xref: /freebsd-14.2/sys/vm/vm_map.c (revision 4cb8ec6c)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  [email protected]
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/elf.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/racct.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/file.h>
83 #include <sys/sysctl.h>
84 #include <sys/sysent.h>
85 #include <sys/shm.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t vmspace_zone;
130 static int vmspace_zinit(void *mem, int size, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137     vm_map_entry_t gap_entry);
138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140 #ifdef INVARIANTS
141 static void vmspace_zdtor(void *mem, int size, void *arg);
142 #endif
143 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
144     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
145     int cow);
146 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
147     vm_offset_t failed_addr);
148 
149 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 #ifndef UMA_MD_SMALL_ALLOC
179 
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
kmapent_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192 	vm_offset_t addr;
193 	int error, locked;
194 
195 	*pflag = UMA_SLAB_PRIV;
196 
197 	if (!(locked = vm_map_locked(kernel_map)))
198 		vm_map_lock(kernel_map);
199 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 		panic("%s: kernel map is exhausted", __func__);
202 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 	if (error != KERN_SUCCESS)
205 		panic("%s: vm_map_insert() failed: %d", __func__, error);
206 	if (!locked)
207 		vm_map_unlock(kernel_map);
208 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 	    M_USE_RESERVE | (wait & M_ZERO));
210 	if (error == KERN_SUCCESS) {
211 		return ((void *)addr);
212 	} else {
213 		if (!locked)
214 			vm_map_lock(kernel_map);
215 		vm_map_delete(kernel_map, addr, bytes);
216 		if (!locked)
217 			vm_map_unlock(kernel_map);
218 		return (NULL);
219 	}
220 }
221 
222 static void
kmapent_free(void * item,vm_size_t size,uint8_t pflag)223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 	vm_offset_t addr;
226 	int error __diagused;
227 
228 	if ((pflag & UMA_SLAB_PRIV) == 0)
229 		/* XXX leaked */
230 		return;
231 
232 	addr = (vm_offset_t)item;
233 	kmem_unback(kernel_object, addr, size);
234 	error = vm_map_remove(kernel_map, addr, addr + size);
235 	KASSERT(error == KERN_SUCCESS,
236 	    ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238 
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define	KMAPENT_RESERVE		1
244 
245 #endif /* !UMD_MD_SMALL_ALLOC */
246 
247 /*
248  *	vm_map_startup:
249  *
250  *	Initialize the vm_map module.  Must be called before any other vm_map
251  *	routines.
252  *
253  *	User map and entry structures are allocated from the general purpose
254  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *	require special handling to avoid recursion; see the comments above
256  *	kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
vm_map_startup(void)259 vm_map_startup(void)
260 {
261 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262 
263 	/*
264 	 * Disable the use of per-CPU buckets: map entry allocation is
265 	 * serialized by the kernel map lock.
266 	 */
267 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 	/* Reserve an extra map entry for use when replenishing the reserve. */
272 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 	uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277 
278 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 	    vmspace_zdtor,
283 #else
284 	    NULL,
285 #endif
286 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288 
289 static int
vmspace_zinit(void * mem,int size,int flags)290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 	struct vmspace *vm;
293 	vm_map_t map;
294 
295 	vm = (struct vmspace *)mem;
296 	map = &vm->vm_map;
297 
298 	memset(map, 0, sizeof(*map));
299 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 	    MTX_DEF | MTX_DUPOK);
301 	sx_init(&map->lock, "vm map (user)");
302 	PMAP_LOCK_INIT(vmspace_pmap(vm));
303 	return (0);
304 }
305 
306 #ifdef INVARIANTS
307 static void
vmspace_zdtor(void * mem,int size,void * arg)308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 	struct vmspace *vm;
311 
312 	vm = (struct vmspace *)mem;
313 	KASSERT(vm->vm_map.nentries == 0,
314 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 	KASSERT(vm->vm_map.size == 0,
316 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif	/* INVARIANTS */
319 
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
vmspace_alloc(vm_offset_t min,vm_offset_t max,pmap_pinit_t pinit)325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 	struct vmspace *vm;
328 
329 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 	if (!pinit(vmspace_pmap(vm))) {
332 		uma_zfree(vmspace_zone, vm);
333 		return (NULL);
334 	}
335 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 	refcount_init(&vm->vm_refcnt, 1);
338 	vm->vm_shm = NULL;
339 	vm->vm_swrss = 0;
340 	vm->vm_tsize = 0;
341 	vm->vm_dsize = 0;
342 	vm->vm_ssize = 0;
343 	vm->vm_taddr = 0;
344 	vm->vm_daddr = 0;
345 	vm->vm_maxsaddr = 0;
346 	return (vm);
347 }
348 
349 #ifdef RACCT
350 static void
vmspace_container_reset(struct proc * p)351 vmspace_container_reset(struct proc *p)
352 {
353 
354 	PROC_LOCK(p);
355 	racct_set(p, RACCT_DATA, 0);
356 	racct_set(p, RACCT_STACK, 0);
357 	racct_set(p, RACCT_RSS, 0);
358 	racct_set(p, RACCT_MEMLOCK, 0);
359 	racct_set(p, RACCT_VMEM, 0);
360 	PROC_UNLOCK(p);
361 }
362 #endif
363 
364 static inline void
vmspace_dofree(struct vmspace * vm)365 vmspace_dofree(struct vmspace *vm)
366 {
367 
368 	CTR1(KTR_VM, "vmspace_free: %p", vm);
369 
370 	/*
371 	 * Make sure any SysV shm is freed, it might not have been in
372 	 * exit1().
373 	 */
374 	shmexit(vm);
375 
376 	/*
377 	 * Lock the map, to wait out all other references to it.
378 	 * Delete all of the mappings and pages they hold, then call
379 	 * the pmap module to reclaim anything left.
380 	 */
381 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 	    vm_map_max(&vm->vm_map));
383 
384 	pmap_release(vmspace_pmap(vm));
385 	vm->vm_map.pmap = NULL;
386 	uma_zfree(vmspace_zone, vm);
387 }
388 
389 void
vmspace_free(struct vmspace * vm)390 vmspace_free(struct vmspace *vm)
391 {
392 
393 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 	    "vmspace_free() called");
395 
396 	if (refcount_release(&vm->vm_refcnt))
397 		vmspace_dofree(vm);
398 }
399 
400 void
vmspace_exitfree(struct proc * p)401 vmspace_exitfree(struct proc *p)
402 {
403 	struct vmspace *vm;
404 
405 	PROC_VMSPACE_LOCK(p);
406 	vm = p->p_vmspace;
407 	p->p_vmspace = NULL;
408 	PROC_VMSPACE_UNLOCK(p);
409 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 	vmspace_free(vm);
411 }
412 
413 void
vmspace_exit(struct thread * td)414 vmspace_exit(struct thread *td)
415 {
416 	struct vmspace *vm;
417 	struct proc *p;
418 	bool released;
419 
420 	p = td->td_proc;
421 	vm = p->p_vmspace;
422 
423 	/*
424 	 * Prepare to release the vmspace reference.  The thread that releases
425 	 * the last reference is responsible for tearing down the vmspace.
426 	 * However, threads not releasing the final reference must switch to the
427 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 	 * deactivation does not modify a freed vmspace.
429 	 */
430 	refcount_acquire(&vmspace0.vm_refcnt);
431 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 		if (p->p_vmspace != &vmspace0) {
433 			PROC_VMSPACE_LOCK(p);
434 			p->p_vmspace = &vmspace0;
435 			PROC_VMSPACE_UNLOCK(p);
436 			pmap_activate(td);
437 		}
438 		released = refcount_release(&vm->vm_refcnt);
439 	}
440 	if (released) {
441 		/*
442 		 * pmap_remove_pages() expects the pmap to be active, so switch
443 		 * back first if necessary.
444 		 */
445 		if (p->p_vmspace != vm) {
446 			PROC_VMSPACE_LOCK(p);
447 			p->p_vmspace = vm;
448 			PROC_VMSPACE_UNLOCK(p);
449 			pmap_activate(td);
450 		}
451 		pmap_remove_pages(vmspace_pmap(vm));
452 		PROC_VMSPACE_LOCK(p);
453 		p->p_vmspace = &vmspace0;
454 		PROC_VMSPACE_UNLOCK(p);
455 		pmap_activate(td);
456 		vmspace_dofree(vm);
457 	}
458 #ifdef RACCT
459 	if (racct_enable)
460 		vmspace_container_reset(p);
461 #endif
462 }
463 
464 /* Acquire reference to vmspace owned by another process. */
465 
466 struct vmspace *
vmspace_acquire_ref(struct proc * p)467 vmspace_acquire_ref(struct proc *p)
468 {
469 	struct vmspace *vm;
470 
471 	PROC_VMSPACE_LOCK(p);
472 	vm = p->p_vmspace;
473 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		return (NULL);
476 	}
477 	if (vm != p->p_vmspace) {
478 		PROC_VMSPACE_UNLOCK(p);
479 		vmspace_free(vm);
480 		return (NULL);
481 	}
482 	PROC_VMSPACE_UNLOCK(p);
483 	return (vm);
484 }
485 
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
vmspace_switch_aio(struct vmspace * newvm)502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 	struct vmspace *oldvm;
505 
506 	/* XXX: Need some way to assert that this is an aio daemon. */
507 
508 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 	    ("vmspace_switch_aio: newvm unreferenced"));
510 
511 	oldvm = curproc->p_vmspace;
512 	if (oldvm == newvm)
513 		return;
514 
515 	/*
516 	 * Point to the new address space and refer to it.
517 	 */
518 	curproc->p_vmspace = newvm;
519 	refcount_acquire(&newvm->vm_refcnt);
520 
521 	/* Activate the new mapping. */
522 	pmap_activate(curthread);
523 
524 	vmspace_free(oldvm);
525 }
526 
527 void
_vm_map_lock(vm_map_t map,const char * file,int line)528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530 
531 	if (map->system_map)
532 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 	else
534 		sx_xlock_(&map->lock, file, line);
535 	map->timestamp++;
536 }
537 
538 void
vm_map_entry_set_vnode_text(vm_map_entry_t entry,bool add)539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 	vm_object_t object;
542 	struct vnode *vp;
543 	bool vp_held;
544 
545 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 		return;
547 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 	    ("Submap with execs"));
549 	object = entry->object.vm_object;
550 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 	if ((object->flags & OBJ_ANON) != 0)
552 		object = object->handle;
553 	else
554 		KASSERT(object->backing_object == NULL,
555 		    ("non-anon object %p shadows", object));
556 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 	    entry, entry->object.vm_object));
558 
559 	/*
560 	 * Mostly, we do not lock the backing object.  It is
561 	 * referenced by the entry we are processing, so it cannot go
562 	 * away.
563 	 */
564 	vm_pager_getvp(object, &vp, &vp_held);
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
vm_map_process_deferred(void)585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
_vm_map_assert_locked(vm_map_t map,const char * file,int line)619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
_vm_map_unlock(vm_map_t map,const char * file,int line)661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668 			uma_prealloc(kmapentzone, 1);
669 			map->flags &= ~MAP_REPLENISH;
670 		}
671 #endif
672 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 	} else {
674 		sx_xunlock_(&map->lock, file, line);
675 		vm_map_process_deferred();
676 	}
677 }
678 
679 void
_vm_map_lock_read(vm_map_t map,const char * file,int line)680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682 
683 	if (map->system_map)
684 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 	else
686 		sx_slock_(&map->lock, file, line);
687 }
688 
689 void
_vm_map_unlock_read(vm_map_t map,const char * file,int line)690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692 
693 	if (map->system_map) {
694 		KASSERT((map->flags & MAP_REPLENISH) == 0,
695 		    ("%s: MAP_REPLENISH leaked", __func__));
696 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 	} else {
698 		sx_sunlock_(&map->lock, file, line);
699 		vm_map_process_deferred();
700 	}
701 }
702 
703 int
_vm_map_trylock(vm_map_t map,const char * file,int line)704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706 	int error;
707 
708 	error = map->system_map ?
709 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 	    !sx_try_xlock_(&map->lock, file, line);
711 	if (error == 0)
712 		map->timestamp++;
713 	return (error == 0);
714 }
715 
716 int
_vm_map_trylock_read(vm_map_t map,const char * file,int line)717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719 	int error;
720 
721 	error = map->system_map ?
722 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 	    !sx_try_slock_(&map->lock, file, line);
724 	return (error == 0);
725 }
726 
727 /*
728  *	_vm_map_lock_upgrade:	[ internal use only ]
729  *
730  *	Tries to upgrade a read (shared) lock on the specified map to a write
731  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *	returned without a read or write lock held.
734  *
735  *	Requires that the map be read locked.
736  */
737 int
_vm_map_lock_upgrade(vm_map_t map,const char * file,int line)738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740 	unsigned int last_timestamp;
741 
742 	if (map->system_map) {
743 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 	} else {
745 		if (!sx_try_upgrade_(&map->lock, file, line)) {
746 			last_timestamp = map->timestamp;
747 			sx_sunlock_(&map->lock, file, line);
748 			vm_map_process_deferred();
749 			/*
750 			 * If the map's timestamp does not change while the
751 			 * map is unlocked, then the upgrade succeeds.
752 			 */
753 			sx_xlock_(&map->lock, file, line);
754 			if (last_timestamp != map->timestamp) {
755 				sx_xunlock_(&map->lock, file, line);
756 				return (1);
757 			}
758 		}
759 	}
760 	map->timestamp++;
761 	return (0);
762 }
763 
764 void
_vm_map_lock_downgrade(vm_map_t map,const char * file,int line)765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767 
768 	if (map->system_map) {
769 		KASSERT((map->flags & MAP_REPLENISH) == 0,
770 		    ("%s: MAP_REPLENISH leaked", __func__));
771 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 	} else {
773 		VM_MAP_UNLOCK_CONSISTENT(map);
774 		sx_downgrade_(&map->lock, file, line);
775 	}
776 }
777 
778 /*
779  *	vm_map_locked:
780  *
781  *	Returns a non-zero value if the caller holds a write (exclusive) lock
782  *	on the specified map and the value "0" otherwise.
783  */
784 int
vm_map_locked(vm_map_t map)785 vm_map_locked(vm_map_t map)
786 {
787 
788 	if (map->system_map)
789 		return (mtx_owned(&map->system_mtx));
790 	else
791 		return (sx_xlocked(&map->lock));
792 }
793 
794 /*
795  *	_vm_map_unlock_and_wait:
796  *
797  *	Atomically releases the lock on the specified map and puts the calling
798  *	thread to sleep.  The calling thread will remain asleep until either
799  *	vm_map_wakeup() is performed on the map or the specified timeout is
800  *	exceeded.
801  *
802  *	WARNING!  This function does not perform deferred deallocations of
803  *	objects and map	entries.  Therefore, the calling thread is expected to
804  *	reacquire the map lock after reawakening and later perform an ordinary
805  *	unlock operation, such as vm_map_unlock(), before completing its
806  *	operation on the map.
807  */
808 int
_vm_map_unlock_and_wait(vm_map_t map,int timo,const char * file,int line)809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811 
812 	VM_MAP_UNLOCK_CONSISTENT(map);
813 	mtx_lock(&map_sleep_mtx);
814 	if (map->system_map) {
815 		KASSERT((map->flags & MAP_REPLENISH) == 0,
816 		    ("%s: MAP_REPLENISH leaked", __func__));
817 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 	} else {
819 		sx_xunlock_(&map->lock, file, line);
820 	}
821 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 	    timo));
823 }
824 
825 /*
826  *	vm_map_wakeup:
827  *
828  *	Awaken any threads that have slept on the map using
829  *	vm_map_unlock_and_wait().
830  */
831 void
vm_map_wakeup(vm_map_t map)832 vm_map_wakeup(vm_map_t map)
833 {
834 
835 	/*
836 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 	 * from being performed (and lost) between the map unlock
838 	 * and the msleep() in _vm_map_unlock_and_wait().
839 	 */
840 	mtx_lock(&map_sleep_mtx);
841 	mtx_unlock(&map_sleep_mtx);
842 	wakeup(&map->root);
843 }
844 
845 void
vm_map_busy(vm_map_t map)846 vm_map_busy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	map->busy++;
851 }
852 
853 void
vm_map_unbusy(vm_map_t map)854 vm_map_unbusy(vm_map_t map)
855 {
856 
857 	VM_MAP_ASSERT_LOCKED(map);
858 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861 		wakeup(&map->busy);
862 	}
863 }
864 
865 void
vm_map_wait_busy(vm_map_t map)866 vm_map_wait_busy(vm_map_t map)
867 {
868 
869 	VM_MAP_ASSERT_LOCKED(map);
870 	while (map->busy) {
871 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872 		if (map->system_map)
873 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 		else
875 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 	}
877 	map->timestamp++;
878 }
879 
880 long
vmspace_resident_count(struct vmspace * vmspace)881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883 	return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885 
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
_vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893 
894 	map->header.eflags = MAP_ENTRY_HEADER;
895 	map->needs_wakeup = FALSE;
896 	map->system_map = 0;
897 	map->pmap = pmap;
898 	map->header.end = min;
899 	map->header.start = max;
900 	map->flags = 0;
901 	map->header.left = map->header.right = &map->header;
902 	map->root = NULL;
903 	map->timestamp = 0;
904 	map->busy = 0;
905 	map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907 	map->nupdates = 0;
908 #endif
909 }
910 
911 void
vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 
915 	_vm_map_init(map, pmap, min, max);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 	    MTX_DEF | MTX_DUPOK);
918 	sx_init(&map->lock, "vm map (user)");
919 }
920 
921 /*
922  *	vm_map_entry_dispose:	[ internal use only ]
923  *
924  *	Inverse of vm_map_entry_create.
925  */
926 static void
vm_map_entry_dispose(vm_map_t map,vm_map_entry_t entry)927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931 
932 /*
933  *	vm_map_entry_create:	[ internal use only ]
934  *
935  *	Allocates a VM map entry for insertion.
936  *	No entry fields are filled in.
937  */
938 static vm_map_entry_t
vm_map_entry_create(vm_map_t map)939 vm_map_entry_create(vm_map_t map)
940 {
941 	vm_map_entry_t new_entry;
942 
943 #ifndef UMA_MD_SMALL_ALLOC
944 	if (map == kernel_map) {
945 		VM_MAP_ASSERT_LOCKED(map);
946 
947 		/*
948 		 * A new slab of kernel map entries cannot be allocated at this
949 		 * point because the kernel map has not yet been updated to
950 		 * reflect the caller's request.  Therefore, we allocate a new
951 		 * map entry, dipping into the reserve if necessary, and set a
952 		 * flag indicating that the reserve must be replenished before
953 		 * the map is unlocked.
954 		 */
955 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 		if (new_entry == NULL) {
957 			new_entry = uma_zalloc(kmapentzone,
958 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 			kernel_map->flags |= MAP_REPLENISH;
960 		}
961 	} else
962 #endif
963 	if (map->system_map) {
964 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 	} else {
966 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 	}
968 	KASSERT(new_entry != NULL,
969 	    ("vm_map_entry_create: kernel resources exhausted"));
970 	return (new_entry);
971 }
972 
973 /*
974  *	vm_map_entry_set_behavior:
975  *
976  *	Set the expected access behavior, either normal, random, or
977  *	sequential.
978  */
979 static inline void
vm_map_entry_set_behavior(vm_map_entry_t entry,u_char behavior)980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 	    (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985 
986 /*
987  *	vm_map_entry_max_free_{left,right}:
988  *
989  *	Compute the size of the largest free gap between two entries,
990  *	one the root of a tree and the other the ancestor of that root
991  *	that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
vm_map_entry_max_free_left(vm_map_entry_t root,vm_map_entry_t left_ancestor)994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996 
997 	return (root->left != left_ancestor ?
998 	    root->left->max_free : root->start - left_ancestor->end);
999 }
1000 
1001 static inline vm_size_t
vm_map_entry_max_free_right(vm_map_entry_t root,vm_map_entry_t right_ancestor)1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004 
1005 	return (root->right != right_ancestor ?
1006 	    root->right->max_free : right_ancestor->start - root->end);
1007 }
1008 
1009 /*
1010  *	vm_map_entry_{pred,succ}:
1011  *
1012  *	Find the {predecessor, successor} of the entry by taking one step
1013  *	in the appropriate direction and backtracking as much as necessary.
