1 /*-
2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 #include "opt_quota.h"
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bio.h>
70 #include <sys/buf.h>
71 #include <sys/capsicum.h>
72 #include <sys/conf.h>
73 #include <sys/fcntl.h>
74 #include <sys/file.h>
75 #include <sys/filedesc.h>
76 #include <sys/gsb_crc32.h>
77 #include <sys/kernel.h>
78 #include <sys/mount.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/stat.h>
82 #include <sys/syscallsubr.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/taskqueue.h>
86 #include <sys/vnode.h>
87
88 #include <security/audit/audit.h>
89
90 #include <geom/geom.h>
91 #include <geom/geom_vfs.h>
92
93 #include <ufs/ufs/dir.h>
94 #include <ufs/ufs/extattr.h>
95 #include <ufs/ufs/quota.h>
96 #include <ufs/ufs/inode.h>
97 #include <ufs/ufs/ufs_extern.h>
98 #include <ufs/ufs/ufsmount.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102 #include <ufs/ffs/softdep.h>
103
104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg,
105 ufs2_daddr_t bpref, int size, int rsize);
106
107 static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
108 int);
109 static ufs2_daddr_t
110 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
111 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
112 struct vnode *, ufs2_daddr_t, long, ino_t,
113 struct workhead *);
114 #ifdef INVARIANTS
115 static int ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long);
116 #endif
117 static void ffs_checkcgintegrity(struct fs *, uint64_t, int);
118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t,
119 int);
120 static ino_t ffs_dirpref(struct inode *);
121 static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t,
122 int, int);
123 static ufs2_daddr_t ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t,
124 int, int, allocfcn_t *);
125 static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
126 int);
127 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
128 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
129 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
130 static void ffs_ckhash_cg(struct buf *);
131
132 /*
133 * Allocate a block in the filesystem.
134 *
135 * The size of the requested block is given, which must be some
136 * multiple of fs_fsize and <= fs_bsize.
137 * A preference may be optionally specified. If a preference is given
138 * the following hierarchy is used to allocate a block:
139 * 1) allocate the requested block.
140 * 2) allocate a rotationally optimal block in the same cylinder.
141 * 3) allocate a block in the same cylinder group.
142 * 4) quadratically rehash into other cylinder groups, until an
143 * available block is located.
144 * If no block preference is given the following hierarchy is used
145 * to allocate a block:
146 * 1) allocate a block in the cylinder group that contains the
147 * inode for the file.
148 * 2) quadratically rehash into other cylinder groups, until an
149 * available block is located.
150 */
151 int
ffs_alloc(struct inode * ip,ufs2_daddr_t lbn,ufs2_daddr_t bpref,int size,int flags,struct ucred * cred,ufs2_daddr_t * bnp)152 ffs_alloc(struct inode *ip,
153 ufs2_daddr_t lbn,
154 ufs2_daddr_t bpref,
155 int size,
156 int flags,
157 struct ucred *cred,
158 ufs2_daddr_t *bnp)
159 {
160 struct fs *fs;
161 struct ufsmount *ump;
162 ufs2_daddr_t bno;
163 uint64_t cg, reclaimed;
164 int64_t delta;
165 #ifdef QUOTA
166 int error;
167 #endif
168
169 *bnp = 0;
170 ump = ITOUMP(ip);
171 fs = ump->um_fs;
172 mtx_assert(UFS_MTX(ump), MA_OWNED);
173 #ifdef INVARIANTS
174 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
175 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
176 devtoname(ump->um_dev), (long)fs->fs_bsize, size,
177 fs->fs_fsmnt);
178 panic("ffs_alloc: bad size");
179 }
180 if (cred == NOCRED)
181 panic("ffs_alloc: missing credential");
182 #endif /* INVARIANTS */
183 reclaimed = 0;
184 retry:
185 #ifdef QUOTA
186 UFS_UNLOCK(ump);
187 error = chkdq(ip, btodb(size), cred, 0);
188 if (error)
189 return (error);
190 UFS_LOCK(ump);
191 #endif
192 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
193 goto nospace;
194 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
195 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
196 goto nospace;
197 if (bpref >= fs->fs_size)
198 bpref = 0;
199 if (bpref == 0)
200 cg = ino_to_cg(fs, ip->i_number);
201 else
202 cg = dtog(fs, bpref);
203 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
204 if (bno > 0) {
205 delta = btodb(size);
206 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
207 if (flags & IO_EXT)
208 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
209 else
210 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
211 *bnp = bno;
212 return (0);
213 }
214 nospace:
215 #ifdef QUOTA
216 UFS_UNLOCK(ump);
217 /*
218 * Restore user's disk quota because allocation failed.
219 */
220 (void) chkdq(ip, -btodb(size), cred, FORCE);
221 UFS_LOCK(ump);
222 #endif
223 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
224 reclaimed = 1;
225 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
226 goto retry;
227 }
228 if (ffs_fsfail_cleanup_locked(ump, 0)) {
229 UFS_UNLOCK(ump);
230 return (ENXIO);
231 }
232 if (reclaimed > 0 &&
233 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
234 UFS_UNLOCK(ump);
235 ffs_fserr(fs, ip->i_number, "filesystem full");
236 uprintf("\n%s: write failed, filesystem is full\n",
237 fs->fs_fsmnt);
238 } else {
239 UFS_UNLOCK(ump);
240 }
241 return (ENOSPC);
242 }
243
244 /*
245 * Reallocate a fragment to a bigger size
246 *
247 * The number and size of the old block is given, and a preference
248 * and new size is also specified. The allocator attempts to extend
249 * the original block. Failing that, the regular block allocator is
250 * invoked to get an appropriate block.
251 */
252 int
ffs_realloccg(struct inode * ip,ufs2_daddr_t lbprev,ufs2_daddr_t bprev,ufs2_daddr_t bpref,int osize,int nsize,int flags,struct ucred * cred,struct buf ** bpp)253 ffs_realloccg(struct inode *ip,
254 ufs2_daddr_t lbprev,
255 ufs2_daddr_t bprev,
256 ufs2_daddr_t bpref,
257 int osize,
258 int nsize,
259 int flags,
260 struct ucred *cred,
261 struct buf **bpp)
262 {
263 struct vnode *vp;
264 struct fs *fs;
265 struct buf *bp;
266 struct ufsmount *ump;
267 uint64_t cg, request, reclaimed;
268 int error, gbflags;
269 ufs2_daddr_t bno;
270 int64_t delta;
271
272 vp = ITOV(ip);
273 ump = ITOUMP(ip);
274 fs = ump->um_fs;
275 bp = NULL;
276 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
277 #ifdef WITNESS
278 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
279 #endif
280
281 mtx_assert(UFS_MTX(ump), MA_OWNED);
282 #ifdef INVARIANTS
283 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
284 panic("ffs_realloccg: allocation on suspended filesystem");
285 if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
286 (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
287 printf(
288 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
289 devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
290 nsize, fs->fs_fsmnt);
291 panic("ffs_realloccg: bad size");
292 }
293 if (cred == NOCRED)
294 panic("ffs_realloccg: missing credential");
295 #endif /* INVARIANTS */
296 reclaimed = 0;
297 retry:
298 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
299 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
300 goto nospace;
301 }
302 if (bprev == 0) {
303 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
304 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
305 fs->fs_fsmnt);
306 panic("ffs_realloccg: bad bprev");
307 }
308 UFS_UNLOCK(ump);
309 /*
310 * Allocate the extra space in the buffer.
311 */
312 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
313 if (error) {
314 return (error);
315 }
316
317 if (bp->b_blkno == bp->b_lblkno) {
318 if (lbprev >= UFS_NDADDR)
319 panic("ffs_realloccg: lbprev out of range");
320 bp->b_blkno = fsbtodb(fs, bprev);
321 }
322
323 #ifdef QUOTA
324 error = chkdq(ip, btodb(nsize - osize), cred, 0);
325 if (error) {
326 brelse(bp);
327 return (error);
328 }
329 #endif
330 /*
331 * Check for extension in the existing location.
332 */
333 *bpp = NULL;
334 cg = dtog(fs, bprev);
335 UFS_LOCK(ump);
336 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
337 if (bno) {
338 if (bp->b_blkno != fsbtodb(fs, bno))
339 panic("ffs_realloccg: bad blockno");
340 delta = btodb(nsize - osize);
341 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
342 if (flags & IO_EXT)
343 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
344 else
345 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
346 allocbuf(bp, nsize);
347 bp->b_flags |= B_DONE;
348 vfs_bio_bzero_buf(bp, osize, nsize - osize);
349 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
350 vfs_bio_set_valid(bp, osize, nsize - osize);
351 *bpp = bp;
352 return (0);
353 }
354 /*
355 * Allocate a new disk location.
356 */
357 if (bpref >= fs->fs_size)
358 bpref = 0;
359 switch ((int)fs->fs_optim) {
360 case FS_OPTSPACE:
361 /*
362 * Allocate an exact sized fragment. Although this makes
363 * best use of space, we will waste time relocating it if
364 * the file continues to grow. If the fragmentation is
365 * less than half of the minimum free reserve, we choose
366 * to begin optimizing for time.
367 */
368 request = nsize;
369 if (fs->fs_minfree <= 5 ||
370 fs->fs_cstotal.cs_nffree >
371 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
372 break;
373 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
374 fs->fs_fsmnt);
375 fs->fs_optim = FS_OPTTIME;
376 break;
377 case FS_OPTTIME:
378 /*
379 * At this point we have discovered a file that is trying to
380 * grow a small fragment to a larger fragment. To save time,
381 * we allocate a full sized block, then free the unused portion.
382 * If the file continues to grow, the `ffs_fragextend' call
383 * above will be able to grow it in place without further
384 * copying. If aberrant programs cause disk fragmentation to
385 * grow within 2% of the free reserve, we choose to begin
386 * optimizing for space.
387 */
388 request = fs->fs_bsize;
389 if (fs->fs_cstotal.cs_nffree <
390 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
391 break;
392 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
393 fs->fs_fsmnt);
394 fs->fs_optim = FS_OPTSPACE;
395 break;
396 default:
397 printf("dev = %s, optim = %ld, fs = %s\n",
398 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
399 panic("ffs_realloccg: bad optim");
400 /* NOTREACHED */
401 }
402 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
403 if (bno > 0) {
404 bp->b_blkno = fsbtodb(fs, bno);
405 if (!DOINGSOFTDEP(vp))
406 /*
407 * The usual case is that a smaller fragment that
408 * was just allocated has been replaced with a bigger
409 * fragment or a full-size block. If it is marked as
410 * B_DELWRI, the current contents have not been written
411 * to disk. It is possible that the block was written
412 * earlier, but very uncommon. If the block has never
413 * been written, there is no need to send a BIO_DELETE
414 * for it when it is freed. The gain from avoiding the
415 * TRIMs for the common case of unwritten blocks far
416 * exceeds the cost of the write amplification for the
417 * uncommon case of failing to send a TRIM for a block
418 * that had been written.
419 */
420 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
421 ip->i_number, vp->v_type, NULL,
422 (bp->b_flags & B_DELWRI) != 0 ?
423 NOTRIM_KEY : SINGLETON_KEY);
424 delta = btodb(nsize - osize);
425 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
426 if (flags & IO_EXT)
427 UFS_INODE_SET_FLAG(ip, IN_CHANGE);
428 else
429 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
430 allocbuf(bp, nsize);
431 bp->b_flags |= B_DONE;
432 vfs_bio_bzero_buf(bp, osize, nsize - osize);
433 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
434 vfs_bio_set_valid(bp, osize, nsize - osize);
435 *bpp = bp;
436 return (0);
437 }
438 #ifdef QUOTA
439 UFS_UNLOCK(ump);
440 /*
441 * Restore user's disk quota because allocation failed.
442 */
443 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
444 UFS_LOCK(ump);
445 #endif
446 nospace:
447 /*
448 * no space available
449 */
450 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
451 reclaimed = 1;
452 UFS_UNLOCK(ump);
453 if (bp) {
454 brelse(bp);
455 bp = NULL;
456 }
457 UFS_LOCK(ump);
458 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
459 goto retry;
460 }
461 if (bp)
462 brelse(bp);
463 if (ffs_fsfail_cleanup_locked(ump, 0)) {
464 UFS_UNLOCK(ump);
465 return (ENXIO);
466 }
467 if (reclaimed > 0 &&
468 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
469 UFS_UNLOCK(ump);
470 ffs_fserr(fs, ip->i_number, "filesystem full");
471 uprintf("\n%s: write failed, filesystem is full\n",
472 fs->fs_fsmnt);
473 } else {
474 UFS_UNLOCK(ump);
475 }
476 return (ENOSPC);
477 }
478
479 /*
480 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
481 *
482 * The vnode and an array of buffer pointers for a range of sequential
483 * logical blocks to be made contiguous is given. The allocator attempts
484 * to find a range of sequential blocks starting as close as possible
485 * from the end of the allocation for the logical block immediately
486 * preceding the current range. If successful, the physical block numbers
487 * in the buffer pointers and in the inode are changed to reflect the new
488 * allocation. If unsuccessful, the allocation is left unchanged. The
489 * success in doing the reallocation is returned. Note that the error
490 * return is not reflected back to the user. Rather the previous block
491 * allocation will be used.
492 */
493
494 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
495 "FFS filesystem");
496
497 static int doasyncfree = 1;
498 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
499 "do not force synchronous writes when blocks are reallocated");
500
501 static int doreallocblks = 1;
502 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
503 "enable block reallocation");
504
505 static int dotrimcons = 1;
506 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
507 "enable BIO_DELETE / TRIM consolidation");
508
509 static int maxclustersearch = 10;
510 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
511 0, "max number of cylinder group to search for contigous blocks");
512
513 #ifdef DIAGNOSTIC
514 static int prtrealloc = 0;
515 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
516 "print out FFS filesystem block reallocation operations");
517 #endif
518
519 int
ffs_reallocblks(struct vop_reallocblks_args * ap)520 ffs_reallocblks(
521 struct vop_reallocblks_args /* {
522 struct vnode *a_vp;
523 struct cluster_save *a_buflist;
524 } */ *ap)
525 {
526 struct ufsmount *ump;
527 int error;
528
529 /*
530 * We used to skip reallocating the blocks of a file into a
531 * contiguous sequence if the underlying flash device requested
532 * BIO_DELETE notifications, because devices that benefit from
533 * BIO_DELETE also benefit from not moving the data. However,
534 * the destination for the data is usually moved before the data
535 * is written to the initially allocated location, so we rarely
536 * suffer the penalty of extra writes. With the addition of the
537 * consolidation of contiguous blocks into single BIO_DELETE
538 * operations, having fewer but larger contiguous blocks reduces
539 * the number of (slow and expensive) BIO_DELETE operations. So
540 * when doing BIO_DELETE consolidation, we do block reallocation.
