction[] table in which we can add the
740   ** aLookahead[] transaction.
741   */
742   if( i<end ){
743     /* Look for holes in the aAction[] table that fit the current
744     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
745     ** If no holes are found, i is left at p->nAction, which means the
746     ** transaction will be appended. */
747     i = makeItSafe ? p->mnLookahead : 0;
748     for(; i<p->nActionAlloc - p->mxLookahead; i++){
749       if( p->aAction[i].lookahead<0 ){
750         for(j=0; j<p->nLookahead; j++){
751           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
752           if( k<0 ) break;
753           if( p->aAction[k].lookahead>=0 ) break;
754         }
755         if( j<p->nLookahead ) continue;
756         for(j=0; j<p->nAction; j++){
757           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
758         }
759         if( j==p->nAction ){
760           break;  /* Fits in empty slots */
761         }
762       }
763     }
764   }
765   /* Insert transaction set at index i. */
766 #if 0
767   printf("Acttab:");
768   for(j=0; j<p->nLookahead; j++){
769     printf(" %d", p->aLookahead[j].lookahead);
770   }
771   printf(" inserted at %d\n", i);
772 #endif
773   for(j=0; j<p->nLookahead; j++){
774     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
775     p->aAction[k] = p->aLookahead[j];
776     if( k>=p->nAction ) p->nAction = k+1;
777   }
778   if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
779   p->nLookahead = 0;
780 
781   /* Return the offset that is added to the lookahead in order to get the
782   ** index into yy_action of the action */
783   return i - p->mnLookahead;
784 }
785 
786 /*
787 ** Return the size of the action table without the trailing syntax error
788 ** entries.
789 */
acttab_action_size(acttab * p)790 int acttab_action_size(acttab *p){
791   int n = p->nAction;
792   while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
793   return n;
794 }
795 
796 /********************** From the file "build.c" *****************************/
797 /*
798 ** Routines to construction the finite state machine for the LEMON
799 ** parser generator.
800 */
801 
802 /* Find a precedence symbol of every rule in the grammar.
803 **
804 ** Those rules which have a precedence symbol coded in the input
805 ** grammar using the "[symbol]" construct will already have the
806 ** rp->precsym field filled.  Other rules take as their precedence
807 ** symbol the first RHS symbol with a defined precedence.  If there
808 ** are not RHS symbols with a defined precedence, the precedence
809 ** symbol field is left blank.
810 */
FindRulePrecedences(struct lemon * xp)811 void FindRulePrecedences(struct lemon *xp)
812 {
813   struct rule *rp;
814   for(rp=xp->rule; rp; rp=rp->next){
815     if( rp->precsym==0 ){
816       int i, j;
817       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
818         struct symbol *sp = rp->rhs[i];
819         if( sp->type==MULTITERMINAL ){
820           for(j=0; j<sp->nsubsym; j++){
821             if( sp->subsym[j]->prec>=0 ){
822               rp->precsym = sp->subsym[j];
823               break;
824             }
825           }
826         }else if( sp->prec>=0 ){
827           rp->precsym = rp->rhs[i];
828         }
829       }
830     }
831   }
832   return;
833 }
834 
835 /* Find all nonterminals which will generate the empty string.
836 ** Then go back and compute the first sets of every nonterminal.
837 ** The first set is the set of all terminal symbols which can begin
838 ** a string generated by that nonterminal.
839 */
FindFirstSets(struct lemon * lemp)840 void FindFirstSets(struct lemon *lemp)
841 {
842   int i, j;
843   struct rule *rp;
844   int progress;
845 
846   for(i=0; i<lemp->nsymbol; i++){
847     lemp->symbols[i]->lambda = LEMON_FALSE;
848   }
849   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
850     lemp->symbols[i]->firstset = SetNew();
851   }
852 
853   /* First compute all lambdas */
854   do{
855     progress = 0;
856     for(rp=lemp->rule; rp; rp=rp->next){
857       if( rp->lhs->lambda ) continue;
858       for(i=0; i<rp->nrhs; i++){
859         struct symbol *sp = rp->rhs[i];
860         assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
861         if( sp->lambda==LEMON_FALSE ) break;
862       }
863       if( i==rp->nrhs ){
864         rp->lhs->lambda = LEMON_TRUE;
865         progress = 1;
866       }
867     }
868   }while( progress );
869 
870   /* Now compute all first sets */
871   do{
872     struct symbol *s1, *s2;
873     progress = 0;
874     for(rp=lemp->rule; rp; rp=rp->next){
875       s1 = rp->lhs;
876       for(i=0; i<rp->nrhs; i++){
877         s2 = rp->rhs[i];
878         if( s2->type==TERMINAL ){
879           progress += SetAdd(s1->firstset,s2->index);
880           break;
881         }else if( s2->type==MULTITERMINAL ){
882           for(j=0; j<s2->nsubsym; j++){
883             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
884           }
885           break;
886         }else if( s1==s2 ){
887           if( s1->lambda==LEMON_FALSE ) break;
888         }else{
889           progress += SetUnion(s1->firstset,s2->firstset);
890           if( s2->lambda==LEMON_FALSE ) break;
891         }
892       }
893     }
894   }while( progress );
895   return;
896 }
897 
898 /* Compute all LR(0) states for the grammar.  Links
899 ** are added to between some states so that the LR(1) follow sets
900 ** can be computed later.
901 */
902 PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
FindStates(struct lemon * lemp)903 void FindStates(struct lemon *lemp)
904 {
905   struct symbol *sp;
906   struct rule *rp;
907 
908   Configlist_init();
909 
910   /* Find the start symbol */
911   if( lemp->start ){
912     sp = Symbol_find(lemp->start);
913     if( sp==0 ){
914       ErrorMsg(lemp->filename,0,
915         "The specified start symbol \"%s\" is not "
916         "in a nonterminal of the grammar.  \"%s\" will be used as the start "
917         "symbol instead.",lemp->start,lemp->startRule->lhs->name);
918       lemp->errorcnt++;
919       sp = lemp->startRule->lhs;
920     }
921   }else if( lemp->startRule ){
922     sp = lemp->startRule->lhs;
923   }else{
924     ErrorMsg(lemp->filename,0,"Internal error - no start rule\n");
925     exit(1);
926   }
927 
928   /* Make sure the start symbol doesn't occur on the right-hand side of
929   ** any rule.  Report an error if it does.  (YACC would generate a new
930   ** start symbol in this case.) */
931   for(rp=lemp->rule; rp; rp=rp->next){
932     int i;
933     for(i=0; i<rp->nrhs; i++){
934       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
935         ErrorMsg(lemp->filename,0,
936           "The start symbol \"%s\" occurs on the "
937           "right-hand side of a rule. This will result in a parser which "
938           "does not work properly.",sp->name);
939         lemp->errorcnt++;
940       }
941     }
942   }
943 
944   /* The basis configuration set for the first state
945   ** is all rules which have the start symbol as their
946   ** left-hand side */
947   for(rp=sp->rule; rp; rp=rp->nextlhs){
948     struct config *newcfp;
949     rp->lhsStart = 1;
950     newcfp = Configlist_addbasis(rp,0);
951     SetAdd(newcfp->fws,0);
952   }
953 
954   /* Compute the first state.  All other states will be
955   ** computed automatically during the computation of the first one.
956   ** The returned pointer to the first state is not used. */
957   (void)getstate(lemp);
958   return;
959 }
960 
961 /* Return a pointer to a state which is described by the configuration
962 ** list which has been built from calls to Configlist_add.
963 */
964 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
getstate(struct lemon * lemp)965 PRIVATE struct state *getstate(struct lemon *lemp)
966 {
967   struct config *cfp, *bp;
968   struct state *stp;
969 
970   /* Extract the sorted basis of the new state.  The basis was constructed
971   ** by prior calls to "Configlist_addbasis()". */
972   Configlist_sortbasis();
973   bp = Configlist_basis();
974 
975   /* Get a state with the same basis */
976   stp = State_find(bp);
977   if( stp ){
978     /* A state with the same basis already exists!  Copy all the follow-set
979     ** propagation links from the state under construction into the
980     ** preexisting state, then return a pointer to the preexisting state */
981     struct config *x, *y;
982     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
983       Plink_copy(&y->bplp,x->bplp);
984       Plink_delete(x->fplp);
985       x->fplp = x->bplp = 0;
986     }
987     cfp = Configlist_return();
988     Configlist_eat(cfp);
989   }else{
990     /* This really is a new state.  Construct all the details */
991     Configlist_closure(lemp);    /* Compute the configuration closure */
992     Configlist_sort();           /* Sort the configuration closure */
993     cfp = Configlist_return();   /* Get a pointer to the config list */
994     stp = State_new();           /* A new state structure */
995     MemoryCheck(stp);
996     stp->bp = bp;                /* Remember the configuration basis */
997     stp->cfp = cfp;              /* Remember the configuration closure */
998     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
999     stp->ap = 0;                 /* No actions, yet. */
1000     State_insert(stp,stp->bp);   /* Add to the state table */
1001     buildshifts(lemp,stp);       /* Recursively compute successor states */
1002   }
1003   return stp;
1004 }
1005 
1006 /*
1007 ** Return true if two symbols are the same.
1008 */
same_symbol(struct symbol * a,struct symbol * b)1009 int same_symbol(struct symbol *a, struct symbol *b)
1010 {
1011   int i;
1012   if( a==b ) return 1;
1013   if( a->type!=MULTITERMINAL ) return 0;
1014   if( b->type!=MULTITERMINAL ) return 0;
1015   if( a->nsubsym!=b->nsubsym ) return 0;
1016   for(i=0; i<a->nsubsym; i++){
1017     if( a->subsym[i]!=b->subsym[i] ) return 0;
1018   }
1019   return 1;
1020 }
1021 
1022 /* Construct all successor states to the given state.  A "successor"
1023 ** state is any state which can be reached by a shift action.
1024 */
buildshifts(struct lemon * lemp,struct state * stp)1025 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
1026 {
1027   struct config *cfp;  /* For looping thru the config closure of "stp" */
1028   struct config *bcfp; /* For the inner loop on config closure of "stp" */
1029   struct config *newcfg;  /* */
1030   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
1031   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
1032   struct state *newstp; /* A pointer to a successor state */
1033 
1034   /* Each configuration becomes complete after it contributes to a successor
1035   ** state.  Initially, all configurations are incomplete */
1036   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
1037 
1038   /* Loop through all configurations of the state "stp" */
1039   for(cfp=stp->cfp; cfp; cfp=cfp->next){
1040     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
1041     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
1042     Configlist_reset();                      /* Reset the new config set */
1043     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
1044 
1045     /* For every configuration in the state "stp" which has the symbol "sp"
1046     ** following its dot, add the same configuration to the basis set under
1047     ** construction but with the dot shifted one symbol to the right. */
1048     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
1049       if( bcfp->status==COMPLETE ) continue;    /* Already used */
1050       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1051       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
1052       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
1053       bcfp->status = COMPLETE;                  /* Mark this config as used */
1054       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1055       Plink_add(&newcfg->bplp,bcfp);
1056     }
1057 
1058     /* Get a pointer to the state described by the basis configuration set
1059     ** constructed in the preceding loop */
1060     newstp = getstate(lemp);
1061 
1062     /* The state "newstp" is reached from the state "stp" by a shift action
1063     ** on the symbol "sp" */
1064     if( sp->type==MULTITERMINAL ){
1065       int i;
1066       for(i=0; i<sp->nsubsym; i++){
1067         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1068       }
1069     }else{
1070       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1071     }
1072   }
1073 }
1074 
1075 /*
1076 ** Construct the propagation links
1077 */
FindLinks(struct lemon * lemp)1078 void FindLinks(struct lemon *lemp)
1079 {
1080   int i;
1081   struct config *cfp, *other;
1082   struct state *stp;
1083   struct plink *plp;
1084 
1085   /* Housekeeping detail:
1086   ** Add to every propagate link a pointer back to the state to
1087   ** which the link is attached. */
1088   for(i=0; i<lemp->nstate; i++){
1089     stp = lemp->sorted[i];
1090     for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1091       cfp->stp = stp;
1092     }
1093   }
1094 
1095   /* Convert all backlinks into forward links.  Only the forward
1096   ** links are used in the follow-set computation. */
1097   for(i=0; i<lemp->nstate; i++){
1098     stp = lemp->sorted[i];
1099     for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1100       for(plp=cfp->bplp; plp; plp=plp->next){
1101         other = plp->cfp;
1102         Plink_add(&other->fplp,cfp);
1103       }
1104     }
1105   }
1106 }
1107 
1108 /* Compute all followsets.
1109 **
1110 ** A followset is the set of all symbols which can come immediately
1111 ** after a configuration.
1112 */
FindFollowSets(struct lemon * lemp)1113 void FindFollowSets(struct lemon *lemp)
1114 {
1115   int i;
1116   struct config *cfp;
1117   struct plink *plp;
1118   int progress;
1119   int change;
1120 
1121   for(i=0; i<lemp->nstate; i++){
1122     assert( lemp->sorted[i]!=0 );
1123     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1124       cfp->status = INCOMPLETE;
1125     }
1126   }
1127 
1128   do{
1129     progress = 0;
1130     for(i=0; i<lemp->nstate; i++){
1131       assert( lemp->sorted[i]!=0 );
1132       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1133         if( cfp->status==COMPLETE ) continue;
1134         for(plp=cfp->fplp; plp; plp=plp->next){
1135           change = SetUnion(plp->cfp->fws,cfp->fws);
1136           if( change ){
1137             plp->cfp->status = INCOMPLETE;
1138             progress = 1;
1139           }
1140         }
1141         cfp->status = COMPLETE;
1142       }
1143     }
1144   }while( progress );
1145 }
1146 
1147 static int resolve_conflict(struct action *,struct action *);
1148 
1149 /* Compute the reduce actions, and resolve conflicts.
1150 */
FindActions(struct lemon * lemp)1151 void FindActions(struct lemon *lemp)
1152 {
1153   int i,j;
1154   struct config *cfp;
1155   struct state *stp;
1156   struct symbol *sp;
1157   struct rule *rp;
1158 
1159   /* Add all of the reduce actions
1160   ** A reduce action is added for each element of the followset of
1161   ** a configuration which has its dot at the extreme right.
1162   */
1163   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
1164     stp = lemp->sorted[i];
1165     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
1166       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
1167         for(j=0; j<lemp->nterminal; j++){
1168           if( SetFind(cfp->fws,j) ){
1169             /* Add a reduce action to the state "stp" which will reduce by the
1170             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1171             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1172           }
1173         }
1174       }
1175     }
1176   }
1177 
1178   /* Add the accepting token */
1179   if( lemp->start ){
1180     sp = Symbol_find(lemp->start);
1181     if( sp==0 ){
1182       if( lemp->startRule==0 ){
1183         fprintf(stderr, "internal error on source line %d: no start rule\n",
1184                 __LINE__);
1185         exit(1);
1186       }
1187       sp = lemp->startRule->lhs;
1188     }
1189   }else{
1190     sp = lemp->startRule->lhs;
1191   }
1192   /* Add to the first state (which is always the starting state of the
1193   ** finite state machine) an action to ACCEPT if the lookahead is the
1194   ** start nonterminal.  */
1195   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1196 
1197   /* Resolve conflicts */
1198   for(i=0; i<lemp->nstate; i++){
1199     struct action *ap, *nap;
1200     stp = lemp->sorted[i];
1201     /* assert( stp->ap ); */
1202     stp->ap = Action_sort(stp->ap);
1203     for(ap=stp->ap; ap && ap->next; ap=ap->next){
1204       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1205          /* The two actions "ap" and "nap" have the same lookahead.
1206          ** Figure out which one should be used */
1207          lemp->nconflict += resolve_conflict(ap,nap);
1208       }
1209     }
1210   }
1211 
1212   /* Report an error for each rule that can never be reduced. */
1213   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1214   for(i=0; i<lemp->nstate; i++){
1215     struct action *ap;
1216     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1217       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1218     }
1219   }
1220   for(rp=lemp->rule; rp; rp=rp->next){
1221     if( rp->canReduce ) continue;
1222     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1223     lemp->errorcnt++;
1224   }
1225 }
1226 
1227 /* Resolve a conflict between the two given actions.  If the
1228 ** conflict can't be resolved, return non-zero.
1229 **
1230 ** NO LONGER TRUE:
1231 **   To resolve a conflict, first look to see if either action
1232 **   is on an error rule.  In that case, take the action which
1233 **   is not associated with the error rule.  If neither or both
1234 **   actions are associated with an error rule, then try to
1235 **   use precedence to resolve the conflict.
1236 **
1237 ** If either action is a SHIFT, then it must be apx.  This
1238 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1239 */
resolve_conflict(struct action * apx,struct action * apy)1240 static int resolve_conflict(
1241   struct action *apx,
1242   struct action *apy
1243 ){
1244   struct symbol *spx, *spy;
1245   int errcnt = 0;
1246   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
1247   if( apx->type==SHIFT && apy->type==SHIFT ){
1248     apy->type = SSCONFLICT;
1249     errcnt++;
1250   }
1251   if( apx->type==SHIFT && apy->type==REDUCE ){
1252     spx = apx->sp;
1253     spy = apy->x.rp->precsym;
1254     if( spy==0 || spx->prec<0 || spy->prec<0 ){
1255       /* Not enough precedence information. */
1256       apy->type = SRCONFLICT;
1257       errcnt++;
1258     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
1259       apy->type = RD_RESOLVED;
1260     }else if( spx->prec<spy->prec ){
1261       apx->type = SH_RESOLVED;
1262     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1263       apy->type = RD_RESOLVED;                             /* associativity */
1264     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
1265       apx->type = SH_RESOLVED;
1266     }else{
1267       assert( spx->prec==spy->prec && spx->assoc==NONE );
1268       apx->type = ERROR;
1269     }
1270   }else if( apx->type==REDUCE && apy->type==REDUCE ){
1271     spx = apx->x.rp->precsym;
1272     spy = apy->x.rp->precsym;
1273     if( spx==0 || spy==0 || spx->prec<0 ||
1274     spy->prec<0 || spx->prec==spy->prec ){
1275       apy->type = RRCONFLICT;
1276       errcnt++;
1277     }else if( spx->prec>spy->prec ){
1278       apy->type = RD_RESOLVED;
1279     }else if( spx->prec<spy->prec ){
1280       apx->type = RD_RESOLVED;
1281     }
1282   }else{
1283     assert(
1284       apx->type==SH_RESOLVED ||
1285       apx->type==RD_RESOLVED ||
1286       apx->type==SSCONFLICT ||
1287       apx->type==SRCONFLICT ||
1288       apx->type==RRCONFLICT ||
1289       apy->type==SH_RESOLVED ||
1290       apy->type==RD_RESOLVED ||
1291       apy->type==SSCONFLICT ||
1292       apy->type==SRCONFLICT ||
1293       apy->type==RRCONFLICT
1294     );
1295     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1296     ** REDUCEs on the list.  If we reach this point it must be because
1297     ** the parser conflict had already been resolved. */
1298   }
1299   return errcnt;
1300 }
1301 /********************* From the file "configlist.c" *************************/
1302 /*
1303 ** Routines to processing a configuration list and building a state
1304 ** in the LEMON parser generator.
1305 */
1306 
1307 static struct config *freelist = 0;      /* List of free configurations */
1308 static struct config *current = 0;       /* Top of list of configurations */
1309 static struct config **currentend = 0;   /* Last on list of configs */
1310 static struct config *basis = 0;         /* Top of list of basis configs */
1311 static struct config **basisend = 0;     /* End of list of basis configs */
1312 
1313 /* Return a pointer to a new configuration */
newconfig(void)1314 PRIVATE struct config *newconfig(void){
1315   return (struct config*)calloc(1, sizeof(struct config));
1316 }
1317 
1318 /* The configuration "old" is no longer used */
deleteconfig(struct config * old)1319 PRIVATE void deleteconfig(struct config *old)
1320 {
1321   old->next = freelist;
1322   freelist = old;
1323 }
1324 
1325 /* Initialized the configuration list builder */
Configlist_init(void)1326 void Configlist_init(void){
1327   current = 0;
1328   currentend = &current;
1329   basis = 0;
1330   basisend = &basis;
1331   Configtable_init();
1332   return;
1333 }
1334 
1335 /* Initialized the configuration list builder */
Configlist_reset(void)1336 void Configlist_reset(void){
1337   current = 0;
1338   currentend = &current;
1339   basis = 0;
1340   basisend = &basis;
1341   Configtable_clear(0);
1342   return;
1343 }
1344 
1345 /* Add another configuration to the configuration list */
Configlist_add(struct rule * rp,int dot)1346 struct config *Configlist_add(
1347   struct rule *rp,    /* The rule */
1348   int dot             /* Index into the RHS of the rule where the dot goes */
1349 ){
1350   struct config *cfp, model;
1351 
1352   assert( currentend!=0 );
1353   model.rp = rp;
1354   model.dot = dot;
1355   cfp = Configtable_find(&model);
1356   if( cfp==0 ){
1357     cfp = newconfig();
1358     cfp->rp = rp;
1359     cfp->dot = dot;
1360     cfp->fws = SetNew();
1361     cfp->stp = 0;
1362     cfp->fplp = cfp->bplp = 0;
1363     cfp->next = 0;
1364     cfp->bp = 0;
1365     *currentend = cfp;
1366     currentend = &cfp->next;
1367     Configtable_insert(cfp);
1368   }
1369   return cfp;
1370 }
1371 
1372 /* Add a basis configuration to the configuration list */
Configlist_addbasis(struct rule * rp,int dot)1373 struct config *Configlist_addbasis(struct rule *rp, int dot)
1374 {
1375   struct config *cfp, model;
1376 
1377   assert( basisend!=0 );
1378   assert( currentend!=0 );
1379   model.rp = rp;
1380   model.dot = dot;
1381   cfp = Configtable_find(&model);
1382   if( cfp==0 ){
1383     cfp = newconfig();
1384     cfp->rp = rp;
1385     cfp->dot = dot;
1386     cfp->fws = SetNew();
1387     cfp->stp = 0;
1388     cfp->fplp = cfp->bplp = 0;
1389     cfp->next = 0;
1390     cfp->bp = 0;
1391     *currentend = cfp;
1392     currentend = &cfp->next;
1393     *basisend = cfp;
1394     basisend = &cfp->bp;
1395     Configtable_insert(cfp);
1396   }
1397   return cfp;
1398 }
1399 
1400 /* Compute the closure of the configuration list */
Configlist_closure(struct lemon * lemp)1401 void Configlist_closure(struct lemon *lemp)
1402 {
1403   struct config *cfp, *newcfp;
1404   struct rule *rp, *newrp;
1405   struct symbol *sp, *xsp;
1406   int i, dot;
1407 
1408   assert( currentend!=0 );
1409   for(cfp=current; cfp; cfp=cfp->next){
1410     rp = cfp->rp;
1411     dot = cfp->dot;
1412     if( dot>=rp->nrhs ) continue;
1413     sp = rp->rhs[dot];
1414     if( sp->type==NONTERMINAL ){
1415       if( sp->rule==0 && sp!=lemp->errsym ){
1416         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1417           sp->name);
1418         lemp->errorcnt++;
1419       }
1420       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1421         newcfp = Configlist_add(newrp,0);
1422         for(i=dot+1; i<rp->nrhs; i++){
1423           xsp = rp->rhs[i];
1424           if( xsp->type==TERMINAL ){
1425             SetAdd(newcfp->fws,xsp->index);
1426             break;
1427           }else if( xsp->type==MULTITERMINAL ){
1428             int k;
1429             for(k=0; k<xsp->nsubsym; k++){
1430               SetAdd(newcfp->fws, xsp->subsym[k]->index);
1431             }
1432             break;
1433           }else{
1434             SetUnion(newcfp->fws,xsp->firstset);
1435             if( xsp->lambda==LEMON_FALSE ) break;
1436           }
1437         }
1438         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1439       }
1440     }
1441   }
1442   return;
1443 }
1444 
1445 /* Sort the configuration list */
Configlist_sort(void)1446 void Configlist_sort(void){
1447   current = (struct config*)msort((char*)current,(char**)&(current->next),
1448                                   Configcmp);
1449   currentend = 0;
1450   return;
1451 }
1452 
1453 /* Sort the basis configuration list */
Configlist_sortbasis(void)1454 void Configlist_sortbasis(void){
1455   basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1456                                 Configcmp);
1457   basisend = 0;
1458   return;
1459 }
1460 
1461 /* Return a pointer to the head of the configuration list and
1462 ** reset the list */
Configlist_return(void)1463 struct config *Configlist_return(void){
1464   struct config *old;
1465   old = current;
1466   current = 0;
1467   currentend = 0;
1468   return old;
1469 }
1470 
1471 /* Return a pointer to the head of the configuration list and
1472 ** reset the list */
Configlist_basis(void)1473 struct config *Configlist_basis(void){
1474   struct config *old;
1475   old = basis;
1476   basis = 0;
1477   basisend = 0;
1478   return old;
1479 }
1480 
1481 /* Free all elements of the given configuration list */
Configlist_eat(struct config * cfp)1482 void Configlist_eat(struct config *cfp)
1483 {
1484   struct config *nextcfp;
1485   for(; cfp; cfp=nextcfp){
1486     nextcfp = cfp->next;
1487     assert( cfp->fplp==0 );
1488     assert( cfp->bplp==0 );
1489     if( cfp->fws ) SetFree(cfp->fws);
1490     deleteconfig(cfp);
1491   }
1492   return;
1493 }
1494 /***************** From the file "error.c" *********************************/
1495 /*
1496 ** Code for printing error message.
