1 /* $NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*-
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Copyright (c) 2002 Networks Associates Technology, Inc.
8 * All rights reserved.
9 *
10 * This software was developed for the FreeBSD Project by Marshall
11 * Kirk McKusick and Network Associates Laboratories, the Security
12 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
13 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
14 * research program
15 *
16 * Copyright (c) 1982, 1986, 1989, 1993
17 * The Regents of the University of California. All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
44 */
45
46 #include <sys/cdefs.h>
47 #include <sys/param.h>
48 #include <sys/time.h>
49
50 #include <errno.h>
51 #include <stdint.h>
52
53 #include "makefs.h"
54
55 #include <ufs/ufs/dinode.h>
56 #include <ufs/ffs/fs.h>
57
58 #include "ffs/ufs_bswap.h"
59 #include "ffs/buf.h"
60 #include "ffs/ufs_inode.h"
61 #include "ffs/ffs_extern.h"
62
63 static int scanc(u_int, const u_char *, const u_char *, int);
64
65 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
66 static daddr_t ffs_alloccgblk(struct inode *, struct m_buf *, daddr_t);
67 static daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int,
68 daddr_t (*)(struct inode *, int, daddr_t, int));
69 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
70
71 /*
72 * Allocate a block in the file system.
73 *
74 * The size of the requested block is given, which must be some
75 * multiple of fs_fsize and <= fs_bsize.
76 * A preference may be optionally specified. If a preference is given
77 * the following hierarchy is used to allocate a block:
78 * 1) allocate the requested block.
79 * 2) allocate a rotationally optimal block in the same cylinder.
80 * 3) allocate a block in the same cylinder group.
81 * 4) quadratically rehash into other cylinder groups, until an
82 * available block is located.
83 * If no block preference is given the following hierarchy is used
84 * to allocate a block:
85 * 1) allocate a block in the cylinder group that contains the
86 * inode for the file.
87 * 2) quadratically rehash into other cylinder groups, until an
88 * available block is located.
89 */
90 int
ffs_alloc(struct inode * ip,daddr_t lbn __unused,daddr_t bpref,int size,daddr_t * bnp)91 ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
92 daddr_t *bnp)
93 {
94 struct fs *fs = ip->i_fs;
95 daddr_t bno;
96 int cg;
97
98 *bnp = 0;
99 if (size > fs->fs_bsize || fragoff(fs, size) != 0) {
100 errx(1, "ffs_alloc: bad size: bsize %d size %d",
101 fs->fs_bsize, size);
102 }
103 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
104 goto nospace;
105 if (bpref >= fs->fs_size)
106 bpref = 0;
107 if (bpref == 0)
108 cg = ino_to_cg(fs, ip->i_number);
109 else
110 cg = dtog(fs, bpref);
111 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
112 if (bno > 0) {
113 if (ip->i_fs->fs_magic == FS_UFS1_MAGIC)
114 ip->i_ffs1_blocks += size / DEV_BSIZE;
115 else
116 ip->i_ffs2_blocks += size / DEV_BSIZE;
117 *bnp = bno;
118 return (0);
119 }
120 nospace:
121 return (ENOSPC);
122 }
123
124 /*
125 * Select the desired position for the next block in a file. The file is
126 * logically divided into sections. The first section is composed of the
127 * direct blocks. Each additional section contains fs_maxbpg blocks.
128 *
129 * If no blocks have been allocated in the first section, the policy is to
130 * request a block in the same cylinder group as the inode that describes
131 * the file. If no blocks have been allocated in any other section, the
132 * policy is to place the section in a cylinder group with a greater than
133 * average number of free blocks. An appropriate cylinder group is found
134 * by using a rotor that sweeps the cylinder groups. When a new group of
135 * blocks is needed, the sweep begins in the cylinder group following the
136 * cylinder group from which the previous allocation was made. The sweep
137 * continues until a cylinder group with greater than the average number
138 * of free blocks is found. If the allocation is for the first block in an
139 * indirect block, the information on the previous allocation is unavailable;
140 * here a best guess is made based upon the logical block number being
141 * allocated.
142 *
143 * If a section is already partially allocated, the policy is to
144 * contiguously allocate fs_maxcontig blocks. The end of one of these
145 * contiguous blocks and the beginning of the next is physically separated
146 * so that the disk head will be in transit between them for at least
147 * fs_rotdelay milliseconds. This is to allow time for the processor to
148 * schedule another I/O transfer.