541 *
542 * Skip if reallocblks has been disabled globally.
543 */
544 ump = ap->a_vp->v_mount->mnt_data;
545 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
546 doreallocblks == 0)
547 return (ENOSPC);
548
549 /*
550 * We can't wait in softdep prealloc as it may fsync and recurse
551 * here. Instead we simply fail to reallocate blocks if this
552 * rare condition arises.
553 */
554 if (DOINGSUJ(ap->a_vp))
555 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
556 return (ENOSPC);
557 vn_seqc_write_begin(ap->a_vp);
558 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
559 ffs_reallocblks_ufs2(ap);
560 vn_seqc_write_end(ap->a_vp);
561 return (error);
562 }
563
564 static int
ffs_reallocblks_ufs1(struct vop_reallocblks_args * ap)565 ffs_reallocblks_ufs1(
566 struct vop_reallocblks_args /* {
567 struct vnode *a_vp;
568 struct cluster_save *a_buflist;
569 } */ *ap)
570 {
571 struct fs *fs;
572 struct inode *ip;
573 struct vnode *vp;
574 struct buf *sbp, *ebp, *bp;
575 ufs1_daddr_t *bap, *sbap, *ebap;
576 struct cluster_save *buflist;
577 struct ufsmount *ump;
578 ufs_lbn_t start_lbn, end_lbn;
579 ufs1_daddr_t soff, newblk, blkno;
580 ufs2_daddr_t pref;
581 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
582 int i, cg, len, start_lvl, end_lvl, ssize;
583
584 vp = ap->a_vp;
585 ip = VTOI(vp);
586 ump = ITOUMP(ip);
587 fs = ump->um_fs;
588 /*
589 * If we are not tracking block clusters or if we have less than 4%
590 * free blocks left, then do not attempt to cluster. Running with
591 * less than 5% free block reserve is not recommended and those that
592 * choose to do so do not expect to have good file layout.
593 */
594 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
595 return (ENOSPC);
596 buflist = ap->a_buflist;
597 len = buflist->bs_nchildren;
598 start_lbn = buflist->bs_children[0]->b_lblkno;
599 end_lbn = start_lbn + len - 1;
600 #ifdef INVARIANTS
601 for (i = 0; i < len; i++)
602 if (!ffs_checkfreeblk(ip,
603 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
604 panic("ffs_reallocblks: unallocated block 1");
605 for (i = 1; i < len; i++)
606 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
607 panic("ffs_reallocblks: non-logical cluster");
608 blkno = buflist->bs_children[0]->b_blkno;
609 ssize = fsbtodb(fs, fs->fs_frag);
610 for (i = 1; i < len - 1; i++)
611 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
612 panic("ffs_reallocblks: non-physical cluster %d", i);
613 #endif
614 /*
615 * If the cluster crosses the boundary for the first indirect
616 * block, leave space for the indirect block. Indirect blocks
617 * are initially laid out in a position after the last direct
618 * block. Block reallocation would usually destroy locality by
619 * moving the indirect block out of the way to make room for
620 * data blocks if we didn't compensate here. We should also do
621 * this for other indirect block boundaries, but it is only
622 * important for the first one.
623 */
624 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
625 return (ENOSPC);
626 /*
627 * If the latest allocation is in a new cylinder group, assume that
628 * the filesystem has decided to move and do not force it back to
629 * the previous cylinder group.
630 */
631 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
632 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
633 return (ENOSPC);
634 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
635 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
636 return (ENOSPC);
637 /*
638 * Get the starting offset and block map for the first block.
639 */
640 if (start_lvl == 0) {
641 sbap = &ip->i_din1->di_db[0];
642 soff = start_lbn;
643 } else {
644 idp = &start_ap[start_lvl - 1];
645 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
646 brelse(sbp);
647 return (ENOSPC);
648 }
649 sbap = (ufs1_daddr_t *)sbp->b_data;
650 soff = idp->in_off;
651 }
652 /*
653 * If the block range spans two block maps, get the second map.
654 */
655 ebap = NULL;
656 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
657 ssize = len;
658 } else {
659 #ifdef INVARIANTS
660 if (start_lvl > 0 &&
661 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
662 panic("ffs_reallocblk: start == end");
663 #endif
664 ssize = len - (idp->in_off + 1);
665 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
666 goto fail;
667 ebap = (ufs1_daddr_t *)ebp->b_data;
668 }
669 /*
670 * Find the preferred location for the cluster. If we have not
671 * previously failed at this endeavor, then follow our standard
672 * preference calculation. If we have failed at it, then pick up
673 * where we last ended our search.
674 */
675 UFS_LOCK(ump);
676 if (ip->i_nextclustercg == -1)
677 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
678 else
679 pref = cgdata(fs, ip->i_nextclustercg);
680 /*
681 * Search the block map looking for an allocation of the desired size.
682 * To avoid wasting too much time, we limit the number of cylinder
683 * groups that we will search.
684 */
685 cg = dtog(fs, pref);
686 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
687 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
688 break;
689 cg += 1;
690 if (cg >= fs->fs_ncg)
691 cg = 0;
692 }
693 /*
694 * If we have failed in our search, record where we gave up for
695 * next time. Otherwise, fall back to our usual search citerion.
696 */
697 if (newblk == 0) {
698 ip->i_nextclustercg = cg;
699 UFS_UNLOCK(ump);
700 goto fail;
701 }
702 ip->i_nextclustercg = -1;
703 /*
704 * We have found a new contiguous block.
705 *
706 * First we have to replace the old block pointers with the new
707 * block pointers in the inode and indirect blocks associated
708 * with the file.
709 */
710 #ifdef DIAGNOSTIC
711 if (prtrealloc)
712 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
713 (uintmax_t)ip->i_number,
714 (intmax_t)start_lbn, (intmax_t)end_lbn);
715 #endif
716 blkno = newblk;
717 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
718 if (i == ssize) {
719 bap = ebap;
720 soff = -i;
721 }
722 #ifdef INVARIANTS
723 if (!ffs_checkfreeblk(ip,
724 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
725 panic("ffs_reallocblks: unallocated block 2");
726 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
727 panic("ffs_reallocblks: alloc mismatch");
728 #endif
729 #ifdef DIAGNOSTIC
730 if (prtrealloc)
731 printf(" %d,", *bap);
732 #endif
733 if (DOINGSOFTDEP(vp)) {
734 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
735 softdep_setup_allocdirect(ip, start_lbn + i,
736 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
737 buflist->bs_children[i]);
738 else
739 softdep_setup_allocindir_page(ip, start_lbn + i,
740 i < ssize ? sbp : ebp, soff + i, blkno,
741 *bap, buflist->bs_children[i]);
742 }
743 *bap++ = blkno;
744 }
745 /*
746 * Next we must write out the modified inode and indirect blocks.
747 * For strict correctness, the writes should be synchronous since
748 * the old block values may have been written to disk. In practise
749 * they are almost never written, but if we are concerned about
750 * strict correctness, the `doasyncfree' flag should be set to zero.
751 *
752 * The test on `doasyncfree' should be changed to test a flag
753 * that shows whether the associated buffers and inodes have
754 * been written. The flag should be set when the cluster is
755 * started and cleared whenever the buffer or inode is flushed.
756 * We can then check below to see if it is set, and do the
757 * synchronous write only when it has been cleared.
758 */
759 if (sbap != &ip->i_din1->di_db[0]) {
760 if (doasyncfree)
761 bdwrite(sbp);
762 else
763 bwrite(sbp);
764 } else {
765 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
766 if (!doasyncfree)
767 ffs_update(vp, 1);
768 }
769 if (ssize < len) {
770 if (doasyncfree)
771 bdwrite(ebp);
772 else
773 bwrite(ebp);
774 }
775 /*
776 * Last, free the old blocks and assign the new blocks to the buffers.
777 */
778 #ifdef DIAGNOSTIC
779 if (prtrealloc)
780 printf("\n\tnew:");
781 #endif
782 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
783 bp = buflist->bs_children[i];
784 if (!DOINGSOFTDEP(vp))
785 /*
786 * The usual case is that a set of N-contiguous blocks
787 * that was just allocated has been replaced with a
788 * set of N+1-contiguous blocks. If they are marked as
789 * B_DELWRI, the current contents have not been written
790 * to disk. It is possible that the blocks were written
791 * earlier, but very uncommon. If the blocks have never
792 * been written, there is no need to send a BIO_DELETE
793 * for them when they are freed. The gain from avoiding
794 * the TRIMs for the common case of unwritten blocks
795 * far exceeds the cost of the write amplification for
796 * the uncommon case of failing to send a TRIM for the
797 * blocks that had been written.
798 */
799 ffs_blkfree(ump, fs, ump->um_devvp,
800 dbtofsb(fs, bp->b_blkno),
801 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
802 (bp->b_flags & B_DELWRI) != 0 ?
803 NOTRIM_KEY : SINGLETON_KEY);
804 bp->b_blkno = fsbtodb(fs, blkno);
805 #ifdef INVARIANTS
806 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
807 fs->fs_bsize))
808 panic("ffs_reallocblks: unallocated block 3");
809 #endif
810 #ifdef DIAGNOSTIC
811 if (prtrealloc)
812 printf(" %d,", blkno);
813 #endif
814 }
815 #ifdef DIAGNOSTIC
816 if (prtrealloc) {
817 prtrealloc--;
818 printf("\n");
819 }
820 #endif
821 return (0);
822
823 fail:
824 if (ssize < len)
825 brelse(ebp);
826 if (sbap != &ip->i_din1->di_db[0])
827 brelse(sbp);
828 return (ENOSPC);
829 }
830
831 static int
ffs_reallocblks_ufs2(struct vop_reallocblks_args * ap)832 ffs_reallocblks_ufs2(
833 struct vop_reallocblks_args /* {
834 struct vnode *a_vp;
835 struct cluster_save *a_buflist;
836 } */ *ap)
837 {
838 struct fs *fs;
839 struct inode *ip;
840 struct vnode *vp;
841 struct buf *sbp, *ebp, *bp;
842 ufs2_daddr_t *bap, *sbap, *ebap;
843 struct cluster_save *buflist;
844 struct ufsmount *ump;
845 ufs_lbn_t start_lbn, end_lbn;
846 ufs2_daddr_t soff, newblk, blkno, pref;
847 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
848 int i, cg, len, start_lvl, end_lvl, ssize;
849
850 vp = ap->a_vp;
851 ip = VTOI(vp);
852 ump = ITOUMP(ip);
853 fs = ump->um_fs;
854 /*
855 * If we are not tracking block clusters or if we have less than 4%
856 * free blocks left, then do not attempt to cluster. Running with
857 * less than 5% free block reserve is not recommended and those that
858 * choose to do so do not expect to have good file layout.
859 */
860 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
861 return (ENOSPC);
862 buflist = ap->a_buflist;
863 len = buflist->bs_nchildren;
864 start_lbn = buflist->bs_children[0]->b_lblkno;
865 end_lbn = start_lbn + len - 1;
866 #ifdef INVARIANTS
867 for (i = 0; i < len; i++)
868 if (!ffs_checkfreeblk(ip,
869 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
870 panic("ffs_reallocblks: unallocated block 1");
871 for (i = 1; i < len; i++)
872 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
873 panic("ffs_reallocblks: non-logical cluster");
874 blkno = buflist->bs_children[0]->b_blkno;
875 ssize = fsbtodb(fs, fs->fs_frag);
876 for (i = 1; i < len - 1; i++)
877 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
878 panic("ffs_reallocblks: non-physical cluster %d", i);
879 #endif
880 /*
881 * If the cluster crosses the boundary for the first indirect
882 * block, do not move anything in it. Indirect blocks are
883 * usually initially laid out in a position between the data
884 * blocks. Block reallocation would usually destroy locality by
885 * moving the indirect block out of the way to make room for
886 * data blocks if we didn't compensate here. We should also do
887 * this for other indirect block boundaries, but it is only
888 * important for the first one.
889 */
890 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
891 return (ENOSPC);
892 /*
893 * If the latest allocation is in a new cylinder group, assume that
894 * the filesystem has decided to move and do not force it back to
895 * the previous cylinder group.
896 */
897 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
898 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
899 return (ENOSPC);
900 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
901 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
902 return (ENOSPC);
903 /*
904 * Get the starting offset and block map for the first block.
905 */
906 if (start_lvl == 0) {
907 sbap = &ip->i_din2->di_db[0];
908 soff = start_lbn;
909 } else {
910 idp = &start_ap[start_lvl - 1];
911 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
912 brelse(sbp);
913 return (ENOSPC);
914 }
915 sbap = (ufs2_daddr_t *)sbp->b_data;
916 soff = idp->in_off;
917 }
918 /*
919 * If the block range spans two block maps, get the second map.
920 */
921 ebap = NULL;
922 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
923 ssize = len;
924 } else {
925 #ifdef INVARIANTS
926 if (start_lvl > 0 &&
927 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
928 panic("ffs_reallocblk: start == end");
929 #endif
930 ssize = len - (idp->in_off + 1);
931 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
932 goto fail;
933 ebap = (ufs2_daddr_t *)ebp->b_data;
934 }
935 /*
936 * Find the preferred location for the cluster. If we have not
937 * previously failed at this endeavor, then follow our standard
938 * preference calculation. If we have failed at it, then pick up
939 * where we last ended our search.
940 */
941 UFS_LOCK(ump);
942 if (ip->i_nextclustercg == -1)
943 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
944 else
945 pref = cgdata(fs, ip->i_nextclustercg);
946 /*
947 * Search the block map looking for an allocation of the desired size.
948 * To avoid wasting too much time, we limit the number of cylinder
949 * groups that we will search.