1497 */
1498 
ErrorMsg(const char * filename,int lineno,const char * format,...)1499 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1500   va_list ap;
1501   fprintf(stderr, "%s:%d: ", filename, lineno);
1502   va_start(ap, format);
1503   vfprintf(stderr,format,ap);
1504   va_end(ap);
1505   fprintf(stderr, "\n");
1506 }
1507 /**************** From the file "main.c" ************************************/
1508 /*
1509 ** Main program file for the LEMON parser generator.
1510 */
1511 
1512 /* Report an out-of-memory condition and abort.  This function
1513 ** is used mostly by the "MemoryCheck" macro in struct.h
1514 */
memory_error(void)1515 void memory_error(void){
1516   fprintf(stderr,"Out of memory.  Aborting...\n");
1517   exit(1);
1518 }
1519 
1520 static int nDefine = 0;      /* Number of -D options on the command line */
1521 static char **azDefine = 0;  /* Name of the -D macros */
1522 
1523 /* This routine is called with the argument to each -D command-line option.
1524 ** Add the macro defined to the azDefine array.
1525 */
handle_D_option(char * z)1526 static void handle_D_option(char *z){
1527   char **paz;
1528   nDefine++;
1529   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1530   if( azDefine==0 ){
1531     fprintf(stderr,"out of memory\n");
1532     exit(1);
1533   }
1534   paz = &azDefine[nDefine-1];
1535   *paz = (char *) malloc( lemonStrlen(z)+1 );
1536   if( *paz==0 ){
1537     fprintf(stderr,"out of memory\n");
1538     exit(1);
1539   }
1540   lemon_strcpy(*paz, z);
1541   for(z=*paz; *z && *z!='='; z++){}
1542   *z = 0;
1543 }
1544 
1545 /* Rember the name of the output directory
1546 */
1547 static char *outputDir = NULL;
handle_d_option(char * z)1548 static void handle_d_option(char *z){
1549   outputDir = (char *) malloc( lemonStrlen(z)+1 );
1550   if( outputDir==0 ){
1551     fprintf(stderr,"out of memory\n");
1552     exit(1);
1553   }
1554   lemon_strcpy(outputDir, z);
1555 }
1556 
1557 static char *user_templatename = NULL;
handle_T_option(char * z)1558 static void handle_T_option(char *z){
1559   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1560   if( user_templatename==0 ){
1561     memory_error();
1562   }
1563   lemon_strcpy(user_templatename, z);
1564 }
1565 
1566 /* Merge together to lists of rules ordered by rule.iRule */
Rule_merge(struct rule * pA,struct rule * pB)1567 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1568   struct rule *pFirst = 0;
1569   struct rule **ppPrev = &pFirst;
1570   while( pA && pB ){
1571     if( pA->iRule<pB->iRule ){
1572       *ppPrev = pA;
1573       ppPrev = &pA->next;
1574       pA = pA->next;
1575     }else{
1576       *ppPrev = pB;
1577       ppPrev = &pB->next;
1578       pB = pB->next;
1579     }
1580   }
1581   if( pA ){
1582     *ppPrev = pA;
1583   }else{
1584     *ppPrev = pB;
1585   }
1586   return pFirst;
1587 }
1588 
1589 /*
1590 ** Sort a list of rules in order of increasing iRule value
1591 */
Rule_sort(struct rule * rp)1592 static struct rule *Rule_sort(struct rule *rp){
1593   unsigned int i;
1594   struct rule *pNext;
1595   struct rule *x[32];
1596   memset(x, 0, sizeof(x));
1597   while( rp ){
1598     pNext = rp->next;
1599     rp->next = 0;
1600     for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){
1601       rp = Rule_merge(x[i], rp);
1602       x[i] = 0;
1603     }
1604     x[i] = rp;
1605     rp = pNext;
1606   }
1607   rp = 0;
1608   for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1609     rp = Rule_merge(x[i], rp);
1610   }
1611   return rp;
1612 }
1613 
1614 /* forward reference */
1615 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1616 
1617 /* Print a single line of the "Parser Stats" output
1618 */
stats_line(const char * zLabel,int iValue)1619 static void stats_line(const char *zLabel, int iValue){
1620   int nLabel = lemonStrlen(zLabel);
1621   printf("  %s%.*s %5d\n", zLabel,
1622          35-nLabel, "................................",
1623          iValue);
1624 }
1625 
1626 /* The main program.  Parse the command line and do it... */
main(int argc,char ** argv)1627 int main(int argc, char **argv){
1628   static int version = 0;
1629   static int rpflag = 0;
1630   static int basisflag = 0;
1631   static int compress = 0;
1632   static int quiet = 0;
1633   static int statistics = 0;
1634   static int mhflag = 0;
1635   static int nolinenosflag = 0;
1636   static int noResort = 0;
1637   static int sqlFlag = 0;
1638   static int printPP = 0;
1639 
1640   static struct s_options options[] = {
1641     {OPT_FLAG, "b", (char*)&basisflag, 0, "Print only the basis in report."},
1642     {OPT_FLAG, "c", (char*)&compress, 0, "Don't compress the action table."},
1643     {OPT_FSTR, "d", 0, handle_d_option, "Output directory.  Default '.'"},
1644     {OPT_FSTR, "D", 0, handle_D_option, "Define an %ifdef macro."},
1645     {OPT_FLAG, "E", (char*)&printPP, 0, "Print input file after preprocessing."},
1646     {OPT_FSTR, "f", 0, 0, "Ignored.  (Placeholder for -f compiler options.)"},
1647     {OPT_FLAG, "g", (char*)&rpflag, 0, "Print grammar without actions."},
1648     {OPT_FSTR, "I", 0, 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
1649     {OPT_FLAG, "m", (char*)&mhflag, 0, "Output a makeheaders compatible file."},
1650     {OPT_FLAG, "l", (char*)&nolinenosflag, 0, "Do not print #line statements."},
1651     {OPT_FSTR, "O", 0, 0, "Ignored.  (Placeholder for '-O' compiler options.)"},
1652     {OPT_FLAG, "p", (char*)&showPrecedenceConflict, 0,
1653                     "Show conflicts resolved by precedence rules"},
1654     {OPT_FLAG, "q", (char*)&quiet, 0, "(Quiet) Don't print the report file."},
1655     {OPT_FLAG, "r", (char*)&noResort, 0, "Do not sort or renumber states"},
1656     {OPT_FLAG, "s", (char*)&statistics, 0,
1657                                    "Print parser stats to standard output."},
1658     {OPT_FLAG, "S", (char*)&sqlFlag, 0,
1659                     "Generate the *.sql file describing the parser tables."},
1660     {OPT_FLAG, "x", (char*)&version, 0, "Print the version number."},
1661     {OPT_FSTR, "T", 0, handle_T_option, "Specify a template file."},
1662     {OPT_FSTR, "W", 0, 0, "Ignored.  (Placeholder for '-W' compiler options.)"},
1663     {OPT_FLAG,0,0,0,0}
1664   };
1665   int i;
1666   int exitcode;
1667   struct lemon lem;
1668   struct rule *rp;
1669 
1670   (void)argc;
1671   OptInit(argv,options,stderr);
1672   if( version ){
1673      printf("Lemon version 1.0\n");
1674      exit(0);
1675   }
1676   if( OptNArgs()!=1 ){
1677     fprintf(stderr,"Exactly one filename argument is required.\n");
1678     exit(1);
1679   }
1680   memset(&lem, 0, sizeof(lem));
1681   lem.errorcnt = 0;
1682 
1683   /* Initialize the machine */
1684   Strsafe_init();
1685   Symbol_init();
1686   State_init();
1687   lem.argv0 = argv[0];
1688   lem.filename = OptArg(0);
1689   lem.basisflag = basisflag;
1690   lem.nolinenosflag = nolinenosflag;
1691   lem.printPreprocessed = printPP;
1692   Symbol_new("$");
1693 
1694   /* Parse the input file */
1695   Parse(&lem);
1696   if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt);
1697   if( lem.nrule==0 ){
1698     fprintf(stderr,"Empty grammar.\n");
1699     exit(1);
1700   }
1701   lem.errsym = Symbol_find("error");
1702 
1703   /* Count and index the symbols of the grammar */
1704   Symbol_new("{default}");
1705   lem.nsymbol = Symbol_count();
1706   lem.symbols = Symbol_arrayof();
1707   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1708   qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1709   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1710   while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1711   assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1712   lem.nsymbol = i - 1;
1713   for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1714   lem.nterminal = i;
1715 
1716   /* Assign sequential rule numbers.  Start with 0.  Put rules that have no
1717   ** reduce action C-code associated with them last, so that the switch()
1718   ** statement that selects reduction actions will have a smaller jump table.
1719   */
1720   for(i=0, rp=lem.rule; rp; rp=rp->next){
1721     rp->iRule = rp->code ? i++ : -1;
1722   }
1723   lem.nruleWithAction = i;
1724   for(rp=lem.rule; rp; rp=rp->next){
1725     if( rp->iRule<0 ) rp->iRule = i++;
1726   }
1727   lem.startRule = lem.rule;
1728   lem.rule = Rule_sort(lem.rule);
1729 
1730   /* Generate a reprint of the grammar, if requested on the command line */
1731   if( rpflag ){
1732     Reprint(&lem);
1733   }else{
1734     /* Initialize the size for all follow and first sets */
1735     SetSize(lem.nterminal+1);
1736 
1737     /* Find the precedence for every production rule (that has one) */
1738     FindRulePrecedences(&lem);
1739 
1740     /* Compute the lambda-nonterminals and the first-sets for every
1741     ** nonterminal */
1742     FindFirstSets(&lem);
1743 
1744     /* Compute all LR(0) states.  Also record follow-set propagation
1745     ** links so that the follow-set can be computed later */
1746     lem.nstate = 0;
1747     FindStates(&lem);
1748     lem.sorted = State_arrayof();
1749 
1750     /* Tie up loose ends on the propagation links */
1751     FindLinks(&lem);
1752 
1753     /* Compute the follow set of every reducible configuration */
1754     FindFollowSets(&lem);
1755 
1756     /* Compute the action tables */
1757     FindActions(&lem);
1758 
1759     /* Compress the action tables */
1760     if( compress==0 ) CompressTables(&lem);
1761 
1762     /* Reorder and renumber the states so that states with fewer choices
1763     ** occur at the end.  This is an optimization that helps make the
1764     ** generated parser tables smaller. */
1765     if( noResort==0 ) ResortStates(&lem);
1766 
1767     /* Generate a report of the parser generated.  (the "y.output" file) */
1768     if( !quiet ) ReportOutput(&lem);
1769 
1770     /* Generate the source code for the parser */
1771     ReportTable(&lem, mhflag, sqlFlag);
1772 
1773     /* Produce a header file for use by the scanner.  (This step is
1774     ** omitted if the "-m" option is used because makeheaders will
1775     ** generate the file for us.) */
1776     if( !mhflag ) ReportHeader(&lem);
1777   }
1778   if( statistics ){
1779     printf("Parser statistics:\n");
1780     stats_line("terminal symbols", lem.nterminal);
1781     stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1782     stats_line("total symbols", lem.nsymbol);
1783     stats_line("rules", lem.nrule);
1784     stats_line("states", lem.nxstate);
1785     stats_line("conflicts", lem.nconflict);
1786     stats_line("action table entries", lem.nactiontab);
1787     stats_line("lookahead table entries", lem.nlookaheadtab);
1788     stats_line("total table size (bytes)", lem.tablesize);
1789   }
1790   if( lem.nconflict > 0 ){
1791     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1792   }
1793 
1794   /* return 0 on success, 1 on failure. */
1795   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1796   exit(exitcode);
1797   return (exitcode);
1798 }
1799 /******************** From the file "msort.c" *******************************/
1800 /*
1801 ** A generic merge-sort program.
1802 **
1803 ** USAGE:
1804 ** Let "ptr" be a pointer to some structure which is at the head of
1805 ** a null-terminated list.  Then to sort the list call:
1806 **
1807 **     ptr = msort(ptr,&(ptr->next),cmpfnc);
1808 **
1809 ** In the above, "cmpfnc" is a pointer to a function which compares
1810 ** two instances of the structure and returns an integer, as in
1811 ** strcmp.  The second argument is a pointer to the pointer to the
1812 ** second element of the linked list.  This address is used to compute
1813 ** the offset to the "next" field within the structure.  The offset to
1814 ** the "next" field must be constant for all structures in the list.
1815 **
1816 ** The function returns a new pointer which is the head of the list
1817 ** after sorting.
1818 **
1819 ** ALGORITHM:
1820 ** Merge-sort.
1821 */
1822 
1823 /*
1824 ** Return a pointer to the next structure in the linked list.
1825 */
1826 #define NEXT(A) (*(char**)(((char*)A)+offset))
1827 
1828 /*
1829 ** Inputs:
1830 **   a:       A sorted, null-terminated linked list.  (May be null).
1831 **   b:       A sorted, null-terminated linked list.  (May be null).
1832 **   cmp:     A pointer to the comparison function.
1833 **   offset:  Offset in the structure to the "next" field.
1834 **
1835 ** Return Value:
1836 **   A pointer to the head of a sorted list containing the elements
1837 **   of both a and b.
1838 **
1839 ** Side effects:
1840 **   The "next" pointers for elements in the lists a and b are
1841 **   changed.
1842 */
merge(char * a,char * b,int (* cmp)(const char *,const char *),int offset)1843 static char *merge(
1844   char *a,
1845   char *b,
1846   int (*cmp)(const char*,const char*),
1847   int offset
1848 ){
1849   char *ptr, *head;
1850 
1851   if( a==0 ){
1852     head = b;
1853   }else if( b==0 ){
1854     head = a;
1855   }else{
1856     if( (*cmp)(a,b)<=0 ){
1857       ptr = a;
1858       a = NEXT(a);
1859     }else{
1860       ptr = b;
1861       b = NEXT(b);
1862     }
1863     head = ptr;
1864     while( a && b ){
1865       if( (*cmp)(a,b)<=0 ){
1866         NEXT(ptr) = a;
1867         ptr = a;
1868         a = NEXT(a);
1869       }else{
1870         NEXT(ptr) = b;
1871         ptr = b;
1872         b = NEXT(b);
1873       }
1874     }
1875     if( a ) NEXT(ptr) = a;
1876     else    NEXT(ptr) = b;
1877   }
1878   return head;
1879 }
1880 
1881 /*
1882 ** Inputs:
1883 **   list:      Pointer to a singly-linked list of structures.
1884 **   next:      Pointer to pointer to the second element of the list.
1885 **   cmp:       A comparison function.
1886 **
1887 ** Return Value:
1888 **   A pointer to the head of a sorted list containing the elements
1889 **   originally in list.
1890 **
1891 ** Side effects:
1892 **   The "next" pointers for elements in list are changed.
1893 */
1894 #define LISTSIZE 30
msort(char * list,char ** next,int (* cmp)(const char *,const char *))1895 static char *msort(
1896   char *list,
1897   char **next,
1898   int (*cmp)(const char*,const char*)
1899 ){
1900   unsigned long offset;
1901   char *ep;
1902   char *set[LISTSIZE];
1903   int i;
1904   offset = (unsigned long)((char*)next - (char*)list);
1905   for(i=0; i<LISTSIZE; i++) set[i] = 0;
1906   while( list ){
1907     ep = list;
1908     list = NEXT(list);
1909     NEXT(ep) = 0;
1910     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1911       ep = merge(ep,set[i],cmp,offset);
1912       set[i] = 0;
1913     }
1914     set[i] = ep;
1915   }
1916   ep = 0;
1917   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1918   return ep;
1919 }
1920 /************************ From the file "option.c" **************************/
1921 static char **g_argv;
1922 static struct s_options *op;
1923 static FILE *errstream;
1924 
1925 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1926 
1927 /*
1928 ** Print the command line with a carrot pointing to the k-th character
1929 ** of the n-th field.
1930 */
errline(int n,int k,FILE * err)1931 static void errline(int n, int k, FILE *err)
1932 {
1933   int spcnt, i;
1934   if( g_argv[0] ){
1935     fprintf(err,"%s",g_argv[0]);
1936     spcnt = lemonStrlen(g_argv[0]) + 1;
1937   }else{
1938     spcnt = 0;
1939   }
1940   for(i=1; i<n && g_argv[i]; i++){
1941     fprintf(err," %s",g_argv[i]);
1942     spcnt += lemonStrlen(g_argv[i])+1;
1943   }
1944   spcnt += k;
1945   for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]);
1946   if( spcnt<20 ){
1947     fprintf(err,"\n%*s^-- here\n",spcnt,"");
1948   }else{
1949     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1950   }
1951 }
1952 
1953 /*
1954 ** Return the index of the N-th non-switch argument.  Return -1
1955 ** if N is out of range.
1956 */
argindex(int n)1957 static int argindex(int n)
1958 {
1959   int i;
1960   int dashdash = 0;
1961   if( g_argv!=0 && *g_argv!=0 ){
1962     for(i=1; g_argv[i]; i++){
1963       if( dashdash || !ISOPT(g_argv[i]) ){
1964         if( n==0 ) return i;
1965         n--;
1966       }
1967       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
1968     }
1969   }
1970   return -1;
1971 }
1972 
1973 static char emsg[] = "Command line syntax error: ";
1974 
1975 /*
1976 ** Process a flag command line argument.
1977 */
handleflags(int i,FILE * err)1978 static int handleflags(int i, FILE *err)
1979 {
1980   int v;
1981   int errcnt = 0;
1982   int j;
1983   for(j=0; op[j].label; j++){
1984     if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1985   }
1986   v = g_argv[i][0]=='-' ? 1 : 0;
1987   if( op[j].label==0 ){
1988     if( err ){
1989       fprintf(err,"%sundefined option.\n",emsg);
1990       errline(i,1,err);
1991     }
1992     errcnt++;
1993   }else if( op[j].arg==0 && op[j].fn==0 ){
1994     /* Ignore this option */
1995   }else if( op[j].type==OPT_FLAG ){
1996     *((int*)op[j].arg) = v;
1997   }else if( op[j].type==OPT_FFLAG ){
1998     op[j].fn(v);
1999   }else if( op[j].type==OPT_FSTR ){
2000     op[j].fn(&g_argv[i][2]);
2001   }else{
2002     if( err ){
2003       fprintf(err,"%smissing argument on switch.\n",emsg);
2004       errline(i,1,err);
2005     }
2006     errcnt++;
2007   }
2008   return errcnt;
2009 }
2010 
2011 /*
2012 ** Process a command line switch which has an argument.