1014  *	vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
vm_map_entry_pred(vm_map_entry_t entry)1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019 	vm_map_entry_t prior;
1020 
1021 	prior = entry->left;
1022 	if (prior->right->start < entry->start) {
1023 		do
1024 			prior = prior->right;
1025 		while (prior->right != entry);
1026 	}
1027 	return (prior);
1028 }
1029 
1030 static inline vm_size_t
vm_size_max(vm_size_t a,vm_size_t b)1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033 
1034 	return (a > b ? a : b);
1035 }
1036 
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1038 	vm_map_entry_t z;						\
1039 	vm_size_t max_free;						\
1040 									\
1041 	/*								\
1042 	 * Infer root->right->max_free == root->max_free when		\
1043 	 * y->max_free < root->max_free || root->max_free == 0.		\
1044 	 * Otherwise, look right to find it.				\
1045 	 */								\
1046 	y = root->left;							\
1047 	max_free = root->max_free;					\
1048 	KASSERT(max_free == vm_size_max(				\
1049 	    vm_map_entry_max_free_left(root, llist),			\
1050 	    vm_map_entry_max_free_right(root, rlist)),			\
1051 	    ("%s: max_free invariant fails", __func__));		\
1052 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1053 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1054 	if (y != llist && (test)) {					\
1055 		/* Rotate right and make y root. */			\
1056 		z = y->right;						\
1057 		if (z != root) {					\
1058 			root->left = z;					\
1059 			y->right = root;				\
1060 			if (max_free < y->max_free)			\
1061 			    root->max_free = max_free =			\
1062 			    vm_size_max(max_free, z->max_free);		\
1063 		} else if (max_free < y->max_free)			\
1064 			root->max_free = max_free =			\
1065 			    vm_size_max(max_free, root->start - y->end);\
1066 		root = y;						\
1067 		y = root->left;						\
1068 	}								\
1069 	/* Copy right->max_free.  Put root on rlist. */			\
1070 	root->max_free = max_free;					\
1071 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1072 	    ("%s: max_free not copied from right", __func__));		\
1073 	root->left = rlist;						\
1074 	rlist = root;							\
1075 	root = y != llist ? y : NULL;					\
1076 } while (0)
1077 
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1079 	vm_map_entry_t z;						\
1080 	vm_size_t max_free;						\
1081 									\
1082 	/*								\
1083 	 * Infer root->left->max_free == root->max_free when		\
1084 	 * y->max_free < root->max_free || root->max_free == 0.		\
1085 	 * Otherwise, look left to find it.				\
1086 	 */								\
1087 	y = root->right;						\
1088 	max_free = root->max_free;					\
1089 	KASSERT(max_free == vm_size_max(				\
1090 	    vm_map_entry_max_free_left(root, llist),			\
1091 	    vm_map_entry_max_free_right(root, rlist)),			\
1092 	    ("%s: max_free invariant fails", __func__));		\
1093 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1094 		max_free = vm_map_entry_max_free_left(root, llist);	\
1095 	if (y != rlist && (test)) {					\
1096 		/* Rotate left and make y root. */			\
1097 		z = y->left;						\
1098 		if (z != root) {					\
1099 			root->right = z;				\
1100 			y->left = root;					\
1101 			if (max_free < y->max_free)			\
1102 			    root->max_free = max_free =			\
1103 			    vm_size_max(max_free, z->max_free);		\
1104 		} else if (max_free < y->max_free)			\
1105 			root->max_free = max_free =			\
1106 			    vm_size_max(max_free, y->start - root->end);\
1107 		root = y;						\
1108 		y = root->right;					\
1109 	}								\
1110 	/* Copy left->max_free.  Put root on llist. */			\
1111 	root->max_free = max_free;					\
1112 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1113 	    ("%s: max_free not copied from left", __func__));		\
1114 	root->right = llist;						\
1115 	llist = root;							\
1116 	root = y != rlist ? y : NULL;					\
1117 } while (0)
1118 
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
vm_map_splay_split(vm_map_t map,vm_offset_t addr,vm_size_t length,vm_map_entry_t * llist,vm_map_entry_t * rlist)1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133 	vm_map_entry_t left, right, root, y;
1134 
1135 	left = right = &map->header;
1136 	root = map->root;
1137 	while (root != NULL && root->max_free >= length) {
1138 		KASSERT(left->end <= root->start &&
1139 		    root->end <= right->start,
1140 		    ("%s: root not within tree bounds", __func__));
1141 		if (addr < root->start) {
1142 			SPLAY_LEFT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr < y->start);
1144 		} else if (addr >= root->end) {
1145 			SPLAY_RIGHT_STEP(root, y, left, right,
1146 			    y->max_free >= length && addr >= y->end);
1147 		} else
1148 			break;
1149 	}
1150 	*llist = left;
1151 	*rlist = right;
1152 	return (root);
1153 }
1154 
1155 static __always_inline void
vm_map_splay_findnext(vm_map_entry_t root,vm_map_entry_t * rlist)1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158 	vm_map_entry_t hi, right, y;
1159 
1160 	right = *rlist;
1161 	hi = root->right == right ? NULL : root->right;
1162 	if (hi == NULL)
1163 		return;
1164 	do
1165 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 	while (hi != NULL);
1167 	*rlist = right;
1168 }
1169 
1170 static __always_inline void
vm_map_splay_findprev(vm_map_entry_t root,vm_map_entry_t * llist)1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173 	vm_map_entry_t left, lo, y;
1174 
1175 	left = *llist;
1176 	lo = root->left == left ? NULL : root->left;
1177 	if (lo == NULL)
1178 		return;
1179 	do
1180 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 	while (lo != NULL);
1182 	*llist = left;
1183 }
1184 
1185 static inline void
vm_map_entry_swap(vm_map_entry_t * a,vm_map_entry_t * b)1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188 	vm_map_entry_t tmp;
1189 
1190 	tmp = *b;
1191 	*b = *a;
1192 	*a = tmp;
1193 }
1194 
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
vm_map_splay_merge_left_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t llist)1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203 	do {
1204 		/*
1205 		 * The max_free values of the children of llist are in
1206 		 * llist->max_free and max_free.  Update with the
1207 		 * max value.
1208 		 */
1209 		llist->max_free = max_free =
1210 		    vm_size_max(llist->max_free, max_free);
1211 		vm_map_entry_swap(&llist->right, &tail);
1212 		vm_map_entry_swap(&tail, &llist);
1213 	} while (llist != header);
1214 	root->left = tail;
1215 	return (max_free);
1216 }
1217 
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
vm_map_splay_merge_pred(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225 	vm_size_t max_free;
1226 
1227 	max_free = root->start - llist->end;
1228 	if (llist != header) {
1229 		max_free = vm_map_splay_merge_left_walk(header, root,
1230 		    root, max_free, llist);
1231 	} else {
1232 		root->left = header;
1233 		header->right = root;
1234 	}
1235 	return (max_free);
1236 }
1237 
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
vm_map_splay_merge_left(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245 	vm_size_t max_free;
1246 
1247 	max_free = vm_map_entry_max_free_left(root, llist);
1248 	if (llist != header) {
1249 		max_free = vm_map_splay_merge_left_walk(header, root,
1250 		    root->left == llist ? root : root->left,
1251 		    max_free, llist);
1252 	}
1253 	return (max_free);
1254 }
1255 
1256 static vm_size_t
vm_map_splay_merge_right_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t rlist)1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260 	do {
1261 		/*
1262 		 * The max_free values of the children of rlist are in
1263 		 * rlist->max_free and max_free.  Update with the
1264 		 * max value.
1265 		 */
1266 		rlist->max_free = max_free =
1267 		    vm_size_max(rlist->max_free, max_free);
1268 		vm_map_entry_swap(&rlist->left, &tail);
1269 		vm_map_entry_swap(&tail, &rlist);
1270 	} while (rlist != header);
1271 	root->right = tail;
1272 	return (max_free);
1273 }
1274 
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
vm_map_splay_merge_succ(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282 	vm_size_t max_free;
1283 
1284 	max_free = rlist->start - root->end;
1285 	if (rlist != header) {
1286 		max_free = vm_map_splay_merge_right_walk(header, root,
1287 		    root, max_free, rlist);
1288 	} else {
1289 		root->right = header;
1290 		header->left = root;
1291 	}
1292 	return (max_free);
1293 }
1294 
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
vm_map_splay_merge_right(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302 	vm_size_t max_free;
1303 
1304 	max_free = vm_map_entry_max_free_right(root, rlist);
1305 	if (rlist != header) {
1306 		max_free = vm_map_splay_merge_right_walk(header, root,
1307 		    root->right == rlist ? root : root->right,
1308 		    max_free, rlist);
1309 	}
1310 	return (max_free);
1311 }
1312 
1313 /*
1314  *	vm_map_splay:
1315  *
1316  *	The Sleator and Tarjan top-down splay algorithm with the
1317  *	following variation.  Max_free must be computed bottom-up, so
1318  *	on the downward pass, maintain the left and right spines in
1319  *	reverse order.  Then, make a second pass up each side to fix
1320  *	the pointers and compute max_free.  The time bound is O(log n)
1321  *	amortized.
1322  *
1323  *	The tree is threaded, which means that there are no null pointers.
1324  *	When a node has no left child, its left pointer points to its
1325  *	predecessor, which the last ancestor on the search path from the root
1326  *	where the search branched right.  Likewise, when a node has no right
1327  *	child, its right pointer points to its successor.  The map header node
1328  *	is the predecessor of the first map entry, and the successor of the
1329  *	last.
1330  *
1331  *	The new root is the vm_map_entry containing "addr", or else an
1332  *	adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *	The map must be locked, and leaves it so.
1335  *
1336  *	Returns: the new root.
1337  */
1338 static vm_map_entry_t
vm_map_splay(vm_map_t map,vm_offset_t addr)1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341 	vm_map_entry_t header, llist, rlist, root;
1342 	vm_size_t max_free_left, max_free_right;
1343 
1344 	header = &map->header;
1345 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 	if (root != NULL) {
1347 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 	} else if (llist != header) {
1350 		/*
1351 		 * Recover the greatest node in the left
1352 		 * subtree and make it the root.
1353 		 */
1354 		root = llist;
1355 		llist = root->right;
1356 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 	} else if (rlist != header) {
1359 		/*
1360 		 * Recover the least node in the right
1361 		 * subtree and make it the root.
1362 		 */
1363 		root = rlist;
1364 		rlist = root->left;
1365 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 	} else {
1368 		/* There is no root. */
1369 		return (NULL);
1370 	}
1371 	root->max_free = vm_size_max(max_free_left, max_free_right);
1372 	map->root = root;
1373 	VM_MAP_ASSERT_CONSISTENT(map);
1374 	return (root);
1375 }
1376 
1377 /*
1378  *	vm_map_entry_{un,}link:
1379  *
1380  *	Insert/remove entries from maps.  On linking, if new entry clips
1381  *	existing entry, trim existing entry to avoid overlap, and manage
1382  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *	called for, and manage offsets.  Callers should not modify fields in
1384  *	entries already mapped.
1385  */
1386 static void
vm_map_entry_link(vm_map_t map,vm_map_entry_t entry)1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389 	vm_map_entry_t header, llist, rlist, root;
1390 	vm_size_t max_free_left, max_free_right;
1391 
1392 	CTR3(KTR_VM,
1393 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 	    map->nentries, entry);
1395 	VM_MAP_ASSERT_LOCKED(map);
1396 	map->nentries++;
1397 	header = &map->header;
1398 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 	if (root == NULL) {
1400 		/*
1401 		 * The new entry does not overlap any existing entry in the
1402 		 * map, so it becomes the new root of the map tree.
1403 		 */
1404 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 	} else if (entry->start == root->start) {
1407 		/*
1408 		 * The new entry is a clone of root, with only the end field
1409 		 * changed.  The root entry will be shrunk to abut the new
1410 		 * entry, and will be the right child of the new root entry in
1411 		 * the modified map.
1412 		 */
1413 		KASSERT(entry->end < root->end,
1414 		    ("%s: clip_start not within entry", __func__));
1415 		vm_map_splay_findprev(root, &llist);
1416 		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1417 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1418 			root->offset += entry->end - root->start;
1419 		root->start = entry->end;
1420 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1421 		max_free_right = root->max_free = vm_size_max(
1422 		    vm_map_splay_merge_pred(entry, root, entry),
1423 		    vm_map_splay_merge_right(header, root, rlist));
1424 	} else {
1425 		/*
1426 		 * The new entry is a clone of root, with only the start field
1427 		 * changed.  The root entry will be shrunk to abut the new
1428 		 * entry, and will be the left child of the new root entry in
1429 		 * the modified map.
1430 		 */
1431 		KASSERT(entry->end == root->end,
1432 		    ("%s: clip_start not within entry", __func__));
1433 		vm_map_splay_findnext(root, &rlist);
1434 		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1435 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1436 			entry->offset += entry->start - root->start;
1437 		root->end = entry->start;
1438 		max_free_left = root->max_free = vm_size_max(
1439 		    vm_map_splay_merge_left(header, root, llist),
1440 		    vm_map_splay_merge_succ(entry, root, entry));
1441 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1442 	}
1443 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1444 	map->root = entry;
1445 	VM_MAP_ASSERT_CONSISTENT(map);
1446 }
1447 
1448 enum unlink_merge_type {
1449 	UNLINK_MERGE_NONE,
1450 	UNLINK_MERGE_NEXT
1451 };
1452 
1453 static void
vm_map_entry_unlink(vm_map_t map,vm_map_entry_t entry,enum unlink_merge_type op)1454 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1455     enum unlink_merge_type op)
1456 {
1457 	vm_map_entry_t header, llist, rlist, root;
1458 	vm_size_t max_free_left, max_free_right;
1459 
1460 	VM_MAP_ASSERT_LOCKED(map);
1461 	header = &map->header;
1462 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1463 	KASSERT(root != NULL,
1464 	    ("vm_map_entry_unlink: unlink object not mapped"));
1465 
1466 	vm_map_splay_findprev(root, &llist);
1467 	vm_map_splay_findnext(root, &rlist);
1468 	if (op == UNLINK_MERGE_NEXT) {
1469 		rlist->start = root->start;
1470 		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1471 		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1472 		rlist->offset = root->offset;
1473 	}
1474 	if (llist != header) {
1475 		root = llist;
1476 		llist = root->right;
1477 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1478 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1479 	} else if (rlist != header) {
1480 		root = rlist;
1481 		rlist = root->left;
1482 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1483 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1484 	} else {
1485 		header->left = header->right = header;
1486 		root = NULL;
1487 	}
1488 	if (root != NULL)
1489 		root->max_free = vm_size_max(max_free_left, max_free_right);
1490 	map->root = root;
1491 	VM_MAP_ASSERT_CONSISTENT(map);
1492 	map->nentries--;
1493 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1494 	    map->nentries, entry);
1495 }
1496 
1497 /*
1498  *	vm_map_entry_resize:
1499  *
1500  *	Resize a vm_map_entry, recompute the amount of free space that
1501  *	follows it and propagate that value up the tree.
1502  *
1503  *	The map must be locked, and leaves it so.
1504  */
1505 static void
vm_map_entry_resize(vm_map_t map,vm_map_entry_t entry,vm_size_t grow_amount)1506 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1507 {
1508 	vm_map_entry_t header, llist, rlist, root;
1509 
1510 	VM_MAP_ASSERT_LOCKED(map);
1511 	header = &map->header;
1512 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1513 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1514 	vm_map_splay_findnext(root, &rlist);
1515 	entry->end += grow_amount;
1516 	root->max_free = vm_size_max(
1517 	    vm_map_splay_merge_left(header, root, llist),
1518 	    vm_map_splay_merge_succ(header, root, rlist));
1519 	map->root = root;
1520 	VM_MAP_ASSERT_CONSISTENT(map);
1521 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1522 	    __func__, map, map->nentries, entry);
1523 }
1524 
1525 /*
1526  *	vm_map_lookup_entry:	[ internal use only ]
1527  *
1528  *	Finds the map entry containing (or
1529  *	immediately preceding) the specified address
1530  *	in the given map; the entry is returned
1531  *	in the "entry" parameter.  The boolean
1532  *	result indicates whether the address is
1533  *	actually contained in the map.
1534  */
1535 boolean_t
vm_map_lookup_entry(vm_map_t map,vm_offset_t address,vm_map_entry_t * entry)1536 vm_map_lookup_entry(
1537 	vm_map_t map,
1538 	vm_offset_t address,
1539 	vm_map_entry_t *entry)	/* OUT */
1540 {
1541 	vm_map_entry_t cur, header, lbound, ubound;
1542 	boolean_t locked;
1543 
1544 	/*
1545 	 * If the map is empty, then the map entry immediately preceding
1546 	 * "address" is the map's header.
1547 	 */
1548 	header = &map->header;
1549 	cur = map->root;
1550 	if (cur == NULL) {
1551 		*entry = header;
1552 		return (FALSE);
1553 	}
1554 	if (address >= cur->start && cur->end > address) {
1555 		*entry = cur;
1556 		return (TRUE);
1557 	}
1558 	if ((locked = vm_map_locked(map)) ||
1559 	    sx_try_upgrade(&map->lock)) {
1560 		/*
1561 		 * Splay requires a write lock on the map.  However, it only
1562 		 * restructures the binary search tree; it does not otherwise
1563 		 * change the map.  Thus, the map's timestamp need not change
1564 		 * on a temporary upgrade.
1565 		 */
1566 		cur = vm_map_splay(map, address);
1567 		if (!locked) {
1568 			VM_MAP_UNLOCK_CONSISTENT(map);
1569 			sx_downgrade(&map->lock);
1570 		}
1571 
1572 		/*
1573 		 * If "address" is contained within a map entry, the new root
1574 		 * is that map entry.  Otherwise, the new root is a map entry
1575 		 * immediately before or after "address".
1576 		 */
1577 		if (address < cur->start) {
1578 			*entry = header;
1579 			return (FALSE);
1580 		}
1581 		*entry = cur;
1582 		return (address < cur->end);
1583 	}
1584 	/*
1585 	 * Since the map is only locked for read access, perform a
1586 	 * standard binary search tree lookup for "address".
1587 	 */
1588 	lbound = ubound = header;
1589 	for (;;) {
1590 		if (address < cur->start) {
1591 			ubound = cur;
1592 			cur = cur->left;
1593 			if (cur == lbound)
1594 				break;
1595 		} else if (cur->end <= address) {
1596 			lbound = cur;
1597 			cur = cur->right;
1598 			if (cur == ubound)
1599 				break;
1600 		} else {
1601 			*entry = cur;
1602 			return (TRUE);
1603 		}
1604 	}
1605 	*entry = lbound;
1606 	return (FALSE);
1607 }
1608 
1609 /*
1610  * vm_map_insert1() is identical to vm_map_insert() except that it
1611  * returns the newly inserted map entry in '*res'.  In case the new
1612  * entry is coalesced with a neighbor or an existing entry was
1613  * resized, that entry is returned.  In any case, the returned entry
1614  * covers the specified address range.
1615  */
1616 static int
vm_map_insert1(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow,vm_map_entry_t * res)1617 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1618     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1619     vm_map_entry_t *res)
1620 {
1621 	vm_map_entry_t new_entry, next_entry, prev_entry;
1622 	struct ucred *cred;
1623 	vm_eflags_t protoeflags;
1624 	vm_inherit_t inheritance;
1625 	u_long bdry;
1626 	u_int bidx;
1627 
1628 	VM_MAP_ASSERT_LOCKED(map);
1629 	KASSERT(object != kernel_object ||
1630 	    (cow & MAP_COPY_ON_WRITE) == 0,
1631 	    ("vm_map_insert: kernel object and COW"));
1632 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1633 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1634 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1635 	    object, cow));
1636 	KASSERT((prot & ~max) == 0,
1637 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1638 
1639 	/*
1640 	 * Check that the start and end points are not bogus.
1641 	 */
1642 	if (start == end || !vm_map_range_valid(map, start, end))
1643 		return (KERN_INVALID_ADDRESS);
1644 
1645 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1646 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1647 		return (KERN_PROTECTION_FAILURE);
1648 
1649 	/*
1650 	 * Find the entry prior to the proposed starting address; if it's part
1651 	 * of an existing entry, this range is bogus.
1652 	 */
1653 	if (vm_map_lookup_entry(map, start, &prev_entry))
1654 		return (KERN_NO_SPACE);
1655 
1656 	/*
1657 	 * Assert that the next entry doesn't overlap the end point.
1658 	 */
1659 	next_entry = vm_map_entry_succ(prev_entry);
1660 	if (next_entry->start < end)
1661 		return (KERN_NO_SPACE);
1662 
1663 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1664 	    max != VM_PROT_NONE))
1665 		return (KERN_INVALID_ARGUMENT);
1666 
1667 	protoeflags = 0;
1668 	if (cow & MAP_COPY_ON_WRITE)
1669 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1670 	if (cow & MAP_NOFAULT)
1671 		protoeflags |= MAP_ENTRY_NOFAULT;
1672 	if (cow & MAP_DISABLE_SYNCER)
1673 		protoeflags |= MAP_ENTRY_NOSYNC;
1674 	if (cow & MAP_DISABLE_COREDUMP)
1675 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1676 	if (cow & MAP_STACK_GROWS_DOWN)
1677 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1678 	if (cow & MAP_STACK_GROWS_UP)
1679 		protoeflags |= MAP_ENTRY_GROWS_UP;
1680 	if (cow & MAP_WRITECOUNT)
1681 		protoeflags |= MAP_ENTRY_WRITECNT;
1682 	if (cow & MAP_VN_EXEC)
1683 		protoeflags |= MAP_ENTRY_VN_EXEC;
1684 	if ((cow & MAP_CREATE_GUARD) != 0)
1685 		protoeflags |= MAP_ENTRY_GUARD;
1686 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1687 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1688 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1689 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1690 	if (cow & MAP_INHERIT_SHARE)
1691 		inheritance = VM_INHERIT_SHARE;
1692 	else
1693 		inheritance = VM_INHERIT_DEFAULT;
1694 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1695 		/* This magically ignores index 0, for usual page size. */
1696 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1697 		    MAP_SPLIT_BOUNDARY_SHIFT;
1698 		if (bidx >= MAXPAGESIZES)
1699 			return (KERN_INVALID_ARGUMENT);
1700 		bdry = pagesizes[bidx] - 1;
1701 		if ((start & bdry) != 0 || (end & bdry) != 0)
1702 			return (KERN_INVALID_ARGUMENT);
1703 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1704 	}
1705 
1706 	cred = NULL;
1707 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1708 		goto charged;
1709 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1710 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1711 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1712 			return (KERN_RESOURCE_SHORTAGE);
1713 		KASSERT(object == NULL ||
1714 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1715 		    object->cred == NULL,
1716 		    ("overcommit: vm_map_insert o %p", object));
1717 		cred = curthread->td_ucred;
1718 	}
1719 
1720 charged:
1721 	/* Expand the kernel pmap, if necessary. */
1722 	if (map == kernel_map && end > kernel_vm_end)
1723 		pmap_growkernel(end);
1724 	if (object != NULL) {
1725 		/*
1726 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1727 		 * is trivially proven to be the only mapping for any
1728 		 * of the object's pages.  (Object granularity
1729 		 * reference counting is insufficient to recognize
1730 		 * aliases with precision.)