950 */
951 cg = dtog(fs, pref);
952 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
953 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
954 break;
955 cg += 1;
956 if (cg >= fs->fs_ncg)
957 cg = 0;
958 }
959 /*
960 * If we have failed in our search, record where we gave up for
961 * next time. Otherwise, fall back to our usual search citerion.
962 */
963 if (newblk == 0) {
964 ip->i_nextclustercg = cg;
965 UFS_UNLOCK(ump);
966 goto fail;
967 }
968 ip->i_nextclustercg = -1;
969 /*
970 * We have found a new contiguous block.
971 *
972 * First we have to replace the old block pointers with the new
973 * block pointers in the inode and indirect blocks associated
974 * with the file.
975 */
976 #ifdef DIAGNOSTIC
977 if (prtrealloc)
978 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
979 (intmax_t)start_lbn, (intmax_t)end_lbn);
980 #endif
981 blkno = newblk;
982 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
983 if (i == ssize) {
984 bap = ebap;
985 soff = -i;
986 }
987 #ifdef INVARIANTS
988 if (!ffs_checkfreeblk(ip,
989 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
990 panic("ffs_reallocblks: unallocated block 2");
991 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
992 panic("ffs_reallocblks: alloc mismatch");
993 #endif
994 #ifdef DIAGNOSTIC
995 if (prtrealloc)
996 printf(" %jd,", (intmax_t)*bap);
997 #endif
998 if (DOINGSOFTDEP(vp)) {
999 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
1000 softdep_setup_allocdirect(ip, start_lbn + i,
1001 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1002 buflist->bs_children[i]);
1003 else
1004 softdep_setup_allocindir_page(ip, start_lbn + i,
1005 i < ssize ? sbp : ebp, soff + i, blkno,
1006 *bap, buflist->bs_children[i]);
1007 }
1008 *bap++ = blkno;
1009 }
1010 /*
1011 * Next we must write out the modified inode and indirect blocks.
1012 * For strict correctness, the writes should be synchronous since
1013 * the old block values may have been written to disk. In practise
1014 * they are almost never written, but if we are concerned about
1015 * strict correctness, the `doasyncfree' flag should be set to zero.
1016 *
1017 * The test on `doasyncfree' should be changed to test a flag
1018 * that shows whether the associated buffers and inodes have
1019 * been written. The flag should be set when the cluster is
1020 * started and cleared whenever the buffer or inode is flushed.
1021 * We can then check below to see if it is set, and do the
1022 * synchronous write only when it has been cleared.
1023 */
1024 if (sbap != &ip->i_din2->di_db[0]) {
1025 if (doasyncfree)
1026 bdwrite(sbp);
1027 else
1028 bwrite(sbp);
1029 } else {
1030 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1031 if (!doasyncfree)
1032 ffs_update(vp, 1);
1033 }
1034 if (ssize < len) {
1035 if (doasyncfree)
1036 bdwrite(ebp);
1037 else
1038 bwrite(ebp);
1039 }
1040 /*
1041 * Last, free the old blocks and assign the new blocks to the buffers.
1042 */
1043 #ifdef DIAGNOSTIC
1044 if (prtrealloc)
1045 printf("\n\tnew:");
1046 #endif
1047 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1048 bp = buflist->bs_children[i];
1049 if (!DOINGSOFTDEP(vp))
1050 /*
1051 * The usual case is that a set of N-contiguous blocks
1052 * that was just allocated has been replaced with a
1053 * set of N+1-contiguous blocks. If they are marked as
1054 * B_DELWRI, the current contents have not been written
1055 * to disk. It is possible that the blocks were written
1056 * earlier, but very uncommon. If the blocks have never
1057 * been written, there is no need to send a BIO_DELETE
1058 * for them when they are freed. The gain from avoiding
1059 * the TRIMs for the common case of unwritten blocks
1060 * far exceeds the cost of the write amplification for
1061 * the uncommon case of failing to send a TRIM for the
1062 * blocks that had been written.
1063 */
1064 ffs_blkfree(ump, fs, ump->um_devvp,
1065 dbtofsb(fs, bp->b_blkno),
1066 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1067 (bp->b_flags & B_DELWRI) != 0 ?
1068 NOTRIM_KEY : SINGLETON_KEY);
1069 bp->b_blkno = fsbtodb(fs, blkno);
1070 #ifdef INVARIANTS
1071 if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
1072 fs->fs_bsize))
1073 panic("ffs_reallocblks: unallocated block 3");
1074 #endif
1075 #ifdef DIAGNOSTIC
1076 if (prtrealloc)
1077 printf(" %jd,", (intmax_t)blkno);
1078 #endif
1079 }
1080 #ifdef DIAGNOSTIC
1081 if (prtrealloc) {
1082 prtrealloc--;
1083 printf("\n");
1084 }
1085 #endif
1086 return (0);
1087
1088 fail:
1089 if (ssize < len)
1090 brelse(ebp);
1091 if (sbap != &ip->i_din2->di_db[0])
1092 brelse(sbp);
1093 return (ENOSPC);
1094 }
1095
1096 /*
1097 * Allocate an inode in the filesystem.
1098 *
1099 * If allocating a directory, use ffs_dirpref to select the inode.
1100 * If allocating in a directory, the following hierarchy is followed:
1101 * 1) allocate the preferred inode.
1102 * 2) allocate an inode in the same cylinder group.
1103 * 3) quadratically rehash into other cylinder groups, until an
1104 * available inode is located.
1105 * If no inode preference is given the following hierarchy is used
1106 * to allocate an inode:
1107 * 1) allocate an inode in cylinder group 0.
1108 * 2) quadratically rehash into other cylinder groups, until an
1109 * available inode is located.
1110 */
1111 int
ffs_valloc(struct vnode * pvp,int mode,struct ucred * cred,struct vnode ** vpp)1112 ffs_valloc(struct vnode *pvp,
1113 int mode,
1114 struct ucred *cred,
1115 struct vnode **vpp)
1116 {
1117 struct inode *pip;
1118 struct fs *fs;
1119 struct inode *ip;
1120 struct timespec ts;
1121 struct ufsmount *ump;
1122 ino_t ino, ipref;
1123 uint64_t cg;
1124 int error, reclaimed;
1125
1126 *vpp = NULL;
1127 pip = VTOI(pvp);
1128 ump = ITOUMP(pip);
1129 fs = ump->um_fs;
1130
1131 UFS_LOCK(ump);
1132 reclaimed = 0;
1133 retry:
1134 if (fs->fs_cstotal.cs_nifree == 0)
1135 goto noinodes;
1136
1137 if ((mode & IFMT) == IFDIR)
1138 ipref = ffs_dirpref(pip);
1139 else
1140 ipref = pip->i_number;
1141 if (ipref >= fs->fs_ncg * fs->fs_ipg)
1142 ipref = 0;
1143 cg = ino_to_cg(fs, ipref);
1144 /*
1145 * Track number of dirs created one after another
1146 * in a same cg without intervening by files.
1147 */
1148 if ((mode & IFMT) == IFDIR) {
1149 if (fs->fs_contigdirs[cg] < 255)
1150 fs->fs_contigdirs[cg]++;
1151 } else {
1152 if (fs->fs_contigdirs[cg] > 0)
1153 fs->fs_contigdirs[cg]--;
1154 }
1155 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1156 (allocfcn_t *)ffs_nodealloccg);
1157 if (ino == 0)
1158 goto noinodes;
1159 /*
1160 * Get rid of the cached old vnode, force allocation of a new vnode
1161 * for this inode. If this fails, release the allocated ino and
1162 * return the error.
1163 */
1164 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1165 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1166 ffs_vfree(pvp, ino, mode);
1167 return (error);
1168 }
1169 /*
1170 * We got an inode, so check mode and panic if it is already allocated.
1171 */
1172 ip = VTOI(*vpp);
1173 if (ip->i_mode) {
1174 printf("mode = 0%o, inum = %ju, fs = %s\n",
1175 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1176 panic("ffs_valloc: dup alloc");
1177 }
1178 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1179 printf("free inode %s/%ju had %ld blocks\n",
1180 fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks));
1181 DIP_SET(ip, i_blocks, 0);
1182 }
1183 ip->i_flags = 0;
1184 DIP_SET(ip, i_flags, 0);
1185 if ((mode & IFMT) == IFDIR)
1186 DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1);
1187 /*
1188 * Set up a new generation number for this inode.
1189 */
1190 while (ip->i_gen == 0 || ++ip->i_gen == 0)
1191 ip->i_gen = arc4random();
1192 DIP_SET(ip, i_gen, ip->i_gen);
1193 if (fs->fs_magic == FS_UFS2_MAGIC) {
1194 vfs_timestamp(&ts);
1195 ip->i_din2->di_birthtime = ts.tv_sec;
1196 ip->i_din2->di_birthnsec = ts.tv_nsec;
1197 }
1198 ip->i_flag = 0;
1199 (*vpp)->v_vflag = 0;
1200 (*vpp)->v_type = VNON;
1201 if (fs->fs_magic == FS_UFS2_MAGIC) {
1202 (*vpp)->v_op = &ffs_vnodeops2;
1203 UFS_INODE_SET_FLAG(ip, IN_UFS2);
1204 } else {
1205 (*vpp)->v_op = &ffs_vnodeops1;
1206 }
1207 return (0);
1208 noinodes:
1209 if (reclaimed == 0) {
1210 reclaimed = 1;
1211 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1212 goto retry;
1213 }
1214 if (ffs_fsfail_cleanup_locked(ump, 0)) {
1215 UFS_UNLOCK(ump);
1216 return (ENXIO);
1217 }
1218 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1219 UFS_UNLOCK(ump);
1220 ffs_fserr(fs, pip->i_number, "out of inodes");
1221 uprintf("\n%s: create/symlink failed, no inodes free\n",
1222 fs->fs_fsmnt);
1223 } else {
1224 UFS_UNLOCK(ump);
1225 }
1226 return (ENOSPC);
1227 }
1228
1229 /*
1230 * Find a cylinder group to place a directory.
1231 *
1232 * The policy implemented by this algorithm is to allocate a
1233 * directory inode in the same cylinder group as its parent
1234 * directory, but also to reserve space for its files inodes
1235 * and data. Restrict the number of directories which may be
1236 * allocated one after another in the same cylinder group
1237 * without intervening allocation of files.
1238 *
1239 * If we allocate a first level directory then force allocation
1240 * in another cylinder group.
1241 */
1242 static ino_t
ffs_dirpref(struct inode * pip)1243 ffs_dirpref(struct inode *pip)
1244 {
1245 struct fs *fs;
1246 int cg, prefcg, curcg, dirsize, cgsize;
1247 int depth, range, start, end, numdirs, power, numerator, denominator;
1248 uint64_t avgifree, avgbfree, avgndir, curdirsize;
1249 uint64_t minifree, minbfree, maxndir;
1250 uint64_t maxcontigdirs;
1251
1252 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1253 fs = ITOFS(pip);
1254
1255 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1256 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1257 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1258
1259 /*
1260 * Select a preferred cylinder group to place a new directory.
1261 * If we are near the root of the filesystem we aim to spread
1262 * them out as much as possible. As we descend deeper from the
1263 * root we cluster them closer together around their parent as
1264 * we expect them to be more closely interactive. Higher-level
1265 * directories like usr/src/sys and usr/src/bin should be
1266 * separated while the directories in these areas are more
1267 * likely to be accessed together so should be closer.
1268 *
1269 * We pick a range of cylinder groups around the cylinder group
1270 * of the directory in which we are being created. The size of
1271 * the range for our search is based on our depth from the root
1272 * of our filesystem. We then probe that range based on how many
1273 * directories are already present. The first new directory is at
1274 * 1/2 (middle) of the range; the second is in the first 1/4 of the
1275 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc.
1276 */
1277 depth = DIP(pip, i_dirdepth);
1278 range = fs->fs_ncg / (1 << depth);
1279 curcg = ino_to_cg(fs, pip->i_number);
1280 start = curcg - (range / 2);
1281 if (start < 0)
1282 start += fs->fs_ncg;
1283 end = curcg + (range / 2);
1284 if (end >= fs->fs_ncg)
1285 end -= fs->fs_ncg;
1286 numdirs = pip->i_effnlink - 1;
1287 power = fls(numdirs);
1288 numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1;
1289 denominator = 1 << power;
1290 prefcg = (curcg - (range / 2) + (range * numerator / denominator));
1291 if (prefcg < 0)
1292 prefcg += fs->fs_ncg;
1293 if (prefcg >= fs->fs_ncg)
1294 prefcg -= fs->fs_ncg;
1295 /*
1296 * If this filesystem is not tracking directory depths,
1297 * revert to the old algorithm.
1298 */
1299 if (depth == 0 && pip->i_number != UFS_ROOTINO)
1300 prefcg = curcg;
1301
1302 /*
1303 * Count various limits which used for
1304 * optimal allocation of a directory inode.
1305 */
1306 maxndir = min(avgndir + (1 << depth), fs->fs_ipg);
1307 minifree = avgifree - avgifree / 4;
1308 if (minifree < 1)
1309 minifree = 1;
1310 minbfree = avgbfree - avgbfree / 4;
1311 if (minbfree < 1)
1312 minbfree = 1;
1313 cgsize = fs->fs_fsize * fs->fs_fpg;
1314 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1315 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1316 if (dirsize < curdirsize)
1317 dirsize = curdirsize;
1318 if (dirsize <= 0)
1319 maxcontigdirs = 0; /* dirsize overflowed */
1320 else
1321 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1322 if (fs->fs_avgfpdir > 0)
1323 maxcontigdirs = min(maxcontigdirs,
1324 fs->fs_ipg / fs->fs_avgfpdir);
1325 if (maxcontigdirs == 0)
1326 maxcontigdirs = 1;
1327
1328 /*
1329 * Limit number of dirs in one cg and reserve space for
1330 * regular files, but only if we have no deficit in
1331 * inodes or space.
1332 *
1333 * We are trying to find a suitable cylinder group nearby
1334 * our preferred cylinder group to place a new directory.
1335 * We scan from our preferred cylinder group forward looking
1336 * for a cylinder group that meets our criterion. If we get
1337 * to the final cylinder group and do not find anything,
1338 * we start scanning forwards from the beginning of the
1339 * filesystem. While it might seem sensible to start scanning
1340 * backwards or even to alternate looking forward and backward,
1341 * this approach fails badly when the filesystem is nearly full.