2013 */
handleswitch(int i,FILE * err)2014 static int handleswitch(int i, FILE *err)
2015 {
2016   int lv = 0;
2017   double dv = 0.0;
2018   char *sv = 0, *end;
2019   char *cp;
2020   int j;
2021   int errcnt = 0;
2022   cp = strchr(g_argv[i],'=');
2023   assert( cp!=0 );
2024   *cp = 0;
2025   for(j=0; op[j].label; j++){
2026     if( strcmp(g_argv[i],op[j].label)==0 ) break;
2027   }
2028   *cp = '=';
2029   if( op[j].label==0 ){
2030     if( err ){
2031       fprintf(err,"%sundefined option.\n",emsg);
2032       errline(i,0,err);
2033     }
2034     errcnt++;
2035   }else{
2036     cp++;
2037     switch( op[j].type ){
2038       case OPT_FLAG:
2039       case OPT_FFLAG:
2040         if( err ){
2041           fprintf(err,"%soption requires an argument.\n",emsg);
2042           errline(i,0,err);
2043         }
2044         errcnt++;
2045         break;
2046       case OPT_DBL:
2047       case OPT_FDBL:
2048         dv = strtod(cp,&end);
2049         if( *end ){
2050           if( err ){
2051             fprintf(err,
2052                "%sillegal character in floating-point argument.\n",emsg);
2053             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2054           }
2055           errcnt++;
2056         }
2057         break;
2058       case OPT_INT:
2059       case OPT_FINT:
2060         lv = strtol(cp,&end,0);
2061         if( *end ){
2062           if( err ){
2063             fprintf(err,"%sillegal character in integer argument.\n",emsg);
2064             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2065           }
2066           errcnt++;
2067         }
2068         break;
2069       case OPT_STR:
2070       case OPT_FSTR:
2071         sv = cp;
2072         break;
2073     }
2074     switch( op[j].type ){
2075       case OPT_FLAG:
2076       case OPT_FFLAG:
2077         break;
2078       case OPT_DBL:
2079         *(double*)(op[j].arg) = dv;
2080         break;
2081       case OPT_FDBL:
2082         op[j].fn(dv);
2083         break;
2084       case OPT_INT:
2085         *(int*)(op[j].arg) = lv;
2086         break;
2087       case OPT_FINT:
2088         op[j].fn((int)lv);
2089         break;
2090       case OPT_STR:
2091         *(char**)(op[j].arg) = sv;
2092         break;
2093       case OPT_FSTR:
2094         op[j].fn(sv);
2095         break;
2096     }
2097   }
2098   return errcnt;
2099 }
2100 
OptInit(char ** a,struct s_options * o,FILE * err)2101 int OptInit(char **a, struct s_options *o, FILE *err)
2102 {
2103   int errcnt = 0;
2104   g_argv = a;
2105   op = o;
2106   errstream = err;
2107   if( g_argv && *g_argv && op ){
2108     int i;
2109     for(i=1; g_argv[i]; i++){
2110       if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){
2111         errcnt += handleflags(i,err);
2112       }else if( strchr(g_argv[i],'=') ){
2113         errcnt += handleswitch(i,err);
2114       }
2115     }
2116   }
2117   if( errcnt>0 ){
2118     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2119     OptPrint();
2120     exit(1);
2121   }
2122   return 0;
2123 }
2124 
OptNArgs(void)2125 int OptNArgs(void){
2126   int cnt = 0;
2127   int dashdash = 0;
2128   int i;
2129   if( g_argv!=0 && g_argv[0]!=0 ){
2130     for(i=1; g_argv[i]; i++){
2131       if( dashdash || !ISOPT(g_argv[i]) ) cnt++;
2132       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
2133     }
2134   }
2135   return cnt;
2136 }
2137 
OptArg(int n)2138 char *OptArg(int n)
2139 {
2140   int i;
2141   i = argindex(n);
2142   return i>=0 ? g_argv[i] : 0;
2143 }
2144 
OptErr(int n)2145 void OptErr(int n)
2146 {
2147   int i;
2148   i = argindex(n);
2149   if( i>=0 ) errline(i,0,errstream);
2150 }
2151 
OptPrint(void)2152 void OptPrint(void){
2153   int i;
2154   int max, len;
2155   max = 0;
2156   for(i=0; op[i].label; i++){
2157     len = lemonStrlen(op[i].label) + 1;
2158     switch( op[i].type ){
2159       case OPT_FLAG:
2160       case OPT_FFLAG:
2161         break;
2162       case OPT_INT:
2163       case OPT_FINT:
2164         len += 9;       /* length of "<integer>" */
2165         break;
2166       case OPT_DBL:
2167       case OPT_FDBL:
2168         len += 6;       /* length of "<real>" */
2169         break;
2170       case OPT_STR:
2171       case OPT_FSTR:
2172         len += 8;       /* length of "<string>" */
2173         break;
2174     }
2175     if( len>max ) max = len;
2176   }
2177   for(i=0; op[i].label; i++){
2178     switch( op[i].type ){
2179       case OPT_FLAG:
2180       case OPT_FFLAG:
2181         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
2182         break;
2183       case OPT_INT:
2184       case OPT_FINT:
2185         fprintf(errstream,"  -%s<integer>%*s  %s\n",op[i].label,
2186           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2187         break;
2188       case OPT_DBL:
2189       case OPT_FDBL:
2190         fprintf(errstream,"  -%s<real>%*s  %s\n",op[i].label,
2191           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2192         break;
2193       case OPT_STR:
2194       case OPT_FSTR:
2195         fprintf(errstream,"  -%s<string>%*s  %s\n",op[i].label,
2196           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2197         break;
2198     }
2199   }
2200 }
2201 /*********************** From the file "parse.c" ****************************/
2202 /*
2203 ** Input file parser for the LEMON parser generator.
2204 */
2205 
2206 /* The state of the parser */
2207 enum e_state {
2208   INITIALIZE,
2209   WAITING_FOR_DECL_OR_RULE,
2210   WAITING_FOR_DECL_KEYWORD,
2211   WAITING_FOR_DECL_ARG,
2212   WAITING_FOR_PRECEDENCE_SYMBOL,
2213   WAITING_FOR_ARROW,
2214   IN_RHS,
2215   LHS_ALIAS_1,
2216   LHS_ALIAS_2,
2217   LHS_ALIAS_3,
2218   RHS_ALIAS_1,
2219   RHS_ALIAS_2,
2220   PRECEDENCE_MARK_1,
2221   PRECEDENCE_MARK_2,
2222   RESYNC_AFTER_RULE_ERROR,
2223   RESYNC_AFTER_DECL_ERROR,
2224   WAITING_FOR_DESTRUCTOR_SYMBOL,
2225   WAITING_FOR_DATATYPE_SYMBOL,
2226   WAITING_FOR_FALLBACK_ID,
2227   WAITING_FOR_WILDCARD_ID,
2228   WAITING_FOR_CLASS_ID,
2229   WAITING_FOR_CLASS_TOKEN,
2230   WAITING_FOR_TOKEN_NAME
2231 };
2232 struct pstate {
2233   char *filename;       /* Name of the input file */
2234   int tokenlineno;      /* Linenumber at which current token starts */
2235   int errorcnt;         /* Number of errors so far */
2236   char *tokenstart;     /* Text of current token */
2237   struct lemon *gp;     /* Global state vector */
2238   enum e_state state;        /* The state of the parser */
2239   struct symbol *fallback;   /* The fallback token */
2240   struct symbol *tkclass;    /* Token class symbol */
2241   struct symbol *lhs;        /* Left-hand side of current rule */
2242   const char *lhsalias;      /* Alias for the LHS */
2243   int nrhs;                  /* Number of right-hand side symbols seen */
2244   struct symbol *rhs[MAXRHS];  /* RHS symbols */
2245   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2246   struct rule *prevrule;     /* Previous rule parsed */
2247   const char *declkeyword;   /* Keyword of a declaration */
2248   char **declargslot;        /* Where the declaration argument should be put */
2249   int insertLineMacro;       /* Add #line before declaration insert */
2250   int *decllinenoslot;       /* Where to write declaration line number */
2251   enum e_assoc declassoc;    /* Assign this association to decl arguments */
2252   int preccounter;           /* Assign this precedence to decl arguments */
2253   struct rule *firstrule;    /* Pointer to first rule in the grammar */
2254   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
2255 };
2256 
2257 /* Parse a single token */
parseonetoken(struct pstate * psp)2258 static void parseonetoken(struct pstate *psp)
2259 {
2260   const char *x;
2261   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
2262 #if 0
2263   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2264     x,psp->state);
2265 #endif
2266   switch( psp->state ){
2267     case INITIALIZE:
2268       psp->prevrule = 0;
2269       psp->preccounter = 0;
2270       psp->firstrule = psp->lastrule = 0;
2271       psp->gp->nrule = 0;
2272       /* fall through */
2273     case WAITING_FOR_DECL_OR_RULE:
2274       if( x[0]=='%' ){
2275         psp->state = WAITING_FOR_DECL_KEYWORD;
2276       }else if( ISLOWER(x[0]) ){
2277         psp->lhs = Symbol_new(x);
2278         psp->nrhs = 0;
2279         psp->lhsalias = 0;
2280         psp->state = WAITING_FOR_ARROW;
2281       }else if( x[0]=='{' ){
2282         if( psp->prevrule==0 ){
2283           ErrorMsg(psp->filename,psp->tokenlineno,
2284             "There is no prior rule upon which to attach the code "
2285             "fragment which begins on this line.");
2286           psp->errorcnt++;
2287         }else if( psp->prevrule->code!=0 ){
2288           ErrorMsg(psp->filename,psp->tokenlineno,
2289             "Code fragment beginning on this line is not the first "
2290             "to follow the previous rule.");
2291           psp->errorcnt++;
2292         }else if( strcmp(x, "{NEVER-REDUCE")==0 ){
2293           psp->prevrule->neverReduce = 1;
2294         }else{
2295           psp->prevrule->line = psp->tokenlineno;
2296           psp->prevrule->code = &x[1];
2297           psp->prevrule->noCode = 0;
2298         }
2299       }else if( x[0]=='[' ){
2300         psp->state = PRECEDENCE_MARK_1;
2301       }else{
2302         ErrorMsg(psp->filename,psp->tokenlineno,
2303           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2304           x);
2305         psp->errorcnt++;
2306       }
2307       break;
2308     case PRECEDENCE_MARK_1:
2309       if( !ISUPPER(x[0]) ){
2310         ErrorMsg(psp->filename,psp->tokenlineno,
2311           "The precedence symbol must be a terminal.");
2312         psp->errorcnt++;
2313       }else if( psp->prevrule==0 ){
2314         ErrorMsg(psp->filename,psp->tokenlineno,
2315           "There is no prior rule to assign precedence \"[%s]\".",x);
2316         psp->errorcnt++;
2317       }else if( psp->prevrule->precsym!=0 ){
2318         ErrorMsg(psp->filename,psp->tokenlineno,
2319           "Precedence mark on this line is not the first "
2320           "to follow the previous rule.");
2321         psp->errorcnt++;
2322       }else{
2323         psp->prevrule->precsym = Symbol_new(x);
2324       }
2325       psp->state = PRECEDENCE_MARK_2;
2326       break;
2327     case PRECEDENCE_MARK_2:
2328       if( x[0]!=']' ){
2329         ErrorMsg(psp->filename,psp->tokenlineno,
2330           "Missing \"]\" on precedence mark.");
2331         psp->errorcnt++;
2332       }
2333       psp->state = WAITING_FOR_DECL_OR_RULE;
2334       break;
2335     case WAITING_FOR_ARROW:
2336       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2337         psp->state = IN_RHS;
2338       }else if( x[0]=='(' ){
2339         psp->state = LHS_ALIAS_1;
2340       }else{
2341         ErrorMsg(psp->filename,psp->tokenlineno,
2342           "Expected to see a \":\" following the LHS symbol \"%s\".",
2343           psp->lhs->name);
2344         psp->errorcnt++;
2345         psp->state = RESYNC_AFTER_RULE_ERROR;
2346       }
2347       break;
2348     case LHS_ALIAS_1:
2349       if( ISALPHA(x[0]) ){
2350         psp->lhsalias = x;
2351         psp->state = LHS_ALIAS_2;
2352       }else{
2353         ErrorMsg(psp->filename,psp->tokenlineno,
2354           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2355           x,psp->lhs->name);
2356         psp->errorcnt++;
2357         psp->state = RESYNC_AFTER_RULE_ERROR;
2358       }
2359       break;
2360     case LHS_ALIAS_2:
2361       if( x[0]==')' ){
2362         psp->state = LHS_ALIAS_3;
2363       }else{
2364         ErrorMsg(psp->filename,psp->tokenlineno,
2365           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2366         psp->errorcnt++;
2367         psp->state = RESYNC_AFTER_RULE_ERROR;
2368       }
2369       break;
2370     case LHS_ALIAS_3:
2371       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2372         psp->state = IN_RHS;
2373       }else{
2374         ErrorMsg(psp->filename,psp->tokenlineno,
2375           "Missing \"->\" following: \"%s(%s)\".",
2376            psp->lhs->name,psp->lhsalias);
2377         psp->errorcnt++;
2378         psp->state = RESYNC_AFTER_RULE_ERROR;
2379       }
2380       break;
2381     case IN_RHS:
2382       if( x[0]=='.' ){
2383         struct rule *rp;
2384         rp = (struct rule *)calloc( sizeof(struct rule) +
2385              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2386         if( rp==0 ){
2387           ErrorMsg(psp->filename,psp->tokenlineno,
2388             "Can't allocate enough memory for this rule.");
2389           psp->errorcnt++;
2390           psp->prevrule = 0;
2391         }else{
2392           int i;
2393           rp->ruleline = psp->tokenlineno;
2394           rp->rhs = (struct symbol**)&rp[1];
2395           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2396           for(i=0; i<psp->nrhs; i++){
2397             rp->rhs[i] = psp->rhs[i];
2398             rp->rhsalias[i] = psp->alias[i];
2399             if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
2400           }
2401           rp->lhs = psp->lhs;
2402           rp->lhsalias = psp->lhsalias;
2403           rp->nrhs = psp->nrhs;
2404           rp->code = 0;
2405           rp->noCode = 1;
2406           rp->precsym = 0;
2407           rp->index = psp->gp->nrule++;
2408           rp->nextlhs = rp->lhs->rule;
2409           rp->lhs->rule = rp;
2410           rp->next = 0;
2411           if( psp->firstrule==0 ){
2412             psp->firstrule = psp->lastrule = rp;
2413           }else{
2414             psp->lastrule->next = rp;
2415             psp->lastrule = rp;
2416           }
2417           psp->prevrule = rp;
2418         }
2419         psp->state = WAITING_FOR_DECL_OR_RULE;
2420       }else if( ISALPHA(x[0]) ){
2421         if( psp->nrhs>=MAXRHS ){
2422           ErrorMsg(psp->filename,psp->tokenlineno,
2423             "Too many symbols on RHS of rule beginning at \"%s\".",
2424             x);
2425           psp->errorcnt++;
2426           psp->state = RESYNC_AFTER_RULE_ERROR;
2427         }else{
2428           psp->rhs[psp->nrhs] = Symbol_new(x);
2429           psp->alias[psp->nrhs] = 0;
2430           psp->nrhs++;
2431         }
2432       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){
2433         struct symbol *msp = psp->rhs[psp->nrhs-1];
2434         if( msp->type!=MULTITERMINAL ){
2435           struct symbol *origsp = msp;
2436           msp = (struct symbol *) calloc(1,sizeof(*msp));
2437           memset(msp, 0, sizeof(*msp));
2438           msp->type = MULTITERMINAL;
2439           msp->nsubsym = 1;
2440           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2441           msp->subsym[0] = origsp;
2442           msp->name = origsp->name;
2443           psp->rhs[psp->nrhs-1] = msp;
2444         }
2445         msp->nsubsym++;
2446         msp->subsym = (struct symbol **) realloc(msp->subsym,
2447           sizeof(struct symbol*)*msp->nsubsym);
2448         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2449         if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2450           ErrorMsg(psp->filename,psp->tokenlineno,
2451             "Cannot form a compound containing a non-terminal");
2452           psp->errorcnt++;
2453         }
2454       }else if( x[0]=='(' && psp->nrhs>0 ){
2455         psp->state = RHS_ALIAS_1;
2456       }else{
2457         ErrorMsg(psp->filename,psp->tokenlineno,
2458           "Illegal character on RHS of rule: \"%s\".",x);
2459         psp->errorcnt++;
2460         psp->state = RESYNC_AFTER_RULE_ERROR;
2461       }
2462       break;
2463     case RHS_ALIAS_1:
2464       if( ISALPHA(x[0]) ){
2465         psp->alias[psp->nrhs-1] = x;
2466         psp->state = RHS_ALIAS_2;
2467       }else{
2468         ErrorMsg(psp->filename,psp->tokenlineno,
2469           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2470           x,psp->rhs[psp->nrhs-1]->name);
2471         psp->errorcnt++;
2472         psp->state = RESYNC_AFTER_RULE_ERROR;
2473       }
2474       break;
2475     case RHS_ALIAS_2:
2476       if( x[0]==')' ){
2477         psp->state = IN_RHS;
2478       }else{
2479         ErrorMsg(psp->filename,psp->tokenlineno,
2480           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2481         psp->errorcnt++;
2482         psp->state = RESYNC_AFTER_RULE_ERROR;
2483       }
2484       break;
2485     case WAITING_FOR_DECL_KEYWORD:
2486       if( ISALPHA(x[0]) ){
2487         psp->declkeyword = x;
2488         psp->declargslot = 0;
2489         psp->decllinenoslot = 0;
2490         psp->insertLineMacro = 1;
2491         psp->state = WAITING_FOR_DECL_ARG;
2492         if( strcmp(x,"name")==0 ){
2493           psp->declargslot = &(psp->gp->name);
2494           psp->insertLineMacro = 0;
2495         }else if( strcmp(x,"include")==0 ){
2496           psp->declargslot = &(psp->gp->include);
2497         }else if( strcmp(x,"code")==0 ){
2498           psp->declargslot = &(psp->gp->extracode);
2499         }else if( strcmp(x,"token_destructor")==0 ){
2500           psp->declargslot = &psp->gp->tokendest;
2501         }else if( strcmp(x,"default_destructor")==0 ){
2502           psp->declargslot = &psp->gp->vardest;
2503         }else if( strcmp(x,"token_prefix")==0 ){
2504           psp->declargslot = &psp->gp->tokenprefix;
2505           psp->insertLineMacro = 0;
2506         }else if( strcmp(x,"syntax_error")==0 ){
2507           psp->declargslot = &(psp->gp->error);
2508         }else if( strcmp(x,"parse_accept")==0 ){
2509           psp->declargslot = &(psp->gp->accept);
2510         }else if( strcmp(x,"parse_failure")==0 ){
2511           psp->declargslot = &(psp->gp->failure);
2512         }else if( strcmp(x,"stack_overflow")==0 ){
2513           psp->declargslot = &(psp->gp->overflow);
2514         }else if( strcmp(x,"extra_argument")==0 ){
2515           psp->declargslot = &(psp->gp->arg);
2516           psp->insertLineMacro = 0;
2517         }else if( strcmp(x,"extra_context")==0 ){
2518           psp->declargslot = &(psp->gp->ctx);
2519           psp->insertLineMacro = 0;
2520         }else if( strcmp(x,"token_type")==0 ){
2521           psp->declargslot = &(psp->gp->tokentype);
2522           psp->insertLineMacro = 0;
2523         }else if( strcmp(x,"default_type")==0 ){
2524           psp->declargslot = &(psp->gp->vartype);
2525           psp->insertLineMacro = 0;
2526         }else if( strcmp(x,"stack_size")==0 ){
2527           psp->declargslot = &(psp->gp->stacksize);
2528           psp->insertLineMacro = 0;
2529         }else if( strcmp(x,"start_symbol")==0 ){
2530           psp->declargslot = &(psp->gp->start);
2531           psp->insertLineMacro = 0;
2532         }else if( strcmp(x,"left")==0 ){
2533           psp->preccounter++;
2534           psp->declassoc = LEFT;
2535           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2536         }else if( strcmp(x,"right")==0 ){
2537           psp->preccounter++;
2538           psp->declassoc = RIGHT;
2539           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2540         }else if( strcmp(x,"nonassoc")==0 ){
2541           psp->preccounter++;
2542           psp->declassoc = NONE;
2543           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2544         }else if( strcmp(x,"destructor")==0 ){
2545           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2546         }else if( strcmp(x,"type")==0 ){
2547           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2548         }else if( strcmp(x,"fallback")==0 ){
2549           psp->fallback = 0;
2550           psp->state = WAITING_FOR_FALLBACK_ID;
2551         }else if( strcmp(x,"token")==0 ){
2552           psp->state = WAITING_FOR_TOKEN_NAME;
2553         }else if( strcmp(x,"wildcard")==0 ){
2554           psp->state = WAITING_FOR_WILDCARD_ID;
2555         }else if( strcmp(x,"token_class")==0 ){
2556           psp->state = WAITING_FOR_CLASS_ID;
2557         }else{
2558           ErrorMsg(psp->filename,psp->tokenlineno,
2559             "Unknown declaration keyword: \"%%%s\".",x);
2560           psp->errorcnt++;
2561           psp->state = RESYNC_AFTER_DECL_ERROR;
2562         }
2563       }else{
2564         ErrorMsg(psp->filename,psp->tokenlineno,
2565           "Illegal declaration keyword: \"%s\".",x);
2566         psp->errorcnt++;
2567         psp->state = RESYNC_AFTER_DECL_ERROR;
2568       }
2569       break;
2570     case WAITING_FOR_DESTRUCTOR_SYMBOL:
2571       if( !ISALPHA(x[0]) ){
2572         ErrorMsg(psp->filename,psp->tokenlineno,
2573           "Symbol name missing after %%destructor keyword");
2574         psp->errorcnt++;
2575         psp->state = RESYNC_AFTER_DECL_ERROR;
2576       }else{
2577         struct symbol *sp = Symbol_new(x);
2578         psp->declargslot = &sp->destructor;
2579         psp->decllinenoslot = &sp->destLineno;
2580         psp->insertLineMacro = 1;
2581         psp->state = WAITING_FOR_DECL_ARG;
2582       }
2583       break;
2584     case WAITING_FOR_DATATYPE_SYMBOL:
2585       if( !ISALPHA(x[0]) ){
2586         ErrorMsg(psp->filename,psp->tokenlineno,
2587           "Symbol name missing after %%type keyword");
2588         psp->errorcnt++;
2589         psp->state = RESYNC_AFTER_DECL_ERROR;
2590       }else{
2591         struct symbol *sp = Symbol_find(x);
2592         if((sp) && (sp->datatype)){
2593           ErrorMsg(psp->filename,psp->tokenlineno,
2594             "Symbol %%type \"%s\" already defined", x);
2595           psp->errorcnt++;
2596           psp->state = RESYNC_AFTER_DECL_ERROR;
2597         }else{
2598           if (!sp){
2599             sp = Symbol_new(x);
2600           }
2601           psp->declargslot = &sp->datatype;
2602           psp->insertLineMacro = 0;
2603           psp->state = WAITING_FOR_DECL_ARG;
2604         }
2605       }
2606       break;
2607     case WAITING_FOR_PRECEDENCE_SYMBOL:
2608       if( x[0]=='.' ){
2609         psp->state = WAITING_FOR_DECL_OR_RULE;
2610       }else if( ISUPPER(x[0]) ){
2611         struct symbol *sp;
2612         sp = Symbol_new(x);
2613         if( sp->prec>=0 ){
2614           ErrorMsg(psp->filename,psp->tokenlineno,
2615             "Symbol \"%s\" has already be given a precedence.",x);
2616           psp->errorcnt++;
2617         }else{
2618           sp->prec = psp->preccounter;
2619           sp->assoc = psp->declassoc;
2620         }
2621       }else{
2622         ErrorMsg(psp->filename,psp->tokenlineno,
2623           "Can't assign a precedence to \"%s\".",x);
2624         psp->errorcnt++;
2625       }
2626       break;
2627     case WAITING_FOR_DECL_ARG:
2628       if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2629         const char *zOld, *zNew;
2630         char *zBuf, *z;
2631         int nOld, n, nLine = 0, nNew, nBack;
2632         int addLineMacro;
2633         char zLine[50];
2634         zNew = x;
2635         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2636         nNew = lemonStrlen(zNew);
2637         if( *psp->declargslot ){
2638           zOld = *psp->declargslot;
2639         }else{
2640           zOld = "";
2641         }
2642         nOld = lemonStrlen(zOld);
2643         n = nOld + nNew + 20;
2644         addLineMacro = !psp->gp->nolinenosflag
2645                        && psp->insertLineMacro
2646                        && psp->tokenlineno>1
2647                        && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2648         if( addLineMacro ){
2649           for(z=psp->filename, nBack=0; *z; z++){
2650             if( *z=='\\' ) nBack++;
2651           }
2652           lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2653           nLine = lemonStrlen(zLine);
2654           n += nLine + lemonStrlen(psp->filename) + nBack;
2655         }
2656         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2657         zBuf = *psp->declargslot + nOld;
2658         if( addLineMacro ){
2659           if( nOld && zBuf[-1]!='\n' ){
2660             *(zBuf++) = '\n';
2661           }
2662           memcpy(zBuf, zLine, nLine);
2663           zBuf += nLine;
2664           *(zBuf++) = '"';
2665           for(z=psp->filename; *z; z++){
2666             if( *z=='\\' ){
2667               *(zBuf++) = '\\';
2668             }
2669             *(zBuf++) = *z;
2670           }
2671           *(zBuf++) = '"';
2672           *(zBuf++) = '\n';
2673         }
2674         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2675           psp->decllinenoslot[0] = psp->tokenlineno;
2676         }
2677         memcpy(zBuf, zNew, nNew);
2678         zBuf += nNew;
2679         *zBuf = 0;
2680         psp->state = WAITING_FOR_DECL_OR_RULE;
2681       }else{
2682         ErrorMsg(psp->filename,psp->tokenlineno,
2683           "Illegal argument to %%%s: %s",psp->declkeyword,x);
2684         psp->errorcnt++;
2685         psp->state = RESYNC_AFTER_DECL_ERROR;
2686       }
2687       break;
2688     case WAITING_FOR_FALLBACK_ID:
2689       if( x[0]=='.' ){
2690         psp->state = WAITING_FOR_DECL_OR_RULE;
2691       }else if( !ISUPPER(x[0]) ){
2692         ErrorMsg(psp->filename, psp->tokenlineno,
2693           "%%fallback argument \"%s\" should be a token", x);
2694         psp->errorcnt++;
2695       }else{
2696         struct symbol *sp = Symbol_new(x);
2697         if( psp->fallback==0 ){
2698           psp->fallback = sp;
2699         }else if( sp->fallback ){
2700           ErrorMsg(psp->filename, psp->tokenlineno,
2701             "More than one fallback assigned to token %s", x);
2702           psp->errorcnt++;
2703         }else{
2704           sp->fallback = psp->fallback;
2705           psp->gp->has_fallback = 1;
2706         }
2707       }
2708       break;
2709     case WAITING_FOR_TOKEN_NAME:
2710       /* Tokens do not have to be declared before use.  But they can be
2711       ** in order to control their assigned integer number.  The number for
2712       ** each token is assigned when it is first seen.  So by including
2713       **
2714       **     %token ONE TWO THREE.