1731 		 */
1732 		if ((object->flags & OBJ_ANON) != 0) {
1733 			VM_OBJECT_WLOCK(object);
1734 			if (object->ref_count > 1 || object->shadow_count != 0)
1735 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1736 			VM_OBJECT_WUNLOCK(object);
1737 		}
1738 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1739 	    protoeflags &&
1740 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1741 	    MAP_VN_EXEC)) == 0 &&
1742 	    prev_entry->end == start && (prev_entry->cred == cred ||
1743 	    (prev_entry->object.vm_object != NULL &&
1744 	    prev_entry->object.vm_object->cred == cred)) &&
1745 	    vm_object_coalesce(prev_entry->object.vm_object,
1746 	    prev_entry->offset,
1747 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1748 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1749 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1750 		/*
1751 		 * We were able to extend the object.  Determine if we
1752 		 * can extend the previous map entry to include the
1753 		 * new range as well.
1754 		 */
1755 		if (prev_entry->inheritance == inheritance &&
1756 		    prev_entry->protection == prot &&
1757 		    prev_entry->max_protection == max &&
1758 		    prev_entry->wired_count == 0) {
1759 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1760 			    0, ("prev_entry %p has incoherent wiring",
1761 			    prev_entry));
1762 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1763 				map->size += end - prev_entry->end;
1764 			vm_map_entry_resize(map, prev_entry,
1765 			    end - prev_entry->end);
1766 			*res = vm_map_try_merge_entries(map, prev_entry,
1767 			    next_entry);
1768 			return (KERN_SUCCESS);
1769 		}
1770 
1771 		/*
1772 		 * If we can extend the object but cannot extend the
1773 		 * map entry, we have to create a new map entry.  We
1774 		 * must bump the ref count on the extended object to
1775 		 * account for it.  object may be NULL.
1776 		 */
1777 		object = prev_entry->object.vm_object;
1778 		offset = prev_entry->offset +
1779 		    (prev_entry->end - prev_entry->start);
1780 		vm_object_reference(object);
1781 		if (cred != NULL && object != NULL && object->cred != NULL &&
1782 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1783 			/* Object already accounts for this uid. */
1784 			cred = NULL;
1785 		}
1786 	}
1787 	if (cred != NULL)
1788 		crhold(cred);
1789 
1790 	/*
1791 	 * Create a new entry
1792 	 */
1793 	new_entry = vm_map_entry_create(map);
1794 	new_entry->start = start;
1795 	new_entry->end = end;
1796 	new_entry->cred = NULL;
1797 
1798 	new_entry->eflags = protoeflags;
1799 	new_entry->object.vm_object = object;
1800 	new_entry->offset = offset;
1801 
1802 	new_entry->inheritance = inheritance;
1803 	new_entry->protection = prot;
1804 	new_entry->max_protection = max;
1805 	new_entry->wired_count = 0;
1806 	new_entry->wiring_thread = NULL;
1807 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1808 	new_entry->next_read = start;
1809 
1810 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1811 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1812 	new_entry->cred = cred;
1813 
1814 	/*
1815 	 * Insert the new entry into the list
1816 	 */
1817 	vm_map_entry_link(map, new_entry);
1818 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1819 		map->size += new_entry->end - new_entry->start;
1820 
1821 	/*
1822 	 * Try to coalesce the new entry with both the previous and next
1823 	 * entries in the list.  Previously, we only attempted to coalesce
1824 	 * with the previous entry when object is NULL.  Here, we handle the
1825 	 * other cases, which are less common.
1826 	 */
1827 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1828 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1829 
1830 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1831 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1832 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1833 	}
1834 
1835 	return (KERN_SUCCESS);
1836 }
1837 
1838 /*
1839  *	vm_map_insert:
1840  *
1841  *	Inserts the given VM object into the target map at the
1842  *	specified address range.
1843  *
1844  *	Requires that the map be locked, and leaves it so.
1845  *
1846  *	If object is non-NULL, ref count must be bumped by caller
1847  *	prior to making call to account for the new entry.
1848  */
1849 int
vm_map_insert(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow)1850 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1851     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1852 {
1853 	vm_map_entry_t res;
1854 
1855 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1856 	    cow, &res));
1857 }
1858 
1859 /*
1860  *	vm_map_findspace:
1861  *
1862  *	Find the first fit (lowest VM address) for "length" free bytes
1863  *	beginning at address >= start in the given map.
1864  *
1865  *	In a vm_map_entry, "max_free" is the maximum amount of
1866  *	contiguous free space between an entry in its subtree and a
1867  *	neighbor of that entry.  This allows finding a free region in
1868  *	one path down the tree, so O(log n) amortized with splay
1869  *	trees.
1870  *
1871  *	The map must be locked, and leaves it so.
1872  *
1873  *	Returns: starting address if sufficient space,
1874  *		 vm_map_max(map)-length+1 if insufficient space.
1875  */
1876 vm_offset_t
vm_map_findspace(vm_map_t map,vm_offset_t start,vm_size_t length)1877 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1878 {
1879 	vm_map_entry_t header, llist, rlist, root, y;
1880 	vm_size_t left_length, max_free_left, max_free_right;
1881 	vm_offset_t gap_end;
1882 
1883 	VM_MAP_ASSERT_LOCKED(map);
1884 
1885 	/*
1886 	 * Request must fit within min/max VM address and must avoid
1887 	 * address wrap.
1888 	 */
1889 	start = MAX(start, vm_map_min(map));
1890 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1891 		return (vm_map_max(map) - length + 1);
1892 
1893 	/* Empty tree means wide open address space. */
1894 	if (map->root == NULL)
1895 		return (start);
1896 
1897 	/*
1898 	 * After splay_split, if start is within an entry, push it to the start
1899 	 * of the following gap.  If rlist is at the end of the gap containing
1900 	 * start, save the end of that gap in gap_end to see if the gap is big
1901 	 * enough; otherwise set gap_end to start skip gap-checking and move
1902 	 * directly to a search of the right subtree.
1903 	 */
1904 	header = &map->header;
1905 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1906 	gap_end = rlist->start;
1907 	if (root != NULL) {
1908 		start = root->end;
1909 		if (root->right != rlist)
1910 			gap_end = start;
1911 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1912 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1913 	} else if (rlist != header) {
1914 		root = rlist;
1915 		rlist = root->left;
1916 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1917 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1918 	} else {
1919 		root = llist;
1920 		llist = root->right;
1921 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1922 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1923 	}
1924 	root->max_free = vm_size_max(max_free_left, max_free_right);
1925 	map->root = root;
1926 	VM_MAP_ASSERT_CONSISTENT(map);
1927 	if (length <= gap_end - start)
1928 		return (start);
1929 
1930 	/* With max_free, can immediately tell if no solution. */
1931 	if (root->right == header || length > root->right->max_free)
1932 		return (vm_map_max(map) - length + 1);
1933 
1934 	/*
1935 	 * Splay for the least large-enough gap in the right subtree.
1936 	 */
1937 	llist = rlist = header;
1938 	for (left_length = 0;;
1939 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1940 		if (length <= left_length)
1941 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1942 			    length <= vm_map_entry_max_free_left(y, llist));
1943 		else
1944 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1945 			    length > vm_map_entry_max_free_left(y, root));
1946 		if (root == NULL)
1947 			break;
1948 	}
1949 	root = llist;
1950 	llist = root->right;
1951 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1952 	if (rlist == header) {
1953 		root->max_free = vm_size_max(max_free_left,
1954 		    vm_map_splay_merge_succ(header, root, rlist));
1955 	} else {
1956 		y = rlist;
1957 		rlist = y->left;
1958 		y->max_free = vm_size_max(
1959 		    vm_map_splay_merge_pred(root, y, root),
1960 		    vm_map_splay_merge_right(header, y, rlist));
1961 		root->max_free = vm_size_max(max_free_left, y->max_free);
1962 	}
1963 	map->root = root;
1964 	VM_MAP_ASSERT_CONSISTENT(map);
1965 	return (root->end);
1966 }
1967 
1968 int
vm_map_fixed(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_size_t length,vm_prot_t prot,vm_prot_t max,int cow)1969 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1970     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1971     vm_prot_t max, int cow)
1972 {
1973 	vm_offset_t end;
1974 	int result;
1975 
1976 	end = start + length;
1977 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1978 	    object == NULL,
1979 	    ("vm_map_fixed: non-NULL backing object for stack"));
1980 	vm_map_lock(map);
1981 	VM_MAP_RANGE_CHECK(map, start, end);
1982 	if ((cow & MAP_CHECK_EXCL) == 0) {
1983 		result = vm_map_delete(map, start, end);
1984 		if (result != KERN_SUCCESS)
1985 			goto out;
1986 	}
1987 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1988 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1989 		    prot, max, cow);
1990 	} else {
1991 		result = vm_map_insert(map, object, offset, start, end,
1992 		    prot, max, cow);
1993 	}
1994 out:
1995 	vm_map_unlock(map);
1996 	return (result);
1997 }
1998 
1999 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
2000 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
2001 
2002 static int cluster_anon = 1;
2003 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2004     &cluster_anon, 0,
2005     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2006 
2007 static bool
clustering_anon_allowed(vm_offset_t addr,int cow)2008 clustering_anon_allowed(vm_offset_t addr, int cow)
2009 {
2010 
2011 	switch (cluster_anon) {
2012 	case 0:
2013 		return (false);
2014 	case 1:
2015 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2016 	case 2:
2017 	default:
2018 		return (true);
2019 	}
2020 }
2021 
2022 static long aslr_restarts;
2023 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2024     &aslr_restarts, 0,
2025     "Number of aslr failures");
2026 
2027 /*
2028  * Searches for the specified amount of free space in the given map with the
2029  * specified alignment.  Performs an address-ordered, first-fit search from
2030  * the given address "*addr", with an optional upper bound "max_addr".  If the
2031  * parameter "alignment" is zero, then the alignment is computed from the
2032  * given (object, offset) pair so as to enable the greatest possible use of
2033  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2034  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2035  *
2036  * The map must be locked.  Initially, there must be at least "length" bytes
2037  * of free space at the given address.
2038  */
2039 static int
vm_map_alignspace(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2040 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2041     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2042     vm_offset_t alignment)
2043 {
2044 	vm_offset_t aligned_addr, free_addr;
2045 
2046 	VM_MAP_ASSERT_LOCKED(map);
2047 	free_addr = *addr;
2048 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2049 	    ("caller failed to provide space %#jx at address %p",
2050 	     (uintmax_t)length, (void *)free_addr));
2051 	for (;;) {
2052 		/*
2053 		 * At the start of every iteration, the free space at address
2054 		 * "*addr" is at least "length" bytes.
2055 		 */
2056 		if (alignment == 0)
2057 			pmap_align_superpage(object, offset, addr, length);
2058 		else
2059 			*addr = roundup2(*addr, alignment);
2060 		aligned_addr = *addr;
2061 		if (aligned_addr == free_addr) {
2062 			/*
2063 			 * Alignment did not change "*addr", so "*addr" must
2064 			 * still provide sufficient free space.
2065 			 */
2066 			return (KERN_SUCCESS);
2067 		}
2068 
2069 		/*
2070 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2071 		 * be a valid address, in which case vm_map_findspace() cannot
2072 		 * be relied upon to fail.
2073 		 */
2074 		if (aligned_addr < free_addr)
2075 			return (KERN_NO_SPACE);
2076 		*addr = vm_map_findspace(map, aligned_addr, length);
2077 		if (*addr + length > vm_map_max(map) ||
2078 		    (max_addr != 0 && *addr + length > max_addr))
2079 			return (KERN_NO_SPACE);
2080 		free_addr = *addr;
2081 		if (free_addr == aligned_addr) {
2082 			/*
2083 			 * If a successful call to vm_map_findspace() did not
2084 			 * change "*addr", then "*addr" must still be aligned
2085 			 * and provide sufficient free space.
2086 			 */
2087 			return (KERN_SUCCESS);
2088 		}
2089 	}
2090 }
2091 
2092 int
vm_map_find_aligned(vm_map_t map,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2093 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2094     vm_offset_t max_addr, vm_offset_t alignment)
2095 {
2096 	/* XXXKIB ASLR eh ? */
2097 	*addr = vm_map_findspace(map, *addr, length);
2098 	if (*addr + length > vm_map_max(map) ||
2099 	    (max_addr != 0 && *addr + length > max_addr))
2100 		return (KERN_NO_SPACE);
2101 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2102 	    alignment));
2103 }
2104 
2105 /*
2106  *	vm_map_find finds an unallocated region in the target address
2107  *	map with the given length.  The search is defined to be
2108  *	first-fit from the specified address; the region found is
2109  *	returned in the same parameter.
2110  *
2111  *	If object is non-NULL, ref count must be bumped by caller
2112  *	prior to making call to account for the new entry.
2113  */
2114 int
vm_map_find(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2115 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2116     vm_offset_t *addr,	/* IN/OUT */
2117     vm_size_t length, vm_offset_t max_addr, int find_space,
2118     vm_prot_t prot, vm_prot_t max, int cow)
2119 {
2120 	int rv;
2121 
2122 	vm_map_lock(map);
2123 	rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2124 	    find_space, prot, max, cow);
2125 	vm_map_unlock(map);
2126 	return (rv);
2127 }
2128 
2129 int
vm_map_find_locked(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2130 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2131     vm_offset_t *addr,	/* IN/OUT */
2132     vm_size_t length, vm_offset_t max_addr, int find_space,
2133     vm_prot_t prot, vm_prot_t max, int cow)
2134 {
2135 	vm_offset_t alignment, curr_min_addr, min_addr;
2136 	int gap, pidx, rv, try;
2137 	bool cluster, en_aslr, update_anon;
2138 
2139 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2140 	    object == NULL,
2141 	    ("non-NULL backing object for stack"));
2142 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2143 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2144 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2145 	    (object->flags & OBJ_COLORED) == 0))
2146 		find_space = VMFS_ANY_SPACE;
2147 	if (find_space >> 8 != 0) {
2148 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2149 		alignment = (vm_offset_t)1 << (find_space >> 8);
2150 	} else
2151 		alignment = 0;
2152 	en_aslr = (map->flags & MAP_ASLR) != 0;
2153 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2154 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2155 	    find_space != VMFS_NO_SPACE && object == NULL &&
2156 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2157 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2158 	curr_min_addr = min_addr = *addr;
2159 	if (en_aslr && min_addr == 0 && !cluster &&
2160 	    find_space != VMFS_NO_SPACE &&
2161 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2162 		curr_min_addr = min_addr = vm_map_min(map);
2163 	try = 0;
2164 	if (cluster) {
2165 		curr_min_addr = map->anon_loc;
2166 		if (curr_min_addr == 0)
2167 			cluster = false;
2168 	}
2169 	if (find_space != VMFS_NO_SPACE) {
2170 		KASSERT(find_space == VMFS_ANY_SPACE ||
2171 		    find_space == VMFS_OPTIMAL_SPACE ||
2172 		    find_space == VMFS_SUPER_SPACE ||
2173 		    alignment != 0, ("unexpected VMFS flag"));
2174 again:
2175 		/*
2176 		 * When creating an anonymous mapping, try clustering
2177 		 * with an existing anonymous mapping first.
2178 		 *
2179 		 * We make up to two attempts to find address space
2180 		 * for a given find_space value. The first attempt may
2181 		 * apply randomization or may cluster with an existing
2182 		 * anonymous mapping. If this first attempt fails,
2183 		 * perform a first-fit search of the available address
2184 		 * space.
2185 		 *
2186 		 * If all tries failed, and find_space is
2187 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2188 		 * Again enable clustering and randomization.
2189 		 */
2190 		try++;
2191 		MPASS(try <= 2);
2192 
2193 		if (try == 2) {
2194 			/*
2195 			 * Second try: we failed either to find a
2196 			 * suitable region for randomizing the
2197 			 * allocation, or to cluster with an existing
2198 			 * mapping.  Retry with free run.
2199 			 */
2200 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2201 			    vm_map_min(map) : min_addr;
2202 			atomic_add_long(&aslr_restarts, 1);
2203 		}
2204 
2205 		if (try == 1 && en_aslr && !cluster) {
2206 			/*
2207 			 * Find space for allocation, including
2208 			 * gap needed for later randomization.
2209 			 */
2210 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2211 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2212 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2213 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2214 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2215 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2216 			*addr = vm_map_findspace(map, curr_min_addr,
2217 			    length + gap * pagesizes[pidx]);
2218 			if (*addr + length + gap * pagesizes[pidx] >
2219 			    vm_map_max(map))
2220 				goto again;
2221 			/* And randomize the start address. */
2222 			*addr += (arc4random() % gap) * pagesizes[pidx];
2223 			if (max_addr != 0 && *addr + length > max_addr)
2224 				goto again;
2225 		} else {
2226 			*addr = vm_map_findspace(map, curr_min_addr, length);
2227 			if (*addr + length > vm_map_max(map) ||
2228 			    (max_addr != 0 && *addr + length > max_addr)) {
2229 				if (cluster) {
2230 					cluster = false;
2231 					MPASS(try == 1);
2232 					goto again;
2233 				}
2234 				return (KERN_NO_SPACE);
2235 			}
2236 		}
2237 
2238 		if (find_space != VMFS_ANY_SPACE &&
2239 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2240 		    max_addr, alignment)) != KERN_SUCCESS) {
2241 			if (find_space == VMFS_OPTIMAL_SPACE) {
2242 				find_space = VMFS_ANY_SPACE;
2243 				curr_min_addr = min_addr;
2244 				cluster = update_anon;
2245 				try = 0;
2246 				goto again;
2247 			}
2248 			return (rv);
2249 		}
2250 	} else if ((cow & MAP_REMAP) != 0) {
2251 		if (!vm_map_range_valid(map, *addr, *addr + length))
2252 			return (KERN_INVALID_ADDRESS);
2253 		rv = vm_map_delete(map, *addr, *addr + length);
2254 		if (rv != KERN_SUCCESS)
2255 			return (rv);
2256 	}
2257 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2258 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2259 		    max, cow);
2260 	} else {
2261 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2262 		    prot, max, cow);
2263 	}
2264 
2265 	/*
2266 	 * Update the starting address for clustered anonymous memory mappings
2267 	 * if a starting address was not previously defined or an ASLR restart
2268 	 * placed an anonymous memory mapping at a lower address.
2269 	 */
2270 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2271 	    *addr < map->anon_loc))
2272 		map->anon_loc = *addr;
2273 	return (rv);
2274 }
2275 
2276 /*
2277  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2278  *	additional parameter ("default_addr") and treats the given address
2279  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2280  *	and not as the minimum address where the mapping is created.
2281  *
2282  *	This function works in two phases.  First, it tries to
2283  *	allocate above the hint.  If that fails and the hint is
2284  *	greater than "default_addr", it performs a second pass, replacing
2285  *	the hint with "default_addr" as the minimum address for the
2286  *	allocation.
2287  */
2288 int
vm_map_find_min(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t default_addr,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2289 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2290     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2291     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2292     int cow)
2293 {
2294 	vm_offset_t hint;
2295 	int rv;
2296 
2297 	hint = *addr;
2298 	if (hint == 0) {
2299 		cow |= MAP_NO_HINT;
2300 		*addr = hint = default_addr;
2301 	}
2302 	for (;;) {
2303 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2304 		    find_space, prot, max, cow);
2305 		if (rv == KERN_SUCCESS || default_addr >= hint)
2306 			return (rv);
2307 		*addr = hint = default_addr;
2308 	}
2309 }
2310 
2311 /*
2312  * A map entry with any of the following flags set must not be merged with
2313  * another entry.