1342 * Specifically, we first search all the areas that have no space
1343 * and finally try the one preceding that. We repeat this on
1344 * every request and in the case of the final block end up
1345 * searching the entire filesystem. By jumping to the front
1346 * of the filesystem, our future forward searches always look
1347 * in new cylinder groups so finds every possible block after
1348 * one pass over the filesystem.
1349 */
1350 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1351 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1352 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1353 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1354 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1355 return ((ino_t)(fs->fs_ipg * cg));
1356 }
1357 for (cg = 0; cg < prefcg; cg++)
1358 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1359 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1360 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1361 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1362 return ((ino_t)(fs->fs_ipg * cg));
1363 }
1364 /*
1365 * This is a backstop when we have deficit in space.
1366 */
1367 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1368 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1369 return ((ino_t)(fs->fs_ipg * cg));
1370 for (cg = 0; cg < prefcg; cg++)
1371 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1372 break;
1373 return ((ino_t)(fs->fs_ipg * cg));
1374 }
1375
1376 /*
1377 * Select the desired position for the next block in a file. The file is
1378 * logically divided into sections. The first section is composed of the
1379 * direct blocks and the next fs_maxbpg blocks. Each additional section
1380 * contains fs_maxbpg blocks.
1381 *
1382 * If no blocks have been allocated in the first section, the policy is to
1383 * request a block in the same cylinder group as the inode that describes
1384 * the file. The first indirect is allocated immediately following the last
1385 * direct block and the data blocks for the first indirect immediately
1386 * follow it.
1387 *
1388 * If no blocks have been allocated in any other section, the indirect
1389 * block(s) are allocated in the same cylinder group as its inode in an
1390 * area reserved immediately following the inode blocks. The policy for
1391 * the data blocks is to place them in a cylinder group with a greater than
1392 * average number of free blocks. An appropriate cylinder group is found
1393 * by using a rotor that sweeps the cylinder groups. When a new group of
1394 * blocks is needed, the sweep begins in the cylinder group following the
1395 * cylinder group from which the previous allocation was made. The sweep
1396 * continues until a cylinder group with greater than the average number
1397 * of free blocks is found. If the allocation is for the first block in an
1398 * indirect block or the previous block is a hole, then the information on
1399 * the previous allocation is unavailable; here a best guess is made based
1400 * on the logical block number being allocated.
1401 *
1402 * If a section is already partially allocated, the policy is to
1403 * allocate blocks contiguously within the section if possible.
1404 */
1405 ufs2_daddr_t
ffs_blkpref_ufs1(struct inode * ip,ufs_lbn_t lbn,int indx,ufs1_daddr_t * bap)1406 ffs_blkpref_ufs1(struct inode *ip,
1407 ufs_lbn_t lbn,
1408 int indx,
1409 ufs1_daddr_t *bap)
1410 {
1411 struct fs *fs;
1412 uint64_t cg, inocg;
1413 uint64_t avgbfree, startcg;
1414 ufs2_daddr_t pref, prevbn;
1415
1416 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1417 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1418 fs = ITOFS(ip);
1419 /*
1420 * Allocation of indirect blocks is indicated by passing negative
1421 * values in indx: -1 for single indirect, -2 for double indirect,
1422 * -3 for triple indirect. As noted below, we attempt to allocate
1423 * the first indirect inline with the file data. For all later
1424 * indirect blocks, the data is often allocated in other cylinder
1425 * groups. However to speed random file access and to speed up
1426 * fsck, the filesystem reserves the first fs_metaspace blocks
1427 * (typically half of fs_minfree) of the data area of each cylinder
1428 * group to hold these later indirect blocks.
1429 */
1430 inocg = ino_to_cg(fs, ip->i_number);
1431 if (indx < 0) {
1432 /*
1433 * Our preference for indirect blocks is the zone at the
1434 * beginning of the inode's cylinder group data area that
1435 * we try to reserve for indirect blocks.
1436 */
1437 pref = cgmeta(fs, inocg);
1438 /*
1439 * If we are allocating the first indirect block, try to
1440 * place it immediately following the last direct block.
1441 */
1442 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1443 ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1444 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1445 return (pref);
1446 }
1447 /*
1448 * If we are allocating the first data block in the first indirect
1449 * block and the indirect has been allocated in the data block area,
1450 * try to place it immediately following the indirect block.
1451 */
1452 if (lbn == UFS_NDADDR) {
1453 pref = ip->i_din1->di_ib[0];
1454 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1455 pref < cgbase(fs, inocg + 1))
1456 return (pref + fs->fs_frag);
1457 }
1458 /*
1459 * If we are at the beginning of a file, or we have already allocated
1460 * the maximum number of blocks per cylinder group, or we do not
1461 * have a block allocated immediately preceding us, then we need
1462 * to decide where to start allocating new blocks.
1463 */
1464 if (indx == 0) {
1465 prevbn = 0;
1466 } else {
1467 prevbn = bap[indx - 1];
1468 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1469 fs->fs_bsize) != 0)
1470 prevbn = 0;
1471 }
1472 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1473 /*
1474 * If we are allocating a directory data block, we want
1475 * to place it in the metadata area.
1476 */
1477 if ((ip->i_mode & IFMT) == IFDIR)
1478 return (cgmeta(fs, inocg));
1479 /*
1480 * Until we fill all the direct and all the first indirect's
1481 * blocks, we try to allocate in the data area of the inode's
1482 * cylinder group.
1483 */
1484 if (lbn < UFS_NDADDR + NINDIR(fs))
1485 return (cgdata(fs, inocg));
1486 /*
1487 * Find a cylinder with greater than average number of
1488 * unused data blocks.
1489 */
1490 if (indx == 0 || prevbn == 0)
1491 startcg = inocg + lbn / fs->fs_maxbpg;
1492 else
1493 startcg = dtog(fs, prevbn) + 1;
1494 startcg %= fs->fs_ncg;
1495 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1496 for (cg = startcg; cg < fs->fs_ncg; cg++)
1497 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1498 fs->fs_cgrotor = cg;
1499 return (cgdata(fs, cg));
1500 }
1501 for (cg = 0; cg <= startcg; cg++)
1502 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1503 fs->fs_cgrotor = cg;
1504 return (cgdata(fs, cg));
1505 }
1506 return (0);
1507 }
1508 /*
1509 * Otherwise, we just always try to lay things out contiguously.
1510 */
1511 return (prevbn + fs->fs_frag);
1512 }
1513
1514 /*
1515 * Same as above, but for UFS2
1516 */
1517 ufs2_daddr_t
ffs_blkpref_ufs2(struct inode * ip,ufs_lbn_t lbn,int indx,ufs2_daddr_t * bap)1518 ffs_blkpref_ufs2(struct inode *ip,
1519 ufs_lbn_t lbn,
1520 int indx,
1521 ufs2_daddr_t *bap)
1522 {
1523 struct fs *fs;
1524 uint64_t cg, inocg;
1525 uint64_t avgbfree, startcg;
1526 ufs2_daddr_t pref, prevbn;
1527
1528 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1529 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1530 fs = ITOFS(ip);
1531 /*
1532 * Allocation of indirect blocks is indicated by passing negative
1533 * values in indx: -1 for single indirect, -2 for double indirect,
1534 * -3 for triple indirect. As noted below, we attempt to allocate
1535 * the first indirect inline with the file data. For all later
1536 * indirect blocks, the data is often allocated in other cylinder
1537 * groups. However to speed random file access and to speed up
1538 * fsck, the filesystem reserves the first fs_metaspace blocks
1539 * (typically half of fs_minfree) of the data area of each cylinder
1540 * group to hold these later indirect blocks.
1541 */
1542 inocg = ino_to_cg(fs, ip->i_number);
1543 if (indx < 0) {
1544 /*
1545 * Our preference for indirect blocks is the zone at the
1546 * beginning of the inode's cylinder group data area that
1547 * we try to reserve for indirect blocks.
1548 */
1549 pref = cgmeta(fs, inocg);
1550 /*
1551 * If we are allocating the first indirect block, try to
1552 * place it immediately following the last direct block.
1553 */
1554 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1555 ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1556 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1557 return (pref);
1558 }
1559 /*
1560 * If we are allocating the first data block in the first indirect
1561 * block and the indirect has been allocated in the data block area,
1562 * try to place it immediately following the indirect block.
1563 */
1564 if (lbn == UFS_NDADDR) {
1565 pref = ip->i_din2->di_ib[0];
1566 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1567 pref < cgbase(fs, inocg + 1))
1568 return (pref + fs->fs_frag);
1569 }
1570 /*
1571 * If we are at the beginning of a file, or we have already allocated
1572 * the maximum number of blocks per cylinder group, or we do not
1573 * have a block allocated immediately preceding us, then we need
1574 * to decide where to start allocating new blocks.
1575 */
1576 if (indx == 0) {
1577 prevbn = 0;
1578 } else {
1579 prevbn = bap[indx - 1];
1580 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1581 fs->fs_bsize) != 0)
1582 prevbn = 0;
1583 }
1584 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1585 /*
1586 * If we are allocating a directory data block, we want
1587 * to place it in the metadata area.
1588 */
1589 if ((ip->i_mode & IFMT) == IFDIR)
1590 return (cgmeta(fs, inocg));
1591 /*
1592 * Until we fill all the direct and all the first indirect's
1593 * blocks, we try to allocate in the data area of the inode's
1594 * cylinder group.
1595 */
1596 if (lbn < UFS_NDADDR + NINDIR(fs))
1597 return (cgdata(fs, inocg));
1598 /*
1599 * Find a cylinder with greater than average number of
1600 * unused data blocks.
1601 */
1602 if (indx == 0 || prevbn == 0)
1603 startcg = inocg + lbn / fs->fs_maxbpg;
1604 else
1605 startcg = dtog(fs, prevbn) + 1;
1606 startcg %= fs->fs_ncg;
1607 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1608 for (cg = startcg; cg < fs->fs_ncg; cg++)
1609 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1610 fs->fs_cgrotor = cg;
1611 return (cgdata(fs, cg));
1612 }
1613 for (cg = 0; cg <= startcg; cg++)
1614 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1615 fs->fs_cgrotor = cg;
1616 return (cgdata(fs, cg));
1617 }
1618 return (0);
1619 }
1620 /*
1621 * Otherwise, we just always try to lay things out contiguously.
1622 */
1623 return (prevbn + fs->fs_frag);
1624 }
1625
1626 /*
1627 * Implement the cylinder overflow algorithm.
1628 *
1629 * The policy implemented by this algorithm is:
1630 * 1) allocate the block in its requested cylinder group.
1631 * 2) quadratically rehash on the cylinder group number.
1632 * 3) brute force search for a free block.
1633 *
1634 * Must be called with the UFS lock held. Will release the lock on success
1635 * and return with it held on failure.
1636 */
1637 /*VARARGS5*/
1638 static ufs2_daddr_t
ffs_hashalloc(struct inode * ip,uint64_t cg,ufs2_daddr_t pref,int size,int rsize,allocfcn_t * allocator)1639 ffs_hashalloc(struct inode *ip,
1640 uint64_t cg,
1641 ufs2_daddr_t pref,
1642 int size, /* Search size for data blocks, mode for inodes */
1643 int rsize, /* Real allocated size. */
1644 allocfcn_t *allocator)
1645 {
1646 struct fs *fs;
1647 ufs2_daddr_t result;
1648 uint64_t i, icg = cg;
1649
1650 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1651 #ifdef INVARIANTS
1652 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1653 panic("ffs_hashalloc: allocation on suspended filesystem");
1654 #endif
1655 fs = ITOFS(ip);
1656 /*
1657 * 1: preferred cylinder group
1658 */
1659 result = (*allocator)(ip, cg, pref, size, rsize);
1660 if (result)
1661 return (result);
1662 /*
1663 * 2: quadratic rehash
1664 */
1665 for (i = 1; i < fs->fs_ncg; i *= 2) {
1666 cg += i;
1667 if (cg >= fs->fs_ncg)
1668 cg -= fs->fs_ncg;
1669 result = (*allocator)(ip, cg, 0, size, rsize);
1670 if (result)
1671 return (result);
1672 }
1673 /*
1674 * 3: brute force search
1675 * Note that we start at i == 2, since 0 was checked initially,
1676 * and 1 is always checked in the quadratic rehash.
1677 */
1678 cg = (icg + 2) % fs->fs_ncg;
1679 for (i = 2; i < fs->fs_ncg; i++) {
1680 result = (*allocator)(ip, cg, 0, size, rsize);
1681 if (result)
1682 return (result);
1683 cg++;
1684 if (cg == fs->fs_ncg)
1685 cg = 0;
1686 }
1687 return (0);
1688 }
1689
1690 /*
1691 * Determine whether a fragment can be extended.
1692 *
1693 * Check to see if the necessary fragments are available, and
1694 * if they are, allocate them.
1695 */
1696 static ufs2_daddr_t
ffs_fragextend(struct inode * ip,uint64_t cg,ufs2_daddr_t bprev,int osize,int nsize)1697 ffs_fragextend(struct inode *ip,
1698 uint64_t cg,
1699 ufs2_daddr_t bprev,
1700 int osize,
1701 int nsize)
1702 {
1703 struct fs *fs;
1704 struct cg *cgp;
1705 struct buf *bp;
1706 struct ufsmount *ump;
1707 int nffree;
1708 long bno;
1709 int frags, bbase;
1710 int i, error;
1711 uint8_t *blksfree;
1712
1713 ump = ITOUMP(ip);
1714 fs = ump->um_fs;
1715 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1716 return (0);
1717 frags = numfrags(fs, nsize);
1718 bbase = fragnum(fs, bprev);
1719 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1720 /* cannot extend across a block boundary */
1721 return (0);
1722 }
1723 UFS_UNLOCK(ump);
1724 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1725 ffs_checkcgintegrity(fs, cg, error);
1726 goto fail;
1727 }
1728 bno = dtogd(fs, bprev);
1729 blksfree = cg_blksfree(cgp);
1730 for (i = numfrags(fs, osize); i < frags; i++)
1731 if (isclr(blksfree, bno + i))
1732 goto fail;
1733 /*
1734 * the current fragment can be extended
1735 * deduct the count on fragment being extended into
1736 * increase the count on the remaining fragment (if any)
1737 * allocate the extended piece
1738 */
1739 for (i = frags; i < fs->fs_frag - bbase; i++)
1740 if (isclr(blksfree, bno + i))
1741 break;
1742 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1743 if (i != frags)
1744 cgp->cg_frsum[i - frags]++;
1745 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1746 clrbit(blksfree, bno + i);
1747 cgp->cg_cs.cs_nffree--;
1748 nffree++;
1749 }
1750 UFS_LOCK(ump);
1751 fs->fs_cstotal.cs_nffree -= nffree;
1752 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1753 fs->fs_fmod = 1;
1754 ACTIVECLEAR(fs, cg);
1755 UFS_UNLOCK(ump);
1756 if (DOINGSOFTDEP(ITOV(ip)))
1757 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1758 frags, numfrags(fs, osize));
1759 bdwrite(bp);
1760 return (bprev);
1761
1762 fail:
1763 brelse(bp);
1764 UFS_LOCK(ump);
1765 return (0);
1766
1767 }
1768
1769 /*
1770 * Determine whether a block can be allocated.