149 */
150 /* XXX ondisk32 */
151 daddr_t
ffs_blkpref_ufs1(struct inode * ip,daddr_t lbn,int indx,int32_t * bap)152 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
153 {
154 struct fs *fs;
155 u_int cg, startcg;
156 int avgbfree;
157
158 fs = ip->i_fs;
159 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
160 if (lbn < UFS_NDADDR + NINDIR(fs)) {
161 cg = ino_to_cg(fs, ip->i_number);
162 return (fs->fs_fpg * cg + fs->fs_frag);
163 }
164 /*
165 * Find a cylinder with greater than average number of
166 * unused data blocks.
167 */
168 if (indx == 0 || bap[indx - 1] == 0)
169 startcg =
170 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
171 else
172 startcg = dtog(fs,
173 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
174 startcg %= fs->fs_ncg;
175 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
176 for (cg = startcg; cg < fs->fs_ncg; cg++)
177 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
178 return (fs->fs_fpg * cg + fs->fs_frag);
179 for (cg = 0; cg <= startcg; cg++)
180 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
181 return (fs->fs_fpg * cg + fs->fs_frag);
182 return (0);
183 }
184 /*
185 * We just always try to lay things out contiguously.
186 */
187 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
188 }
189
190 daddr_t
ffs_blkpref_ufs2(struct inode * ip,daddr_t lbn,int indx,int64_t * bap)191 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
192 {
193 struct fs *fs;
194 u_int cg, startcg;
195 int avgbfree;
196
197 fs = ip->i_fs;
198 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
199 if (lbn < UFS_NDADDR + NINDIR(fs)) {
200 cg = ino_to_cg(fs, ip->i_number);
201 return (fs->fs_fpg * cg + fs->fs_frag);
202 }
203 /*
204 * Find a cylinder with greater than average number of
205 * unused data blocks.
206 */
207 if (indx == 0 || bap[indx - 1] == 0)
208 startcg =
209 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
210 else
211 startcg = dtog(fs,
212 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
213 startcg %= fs->fs_ncg;
214 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
215 for (cg = startcg; cg < fs->fs_ncg; cg++)
216 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
217 return (fs->fs_fpg * cg + fs->fs_frag);
218 }
219 for (cg = 0; cg < startcg; cg++)
220 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
221 return (fs->fs_fpg * cg + fs->fs_frag);
222 }
223 return (0);
224 }
225 /*
226 * We just always try to lay things out contiguously.
227 */
228 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
229 }
230
231 /*
232 * Implement the cylinder overflow algorithm.
233 *
234 * The policy implemented by this algorithm is:
235 * 1) allocate the block in its requested cylinder group.
236 * 2) quadratically rehash on the cylinder group number.
237 * 3) brute force search for a free block.
238 *
239 * `size': size for data blocks, mode for inodes
240 */
241 /*VARARGS5*/
242 static daddr_t
ffs_hashalloc(struct inode * ip,u_int cg,daddr_t pref,int size,daddr_t (* allocator)(struct inode *,int,daddr_t,int))243 ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref, int size,
244 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
245 {
246 struct fs *fs;
247 daddr_t result;
248 u_int i, icg = cg;
249
250 fs = ip->i_fs;
251 /*
252 * 1: preferred cylinder group
253 */
254 result = (*allocator)(ip, cg, pref, size);
255 if (result)
256 return (result);
257 /*
258 * 2: quadratic rehash
259 */
260 for (i = 1; i < fs->fs_ncg; i *= 2) {
261 cg += i;
262 if (cg >= fs->fs_ncg)
263 cg -= fs->fs_ncg;
264 result = (*allocator)(ip, cg, 0, size);
265 if (result)
266 return (result);
267 }
268 /*
269 * 3: brute force search
270 * Note that we start at i == 2, since 0 was checked initially,
271 * and 1 is always checked in the quadratic rehash.
272 */
273 cg = (icg + 2) % fs->fs_ncg;
274 for (i = 2; i < fs->fs_ncg; i++) {
275 result = (*allocator)(ip, cg, 0, size);
276 if (result)
277 return (result);
278 cg++;
279 if (cg == fs->fs_ncg)
280 cg = 0;
281 }
282 return (0);
283 }
284
285 /*
286 * Determine whether a block can be allocated.
287 *
288 * Check to see if a block of the appropriate size is available,
289 * and if it is, allocate it.