2314  */
2315 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2316     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2317     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2318 
2319 static bool
vm_map_mergeable_neighbors(vm_map_entry_t prev,vm_map_entry_t entry)2320 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2321 {
2322 
2323 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2324 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2325 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2326 	    prev, entry));
2327 	return (prev->end == entry->start &&
2328 	    prev->object.vm_object == entry->object.vm_object &&
2329 	    (prev->object.vm_object == NULL ||
2330 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2331 	    prev->eflags == entry->eflags &&
2332 	    prev->protection == entry->protection &&
2333 	    prev->max_protection == entry->max_protection &&
2334 	    prev->inheritance == entry->inheritance &&
2335 	    prev->wired_count == entry->wired_count &&
2336 	    prev->cred == entry->cred);
2337 }
2338 
2339 static void
vm_map_merged_neighbor_dispose(vm_map_t map,vm_map_entry_t entry)2340 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2341 {
2342 
2343 	/*
2344 	 * If the backing object is a vnode object, vm_object_deallocate()
2345 	 * calls vrele().  However, vrele() does not lock the vnode because
2346 	 * the vnode has additional references.  Thus, the map lock can be
2347 	 * kept without causing a lock-order reversal with the vnode lock.
2348 	 *
2349 	 * Since we count the number of virtual page mappings in
2350 	 * object->un_pager.vnp.writemappings, the writemappings value
2351 	 * should not be adjusted when the entry is disposed of.
2352 	 */
2353 	if (entry->object.vm_object != NULL)
2354 		vm_object_deallocate(entry->object.vm_object);
2355 	if (entry->cred != NULL)
2356 		crfree(entry->cred);
2357 	vm_map_entry_dispose(map, entry);
2358 }
2359 
2360 /*
2361  *	vm_map_try_merge_entries:
2362  *
2363  *	Compare two map entries that represent consecutive ranges. If
2364  *	the entries can be merged, expand the range of the second to
2365  *	cover the range of the first and delete the first. Then return
2366  *	the map entry that includes the first range.
2367  *
2368  *	The map must be locked.
2369  */
2370 vm_map_entry_t
vm_map_try_merge_entries(vm_map_t map,vm_map_entry_t prev_entry,vm_map_entry_t entry)2371 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2372     vm_map_entry_t entry)
2373 {
2374 
2375 	VM_MAP_ASSERT_LOCKED(map);
2376 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2377 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2378 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2379 		vm_map_merged_neighbor_dispose(map, prev_entry);
2380 		return (entry);
2381 	}
2382 	return (prev_entry);
2383 }
2384 
2385 /*
2386  *	vm_map_entry_back:
2387  *
2388  *	Allocate an object to back a map entry.
2389  */
2390 static inline void
vm_map_entry_back(vm_map_entry_t entry)2391 vm_map_entry_back(vm_map_entry_t entry)
2392 {
2393 	vm_object_t object;
2394 
2395 	KASSERT(entry->object.vm_object == NULL,
2396 	    ("map entry %p has backing object", entry));
2397 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2398 	    ("map entry %p is a submap", entry));
2399 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2400 	    entry->cred, entry->end - entry->start);
2401 	entry->object.vm_object = object;
2402 	entry->offset = 0;
2403 	entry->cred = NULL;
2404 }
2405 
2406 /*
2407  *	vm_map_entry_charge_object
2408  *
2409  *	If there is no object backing this entry, create one.  Otherwise, if
2410  *	the entry has cred, give it to the backing object.
2411  */
2412 static inline void
vm_map_entry_charge_object(vm_map_t map,vm_map_entry_t entry)2413 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2414 {
2415 
2416 	VM_MAP_ASSERT_LOCKED(map);
2417 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2418 	    ("map entry %p is a submap", entry));
2419 	if (entry->object.vm_object == NULL && !map->system_map &&
2420 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2421 		vm_map_entry_back(entry);
2422 	else if (entry->object.vm_object != NULL &&
2423 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2424 	    entry->cred != NULL) {
2425 		VM_OBJECT_WLOCK(entry->object.vm_object);
2426 		KASSERT(entry->object.vm_object->cred == NULL,
2427 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2428 		entry->object.vm_object->cred = entry->cred;
2429 		entry->object.vm_object->charge = entry->end - entry->start;
2430 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2431 		entry->cred = NULL;
2432 	}
2433 }
2434 
2435 /*
2436  *	vm_map_entry_clone
2437  *
2438  *	Create a duplicate map entry for clipping.
2439  */
2440 static vm_map_entry_t
vm_map_entry_clone(vm_map_t map,vm_map_entry_t entry)2441 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2442 {
2443 	vm_map_entry_t new_entry;
2444 
2445 	VM_MAP_ASSERT_LOCKED(map);
2446 
2447 	/*
2448 	 * Create a backing object now, if none exists, so that more individual
2449 	 * objects won't be created after the map entry is split.
2450 	 */
2451 	vm_map_entry_charge_object(map, entry);
2452 
2453 	/* Clone the entry. */
2454 	new_entry = vm_map_entry_create(map);
2455 	*new_entry = *entry;
2456 	if (new_entry->cred != NULL)
2457 		crhold(entry->cred);
2458 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2459 		vm_object_reference(new_entry->object.vm_object);
2460 		vm_map_entry_set_vnode_text(new_entry, true);
2461 		/*
2462 		 * The object->un_pager.vnp.writemappings for the object of
2463 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2464 		 * virtual pages are re-distributed among the clipped entries,
2465 		 * so the sum is left the same.
2466 		 */
2467 	}
2468 	return (new_entry);
2469 }
2470 
2471 /*
2472  *	vm_map_clip_start:	[ internal use only ]
2473  *
2474  *	Asserts that the given entry begins at or after
2475  *	the specified address; if necessary,
2476  *	it splits the entry into two.
2477  */
2478 static int
vm_map_clip_start(vm_map_t map,vm_map_entry_t entry,vm_offset_t startaddr)2479 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2480 {
2481 	vm_map_entry_t new_entry;
2482 	int bdry_idx;
2483 
2484 	if (!map->system_map)
2485 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2486 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2487 		    (uintmax_t)startaddr);
2488 
2489 	if (startaddr <= entry->start)
2490 		return (KERN_SUCCESS);
2491 
2492 	VM_MAP_ASSERT_LOCKED(map);
2493 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2494 	    ("%s: invalid clip of entry %p", __func__, entry));
2495 
2496 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2497 	if (bdry_idx != 0) {
2498 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2499 			return (KERN_INVALID_ARGUMENT);
2500 	}
2501 
2502 	new_entry = vm_map_entry_clone(map, entry);
2503 
2504 	/*
2505 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2506 	 * so that this entry has the specified starting address.
2507 	 */
2508 	new_entry->end = startaddr;
2509 	vm_map_entry_link(map, new_entry);
2510 	return (KERN_SUCCESS);
2511 }
2512 
2513 /*
2514  *	vm_map_lookup_clip_start:
2515  *
2516  *	Find the entry at or just after 'start', and clip it if 'start' is in
2517  *	the interior of the entry.  Return entry after 'start', and in
2518  *	prev_entry set the entry before 'start'.
2519  */
2520 static int
vm_map_lookup_clip_start(vm_map_t map,vm_offset_t start,vm_map_entry_t * res_entry,vm_map_entry_t * prev_entry)2521 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2522     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2523 {
2524 	vm_map_entry_t entry;
2525 	int rv;
2526 
2527 	if (!map->system_map)
2528 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2529 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2530 		    (uintmax_t)start, prev_entry);
2531 
2532 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2533 		entry = *prev_entry;
2534 		rv = vm_map_clip_start(map, entry, start);
2535 		if (rv != KERN_SUCCESS)
2536 			return (rv);
2537 		*prev_entry = vm_map_entry_pred(entry);
2538 	} else
2539 		entry = vm_map_entry_succ(*prev_entry);
2540 	*res_entry = entry;
2541 	return (KERN_SUCCESS);
2542 }
2543 
2544 /*
2545  *	vm_map_clip_end:	[ internal use only ]
2546  *
2547  *	Asserts that the given entry ends at or before
2548  *	the specified address; if necessary,
2549  *	it splits the entry into two.
2550  */
2551 static int
vm_map_clip_end(vm_map_t map,vm_map_entry_t entry,vm_offset_t endaddr)2552 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2553 {
2554 	vm_map_entry_t new_entry;
2555 	int bdry_idx;
2556 
2557 	if (!map->system_map)
2558 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2559 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2560 		    (uintmax_t)endaddr);
2561 
2562 	if (endaddr >= entry->end)
2563 		return (KERN_SUCCESS);
2564 
2565 	VM_MAP_ASSERT_LOCKED(map);
2566 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2567 	    ("%s: invalid clip of entry %p", __func__, entry));
2568 
2569 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2570 	if (bdry_idx != 0) {
2571 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2572 			return (KERN_INVALID_ARGUMENT);
2573 	}
2574 
2575 	new_entry = vm_map_entry_clone(map, entry);
2576 
2577 	/*
2578 	 * Split off the back portion.  Insert the new entry AFTER this one,
2579 	 * so that this entry has the specified ending address.
2580 	 */
2581 	new_entry->start = endaddr;
2582 	vm_map_entry_link(map, new_entry);
2583 
2584 	return (KERN_SUCCESS);
2585 }
2586 
2587 /*
2588  *	vm_map_submap:		[ kernel use only ]
2589  *
2590  *	Mark the given range as handled by a subordinate map.
2591  *
2592  *	This range must have been created with vm_map_find,
2593  *	and no other operations may have been performed on this
2594  *	range prior to calling vm_map_submap.
2595  *
2596  *	Only a limited number of operations can be performed
2597  *	within this rage after calling vm_map_submap:
2598  *		vm_fault
2599  *	[Don't try vm_map_copy!]
2600  *
2601  *	To remove a submapping, one must first remove the
2602  *	range from the superior map, and then destroy the
2603  *	submap (if desired).  [Better yet, don't try it.]
2604  */
2605 int
vm_map_submap(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_map_t submap)2606 vm_map_submap(
2607 	vm_map_t map,
2608 	vm_offset_t start,
2609 	vm_offset_t end,
2610 	vm_map_t submap)
2611 {
2612 	vm_map_entry_t entry;
2613 	int result;
2614 
2615 	result = KERN_INVALID_ARGUMENT;
2616 
2617 	vm_map_lock(submap);
2618 	submap->flags |= MAP_IS_SUB_MAP;
2619 	vm_map_unlock(submap);
2620 
2621 	vm_map_lock(map);
2622 	VM_MAP_RANGE_CHECK(map, start, end);
2623 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2624 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2625 	    entry->object.vm_object == NULL) {
2626 		result = vm_map_clip_start(map, entry, start);
2627 		if (result != KERN_SUCCESS)
2628 			goto unlock;
2629 		result = vm_map_clip_end(map, entry, end);
2630 		if (result != KERN_SUCCESS)
2631 			goto unlock;
2632 		entry->object.sub_map = submap;
2633 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2634 		result = KERN_SUCCESS;
2635 	}
2636 unlock:
2637 	vm_map_unlock(map);
2638 
2639 	if (result != KERN_SUCCESS) {
2640 		vm_map_lock(submap);
2641 		submap->flags &= ~MAP_IS_SUB_MAP;
2642 		vm_map_unlock(submap);
2643 	}
2644 	return (result);
2645 }
2646 
2647 /*
2648  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2649  */
2650 #define	MAX_INIT_PT	96
2651 
2652 /*
2653  *	vm_map_pmap_enter:
2654  *
2655  *	Preload the specified map's pmap with mappings to the specified
2656  *	object's memory-resident pages.  No further physical pages are
2657  *	allocated, and no further virtual pages are retrieved from secondary
2658  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2659  *	limited number of page mappings are created at the low-end of the
2660  *	specified address range.  (For this purpose, a superpage mapping
2661  *	counts as one page mapping.)  Otherwise, all resident pages within
2662  *	the specified address range are mapped.
2663  */
2664 static void
vm_map_pmap_enter(vm_map_t map,vm_offset_t addr,vm_prot_t prot,vm_object_t object,vm_pindex_t pindex,vm_size_t size,int flags)2665 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2666     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2667 {
2668 	vm_offset_t start;
2669 	vm_page_t p, p_start;
2670 	vm_pindex_t mask, psize, threshold, tmpidx;
2671 
2672 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2673 		return;
2674 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2675 		VM_OBJECT_WLOCK(object);
2676 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2677 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2678 			    size);
2679 			VM_OBJECT_WUNLOCK(object);
2680 			return;
2681 		}
2682 		VM_OBJECT_LOCK_DOWNGRADE(object);
2683 	} else
2684 		VM_OBJECT_RLOCK(object);
2685 
2686 	psize = atop(size);
2687 	if (psize + pindex > object->size) {
2688 		if (pindex >= object->size) {
2689 			VM_OBJECT_RUNLOCK(object);
2690 			return;
2691 		}
2692 		psize = object->size - pindex;
2693 	}
2694 
2695 	start = 0;
2696 	p_start = NULL;
2697 	threshold = MAX_INIT_PT;
2698 
2699 	p = vm_page_find_least(object, pindex);
2700 	/*
2701 	 * Assert: the variable p is either (1) the page with the
2702 	 * least pindex greater than or equal to the parameter pindex
2703 	 * or (2) NULL.
2704 	 */
2705 	for (;
2706 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2707 	     p = TAILQ_NEXT(p, listq)) {
2708 		/*
2709 		 * don't allow an madvise to blow away our really
2710 		 * free pages allocating pv entries.
2711 		 */
2712 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2713 		    vm_page_count_severe()) ||
2714 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2715 		    tmpidx >= threshold)) {
2716 			psize = tmpidx;
2717 			break;
2718 		}
2719 		if (vm_page_all_valid(p)) {
2720 			if (p_start == NULL) {
2721 				start = addr + ptoa(tmpidx);
2722 				p_start = p;
2723 			}
2724 			/* Jump ahead if a superpage mapping is possible. */
2725 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2726 			    (pagesizes[p->psind] - 1)) == 0) {
2727 				mask = atop(pagesizes[p->psind]) - 1;
2728 				if (tmpidx + mask < psize &&
2729 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2730 					p += mask;
2731 					threshold += mask;
2732 				}
2733 			}
2734 		} else if (p_start != NULL) {
2735 			pmap_enter_object(map->pmap, start, addr +
2736 			    ptoa(tmpidx), p_start, prot);
2737 			p_start = NULL;
2738 		}
2739 	}
2740 	if (p_start != NULL)
2741 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2742 		    p_start, prot);
2743 	VM_OBJECT_RUNLOCK(object);
2744 }
2745 
2746 static void
vm_map_protect_guard(vm_map_entry_t entry,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2747 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2748     vm_prot_t new_maxprot, int flags)
2749 {
2750 	vm_prot_t old_prot;
2751 
2752 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2753 	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2754 	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2755 		return;
2756 
2757 	old_prot = PROT_EXTRACT(entry->offset);
2758 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2759 		entry->offset = PROT_MAX(new_maxprot) |
2760 		    (new_maxprot & old_prot);
2761 	}
2762 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2763 		entry->offset = new_prot | PROT_MAX(
2764 		    PROT_MAX_EXTRACT(entry->offset));
2765 	}
2766 }
2767 
2768 /*
2769  *	vm_map_protect:
2770  *
2771  *	Sets the protection and/or the maximum protection of the
2772  *	specified address region in the target map.
2773  */
2774 int
vm_map_protect(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2775 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2776     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2777 {
2778 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2779 	vm_object_t obj;
2780 	struct ucred *cred;
2781 	vm_offset_t orig_start;
2782 	vm_prot_t check_prot, max_prot, old_prot;
2783 	int rv;
2784 
2785 	if (start == end)
2786 		return (KERN_SUCCESS);
2787 
2788 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2789 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2790 	    !CONTAINS_BITS(new_maxprot, new_prot))
2791 		return (KERN_OUT_OF_BOUNDS);
2792 
2793 	orig_start = start;
2794 again:
2795 	in_tran = NULL;
2796 	start = orig_start;
2797 	vm_map_lock(map);
2798 
2799 	if ((map->flags & MAP_WXORX) != 0 &&
2800 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2801 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2802 		vm_map_unlock(map);
2803 		return (KERN_PROTECTION_FAILURE);
2804 	}
2805 
2806 	/*
2807 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2808 	 * need to fault pages into the map and will drop the map lock while
2809 	 * doing so, and the VM object may end up in an inconsistent state if we
2810 	 * update the protection on the map entry in between faults.
2811 	 */
2812 	vm_map_wait_busy(map);
2813 
2814 	VM_MAP_RANGE_CHECK(map, start, end);
2815 
2816 	if (!vm_map_lookup_entry(map, start, &first_entry))
2817 		first_entry = vm_map_entry_succ(first_entry);
2818 
2819 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2820 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2821 		/*
2822 		 * Handle Linux's PROT_GROWSDOWN flag.
2823 		 * It means that protection is applied down to the
2824 		 * whole stack, including the specified range of the
2825 		 * mapped region, and the grow down region (AKA
2826 		 * guard).
2827 		 */
2828 		while (!CONTAINS_BITS(first_entry->eflags,
2829 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2830 		    first_entry != vm_map_entry_first(map))
2831 			first_entry = vm_map_entry_pred(first_entry);
2832 		start = first_entry->start;
2833 	}
2834 
2835 	/*
2836 	 * Make a first pass to check for protection violations.
2837 	 */
2838 	check_prot = 0;
2839 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2840 		check_prot |= new_prot;
2841 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2842 		check_prot |= new_maxprot;
2843 	for (entry = first_entry; entry->start < end;
2844 	    entry = vm_map_entry_succ(entry)) {
2845 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2846 			vm_map_unlock(map);
2847 			return (KERN_INVALID_ARGUMENT);
2848 		}
2849 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2850 		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2851 		    MAP_ENTRY_GUARD)
2852 			continue;
2853 		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2854 		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2855 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2856 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2857 			vm_map_unlock(map);
2858 			return (KERN_PROTECTION_FAILURE);
2859 		}
2860 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2861 			in_tran = entry;
2862 	}
2863 
2864 	/*
2865 	 * Postpone the operation until all in-transition map entries have
2866 	 * stabilized.  An in-transition entry might already have its pages
2867 	 * wired and wired_count incremented, but not yet have its
2868 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2869 	 * vm_fault_copy_entry() in the final loop below.
2870 	 */
2871 	if (in_tran != NULL) {
2872 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2873 		vm_map_unlock_and_wait(map, 0);
2874 		goto again;
2875 	}
2876 
2877 	/*
2878 	 * Before changing the protections, try to reserve swap space for any
2879 	 * private (i.e., copy-on-write) mappings that are transitioning from
2880 	 * read-only to read/write access.  If a reservation fails, break out
2881 	 * of this loop early and let the next loop simplify the entries, since
2882 	 * some may now be mergeable.
2883 	 */
2884 	rv = vm_map_clip_start(map, first_entry, start);
2885 	if (rv != KERN_SUCCESS) {
2886 		vm_map_unlock(map);
2887 		return (rv);
2888 	}
2889 	for (entry = first_entry; entry->start < end;
2890 	    entry = vm_map_entry_succ(entry)) {
2891 		rv = vm_map_clip_end(map, entry, end);
2892 		if (rv != KERN_SUCCESS) {
2893 			vm_map_unlock(map);
2894 			return (rv);
2895 		}
2896 
2897 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2898 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2899 		    ENTRY_CHARGED(entry) ||
2900 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2901 			continue;
2902 
2903 		cred = curthread->td_ucred;
2904 		obj = entry->object.vm_object;
2905 
2906 		if (obj == NULL ||
2907 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2908 			if (!swap_reserve(entry->end - entry->start)) {
2909 				rv = KERN_RESOURCE_SHORTAGE;
2910 				end = entry->end;
2911 				break;
2912 			}
2913 			crhold(cred);
2914 			entry->cred = cred;
2915 			continue;
2916 		}
2917 
2918 		VM_OBJECT_WLOCK(obj);
2919 		if ((obj->flags & OBJ_SWAP) == 0) {
2920 			VM_OBJECT_WUNLOCK(obj);
2921 			continue;
2922 		}
2923 
2924 		/*
2925 		 * Charge for the whole object allocation now, since
2926 		 * we cannot distinguish between non-charged and
2927 		 * charged clipped mapping of the same object later.
2928 		 */
2929 		KASSERT(obj->charge == 0,
2930 		    ("vm_map_protect: object %p overcharged (entry %p)",
2931 		    obj, entry));
2932 		if (!swap_reserve(ptoa(obj->size))) {
2933 			VM_OBJECT_WUNLOCK(obj);
2934 			rv = KERN_RESOURCE_SHORTAGE;
2935 			end = entry->end;
2936 			break;
2937 		}
2938 
2939 		crhold(cred);
2940 		obj->cred = cred;
2941 		obj->charge = ptoa(obj->size);
2942 		VM_OBJECT_WUNLOCK(obj);
2943 	}
2944 
2945 	/*
2946 	 * If enough swap space was available, go back and fix up protections.
2947 	 * Otherwise, just simplify entries, since some may have been modified.
2948 	 * [Note that clipping is not necessary the second time.]