1771 *
1772 * Check to see if a block of the appropriate size is available,
1773 * and if it is, allocate it.
1774 */
1775 static ufs2_daddr_t
ffs_alloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int size,int rsize)1776 ffs_alloccg(struct inode *ip,
1777 uint64_t cg,
1778 ufs2_daddr_t bpref,
1779 int size,
1780 int rsize)
1781 {
1782 struct fs *fs;
1783 struct cg *cgp;
1784 struct buf *bp;
1785 struct ufsmount *ump;
1786 ufs1_daddr_t bno;
1787 ufs2_daddr_t blkno;
1788 int i, allocsiz, error, frags;
1789 uint8_t *blksfree;
1790
1791 ump = ITOUMP(ip);
1792 fs = ump->um_fs;
1793 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1794 return (0);
1795 UFS_UNLOCK(ump);
1796 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1797 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1798 ffs_checkcgintegrity(fs, cg, error);
1799 goto fail;
1800 }
1801 if (size == fs->fs_bsize) {
1802 UFS_LOCK(ump);
1803 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1804 ACTIVECLEAR(fs, cg);
1805 UFS_UNLOCK(ump);
1806 bdwrite(bp);
1807 return (blkno);
1808 }
1809 /*
1810 * check to see if any fragments are already available
1811 * allocsiz is the size which will be allocated, hacking
1812 * it down to a smaller size if necessary
1813 */
1814 blksfree = cg_blksfree(cgp);
1815 frags = numfrags(fs, size);
1816 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1817 if (cgp->cg_frsum[allocsiz] != 0)
1818 break;
1819 if (allocsiz == fs->fs_frag) {
1820 /*
1821 * no fragments were available, so a block will be
1822 * allocated, and hacked up
1823 */
1824 if (cgp->cg_cs.cs_nbfree == 0)
1825 goto fail;
1826 UFS_LOCK(ump);
1827 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1828 ACTIVECLEAR(fs, cg);
1829 UFS_UNLOCK(ump);
1830 bdwrite(bp);
1831 return (blkno);
1832 }
1833 KASSERT(size == rsize,
1834 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1835 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1836 if (bno < 0)
1837 goto fail;
1838 for (i = 0; i < frags; i++)
1839 clrbit(blksfree, bno + i);
1840 cgp->cg_cs.cs_nffree -= frags;
1841 cgp->cg_frsum[allocsiz]--;
1842 if (frags != allocsiz)
1843 cgp->cg_frsum[allocsiz - frags]++;
1844 UFS_LOCK(ump);
1845 fs->fs_cstotal.cs_nffree -= frags;
1846 fs->fs_cs(fs, cg).cs_nffree -= frags;
1847 fs->fs_fmod = 1;
1848 blkno = cgbase(fs, cg) + bno;
1849 ACTIVECLEAR(fs, cg);
1850 UFS_UNLOCK(ump);
1851 if (DOINGSOFTDEP(ITOV(ip)))
1852 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1853 bdwrite(bp);
1854 return (blkno);
1855
1856 fail:
1857 brelse(bp);
1858 UFS_LOCK(ump);
1859 return (0);
1860 }
1861
1862 /*
1863 * Allocate a block in a cylinder group.
1864 *
1865 * This algorithm implements the following policy:
1866 * 1) allocate the requested block.
1867 * 2) allocate a rotationally optimal block in the same cylinder.
1868 * 3) allocate the next available block on the block rotor for the
1869 * specified cylinder group.
1870 * Note that this routine only allocates fs_bsize blocks; these
1871 * blocks may be fragmented by the routine that allocates them.
1872 */
1873 static ufs2_daddr_t
ffs_alloccgblk(struct inode * ip,struct buf * bp,ufs2_daddr_t bpref,int size)1874 ffs_alloccgblk(struct inode *ip,
1875 struct buf *bp,
1876 ufs2_daddr_t bpref,
1877 int size)
1878 {
1879 struct fs *fs;
1880 struct cg *cgp;
1881 struct ufsmount *ump;
1882 ufs1_daddr_t bno;
1883 ufs2_daddr_t blkno;
1884 uint8_t *blksfree;
1885 int i, cgbpref;
1886
1887 ump = ITOUMP(ip);
1888 fs = ump->um_fs;
1889 mtx_assert(UFS_MTX(ump), MA_OWNED);
1890 cgp = (struct cg *)bp->b_data;
1891 blksfree = cg_blksfree(cgp);
1892 if (bpref == 0) {
1893 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1894 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1895 /* map bpref to correct zone in this cg */
1896 if (bpref < cgdata(fs, cgbpref))
1897 bpref = cgmeta(fs, cgp->cg_cgx);
1898 else
1899 bpref = cgdata(fs, cgp->cg_cgx);
1900 }
1901 /*
1902 * if the requested block is available, use it
1903 */
1904 bno = dtogd(fs, blknum(fs, bpref));
1905 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1906 goto gotit;
1907 /*
1908 * Take the next available block in this cylinder group.
1909 */
1910 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1911 if (bno < 0)
1912 return (0);
1913 /* Update cg_rotor only if allocated from the data zone */
1914 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1915 cgp->cg_rotor = bno;
1916 gotit:
1917 blkno = fragstoblks(fs, bno);
1918 ffs_clrblock(fs, blksfree, (long)blkno);
1919 ffs_clusteracct(fs, cgp, blkno, -1);
1920 cgp->cg_cs.cs_nbfree--;
1921 fs->fs_cstotal.cs_nbfree--;
1922 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1923 fs->fs_fmod = 1;
1924 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1925 /*
1926 * If the caller didn't want the whole block free the frags here.
1927 */
1928 size = numfrags(fs, size);
1929 if (size != fs->fs_frag) {
1930 bno = dtogd(fs, blkno);
1931 for (i = size; i < fs->fs_frag; i++)
1932 setbit(blksfree, bno + i);
1933 i = fs->fs_frag - size;
1934 cgp->cg_cs.cs_nffree += i;
1935 fs->fs_cstotal.cs_nffree += i;
1936 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1937 fs->fs_fmod = 1;
1938 cgp->cg_frsum[i]++;
1939 }
1940 /* XXX Fixme. */
1941 UFS_UNLOCK(ump);
1942 if (DOINGSOFTDEP(ITOV(ip)))
1943 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1944 UFS_LOCK(ump);
1945 return (blkno);
1946 }
1947
1948 /*
1949 * Determine whether a cluster can be allocated.
1950 *
1951 * We do not currently check for optimal rotational layout if there
1952 * are multiple choices in the same cylinder group. Instead we just
1953 * take the first one that we find following bpref.
1954 */
1955 static ufs2_daddr_t
ffs_clusteralloc(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int len)1956 ffs_clusteralloc(struct inode *ip,
1957 uint64_t cg,
1958 ufs2_daddr_t bpref,
1959 int len)
1960 {
1961 struct fs *fs;
1962 struct cg *cgp;
1963 struct buf *bp;
1964 struct ufsmount *ump;
1965 int i, run, bit, map, got, error;
1966 ufs2_daddr_t bno;
1967 uint8_t *mapp;
1968 int32_t *lp;
1969 uint8_t *blksfree;
1970
1971 ump = ITOUMP(ip);
1972 fs = ump->um_fs;
1973 if (fs->fs_maxcluster[cg] < len)
1974 return (0);
1975 UFS_UNLOCK(ump);
1976 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1977 ffs_checkcgintegrity(fs, cg, error);
1978 UFS_LOCK(ump);
1979 return (0);
1980 }
1981 /*
1982 * Check to see if a cluster of the needed size (or bigger) is
1983 * available in this cylinder group.
1984 */
1985 lp = &cg_clustersum(cgp)[len];
1986 for (i = len; i <= fs->fs_contigsumsize; i++)
1987 if (*lp++ > 0)
1988 break;
1989 if (i > fs->fs_contigsumsize) {
1990 /*
1991 * This is the first time looking for a cluster in this
1992 * cylinder group. Update the cluster summary information
1993 * to reflect the true maximum sized cluster so that
1994 * future cluster allocation requests can avoid reading
1995 * the cylinder group map only to find no clusters.
1996 */
1997 lp = &cg_clustersum(cgp)[len - 1];
1998 for (i = len - 1; i > 0; i--)
1999 if (*lp-- > 0)
2000 break;
2001 UFS_LOCK(ump);
2002 fs->fs_maxcluster[cg] = i;
2003 brelse(bp);
2004 return (0);
2005 }
2006 /*
2007 * Search the cluster map to find a big enough cluster.
2008 * We take the first one that we find, even if it is larger
2009 * than we need as we prefer to get one close to the previous
2010 * block allocation. We do not search before the current
2011 * preference point as we do not want to allocate a block
2012 * that is allocated before the previous one (as we will
2013 * then have to wait for another pass of the elevator
2014 * algorithm before it will be read). We prefer to fail and
2015 * be recalled to try an allocation in the next cylinder group.
2016 */
2017 if (dtog(fs, bpref) != cg)
2018 bpref = cgdata(fs, cg);
2019 else
2020 bpref = blknum(fs, bpref);
2021 bpref = fragstoblks(fs, dtogd(fs, bpref));
2022 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
2023 map = *mapp++;
2024 bit = 1 << (bpref % NBBY);
2025 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
2026 if ((map & bit) == 0) {
2027 run = 0;
2028 } else {
2029 run++;
2030 if (run == len)
2031 break;
2032 }
2033 if ((got & (NBBY - 1)) != (NBBY - 1)) {
2034 bit <<= 1;
2035 } else {
2036 map = *mapp++;
2037 bit = 1;
2038 }
2039 }
2040 if (got >= cgp->cg_nclusterblks) {
2041 UFS_LOCK(ump);
2042 brelse(bp);
2043 return (0);
2044 }
2045 /*
2046 * Allocate the cluster that we have found.
2047 */
2048 blksfree = cg_blksfree(cgp);
2049 for (i = 1; i <= len; i++)
2050 if (!ffs_isblock(fs, blksfree, got - run + i))
2051 panic("ffs_clusteralloc: map mismatch");
2052 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2053 if (dtog(fs, bno) != cg)
2054 panic("ffs_clusteralloc: allocated out of group");
2055 len = blkstofrags(fs, len);
2056 UFS_LOCK(ump);
2057 for (i = 0; i < len; i += fs->fs_frag)
2058 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2059 panic("ffs_clusteralloc: lost block");
2060 ACTIVECLEAR(fs, cg);
2061 UFS_UNLOCK(ump);
2062 bdwrite(bp);
2063 return (bno);
2064 }
2065
2066 static inline struct buf *
getinobuf(struct inode * ip,uint64_t cg,uint32_t cginoblk,int gbflags)2067 getinobuf(struct inode *ip,
2068 uint64_t cg,
2069 uint32_t cginoblk,
2070 int gbflags)
2071 {
2072 struct fs *fs;
2073
2074 fs = ITOFS(ip);
2075 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2076 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2077 gbflags));
2078 }
2079
2080 /*
2081 * Synchronous inode initialization is needed only when barrier writes do not
2082 * work as advertised, and will impose a heavy cost on file creation in a newly
2083 * created filesystem.
2084 */
2085 static int doasyncinodeinit = 1;
2086 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2087 &doasyncinodeinit, 0,
2088 "Perform inode block initialization using asynchronous writes");
2089
2090 /*
2091 * Determine whether an inode can be allocated.
2092 *
2093 * Check to see if an inode is available, and if it is,
2094 * allocate it using the following policy:
2095 * 1) allocate the requested inode.
2096 * 2) allocate the next available inode after the requested
2097 * inode in the specified cylinder group.
2098 */
2099 static ufs2_daddr_t
ffs_nodealloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t ipref,int mode,int unused)2100 ffs_nodealloccg(struct inode *ip,
2101 uint64_t cg,
2102 ufs2_daddr_t ipref,
2103 int mode,
2104 int unused)
2105 {
2106 struct fs *fs;
2107 struct cg *cgp;
2108 struct buf *bp, *ibp;
2109 struct ufsmount *ump;
2110 uint8_t *inosused, *loc;
2111 struct ufs2_dinode *dp2;
2112 int error, start, len, i;
2113 uint32_t old_initediblk;
2114
2115 ump = ITOUMP(ip);
2116 fs = ump->um_fs;
2117 check_nifree:
2118 if (fs->fs_cs(fs, cg).cs_nifree == 0)
2119 return (0);
2120 UFS_UNLOCK(ump);
2121 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2122 ffs_checkcgintegrity(fs, cg, error);
2123 UFS_LOCK(ump);
2124 return (0);
2125 }
2126 restart:
2127 if (cgp->cg_cs.cs_nifree == 0) {
2128 brelse(bp);
2129 UFS_LOCK(ump);
2130 return (0);
2131 }
2132 inosused = cg_inosused(cgp);
2133 if (ipref) {
2134 ipref %= fs->fs_ipg;
2135 if (isclr(inosused, ipref))
2136 goto gotit;
2137 }
2138 start = cgp->cg_irotor / NBBY;
2139 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2140 loc = memcchr(&inosused[start], 0xff, len);
2141 if (loc == NULL) {
2142 len = start + 1;
2143 start = 0;
2144 loc = memcchr(&inosused[start], 0xff, len);
2145 if (loc == NULL) {
2146 printf("cg = %ju, irotor = %ld, fs = %s\n",
2147 (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2148 panic("ffs_nodealloccg: map corrupted");
2149 /* NOTREACHED */
2150 }
2151 }
2152 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2153 gotit:
2154 /*
2155 * Check to see if we need to initialize more inodes.