2715       **
2716       ** early in the grammar file, that assigns small consecutive values
2717       ** to each of the tokens ONE TWO and THREE.
2718       */
2719       if( x[0]=='.' ){
2720         psp->state = WAITING_FOR_DECL_OR_RULE;
2721       }else if( !ISUPPER(x[0]) ){
2722         ErrorMsg(psp->filename, psp->tokenlineno,
2723           "%%token argument \"%s\" should be a token", x);
2724         psp->errorcnt++;
2725       }else{
2726         (void)Symbol_new(x);
2727       }
2728       break;
2729     case WAITING_FOR_WILDCARD_ID:
2730       if( x[0]=='.' ){
2731         psp->state = WAITING_FOR_DECL_OR_RULE;
2732       }else if( !ISUPPER(x[0]) ){
2733         ErrorMsg(psp->filename, psp->tokenlineno,
2734           "%%wildcard argument \"%s\" should be a token", x);
2735         psp->errorcnt++;
2736       }else{
2737         struct symbol *sp = Symbol_new(x);
2738         if( psp->gp->wildcard==0 ){
2739           psp->gp->wildcard = sp;
2740         }else{
2741           ErrorMsg(psp->filename, psp->tokenlineno,
2742             "Extra wildcard to token: %s", x);
2743           psp->errorcnt++;
2744         }
2745       }
2746       break;
2747     case WAITING_FOR_CLASS_ID:
2748       if( !ISLOWER(x[0]) ){
2749         ErrorMsg(psp->filename, psp->tokenlineno,
2750           "%%token_class must be followed by an identifier: %s", x);
2751         psp->errorcnt++;
2752         psp->state = RESYNC_AFTER_DECL_ERROR;
2753      }else if( Symbol_find(x) ){
2754         ErrorMsg(psp->filename, psp->tokenlineno,
2755           "Symbol \"%s\" already used", x);
2756         psp->errorcnt++;
2757         psp->state = RESYNC_AFTER_DECL_ERROR;
2758       }else{
2759         psp->tkclass = Symbol_new(x);
2760         psp->tkclass->type = MULTITERMINAL;
2761         psp->state = WAITING_FOR_CLASS_TOKEN;
2762       }
2763       break;
2764     case WAITING_FOR_CLASS_TOKEN:
2765       if( x[0]=='.' ){
2766         psp->state = WAITING_FOR_DECL_OR_RULE;
2767       }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2768         struct symbol *msp = psp->tkclass;
2769         msp->nsubsym++;
2770         msp->subsym = (struct symbol **) realloc(msp->subsym,
2771           sizeof(struct symbol*)*msp->nsubsym);
2772         if( !ISUPPER(x[0]) ) x++;
2773         msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2774       }else{
2775         ErrorMsg(psp->filename, psp->tokenlineno,
2776           "%%token_class argument \"%s\" should be a token", x);
2777         psp->errorcnt++;
2778         psp->state = RESYNC_AFTER_DECL_ERROR;
2779       }
2780       break;
2781     case RESYNC_AFTER_RULE_ERROR:
2782 /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2783 **      break; */
2784     case RESYNC_AFTER_DECL_ERROR:
2785       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2786       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2787       break;
2788   }
2789 }
2790 
2791 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2792 ** Evaluate the text as a boolean expression.  Return true or false.
2793 */
eval_preprocessor_boolean(char * z,int lineno)2794 static int eval_preprocessor_boolean(char *z, int lineno){
2795   int neg = 0;
2796   int res = 0;
2797   int okTerm = 1;
2798   int i;
2799   for(i=0; z[i]!=0; i++){
2800     if( ISSPACE(z[i]) ) continue;
2801     if( z[i]=='!' ){
2802       if( !okTerm ) goto pp_syntax_error;
2803       neg = !neg;
2804       continue;
2805     }
2806     if( z[i]=='|' && z[i+1]=='|' ){
2807       if( okTerm ) goto pp_syntax_error;
2808       if( res ) return 1;
2809       i++;
2810       okTerm = 1;
2811       continue;
2812     }
2813     if( z[i]=='&' && z[i+1]=='&' ){
2814       if( okTerm ) goto pp_syntax_error;
2815       if( !res ) return 0;
2816       i++;
2817       okTerm = 1;
2818       continue;
2819     }
2820     if( z[i]=='(' ){
2821       int k;
2822       int n = 1;
2823       if( !okTerm ) goto pp_syntax_error;
2824       for(k=i+1; z[k]; k++){
2825         if( z[k]==')' ){
2826           n--;
2827           if( n==0 ){
2828             z[k] = 0;
2829             res = eval_preprocessor_boolean(&z[i+1], -1);
2830             z[k] = ')';
2831             if( res<0 ){
2832               i = i-res;
2833               goto pp_syntax_error;
2834             }
2835             i = k;
2836             break;
2837           }
2838         }else if( z[k]=='(' ){
2839           n++;
2840         }else if( z[k]==0 ){
2841           i = k;
2842           goto pp_syntax_error;
2843         }
2844       }
2845       if( neg ){
2846         res = !res;
2847         neg = 0;
2848       }
2849       okTerm = 0;
2850       continue;
2851     }
2852     if( ISALPHA(z[i]) ){
2853       int j, k, n;
2854       if( !okTerm ) goto pp_syntax_error;
2855       for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){}
2856       n = k - i;
2857       res = 0;
2858       for(j=0; j<nDefine; j++){
2859         if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){
2860           res = 1;
2861           break;
2862         }
2863       }
2864       i = k-1;
2865       if( neg ){
2866         res = !res;
2867         neg = 0;
2868       }
2869       okTerm = 0;
2870       continue;
2871     }
2872     goto pp_syntax_error;
2873   }
2874   return res;
2875 
2876 pp_syntax_error:
2877   if( lineno>0 ){
2878     fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
2879     fprintf(stderr, "  %.*s <-- syntax error here\n", i+1, z);
2880     exit(1);
2881   }else{
2882     return -(i+1);
2883   }
2884 }
2885 
2886 /* Run the preprocessor over the input file text.  The global variables
2887 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2888 ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2889 ** comments them out.  Text in between is also commented out as appropriate.
2890 */
preprocess_input(char * z)2891 static void preprocess_input(char *z){
2892   int i, j, k;
2893   int exclude = 0;
2894   int start = 0;
2895   int lineno = 1;
2896   int start_lineno = 1;
2897   for(i=0; z[i]; i++){
2898     if( z[i]=='\n' ) lineno++;
2899     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2900     if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2901       if( exclude ){
2902         exclude--;
2903         if( exclude==0 ){
2904           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2905         }
2906       }
2907       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2908     }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){
2909       if( exclude==1){
2910         exclude = 0;
2911         for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2912       }else if( exclude==0 ){
2913         exclude = 1;
2914         start = i;
2915         start_lineno = lineno;
2916       }
2917       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2918     }else if( strncmp(&z[i],"%ifdef ",7)==0
2919           || strncmp(&z[i],"%if ",4)==0
2920           || strncmp(&z[i],"%ifndef ",8)==0 ){
2921       if( exclude ){
2922         exclude++;
2923       }else{
2924         int isNot;
2925         int iBool;
2926         for(j=i; z[j] && !ISSPACE(z[j]); j++){}
2927         iBool = j;
2928         isNot = (j==i+7);
2929         while( z[j] && z[j]!='\n' ){ j++; }
2930         k = z[j];
2931         z[j] = 0;
2932         exclude = eval_preprocessor_boolean(&z[iBool], lineno);
2933         z[j] = k;
2934         if( !isNot ) exclude = !exclude;
2935         if( exclude ){
2936           start = i;
2937           start_lineno = lineno;
2938         }
2939       }
2940       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2941     }
2942   }
2943   if( exclude ){
2944     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2945     exit(1);
2946   }
2947 }
2948 
2949 /* In spite of its name, this function is really a scanner.  It read
2950 ** in the entire input file (all at once) then tokenizes it.  Each
2951 ** token is passed to the function "parseonetoken" which builds all
2952 ** the appropriate data structures in the global state vector "gp".
2953 */
Parse(struct lemon * gp)2954 void Parse(struct lemon *gp)
2955 {
2956   struct pstate ps;
2957   FILE *fp;
2958   char *filebuf;
2959   unsigned int filesize;
2960   int lineno;
2961   int c;
2962   char *cp, *nextcp;
2963   int startline = 0;
2964 
2965   memset(&ps, '\0', sizeof(ps));
2966   ps.gp = gp;
2967   ps.filename = gp->filename;
2968   ps.errorcnt = 0;
2969   ps.state = INITIALIZE;
2970 
2971   /* Begin by reading the input file */
2972   fp = fopen(ps.filename,"rb");
2973   if( fp==0 ){
2974     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2975     gp->errorcnt++;
2976     return;
2977   }
2978   fseek(fp,0,2);
2979   filesize = ftell(fp);
2980   rewind(fp);
2981   filebuf = (char *)malloc( filesize+1 );
2982   if( filesize>100000000 || filebuf==0 ){
2983     ErrorMsg(ps.filename,0,"Input file too large.");
2984     free(filebuf);
2985     gp->errorcnt++;
2986     fclose(fp);
2987     return;
2988   }
2989   if( fread(filebuf,1,filesize,fp)!=filesize ){
2990     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2991       filesize);
2992     free(filebuf);
2993     gp->errorcnt++;
2994     fclose(fp);
2995     return;
2996   }
2997   fclose(fp);
2998   filebuf[filesize] = 0;
2999 
3000   /* Make an initial pass through the file to handle %ifdef and %ifndef */
3001   preprocess_input(filebuf);
3002   if( gp->printPreprocessed ){
3003     printf("%s\n", filebuf);
3004     return;
3005   }
3006 
3007   /* Now scan the text of the input file */
3008   lineno = 1;
3009   for(cp=filebuf; (c= *cp)!=0; ){
3010     if( c=='\n' ) lineno++;              /* Keep track of the line number */
3011     if( ISSPACE(c) ){ cp++; continue; }  /* Skip all white space */
3012     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
3013       cp+=2;
3014       while( (c= *cp)!=0 && c!='\n' ) cp++;
3015       continue;
3016     }
3017     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
3018       cp+=2;
3019       if( (*cp)=='/' ) cp++;
3020       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
3021         if( c=='\n' ) lineno++;
3022         cp++;
3023       }
3024       if( c ) cp++;
3025       continue;
3026     }
3027     ps.tokenstart = cp;                /* Mark the beginning of the token */
3028     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
3029     if( c=='\"' ){                     /* String literals */
3030       cp++;
3031       while( (c= *cp)!=0 && c!='\"' ){
3032         if( c=='\n' ) lineno++;
3033         cp++;
3034       }
3035       if( c==0 ){
3036         ErrorMsg(ps.filename,startline,
3037             "String starting on this line is not terminated before "
3038             "the end of the file.");
3039         ps.errorcnt++;
3040         nextcp = cp;
3041       }else{
3042         nextcp = cp+1;
3043       }
3044     }else if( c=='{' ){               /* A block of C code */
3045       int level;
3046       cp++;
3047       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
3048         if( c=='\n' ) lineno++;
3049         else if( c=='{' ) level++;
3050         else if( c=='}' ) level--;
3051         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
3052           int prevc;
3053           cp = &cp[2];
3054           prevc = 0;
3055           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
3056             if( c=='\n' ) lineno++;
3057             prevc = c;
3058             cp++;
3059           }
3060         }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
3061           cp = &cp[2];
3062           while( (c= *cp)!=0 && c!='\n' ) cp++;
3063           if( c ) lineno++;
3064         }else if( c=='\'' || c=='\"' ){    /* String a character literals */
3065           int startchar, prevc;
3066           startchar = c;
3067           prevc = 0;
3068           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
3069             if( c=='\n' ) lineno++;
3070             if( prevc=='\\' ) prevc = 0;
3071             else              prevc = c;
3072           }
3073         }
3074       }
3075       if( c==0 ){
3076         ErrorMsg(ps.filename,ps.tokenlineno,
3077           "C code starting on this line is not terminated before "
3078           "the end of the file.");
3079         ps.errorcnt++;
3080         nextcp = cp;
3081       }else{
3082         nextcp = cp+1;
3083       }
3084     }else if( ISALNUM(c) ){          /* Identifiers */
3085       while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3086       nextcp = cp;
3087     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
3088       cp += 3;
3089       nextcp = cp;
3090     }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
3091       cp += 2;
3092       while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3093       nextcp = cp;
3094     }else{                          /* All other (one character) operators */
3095       cp++;
3096       nextcp = cp;
3097     }
3098     c = *cp;
3099     *cp = 0;                        /* Null terminate the token */
3100     parseonetoken(&ps);             /* Parse the token */
3101     *cp = (char)c;                  /* Restore the buffer */
3102     cp = nextcp;
3103   }
3104   free(filebuf);                    /* Release the buffer after parsing */
3105   gp->rule = ps.firstrule;
3106   gp->errorcnt = ps.errorcnt;
3107 }
3108 /*************************** From the file "plink.c" *********************/
3109 /*
3110 ** Routines processing configuration follow-set propagation links
3111 ** in the LEMON parser generator.
3112 */
3113 static struct plink *plink_freelist = 0;
3114 
3115 /* Allocate a new plink */
Plink_new(void)3116 struct plink *Plink_new(void){
3117   struct plink *newlink;
3118 
3119   if( plink_freelist==0 ){
3120     int i;
3121     int amt = 100;
3122     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
3123     if( plink_freelist==0 ){
3124       fprintf(stderr,
3125       "Unable to allocate memory for a new follow-set propagation link.\n");
3126       exit(1);
3127     }
3128     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
3129     plink_freelist[amt-1].next = 0;
3130   }
3131   newlink = plink_freelist;
3132   plink_freelist = plink_freelist->next;
3133   return newlink;
3134 }
3135 
3136 /* Add a plink to a plink list */
Plink_add(struct plink ** plpp,struct config * cfp)3137 void Plink_add(struct plink **plpp, struct config *cfp)
3138 {
3139   struct plink *newlink;
3140   newlink = Plink_new();
3141   newlink->next = *plpp;
3142   *plpp = newlink;
3143   newlink->cfp = cfp;
3144 }
3145 
3146 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(struct plink ** to,struct plink * from)3147 void Plink_copy(struct plink **to, struct plink *from)
3148 {
3149   struct plink *nextpl;
3150   while( from ){
3151     nextpl = from->next;
3152     from->next = *to;
3153     *to = from;
3154     from = nextpl;
3155   }
3156 }
3157 
3158 /* Delete every plink on the list */
Plink_delete(struct plink * plp)3159 void Plink_delete(struct plink *plp)
3160 {
3161   struct plink *nextpl;
3162 
3163   while( plp ){
3164     nextpl = plp->next;
3165     plp->next = plink_freelist;
3166     plink_freelist = plp;
3167     plp = nextpl;
3168   }
3169 }
3170 /*********************** From the file "report.c" **************************/
3171 /*
3172 ** Procedures for generating reports and tables in the LEMON parser generator.
3173 */
3174 
3175 /* Generate a filename with the given suffix.  Space to hold the
3176 ** name comes from malloc() and must be freed by the calling
3177 ** function.
3178 */
file_makename(struct lemon * lemp,const char * suffix)3179 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
3180 {
3181   char *name;
3182   char *cp;
3183   char *filename = lemp->filename;
3184   int sz;
3185 
3186   if( outputDir ){
3187     cp = strrchr(filename, '/');
3188     if( cp ) filename = cp + 1;
3189   }
3190   sz = lemonStrlen(filename);
3191   sz += lemonStrlen(suffix);
3192   if( outputDir ) sz += lemonStrlen(outputDir) + 1;
3193   sz += 5;
3194   name = (char*)malloc( sz );
3195   if( name==0 ){
3196     fprintf(stderr,"Can't allocate space for a filename.\n");
3197     exit(1);
3198   }
3199   name[0] = 0;
3200   if( outputDir ){
3201     lemon_strcpy(name, outputDir);
3202     lemon_strcat(name, "/");
3203   }
3204   lemon_strcat(name,filename);
3205   cp = strrchr(name,'.');
3206   if( cp ) *cp = 0;
3207   lemon_strcat(name,suffix);
3208   return name;
3209 }
3210 
3211 /* Open a file with a name based on the name of the input file,
3212 ** but with a different (specified) suffix, and return a pointer
3213 ** to the stream */
file_open(struct lemon * lemp,const char * suffix,const char * mode)3214 PRIVATE FILE *file_open(
3215   struct lemon *lemp,
3216   const char *suffix,
3217   const char *mode
3218 ){
3219   FILE *fp;
3220 
3221   if( lemp->outname ) free(lemp->outname);
3222   lemp->outname = file_makename(lemp, suffix);
3223   fp = fopen(lemp->outname,mode);
3224   if( fp==0 && *mode=='w' ){
3225     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
3226     lemp->errorcnt++;
3227     return 0;
3228   }
3229   return fp;
3230 }
3231 
3232 /* Print the text of a rule
3233 */
rule_print(FILE * out,struct rule * rp)3234 void rule_print(FILE *out, struct rule *rp){
3235   int i, j;
3236   fprintf(out, "%s",rp->lhs->name);
3237   /*    if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3238   fprintf(out," ::=");
3239   for(i=0; i<rp->nrhs; i++){
3240     struct symbol *sp = rp->rhs[i];
3241     if( sp->type==MULTITERMINAL ){
3242       fprintf(out," %s", sp->subsym[0]->name);
3243       for(j=1; j<sp->nsubsym; j++){
3244         fprintf(out,"|%s", sp->subsym[j]->name);
3245       }
3246     }else{
3247       fprintf(out," %s", sp->name);
3248     }
3249     /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3250   }
3251 }
3252 
3253 /* Duplicate the input file without comments and without actions
3254 ** on rules */
Reprint(struct lemon * lemp)3255 void Reprint(struct lemon *lemp)
3256 {
3257   struct rule *rp;
3258   struct symbol *sp;
3259   int i, j, maxlen, len, ncolumns, skip;
3260   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3261   maxlen = 10;
3262   for(i=0; i<lemp->nsymbol; i++){
3263     sp = lemp->symbols[i];
3264     len = lemonStrlen(sp->name);
3265     if( len>maxlen ) maxlen = len;
3266   }
3267   ncolumns = 76/(maxlen+5);
3268   if( ncolumns<1 ) ncolumns = 1;
3269   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3270   for(i=0; i<skip; i++){
3271     printf("//");
3272     for(j=i; j<lemp->nsymbol; j+=skip){
3273       sp = lemp->symbols[j];
3274       assert( sp->index==j );
3275       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3276     }
3277     printf("\n");
3278   }
3279   for(rp=lemp->rule; rp; rp=rp->next){
3280     rule_print(stdout, rp);
3281     printf(".");
3282     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3283     /* if( rp->code ) printf("\n    %s",rp->code); */
3284     printf("\n");
3285   }
3286 }
3287 
3288 /* Print a single rule.