2949 	 */
2950 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2951 	    entry->start < end;
2952 	    vm_map_try_merge_entries(map, prev_entry, entry),
2953 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2954 		if (rv != KERN_SUCCESS)
2955 			continue;
2956 
2957 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2958 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2959 			    flags);
2960 			continue;
2961 		}
2962 
2963 		old_prot = entry->protection;
2964 
2965 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2966 			entry->max_protection = new_maxprot;
2967 			entry->protection = new_maxprot & old_prot;
2968 		}
2969 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2970 			entry->protection = new_prot;
2971 
2972 		/*
2973 		 * For user wired map entries, the normal lazy evaluation of
2974 		 * write access upgrades through soft page faults is
2975 		 * undesirable.  Instead, immediately copy any pages that are
2976 		 * copy-on-write and enable write access in the physical map.
2977 		 */
2978 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2979 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2980 		    (old_prot & VM_PROT_WRITE) == 0)
2981 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2982 
2983 		/*
2984 		 * When restricting access, update the physical map.  Worry
2985 		 * about copy-on-write here.
2986 		 */
2987 		if ((old_prot & ~entry->protection) != 0) {
2988 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2989 							VM_PROT_ALL)
2990 			pmap_protect(map->pmap, entry->start,
2991 			    entry->end,
2992 			    entry->protection & MASK(entry));
2993 #undef	MASK
2994 		}
2995 	}
2996 	vm_map_try_merge_entries(map, prev_entry, entry);
2997 	vm_map_unlock(map);
2998 	return (rv);
2999 }
3000 
3001 /*
3002  *	vm_map_madvise:
3003  *
3004  *	This routine traverses a processes map handling the madvise
3005  *	system call.  Advisories are classified as either those effecting
3006  *	the vm_map_entry structure, or those effecting the underlying
3007  *	objects.
3008  */
3009 int
vm_map_madvise(vm_map_t map,vm_offset_t start,vm_offset_t end,int behav)3010 vm_map_madvise(
3011 	vm_map_t map,
3012 	vm_offset_t start,
3013 	vm_offset_t end,
3014 	int behav)
3015 {
3016 	vm_map_entry_t entry, prev_entry;
3017 	int rv;
3018 	bool modify_map;
3019 
3020 	/*
3021 	 * Some madvise calls directly modify the vm_map_entry, in which case
3022 	 * we need to use an exclusive lock on the map and we need to perform
3023 	 * various clipping operations.  Otherwise we only need a read-lock
3024 	 * on the map.
3025 	 */
3026 	switch(behav) {
3027 	case MADV_NORMAL:
3028 	case MADV_SEQUENTIAL:
3029 	case MADV_RANDOM:
3030 	case MADV_NOSYNC:
3031 	case MADV_AUTOSYNC:
3032 	case MADV_NOCORE:
3033 	case MADV_CORE:
3034 		if (start == end)
3035 			return (0);
3036 		modify_map = true;
3037 		vm_map_lock(map);
3038 		break;
3039 	case MADV_WILLNEED:
3040 	case MADV_DONTNEED:
3041 	case MADV_FREE:
3042 		if (start == end)
3043 			return (0);
3044 		modify_map = false;
3045 		vm_map_lock_read(map);
3046 		break;
3047 	default:
3048 		return (EINVAL);
3049 	}
3050 
3051 	/*
3052 	 * Locate starting entry and clip if necessary.
3053 	 */
3054 	VM_MAP_RANGE_CHECK(map, start, end);
3055 
3056 	if (modify_map) {
3057 		/*
3058 		 * madvise behaviors that are implemented in the vm_map_entry.
3059 		 *
3060 		 * We clip the vm_map_entry so that behavioral changes are
3061 		 * limited to the specified address range.
3062 		 */
3063 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3064 		if (rv != KERN_SUCCESS) {
3065 			vm_map_unlock(map);
3066 			return (vm_mmap_to_errno(rv));
3067 		}
3068 
3069 		for (; entry->start < end; prev_entry = entry,
3070 		    entry = vm_map_entry_succ(entry)) {
3071 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3072 				continue;
3073 
3074 			rv = vm_map_clip_end(map, entry, end);
3075 			if (rv != KERN_SUCCESS) {
3076 				vm_map_unlock(map);
3077 				return (vm_mmap_to_errno(rv));
3078 			}
3079 
3080 			switch (behav) {
3081 			case MADV_NORMAL:
3082 				vm_map_entry_set_behavior(entry,
3083 				    MAP_ENTRY_BEHAV_NORMAL);
3084 				break;
3085 			case MADV_SEQUENTIAL:
3086 				vm_map_entry_set_behavior(entry,
3087 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3088 				break;
3089 			case MADV_RANDOM:
3090 				vm_map_entry_set_behavior(entry,
3091 				    MAP_ENTRY_BEHAV_RANDOM);
3092 				break;
3093 			case MADV_NOSYNC:
3094 				entry->eflags |= MAP_ENTRY_NOSYNC;
3095 				break;
3096 			case MADV_AUTOSYNC:
3097 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3098 				break;
3099 			case MADV_NOCORE:
3100 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3101 				break;
3102 			case MADV_CORE:
3103 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3104 				break;
3105 			default:
3106 				break;
3107 			}
3108 			vm_map_try_merge_entries(map, prev_entry, entry);
3109 		}
3110 		vm_map_try_merge_entries(map, prev_entry, entry);
3111 		vm_map_unlock(map);
3112 	} else {
3113 		vm_pindex_t pstart, pend;
3114 
3115 		/*
3116 		 * madvise behaviors that are implemented in the underlying
3117 		 * vm_object.
3118 		 *
3119 		 * Since we don't clip the vm_map_entry, we have to clip
3120 		 * the vm_object pindex and count.
3121 		 */
3122 		if (!vm_map_lookup_entry(map, start, &entry))
3123 			entry = vm_map_entry_succ(entry);
3124 		for (; entry->start < end;
3125 		    entry = vm_map_entry_succ(entry)) {
3126 			vm_offset_t useEnd, useStart;
3127 
3128 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3129 			    MAP_ENTRY_GUARD)) != 0)
3130 				continue;
3131 
3132 			/*
3133 			 * MADV_FREE would otherwise rewind time to
3134 			 * the creation of the shadow object.  Because
3135 			 * we hold the VM map read-locked, neither the
3136 			 * entry's object nor the presence of a
3137 			 * backing object can change.
3138 			 */
3139 			if (behav == MADV_FREE &&
3140 			    entry->object.vm_object != NULL &&
3141 			    entry->object.vm_object->backing_object != NULL)
3142 				continue;
3143 
3144 			pstart = OFF_TO_IDX(entry->offset);
3145 			pend = pstart + atop(entry->end - entry->start);
3146 			useStart = entry->start;
3147 			useEnd = entry->end;
3148 
3149 			if (entry->start < start) {
3150 				pstart += atop(start - entry->start);
3151 				useStart = start;
3152 			}
3153 			if (entry->end > end) {
3154 				pend -= atop(entry->end - end);
3155 				useEnd = end;
3156 			}
3157 
3158 			if (pstart >= pend)
3159 				continue;
3160 
3161 			/*
3162 			 * Perform the pmap_advise() before clearing
3163 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3164 			 * concurrent pmap operation, such as pmap_remove(),
3165 			 * could clear a reference in the pmap and set
3166 			 * PGA_REFERENCED on the page before the pmap_advise()
3167 			 * had completed.  Consequently, the page would appear
3168 			 * referenced based upon an old reference that
3169 			 * occurred before this pmap_advise() ran.
3170 			 */
3171 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3172 				pmap_advise(map->pmap, useStart, useEnd,
3173 				    behav);
3174 
3175 			vm_object_madvise(entry->object.vm_object, pstart,
3176 			    pend, behav);
3177 
3178 			/*
3179 			 * Pre-populate paging structures in the
3180 			 * WILLNEED case.  For wired entries, the
3181 			 * paging structures are already populated.
3182 			 */
3183 			if (behav == MADV_WILLNEED &&
3184 			    entry->wired_count == 0) {
3185 				vm_map_pmap_enter(map,
3186 				    useStart,
3187 				    entry->protection,
3188 				    entry->object.vm_object,
3189 				    pstart,
3190 				    ptoa(pend - pstart),
3191 				    MAP_PREFAULT_MADVISE
3192 				);
3193 			}
3194 		}
3195 		vm_map_unlock_read(map);
3196 	}
3197 	return (0);
3198 }
3199 
3200 /*
3201  *	vm_map_inherit:
3202  *
3203  *	Sets the inheritance of the specified address
3204  *	range in the target map.  Inheritance
3205  *	affects how the map will be shared with
3206  *	child maps at the time of vmspace_fork.
3207  */
3208 int
vm_map_inherit(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_inherit_t new_inheritance)3209 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3210 	       vm_inherit_t new_inheritance)
3211 {
3212 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3213 	int rv;
3214 
3215 	switch (new_inheritance) {
3216 	case VM_INHERIT_NONE:
3217 	case VM_INHERIT_COPY:
3218 	case VM_INHERIT_SHARE:
3219 	case VM_INHERIT_ZERO:
3220 		break;
3221 	default:
3222 		return (KERN_INVALID_ARGUMENT);
3223 	}
3224 	if (start == end)
3225 		return (KERN_SUCCESS);
3226 	vm_map_lock(map);
3227 	VM_MAP_RANGE_CHECK(map, start, end);
3228 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3229 	if (rv != KERN_SUCCESS)
3230 		goto unlock;
3231 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3232 		rv = vm_map_clip_end(map, lentry, end);
3233 		if (rv != KERN_SUCCESS)
3234 			goto unlock;
3235 	}
3236 	if (new_inheritance == VM_INHERIT_COPY) {
3237 		for (entry = start_entry; entry->start < end;
3238 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3239 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3240 			    != 0) {
3241 				rv = KERN_INVALID_ARGUMENT;
3242 				goto unlock;
3243 			}
3244 		}
3245 	}
3246 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3247 	    entry = vm_map_entry_succ(entry)) {
3248 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3249 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3250 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3251 		    new_inheritance != VM_INHERIT_ZERO)
3252 			entry->inheritance = new_inheritance;
3253 		vm_map_try_merge_entries(map, prev_entry, entry);
3254 	}
3255 	vm_map_try_merge_entries(map, prev_entry, entry);
3256 unlock:
3257 	vm_map_unlock(map);
3258 	return (rv);
3259 }
3260 
3261 /*
3262  *	vm_map_entry_in_transition:
3263  *
3264  *	Release the map lock, and sleep until the entry is no longer in
3265  *	transition.  Awake and acquire the map lock.  If the map changed while
3266  *	another held the lock, lookup a possibly-changed entry at or after the
3267  *	'start' position of the old entry.
3268  */
3269 static vm_map_entry_t
vm_map_entry_in_transition(vm_map_t map,vm_offset_t in_start,vm_offset_t * io_end,bool holes_ok,vm_map_entry_t in_entry)3270 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3271     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3272 {
3273 	vm_map_entry_t entry;
3274 	vm_offset_t start;
3275 	u_int last_timestamp;
3276 
3277 	VM_MAP_ASSERT_LOCKED(map);
3278 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3279 	    ("not in-tranition map entry %p", in_entry));
3280 	/*
3281 	 * We have not yet clipped the entry.
3282 	 */
3283 	start = MAX(in_start, in_entry->start);
3284 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3285 	last_timestamp = map->timestamp;
3286 	if (vm_map_unlock_and_wait(map, 0)) {
3287 		/*
3288 		 * Allow interruption of user wiring/unwiring?
3289 		 */
3290 	}
3291 	vm_map_lock(map);
3292 	if (last_timestamp + 1 == map->timestamp)
3293 		return (in_entry);
3294 
3295 	/*
3296 	 * Look again for the entry because the map was modified while it was
3297 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3298 	 * deleted.
3299 	 */
3300 	if (!vm_map_lookup_entry(map, start, &entry)) {
3301 		if (!holes_ok) {
3302 			*io_end = start;
3303 			return (NULL);
3304 		}
3305 		entry = vm_map_entry_succ(entry);
3306 	}
3307 	return (entry);
3308 }
3309 
3310 /*
3311  *	vm_map_unwire:
3312  *
3313  *	Implements both kernel and user unwiring.
3314  */
3315 int
vm_map_unwire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3316 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3317     int flags)
3318 {
3319 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3320 	int rv;
3321 	bool holes_ok, need_wakeup, user_unwire;
3322 
3323 	if (start == end)
3324 		return (KERN_SUCCESS);
3325 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3326 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3327 	vm_map_lock(map);
3328 	VM_MAP_RANGE_CHECK(map, start, end);
3329 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3330 		if (holes_ok)
3331 			first_entry = vm_map_entry_succ(first_entry);
3332 		else {
3333 			vm_map_unlock(map);
3334 			return (KERN_INVALID_ADDRESS);
3335 		}
3336 	}
3337 	rv = KERN_SUCCESS;
3338 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3339 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3340 			/*
3341 			 * We have not yet clipped the entry.
3342 			 */
3343 			next_entry = vm_map_entry_in_transition(map, start,
3344 			    &end, holes_ok, entry);
3345 			if (next_entry == NULL) {
3346 				if (entry == first_entry) {
3347 					vm_map_unlock(map);
3348 					return (KERN_INVALID_ADDRESS);
3349 				}
3350 				rv = KERN_INVALID_ADDRESS;
3351 				break;
3352 			}
3353 			first_entry = (entry == first_entry) ?
3354 			    next_entry : NULL;
3355 			continue;
3356 		}
3357 		rv = vm_map_clip_start(map, entry, start);
3358 		if (rv != KERN_SUCCESS)
3359 			break;
3360 		rv = vm_map_clip_end(map, entry, end);
3361 		if (rv != KERN_SUCCESS)
3362 			break;
3363 
3364 		/*
3365 		 * Mark the entry in case the map lock is released.  (See
3366 		 * above.)
3367 		 */
3368 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3369 		    entry->wiring_thread == NULL,
3370 		    ("owned map entry %p", entry));
3371 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3372 		entry->wiring_thread = curthread;
3373 		next_entry = vm_map_entry_succ(entry);
3374 		/*
3375 		 * Check the map for holes in the specified region.
3376 		 * If holes_ok, skip this check.
3377 		 */
3378 		if (!holes_ok &&
3379 		    entry->end < end && next_entry->start > entry->end) {
3380 			end = entry->end;
3381 			rv = KERN_INVALID_ADDRESS;
3382 			break;
3383 		}
3384 		/*
3385 		 * If system unwiring, require that the entry is system wired.
3386 		 */
3387 		if (!user_unwire &&
3388 		    vm_map_entry_system_wired_count(entry) == 0) {
3389 			end = entry->end;
3390 			rv = KERN_INVALID_ARGUMENT;
3391 			break;
3392 		}
3393 	}
3394 	need_wakeup = false;
3395 	if (first_entry == NULL &&
3396 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3397 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3398 		prev_entry = first_entry;
3399 		entry = vm_map_entry_succ(first_entry);
3400 	} else {
3401 		prev_entry = vm_map_entry_pred(first_entry);
3402 		entry = first_entry;
3403 	}
3404 	for (; entry->start < end;
3405 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3406 		/*
3407 		 * If holes_ok was specified, an empty
3408 		 * space in the unwired region could have been mapped
3409 		 * while the map lock was dropped for draining
3410 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3411 		 * could be simultaneously wiring this new mapping
3412 		 * entry.  Detect these cases and skip any entries
3413 		 * marked as in transition by us.
3414 		 */
3415 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3416 		    entry->wiring_thread != curthread) {
3417 			KASSERT(holes_ok,
3418 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3419 			continue;
3420 		}
3421 
3422 		if (rv == KERN_SUCCESS && (!user_unwire ||
3423 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3424 			if (entry->wired_count == 1)
3425 				vm_map_entry_unwire(map, entry);
3426 			else
3427 				entry->wired_count--;
3428 			if (user_unwire)
3429 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3430 		}
3431 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3432 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3433 		KASSERT(entry->wiring_thread == curthread,
3434 		    ("vm_map_unwire: alien wire %p", entry));
3435 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3436 		entry->wiring_thread = NULL;
3437 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3438 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3439 			need_wakeup = true;
3440 		}
3441 		vm_map_try_merge_entries(map, prev_entry, entry);
3442 	}
3443 	vm_map_try_merge_entries(map, prev_entry, entry);
3444 	vm_map_unlock(map);
3445 	if (need_wakeup)
3446 		vm_map_wakeup(map);
3447 	return (rv);
3448 }
3449 
3450 static void
vm_map_wire_user_count_sub(u_long npages)3451 vm_map_wire_user_count_sub(u_long npages)
3452 {
3453 
3454 	atomic_subtract_long(&vm_user_wire_count, npages);
3455 }
3456 
3457 static bool
vm_map_wire_user_count_add(u_long npages)3458 vm_map_wire_user_count_add(u_long npages)
3459 {
3460 	u_long wired;
3461 
3462 	wired = vm_user_wire_count;
3463 	do {
3464 		if (npages + wired > vm_page_max_user_wired)
3465 			return (false);
3466 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3467 	    npages + wired));
3468 
3469 	return (true);
3470 }
3471 
3472 /*
3473  *	vm_map_wire_entry_failure:
3474  *
3475  *	Handle a wiring failure on the given entry.
3476  *
3477  *	The map should be locked.
3478  */
3479 static void
vm_map_wire_entry_failure(vm_map_t map,vm_map_entry_t entry,vm_offset_t failed_addr)3480 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3481     vm_offset_t failed_addr)
3482 {
3483 
3484 	VM_MAP_ASSERT_LOCKED(map);
3485 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3486 	    entry->wired_count == 1,
3487 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3488 	KASSERT(failed_addr < entry->end,
3489 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3490 
3491 	/*
3492 	 * If any pages at the start of this entry were successfully wired,
3493 	 * then unwire them.
3494 	 */
3495 	if (failed_addr > entry->start) {
3496 		pmap_unwire(map->pmap, entry->start, failed_addr);
3497 		vm_object_unwire(entry->object.vm_object, entry->offset,
3498 		    failed_addr - entry->start, PQ_ACTIVE);
3499 	}
3500 
3501 	/*
3502 	 * Assign an out-of-range value to represent the failure to wire this
3503 	 * entry.
3504 	 */
3505 	entry->wired_count = -1;
3506 }
3507 
3508 int
vm_map_wire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3509 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3510 {
3511 	int rv;
3512 
3513 	vm_map_lock(map);
3514 	rv = vm_map_wire_locked(map, start, end, flags);
3515 	vm_map_unlock(map);
3516 	return (rv);
3517 }
3518 
3519 /*
3520  *	vm_map_wire_locked:
3521  *
3522  *	Implements both kernel and user wiring.  Returns with the map locked,
3523  *	the map lock may be dropped.
3524  */
3525 int
vm_map_wire_locked(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3526 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3527 {
3528 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3529 	vm_offset_t faddr, saved_end, saved_start;
3530 	u_long incr, npages;
3531 	u_int bidx, last_timestamp;
3532 	int rv;
3533 	bool holes_ok, need_wakeup, user_wire;
3534 	vm_prot_t prot;
3535 
3536 	VM_MAP_ASSERT_LOCKED(map);
3537 
3538 	if (start == end)
3539 		return (KERN_SUCCESS);
3540 	prot = 0;
3541 	if (flags & VM_MAP_WIRE_WRITE)
3542 		prot |= VM_PROT_WRITE;
3543 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3544 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3545 	VM_MAP_RANGE_CHECK(map, start, end);
3546 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3547 		if (holes_ok)
3548 			first_entry = vm_map_entry_succ(first_entry);
3549 		else
3550 			return (KERN_INVALID_ADDRESS);
3551 	}
3552 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3553 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3554 			/*
3555 			 * We have not yet clipped the entry.
3556 			 */
3557 			next_entry = vm_map_entry_in_transition(map, start,
3558 			    &end, holes_ok, entry);
3559 			if (next_entry == NULL) {
3560 				if (entry == first_entry)
3561 					return (KERN_INVALID_ADDRESS);
3562 				rv = KERN_INVALID_ADDRESS;
3563 				goto done;
3564 			}
3565 			first_entry = (entry == first_entry) ?
3566 			    next_entry : NULL;
3567 			continue;
3568 		}
3569 		rv = vm_map_clip_start(map, entry, start);
3570 		if (rv != KERN_SUCCESS)
3571 			goto done;
3572 		rv = vm_map_clip_end(map, entry, end);
3573 		if (rv != KERN_SUCCESS)
3574 			goto done;
3575 
3576 		/*
3577 		 * Mark the entry in case the map lock is released.  (See
3578 		 * above.)
3579 		 */
3580 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3581 		    entry->wiring_thread == NULL,
3582 		    ("owned map entry %p", entry));
3583 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3584 		entry->wiring_thread = curthread;
3585 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3586 		    || (entry->protection & prot) != prot) {
3587 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3588 			if (!holes_ok) {
3589 				end = entry->end;
3590 				rv = KERN_INVALID_ADDRESS;
3591 				goto done;
3592 			}
3593 		} else if (entry->wired_count == 0) {
3594 			entry->wired_count++;
3595 
3596 			npages = atop(entry->end - entry->start);
3597 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3598 				vm_map_wire_entry_failure(map, entry,
3599 				    entry->start);
3600 				end = entry->end;
3601 				rv = KERN_RESOURCE_SHORTAGE;
3602 				goto done;
3603 			}
3604 
3605 			/*
3606 			 * Release the map lock, relying on the in-transition
3607 			 * mark.  Mark the map busy for fork.