2156 */
2157 if (fs->fs_magic == FS_UFS2_MAGIC &&
2158 ipref + INOPB(fs) > cgp->cg_initediblk &&
2159 cgp->cg_initediblk < cgp->cg_niblk) {
2160 old_initediblk = cgp->cg_initediblk;
2161
2162 /*
2163 * Free the cylinder group lock before writing the
2164 * initialized inode block. Entering the
2165 * babarrierwrite() with the cylinder group lock
2166 * causes lock order violation between the lock and
2167 * snaplk.
2168 *
2169 * Another thread can decide to initialize the same
2170 * inode block, but whichever thread first gets the
2171 * cylinder group lock after writing the newly
2172 * allocated inode block will update it and the other
2173 * will realize that it has lost and leave the
2174 * cylinder group unchanged.
2175 */
2176 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2177 brelse(bp);
2178 if (ibp == NULL) {
2179 /*
2180 * The inode block buffer is already owned by
2181 * another thread, which must initialize it.
2182 * Wait on the buffer to allow another thread
2183 * to finish the updates, with dropped cg
2184 * buffer lock, then retry.
2185 */
2186 ibp = getinobuf(ip, cg, old_initediblk, 0);
2187 brelse(ibp);
2188 UFS_LOCK(ump);
2189 goto check_nifree;
2190 }
2191 bzero(ibp->b_data, (int)fs->fs_bsize);
2192 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2193 for (i = 0; i < INOPB(fs); i++) {
2194 while (dp2->di_gen == 0)
2195 dp2->di_gen = arc4random();
2196 dp2++;
2197 }
2198
2199 /*
2200 * Rather than adding a soft updates dependency to ensure
2201 * that the new inode block is written before it is claimed
2202 * by the cylinder group map, we just do a barrier write
2203 * here. The barrier write will ensure that the inode block
2204 * gets written before the updated cylinder group map can be
2205 * written. The barrier write should only slow down bulk
2206 * loading of newly created filesystems.
2207 */
2208 if (doasyncinodeinit)
2209 babarrierwrite(ibp);
2210 else
2211 bwrite(ibp);
2212
2213 /*
2214 * After the inode block is written, try to update the
2215 * cg initediblk pointer. If another thread beat us
2216 * to it, then leave it unchanged as the other thread
2217 * has already set it correctly.
2218 */
2219 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2220 UFS_LOCK(ump);
2221 ACTIVECLEAR(fs, cg);
2222 UFS_UNLOCK(ump);
2223 if (error != 0)
2224 return (error);
2225 if (cgp->cg_initediblk == old_initediblk)
2226 cgp->cg_initediblk += INOPB(fs);
2227 goto restart;
2228 }
2229 cgp->cg_irotor = ipref;
2230 UFS_LOCK(ump);
2231 ACTIVECLEAR(fs, cg);
2232 setbit(inosused, ipref);
2233 cgp->cg_cs.cs_nifree--;
2234 fs->fs_cstotal.cs_nifree--;
2235 fs->fs_cs(fs, cg).cs_nifree--;
2236 fs->fs_fmod = 1;
2237 if ((mode & IFMT) == IFDIR) {
2238 cgp->cg_cs.cs_ndir++;
2239 fs->fs_cstotal.cs_ndir++;
2240 fs->fs_cs(fs, cg).cs_ndir++;
2241 }
2242 UFS_UNLOCK(ump);
2243 if (DOINGSOFTDEP(ITOV(ip)))
2244 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2245 bdwrite(bp);
2246 return ((ino_t)(cg * fs->fs_ipg + ipref));
2247 }
2248
2249 /*
2250 * Free a block or fragment.
2251 *
2252 * The specified block or fragment is placed back in the
2253 * free map. If a fragment is deallocated, a possible
2254 * block reassembly is checked.
2255 */
2256 static void
ffs_blkfree_cg(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,struct workhead * dephd)2257 ffs_blkfree_cg(struct ufsmount *ump,
2258 struct fs *fs,
2259 struct vnode *devvp,
2260 ufs2_daddr_t bno,
2261 long size,
2262 ino_t inum,
2263 struct workhead *dephd)
2264 {
2265 struct mount *mp;
2266 struct cg *cgp;
2267 struct buf *bp;
2268 daddr_t dbn;
2269 ufs1_daddr_t fragno, cgbno;
2270 int i, blk, frags, bbase, error;
2271 uint64_t cg;
2272 uint8_t *blksfree;
2273 struct cdev *dev;
2274
2275 cg = dtog(fs, bno);
2276 if (devvp->v_type == VREG) {
2277 /* devvp is a snapshot */
2278 MPASS(devvp->v_mount->mnt_data == ump);
2279 dev = ump->um_devvp->v_rdev;
2280 } else if (devvp->v_type == VCHR) {
2281 /*
2282 * devvp is a normal disk device
2283 * XXXKIB: devvp is not locked there, v_rdev access depends on
2284 * busy mount, which prevents mntfs devvp from reclamation.
2285 */
2286 dev = devvp->v_rdev;
2287 } else
2288 return;
2289 #ifdef INVARIANTS
2290 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2291 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2292 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2293 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2294 size, fs->fs_fsmnt);
2295 panic("ffs_blkfree_cg: invalid size");
2296 }
2297 #endif
2298 if ((uint64_t)bno >= fs->fs_size) {
2299 printf("bad block %jd, ino %ju\n", (intmax_t)bno,
2300 (intmax_t)inum);
2301 ffs_fserr(fs, inum, "bad block");
2302 return;
2303 }
2304 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2305 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2306 return;
2307 /*
2308 * Would like to just downgrade to read-only. Until that
2309 * capability is available, just toss the cylinder group
2310 * update and mark the filesystem as needing to run fsck.
2311 */
2312 fs->fs_flags |= FS_NEEDSFSCK;
2313 if (devvp->v_type == VREG)
2314 dbn = fragstoblks(fs, cgtod(fs, cg));
2315 else
2316 dbn = fsbtodb(fs, cgtod(fs, cg));
2317 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2318 KASSERT(error == 0, ("getblkx failed"));
2319 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2320 numfrags(fs, size), dephd, true);
2321 bp->b_flags |= B_RELBUF | B_NOCACHE;
2322 bp->b_flags &= ~B_CACHE;
2323 bawrite(bp);
2324 return;
2325 }
2326 cgbno = dtogd(fs, bno);
2327 blksfree = cg_blksfree(cgp);
2328 UFS_LOCK(ump);
2329 if (size == fs->fs_bsize) {
2330 fragno = fragstoblks(fs, cgbno);
2331 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2332 if (devvp->v_type == VREG) {
2333 UFS_UNLOCK(ump);
2334 /* devvp is a snapshot */
2335 brelse(bp);
2336 return;
2337 }
2338 printf("dev = %s, block = %jd, fs = %s\n",
2339 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2340 panic("ffs_blkfree_cg: freeing free block");
2341 }
2342 ffs_setblock(fs, blksfree, fragno);
2343 ffs_clusteracct(fs, cgp, fragno, 1);
2344 cgp->cg_cs.cs_nbfree++;
2345 fs->fs_cstotal.cs_nbfree++;
2346 fs->fs_cs(fs, cg).cs_nbfree++;
2347 } else {
2348 bbase = cgbno - fragnum(fs, cgbno);
2349 /*
2350 * decrement the counts associated with the old frags
2351 */
2352 blk = blkmap(fs, blksfree, bbase);
2353 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2354 /*
2355 * deallocate the fragment
2356 */
2357 frags = numfrags(fs, size);
2358 for (i = 0; i < frags; i++) {
2359 if (isset(blksfree, cgbno + i)) {
2360 printf("dev = %s, block = %jd, fs = %s\n",
2361 devtoname(dev), (intmax_t)(bno + i),
2362 fs->fs_fsmnt);
2363 panic("ffs_blkfree_cg: freeing free frag");
2364 }
2365 setbit(blksfree, cgbno + i);
2366 }
2367 cgp->cg_cs.cs_nffree += i;
2368 fs->fs_cstotal.cs_nffree += i;
2369 fs->fs_cs(fs, cg).cs_nffree += i;
2370 /*
2371 * add back in counts associated with the new frags
2372 */
2373 blk = blkmap(fs, blksfree, bbase);
2374 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2375 /*
2376 * if a complete block has been reassembled, account for it
2377 */
2378 fragno = fragstoblks(fs, bbase);
2379 if (ffs_isblock(fs, blksfree, fragno)) {
2380 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2381 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2382 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2383 ffs_clusteracct(fs, cgp, fragno, 1);
2384 cgp->cg_cs.cs_nbfree++;
2385 fs->fs_cstotal.cs_nbfree++;
2386 fs->fs_cs(fs, cg).cs_nbfree++;
2387 }
2388 }
2389 fs->fs_fmod = 1;
2390 ACTIVECLEAR(fs, cg);
2391 UFS_UNLOCK(ump);
2392 mp = UFSTOVFS(ump);
2393 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2394 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2395 numfrags(fs, size), dephd, false);
2396 bdwrite(bp);
2397 }
2398
2399 /*
2400 * Structures and routines associated with trim management.
2401 *
2402 * The following requests are passed to trim_lookup to indicate
2403 * the actions that should be taken.
2404 */
2405 #define NEW 1 /* if found, error else allocate and hash it */
2406 #define OLD 2 /* if not found, error, else return it */
2407 #define REPLACE 3 /* if not found, error else unhash and reallocate it */
2408 #define DONE 4 /* if not found, error else unhash and return it */
2409 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */
2410
2411 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2412
2413 #define TRIMLIST_HASH(ump, key) \
2414 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2415
2416 /*
2417 * These structures describe each of the block free requests aggregated
2418 * together to make up a trim request.
2419 */
2420 struct trim_blkreq {
2421 TAILQ_ENTRY(trim_blkreq) blkreqlist;
2422 ufs2_daddr_t bno;
2423 long size;
2424 struct workhead *pdephd;
2425 struct workhead dephd;
2426 };
2427
2428 /*
2429 * Description of a trim request.
2430 */
2431 struct ffs_blkfree_trim_params {
2432 TAILQ_HEAD(, trim_blkreq) blklist;
2433 LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2434 struct task task;
2435 struct ufsmount *ump;
2436 struct vnode *devvp;
2437 ino_t inum;
2438 ufs2_daddr_t bno;
2439 long size;
2440 long key;
2441 };
2442
2443 static void ffs_blkfree_trim_completed(struct buf *);
2444 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
2445 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2446 struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int);
2447 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2448
2449 /*
2450 * Called on trim completion to start a task to free the associated block(s).
2451 */
2452 static void
ffs_blkfree_trim_completed(struct buf * bp)2453 ffs_blkfree_trim_completed(struct buf *bp)
2454 {
2455 struct ffs_blkfree_trim_params *tp;
2456
2457 tp = bp->b_fsprivate1;
2458 free(bp, M_TRIM);
2459 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2460 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2461 }
2462
2463 /*
2464 * Trim completion task that free associated block(s).
2465 */
2466 static void
ffs_blkfree_trim_task(void * ctx,int pending)2467 ffs_blkfree_trim_task(void *ctx, int pending)
2468 {
2469 struct ffs_blkfree_trim_params *tp;
2470 struct trim_blkreq *blkelm;
2471 struct ufsmount *ump;
2472
2473 tp = ctx;
2474 ump = tp->ump;
2475 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2476 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2477 blkelm->size, tp->inum, blkelm->pdephd);
2478 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2479 free(blkelm, M_TRIM);
2480 }
2481 vn_finished_secondary_write(UFSTOVFS(ump));
2482 UFS_LOCK(ump);
2483 ump->um_trim_inflight -= 1;
2484 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2485 UFS_UNLOCK(ump);
2486 free(tp, M_TRIM);
2487 }
2488
2489 /*
2490 * Lookup a trim request by inode number.
2491 * Allocate if requested (NEW, REPLACE, SINGLE).
2492 */
2493 static struct ffs_blkfree_trim_params *
trim_lookup(struct ufsmount * ump,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,uint64_t key,int alloctype)2494 trim_lookup(struct ufsmount *ump,
2495 struct vnode *devvp,
2496 ufs2_daddr_t bno,
2497 long size,
2498 ino_t inum,
2499 uint64_t key,
2500 int alloctype)
2501 {
2502 struct trimlist_hashhead *tphashhead;
2503 struct ffs_blkfree_trim_params *tp, *ntp;
2504
2505 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2506 if (alloctype != SINGLE) {
2507 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2508 UFS_LOCK(ump);
2509 tphashhead = TRIMLIST_HASH(ump, key);
2510 LIST_FOREACH(tp, tphashhead, hashlist)
2511 if (key == tp->key)
2512 break;
2513 }
2514 switch (alloctype) {
2515 case NEW:
2516 KASSERT(tp == NULL, ("trim_lookup: found trim"));
2517 break;
2518 case OLD:
2519 KASSERT(tp != NULL,
2520 ("trim_lookup: missing call to ffs_blkrelease_start()"));
2521 UFS_UNLOCK(ump);
2522 free(ntp, M_TRIM);
2523 return (tp);
2524 case REPLACE:
2525 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2526 LIST_REMOVE(tp, hashlist);
2527 /* tp will be freed by caller */
2528 break;
2529 case DONE:
2530 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2531 LIST_REMOVE(tp, hashlist);
2532 UFS_UNLOCK(ump);
2533 free(ntp, M_TRIM);
2534 return (tp);
2535 }
2536 TAILQ_INIT(&ntp->blklist);
2537 ntp->ump = ump;
2538 ntp->devvp = devvp;
2539 ntp->bno = bno;
2540 ntp->size = size;
2541 ntp->inum = inum;
2542 ntp->key = key;
2543 if (alloctype != SINGLE) {
2544 LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2545 UFS_UNLOCK(ump);
2546 }
2547 return (ntp);
2548 }
2549
2550 /*
2551 * Dispatch a trim request.