3289 */
RulePrint(FILE * fp,struct rule * rp,int iCursor)3290 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3291   struct symbol *sp;
3292   int i, j;
3293   fprintf(fp,"%s ::=",rp->lhs->name);
3294   for(i=0; i<=rp->nrhs; i++){
3295     if( i==iCursor ) fprintf(fp," *");
3296     if( i==rp->nrhs ) break;
3297     sp = rp->rhs[i];
3298     if( sp->type==MULTITERMINAL ){
3299       fprintf(fp," %s", sp->subsym[0]->name);
3300       for(j=1; j<sp->nsubsym; j++){
3301         fprintf(fp,"|%s",sp->subsym[j]->name);
3302       }
3303     }else{
3304       fprintf(fp," %s", sp->name);
3305     }
3306   }
3307 }
3308 
3309 /* Print the rule for a configuration.
3310 */
ConfigPrint(FILE * fp,struct config * cfp)3311 void ConfigPrint(FILE *fp, struct config *cfp){
3312   RulePrint(fp, cfp->rp, cfp->dot);
3313 }
3314 
3315 /* #define TEST */
3316 #if 0
3317 /* Print a set */
3318 PRIVATE void SetPrint(out,set,lemp)
3319 FILE *out;
3320 char *set;
3321 struct lemon *lemp;
3322 {
3323   int i;
3324   char *spacer;
3325   spacer = "";
3326   fprintf(out,"%12s[","");
3327   for(i=0; i<lemp->nterminal; i++){
3328     if( SetFind(set,i) ){
3329       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3330       spacer = " ";
3331     }
3332   }
3333   fprintf(out,"]\n");
3334 }
3335 
3336 /* Print a plink chain */
3337 PRIVATE void PlinkPrint(out,plp,tag)
3338 FILE *out;
3339 struct plink *plp;
3340 char *tag;
3341 {
3342   while( plp ){
3343     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3344     ConfigPrint(out,plp->cfp);
3345     fprintf(out,"\n");
3346     plp = plp->next;
3347   }
3348 }
3349 #endif
3350 
3351 /* Print an action to the given file descriptor.  Return FALSE if
3352 ** nothing was actually printed.
3353 */
PrintAction(struct action * ap,FILE * fp,int indent)3354 int PrintAction(
3355   struct action *ap,          /* The action to print */
3356   FILE *fp,                   /* Print the action here */
3357   int indent                  /* Indent by this amount */
3358 ){
3359   int result = 1;
3360   switch( ap->type ){
3361     case SHIFT: {
3362       struct state *stp = ap->x.stp;
3363       fprintf(fp,"%*s shift        %-7d",indent,ap->sp->name,stp->statenum);
3364       break;
3365     }
3366     case REDUCE: {
3367       struct rule *rp = ap->x.rp;
3368       fprintf(fp,"%*s reduce       %-7d",indent,ap->sp->name,rp->iRule);
3369       RulePrint(fp, rp, -1);
3370       break;
3371     }
3372     case SHIFTREDUCE: {
3373       struct rule *rp = ap->x.rp;
3374       fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3375       RulePrint(fp, rp, -1);
3376       break;
3377     }
3378     case ACCEPT:
3379       fprintf(fp,"%*s accept",indent,ap->sp->name);
3380       break;
3381     case ERROR:
3382       fprintf(fp,"%*s error",indent,ap->sp->name);
3383       break;
3384     case SRCONFLICT:
3385     case RRCONFLICT:
3386       fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
3387         indent,ap->sp->name,ap->x.rp->iRule);
3388       break;
3389     case SSCONFLICT:
3390       fprintf(fp,"%*s shift        %-7d ** Parsing conflict **",
3391         indent,ap->sp->name,ap->x.stp->statenum);
3392       break;
3393     case SH_RESOLVED:
3394       if( showPrecedenceConflict ){
3395         fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
3396                 indent,ap->sp->name,ap->x.stp->statenum);
3397       }else{
3398         result = 0;
3399       }
3400       break;
3401     case RD_RESOLVED:
3402       if( showPrecedenceConflict ){
3403         fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3404                 indent,ap->sp->name,ap->x.rp->iRule);
3405       }else{
3406         result = 0;
3407       }
3408       break;
3409     case NOT_USED:
3410       result = 0;
3411       break;
3412   }
3413   if( result && ap->spOpt ){
3414     fprintf(fp,"  /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3415   }
3416   return result;
3417 }
3418 
3419 /* Generate the "*.out" log file */
ReportOutput(struct lemon * lemp)3420 void ReportOutput(struct lemon *lemp)
3421 {
3422   int i, n;
3423   struct state *stp;
3424   struct config *cfp;
3425   struct action *ap;
3426   struct rule *rp;
3427   FILE *fp;
3428 
3429   fp = file_open(lemp,".out","wb");
3430   if( fp==0 ) return;
3431   for(i=0; i<lemp->nxstate; i++){
3432     stp = lemp->sorted[i];
3433     fprintf(fp,"State %d:\n",stp->statenum);
3434     if( lemp->basisflag ) cfp=stp->bp;
3435     else                  cfp=stp->cfp;
3436     while( cfp ){
3437       char buf[20];
3438       if( cfp->dot==cfp->rp->nrhs ){
3439         lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3440         fprintf(fp,"    %5s ",buf);
3441       }else{
3442         fprintf(fp,"          ");
3443       }
3444       ConfigPrint(fp,cfp);
3445       fprintf(fp,"\n");
3446 #if 0
3447       SetPrint(fp,cfp->fws,lemp);
3448       PlinkPrint(fp,cfp->fplp,"To  ");
3449       PlinkPrint(fp,cfp->bplp,"From");
3450 #endif
3451       if( lemp->basisflag ) cfp=cfp->bp;
3452       else                  cfp=cfp->next;
3453     }
3454     fprintf(fp,"\n");
3455     for(ap=stp->ap; ap; ap=ap->next){
3456       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3457     }
3458     fprintf(fp,"\n");
3459   }
3460   fprintf(fp, "----------------------------------------------------\n");
3461   fprintf(fp, "Symbols:\n");
3462   fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
3463   for(i=0; i<lemp->nsymbol; i++){
3464     int j;
3465     struct symbol *sp;
3466 
3467     sp = lemp->symbols[i];
3468     fprintf(fp, "  %3d: %s", i, sp->name);
3469     if( sp->type==NONTERMINAL ){
3470       fprintf(fp, ":");
3471       if( sp->lambda ){
3472         fprintf(fp, " <lambda>");
3473       }
3474       for(j=0; j<lemp->nterminal; j++){
3475         if( sp->firstset && SetFind(sp->firstset, j) ){
3476           fprintf(fp, " %s", lemp->symbols[j]->name);
3477         }
3478       }
3479     }
3480     if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
3481     fprintf(fp, "\n");
3482   }
3483   fprintf(fp, "----------------------------------------------------\n");
3484   fprintf(fp, "Syntax-only Symbols:\n");
3485   fprintf(fp, "The following symbols never carry semantic content.\n\n");
3486   for(i=n=0; i<lemp->nsymbol; i++){
3487     int w;
3488     struct symbol *sp = lemp->symbols[i];
3489     if( sp->bContent ) continue;
3490     w = (int)strlen(sp->name);
3491     if( n>0 && n+w>75 ){
3492       fprintf(fp,"\n");
3493       n = 0;
3494     }
3495     if( n>0 ){
3496       fprintf(fp, " ");
3497       n++;
3498     }
3499     fprintf(fp, "%s", sp->name);
3500     n += w;
3501   }
3502   if( n>0 ) fprintf(fp, "\n");
3503   fprintf(fp, "----------------------------------------------------\n");
3504   fprintf(fp, "Rules:\n");
3505   for(rp=lemp->rule; rp; rp=rp->next){
3506     fprintf(fp, "%4d: ", rp->iRule);
3507     rule_print(fp, rp);
3508     fprintf(fp,".");
3509     if( rp->precsym ){
3510       fprintf(fp," [%s precedence=%d]",
3511               rp->precsym->name, rp->precsym->prec);
3512     }
3513     fprintf(fp,"\n");
3514   }
3515   fclose(fp);
3516   return;
3517 }
3518 
3519 /* Search for the file "name" which is in the same directory as
3520 ** the executable */
pathsearch(char * argv0,char * name,int modemask)3521 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3522 {
3523   const char *pathlist;
3524   char *pathbufptr = 0;
3525   char *pathbuf = 0;
3526   char *path,*cp;
3527   char c;
3528 
3529 #ifdef __WIN32__
3530   cp = strrchr(argv0,'\\');
3531 #else
3532   cp = strrchr(argv0,'/');
3533 #endif
3534   if( cp ){
3535     c = *cp;
3536     *cp = 0;
3537     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3538     if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3539     *cp = c;
3540   }else{
3541     pathlist = getenv("PATH");
3542     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3543     pathbuf = pathbufptr = (char *) malloc( lemonStrlen(pathlist) + 1 );
3544     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3545     if( (pathbuf != 0) && (path!=0) ){
3546       lemon_strcpy(pathbuf, pathlist);
3547       while( *pathbuf ){
3548         cp = strchr(pathbuf,':');
3549         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3550         c = *cp;
3551         *cp = 0;
3552         lemon_sprintf(path,"%s/%s",pathbuf,name);
3553         *cp = c;
3554         if( c==0 ) pathbuf[0] = 0;
3555         else pathbuf = &cp[1];
3556         if( access(path,modemask)==0 ) break;
3557       }
3558     }
3559     free(pathbufptr);
3560   }
3561   return path;
3562 }
3563 
3564 /* Given an action, compute the integer value for that action
3565 ** which is to be put in the action table of the generated machine.
3566 ** Return negative if no action should be generated.
3567 */
compute_action(struct lemon * lemp,struct action * ap)3568 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3569 {
3570   int act;
3571   switch( ap->type ){
3572     case SHIFT:  act = ap->x.stp->statenum;                        break;
3573     case SHIFTREDUCE: {
3574       /* Since a SHIFT is inherient after a prior REDUCE, convert any
3575       ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3576       ** REDUCE action: */
3577       if( ap->sp->index>=lemp->nterminal
3578        && (lemp->errsym==0 || ap->sp->index!=lemp->errsym->index)
3579       ){
3580         act = lemp->minReduce + ap->x.rp->iRule;
3581       }else{
3582         act = lemp->minShiftReduce + ap->x.rp->iRule;
3583       }
3584       break;
3585     }
3586     case REDUCE: act = lemp->minReduce + ap->x.rp->iRule;          break;
3587     case ERROR:  act = lemp->errAction;                            break;
3588     case ACCEPT: act = lemp->accAction;                            break;
3589     default:     act = -1; break;
3590   }
3591   return act;
3592 }
3593 
3594 #define LINESIZE 1000
3595 /* The next cluster of routines are for reading the template file
3596 ** and writing the results to the generated parser */
3597 /* The first function transfers data from "in" to "out" until
3598 ** a line is seen which begins with "%%".  The line number is
3599 ** tracked.
3600 **
3601 ** if name!=0, then any word that begin with "Parse" is changed to
3602 ** begin with *name instead.
3603 */
tplt_xfer(char * name,FILE * in,FILE * out,int * lineno)3604 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3605 {
3606   int i, iStart;
3607   char line[LINESIZE];
3608   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3609     (*lineno)++;
3610     iStart = 0;
3611     if( name ){
3612       for(i=0; line[i]; i++){
3613         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3614           && (i==0 || !ISALPHA(line[i-1]))
3615         ){
3616           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3617           fprintf(out,"%s",name);
3618           i += 4;
3619           iStart = i+1;
3620         }
3621       }
3622     }
3623     fprintf(out,"%s",&line[iStart]);
3624   }
3625 }
3626 
3627 /* Skip forward past the header of the template file to the first "%%"
3628 */
tplt_skip_header(FILE * in,int * lineno)3629 PRIVATE void tplt_skip_header(FILE *in, int *lineno)
3630 {
3631   char line[LINESIZE];
3632   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3633     (*lineno)++;
3634   }
3635 }
3636 
3637 /* The next function finds the template file and opens it, returning
3638 ** a pointer to the opened file. */
tplt_open(struct lemon * lemp)3639 PRIVATE FILE *tplt_open(struct lemon *lemp)
3640 {
3641   static char templatename[] = "lempar.c";
3642   char buf[1000];
3643   FILE *in;
3644   char *tpltname;
3645   char *toFree = 0;
3646   char *cp;
3647 
3648   /* first, see if user specified a template filename on the command line. */
3649   if (user_templatename != 0) {
3650     if( access(user_templatename,004)==-1 ){
3651       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3652         user_templatename);
3653       lemp->errorcnt++;
3654       return 0;
3655     }
3656     in = fopen(user_templatename,"rb");
3657     if( in==0 ){
3658       fprintf(stderr,"Can't open the template file \"%s\".\n",
3659               user_templatename);
3660       lemp->errorcnt++;
3661       return 0;
3662     }
3663     return in;
3664   }
3665 
3666   cp = strrchr(lemp->filename,'.');
3667   if( cp ){
3668     lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3669   }else{
3670     lemon_sprintf(buf,"%s.lt",lemp->filename);
3671   }
3672   if( access(buf,004)==0 ){
3673     tpltname = buf;
3674   }else if( access(templatename,004)==0 ){
3675     tpltname = templatename;
3676   }else{
3677     toFree = tpltname = pathsearch(lemp->argv0,templatename,0);
3678   }
3679   if( tpltname==0 ){
3680     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3681     templatename);
3682     lemp->errorcnt++;
3683     return 0;
3684   }
3685   in = fopen(tpltname,"rb");
3686   if( in==0 ){
3687     fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname);
3688     lemp->errorcnt++;
3689   }
3690   free(toFree);
3691   return in;
3692 }
3693 
3694 /* Print a #line directive line to the output file. */
tplt_linedir(FILE * out,int lineno,char * filename)3695 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3696 {
3697   fprintf(out,"#line %d \"",lineno);
3698   while( *filename ){
3699     if( *filename == '\\' ) putc('\\',out);
3700     putc(*filename,out);
3701     filename++;
3702   }
3703   fprintf(out,"\"\n");
3704 }
3705 
3706 /* Print a string to the file and keep the linenumber up to date */
tplt_print(FILE * out,struct lemon * lemp,char * str,int * lineno)3707 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3708 {
3709   if( str==0 ) return;
3710   while( *str ){
3711     putc(*str,out);
3712     if( *str=='\n' ) (*lineno)++;
3713     str++;
3714   }
3715   if( str[-1]!='\n' ){
3716     putc('\n',out);
3717     (*lineno)++;
3718   }
3719   if (!lemp->nolinenosflag) {
3720     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3721   }
3722   return;
3723 }
3724 
3725 /*
3726 ** The following routine emits code for the destructor for the
3727 ** symbol sp
3728 */
emit_destructor_code(FILE * out,struct symbol * sp,struct lemon * lemp,int * lineno)3729 void emit_destructor_code(
3730   FILE *out,
3731   struct symbol *sp,
3732   struct lemon *lemp,
3733   int *lineno
3734 ){
3735  char *cp = 0;
3736 
3737  if( sp->type==TERMINAL ){
3738    cp = lemp->tokendest;
3739    if( cp==0 ) return;
3740    fprintf(out,"{\n"); (*lineno)++;
3741  }else if( sp->destructor ){
3742    cp = sp->destructor;
3743    fprintf(out,"{\n"); (*lineno)++;
3744    if( !lemp->nolinenosflag ){
3745      (*lineno)++;
3746      tplt_linedir(out,sp->destLineno,lemp->filename);
3747    }
3748  }else if( lemp->vardest ){
3749    cp = lemp->vardest;
3750    if( cp==0 ) return;
3751    fprintf(out,"{\n"); (*lineno)++;
3752  }else{
3753    assert( 0 );  /* Cannot happen */
3754  }
3755  for(; *cp; cp++){
3756    if( *cp=='$' && cp[1]=='$' ){
3757      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3758      cp++;
3759      continue;
3760    }
3761    if( *cp=='\n' ) (*lineno)++;
3762    fputc(*cp,out);
3763  }
3764  fprintf(out,"\n"); (*lineno)++;
3765  if (!lemp->nolinenosflag) {
3766    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3767  }
3768  fprintf(out,"}\n"); (*lineno)++;
3769  return;
3770 }
3771 
3772 /*
3773 ** Return TRUE (non-zero) if the given symbol has a destructor.
3774 */
has_destructor(struct symbol * sp,struct lemon * lemp)3775 int has_destructor(struct symbol *sp, struct lemon *lemp)
3776 {
3777   int ret;
3778   if( sp->type==TERMINAL ){
3779     ret = lemp->tokendest!=0;
3780   }else{
3781     ret = lemp->vardest!=0 || sp->destructor!=0;
3782   }
3783   return ret;
3784 }
3785 
3786 /*
3787 ** Append text to a dynamically allocated string.  If zText is 0 then
3788 ** reset the string to be empty again.  Always return the complete text
3789 ** of the string (which is overwritten with each call).
3790 **
3791 ** n bytes of zText are stored.  If n==0 then all of zText up to the first
3792 ** \000 terminator is stored.  zText can contain up to two instances of
3793 ** %d.  The values of p1 and p2 are written into the first and second
3794 ** %d.
3795 **
3796 ** If n==-1, then the previous character is overwritten.
3797 */
append_str(const char * zText,int n,int p1,int p2)3798 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3799   static char empty[1] = { 0 };
3800   static char *z = 0;
3801   static int alloced = 0;
3802   static int used = 0;
3803   int c;
3804   char zInt[40];
3805   if( zText==0 ){
3806     if( used==0 && z!=0 ) z[0] = 0;
3807     used = 0;
3808     return z;
3809   }
3810   if( n<=0 ){
3811     if( n<0 ){
3812       used += n;
3813       assert( used>=0 );
3814     }
3815     n = lemonStrlen(zText);
3816   }
3817   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3818     alloced = n + sizeof(zInt)*2 + used + 200;
3819     z = (char *) realloc(z,  alloced);
3820   }
3821   if( z==0 ) return empty;
3822   while( n-- > 0 ){
3823     c = *(zText++);
3824     if( c=='%' && n>0 && zText[0]=='d' ){
3825       lemon_sprintf(zInt, "%d", p1);
3826       p1 = p2;
3827       lemon_strcpy(&z[used], zInt);
3828       used += lemonStrlen(&z[used]);
3829       zText++;
3830       n--;
3831     }else{
3832       z[used++] = (char)c;
3833     }
3834   }
3835   z[used] = 0;
3836   return z;
3837 }
3838 
3839 /*
3840 ** Write and transform the rp->code string so that symbols are expanded.
3841 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3842 **
3843 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3844 ** to be defined.
3845 */
translate_code(struct lemon * lemp,struct rule * rp)3846 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3847   char *cp, *xp;
3848   int i;
3849   int rc = 0;            /* True if yylhsminor is used */
3850   int dontUseRhs0 = 0;   /* If true, use of left-most RHS label is illegal */
3851   const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3852   char lhsused = 0;      /* True if the LHS element has been used */
3853   char lhsdirect;        /* True if LHS writes directly into stack */
3854   char used[MAXRHS];     /* True for each RHS element which is used */
3855   char zLhs[50];         /* Convert the LHS symbol into this string */
3856   char zOvwrt[900];      /* Comment that to allow LHS to overwrite RHS */
3857 
3858   for(i=0; i<rp->nrhs; i++) used[i] = 0;
3859   lhsused = 0;
3860 
3861   if( rp->code==0 ){
3862     static char newlinestr[2] = { '\n', '\0' };
3863     rp->code = newlinestr;
3864     rp->line = rp->ruleline;
3865     rp->noCode = 1;
3866   }else{
3867     rp->noCode = 0;
3868   }
3869 
3870 
3871   if( rp->nrhs==0 ){
3872     /* If there are no RHS symbols, then writing directly to the LHS is ok */
3873     lhsdirect = 1;
3874   }else if( rp->rhsalias[0]==0 ){
3875     /* The left-most RHS symbol has no value.  LHS direct is ok.  But
3876     ** we have to call the destructor on the RHS symbol first. */
3877     lhsdirect = 1;
3878     if( has_destructor(rp->rhs[0],lemp) ){
3879       append_str(0,0,0,0);
3880       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3881                  rp->rhs[0]->index,1-rp->nrhs);
3882       rp->codePrefix = Strsafe(append_str(0,0,0,0));
3883       rp->noCode = 0;
3884     }
3885   }else if( rp->lhsalias==0 ){
3886     /* There is no LHS value symbol. */
3887     lhsdirect = 1;
3888   }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3889     /* The LHS symbol and the left-most RHS symbol are the same, so
3890     ** direct writing is allowed */
3891     lhsdirect = 1;
3892     lhsused = 1;
3893     used[0] = 1;
3894     if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3895       ErrorMsg(lemp->filename,rp->ruleline,
3896         "%s(%s) and %s(%s) share the same label but have "
3897         "different datatypes.",
3898         rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3899       lemp->errorcnt++;
3900     }
3901   }else{
3902     lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3903                   rp->lhsalias, rp->rhsalias[0]);
3904     zSkip = strstr(rp->code, zOvwrt);
3905     if( zSkip!=0 ){
3906       /* The code contains a special comment that indicates that it is safe
3907       ** for the LHS label to overwrite left-most RHS label. */
3908       lhsdirect = 1;
3909     }else{
3910       lhsdirect = 0;
3911     }
3912   }
3913   if( lhsdirect ){
3914     sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3915   }else{
3916     rc = 1;
3917     sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3918   }
3919 
3920   append_str(0,0,0,0);
3921 
3922   /* This const cast is wrong but harmless, if we're careful. */
3923   for(cp=(char *)rp->code; *cp; cp++){
3924     if( cp==zSkip ){
3925       append_str(zOvwrt,0,0,0);
3926       cp += lemonStrlen(zOvwrt)-1;
3927       dontUseRhs0 = 1;
3928       continue;
3929     }
3930     if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3931       char saved;
3932       for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3933       saved = *xp;
3934       *xp = 0;
3935       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3936         append_str(zLhs,0,0,0);
3937         cp = xp;
3938         lhsused = 1;
3939       }else{
3940         for(i=0; i<rp->nrhs; i++){
3941           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3942             if( i==0 && dontUseRhs0 ){
3943               ErrorMsg(lemp->filename,rp->ruleline,
3944                  "Label %s used after '%s'.",
3945                  rp->rhsalias[0], zOvwrt);
3946               lemp->errorcnt++;
3947             }else if( cp!=rp->code && cp[-1]=='@' ){
3948               /* If the argument is of the form @X then substituted
3949               ** the token number of X, not the value of X */
3950               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3951             }else{
3952               struct symbol *sp = rp->rhs[i];
3953               int dtnum;
3954               if( sp->type==MULTITERMINAL ){
3955                 dtnum = sp->subsym[0]->dtnum;
3956               }else{
3957                 dtnum = sp->dtnum;
3958               }
3959               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3960             }
3961             cp = xp;
3962             used[i] = 1;
3963             break;
3964           }
3965         }
3966       }
3967       *xp = saved;
3968     }
3969     append_str(cp, 1, 0, 0);
3970   } /* End loop */
3971 
3972   /* Main code generation completed */
3973   cp = append_str(0,0,0,0);
3974   if( cp && cp[0] ) rp->code = Strsafe(cp);
3975   append_str(0,0,0,0);
3976 
3977   /* Check to make sure the LHS has been used */
3978   if( rp->lhsalias && !lhsused ){
3979     ErrorMsg(lemp->filename,rp->ruleline,
3980       "Label \"%s\" for \"%s(%s)\" is never used.",
3981         rp->lhsalias,rp->lhs->name,rp->lhsalias);
3982     lemp->errorcnt++;
3983   }
3984 
3985   /* Generate destructor code for RHS minor values which are not referenced.