3608 			 */
3609 			saved_start = entry->start;
3610 			saved_end = entry->end;
3611 			last_timestamp = map->timestamp;
3612 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3613 			incr =  pagesizes[bidx];
3614 			vm_map_busy(map);
3615 			vm_map_unlock(map);
3616 
3617 			for (faddr = saved_start; faddr < saved_end;
3618 			    faddr += incr) {
3619 				/*
3620 				 * Simulate a fault to get the page and enter
3621 				 * it into the physical map.
3622 				 */
3623 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3624 				    VM_FAULT_WIRE, NULL);
3625 				if (rv != KERN_SUCCESS)
3626 					break;
3627 			}
3628 			vm_map_lock(map);
3629 			vm_map_unbusy(map);
3630 			if (last_timestamp + 1 != map->timestamp) {
3631 				/*
3632 				 * Look again for the entry because the map was
3633 				 * modified while it was unlocked.  The entry
3634 				 * may have been clipped, but NOT merged or
3635 				 * deleted.
3636 				 */
3637 				if (!vm_map_lookup_entry(map, saved_start,
3638 				    &next_entry))
3639 					KASSERT(false,
3640 					    ("vm_map_wire: lookup failed"));
3641 				first_entry = (entry == first_entry) ?
3642 				    next_entry : NULL;
3643 				for (entry = next_entry; entry->end < saved_end;
3644 				    entry = vm_map_entry_succ(entry)) {
3645 					/*
3646 					 * In case of failure, handle entries
3647 					 * that were not fully wired here;
3648 					 * fully wired entries are handled
3649 					 * later.
3650 					 */
3651 					if (rv != KERN_SUCCESS &&
3652 					    faddr < entry->end)
3653 						vm_map_wire_entry_failure(map,
3654 						    entry, faddr);
3655 				}
3656 			}
3657 			if (rv != KERN_SUCCESS) {
3658 				vm_map_wire_entry_failure(map, entry, faddr);
3659 				if (user_wire)
3660 					vm_map_wire_user_count_sub(npages);
3661 				end = entry->end;
3662 				goto done;
3663 			}
3664 		} else if (!user_wire ||
3665 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3666 			entry->wired_count++;
3667 		}
3668 		/*
3669 		 * Check the map for holes in the specified region.
3670 		 * If holes_ok was specified, skip this check.
3671 		 */
3672 		next_entry = vm_map_entry_succ(entry);
3673 		if (!holes_ok &&
3674 		    entry->end < end && next_entry->start > entry->end) {
3675 			end = entry->end;
3676 			rv = KERN_INVALID_ADDRESS;
3677 			goto done;
3678 		}
3679 	}
3680 	rv = KERN_SUCCESS;
3681 done:
3682 	need_wakeup = false;
3683 	if (first_entry == NULL &&
3684 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3685 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3686 		prev_entry = first_entry;
3687 		entry = vm_map_entry_succ(first_entry);
3688 	} else {
3689 		prev_entry = vm_map_entry_pred(first_entry);
3690 		entry = first_entry;
3691 	}
3692 	for (; entry->start < end;
3693 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3694 		/*
3695 		 * If holes_ok was specified, an empty
3696 		 * space in the unwired region could have been mapped
3697 		 * while the map lock was dropped for faulting in the
3698 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3699 		 * Moreover, another thread could be simultaneously
3700 		 * wiring this new mapping entry.  Detect these cases
3701 		 * and skip any entries marked as in transition not by us.
3702 		 *
3703 		 * Another way to get an entry not marked with
3704 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3705 		 * which set rv to KERN_INVALID_ARGUMENT.
3706 		 */
3707 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3708 		    entry->wiring_thread != curthread) {
3709 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3710 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3711 			continue;
3712 		}
3713 
3714 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3715 			/* do nothing */
3716 		} else if (rv == KERN_SUCCESS) {
3717 			if (user_wire)
3718 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3719 		} else if (entry->wired_count == -1) {
3720 			/*
3721 			 * Wiring failed on this entry.  Thus, unwiring is
3722 			 * unnecessary.
3723 			 */
3724 			entry->wired_count = 0;
3725 		} else if (!user_wire ||
3726 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3727 			/*
3728 			 * Undo the wiring.  Wiring succeeded on this entry
3729 			 * but failed on a later entry.
3730 			 */
3731 			if (entry->wired_count == 1) {
3732 				vm_map_entry_unwire(map, entry);
3733 				if (user_wire)
3734 					vm_map_wire_user_count_sub(
3735 					    atop(entry->end - entry->start));
3736 			} else
3737 				entry->wired_count--;
3738 		}
3739 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3740 		    ("vm_map_wire: in-transition flag missing %p", entry));
3741 		KASSERT(entry->wiring_thread == curthread,
3742 		    ("vm_map_wire: alien wire %p", entry));
3743 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3744 		    MAP_ENTRY_WIRE_SKIPPED);
3745 		entry->wiring_thread = NULL;
3746 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3747 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3748 			need_wakeup = true;
3749 		}
3750 		vm_map_try_merge_entries(map, prev_entry, entry);
3751 	}
3752 	vm_map_try_merge_entries(map, prev_entry, entry);
3753 	if (need_wakeup)
3754 		vm_map_wakeup(map);
3755 	return (rv);
3756 }
3757 
3758 /*
3759  * vm_map_sync
3760  *
3761  * Push any dirty cached pages in the address range to their pager.
3762  * If syncio is TRUE, dirty pages are written synchronously.
3763  * If invalidate is TRUE, any cached pages are freed as well.
3764  *
3765  * If the size of the region from start to end is zero, we are
3766  * supposed to flush all modified pages within the region containing
3767  * start.  Unfortunately, a region can be split or coalesced with
3768  * neighboring regions, making it difficult to determine what the
3769  * original region was.  Therefore, we approximate this requirement by
3770  * flushing the current region containing start.
3771  *
3772  * Returns an error if any part of the specified range is not mapped.
3773  */
3774 int
vm_map_sync(vm_map_t map,vm_offset_t start,vm_offset_t end,boolean_t syncio,boolean_t invalidate)3775 vm_map_sync(
3776 	vm_map_t map,
3777 	vm_offset_t start,
3778 	vm_offset_t end,
3779 	boolean_t syncio,
3780 	boolean_t invalidate)
3781 {
3782 	vm_map_entry_t entry, first_entry, next_entry;
3783 	vm_size_t size;
3784 	vm_object_t object;
3785 	vm_ooffset_t offset;
3786 	unsigned int last_timestamp;
3787 	int bdry_idx;
3788 	boolean_t failed;
3789 
3790 	vm_map_lock_read(map);
3791 	VM_MAP_RANGE_CHECK(map, start, end);
3792 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3793 		vm_map_unlock_read(map);
3794 		return (KERN_INVALID_ADDRESS);
3795 	} else if (start == end) {
3796 		start = first_entry->start;
3797 		end = first_entry->end;
3798 	}
3799 
3800 	/*
3801 	 * Make a first pass to check for user-wired memory, holes,
3802 	 * and partial invalidation of largepage mappings.
3803 	 */
3804 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3805 		if (invalidate) {
3806 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3807 				vm_map_unlock_read(map);
3808 				return (KERN_INVALID_ARGUMENT);
3809 			}
3810 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3811 			if (bdry_idx != 0 &&
3812 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3813 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3814 				vm_map_unlock_read(map);
3815 				return (KERN_INVALID_ARGUMENT);
3816 			}
3817 		}
3818 		next_entry = vm_map_entry_succ(entry);
3819 		if (end > entry->end &&
3820 		    entry->end != next_entry->start) {
3821 			vm_map_unlock_read(map);
3822 			return (KERN_INVALID_ADDRESS);
3823 		}
3824 	}
3825 
3826 	if (invalidate)
3827 		pmap_remove(map->pmap, start, end);
3828 	failed = FALSE;
3829 
3830 	/*
3831 	 * Make a second pass, cleaning/uncaching pages from the indicated
3832 	 * objects as we go.
3833 	 */
3834 	for (entry = first_entry; entry->start < end;) {
3835 		offset = entry->offset + (start - entry->start);
3836 		size = (end <= entry->end ? end : entry->end) - start;
3837 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3838 			vm_map_t smap;
3839 			vm_map_entry_t tentry;
3840 			vm_size_t tsize;
3841 
3842 			smap = entry->object.sub_map;
3843 			vm_map_lock_read(smap);
3844 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3845 			tsize = tentry->end - offset;
3846 			if (tsize < size)
3847 				size = tsize;
3848 			object = tentry->object.vm_object;
3849 			offset = tentry->offset + (offset - tentry->start);
3850 			vm_map_unlock_read(smap);
3851 		} else {
3852 			object = entry->object.vm_object;
3853 		}
3854 		vm_object_reference(object);
3855 		last_timestamp = map->timestamp;
3856 		vm_map_unlock_read(map);
3857 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3858 			failed = TRUE;
3859 		start += size;
3860 		vm_object_deallocate(object);
3861 		vm_map_lock_read(map);
3862 		if (last_timestamp == map->timestamp ||
3863 		    !vm_map_lookup_entry(map, start, &entry))
3864 			entry = vm_map_entry_succ(entry);
3865 	}
3866 
3867 	vm_map_unlock_read(map);
3868 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3869 }
3870 
3871 /*
3872  *	vm_map_entry_unwire:	[ internal use only ]
3873  *
3874  *	Make the region specified by this entry pageable.
3875  *
3876  *	The map in question should be locked.
3877  *	[This is the reason for this routine's existence.]
3878  */
3879 static void
vm_map_entry_unwire(vm_map_t map,vm_map_entry_t entry)3880 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3881 {
3882 	vm_size_t size;
3883 
3884 	VM_MAP_ASSERT_LOCKED(map);
3885 	KASSERT(entry->wired_count > 0,
3886 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3887 
3888 	size = entry->end - entry->start;
3889 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3890 		vm_map_wire_user_count_sub(atop(size));
3891 	pmap_unwire(map->pmap, entry->start, entry->end);
3892 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3893 	    PQ_ACTIVE);
3894 	entry->wired_count = 0;
3895 }
3896 
3897 static void
vm_map_entry_deallocate(vm_map_entry_t entry,boolean_t system_map)3898 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3899 {
3900 
3901 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3902 		vm_object_deallocate(entry->object.vm_object);
3903 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3904 }
3905 
3906 /*
3907  *	vm_map_entry_delete:	[ internal use only ]
3908  *
3909  *	Deallocate the given entry from the target map.
3910  */
3911 static void
vm_map_entry_delete(vm_map_t map,vm_map_entry_t entry)3912 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3913 {
3914 	vm_object_t object;
3915 	vm_pindex_t offidxstart, offidxend, size1;
3916 	vm_size_t size;
3917 
3918 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3919 	object = entry->object.vm_object;
3920 
3921 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3922 		MPASS(entry->cred == NULL);
3923 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3924 		MPASS(object == NULL);
3925 		vm_map_entry_deallocate(entry, map->system_map);
3926 		return;
3927 	}
3928 
3929 	size = entry->end - entry->start;
3930 	map->size -= size;
3931 
3932 	if (entry->cred != NULL) {
3933 		swap_release_by_cred(size, entry->cred);
3934 		crfree(entry->cred);
3935 	}
3936 
3937 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3938 		entry->object.vm_object = NULL;
3939 	} else if ((object->flags & OBJ_ANON) != 0 ||
3940 	    object == kernel_object) {
3941 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3942 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3943 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3944 		offidxstart = OFF_TO_IDX(entry->offset);
3945 		offidxend = offidxstart + atop(size);
3946 		VM_OBJECT_WLOCK(object);
3947 		if (object->ref_count != 1 &&
3948 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3949 		    object == kernel_object)) {
3950 			vm_object_collapse(object);
3951 
3952 			/*
3953 			 * The option OBJPR_NOTMAPPED can be passed here
3954 			 * because vm_map_delete() already performed
3955 			 * pmap_remove() on the only mapping to this range
3956 			 * of pages.
3957 			 */
3958 			vm_object_page_remove(object, offidxstart, offidxend,
3959 			    OBJPR_NOTMAPPED);
3960 			if (offidxend >= object->size &&
3961 			    offidxstart < object->size) {
3962 				size1 = object->size;
3963 				object->size = offidxstart;
3964 				if (object->cred != NULL) {
3965 					size1 -= object->size;
3966 					KASSERT(object->charge >= ptoa(size1),
3967 					    ("object %p charge < 0", object));
3968 					swap_release_by_cred(ptoa(size1),
3969 					    object->cred);
3970 					object->charge -= ptoa(size1);
3971 				}
3972 			}
3973 		}
3974 		VM_OBJECT_WUNLOCK(object);
3975 	}
3976 	if (map->system_map)
3977 		vm_map_entry_deallocate(entry, TRUE);
3978 	else {
3979 		entry->defer_next = curthread->td_map_def_user;
3980 		curthread->td_map_def_user = entry;
3981 	}
3982 }
3983 
3984 /*
3985  *	vm_map_delete:	[ internal use only ]
3986  *
3987  *	Deallocates the given address range from the target
3988  *	map.
3989  */
3990 int
vm_map_delete(vm_map_t map,vm_offset_t start,vm_offset_t end)3991 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3992 {
3993 	vm_map_entry_t entry, next_entry, scratch_entry;
3994 	int rv;
3995 
3996 	VM_MAP_ASSERT_LOCKED(map);
3997 
3998 	if (start == end)
3999 		return (KERN_SUCCESS);
4000 
4001 	/*
4002 	 * Find the start of the region, and clip it.
4003 	 * Step through all entries in this region.
4004 	 */
4005 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4006 	if (rv != KERN_SUCCESS)
4007 		return (rv);
4008 	for (; entry->start < end; entry = next_entry) {
4009 		/*
4010 		 * Wait for wiring or unwiring of an entry to complete.
4011 		 * Also wait for any system wirings to disappear on
4012 		 * user maps.
4013 		 */
4014 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4015 		    (vm_map_pmap(map) != kernel_pmap &&
4016 		    vm_map_entry_system_wired_count(entry) != 0)) {
4017 			unsigned int last_timestamp;
4018 			vm_offset_t saved_start;
4019 
4020 			saved_start = entry->start;
4021 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4022 			last_timestamp = map->timestamp;
4023 			(void) vm_map_unlock_and_wait(map, 0);
4024 			vm_map_lock(map);
4025 			if (last_timestamp + 1 != map->timestamp) {
4026 				/*
4027 				 * Look again for the entry because the map was
4028 				 * modified while it was unlocked.
4029 				 * Specifically, the entry may have been
4030 				 * clipped, merged, or deleted.
4031 				 */
4032 				rv = vm_map_lookup_clip_start(map, saved_start,
4033 				    &next_entry, &scratch_entry);
4034 				if (rv != KERN_SUCCESS)
4035 					break;
4036 			} else
4037 				next_entry = entry;
4038 			continue;
4039 		}
4040 
4041 		/* XXXKIB or delete to the upper superpage boundary ? */
4042 		rv = vm_map_clip_end(map, entry, end);
4043 		if (rv != KERN_SUCCESS)
4044 			break;
4045 		next_entry = vm_map_entry_succ(entry);
4046 
4047 		/*
4048 		 * Unwire before removing addresses from the pmap; otherwise,
4049 		 * unwiring will put the entries back in the pmap.
4050 		 */
4051 		if (entry->wired_count != 0)
4052 			vm_map_entry_unwire(map, entry);
4053 
4054 		/*
4055 		 * Remove mappings for the pages, but only if the
4056 		 * mappings could exist.  For instance, it does not
4057 		 * make sense to call pmap_remove() for guard entries.
4058 		 */
4059 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4060 		    entry->object.vm_object != NULL)
4061 			pmap_map_delete(map->pmap, entry->start, entry->end);
4062 
4063 		if (entry->end == map->anon_loc)
4064 			map->anon_loc = entry->start;
4065 
4066 		/*
4067 		 * Delete the entry only after removing all pmap
4068 		 * entries pointing to its pages.  (Otherwise, its
4069 		 * page frames may be reallocated, and any modify bits
4070 		 * will be set in the wrong object!)
4071 		 */
4072 		vm_map_entry_delete(map, entry);
4073 	}
4074 	return (rv);
4075 }
4076 
4077 /*
4078  *	vm_map_remove:
4079  *
4080  *	Remove the given address range from the target map.
4081  *	This is the exported form of vm_map_delete.
4082  */
4083 int
vm_map_remove(vm_map_t map,vm_offset_t start,vm_offset_t end)4084 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4085 {
4086 	int result;
4087 
4088 	vm_map_lock(map);
4089 	VM_MAP_RANGE_CHECK(map, start, end);
4090 	result = vm_map_delete(map, start, end);
4091 	vm_map_unlock(map);
4092 	return (result);
4093 }
4094 
4095 /*
4096  *	vm_map_check_protection:
4097  *
4098  *	Assert that the target map allows the specified privilege on the
4099  *	entire address region given.  The entire region must be allocated.
4100  *
4101  *	WARNING!  This code does not and should not check whether the
4102  *	contents of the region is accessible.  For example a smaller file
4103  *	might be mapped into a larger address space.
4104  *
4105  *	NOTE!  This code is also called by munmap().
4106  *
4107  *	The map must be locked.  A read lock is sufficient.
4108  */
4109 boolean_t
vm_map_check_protection(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t protection)4110 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4111 			vm_prot_t protection)
4112 {
4113 	vm_map_entry_t entry;
4114 	vm_map_entry_t tmp_entry;
4115 
4116 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4117 		return (FALSE);
4118 	entry = tmp_entry;
4119 
4120 	while (start < end) {
4121 		/*
4122 		 * No holes allowed!
4123 		 */
4124 		if (start < entry->start)
4125 			return (FALSE);
4126 		/*
4127 		 * Check protection associated with entry.
4128 		 */
4129 		if ((entry->protection & protection) != protection)
4130 			return (FALSE);
4131 		/* go to next entry */
4132 		start = entry->end;
4133 		entry = vm_map_entry_succ(entry);
4134 	}
4135 	return (TRUE);
4136 }
4137 
4138 /*
4139  *
4140  *	vm_map_copy_swap_object:
4141  *
4142  *	Copies a swap-backed object from an existing map entry to a
4143  *	new one.  Carries forward the swap charge.  May change the
4144  *	src object on return.
4145  */
4146 static void
vm_map_copy_swap_object(vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_offset_t size,vm_ooffset_t * fork_charge)4147 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4148     vm_offset_t size, vm_ooffset_t *fork_charge)
4149 {
4150 	vm_object_t src_object;
4151 	struct ucred *cred;
4152 	int charged;
4153 
4154 	src_object = src_entry->object.vm_object;
4155 	charged = ENTRY_CHARGED(src_entry);
4156 	if ((src_object->flags & OBJ_ANON) != 0) {
4157 		VM_OBJECT_WLOCK(src_object);
4158 		vm_object_collapse(src_object);
4159 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4160 			vm_object_split(src_entry);
4161 			src_object = src_entry->object.vm_object;
4162 		}
4163 		vm_object_reference_locked(src_object);
4164 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4165 		VM_OBJECT_WUNLOCK(src_object);
4166 	} else
4167 		vm_object_reference(src_object);
4168 	if (src_entry->cred != NULL &&
4169 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4170 		KASSERT(src_object->cred == NULL,
4171 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4172 		     src_object));
4173 		src_object->cred = src_entry->cred;
4174 		src_object->charge = size;
4175 	}
4176 	dst_entry->object.vm_object = src_object;
4177 	if (charged) {
4178 		cred = curthread->td_ucred;
4179 		crhold(cred);
4180 		dst_entry->cred = cred;
4181 		*fork_charge += size;
4182 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4183 			crhold(cred);
4184 			src_entry->cred = cred;
4185 			*fork_charge += size;
4186 		}
4187 	}
4188 }
4189 
4190 /*
4191  *	vm_map_copy_entry:
4192  *
4193  *	Copies the contents of the source entry to the destination
4194  *	entry.  The entries *must* be aligned properly.
4195  */
4196 static void
vm_map_copy_entry(vm_map_t src_map,vm_map_t dst_map,vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_ooffset_t * fork_charge)4197 vm_map_copy_entry(
4198 	vm_map_t src_map,
4199 	vm_map_t dst_map,
4200 	vm_map_entry_t src_entry,
4201 	vm_map_entry_t dst_entry,
4202 	vm_ooffset_t *fork_charge)
4203 {
4204 	vm_object_t src_object;
4205 	vm_map_entry_t fake_entry;
4206 	vm_offset_t size;
4207 
4208 	VM_MAP_ASSERT_LOCKED(dst_map);
4209 
4210 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4211 		return;
4212 
4213 	if (src_entry->wired_count == 0 ||
4214 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4215 		/*
4216 		 * If the source entry is marked needs_copy, it is already
4217 		 * write-protected.