290 */
291 static daddr_t
ffs_alloccg(struct inode * ip,int cg,daddr_t bpref,int size)292 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
293 {
294 struct cg *cgp;
295 struct m_buf *bp;
296 daddr_t bno, blkno;
297 int error, frags, allocsiz, i;
298 struct fs *fs = ip->i_fs;
299 const int needswap = UFS_FSNEEDSWAP(fs);
300
301 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
302 return (0);
303 error = bread((void *)ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
304 (int)fs->fs_cgsize, NULL, &bp);
305 if (error) {
306 return (0);
307 }
308 cgp = (struct cg *)bp->b_data;
309 if (!cg_chkmagic_swap(cgp, needswap) ||
310 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
311 brelse(bp);
312 return (0);
313 }
314 if (size == fs->fs_bsize) {
315 bno = ffs_alloccgblk(ip, bp, bpref);
316 bdwrite(bp);
317 return (bno);
318 }
319 /*
320 * check to see if any fragments are already available
321 * allocsiz is the size which will be allocated, hacking
322 * it down to a smaller size if necessary
323 */
324 frags = numfrags(fs, size);
325 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
326 if (cgp->cg_frsum[allocsiz] != 0)
327 break;
328 if (allocsiz == fs->fs_frag) {
329 /*
330 * no fragments were available, so a block will be
331 * allocated, and hacked up
332 */
333 if (cgp->cg_cs.cs_nbfree == 0) {
334 brelse(bp);
335 return (0);
336 }
337 bno = ffs_alloccgblk(ip, bp, bpref);
338 bpref = dtogd(fs, bno);
339 for (i = frags; i < fs->fs_frag; i++)
340 setbit(cg_blksfree_swap(cgp, needswap), bpref + i);
341 i = fs->fs_frag - frags;
342 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
343 fs->fs_cstotal.cs_nffree += i;
344 fs->fs_cs(fs, cg).cs_nffree += i;
345 fs->fs_fmod = 1;
346 ufs_add32(cgp->cg_frsum[i], 1, needswap);
347 bdwrite(bp);
348 return (bno);
349 }
350 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
351 for (i = 0; i < frags; i++)
352 clrbit(cg_blksfree_swap(cgp, needswap), bno + i);
353 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
354 fs->fs_cstotal.cs_nffree -= frags;
355 fs->fs_cs(fs, cg).cs_nffree -= frags;
356 fs->fs_fmod = 1;
357 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
358 if (frags != allocsiz)
359 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
360 blkno = cg * fs->fs_fpg + bno;
361 bdwrite(bp);
362 return blkno;
363 }
364
365 /*
366 * Allocate a block in a cylinder group.
367 *
368 * This algorithm implements the following policy:
369 * 1) allocate the requested block.
370 * 2) allocate a rotationally optimal block in the same cylinder.
371 * 3) allocate the next available block on the block rotor for the
372 * specified cylinder group.
373 * Note that this routine only allocates fs_bsize blocks; these
374 * blocks may be fragmented by the routine that allocates them.
375 */
376 static daddr_t
ffs_alloccgblk(struct inode * ip,struct m_buf * bp,daddr_t bpref)377 ffs_alloccgblk(struct inode *ip, struct m_buf *bp, daddr_t bpref)
378 {
379 struct cg *cgp;
380 daddr_t blkno;
381 int32_t bno;
382 struct fs *fs = ip->i_fs;
383 const int needswap = UFS_FSNEEDSWAP(fs);
384 u_int8_t *blksfree_swap;
385
386 cgp = (struct cg *)bp->b_data;
387 blksfree_swap = cg_blksfree_swap(cgp, needswap);
388 if (bpref == 0 || (uint32_t)dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
389 bpref = ufs_rw32(cgp->cg_rotor, needswap);
390 } else {
391 bpref = blknum(fs, bpref);
392 bno = dtogd(fs, bpref);
393 /*
394 * if the requested block is available, use it
395 */
396 if (ffs_isblock(fs, blksfree_swap, fragstoblks(fs, bno)))
397 goto gotit;
398 }
399 /*
400 * Take the next available one in this cylinder group.
401 */
402 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
403 if (bno < 0)
404 return (0);
405 cgp->cg_rotor = ufs_rw32(bno, needswap);
406 gotit:
407 blkno = fragstoblks(fs, bno);
408 ffs_clrblock(fs, blksfree_swap, (long)blkno);
409 ffs_clusteracct(fs, cgp, blkno, -1);
410 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
411 fs->fs_cstotal.cs_nbfree--;
412 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
413 fs->fs_fmod = 1;
414 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
415 return (blkno);
416 }
417
418 /*
419 * Free a block or fragment.