2552 */
2553 static void
ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params * tp)2554 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2555 {
2556 struct ufsmount *ump;
2557 struct mount *mp;
2558 struct buf *bp;
2559
2560 /*
2561 * Postpone the set of the free bit in the cg bitmap until the
2562 * BIO_DELETE is completed. Otherwise, due to disk queue
2563 * reordering, TRIM might be issued after we reuse the block
2564 * and write some new data into it.
2565 */
2566 ump = tp->ump;
2567 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2568 bp->b_iocmd = BIO_DELETE;
2569 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2570 bp->b_iodone = ffs_blkfree_trim_completed;
2571 bp->b_bcount = tp->size;
2572 bp->b_fsprivate1 = tp;
2573 UFS_LOCK(ump);
2574 ump->um_trim_total += 1;
2575 ump->um_trim_inflight += 1;
2576 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2577 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2578 UFS_UNLOCK(ump);
2579
2580 mp = UFSTOVFS(ump);
2581 vn_start_secondary_write(NULL, &mp, 0);
2582 g_vfs_strategy(ump->um_bo, bp);
2583 }
2584
2585 /*
2586 * Allocate a new key to use to identify a range of blocks.
2587 */
2588 uint64_t
ffs_blkrelease_start(struct ufsmount * ump,struct vnode * devvp,ino_t inum)2589 ffs_blkrelease_start(struct ufsmount *ump,
2590 struct vnode *devvp,
2591 ino_t inum)
2592 {
2593 static u_long masterkey;
2594 uint64_t key;
2595
2596 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2597 return (SINGLETON_KEY);
2598 do {
2599 key = atomic_fetchadd_long(&masterkey, 1);
2600 } while (key < FIRST_VALID_KEY);
2601 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2602 return (key);
2603 }
2604
2605 /*
2606 * Deallocate a key that has been used to identify a range of blocks.
2607 */
2608 void
ffs_blkrelease_finish(struct ufsmount * ump,uint64_t key)2609 ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key)
2610 {
2611 struct ffs_blkfree_trim_params *tp;
2612
2613 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2614 return;
2615 /*
2616 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2617 * a file deletion is active, specifically after a call
2618 * to ffs_blkrelease_start() but before the call to
2619 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2620 * have handed out SINGLETON_KEY rather than starting a
2621 * collection sequence. Thus if we get a SINGLETON_KEY
2622 * passed to ffs_blkrelease_finish(), we just return rather
2623 * than trying to finish the nonexistent sequence.
2624 */
2625 if (key == SINGLETON_KEY) {
2626 #ifdef INVARIANTS
2627 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2628 ump->um_mountp->mnt_stat.f_mntonname);
2629 #endif
2630 return;
2631 }
2632 /*
2633 * We are done with sending blocks using this key. Look up the key
2634 * using the DONE alloctype (in tp) to request that it be unhashed
2635 * as we will not be adding to it. If the key has never been used,
2636 * tp->size will be zero, so we can just free tp. Otherwise the call
2637 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2638 * tp to be issued (and then tp to be freed).
2639 */
2640 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2641 if (tp->size == 0)
2642 free(tp, M_TRIM);
2643 else
2644 ffs_blkfree_sendtrim(tp);
2645 }
2646
2647 /*
2648 * Setup to free a block or fragment.
2649 *
2650 * Check for snapshots that might want to claim the block.
2651 * If trims are requested, prepare a trim request. Attempt to
2652 * aggregate consecutive blocks into a single trim request.
2653 */
2654 void
ffs_blkfree(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,__enum_uint8 (vtype)vtype,struct workhead * dephd,uint64_t key)2655 ffs_blkfree(struct ufsmount *ump,
2656 struct fs *fs,
2657 struct vnode *devvp,
2658 ufs2_daddr_t bno,
2659 long size,
2660 ino_t inum,
2661 __enum_uint8(vtype) vtype,
2662 struct workhead *dephd,
2663 uint64_t key)
2664 {
2665 struct ffs_blkfree_trim_params *tp, *ntp;
2666 struct trim_blkreq *blkelm;
2667
2668 /*
2669 * Check to see if a snapshot wants to claim the block.
2670 * Check that devvp is a normal disk device, not a snapshot,
2671 * it has a snapshot(s) associated with it, and one of the
2672 * snapshots wants to claim the block.
2673 */
2674 if (devvp->v_type == VCHR &&
2675 (devvp->v_vflag & VV_COPYONWRITE) &&
2676 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2677 return;
2678 }
2679 /*
2680 * Nothing to delay if TRIM is not required for this block or TRIM
2681 * is disabled or the operation is performed on a snapshot.
2682 */
2683 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2684 devvp->v_type == VREG) {
2685 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2686 return;
2687 }
2688 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2689 blkelm->bno = bno;
2690 blkelm->size = size;
2691 if (dephd == NULL) {
2692 blkelm->pdephd = NULL;
2693 } else {
2694 LIST_INIT(&blkelm->dephd);
2695 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2696 blkelm->pdephd = &blkelm->dephd;
2697 }
2698 if (key == SINGLETON_KEY) {
2699 /*
2700 * Just a single non-contiguous piece. Use the SINGLE
2701 * alloctype to return a trim request that will not be
2702 * hashed for future lookup.
2703 */
2704 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2705 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2706 ffs_blkfree_sendtrim(tp);
2707 return;
2708 }
2709 /*
2710 * The callers of this function are not tracking whether or not
2711 * the blocks are contiguous. They are just saying that they
2712 * are freeing a set of blocks. It is this code that determines
2713 * the pieces of that range that are actually contiguous.
2714 *
2715 * Calling ffs_blkrelease_start() will have created an entry
2716 * that we will use.
2717 */
2718 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2719 if (tp->size == 0) {
2720 /*
2721 * First block of a potential range, set block and size
2722 * for the trim block.
2723 */
2724 tp->bno = bno;
2725 tp->size = size;
2726 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2727 return;
2728 }
2729 /*
2730 * If this block is a continuation of the range (either
2731 * follows at the end or preceeds in the front) then we
2732 * add it to the front or back of the list and return.
2733 *
2734 * If it is not a continuation of the trim that we were
2735 * building, using the REPLACE alloctype, we request that
2736 * the old trim request (still in tp) be unhashed and a
2737 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2738 * call causes the block range described by tp to be issued
2739 * (and then tp to be freed).
2740 */
2741 if (bno + numfrags(fs, size) == tp->bno) {
2742 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2743 tp->bno = bno;
2744 tp->size += size;
2745 return;
2746 } else if (bno == tp->bno + numfrags(fs, tp->size)) {
2747 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2748 tp->size += size;
2749 return;
2750 }
2751 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2752 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2753 ffs_blkfree_sendtrim(tp);
2754 }
2755
2756 #ifdef INVARIANTS
2757 /*
2758 * Verify allocation of a block or fragment.
2759 * Return 1 if block or fragment is free.
2760 */
2761 static int
ffs_checkfreeblk(struct inode * ip,ufs2_daddr_t bno,long size)2762 ffs_checkfreeblk(struct inode *ip,
2763 ufs2_daddr_t bno,
2764 long size)
2765 {
2766 struct fs *fs;
2767 struct cg *cgp;
2768 struct buf *bp;
2769 ufs1_daddr_t cgbno;
2770 int i, frags, blkalloced;
2771 uint8_t *blksfree;
2772
2773 fs = ITOFS(ip);
2774 if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2775 printf("bsize = %ld, size = %ld, fs = %s\n",
2776 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2777 panic("ffs_checkfreeblk: bad size");
2778 }
2779 if ((uint64_t)bno >= fs->fs_size)
2780 panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno);
2781 if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0)
2782 return (0);
2783 blksfree = cg_blksfree(cgp);
2784 cgbno = dtogd(fs, bno);
2785 if (size == fs->fs_bsize) {
2786 blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2787 } else {
2788 frags = numfrags(fs, size);
2789 for (blkalloced = 0, i = 0; i < frags; i++)
2790 if (isset(blksfree, cgbno + i))
2791 blkalloced++;
2792 if (blkalloced != 0 && blkalloced != frags)
2793 panic("ffs_checkfreeblk: partially free fragment");
2794 }
2795 brelse(bp);
2796 return (blkalloced == 0);
2797 }
2798 #endif /* INVARIANTS */
2799
2800 /*
2801 * Free an inode.
2802 */
2803 int
ffs_vfree(struct vnode * pvp,ino_t ino,int mode)2804 ffs_vfree(struct vnode *pvp,
2805 ino_t ino,
2806 int mode)
2807 {
2808 struct ufsmount *ump;
2809
2810 if (DOINGSOFTDEP(pvp)) {
2811 softdep_freefile(pvp, ino, mode);
2812 return (0);
2813 }
2814 ump = VFSTOUFS(pvp->v_mount);
2815 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2816 }
2817
2818 /*
2819 * Do the actual free operation.
2820 * The specified inode is placed back in the free map.
2821 */
2822 int
ffs_freefile(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ino_t ino,int mode,struct workhead * wkhd)2823 ffs_freefile(struct ufsmount *ump,
2824 struct fs *fs,
2825 struct vnode *devvp,
2826 ino_t ino,
2827 int mode,
2828 struct workhead *wkhd)
2829 {
2830 struct cg *cgp;
2831 struct buf *bp;
2832 daddr_t dbn;
2833 int error;
2834 uint64_t cg;
2835 uint8_t *inosused;
2836 struct cdev *dev;
2837 ino_t cgino;
2838
2839 cg = ino_to_cg(fs, ino);
2840 if (devvp->v_type == VREG) {
2841 /* devvp is a snapshot */
2842 MPASS(devvp->v_mount->mnt_data == ump);
2843 dev = ump->um_devvp->v_rdev;
2844 } else if (devvp->v_type == VCHR) {
2845 /* devvp is a normal disk device */
2846 dev = devvp->v_rdev;
2847 } else {
2848 bp = NULL;
2849 return (0);
2850 }
2851 if (ino >= fs->fs_ipg * fs->fs_ncg)
2852 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2853 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2854 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2855 if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2856 return (error);
2857 /*
2858 * Would like to just downgrade to read-only. Until that
2859 * capability is available, just toss the cylinder group
2860 * update and mark the filesystem as needing to run fsck.
2861 */
2862 fs->fs_flags |= FS_NEEDSFSCK;
2863 if (devvp->v_type == VREG)
2864 dbn = fragstoblks(fs, cgtod(fs, cg));
2865 else
2866 dbn = fsbtodb(fs, cgtod(fs, cg));
2867 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2868 KASSERT(error == 0, ("getblkx failed"));
2869 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true);
2870 bp->b_flags |= B_RELBUF | B_NOCACHE;
2871 bp->b_flags &= ~B_CACHE;
2872 bawrite(bp);
2873 return (error);
2874 }
2875 inosused = cg_inosused(cgp);
2876 cgino = ino % fs->fs_ipg;
2877 if (isclr(inosused, cgino)) {
2878 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2879 (uintmax_t)ino, fs->fs_fsmnt);
2880 if (fs->fs_ronly == 0)
2881 panic("ffs_freefile: freeing free inode");
2882 }
2883 clrbit(inosused, cgino);
2884 if (cgino < cgp->cg_irotor)
2885 cgp->cg_irotor = cgino;
2886 cgp->cg_cs.cs_nifree++;
2887 UFS_LOCK(ump);
2888 fs->fs_cstotal.cs_nifree++;
2889 fs->fs_cs(fs, cg).cs_nifree++;
2890 if ((mode & IFMT) == IFDIR) {
2891 cgp->cg_cs.cs_ndir--;
2892 fs->fs_cstotal.cs_ndir--;
2893 fs->fs_cs(fs, cg).cs_ndir--;
2894 }
2895 fs->fs_fmod = 1;
2896 ACTIVECLEAR(fs, cg);
2897 UFS_UNLOCK(ump);
2898 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2899 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false);
2900 bdwrite(bp);
2901 return (0);
2902 }
2903
2904 /*
2905 * Check to see if a file is free.
2906 * Used to check for allocated files in snapshots.
2907 * Return 1 if file is free.
2908 */
2909 int
ffs_checkfreefile(struct fs * fs,struct vnode * devvp,ino_t ino)2910 ffs_checkfreefile(struct fs *fs,
2911 struct vnode *devvp,
2912 ino_t ino)
2913 {
2914 struct cg *cgp;
2915 struct buf *bp;
2916 int ret, error;
2917 uint64_t cg;
2918 uint8_t *inosused;
2919
2920 cg = ino_to_cg(fs, ino);
2921 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2922 return (1);
2923 if (ino >= fs->fs_ipg * fs->fs_ncg)
2924 return (1);
2925 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2926 return (1);
2927 inosused = cg_inosused(cgp);
2928 ino %= fs->fs_ipg;
2929 ret = isclr(inosused, ino);
2930 brelse(bp);
2931 return (ret);
2932 }
2933
2934 /*
2935 * Find a block of the specified size in the specified cylinder group.
2936 *
2937 * It is a panic if a request is made to find a block if none are
2938 * available.
2939 */
2940 static ufs1_daddr_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,ufs2_daddr_t bpref,int allocsiz)2941 ffs_mapsearch(struct fs *fs,
2942 struct cg *cgp,
2943 ufs2_daddr_t bpref,
2944 int allocsiz)
2945 {
2946 ufs1_daddr_t bno;
2947 int start, len, loc, i;
2948 int blk, field, subfield, pos;
2949 uint8_t *blksfree;
2950
2951 /*
2952 * find the fragment by searching through the free block
2953 * map for an appropriate bit pattern
2954 */
2955 if (bpref)
2956 start = dtogd(fs, bpref) / NBBY;
2957 else
2958 start = cgp->cg_frotor / NBBY;
2959 blksfree = cg_blksfree(cgp);
2960 len = howmany(fs->fs_fpg, NBBY) - start;
2961 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start],
2962 fragtbl[fs->fs_frag],
2963 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2964 if (loc == 0) {
2965 len = start + 1;
2966 start = 0;
2967 loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0],
2968 fragtbl[fs->fs_frag],
2969 (uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2970 if (loc == 0) {
2971 printf("start = %d, len = %d, fs = %s\n",
2972 start, len, fs->fs_fsmnt);
2973 panic("ffs_alloccg: map corrupted");
2974 /* NOTREACHED */
2975 }
2976 }
2977 bno = (start + len - loc) * NBBY;
2978 cgp->cg_frotor = bno;
2979 /*
2980 * found the byte in the map
2981 * sift through the bits to find the selected frag
2982 */
2983 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2984 blk = blkmap(fs, blksfree, bno);
2985 blk <<= 1;
2986 field = around[allocsiz];
2987 subfield = inside[allocsiz];
2988 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2989 if ((blk & field) == subfield)
2990 return (bno + pos);
2991 field <<= 1;
2992 subfield <<= 1;
2993 }
2994 }
2995 printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt);
2996 panic("ffs_alloccg: block not in map");
2997 return (-1);
2998 }
2999
3000 /*
3001 * Fetch and verify a cylinder group.