4218 		 */
4219 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4220 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4221 			pmap_protect(src_map->pmap,
4222 			    src_entry->start,
4223 			    src_entry->end,
4224 			    src_entry->protection & ~VM_PROT_WRITE);
4225 		}
4226 
4227 		/*
4228 		 * Make a copy of the object.
4229 		 */
4230 		size = src_entry->end - src_entry->start;
4231 		if ((src_object = src_entry->object.vm_object) != NULL) {
4232 			if ((src_object->flags & OBJ_SWAP) != 0) {
4233 				vm_map_copy_swap_object(src_entry, dst_entry,
4234 				    size, fork_charge);
4235 				/* May have split/collapsed, reload obj. */
4236 				src_object = src_entry->object.vm_object;
4237 			} else {
4238 				vm_object_reference(src_object);
4239 				dst_entry->object.vm_object = src_object;
4240 			}
4241 			src_entry->eflags |= MAP_ENTRY_COW |
4242 			    MAP_ENTRY_NEEDS_COPY;
4243 			dst_entry->eflags |= MAP_ENTRY_COW |
4244 			    MAP_ENTRY_NEEDS_COPY;
4245 			dst_entry->offset = src_entry->offset;
4246 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4247 				/*
4248 				 * MAP_ENTRY_WRITECNT cannot
4249 				 * indicate write reference from
4250 				 * src_entry, since the entry is
4251 				 * marked as needs copy.  Allocate a
4252 				 * fake entry that is used to
4253 				 * decrement object->un_pager writecount
4254 				 * at the appropriate time.  Attach
4255 				 * fake_entry to the deferred list.
4256 				 */
4257 				fake_entry = vm_map_entry_create(dst_map);
4258 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4259 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4260 				vm_object_reference(src_object);
4261 				fake_entry->object.vm_object = src_object;
4262 				fake_entry->start = src_entry->start;
4263 				fake_entry->end = src_entry->end;
4264 				fake_entry->defer_next =
4265 				    curthread->td_map_def_user;
4266 				curthread->td_map_def_user = fake_entry;
4267 			}
4268 
4269 			pmap_copy(dst_map->pmap, src_map->pmap,
4270 			    dst_entry->start, dst_entry->end - dst_entry->start,
4271 			    src_entry->start);
4272 		} else {
4273 			dst_entry->object.vm_object = NULL;
4274 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4275 				dst_entry->offset = 0;
4276 			if (src_entry->cred != NULL) {
4277 				dst_entry->cred = curthread->td_ucred;
4278 				crhold(dst_entry->cred);
4279 				*fork_charge += size;
4280 			}
4281 		}
4282 	} else {
4283 		/*
4284 		 * We don't want to make writeable wired pages copy-on-write.
4285 		 * Immediately copy these pages into the new map by simulating
4286 		 * page faults.  The new pages are pageable.
4287 		 */
4288 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4289 		    fork_charge);
4290 	}
4291 }
4292 
4293 /*
4294  * vmspace_map_entry_forked:
4295  * Update the newly-forked vmspace each time a map entry is inherited
4296  * or copied.  The values for vm_dsize and vm_tsize are approximate
4297  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4298  */
4299 static void
vmspace_map_entry_forked(const struct vmspace * vm1,struct vmspace * vm2,vm_map_entry_t entry)4300 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4301     vm_map_entry_t entry)
4302 {
4303 	vm_size_t entrysize;
4304 	vm_offset_t newend;
4305 
4306 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4307 		return;
4308 	entrysize = entry->end - entry->start;
4309 	vm2->vm_map.size += entrysize;
4310 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4311 		vm2->vm_ssize += btoc(entrysize);
4312 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4313 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4314 		newend = MIN(entry->end,
4315 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4316 		vm2->vm_dsize += btoc(newend - entry->start);
4317 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4318 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4319 		newend = MIN(entry->end,
4320 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4321 		vm2->vm_tsize += btoc(newend - entry->start);
4322 	}
4323 }
4324 
4325 /*
4326  * vmspace_fork:
4327  * Create a new process vmspace structure and vm_map
4328  * based on those of an existing process.  The new map
4329  * is based on the old map, according to the inheritance
4330  * values on the regions in that map.
4331  *
4332  * XXX It might be worth coalescing the entries added to the new vmspace.
4333  *
4334  * The source map must not be locked.
4335  */
4336 struct vmspace *
vmspace_fork(struct vmspace * vm1,vm_ooffset_t * fork_charge)4337 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4338 {
4339 	struct vmspace *vm2;
4340 	vm_map_t new_map, old_map;
4341 	vm_map_entry_t new_entry, old_entry;
4342 	vm_object_t object;
4343 	int error, locked __diagused;
4344 	vm_inherit_t inh;
4345 
4346 	old_map = &vm1->vm_map;
4347 	/* Copy immutable fields of vm1 to vm2. */
4348 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4349 	    pmap_pinit);
4350 	if (vm2 == NULL)
4351 		return (NULL);
4352 
4353 	vm2->vm_taddr = vm1->vm_taddr;
4354 	vm2->vm_daddr = vm1->vm_daddr;
4355 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4356 	vm2->vm_stacktop = vm1->vm_stacktop;
4357 	vm2->vm_shp_base = vm1->vm_shp_base;
4358 	vm_map_lock(old_map);
4359 	if (old_map->busy)
4360 		vm_map_wait_busy(old_map);
4361 	new_map = &vm2->vm_map;
4362 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4363 	KASSERT(locked, ("vmspace_fork: lock failed"));
4364 
4365 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4366 	if (error != 0) {
4367 		sx_xunlock(&old_map->lock);
4368 		sx_xunlock(&new_map->lock);
4369 		vm_map_process_deferred();
4370 		vmspace_free(vm2);
4371 		return (NULL);
4372 	}
4373 
4374 	new_map->anon_loc = old_map->anon_loc;
4375 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4376 	    MAP_ASLR_STACK | MAP_WXORX);
4377 
4378 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4379 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4380 			panic("vm_map_fork: encountered a submap");
4381 
4382 		inh = old_entry->inheritance;
4383 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4384 		    inh != VM_INHERIT_NONE)
4385 			inh = VM_INHERIT_COPY;
4386 
4387 		switch (inh) {
4388 		case VM_INHERIT_NONE:
4389 			break;
4390 
4391 		case VM_INHERIT_SHARE:
4392 			/*
4393 			 * Clone the entry, creating the shared object if
4394 			 * necessary.
4395 			 */
4396 			object = old_entry->object.vm_object;
4397 			if (object == NULL) {
4398 				vm_map_entry_back(old_entry);
4399 				object = old_entry->object.vm_object;
4400 			}
4401 
4402 			/*
4403 			 * Add the reference before calling vm_object_shadow
4404 			 * to insure that a shadow object is created.
4405 			 */
4406 			vm_object_reference(object);
4407 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4408 				vm_object_shadow(&old_entry->object.vm_object,
4409 				    &old_entry->offset,
4410 				    old_entry->end - old_entry->start,
4411 				    old_entry->cred,
4412 				    /* Transfer the second reference too. */
4413 				    true);
4414 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4415 				old_entry->cred = NULL;
4416 
4417 				/*
4418 				 * As in vm_map_merged_neighbor_dispose(),
4419 				 * the vnode lock will not be acquired in
4420 				 * this call to vm_object_deallocate().
4421 				 */
4422 				vm_object_deallocate(object);
4423 				object = old_entry->object.vm_object;
4424 			} else {
4425 				VM_OBJECT_WLOCK(object);
4426 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4427 				if (old_entry->cred != NULL) {
4428 					KASSERT(object->cred == NULL,
4429 					    ("vmspace_fork both cred"));
4430 					object->cred = old_entry->cred;
4431 					object->charge = old_entry->end -
4432 					    old_entry->start;
4433 					old_entry->cred = NULL;
4434 				}
4435 
4436 				/*
4437 				 * Assert the correct state of the vnode
4438 				 * v_writecount while the object is locked, to
4439 				 * not relock it later for the assertion
4440 				 * correctness.
4441 				 */
4442 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4443 				    object->type == OBJT_VNODE) {
4444 					KASSERT(((struct vnode *)object->
4445 					    handle)->v_writecount > 0,
4446 					    ("vmspace_fork: v_writecount %p",
4447 					    object));
4448 					KASSERT(object->un_pager.vnp.
4449 					    writemappings > 0,
4450 					    ("vmspace_fork: vnp.writecount %p",
4451 					    object));
4452 				}
4453 				VM_OBJECT_WUNLOCK(object);
4454 			}
4455 
4456 			/*
4457 			 * Clone the entry, referencing the shared object.
4458 			 */
4459 			new_entry = vm_map_entry_create(new_map);
4460 			*new_entry = *old_entry;
4461 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4462 			    MAP_ENTRY_IN_TRANSITION);
4463 			new_entry->wiring_thread = NULL;
4464 			new_entry->wired_count = 0;
4465 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4466 				vm_pager_update_writecount(object,
4467 				    new_entry->start, new_entry->end);
4468 			}
4469 			vm_map_entry_set_vnode_text(new_entry, true);
4470 
4471 			/*
4472 			 * Insert the entry into the new map -- we know we're
4473 			 * inserting at the end of the new map.
4474 			 */
4475 			vm_map_entry_link(new_map, new_entry);
4476 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4477 
4478 			/*
4479 			 * Update the physical map
4480 			 */
4481 			pmap_copy(new_map->pmap, old_map->pmap,
4482 			    new_entry->start,
4483 			    (old_entry->end - old_entry->start),
4484 			    old_entry->start);
4485 			break;
4486 
4487 		case VM_INHERIT_COPY:
4488 			/*
4489 			 * Clone the entry and link into the map.
4490 			 */
4491 			new_entry = vm_map_entry_create(new_map);
4492 			*new_entry = *old_entry;
4493 			/*
4494 			 * Copied entry is COW over the old object.
4495 			 */
4496 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4497 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4498 			new_entry->wiring_thread = NULL;
4499 			new_entry->wired_count = 0;
4500 			new_entry->object.vm_object = NULL;
4501 			new_entry->cred = NULL;
4502 			vm_map_entry_link(new_map, new_entry);
4503 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4504 			vm_map_copy_entry(old_map, new_map, old_entry,
4505 			    new_entry, fork_charge);
4506 			vm_map_entry_set_vnode_text(new_entry, true);
4507 			break;
4508 
4509 		case VM_INHERIT_ZERO:
4510 			/*
4511 			 * Create a new anonymous mapping entry modelled from
4512 			 * the old one.
4513 			 */
4514 			new_entry = vm_map_entry_create(new_map);
4515 			memset(new_entry, 0, sizeof(*new_entry));
4516 
4517 			new_entry->start = old_entry->start;
4518 			new_entry->end = old_entry->end;
4519 			new_entry->eflags = old_entry->eflags &
4520 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4521 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4522 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4523 			new_entry->protection = old_entry->protection;
4524 			new_entry->max_protection = old_entry->max_protection;
4525 			new_entry->inheritance = VM_INHERIT_ZERO;
4526 
4527 			vm_map_entry_link(new_map, new_entry);
4528 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4529 
4530 			new_entry->cred = curthread->td_ucred;
4531 			crhold(new_entry->cred);
4532 			*fork_charge += (new_entry->end - new_entry->start);
4533 
4534 			break;
4535 		}
4536 	}
4537 	/*
4538 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4539 	 * map entries, which cannot be done until both old_map and
4540 	 * new_map locks are released.
4541 	 */
4542 	sx_xunlock(&old_map->lock);
4543 	sx_xunlock(&new_map->lock);
4544 	vm_map_process_deferred();
4545 
4546 	return (vm2);
4547 }
4548 
4549 /*
4550  * Create a process's stack for exec_new_vmspace().  This function is never
4551  * asked to wire the newly created stack.
4552  */
4553 int
vm_map_stack(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_prot_t prot,vm_prot_t max,int cow)4554 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4555     vm_prot_t prot, vm_prot_t max, int cow)
4556 {
4557 	vm_size_t growsize, init_ssize;
4558 	rlim_t vmemlim;
4559 	int rv;
4560 
4561 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4562 	growsize = sgrowsiz;
4563 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4564 	vm_map_lock(map);
4565 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4566 	/* If we would blow our VMEM resource limit, no go */
4567 	if (map->size + init_ssize > vmemlim) {
4568 		rv = KERN_NO_SPACE;
4569 		goto out;
4570 	}
4571 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4572 	    max, cow);
4573 out:
4574 	vm_map_unlock(map);
4575 	return (rv);
4576 }
4577 
4578 static int stack_guard_page = 1;
4579 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4580     &stack_guard_page, 0,
4581     "Specifies the number of guard pages for a stack that grows");
4582 
4583 static int
vm_map_stack_locked(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_size_t growsize,vm_prot_t prot,vm_prot_t max,int cow)4584 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4585     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4586 {
4587 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4588 	vm_offset_t bot, gap_bot, gap_top, top;
4589 	vm_size_t init_ssize, sgp;
4590 	int orient, rv;
4591 
4592 	/*
4593 	 * The stack orientation is piggybacked with the cow argument.
4594 	 * Extract it into orient and mask the cow argument so that we
4595 	 * don't pass it around further.
4596 	 */
4597 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4598 	KASSERT(orient != 0, ("No stack grow direction"));
4599 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4600 	    ("bi-dir stack"));
4601 
4602 	if (max_ssize == 0 ||
4603 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4604 		return (KERN_INVALID_ADDRESS);
4605 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4606 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4607 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4608 	if (sgp >= max_ssize)
4609 		return (KERN_INVALID_ARGUMENT);
4610 
4611 	init_ssize = growsize;
4612 	if (max_ssize < init_ssize + sgp)
4613 		init_ssize = max_ssize - sgp;
4614 
4615 	/* If addr is already mapped, no go */
4616 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4617 		return (KERN_NO_SPACE);
4618 
4619 	/*
4620 	 * If we can't accommodate max_ssize in the current mapping, no go.
4621 	 */
4622 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4623 		return (KERN_NO_SPACE);
4624 
4625 	/*
4626 	 * We initially map a stack of only init_ssize.  We will grow as
4627 	 * needed later.  Depending on the orientation of the stack (i.e.
4628 	 * the grow direction) we either map at the top of the range, the
4629 	 * bottom of the range or in the middle.
4630 	 *
4631 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4632 	 * and cow to be 0.  Possibly we should eliminate these as input
4633 	 * parameters, and just pass these values here in the insert call.
4634 	 */
4635 	if (orient == MAP_STACK_GROWS_DOWN) {
4636 		bot = addrbos + max_ssize - init_ssize;
4637 		top = bot + init_ssize;
4638 		gap_bot = addrbos;
4639 		gap_top = bot;
4640 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4641 		bot = addrbos;
4642 		top = bot + init_ssize;
4643 		gap_bot = top;
4644 		gap_top = addrbos + max_ssize;
4645 	}
4646 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4647 	    &new_entry);
4648 	if (rv != KERN_SUCCESS)
4649 		return (rv);
4650 	KASSERT(new_entry->end == top || new_entry->start == bot,
4651 	    ("Bad entry start/end for new stack entry"));
4652 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4653 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4654 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4655 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4656 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4657 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4658 	if (gap_bot == gap_top)
4659 		return (KERN_SUCCESS);
4660 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4661 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4662 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4663 	if (rv == KERN_SUCCESS) {
4664 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4665 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4666 		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4667 		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4668 		    ("entry %p not stack gap %#x", gap_entry,
4669 		    gap_entry->eflags));
4670 
4671 		/*
4672 		 * Gap can never successfully handle a fault, so
4673 		 * read-ahead logic is never used for it.  Re-use
4674 		 * next_read of the gap entry to store
4675 		 * stack_guard_page for vm_map_growstack().
4676 		 * Similarly, since a gap cannot have a backing object,
4677 		 * store the original stack protections in the
4678 		 * object offset.
4679 		 */
4680 		gap_entry->next_read = sgp;
4681 		gap_entry->offset = prot | PROT_MAX(max);
4682 	} else {
4683 		(void)vm_map_delete(map, bot, top);
4684 	}
4685 	return (rv);
4686 }
4687 
4688 /*
4689  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4690  * successfully grow the stack.
4691  */
4692 static int
vm_map_growstack(vm_map_t map,vm_offset_t addr,vm_map_entry_t gap_entry)4693 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4694 {
4695 	vm_map_entry_t stack_entry;
4696 	struct proc *p;
4697 	struct vmspace *vm;
4698 	struct ucred *cred;
4699 	vm_offset_t gap_end, gap_start, grow_start;
4700 	vm_size_t grow_amount, guard, max_grow, sgp;
4701 	vm_prot_t prot, max;
4702 	rlim_t lmemlim, stacklim, vmemlim;
4703 	int rv, rv1 __diagused;
4704 	bool gap_deleted, grow_down, is_procstack;
4705 #ifdef notyet
4706 	uint64_t limit;
4707 #endif
4708 #ifdef RACCT
4709 	int error __diagused;
4710 #endif
4711 
4712 	p = curproc;
4713 	vm = p->p_vmspace;
4714 
4715 	/*
4716 	 * Disallow stack growth when the access is performed by a
4717 	 * debugger or AIO daemon.  The reason is that the wrong
4718 	 * resource limits are applied.
4719 	 */
4720 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4721 	    p->p_textvp == NULL))
4722 		return (KERN_FAILURE);
4723 
4724 	MPASS(!map->system_map);
4725 
4726 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4727 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4728 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4729 retry:
4730 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4731 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4732 		return (KERN_FAILURE);
4733 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4734 		return (KERN_SUCCESS);
4735 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4736 		stack_entry = vm_map_entry_succ(gap_entry);
4737 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4738 		    stack_entry->start != gap_entry->end)
4739 			return (KERN_FAILURE);
4740 		grow_amount = round_page(stack_entry->start - addr);
4741 		grow_down = true;
4742 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4743 		stack_entry = vm_map_entry_pred(gap_entry);
4744 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4745 		    stack_entry->end != gap_entry->start)
4746 			return (KERN_FAILURE);
4747 		grow_amount = round_page(addr + 1 - stack_entry->end);
4748 		grow_down = false;
4749 	} else {
4750 		return (KERN_FAILURE);
4751 	}
4752 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4753 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4754 	    gap_entry->next_read;
4755 	max_grow = gap_entry->end - gap_entry->start;
4756 	if (guard > max_grow)
4757 		return (KERN_NO_SPACE);
4758 	max_grow -= guard;
4759 	if (grow_amount > max_grow)
4760 		return (KERN_NO_SPACE);
4761 
4762 	/*
4763 	 * If this is the main process stack, see if we're over the stack
4764 	 * limit.
4765 	 */
4766 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4767 	    addr < (vm_offset_t)vm->vm_stacktop;
4768 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4769 		return (KERN_NO_SPACE);
4770 
4771 #ifdef RACCT
4772 	if (racct_enable) {
4773 		PROC_LOCK(p);
4774 		if (is_procstack && racct_set(p, RACCT_STACK,
4775 		    ctob(vm->vm_ssize) + grow_amount)) {
4776 			PROC_UNLOCK(p);
4777 			return (KERN_NO_SPACE);
4778 		}
4779 		PROC_UNLOCK(p);
4780 	}
4781 #endif
4782 
4783 	grow_amount = roundup(grow_amount, sgrowsiz);
4784 	if (grow_amount > max_grow)
4785 		grow_amount = max_grow;
4786 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4787 		grow_amount = trunc_page((vm_size_t)stacklim) -
4788 		    ctob(vm->vm_ssize);
4789 	}
4790 
4791 #ifdef notyet
4792 	PROC_LOCK(p);
4793 	limit = racct_get_available(p, RACCT_STACK);
4794 	PROC_UNLOCK(p);
4795 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4796 		grow_amount = limit - ctob(vm->vm_ssize);
4797 #endif
4798 
4799 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4800 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4801 			rv = KERN_NO_SPACE;
4802 			goto out;
4803 		}
4804 #ifdef RACCT
4805 		if (racct_enable) {
4806 			PROC_LOCK(p);
4807 			if (racct_set(p, RACCT_MEMLOCK,
4808 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4809 				PROC_UNLOCK(p);
4810 				rv = KERN_NO_SPACE;
4811 				goto out;
4812 			}
4813 			PROC_UNLOCK(p);
4814 		}
4815 #endif
4816 	}
4817 
4818 	/* If we would blow our VMEM resource limit, no go */
4819 	if (map->size + grow_amount > vmemlim) {
4820 		rv = KERN_NO_SPACE;
4821 		goto out;
4822 	}
4823 #ifdef RACCT
4824 	if (racct_enable) {
4825 		PROC_LOCK(p);
4826 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4827 			PROC_UNLOCK(p);
4828 			rv = KERN_NO_SPACE;
4829 			goto out;
4830 		}
4831 		PROC_UNLOCK(p);
4832 	}
4833 #endif
4834 
4835 	if (vm_map_lock_upgrade(map)) {
4836 		gap_entry = NULL;
4837 		vm_map_lock_read(map);
4838 		goto retry;
4839 	}
4840 
4841 	if (grow_down) {
4842 		/*
4843 		 * The gap_entry "offset" field is overloaded.  See
4844 		 * vm_map_stack_locked().