3986   ** Generate error messages for unused labels and duplicate labels.
3987   */
3988   for(i=0; i<rp->nrhs; i++){
3989     if( rp->rhsalias[i] ){
3990       if( i>0 ){
3991         int j;
3992         if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3993           ErrorMsg(lemp->filename,rp->ruleline,
3994             "%s(%s) has the same label as the LHS but is not the left-most "
3995             "symbol on the RHS.",
3996             rp->rhs[i]->name, rp->rhsalias[i]);
3997           lemp->errorcnt++;
3998         }
3999         for(j=0; j<i; j++){
4000           if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
4001             ErrorMsg(lemp->filename,rp->ruleline,
4002               "Label %s used for multiple symbols on the RHS of a rule.",
4003               rp->rhsalias[i]);
4004             lemp->errorcnt++;
4005             break;
4006           }
4007         }
4008       }
4009       if( !used[i] ){
4010         ErrorMsg(lemp->filename,rp->ruleline,
4011           "Label %s for \"%s(%s)\" is never used.",
4012           rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
4013         lemp->errorcnt++;
4014       }
4015     }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
4016       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4017          rp->rhs[i]->index,i-rp->nrhs+1);
4018     }
4019   }
4020 
4021   /* If unable to write LHS values directly into the stack, write the
4022   ** saved LHS value now. */
4023   if( lhsdirect==0 ){
4024     append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
4025     append_str(zLhs, 0, 0, 0);
4026     append_str(";\n", 0, 0, 0);
4027   }
4028 
4029   /* Suffix code generation complete */
4030   cp = append_str(0,0,0,0);
4031   if( cp && cp[0] ){
4032     rp->codeSuffix = Strsafe(cp);
4033     rp->noCode = 0;
4034   }
4035 
4036   return rc;
4037 }
4038 
4039 /*
4040 ** Generate code which executes when the rule "rp" is reduced.  Write
4041 ** the code to "out".  Make sure lineno stays up-to-date.
4042 */
emit_code(FILE * out,struct rule * rp,struct lemon * lemp,int * lineno)4043 PRIVATE void emit_code(
4044   FILE *out,
4045   struct rule *rp,
4046   struct lemon *lemp,
4047   int *lineno
4048 ){
4049  const char *cp;
4050 
4051  /* Setup code prior to the #line directive */
4052  if( rp->codePrefix && rp->codePrefix[0] ){
4053    fprintf(out, "{%s", rp->codePrefix);
4054    for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4055  }
4056 
4057  /* Generate code to do the reduce action */
4058  if( rp->code ){
4059    if( !lemp->nolinenosflag ){
4060      (*lineno)++;
4061      tplt_linedir(out,rp->line,lemp->filename);
4062    }
4063    fprintf(out,"{%s",rp->code);
4064    for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4065    fprintf(out,"}\n"); (*lineno)++;
4066    if( !lemp->nolinenosflag ){
4067      (*lineno)++;
4068      tplt_linedir(out,*lineno,lemp->outname);
4069    }
4070  }
4071 
4072  /* Generate breakdown code that occurs after the #line directive */
4073  if( rp->codeSuffix && rp->codeSuffix[0] ){
4074    fprintf(out, "%s", rp->codeSuffix);
4075    for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4076  }
4077 
4078  if( rp->codePrefix ){
4079    fprintf(out, "}\n"); (*lineno)++;
4080  }
4081 
4082  return;
4083 }
4084 
4085 /*
4086 ** Print the definition of the union used for the parser's data stack.
4087 ** This union contains fields for every possible data type for tokens
4088 ** and nonterminals.  In the process of computing and printing this
4089 ** union, also set the ".dtnum" field of every terminal and nonterminal
4090 ** symbol.
4091 */
print_stack_union(FILE * out,struct lemon * lemp,int * plineno,int mhflag)4092 void print_stack_union(
4093   FILE *out,                  /* The output stream */
4094   struct lemon *lemp,         /* The main info structure for this parser */
4095   int *plineno,               /* Pointer to the line number */
4096   int mhflag                  /* True if generating makeheaders output */
4097 ){
4098   int lineno;               /* The line number of the output */
4099   char **types;             /* A hash table of datatypes */
4100   int arraysize;            /* Size of the "types" array */
4101   int maxdtlength;          /* Maximum length of any ".datatype" field. */
4102   char *stddt;              /* Standardized name for a datatype */
4103   int i,j;                  /* Loop counters */
4104   unsigned hash;            /* For hashing the name of a type */
4105   const char *name;         /* Name of the parser */
4106 
4107   /* Allocate and initialize types[] and allocate stddt[] */
4108   arraysize = lemp->nsymbol * 2;
4109   types = (char**)calloc( arraysize, sizeof(char*) );
4110   if( types==0 ){
4111     fprintf(stderr,"Out of memory.\n");
4112     exit(1);
4113   }
4114   for(i=0; i<arraysize; i++) types[i] = 0;
4115   maxdtlength = 0;
4116   if( lemp->vartype ){
4117     maxdtlength = lemonStrlen(lemp->vartype);
4118   }
4119   for(i=0; i<lemp->nsymbol; i++){
4120     int len;
4121     struct symbol *sp = lemp->symbols[i];
4122     if( sp->datatype==0 ) continue;
4123     len = lemonStrlen(sp->datatype);
4124     if( len>maxdtlength ) maxdtlength = len;
4125   }
4126   stddt = (char*)malloc( maxdtlength*2 + 1 );
4127   if( stddt==0 ){
4128     fprintf(stderr,"Out of memory.\n");
4129     exit(1);
4130   }
4131 
4132   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4133   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
4134   ** used for terminal symbols.  If there is no %default_type defined then
4135   ** 0 is also used as the .dtnum value for nonterminals which do not specify
4136   ** a datatype using the %type directive.
4137   */
4138   for(i=0; i<lemp->nsymbol; i++){
4139     struct symbol *sp = lemp->symbols[i];
4140     char *cp;
4141     if( sp==lemp->errsym ){
4142       sp->dtnum = arraysize+1;
4143       continue;
4144     }
4145     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
4146       sp->dtnum = 0;
4147       continue;
4148     }
4149     cp = sp->datatype;
4150     if( cp==0 ) cp = lemp->vartype;
4151     j = 0;
4152     while( ISSPACE(*cp) ) cp++;
4153     while( *cp ) stddt[j++] = *cp++;
4154     while( j>0 && ISSPACE(stddt[j-1]) ) j--;
4155     stddt[j] = 0;
4156     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
4157       sp->dtnum = 0;
4158       continue;
4159     }
4160     hash = 0;
4161     for(j=0; stddt[j]; j++){
4162       hash = hash*53 + stddt[j];
4163     }
4164     hash = (hash & 0x7fffffff)%arraysize;
4165     while( types[hash] ){
4166       if( strcmp(types[hash],stddt)==0 ){
4167         sp->dtnum = hash + 1;
4168         break;
4169       }
4170       hash++;
4171       if( hash>=(unsigned)arraysize ) hash = 0;
4172     }
4173     if( types[hash]==0 ){
4174       sp->dtnum = hash + 1;
4175       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
4176       if( types[hash]==0 ){
4177         fprintf(stderr,"Out of memory.\n");
4178         exit(1);
4179       }
4180       lemon_strcpy(types[hash],stddt);
4181     }
4182   }
4183 
4184   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4185   name = lemp->name ? lemp->name : "Parse";
4186   lineno = *plineno;
4187   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
4188   fprintf(out,"#define %sTOKENTYPE %s\n",name,
4189     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
4190   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
4191   fprintf(out,"typedef union {\n"); lineno++;
4192   fprintf(out,"  int yyinit;\n"); lineno++;
4193   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
4194   for(i=0; i<arraysize; i++){
4195     if( types[i]==0 ) continue;
4196     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
4197     free(types[i]);
4198   }
4199   if( lemp->errsym && lemp->errsym->useCnt ){
4200     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
4201   }
4202   free(stddt);
4203   free(types);
4204   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
4205   *plineno = lineno;
4206 }
4207 
4208 /*
4209 ** Return the name of a C datatype able to represent values between
4210 ** lwr and upr, inclusive.  If pnByte!=NULL then also write the sizeof
4211 ** for that type (1, 2, or 4) into *pnByte.
4212 */
minimum_size_type(int lwr,int upr,int * pnByte)4213 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
4214   const char *zType = "int";
4215   int nByte = 4;
4216   if( lwr>=0 ){
4217     if( upr<=255 ){
4218       zType = "unsigned char";
4219       nByte = 1;
4220     }else if( upr<65535 ){
4221       zType = "unsigned short int";
4222       nByte = 2;
4223     }else{
4224       zType = "unsigned int";
4225       nByte = 4;
4226     }
4227   }else if( lwr>=-127 && upr<=127 ){
4228     zType = "signed char";
4229     nByte = 1;
4230   }else if( lwr>=-32767 && upr<32767 ){
4231     zType = "short";
4232     nByte = 2;
4233   }
4234   if( pnByte ) *pnByte = nByte;
4235   return zType;
4236 }
4237 
4238 /*
4239 ** Each state contains a set of token transaction and a set of
4240 ** nonterminal transactions.  Each of these sets makes an instance
4241 ** of the following structure.  An array of these structures is used
4242 ** to order the creation of entries in the yy_action[] table.
4243 */
4244 struct axset {
4245   struct state *stp;   /* A pointer to a state */
4246   int isTkn;           /* True to use tokens.  False for non-terminals */
4247   int nAction;         /* Number of actions */
4248   int iOrder;          /* Original order of action sets */
4249 };
4250 
4251 /*
4252 ** Compare to axset structures for sorting purposes
4253 */
axset_compare(const void * a,const void * b)4254 static int axset_compare(const void *a, const void *b){
4255   struct axset *p1 = (struct axset*)a;
4256   struct axset *p2 = (struct axset*)b;
4257   int c;
4258   c = p2->nAction - p1->nAction;
4259   if( c==0 ){
4260     c = p1->iOrder - p2->iOrder;
4261   }
4262   assert( c!=0 || p1==p2 );
4263   return c;
4264 }
4265 
4266 /*
4267 ** Write text on "out" that describes the rule "rp".
4268 */
writeRuleText(FILE * out,struct rule * rp)4269 static void writeRuleText(FILE *out, struct rule *rp){
4270   int j;
4271   fprintf(out,"%s ::=", rp->lhs->name);
4272   for(j=0; j<rp->nrhs; j++){
4273     struct symbol *sp = rp->rhs[j];
4274     if( sp->type!=MULTITERMINAL ){
4275       fprintf(out," %s", sp->name);
4276     }else{
4277       int k;
4278       fprintf(out," %s", sp->subsym[0]->name);
4279       for(k=1; k<sp->nsubsym; k++){
4280         fprintf(out,"|%s",sp->subsym[k]->name);
4281       }
4282     }
4283   }
4284 }
4285 
4286 
4287 /* Generate C source code for the parser */
ReportTable(struct lemon * lemp,int mhflag,int sqlFlag)4288 void ReportTable(
4289   struct lemon *lemp,
4290   int mhflag,     /* Output in makeheaders format if true */
4291   int sqlFlag     /* Generate the *.sql file too */
4292 ){
4293   FILE *out, *in, *sql;
4294   int  lineno;
4295   struct state *stp;
4296   struct action *ap;
4297   struct rule *rp;
4298   struct acttab *pActtab;
4299   int i, j, n, sz;
4300   int nLookAhead;
4301   int szActionType;     /* sizeof(YYACTIONTYPE) */
4302   int szCodeType;       /* sizeof(YYCODETYPE)   */
4303   const char *name;
4304   int mnTknOfst, mxTknOfst;
4305   int mnNtOfst, mxNtOfst;
4306   struct axset *ax;
4307   char *prefix;
4308 
4309   lemp->minShiftReduce = lemp->nstate;
4310   lemp->errAction = lemp->minShiftReduce + lemp->nrule;
4311   lemp->accAction = lemp->errAction + 1;
4312   lemp->noAction = lemp->accAction + 1;
4313   lemp->minReduce = lemp->noAction + 1;
4314   lemp->maxAction = lemp->minReduce + lemp->nrule;
4315 
4316   in = tplt_open(lemp);
4317   if( in==0 ) return;
4318   out = file_open(lemp,".c","wb");
4319   if( out==0 ){
4320     fclose(in);
4321     return;
4322   }
4323   if( sqlFlag==0 ){
4324     sql = 0;
4325   }else{
4326     sql = file_open(lemp, ".sql", "wb");
4327     if( sql==0 ){
4328       fclose(in);
4329       fclose(out);
4330       return;
4331     }
4332     fprintf(sql,
4333        "BEGIN;\n"
4334        "CREATE TABLE symbol(\n"
4335        "  id INTEGER PRIMARY KEY,\n"
4336        "  name TEXT NOT NULL,\n"
4337        "  isTerminal BOOLEAN NOT NULL,\n"
4338        "  fallback INTEGER REFERENCES symbol"
4339                " DEFERRABLE INITIALLY DEFERRED\n"
4340        ");\n"
4341     );
4342     for(i=0; i<lemp->nsymbol; i++){
4343       fprintf(sql,
4344          "INSERT INTO symbol(id,name,isTerminal,fallback)"
4345          "VALUES(%d,'%s',%s",
4346          i, lemp->symbols[i]->name,
4347          i<lemp->nterminal ? "TRUE" : "FALSE"
4348       );
4349       if( lemp->symbols[i]->fallback ){
4350         fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
4351       }else{
4352         fprintf(sql, ",NULL);\n");
4353       }
4354     }
4355     fprintf(sql,
4356       "CREATE TABLE rule(\n"
4357       "  ruleid INTEGER PRIMARY KEY,\n"
4358       "  lhs INTEGER REFERENCES symbol(id),\n"
4359       "  txt TEXT\n"
4360       ");\n"
4361       "CREATE TABLE rulerhs(\n"
4362       "  ruleid INTEGER REFERENCES rule(ruleid),\n"
4363       "  pos INTEGER,\n"
4364       "  sym INTEGER REFERENCES symbol(id)\n"
4365       ");\n"
4366     );
4367     for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4368       assert( i==rp->iRule );
4369       fprintf(sql,
4370         "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4371         rp->iRule, rp->lhs->index
4372       );
4373       writeRuleText(sql, rp);
4374       fprintf(sql,"');\n");
4375       for(j=0; j<rp->nrhs; j++){
4376         struct symbol *sp = rp->rhs[j];
4377         if( sp->type!=MULTITERMINAL ){
4378           fprintf(sql,
4379             "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4380             i,j,sp->index
4381           );
4382         }else{
4383           int k;
4384           for(k=0; k<sp->nsubsym; k++){
4385             fprintf(sql,
4386               "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4387               i,j,sp->subsym[k]->index
4388             );
4389           }
4390         }
4391       }
4392     }
4393     fprintf(sql, "COMMIT;\n");
4394   }
4395   lineno = 1;
4396 
4397   fprintf(out,
4398      "/* This file is automatically generated by Lemon from input grammar\n"
4399      "** source file \"%s\". */\n", lemp->filename); lineno += 2;
4400 
4401   /* The first %include directive begins with a C-language comment,
4402   ** then skip over the header comment of the template file
4403   */
4404   if( lemp->include==0 ) lemp->include = "";
4405   for(i=0; ISSPACE(lemp->include[i]); i++){
4406     if( lemp->include[i]=='\n' ){
4407       lemp->include += i+1;
4408       i = -1;
4409     }
4410   }
4411   if( lemp->include[0]=='/' ){
4412     tplt_skip_header(in,&lineno);
4413   }else{
4414     tplt_xfer(lemp->name,in,out,&lineno);
4415   }
4416 
4417   /* Generate the include code, if any */
4418   tplt_print(out,lemp,lemp->include,&lineno);
4419   if( mhflag ){
4420     char *incName = file_makename(lemp, ".h");
4421     fprintf(out,"#include \"%s\"\n", incName); lineno++;
4422     free(incName);
4423   }
4424   tplt_xfer(lemp->name,in,out,&lineno);
4425 
4426   /* Generate #defines for all tokens */
4427   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4428   else                    prefix = "";
4429   if( mhflag ){
4430     fprintf(out,"#if INTERFACE\n"); lineno++;
4431   }else{
4432     fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
4433   }
4434   for(i=1; i<lemp->nterminal; i++){
4435     fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4436     lineno++;
4437   }
4438   fprintf(out,"#endif\n"); lineno++;
4439   tplt_xfer(lemp->name,in,out,&lineno);
4440 
4441   /* Generate the defines */
4442   fprintf(out,"#define YYCODETYPE %s\n",
4443     minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
4444   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol);  lineno++;
4445   fprintf(out,"#define YYACTIONTYPE %s\n",
4446     minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
4447   if( lemp->wildcard ){
4448     fprintf(out,"#define YYWILDCARD %d\n",
4449        lemp->wildcard->index); lineno++;
4450   }
4451   print_stack_union(out,lemp,&lineno,mhflag);
4452   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4453   if( lemp->stacksize ){
4454     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
4455   }else{
4456     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
4457   }
4458   fprintf(out, "#endif\n"); lineno++;
4459   if( mhflag ){
4460     fprintf(out,"#if INTERFACE\n"); lineno++;
4461   }
4462   name = lemp->name ? lemp->name : "Parse";
4463   if( lemp->arg && lemp->arg[0] ){
4464     i = lemonStrlen(lemp->arg);
4465     while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4466     while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4467     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
4468     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
4469     fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]);  lineno++;
4470     fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
4471                  name,lemp->arg,&lemp->arg[i]);  lineno++;
4472     fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
4473                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
4474   }else{
4475     fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4476     fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4477     fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
4478     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4479     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4480   }
4481   if( lemp->ctx && lemp->ctx[0] ){
4482     i = lemonStrlen(lemp->ctx);
4483     while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
4484     while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
4485     fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx);  lineno++;
4486     fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx);  lineno++;
4487     fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]);  lineno++;
4488     fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4489                  name,lemp->ctx,&lemp->ctx[i]);  lineno++;
4490     fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
4491                  name,&lemp->ctx[i],&lemp->ctx[i]);  lineno++;
4492   }else{
4493     fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
4494     fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
4495     fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
4496     fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
4497     fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
4498   }
4499   if( mhflag ){
4500     fprintf(out,"#endif\n"); lineno++;
4501   }
4502   if( lemp->errsym && lemp->errsym->useCnt ){
4503     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4504     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4505   }
4506   if( lemp->has_fallback ){
4507     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
4508   }
4509 
4510   /* Compute the action table, but do not output it yet.  The action
4511   ** table must be computed before generating the YYNSTATE macro because
4512   ** we need to know how many states can be eliminated.
4513   */
4514   ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4515   if( ax==0 ){
4516     fprintf(stderr,"malloc failed\n");
4517     exit(1);
4518   }
4519   for(i=0; i<lemp->nxstate; i++){
4520     stp = lemp->sorted[i];
4521     ax[i*2].stp = stp;
4522     ax[i*2].isTkn = 1;
4523     ax[i*2].nAction = stp->nTknAct;
4524     ax[i*2+1].stp = stp;
4525     ax[i*2+1].isTkn = 0;
4526     ax[i*2+1].nAction = stp->nNtAct;
4527   }
4528   mxTknOfst = mnTknOfst = 0;
4529   mxNtOfst = mnNtOfst = 0;
4530   /* In an effort to minimize the action table size, use the heuristic
4531   ** of placing the largest action sets first */
4532   for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4533   qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4534   pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
4535   for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4536     stp = ax[i].stp;
4537     if( ax[i].isTkn ){
4538       for(ap=stp->ap; ap; ap=ap->next){
4539         int action;
4540         if( ap->sp->index>=lemp->nterminal ) continue;
4541         action = compute_action(lemp, ap);
4542         if( action<0 ) continue;
4543         acttab_action(pActtab, ap->sp->index, action);
4544       }
4545       stp->iTknOfst = acttab_insert(pActtab, 1);
4546       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4547       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4548     }else{
4549       for(ap=stp->ap; ap; ap=ap->next){
4550         int action;
4551         if( ap->sp->index<lemp->nterminal ) continue;
4552         if( ap->sp->index==lemp->nsymbol ) continue;
4553         action = compute_action(lemp, ap);
4554         if( action<0 ) continue;
4555         acttab_action(pActtab, ap->sp->index, action);
4556       }
4557       stp->iNtOfst = acttab_insert(pActtab, 0);
4558       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4559       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4560     }
4561 #if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
4562     { int jj, nn;
4563       for(jj=nn=0; jj<pActtab->nAction; jj++){
4564         if( pActtab->aAction[jj].action<0 ) nn++;
4565       }
4566       printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4567              i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
4568              ax[i].nAction, pActtab->nAction, nn);
4569     }
4570 #endif
4571   }
4572   free(ax);
4573 
4574   /* Mark rules that are actually used for reduce actions after all
4575   ** optimizations have been applied
4576   */
4577   for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4578   for(i=0; i<lemp->nxstate; i++){
4579     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4580       if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4581         ap->x.rp->doesReduce = 1;
4582       }
4583     }
4584   }
4585 
4586   /* Finish rendering the constants now that the action table has
4587   ** been computed */
4588   fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
4589   fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
4590   fprintf(out,"#define YYNRULE_WITH_ACTION  %d\n",lemp->nruleWithAction);
4591          lineno++;
4592   fprintf(out,"#define YYNTOKEN             %d\n",lemp->nterminal); lineno++;
4593   fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
4594   i = lemp->minShiftReduce;
4595   fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",i); lineno++;
4596   i += lemp->nrule;
4597   fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
4598   fprintf(out,"#define YY_ERROR_ACTION      %d\n", lemp->errAction); lineno++;
4599   fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", lemp->accAction); lineno++;
4600   fprintf(out,"#define YY_NO_ACTION         %d\n", lemp->noAction); lineno++;
4601   fprintf(out,"#define YY_MIN_REDUCE        %d\n", lemp->minReduce); lineno++;
4602   i = lemp->minReduce + lemp->nrule;
4603   fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
4604   tplt_xfer(lemp->name,in,out,&lineno);
4605 
4606   /* Now output the action table and its associates:
4607   **
4608   **  yy_action[]        A single table containing all actions.