420 *
421 * The specified block or fragment is placed back in the
422 * free map. If a fragment is deallocated, a possible
423 * block reassembly is checked.
424 */
425 void
ffs_blkfree(struct inode * ip,daddr_t bno,long size)426 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
427 {
428 struct cg *cgp;
429 struct m_buf *bp;
430 int32_t fragno, cgbno;
431 int i, error, cg, blk, frags, bbase;
432 struct fs *fs = ip->i_fs;
433 const int needswap = UFS_FSNEEDSWAP(fs);
434
435 if (size > fs->fs_bsize || fragoff(fs, size) != 0 ||
436 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
437 errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
438 (long long)bno, fs->fs_bsize, size);
439 }
440 cg = dtog(fs, bno);
441 if (bno >= fs->fs_size) {
442 warnx("bad block %lld, ino %ju", (long long)bno,
443 (uintmax_t)ip->i_number);
444 return;
445 }
446 error = bread((void *)ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
447 (int)fs->fs_cgsize, NULL, &bp);
448 if (error) {
449 return;
450 }
451 cgp = (struct cg *)bp->b_data;
452 if (!cg_chkmagic_swap(cgp, needswap)) {
453 brelse(bp);
454 return;
455 }
456 cgbno = dtogd(fs, bno);
457 if (size == fs->fs_bsize) {
458 fragno = fragstoblks(fs, cgbno);
459 if (!ffs_isfreeblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
460 errx(1, "blkfree: freeing free block %lld",
461 (long long)bno);
462 }
463 ffs_setblock(fs, cg_blksfree_swap(cgp, needswap), fragno);
464 ffs_clusteracct(fs, cgp, fragno, 1);
465 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
466 fs->fs_cstotal.cs_nbfree++;
467 fs->fs_cs(fs, cg).cs_nbfree++;
468 } else {
469 bbase = cgbno - fragnum(fs, cgbno);
470 /*
471 * decrement the counts associated with the old frags
472 */
473 blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
474 ffs_fragacct_swap(fs, blk, cgp->cg_frsum, -1, needswap);
475 /*
476 * deallocate the fragment
477 */
478 frags = numfrags(fs, size);
479 for (i = 0; i < frags; i++) {
480 if (isset(cg_blksfree_swap(cgp, needswap), cgbno + i)) {
481 errx(1, "blkfree: freeing free frag: block %lld",
482 (long long)(cgbno + i));
483 }
484 setbit(cg_blksfree_swap(cgp, needswap), cgbno + i);
485 }
486 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
487 fs->fs_cstotal.cs_nffree += i;
488 fs->fs_cs(fs, cg).cs_nffree += i;
489 /*
490 * add back in counts associated with the new frags
491 */
492 blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bbase);
493 ffs_fragacct_swap(fs, blk, cgp->cg_frsum, 1, needswap);
494 /*
495 * if a complete block has been reassembled, account for it
496 */
497 fragno = fragstoblks(fs, bbase);
498 if (ffs_isblock(fs, cg_blksfree_swap(cgp, needswap), fragno)) {
499 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
500 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
501 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
502 ffs_clusteracct(fs, cgp, fragno, 1);
503 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
504 fs->fs_cstotal.cs_nbfree++;
505 fs->fs_cs(fs, cg).cs_nbfree++;
506 }
507 }
508 fs->fs_fmod = 1;
509 bdwrite(bp);
510 }
511
512
513 static int
scanc(u_int size,const u_char * cp,const u_char table[],int mask)514 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
515 {
516 const u_char *end = &cp[size];
517
518 while (cp < end && (table[*cp] & mask) == 0)
519 cp++;
520 return (end - cp);
521 }
522
523 /*
524 * Find a block of the specified size in the specified cylinder group.
525 *
526 * It is a panic if a request is made to find a block if none are
527 * available.