4845 		 */
4846 		prot = PROT_EXTRACT(gap_entry->offset);
4847 		max = PROT_MAX_EXTRACT(gap_entry->offset);
4848 		sgp = gap_entry->next_read;
4849 
4850 		grow_start = gap_entry->end - grow_amount;
4851 		if (gap_entry->start + grow_amount == gap_entry->end) {
4852 			gap_start = gap_entry->start;
4853 			gap_end = gap_entry->end;
4854 			vm_map_entry_delete(map, gap_entry);
4855 			gap_deleted = true;
4856 		} else {
4857 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4858 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4859 			gap_deleted = false;
4860 		}
4861 		rv = vm_map_insert(map, NULL, 0, grow_start,
4862 		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4863 		if (rv != KERN_SUCCESS) {
4864 			if (gap_deleted) {
4865 				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4866 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4867 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4868 				    &gap_entry);
4869 				MPASS(rv1 == KERN_SUCCESS);
4870 				gap_entry->next_read = sgp;
4871 				gap_entry->offset = prot | PROT_MAX(max);
4872 			} else
4873 				vm_map_entry_resize(map, gap_entry,
4874 				    grow_amount);
4875 		}
4876 	} else {
4877 		grow_start = stack_entry->end;
4878 		cred = stack_entry->cred;
4879 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4880 			cred = stack_entry->object.vm_object->cred;
4881 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4882 			rv = KERN_NO_SPACE;
4883 		/* Grow the underlying object if applicable. */
4884 		else if (stack_entry->object.vm_object == NULL ||
4885 		    vm_object_coalesce(stack_entry->object.vm_object,
4886 		    stack_entry->offset,
4887 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4888 		    grow_amount, cred != NULL)) {
4889 			if (gap_entry->start + grow_amount == gap_entry->end) {
4890 				vm_map_entry_delete(map, gap_entry);
4891 				vm_map_entry_resize(map, stack_entry,
4892 				    grow_amount);
4893 			} else {
4894 				gap_entry->start += grow_amount;
4895 				stack_entry->end += grow_amount;
4896 			}
4897 			map->size += grow_amount;
4898 			rv = KERN_SUCCESS;
4899 		} else
4900 			rv = KERN_FAILURE;
4901 	}
4902 	if (rv == KERN_SUCCESS && is_procstack)
4903 		vm->vm_ssize += btoc(grow_amount);
4904 
4905 	/*
4906 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4907 	 */
4908 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4909 		rv = vm_map_wire_locked(map, grow_start,
4910 		    grow_start + grow_amount,
4911 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4912 	}
4913 	vm_map_lock_downgrade(map);
4914 
4915 out:
4916 #ifdef RACCT
4917 	if (racct_enable && rv != KERN_SUCCESS) {
4918 		PROC_LOCK(p);
4919 		error = racct_set(p, RACCT_VMEM, map->size);
4920 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4921 		if (!old_mlock) {
4922 			error = racct_set(p, RACCT_MEMLOCK,
4923 			    ptoa(pmap_wired_count(map->pmap)));
4924 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4925 		}
4926 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4927 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4928 		PROC_UNLOCK(p);
4929 	}
4930 #endif
4931 
4932 	return (rv);
4933 }
4934 
4935 /*
4936  * Unshare the specified VM space for exec.  If other processes are
4937  * mapped to it, then create a new one.  The new vmspace is null.
4938  */
4939 int
vmspace_exec(struct proc * p,vm_offset_t minuser,vm_offset_t maxuser)4940 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4941 {
4942 	struct vmspace *oldvmspace = p->p_vmspace;
4943 	struct vmspace *newvmspace;
4944 
4945 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4946 	    ("vmspace_exec recursed"));
4947 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4948 	if (newvmspace == NULL)
4949 		return (ENOMEM);
4950 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4951 	/*
4952 	 * This code is written like this for prototype purposes.  The
4953 	 * goal is to avoid running down the vmspace here, but let the
4954 	 * other process's that are still using the vmspace to finally
4955 	 * run it down.  Even though there is little or no chance of blocking
4956 	 * here, it is a good idea to keep this form for future mods.
4957 	 */
4958 	PROC_VMSPACE_LOCK(p);
4959 	p->p_vmspace = newvmspace;
4960 	PROC_VMSPACE_UNLOCK(p);
4961 	if (p == curthread->td_proc)
4962 		pmap_activate(curthread);
4963 	curthread->td_pflags |= TDP_EXECVMSPC;
4964 	return (0);
4965 }
4966 
4967 /*
4968  * Unshare the specified VM space for forcing COW.  This
4969  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4970  */
4971 int
vmspace_unshare(struct proc * p)4972 vmspace_unshare(struct proc *p)
4973 {
4974 	struct vmspace *oldvmspace = p->p_vmspace;
4975 	struct vmspace *newvmspace;
4976 	vm_ooffset_t fork_charge;
4977 
4978 	/*
4979 	 * The caller is responsible for ensuring that the reference count
4980 	 * cannot concurrently transition 1 -> 2.
4981 	 */
4982 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4983 		return (0);
4984 	fork_charge = 0;
4985 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4986 	if (newvmspace == NULL)
4987 		return (ENOMEM);
4988 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4989 		vmspace_free(newvmspace);
4990 		return (ENOMEM);
4991 	}
4992 	PROC_VMSPACE_LOCK(p);
4993 	p->p_vmspace = newvmspace;
4994 	PROC_VMSPACE_UNLOCK(p);
4995 	if (p == curthread->td_proc)
4996 		pmap_activate(curthread);
4997 	vmspace_free(oldvmspace);
4998 	return (0);
4999 }
5000 
5001 /*
5002  *	vm_map_lookup:
5003  *
5004  *	Finds the VM object, offset, and
5005  *	protection for a given virtual address in the
5006  *	specified map, assuming a page fault of the
5007  *	type specified.
5008  *
5009  *	Leaves the map in question locked for read; return
5010  *	values are guaranteed until a vm_map_lookup_done
5011  *	call is performed.  Note that the map argument
5012  *	is in/out; the returned map must be used in
5013  *	the call to vm_map_lookup_done.
5014  *
5015  *	A handle (out_entry) is returned for use in
5016  *	vm_map_lookup_done, to make that fast.
5017  *
5018  *	If a lookup is requested with "write protection"
5019  *	specified, the map may be changed to perform virtual
5020  *	copying operations, although the data referenced will
5021  *	remain the same.
5022  */
5023 int
vm_map_lookup(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5024 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5025 	      vm_offset_t vaddr,
5026 	      vm_prot_t fault_typea,
5027 	      vm_map_entry_t *out_entry,	/* OUT */
5028 	      vm_object_t *object,		/* OUT */
5029 	      vm_pindex_t *pindex,		/* OUT */
5030 	      vm_prot_t *out_prot,		/* OUT */
5031 	      boolean_t *wired)			/* OUT */
5032 {
5033 	vm_map_entry_t entry;
5034 	vm_map_t map = *var_map;
5035 	vm_prot_t prot;
5036 	vm_prot_t fault_type;
5037 	vm_object_t eobject;
5038 	vm_size_t size;
5039 	struct ucred *cred;
5040 
5041 RetryLookup:
5042 
5043 	vm_map_lock_read(map);
5044 
5045 RetryLookupLocked:
5046 	/*
5047 	 * Lookup the faulting address.
5048 	 */
5049 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5050 		vm_map_unlock_read(map);
5051 		return (KERN_INVALID_ADDRESS);
5052 	}
5053 
5054 	entry = *out_entry;
5055 
5056 	/*
5057 	 * Handle submaps.
5058 	 */
5059 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5060 		vm_map_t old_map = map;
5061 
5062 		*var_map = map = entry->object.sub_map;
5063 		vm_map_unlock_read(old_map);
5064 		goto RetryLookup;
5065 	}
5066 
5067 	/*
5068 	 * Check whether this task is allowed to have this page.
5069 	 */
5070 	prot = entry->protection;
5071 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5072 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5073 		if (prot == VM_PROT_NONE && map != kernel_map &&
5074 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5075 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5076 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5077 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5078 			goto RetryLookupLocked;
5079 	}
5080 	fault_type = fault_typea & VM_PROT_ALL;
5081 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5082 		vm_map_unlock_read(map);
5083 		return (KERN_PROTECTION_FAILURE);
5084 	}
5085 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5086 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5087 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5088 	    ("entry %p flags %x", entry, entry->eflags));
5089 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5090 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5091 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5092 		vm_map_unlock_read(map);
5093 		return (KERN_PROTECTION_FAILURE);
5094 	}
5095 
5096 	/*
5097 	 * If this page is not pageable, we have to get it for all possible
5098 	 * accesses.
5099 	 */
5100 	*wired = (entry->wired_count != 0);
5101 	if (*wired)
5102 		fault_type = entry->protection;
5103 	size = entry->end - entry->start;
5104 
5105 	/*
5106 	 * If the entry was copy-on-write, we either ...
5107 	 */
5108 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5109 		/*
5110 		 * If we want to write the page, we may as well handle that
5111 		 * now since we've got the map locked.
5112 		 *
5113 		 * If we don't need to write the page, we just demote the
5114 		 * permissions allowed.
5115 		 */
5116 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5117 		    (fault_typea & VM_PROT_COPY) != 0) {
5118 			/*
5119 			 * Make a new object, and place it in the object
5120 			 * chain.  Note that no new references have appeared
5121 			 * -- one just moved from the map to the new
5122 			 * object.
5123 			 */
5124 			if (vm_map_lock_upgrade(map))
5125 				goto RetryLookup;
5126 
5127 			if (entry->cred == NULL) {
5128 				/*
5129 				 * The debugger owner is charged for
5130 				 * the memory.
5131 				 */
5132 				cred = curthread->td_ucred;
5133 				crhold(cred);
5134 				if (!swap_reserve_by_cred(size, cred)) {
5135 					crfree(cred);
5136 					vm_map_unlock(map);
5137 					return (KERN_RESOURCE_SHORTAGE);
5138 				}
5139 				entry->cred = cred;
5140 			}
5141 			eobject = entry->object.vm_object;
5142 			vm_object_shadow(&entry->object.vm_object,
5143 			    &entry->offset, size, entry->cred, false);
5144 			if (eobject == entry->object.vm_object) {
5145 				/*
5146 				 * The object was not shadowed.
5147 				 */
5148 				swap_release_by_cred(size, entry->cred);
5149 				crfree(entry->cred);
5150 			}
5151 			entry->cred = NULL;
5152 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5153 
5154 			vm_map_lock_downgrade(map);
5155 		} else {
5156 			/*
5157 			 * We're attempting to read a copy-on-write page --
5158 			 * don't allow writes.
5159 			 */
5160 			prot &= ~VM_PROT_WRITE;
5161 		}
5162 	}
5163 
5164 	/*
5165 	 * Create an object if necessary.
5166 	 */
5167 	if (entry->object.vm_object == NULL && !map->system_map) {
5168 		if (vm_map_lock_upgrade(map))
5169 			goto RetryLookup;
5170 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5171 		    NULL, entry->cred, size);
5172 		entry->offset = 0;
5173 		entry->cred = NULL;
5174 		vm_map_lock_downgrade(map);
5175 	}
5176 
5177 	/*
5178 	 * Return the object/offset from this entry.  If the entry was
5179 	 * copy-on-write or empty, it has been fixed up.
5180 	 */
5181 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5182 	*object = entry->object.vm_object;
5183 
5184 	*out_prot = prot;
5185 	return (KERN_SUCCESS);
5186 }
5187 
5188 /*
5189  *	vm_map_lookup_locked:
5190  *
5191  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5192  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5193  */
5194 int
vm_map_lookup_locked(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5195 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5196 		     vm_offset_t vaddr,
5197 		     vm_prot_t fault_typea,
5198 		     vm_map_entry_t *out_entry,	/* OUT */
5199 		     vm_object_t *object,	/* OUT */
5200 		     vm_pindex_t *pindex,	/* OUT */
5201 		     vm_prot_t *out_prot,	/* OUT */
5202 		     boolean_t *wired)		/* OUT */
5203 {
5204 	vm_map_entry_t entry;
5205 	vm_map_t map = *var_map;
5206 	vm_prot_t prot;
5207 	vm_prot_t fault_type = fault_typea;
5208 
5209 	/*
5210 	 * Lookup the faulting address.
5211 	 */
5212 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5213 		return (KERN_INVALID_ADDRESS);
5214 
5215 	entry = *out_entry;
5216 
5217 	/*
5218 	 * Fail if the entry refers to a submap.
5219 	 */
5220 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5221 		return (KERN_FAILURE);
5222 
5223 	/*
5224 	 * Check whether this task is allowed to have this page.
5225 	 */
5226 	prot = entry->protection;
5227 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5228 	if ((fault_type & prot) != fault_type)
5229 		return (KERN_PROTECTION_FAILURE);
5230 
5231 	/*
5232 	 * If this page is not pageable, we have to get it for all possible
5233 	 * accesses.
5234 	 */
5235 	*wired = (entry->wired_count != 0);
5236 	if (*wired)
5237 		fault_type = entry->protection;
5238 
5239 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5240 		/*
5241 		 * Fail if the entry was copy-on-write for a write fault.
5242 		 */
5243 		if (fault_type & VM_PROT_WRITE)
5244 			return (KERN_FAILURE);
5245 		/*
5246 		 * We're attempting to read a copy-on-write page --
5247 		 * don't allow writes.
5248 		 */
5249 		prot &= ~VM_PROT_WRITE;
5250 	}
5251 
5252 	/*
5253 	 * Fail if an object should be created.
5254 	 */
5255 	if (entry->object.vm_object == NULL && !map->system_map)
5256 		return (KERN_FAILURE);
5257 
5258 	/*
5259 	 * Return the object/offset from this entry.  If the entry was
5260 	 * copy-on-write or empty, it has been fixed up.
5261 	 */
5262 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5263 	*object = entry->object.vm_object;
5264 
5265 	*out_prot = prot;
5266 	return (KERN_SUCCESS);
5267 }
5268 
5269 /*
5270  *	vm_map_lookup_done:
5271  *
5272  *	Releases locks acquired by a vm_map_lookup
5273  *	(according to the handle returned by that lookup).
5274  */
5275 void
vm_map_lookup_done(vm_map_t map,vm_map_entry_t entry)5276 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5277 {
5278 	/*
5279 	 * Unlock the main-level map
5280 	 */
5281 	vm_map_unlock_read(map);
5282 }
5283 
5284 vm_offset_t
vm_map_max_KBI(const struct vm_map * map)5285 vm_map_max_KBI(const struct vm_map *map)
5286 {
5287 
5288 	return (vm_map_max(map));
5289 }
5290 
5291 vm_offset_t
vm_map_min_KBI(const struct vm_map * map)5292 vm_map_min_KBI(const struct vm_map *map)
5293 {
5294 
5295 	return (vm_map_min(map));
5296 }
5297 
5298 pmap_t
vm_map_pmap_KBI(vm_map_t map)5299 vm_map_pmap_KBI(vm_map_t map)
5300 {
5301 
5302 	return (map->pmap);
5303 }
5304 
5305 bool
vm_map_range_valid_KBI(vm_map_t map,vm_offset_t start,vm_offset_t end)5306 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5307 {
5308 
5309 	return (vm_map_range_valid(map, start, end));
5310 }
5311 
5312 #ifdef INVARIANTS
5313 static void
_vm_map_assert_consistent(vm_map_t map,int check)5314 _vm_map_assert_consistent(vm_map_t map, int check)
5315 {
5316 	vm_map_entry_t entry, prev;
5317 	vm_map_entry_t cur, header, lbound, ubound;
5318 	vm_size_t max_left, max_right;
5319 
5320 #ifdef DIAGNOSTIC
5321 	++map->nupdates;
5322 #endif
5323 	if (enable_vmmap_check != check)
5324 		return;
5325 
5326 	header = prev = &map->header;
5327 	VM_MAP_ENTRY_FOREACH(entry, map) {
5328 		KASSERT(prev->end <= entry->start,
5329 		    ("map %p prev->end = %jx, start = %jx", map,
5330 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5331 		KASSERT(entry->start < entry->end,
5332 		    ("map %p start = %jx, end = %jx", map,
5333 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5334 		KASSERT(entry->left == header ||
5335 		    entry->left->start < entry->start,
5336 		    ("map %p left->start = %jx, start = %jx", map,
5337 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5338 		KASSERT(entry->right == header ||
5339 		    entry->start < entry->right->start,
5340 		    ("map %p start = %jx, right->start = %jx", map,
5341 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5342 		cur = map->root;
5343 		lbound = ubound = header;
5344 		for (;;) {
5345 			if (entry->start < cur->start) {
5346 				ubound = cur;
5347 				cur = cur->left;
5348 				KASSERT(cur != lbound,
5349 				    ("map %p cannot find %jx",
5350 				    map, (uintmax_t)entry->start));
5351 			} else if (cur->end <= entry->start) {
5352 				lbound = cur;
5353 				cur = cur->right;
5354 				KASSERT(cur != ubound,
5355 				    ("map %p cannot find %jx",
5356 				    map, (uintmax_t)entry->start));
5357 			} else {
5358 				KASSERT(cur == entry,
5359 				    ("map %p cannot find %jx",
5360 				    map, (uintmax_t)entry->start));
5361 				break;
5362 			}
5363 		}
5364 		max_left = vm_map_entry_max_free_left(entry, lbound);
5365 		max_right = vm_map_entry_max_free_right(entry, ubound);
5366 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5367 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5368 		    (uintmax_t)entry->max_free,
5369 		    (uintmax_t)max_left, (uintmax_t)max_right));
5370 		prev = entry;
5371 	}
5372 	KASSERT(prev->end <= entry->start,
5373 	    ("map %p prev->end = %jx, start = %jx", map,
5374 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5375 }
5376 #endif
5377 
5378 #include "opt_ddb.h"
5379 #ifdef DDB
5380 #include <sys/kernel.h>
5381 
5382 #include <ddb/ddb.h>
5383 
5384 static void
vm_map_print(vm_map_t map)5385 vm_map_print(vm_map_t map)
5386 {
5387 	vm_map_entry_t entry, prev;
5388 
5389 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5390 	    (void *)map,
5391 	    (void *)map->pmap, map->nentries, map->timestamp);
5392 
5393 	db_indent += 2;
5394 	prev = &map->header;
5395 	VM_MAP_ENTRY_FOREACH(entry, map) {
5396 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5397 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5398 		    entry->eflags);
5399 		{
5400 			static const char * const inheritance_name[4] =
5401 			{"share", "copy", "none", "donate_copy"};
5402 
5403 			db_iprintf(" prot=%x/%x/%s",
5404 			    entry->protection,
5405 			    entry->max_protection,
5406 			    inheritance_name[(int)(unsigned char)
5407 			    entry->inheritance]);
5408 			if (entry->wired_count != 0)
5409 				db_printf(", wired");
5410 		}
5411 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5412 			db_printf(", share=%p, offset=0x%jx\n",
5413 			    (void *)entry->object.sub_map,
5414 			    (uintmax_t)entry->offset);
5415 			if (prev == &map->header ||
5416 			    prev->object.sub_map !=
5417 				entry->object.sub_map) {
5418 				db_indent += 2;
5419 				vm_map_print((vm_map_t)entry->object.sub_map);
5420 				db_indent -= 2;
5421 			}
5422 		} else {
5423 			if (entry->cred != NULL)
5424 				db_printf(", ruid %d", entry->cred->cr_ruid);
5425 			db_printf(", object=%p, offset=0x%jx",
5426 			    (void *)entry->object.vm_object,
5427 			    (uintmax_t)entry->offset);
5428 			if (entry->object.vm_object && entry->object.vm_object->cred)
5429 				db_printf(", obj ruid %d charge %jx",
5430 				    entry->object.vm_object->cred->cr_ruid,
5431 				    (uintmax_t)entry->object.vm_object->charge);
5432 			if (entry->eflags & MAP_ENTRY_COW)
5433 				db_printf(", copy (%s)",
5434 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5435 			db_printf("\n");
5436 
5437 			if (prev == &map->header ||
5438 			    prev->object.vm_object !=
5439 				entry->object.vm_object) {
5440 				db_indent += 2;
5441 				vm_object_print((db_expr_t)(intptr_t)
5442 						entry->object.vm_object,
5443 						0, 0, (char *)0);
5444 				db_indent -= 2;
5445 			}
5446 		}
5447 		prev = entry;
5448 	}
5449 	db_indent -= 2;
5450 }
5451 
DB_SHOW_COMMAND(map,map)5452 DB_SHOW_COMMAND(map, map)
5453 {
5454 
5455 	if (!have_addr) {
5456 		db_printf("usage: show map <addr>\n");
5457 		return;
5458 	}
5459 	vm_map_print((vm_map_t)addr);
5460 }
5461 
DB_SHOW_COMMAND(procvm,procvm)5462 DB_SHOW_COMMAND(procvm, procvm)
5463 {
5464 	struct proc *p;
5465 
5466 	if (have_addr) {
5467 		p = db_lookup_proc(addr);
5468 	} else {
5469 		p = curproc;
5470 	}
5471 
5472 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5473 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5474 	    (void *)vmspace_pmap(p->p_vmspace));
5475 
5476 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5477 }
5478 
5479 #endif /* DDB */
5480