4609   **  yy_lookahead[]     A table containing the lookahead for each entry in
4610   **                     yy_action.  Used to detect hash collisions.
4611   **  yy_shift_ofst[]    For each state, the offset into yy_action for
4612   **                     shifting terminals.
4613   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
4614   **                     shifting non-terminals after a reduce.
4615   **  yy_default[]       Default action for each state.
4616   */
4617 
4618   /* Output the yy_action table */
4619   lemp->nactiontab = n = acttab_action_size(pActtab);
4620   lemp->tablesize += n*szActionType;
4621   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4622   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4623   for(i=j=0; i<n; i++){
4624     int action = acttab_yyaction(pActtab, i);
4625     if( action<0 ) action = lemp->noAction;
4626     if( j==0 ) fprintf(out," /* %5d */ ", i);
4627     fprintf(out, " %4d,", action);
4628     if( j==9 || i==n-1 ){
4629       fprintf(out, "\n"); lineno++;
4630       j = 0;
4631     }else{
4632       j++;
4633     }
4634   }
4635   fprintf(out, "};\n"); lineno++;
4636 
4637   /* Output the yy_lookahead table */
4638   lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
4639   lemp->tablesize += n*szCodeType;
4640   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4641   for(i=j=0; i<n; i++){
4642     int la = acttab_yylookahead(pActtab, i);
4643     if( la<0 ) la = lemp->nsymbol;
4644     if( j==0 ) fprintf(out," /* %5d */ ", i);
4645     fprintf(out, " %4d,", la);
4646     if( j==9 ){
4647       fprintf(out, "\n"); lineno++;
4648       j = 0;
4649     }else{
4650       j++;
4651     }
4652   }
4653   /* Add extra entries to the end of the yy_lookahead[] table so that
4654   ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4655   ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4656   nLookAhead = lemp->nterminal + lemp->nactiontab;
4657   while( i<nLookAhead ){
4658     if( j==0 ) fprintf(out," /* %5d */ ", i);
4659     fprintf(out, " %4d,", lemp->nterminal);
4660     if( j==9 ){
4661       fprintf(out, "\n"); lineno++;
4662       j = 0;
4663     }else{
4664       j++;
4665     }
4666     i++;
4667   }
4668   if( j>0 ){ fprintf(out, "\n"); lineno++; }
4669   fprintf(out, "};\n"); lineno++;
4670 
4671   /* Output the yy_shift_ofst[] table */
4672   n = lemp->nxstate;
4673   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4674   fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
4675   fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
4676   fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
4677   fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4678        minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4679        lineno++;
4680   lemp->tablesize += n*sz;
4681   for(i=j=0; i<n; i++){
4682     int ofst;
4683     stp = lemp->sorted[i];
4684     ofst = stp->iTknOfst;
4685     if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4686     if( j==0 ) fprintf(out," /* %5d */ ", i);
4687     fprintf(out, " %4d,", ofst);
4688     if( j==9 || i==n-1 ){
4689       fprintf(out, "\n"); lineno++;
4690       j = 0;
4691     }else{
4692       j++;
4693     }
4694   }
4695   fprintf(out, "};\n"); lineno++;
4696 
4697   /* Output the yy_reduce_ofst[] table */
4698   n = lemp->nxstate;
4699   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4700   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4701   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
4702   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
4703   fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4704           minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4705   lemp->tablesize += n*sz;
4706   for(i=j=0; i<n; i++){
4707     int ofst;
4708     stp = lemp->sorted[i];
4709     ofst = stp->iNtOfst;
4710     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4711     if( j==0 ) fprintf(out," /* %5d */ ", i);
4712     fprintf(out, " %4d,", ofst);
4713     if( j==9 || i==n-1 ){
4714       fprintf(out, "\n"); lineno++;
4715       j = 0;
4716     }else{
4717       j++;
4718     }
4719   }
4720   fprintf(out, "};\n"); lineno++;
4721 
4722   /* Output the default action table */
4723   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4724   n = lemp->nxstate;
4725   lemp->tablesize += n*szActionType;
4726   for(i=j=0; i<n; i++){
4727     stp = lemp->sorted[i];
4728     if( j==0 ) fprintf(out," /* %5d */ ", i);
4729     if( stp->iDfltReduce<0 ){
4730       fprintf(out, " %4d,", lemp->errAction);
4731     }else{
4732       fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
4733     }
4734     if( j==9 || i==n-1 ){
4735       fprintf(out, "\n"); lineno++;
4736       j = 0;
4737     }else{
4738       j++;
4739     }
4740   }
4741   fprintf(out, "};\n"); lineno++;
4742   tplt_xfer(lemp->name,in,out,&lineno);
4743 
4744   /* Generate the table of fallback tokens.
4745   */
4746   if( lemp->has_fallback ){
4747     int mx = lemp->nterminal - 1;
4748     /* 2019-08-28:  Generate fallback entries for every token to avoid
4749     ** having to do a range check on the index */
4750     /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4751     lemp->tablesize += (mx+1)*szCodeType;
4752     for(i=0; i<=mx; i++){
4753       struct symbol *p = lemp->symbols[i];
4754       if( p->fallback==0 ){
4755         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
4756       }else{
4757         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
4758           p->name, p->fallback->name);
4759       }
4760       lineno++;
4761     }
4762   }
4763   tplt_xfer(lemp->name, in, out, &lineno);
4764 
4765   /* Generate a table containing the symbolic name of every symbol
4766   */
4767   for(i=0; i<lemp->nsymbol; i++){
4768     fprintf(out,"  /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
4769   }
4770   tplt_xfer(lemp->name,in,out,&lineno);
4771 
4772   /* Generate a table containing a text string that describes every
4773   ** rule in the rule set of the grammar.  This information is used
4774   ** when tracing REDUCE actions.
4775   */
4776   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4777     assert( rp->iRule==i );
4778     fprintf(out," /* %3d */ \"", i);
4779     writeRuleText(out, rp);
4780     fprintf(out,"\",\n"); lineno++;
4781   }
4782   tplt_xfer(lemp->name,in,out,&lineno);
4783 
4784   /* Generate code which executes every time a symbol is popped from
4785   ** the stack while processing errors or while destroying the parser.
4786   ** (In other words, generate the %destructor actions)
4787   */
4788   if( lemp->tokendest ){
4789     int once = 1;
4790     for(i=0; i<lemp->nsymbol; i++){
4791       struct symbol *sp = lemp->symbols[i];
4792       if( sp==0 || sp->type!=TERMINAL ) continue;
4793       if( once ){
4794         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
4795         once = 0;
4796       }
4797       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4798     }
4799     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4800     if( i<lemp->nsymbol ){
4801       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4802       fprintf(out,"      break;\n"); lineno++;
4803     }
4804   }
4805   if( lemp->vardest ){
4806     struct symbol *dflt_sp = 0;
4807     int once = 1;
4808     for(i=0; i<lemp->nsymbol; i++){
4809       struct symbol *sp = lemp->symbols[i];
4810       if( sp==0 || sp->type==TERMINAL ||
4811           sp->index<=0 || sp->destructor!=0 ) continue;
4812       if( once ){
4813         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n");lineno++;
4814         once = 0;
4815       }
4816       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4817       dflt_sp = sp;
4818     }
4819     if( dflt_sp!=0 ){
4820       emit_destructor_code(out,dflt_sp,lemp,&lineno);
4821     }
4822     fprintf(out,"      break;\n"); lineno++;
4823   }
4824   for(i=0; i<lemp->nsymbol; i++){
4825     struct symbol *sp = lemp->symbols[i];
4826     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4827     if( sp->destLineno<0 ) continue;  /* Already emitted */
4828     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4829 
4830     /* Combine duplicate destructors into a single case */
4831     for(j=i+1; j<lemp->nsymbol; j++){
4832       struct symbol *sp2 = lemp->symbols[j];
4833       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4834           && sp2->dtnum==sp->dtnum
4835           && strcmp(sp->destructor,sp2->destructor)==0 ){
4836          fprintf(out,"    case %d: /* %s */\n",
4837                  sp2->index, sp2->name); lineno++;
4838          sp2->destLineno = -1;  /* Avoid emitting this destructor again */
4839       }
4840     }
4841 
4842     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4843     fprintf(out,"      break;\n"); lineno++;
4844   }
4845   tplt_xfer(lemp->name,in,out,&lineno);
4846 
4847   /* Generate code which executes whenever the parser stack overflows */
4848   tplt_print(out,lemp,lemp->overflow,&lineno);
4849   tplt_xfer(lemp->name,in,out,&lineno);
4850 
4851   /* Generate the tables of rule information.  yyRuleInfoLhs[] and
4852   ** yyRuleInfoNRhs[].
4853   **
4854   ** Note: This code depends on the fact that rules are number
4855   ** sequentially beginning with 0.
4856   */
4857   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4858     fprintf(out,"  %4d,  /* (%d) ", rp->lhs->index, i);
4859      rule_print(out, rp);
4860     fprintf(out," */\n"); lineno++;
4861   }
4862   tplt_xfer(lemp->name,in,out,&lineno);
4863   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4864     fprintf(out,"  %3d,  /* (%d) ", -rp->nrhs, i);
4865     rule_print(out, rp);
4866     fprintf(out," */\n"); lineno++;
4867   }
4868   tplt_xfer(lemp->name,in,out,&lineno);
4869 
4870   /* Generate code which execution during each REDUCE action */
4871   i = 0;
4872   for(rp=lemp->rule; rp; rp=rp->next){
4873     i += translate_code(lemp, rp);
4874   }
4875   if( i ){
4876     fprintf(out,"        YYMINORTYPE yylhsminor;\n"); lineno++;
4877   }
4878   /* First output rules other than the default: rule */
4879   for(rp=lemp->rule; rp; rp=rp->next){
4880     struct rule *rp2;               /* Other rules with the same action */
4881     if( rp->codeEmitted ) continue;
4882     if( rp->noCode ){
4883       /* No C code actions, so this will be part of the "default:" rule */
4884       continue;
4885     }
4886     fprintf(out,"      case %d: /* ", rp->iRule);
4887     writeRuleText(out, rp);
4888     fprintf(out, " */\n"); lineno++;
4889     for(rp2=rp->next; rp2; rp2=rp2->next){
4890       if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4891              && rp2->codeSuffix==rp->codeSuffix ){
4892         fprintf(out,"      case %d: /* ", rp2->iRule);
4893         writeRuleText(out, rp2);
4894         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4895         rp2->codeEmitted = 1;
4896       }
4897     }
4898     emit_code(out,rp,lemp,&lineno);
4899     fprintf(out,"        break;\n"); lineno++;
4900     rp->codeEmitted = 1;
4901   }
4902   /* Finally, output the default: rule.  We choose as the default: all
4903   ** empty actions. */
4904   fprintf(out,"      default:\n"); lineno++;
4905   for(rp=lemp->rule; rp; rp=rp->next){
4906     if( rp->codeEmitted ) continue;
4907     assert( rp->noCode );
4908     fprintf(out,"      /* (%d) ", rp->iRule);
4909     writeRuleText(out, rp);
4910     if( rp->neverReduce ){
4911       fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4912               rp->iRule); lineno++;
4913     }else if( rp->doesReduce ){
4914       fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4915     }else{
4916       fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4917               rp->iRule); lineno++;
4918     }
4919   }
4920   fprintf(out,"        break;\n"); lineno++;
4921   tplt_xfer(lemp->name,in,out,&lineno);
4922 
4923   /* Generate code which executes if a parse fails */
4924   tplt_print(out,lemp,lemp->failure,&lineno);
4925   tplt_xfer(lemp->name,in,out,&lineno);
4926 
4927   /* Generate code which executes when a syntax error occurs */
4928   tplt_print(out,lemp,lemp->error,&lineno);
4929   tplt_xfer(lemp->name,in,out,&lineno);
4930 
4931   /* Generate code which executes when the parser accepts its input */
4932   tplt_print(out,lemp,lemp->accept,&lineno);
4933   tplt_xfer(lemp->name,in,out,&lineno);
4934 
4935   /* Append any addition code the user desires */
4936   tplt_print(out,lemp,lemp->extracode,&lineno);
4937 
4938   acttab_free(pActtab);
4939   fclose(in);
4940   fclose(out);
4941   if( sql ) fclose(sql);
4942   return;
4943 }
4944 
4945 /* Generate a header file for the parser */
ReportHeader(struct lemon * lemp)4946 void ReportHeader(struct lemon *lemp)
4947 {
4948   FILE *out, *in;
4949   const char *prefix;
4950   char line[LINESIZE];
4951   char pattern[LINESIZE];
4952   int i;
4953 
4954   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4955   else                    prefix = "";
4956   in = file_open(lemp,".h","rb");
4957   if( in ){
4958     int nextChar;
4959     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4960       lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4961                     prefix,lemp->symbols[i]->name,i);
4962       if( strcmp(line,pattern) ) break;
4963     }
4964     nextChar = fgetc(in);
4965     fclose(in);
4966     if( i==lemp->nterminal && nextChar==EOF ){
4967       /* No change in the file.  Don't rewrite it. */
4968       return;
4969     }
4970   }
4971   out = file_open(lemp,".h","wb");
4972   if( out ){
4973     for(i=1; i<lemp->nterminal; i++){
4974       fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4975     }
4976     fclose(out);
4977   }
4978   return;
4979 }
4980 
4981 /* Reduce the size of the action tables, if possible, by making use
4982 ** of defaults.
4983 **
4984 ** In this version, we take the most frequent REDUCE action and make
4985 ** it the default.  Except, there is no default if the wildcard token
4986 ** is a possible look-ahead.
4987 */
CompressTables(struct lemon * lemp)4988 void CompressTables(struct lemon *lemp)
4989 {
4990   struct state *stp;
4991   struct action *ap, *ap2, *nextap;
4992   struct rule *rp, *rp2, *rbest;
4993   int nbest, n;
4994   int i;
4995   int usesWildcard;
4996 
4997   for(i=0; i<lemp->nstate; i++){
4998     stp = lemp->sorted[i];
4999     nbest = 0;
5000     rbest = 0;
5001     usesWildcard = 0;
5002 
5003     for(ap=stp->ap; ap; ap=ap->next){
5004       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
5005         usesWildcard = 1;
5006       }
5007       if( ap->type!=REDUCE ) continue;
5008       rp = ap->x.rp;
5009       if( rp->lhsStart ) continue;
5010       if( rp==rbest ) continue;
5011       n = 1;
5012       for(ap2=ap->next; ap2; ap2=ap2->next){
5013         if( ap2->type!=REDUCE ) continue;
5014         rp2 = ap2->x.rp;
5015         if( rp2==rbest ) continue;
5016         if( rp2==rp ) n++;
5017       }
5018       if( n>nbest ){
5019         nbest = n;
5020         rbest = rp;
5021       }
5022     }
5023 
5024     /* Do not make a default if the number of rules to default
5025     ** is not at least 1 or if the wildcard token is a possible
5026     ** lookahead.
5027     */
5028     if( nbest<1 || usesWildcard ) continue;
5029 
5030 
5031     /* Combine matching REDUCE actions into a single default */
5032     for(ap=stp->ap; ap; ap=ap->next){
5033       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
5034     }
5035     assert( ap );
5036     ap->sp = Symbol_new("{default}");
5037     for(ap=ap->next; ap; ap=ap->next){
5038       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
5039     }
5040     stp->ap = Action_sort(stp->ap);
5041 
5042     for(ap=stp->ap; ap; ap=ap->next){
5043       if( ap->type==SHIFT ) break;
5044       if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
5045     }
5046     if( ap==0 ){
5047       stp->autoReduce = 1;
5048       stp->pDfltReduce = rbest;
5049     }
5050   }
5051 
5052   /* Make a second pass over all states and actions.  Convert
5053   ** every action that is a SHIFT to an autoReduce state into
5054   ** a SHIFTREDUCE action.
5055   */
5056   for(i=0; i<lemp->nstate; i++){
5057     stp = lemp->sorted[i];
5058     for(ap=stp->ap; ap; ap=ap->next){
5059       struct state *pNextState;
5060       if( ap->type!=SHIFT ) continue;
5061       pNextState = ap->x.stp;
5062       if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
5063         ap->type = SHIFTREDUCE;
5064         ap->x.rp = pNextState->pDfltReduce;
5065       }
5066     }
5067   }
5068 
5069   /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5070   ** (meaning that the SHIFTREDUCE will land back in the state where it
5071   ** started) and if there is no C-code associated with the reduce action,
5072   ** then we can go ahead and convert the action to be the same as the
5073   ** action for the RHS of the rule.
5074   */
5075   for(i=0; i<lemp->nstate; i++){
5076     stp = lemp->sorted[i];
5077     for(ap=stp->ap; ap; ap=nextap){
5078       nextap = ap->next;
5079       if( ap->type!=SHIFTREDUCE ) continue;
5080       rp = ap->x.rp;
5081       if( rp->noCode==0 ) continue;
5082       if( rp->nrhs!=1 ) continue;
5083 #if 1
5084       /* Only apply this optimization to non-terminals.  It would be OK to
5085       ** apply it to terminal symbols too, but that makes the parser tables
5086       ** larger. */
5087       if( ap->sp->index<lemp->nterminal ) continue;
5088 #endif
5089       /* If we reach this point, it means the optimization can be applied */
5090       nextap = ap;
5091       for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
5092       assert( ap2!=0 );
5093       ap->spOpt = ap2->sp;
5094       ap->type = ap2->type;
5095       ap->x = ap2->x;
5096     }
5097   }
5098 }
5099 
5100 
5101 /*
5102 ** Compare two states for sorting purposes.  The smaller state is the
5103 ** one with the most non-terminal actions.  If they have the same number
5104 ** of non-terminal actions, then the smaller is the one with the most
5105 ** token actions.
5106 */
stateResortCompare(const void * a,const void * b)5107 static int stateResortCompare(const void *a, const void *b){
5108   const struct state *pA = *(const struct state**)a;
5109   const struct state *pB = *(const struct state**)b;
5110   int n;
5111 
5112   n = pB->nNtAct - pA->nNtAct;
5113   if( n==0 ){
5114     n = pB->nTknAct - pA->nTknAct;
5115     if( n==0 ){
5116       n = pB->statenum - pA->statenum;
5117     }
5118   }
5119   assert( n!=0 );
5120   return n;
5121 }
5122 
5123 
5124 /*
5125 ** Renumber and resort states so that states with fewer choices
5126 ** occur at the end.  Except, keep state 0 as the first state.
5127 */
ResortStates(struct lemon * lemp)5128 void ResortStates(struct lemon *lemp)
5129 {
5130   int i;
5131   struct state *stp;
5132   struct action *ap;
5133 
5134   for(i=0; i<lemp->nstate; i++){
5135     stp = lemp->sorted[i];
5136     stp->nTknAct = stp->nNtAct = 0;
5137     stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
5138     stp->iTknOfst = NO_OFFSET;
5139     stp->iNtOfst = NO_OFFSET;
5140     for(ap=stp->ap; ap; ap=ap->next){
5141       int iAction = compute_action(lemp,ap);
5142       if( iAction>=0 ){
5143         if( ap->sp->index<lemp->nterminal ){
5144           stp->nTknAct++;
5145         }else if( ap->sp->index<lemp->nsymbol ){
5146           stp->nNtAct++;
5147         }else{
5148           assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
5149           stp->iDfltReduce = iAction;
5150         }
5151       }
5152     }
5153   }
5154   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
5155         stateResortCompare);
5156   for(i=0; i<lemp->nstate; i++){
5157     lemp->sorted[i]->statenum = i;
5158   }
5159   lemp->nxstate = lemp->nstate;
5160   while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
5161     lemp->nxstate--;
5162   }
5163 }
5164 
5165 
5166 /***************** From the file "set.c" ************************************/
5167 /*
5168 ** Set manipulation routines for the LEMON parser generator.
5169 */
5170 
5171 static int size = 0;
5172 
5173 /* Set the set size */
SetSize(int n)5174 void SetSize(int n)
5175 {
5176   size = n+1;
5177 }
5178 
5179 /* Allocate a new set */
SetNew(void)5180 char *SetNew(void){
5181   char *s;
5182   s = (char*)calloc( size, 1);
5183   if( s==0 ){
5184     memory_error();
5185   }
5186   return s;
5187 }
5188 
5189 /* Deallocate a set */
SetFree(char * s)5190 void SetFree(char *s)
5191 {
5192   free(s);
5193 }
5194 
5195 /* Add a new element to the set.  Return TRUE if the element was added
5196 ** and FALSE if it was already there. */
SetAdd(char * s,int e)5197 int SetAdd(char *s, int e)
5198 {
5199   int rv;
5200   assert( e>=0 && e<size );
5201   rv = s[e];
5202   s[e] = 1;
5203   return !rv;
5204 }
5205 
5206 /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
SetUnion(char * s1,char * s2)5207 int SetUnion(char *s1, char *s2)
5208 {
5209   int i, progress;
5210   progress = 0;
5211   for(i=0; i<size; i++){
5212     if( s2[i]==0 ) continue;
5213     if( s1[i]==0 ){
5214       progress = 1;
5215       s1[i] = 1;
5216     }
5217   }
5218   return progress;
5219 }
5220 /********************** From the file "table.c" ****************************/
5221 /*
5222 ** All code in this file has been automatically generated
5223 ** from a specification in the file
5224 **              "table.q"
5225 ** by the associative array code building program "aagen".
5226 ** Do not edit this file!  Instead, edit the specification
5227 ** file, then rerun aagen.