528 */
529 static int32_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,daddr_t bpref,int allocsiz)530 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
531 {
532 int32_t bno;
533 int start, len, loc, i;
534 int blk, field, subfield, pos;
535 int ostart, olen;
536 const int needswap = UFS_FSNEEDSWAP(fs);
537
538 /*
539 * find the fragment by searching through the free block
540 * map for an appropriate bit pattern
541 */
542 if (bpref)
543 start = dtogd(fs, bpref) / NBBY;
544 else
545 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
546 len = howmany(fs->fs_fpg, NBBY) - start;
547 ostart = start;
548 olen = len;
549 loc = scanc((u_int)len,
550 (const u_char *)&cg_blksfree_swap(cgp, needswap)[start],
551 (const u_char *)fragtbl[fs->fs_frag],
552 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
553 if (loc == 0) {
554 len = start + 1;
555 start = 0;
556 loc = scanc((u_int)len,
557 (const u_char *)&cg_blksfree_swap(cgp, needswap)[0],
558 (const u_char *)fragtbl[fs->fs_frag],
559 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
560 if (loc == 0) {
561 errx(1,
562 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
563 ostart, olen,
564 ufs_rw32(cgp->cg_freeoff, needswap),
565 (long)cg_blksfree_swap(cgp, needswap) - (long)cgp);
566 /* NOTREACHED */
567 }
568 }
569 bno = (start + len - loc) * NBBY;
570 cgp->cg_frotor = ufs_rw32(bno, needswap);
571 /*
572 * found the byte in the map
573 * sift through the bits to find the selected frag
574 */
575 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
576 blk = blkmap(fs, cg_blksfree_swap(cgp, needswap), bno);
577 blk <<= 1;
578 field = around[allocsiz];
579 subfield = inside[allocsiz];
580 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
581 if ((blk & field) == subfield)
582 return (bno + pos);
583 field <<= 1;
584 subfield <<= 1;
585 }
586 }
587 errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
588 return (-1);
589 }
590
591 /*
592 * Update the cluster map because of an allocation or free.
593 *
594 * Cnt == 1 means free; cnt == -1 means allocating.
595 */
596 void
ffs_clusteracct(struct fs * fs,struct cg * cgp,int32_t blkno,int cnt)597 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
598 {
599 int32_t *sump;
600 int32_t *lp;
601 u_char *freemapp, *mapp;
602 int i, start, end, forw, back, map, bit;
603 const int needswap = UFS_FSNEEDSWAP(fs);
604
605 if (fs->fs_contigsumsize <= 0)
606 return;
607 freemapp = cg_clustersfree_swap(cgp, needswap);
608 sump = cg_clustersum_swap(cgp, needswap);
609 /*
610 * Allocate or clear the actual block.
611 */
612 if (cnt > 0)
613 setbit(freemapp, blkno);
614 else
615 clrbit(freemapp, blkno);
616 /*
617 * Find the size of the cluster going forward.
618 */
619 start = blkno + 1;
620 end = start + fs->fs_contigsumsize;
621 if ((unsigned)end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
622 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
623 mapp = &freemapp[start / NBBY];
624 map = *mapp++;
625 bit = 1 << (start % NBBY);
626 for (i = start; i < end; i++) {
627 if ((map & bit) == 0)
628 break;
629 if ((i & (NBBY - 1)) != (NBBY - 1)) {
630 bit <<= 1;
631 } else {
632 map = *mapp++;
633 bit = 1;
634 }
635 }
636 forw = i - start;
637 /*
638 * Find the size of the cluster going backward.
639 */
640 start = blkno - 1;
641 end = start - fs->fs_contigsumsize;
642 if (end < 0)
643 end = -1;
644 mapp = &freemapp[start / NBBY];
645 map = *mapp--;
646 bit = 1 << (start % NBBY);
647 for (i = start; i > end; i--) {
648 if ((map & bit) == 0)
649 break;
650 if ((i & (NBBY - 1)) != 0) {
651 bit >>= 1;
652 } else {
653 map = *mapp--;
654 bit = 1 << (NBBY - 1);
655 }
656 }
657 back = start - i;
658 /*
659 * Account for old cluster and the possibly new forward and
660 * back clusters.
661 */
662 i = back + forw + 1;
663 if (i > fs->fs_contigsumsize)
664 i = fs->fs_contigsumsize;
665 ufs_add32(sump[i], cnt, needswap);
666 if (back > 0)
667 ufs_add32(sump[back], -cnt, needswap);
668 if (forw > 0)
669 ufs_add32(sump[forw], -cnt, needswap);
670
671 /*
672 * Update cluster summary information.
673 */
674 lp = &sump[fs->fs_contigsumsize];
675 for (i = fs->fs_contigsumsize; i > 0; i--)
676 if (ufs_rw32(*lp--, needswap) > 0)
677 break;
678 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
679 }
680