5228 */
5229 /*
5230 ** Code for processing tables in the LEMON parser generator.
5231 */
5232 
strhash(const char * x)5233 PRIVATE unsigned strhash(const char *x)
5234 {
5235   unsigned h = 0;
5236   while( *x ) h = h*13 + *(x++);
5237   return h;
5238 }
5239 
5240 /* Works like strdup, sort of.  Save a string in malloced memory, but
5241 ** keep strings in a table so that the same string is not in more
5242 ** than one place.
5243 */
Strsafe(const char * y)5244 const char *Strsafe(const char *y)
5245 {
5246   const char *z;
5247   char *cpy;
5248 
5249   if( y==0 ) return 0;
5250   z = Strsafe_find(y);
5251   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
5252     lemon_strcpy(cpy,y);
5253     z = cpy;
5254     Strsafe_insert(z);
5255   }
5256   MemoryCheck(z);
5257   return z;
5258 }
5259 
5260 /* There is one instance of the following structure for each
5261 ** associative array of type "x1".
5262 */
5263 struct s_x1 {
5264   int size;               /* The number of available slots. */
5265                           /*   Must be a power of 2 greater than or */
5266                           /*   equal to 1 */
5267   int count;              /* Number of currently slots filled */
5268   struct s_x1node *tbl;  /* The data stored here */
5269   struct s_x1node **ht;  /* Hash table for lookups */
5270 };
5271 
5272 /* There is one instance of this structure for every data element
5273 ** in an associative array of type "x1".
5274 */
5275 typedef struct s_x1node {
5276   const char *data;        /* The data */
5277   struct s_x1node *next;   /* Next entry with the same hash */
5278   struct s_x1node **from;  /* Previous link */
5279 } x1node;
5280 
5281 /* There is only one instance of the array, which is the following */
5282 static struct s_x1 *x1a;
5283 
5284 /* Allocate a new associative array */
Strsafe_init(void)5285 void Strsafe_init(void){
5286   if( x1a ) return;
5287   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
5288   if( x1a ){
5289     x1a->size = 1024;
5290     x1a->count = 0;
5291     x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
5292     if( x1a->tbl==0 ){
5293       free(x1a);
5294       x1a = 0;
5295     }else{
5296       int i;
5297       x1a->ht = (x1node**)&(x1a->tbl[1024]);
5298       for(i=0; i<1024; i++) x1a->ht[i] = 0;
5299     }
5300   }
5301 }
5302 /* Insert a new record into the array.  Return TRUE if successful.
5303 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(const char * data)5304 int Strsafe_insert(const char *data)
5305 {
5306   x1node *np;
5307   unsigned h;
5308   unsigned ph;
5309 
5310   if( x1a==0 ) return 0;
5311   ph = strhash(data);
5312   h = ph & (x1a->size-1);
5313   np = x1a->ht[h];
5314   while( np ){
5315     if( strcmp(np->data,data)==0 ){
5316       /* An existing entry with the same key is found. */
5317       /* Fail because overwrite is not allows. */
5318       return 0;
5319     }
5320     np = np->next;
5321   }
5322   if( x1a->count>=x1a->size ){
5323     /* Need to make the hash table bigger */
5324     int i,arrSize;
5325     struct s_x1 array;
5326     array.size = arrSize = x1a->size*2;
5327     array.count = x1a->count;
5328     array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
5329     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5330     array.ht = (x1node**)&(array.tbl[arrSize]);
5331     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5332     for(i=0; i<x1a->count; i++){
5333       x1node *oldnp, *newnp;
5334       oldnp = &(x1a->tbl[i]);
5335       h = strhash(oldnp->data) & (arrSize-1);
5336       newnp = &(array.tbl[i]);
5337       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5338       newnp->next = array.ht[h];
5339       newnp->data = oldnp->data;
5340       newnp->from = &(array.ht[h]);
5341       array.ht[h] = newnp;
5342     }
5343     /* free(x1a->tbl); // This program was originally for 16-bit machines.
5344     ** Don't worry about freeing memory on modern platforms. */
5345     *x1a = array;
5346   }
5347   /* Insert the new data */
5348   h = ph & (x1a->size-1);
5349   np = &(x1a->tbl[x1a->count++]);
5350   np->data = data;
5351   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
5352   np->next = x1a->ht[h];
5353   x1a->ht[h] = np;
5354   np->from = &(x1a->ht[h]);
5355   return 1;
5356 }
5357 
5358 /* Return a pointer to data assigned to the given key.  Return NULL
5359 ** if no such key. */
Strsafe_find(const char * key)5360 const char *Strsafe_find(const char *key)
5361 {
5362   unsigned h;
5363   x1node *np;
5364 
5365   if( x1a==0 ) return 0;
5366   h = strhash(key) & (x1a->size-1);
5367   np = x1a->ht[h];
5368   while( np ){
5369     if( strcmp(np->data,key)==0 ) break;
5370     np = np->next;
5371   }
5372   return np ? np->data : 0;
5373 }
5374 
5375 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5376 ** Create a new symbol if this is the first time "x" has been seen.
5377 */
Symbol_new(const char * x)5378 struct symbol *Symbol_new(const char *x)
5379 {
5380   struct symbol *sp;
5381 
5382   sp = Symbol_find(x);
5383   if( sp==0 ){
5384     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
5385     MemoryCheck(sp);
5386     sp->name = Strsafe(x);
5387     sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
5388     sp->rule = 0;
5389     sp->fallback = 0;
5390     sp->prec = -1;
5391     sp->assoc = UNK;
5392     sp->firstset = 0;
5393     sp->lambda = LEMON_FALSE;
5394     sp->destructor = 0;
5395     sp->destLineno = 0;
5396     sp->datatype = 0;
5397     sp->useCnt = 0;
5398     Symbol_insert(sp,sp->name);
5399   }
5400   sp->useCnt++;
5401   return sp;
5402 }
5403 
5404 /* Compare two symbols for sorting purposes.  Return negative,
5405 ** zero, or positive if a is less then, equal to, or greater
5406 ** than b.
5407 **
5408 ** Symbols that begin with upper case letters (terminals or tokens)
5409 ** must sort before symbols that begin with lower case letters
5410 ** (non-terminals).  And MULTITERMINAL symbols (created using the
5411 ** %token_class directive) must sort at the very end. Other than
5412 ** that, the order does not matter.
5413 **
5414 ** We find experimentally that leaving the symbols in their original
5415 ** order (the order they appeared in the grammar file) gives the
5416 ** smallest parser tables in SQLite.
5417 */
Symbolcmpp(const void * _a,const void * _b)5418 int Symbolcmpp(const void *_a, const void *_b)
5419 {
5420   const struct symbol *a = *(const struct symbol **) _a;
5421   const struct symbol *b = *(const struct symbol **) _b;
5422   int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
5423   int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
5424   return i1==i2 ? a->index - b->index : i1 - i2;
5425 }
5426 
5427 /* There is one instance of the following structure for each
5428 ** associative array of type "x2".
5429 */
5430 struct s_x2 {
5431   int size;               /* The number of available slots. */
5432                           /*   Must be a power of 2 greater than or */
5433                           /*   equal to 1 */
5434   int count;              /* Number of currently slots filled */
5435   struct s_x2node *tbl;  /* The data stored here */
5436   struct s_x2node **ht;  /* Hash table for lookups */
5437 };
5438 
5439 /* There is one instance of this structure for every data element
5440 ** in an associative array of type "x2".
5441 */
5442 typedef struct s_x2node {
5443   struct symbol *data;     /* The data */
5444   const char *key;         /* The key */
5445   struct s_x2node *next;   /* Next entry with the same hash */
5446   struct s_x2node **from;  /* Previous link */
5447 } x2node;
5448 
5449 /* There is only one instance of the array, which is the following */
5450 static struct s_x2 *x2a;
5451 
5452 /* Allocate a new associative array */
Symbol_init(void)5453 void Symbol_init(void){
5454   if( x2a ) return;
5455   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5456   if( x2a ){
5457     x2a->size = 128;
5458     x2a->count = 0;
5459     x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5460     if( x2a->tbl==0 ){
5461       free(x2a);
5462       x2a = 0;
5463     }else{
5464       int i;
5465       x2a->ht = (x2node**)&(x2a->tbl[128]);
5466       for(i=0; i<128; i++) x2a->ht[i] = 0;
5467     }
5468   }
5469 }
5470 /* Insert a new record into the array.  Return TRUE if successful.
5471 ** Prior data with the same key is NOT overwritten */
Symbol_insert(struct symbol * data,const char * key)5472 int Symbol_insert(struct symbol *data, const char *key)
5473 {
5474   x2node *np;
5475   unsigned h;
5476   unsigned ph;
5477 
5478   if( x2a==0 ) return 0;
5479   ph = strhash(key);
5480   h = ph & (x2a->size-1);
5481   np = x2a->ht[h];
5482   while( np ){
5483     if( strcmp(np->key,key)==0 ){
5484       /* An existing entry with the same key is found. */
5485       /* Fail because overwrite is not allows. */
5486       return 0;
5487     }
5488     np = np->next;
5489   }
5490   if( x2a->count>=x2a->size ){
5491     /* Need to make the hash table bigger */
5492     int i,arrSize;
5493     struct s_x2 array;
5494     array.size = arrSize = x2a->size*2;
5495     array.count = x2a->count;
5496     array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5497     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5498     array.ht = (x2node**)&(array.tbl[arrSize]);
5499     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5500     for(i=0; i<x2a->count; i++){
5501       x2node *oldnp, *newnp;
5502       oldnp = &(x2a->tbl[i]);
5503       h = strhash(oldnp->key) & (arrSize-1);
5504       newnp = &(array.tbl[i]);
5505       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5506       newnp->next = array.ht[h];
5507       newnp->key = oldnp->key;
5508       newnp->data = oldnp->data;
5509       newnp->from = &(array.ht[h]);
5510       array.ht[h] = newnp;
5511     }
5512     /* free(x2a->tbl); // This program was originally written for 16-bit
5513     ** machines.  Don't worry about freeing this trivial amount of memory
5514     ** on modern platforms.  Just leak it. */
5515     *x2a = array;
5516   }
5517   /* Insert the new data */
5518   h = ph & (x2a->size-1);
5519   np = &(x2a->tbl[x2a->count++]);
5520   np->key = key;
5521   np->data = data;
5522   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5523   np->next = x2a->ht[h];
5524   x2a->ht[h] = np;
5525   np->from = &(x2a->ht[h]);
5526   return 1;
5527 }
5528 
5529 /* Return a pointer to data assigned to the given key.  Return NULL
5530 ** if no such key. */
Symbol_find(const char * key)5531 struct symbol *Symbol_find(const char *key)
5532 {
5533   unsigned h;
5534   x2node *np;
5535 
5536   if( x2a==0 ) return 0;
5537   h = strhash(key) & (x2a->size-1);
5538   np = x2a->ht[h];
5539   while( np ){
5540     if( strcmp(np->key,key)==0 ) break;
5541     np = np->next;
5542   }
5543   return np ? np->data : 0;
5544 }
5545 
5546 /* Return the n-th data.  Return NULL if n is out of range. */
Symbol_Nth(int n)5547 struct symbol *Symbol_Nth(int n)
5548 {
5549   struct symbol *data;
5550   if( x2a && n>0 && n<=x2a->count ){
5551     data = x2a->tbl[n-1].data;
5552   }else{
5553     data = 0;
5554   }
5555   return data;
5556 }
5557 
5558 /* Return the size of the array */
Symbol_count()5559 int Symbol_count()
5560 {
5561   return x2a ? x2a->count : 0;
5562 }
5563 
5564 /* Return an array of pointers to all data in the table.
5565 ** The array is obtained from malloc.  Return NULL if memory allocation
5566 ** problems, or if the array is empty. */
Symbol_arrayof()5567 struct symbol **Symbol_arrayof()
5568 {
5569   struct symbol **array;
5570   int i,arrSize;
5571   if( x2a==0 ) return 0;
5572   arrSize = x2a->count;
5573   array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5574   if( array ){
5575     for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5576   }
5577   return array;
5578 }
5579 
5580 /* Compare two configurations */
Configcmp(const char * _a,const char * _b)5581 int Configcmp(const char *_a,const char *_b)
5582 {
5583   const struct config *a = (struct config *) _a;
5584   const struct config *b = (struct config *) _b;
5585   int x;
5586   x = a->rp->index - b->rp->index;
5587   if( x==0 ) x = a->dot - b->dot;
5588   return x;
5589 }
5590 
5591 /* Compare two states */
statecmp(struct config * a,struct config * b)5592 PRIVATE int statecmp(struct config *a, struct config *b)
5593 {
5594   int rc;
5595   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
5596     rc = a->rp->index - b->rp->index;
5597     if( rc==0 ) rc = a->dot - b->dot;
5598   }
5599   if( rc==0 ){
5600     if( a ) rc = 1;
5601     if( b ) rc = -1;
5602   }
5603   return rc;
5604 }
5605 
5606 /* Hash a state */
statehash(struct config * a)5607 PRIVATE unsigned statehash(struct config *a)
5608 {
5609   unsigned h=0;
5610   while( a ){
5611     h = h*571 + a->rp->index*37 + a->dot;
5612     a = a->bp;
5613   }
5614   return h;
5615 }
5616 
5617 /* Allocate a new state structure */
State_new()5618 struct state *State_new()
5619 {
5620   struct state *newstate;
5621   newstate = (struct state *)calloc(1, sizeof(struct state) );
5622   MemoryCheck(newstate);
5623   return newstate;
5624 }
5625 
5626 /* There is one instance of the following structure for each
5627 ** associative array of type "x3".
5628 */
5629 struct s_x3 {
5630   int size;               /* The number of available slots. */
5631                           /*   Must be a power of 2 greater than or */
5632                           /*   equal to 1 */
5633   int count;              /* Number of currently slots filled */
5634   struct s_x3node *tbl;  /* The data stored here */
5635   struct s_x3node **ht;  /* Hash table for lookups */
5636 };
5637 
5638 /* There is one instance of this structure for every data element
5639 ** in an associative array of type "x3".
5640 */
5641 typedef struct s_x3node {
5642   struct state *data;                  /* The data */
5643   struct config *key;                   /* The key */
5644   struct s_x3node *next;   /* Next entry with the same hash */
5645   struct s_x3node **from;  /* Previous link */
5646 } x3node;
5647 
5648 /* There is only one instance of the array, which is the following */
5649 static struct s_x3 *x3a;
5650 
5651 /* Allocate a new associative array */
State_init(void)5652 void State_init(void){
5653   if( x3a ) return;
5654   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5655   if( x3a ){
5656     x3a->size = 128;
5657     x3a->count = 0;
5658     x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5659     if( x3a->tbl==0 ){
5660       free(x3a);
5661       x3a = 0;
5662     }else{
5663       int i;
5664       x3a->ht = (x3node**)&(x3a->tbl[128]);
5665       for(i=0; i<128; i++) x3a->ht[i] = 0;
5666     }
5667   }
5668 }
5669 /* Insert a new record into the array.  Return TRUE if successful.
5670 ** Prior data with the same key is NOT overwritten */
State_insert(struct state * data,struct config * key)5671 int State_insert(struct state *data, struct config *key)
5672 {
5673   x3node *np;
5674   unsigned h;
5675   unsigned ph;
5676 
5677   if( x3a==0 ) return 0;
5678   ph = statehash(key);
5679   h = ph & (x3a->size-1);
5680   np = x3a->ht[h];
5681   while( np ){
5682     if( statecmp(np->key,key)==0 ){
5683       /* An existing entry with the same key is found. */
5684       /* Fail because overwrite is not allows. */
5685       return 0;
5686     }
5687     np = np->next;
5688   }
5689   if( x3a->count>=x3a->size ){
5690     /* Need to make the hash table bigger */
5691     int i,arrSize;
5692     struct s_x3 array;
5693     array.size = arrSize = x3a->size*2;
5694     array.count = x3a->count;
5695     array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5696     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5697     array.ht = (x3node**)&(array.tbl[arrSize]);
5698     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5699     for(i=0; i<x3a->count; i++){
5700       x3node *oldnp, *newnp;
5701       oldnp = &(x3a->tbl[i]);
5702       h = statehash(oldnp->key) & (arrSize-1);
5703       newnp = &(array.tbl[i]);
5704       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5705       newnp->next = array.ht[h];
5706       newnp->key = oldnp->key;
5707       newnp->data = oldnp->data;
5708       newnp->from = &(array.ht[h]);
5709       array.ht[h] = newnp;
5710     }
5711     free(x3a->tbl);
5712     *x3a = array;
5713   }
5714   /* Insert the new data */
5715   h = ph & (x3a->size-1);
5716   np = &(x3a->tbl[x3a->count++]);
5717   np->key = key;
5718   np->data = data;
5719   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5720   np->next = x3a->ht[h];
5721   x3a->ht[h] = np;
5722   np->from = &(x3a->ht[h]);
5723   return 1;
5724 }
5725 
5726 /* Return a pointer to data assigned to the given key.  Return NULL
5727 ** if no such key. */
State_find(struct config * key)5728 struct state *State_find(struct config *key)
5729 {
5730   unsigned h;
5731   x3node *np;
5732 
5733   if( x3a==0 ) return 0;
5734   h = statehash(key) & (x3a->size-1);
5735   np = x3a->ht[h];
5736   while( np ){
5737     if( statecmp(np->key,key)==0 ) break;
5738     np = np->next;
5739   }
5740   return np ? np->data : 0;
5741 }
5742 
5743 /* Return an array of pointers to all data in the table.
5744 ** The array is obtained from malloc.  Return NULL if memory allocation
5745 ** problems, or if the array is empty. */
State_arrayof(void)5746 struct state **State_arrayof(void)
5747 {
5748   struct state **array;
5749   int i,arrSize;
5750   if( x3a==0 ) return 0;
5751   arrSize = x3a->count;
5752   array = (struct state **)calloc(arrSize, sizeof(struct state *));
5753   if( array ){
5754     for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5755   }
5756   return array;
5757 }
5758 
5759 /* Hash a configuration */
confighash(struct config * a)5760 PRIVATE unsigned confighash(struct config *a)
5761 {
5762   unsigned h=0;
5763   h = h*571 + a->rp->index*37 + a->dot;
5764   return h;
5765 }
5766 
5767 /* There is one instance of the following structure for each
5768 ** associative array of type "x4".
5769 */
5770 struct s_x4 {
5771   int size;               /* The number of available slots. */
5772                           /*   Must be a power of 2 greater than or */
5773                           /*   equal to 1 */
5774   int count;              /* Number of currently slots filled */
5775   struct s_x4node *tbl;  /* The data stored here */
5776   struct s_x4node **ht;  /* Hash table for lookups */
5777 };
5778 
5779 /* There is one instance of this structure for every data element
5780 ** in an associative array of type "x4".
5781 */
5782 typedef struct s_x4node {
5783   struct config *data;                  /* The data */
5784   struct s_x4node *next;   /* Next entry with the same hash */
5785   struct s_x4node **from;  /* Previous link */
5786 } x4node;
5787 
5788 /* There is only one instance of the array, which is the following */
5789 static struct s_x4 *x4a;
5790 
5791 /* Allocate a new associative array */
Configtable_init(void)5792 void Configtable_init(void){
5793   if( x4a ) return;
5794   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5795   if( x4a ){
5796     x4a->size = 64;
5797     x4a->count = 0;
5798     x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5799     if( x4a->tbl==0 ){
5800       free(x4a);
5801       x4a = 0;
5802     }else{
5803       int i;
5804       x4a->ht = (x4node**)&(x4a->tbl[64]);
5805       for(i=0; i<64; i++) x4a->ht[i] = 0;
5806     }
5807   }
5808 }
5809 /* Insert a new record into the array.  Return TRUE if successful.
5810 ** Prior data with the same key is NOT overwritten */
Configtable_insert(struct config * data)5811 int Configtable_insert(struct config *data)
5812 {
5813   x4node *np;
5814   unsigned h;
5815   unsigned ph;
5816 
5817   if( x4a==0 ) return 0;
5818   ph = confighash(data);
5819   h = ph & (x4a->size-1);
5820   np = x4a->ht[h];
5821   while( np ){
5822     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5823       /* An existing entry with the same key is found. */
5824       /* Fail because overwrite is not allows. */
5825       return 0;
5826     }
5827     np = np->next;
5828   }
5829   if( x4a->count>=x4a->size ){
5830     /* Need to make the hash table bigger */
5831     int i,arrSize;
5832     struct s_x4 array;
5833     array.size = arrSize = x4a->size*2;
5834     array.count = x4a->count;
5835     array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5836     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5837     array.ht = (x4node**)&(array.tbl[arrSize]);
5838     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5839     for(i=0; i<x4a->count; i++){
5840       x4node *oldnp, *newnp;
5841       oldnp = &(x4a->tbl[i]);
5842       h = confighash(oldnp->data) & (arrSize-1);
5843       newnp = &(array.tbl[i]);
5844       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5845       newnp->next = array.ht[h];
5846       newnp->data = oldnp->data;
5847       newnp->from = &(array.ht[h]);
5848       array.ht[h] = newnp;
5849     }
5850     /* free(x4a->tbl); // This code was originall written for 16-bit machines.
5851     ** on modern machines, don't worry about freeing this trival amount of
5852     ** memory. */
5853     *x4a = array;
5854   }
5855   /* Insert the new data */
5856   h = ph & (x4a->size-1);
5857   np = &(x4a->tbl[x4a->count++]);
5858   np->data = data;
5859   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5860   np->next = x4a->ht[h];
5861   x4a->ht[h] = np;
5862   np->from = &(x4a->ht[h]);
5863   return 1;
5864 }
5865 
5866 /* Return a pointer to data assigned to the given key.  Return NULL
5867 ** if no such key. */
Configtable_find(struct config * key)5868 struct config *Configtable_find(struct config *key)
5869 {
5870   int h;
5871   x4node *np;
5872 
5873   if( x4a==0 ) return 0;
5874   h = confighash(key) & (x4a->size-1);
5875   np = x4a->ht[h];
5876   while( np ){
5877     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5878     np = np->next;
5879   }
5880   return np ? np->data : 0;
5881 }
5882 
5883 /* Remove all data from the table.  Pass each data to the function "f"
5884 ** as it is removed.  ("f" may be null to avoid this step.) */
Configtable_clear(int (* f)(struct config *))5885 void Configtable_clear(int(*f)(struct config *))
5886 {
5887   int i;
5888   if( x4a==0 || x4a->count==0 ) return;
5889   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5890   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5891   x4a->count = 0;
5892   return;
5893 }
5894