3002 */
3003 int
ffs_getcg(struct fs * fs,struct vnode * devvp,uint64_t cg,int flags,struct buf ** bpp,struct cg ** cgpp)3004 ffs_getcg(struct fs *fs,
3005 struct vnode *devvp,
3006 uint64_t cg,
3007 int flags,
3008 struct buf **bpp,
3009 struct cg **cgpp)
3010 {
3011 struct buf *bp;
3012 struct cg *cgp;
3013 struct mount *mp;
3014 const struct statfs *sfs;
3015 daddr_t blkno;
3016 int error;
3017
3018 *bpp = NULL;
3019 *cgpp = NULL;
3020 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3021 flags |= GB_CKHASH;
3022 if (devvp->v_type == VCHR) {
3023 blkno = fsbtodb(fs, cgtod(fs, cg));
3024 mp = devvp->v_rdev->si_mountpt;
3025 } else {
3026 blkno = fragstoblks(fs, cgtod(fs, cg));
3027 mp = devvp->v_mount;
3028 }
3029 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
3030 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
3031 if (error != 0)
3032 return (error);
3033 cgp = (struct cg *)bp->b_data;
3034 if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3035 (bp->b_flags & B_CKHASH) != 0 &&
3036 cgp->cg_ckhash != bp->b_ckhash) {
3037 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3038 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3039 sfs = &mp->mnt_stat;
3040 printf("UFS %s%s (%s) cylinder checkhash failed: "
3041 "cg %ju, cgp: 0x%x != bp: 0x%jx\n",
3042 devvp->v_type == VCHR ? "" : "snapshot of ",
3043 sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg,
3044 cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3045 }
3046 bp->b_flags &= ~B_CKHASH;
3047 bp->b_flags |= B_INVAL | B_NOCACHE;
3048 brelse(bp);
3049 return (EINTEGRITY);
3050 }
3051 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3052 if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3053 &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3054 sfs = &mp->mnt_stat;
3055 printf("UFS %s%s (%s)",
3056 devvp->v_type == VCHR ? "" : "snapshot of ",
3057 sfs->f_mntfromname, sfs->f_mntonname);
3058 if (!cg_chkmagic(cgp))
3059 printf(" cg %ju: bad magic number 0x%x should "
3060 "be 0x%x\n", (intmax_t)cg, cgp->cg_magic,
3061 CG_MAGIC);
3062 else
3063 printf(": wrong cylinder group cg %ju != "
3064 "cgx %u\n", (intmax_t)cg, cgp->cg_cgx);
3065 }
3066 bp->b_flags &= ~B_CKHASH;
3067 bp->b_flags |= B_INVAL | B_NOCACHE;
3068 brelse(bp);
3069 return (EINTEGRITY);
3070 }
3071 bp->b_flags &= ~B_CKHASH;
3072 bp->b_xflags |= BX_BKGRDWRITE;
3073 /*
3074 * If we are using check hashes on the cylinder group then we want
3075 * to limit changing the cylinder group time to when we are actually
3076 * going to write it to disk so that its check hash remains correct
3077 * in memory. If the CK_CYLGRP flag is set the time is updated in
3078 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3079 * update the time here as we have done historically.
3080 */
3081 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3082 bp->b_xflags |= BX_CYLGRP;
3083 else
3084 cgp->cg_old_time = cgp->cg_time = time_second;
3085 *bpp = bp;
3086 *cgpp = cgp;
3087 return (0);
3088 }
3089
3090 static void
ffs_ckhash_cg(struct buf * bp)3091 ffs_ckhash_cg(struct buf *bp)
3092 {
3093 uint32_t ckhash;
3094 struct cg *cgp;
3095
3096 cgp = (struct cg *)bp->b_data;
3097 ckhash = cgp->cg_ckhash;
3098 cgp->cg_ckhash = 0;
3099 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3100 cgp->cg_ckhash = ckhash;
3101 }
3102
3103 /*
3104 * Called when a cylinder group read has failed. If an integrity check
3105 * is the cause of failure then the cylinder group will not be usable
3106 * until the filesystem has been unmounted and fsck has been run to
3107 * repair it. To avoid future attempts to allocate resources from the
3108 * cylinder group, its available resources are set to zero in the
3109 * superblock summary information. Since it will appear to have no
3110 * resources available, no further calls will be made to allocate
3111 * resources from it. When resources are freed to the cylinder group
3112 * the resource free routines will find the cylinder group unusable so
3113 * the resource will simply be discarded and thus will not show up in
3114 * the superblock summary information until they are recovered by fsck.
3115 */
3116 static void
ffs_checkcgintegrity(struct fs * fs,uint64_t cg,int error)3117 ffs_checkcgintegrity(struct fs *fs,
3118 uint64_t cg,
3119 int error)
3120 {
3121
3122 if (error != EINTEGRITY)
3123 return;
3124 fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree;
3125 fs->fs_cs(fs, cg).cs_nffree = 0;
3126 fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree;
3127 fs->fs_cs(fs, cg).cs_nbfree = 0;
3128 fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree;
3129 fs->fs_cs(fs, cg).cs_nifree = 0;
3130 fs->fs_maxcluster[cg] = 0;
3131 fs->fs_flags |= FS_NEEDSFSCK;
3132 fs->fs_fmod = 1;
3133 }
3134
3135 /*
3136 * Fserr prints the name of a filesystem with an error diagnostic.
3137 *
3138 * The form of the error message is:
3139 * fs: error message
3140 */
3141 void
ffs_fserr(struct fs * fs,ino_t inum,char * cp)3142 ffs_fserr(struct fs *fs,
3143 ino_t inum,
3144 char *cp)
3145 {
3146 struct thread *td = curthread; /* XXX */
3147 struct proc *p = td->td_proc;
3148
3149 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3150 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3151 fs->fs_fsmnt, cp);
3152 }
3153
3154 /*
3155 * This function provides the capability for the fsck program to
3156 * update an active filesystem. Sixteen operations are provided:
3157 *
3158 * adjrefcnt(inode, amt) - adjusts the reference count on the
3159 * specified inode by the specified amount. Under normal
3160 * operation the count should always go down. Decrementing
3161 * the count to zero will cause the inode to be freed.
3162 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3163 * inode by the specified amount.
3164 * adjdepth(inode, amt) - adjust the depth of the specified directory
3165 * inode by the specified amount.
3166 * setsize(inode, size) - set the size of the inode to the
3167 * specified size.
3168 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3169 * adjust the superblock summary.
3170 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3171 * are marked as free. Inodes should never have to be marked
3172 * as in use.
3173 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3174 * are marked as free. Inodes should never have to be marked
3175 * as in use.
3176 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3177 * are marked as free. Blocks should never have to be marked
3178 * as in use.
3179 * setflags(flags, set/clear) - the fs_flags field has the specified
3180 * flags set (second parameter +1) or cleared (second parameter -1).
3181 * setcwd(dirinode) - set the current directory to dirinode in the
3182 * filesystem associated with the snapshot.
3183 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3184 * in the current directory is oldvalue then change it to newvalue.
3185 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3186 * with nameptr in the current directory is oldvalue then unlink it.
3187 */
3188
3189 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3190
3191 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3192 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3193 0, 0, sysctl_ffs_fsck, "S,fsck",
3194 "Adjust Inode Reference Count");
3195
3196 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3197 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3198 "Adjust Inode Used Blocks Count");
3199
3200 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth,
3201 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3202 "Adjust Directory Inode Depth");
3203
3204 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3205 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3206 "Set the inode size");
3207
3208 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3209 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3210 "Adjust number of directories");
3211
3212 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3213 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3214 "Adjust number of free blocks");
3215
3216 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3217 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3218 "Adjust number of free inodes");
3219
3220 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3221 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3222 "Adjust number of free frags");
3223
3224 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3225 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3226 "Adjust number of free clusters");
3227
3228 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3229 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3230 "Free Range of Directory Inodes");
3231
3232 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3233 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3234 "Free Range of File Inodes");
3235
3236 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3237 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3238 "Free Range of Blocks");
3239
3240 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3241 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3242 "Change Filesystem Flags");
3243
3244 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3245 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3246 "Set Current Working Directory");
3247
3248 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3249 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3250 "Change Value of .. Entry");
3251
3252 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3253 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3254 "Unlink a Duplicate Name");
3255
3256 #ifdef DIAGNOSTIC
3257 static int fsckcmds = 0;
3258 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3259 "print out fsck_ffs-based filesystem update commands");
3260 #endif /* DIAGNOSTIC */
3261
3262 static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)3263 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3264 {
3265 struct thread *td = curthread;
3266 struct fsck_cmd cmd;
3267 struct ufsmount *ump;
3268 struct vnode *vp, *dvp, *fdvp;
3269 struct inode *ip, *dp;
3270 struct mount *mp;
3271 struct fs *fs;
3272 struct pwd *pwd;
3273 ufs2_daddr_t blkno;
3274 long blkcnt, blksize;
3275 uint64_t key;
3276 struct file *fp;
3277 cap_rights_t rights;
3278 int filetype, error;
3279
3280 if (req->newptr == NULL || req->newlen > sizeof(cmd))
3281 return (EBADRPC);
3282 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3283 return (error);
3284 if (cmd.version != FFS_CMD_VERSION)
3285 return (ERPCMISMATCH);
3286 if ((error = getvnode(td, cmd.handle,
3287 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3288 return (error);
3289 vp = fp->f_vnode;
3290 if (vp->v_type != VREG && vp->v_type != VDIR) {
3291 fdrop(fp, td);
3292 return (EINVAL);
3293 }
3294 vn_start_write(vp, &mp, V_WAIT);
3295 if (mp == NULL ||
3296 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3297 vn_finished_write(mp);
3298 fdrop(fp, td);
3299 return (EINVAL);
3300 }
3301 ump = VFSTOUFS(mp);
3302 if (mp->mnt_flag & MNT_RDONLY) {
3303 vn_finished_write(mp);
3304 fdrop(fp, td);
3305 return (EROFS);
3306 }
3307 fs = ump->um_fs;
3308 filetype = IFREG;
3309
3310 switch (oidp->oid_number) {
3311 case FFS_SET_FLAGS:
3312 #ifdef DIAGNOSTIC
3313 if (fsckcmds)
3314 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3315 cmd.size > 0 ? "set" : "clear");
3316 #endif /* DIAGNOSTIC */
3317 if (cmd.size > 0)
3318 fs->fs_flags |= (long)cmd.value;
3319 else
3320 fs->fs_flags &= ~(long)cmd.value;
3321 break;
3322
3323 case FFS_ADJ_REFCNT:
3324 #ifdef DIAGNOSTIC
3325 if (fsckcmds) {
3326 printf("%s: adjust inode %jd link count by %jd\n",
3327 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3328 (intmax_t)cmd.size);
3329 }
3330 #endif /* DIAGNOSTIC */
3331 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3332 break;
3333 ip = VTOI(vp);
3334 ip->i_nlink += cmd.size;
3335 DIP_SET_NLINK(ip, ip->i_nlink);
3336 ip->i_effnlink += cmd.size;
3337 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3338 error = ffs_update(vp, 1);
3339 if (DOINGSOFTDEP(vp))
3340 softdep_change_linkcnt(ip);
3341 vput(vp);
3342 break;
3343
3344 case FFS_ADJ_BLKCNT:
3345 #ifdef DIAGNOSTIC
3346 if (fsckcmds) {
3347 printf("%s: adjust inode %jd block count by %jd\n",
3348 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3349 (intmax_t)cmd.size);
3350 }
3351 #endif /* DIAGNOSTIC */
3352 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3353 break;
3354 ip = VTOI(vp);
3355 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3356 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3357 error = ffs_update(vp, 1);
3358 vput(vp);
3359 break;
3360
3361 case FFS_ADJ_DEPTH:
3362 #ifdef DIAGNOSTIC
3363 if (fsckcmds) {
3364 printf("%s: adjust directory inode %jd depth by %jd\n",
3365 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3366 (intmax_t)cmd.size);
3367 }
3368 #endif /* DIAGNOSTIC */
3369 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3370 break;
3371 if (vp->v_type != VDIR) {
3372 vput(vp);
3373 error = ENOTDIR;
3374 break;
3375 }
3376 ip = VTOI(vp);
3377 DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size);
3378 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3379 error = ffs_update(vp, 1);
3380 vput(vp);
3381 break;
3382
3383 case FFS_SET_SIZE:
3384 #ifdef DIAGNOSTIC
3385 if (fsckcmds) {
3386 printf("%s: set inode %jd size to %jd\n",
3387 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3388 (intmax_t)cmd.size);
3389 }
3390 #endif /* DIAGNOSTIC */
3391 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3392 break;
3393 ip = VTOI(vp);
3394 DIP_SET(ip, i_size, cmd.size);
3395 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3396 error = ffs_update(vp, 1);
3397 vput(vp);
3398 break;
3399
3400 case FFS_DIR_FREE:
3401 filetype = IFDIR;
3402 /* fall through */
3403
3404 case FFS_FILE_FREE:
3405 #ifdef DIAGNOSTIC
3406 if (fsckcmds) {
3407 if (cmd.size == 1)
3408 printf("%s: free %s inode %ju\n",
3409 mp->mnt_stat.f_mntonname,
3410 filetype == IFDIR ? "directory" : "file",
3411 (uintmax_t)cmd.value);
3412 else
3413 printf("%s: free %s inodes %ju-%ju\n",
3414 mp->mnt_stat.f_mntonname,
3415 filetype == IFDIR ? "directory" : "file",
3416 (uintmax_t)cmd.value,
3417 (uintmax_t)(cmd.value + cmd.size - 1));
3418 }
3419 #endif /* DIAGNOSTIC */
3420 while (cmd.size > 0) {
3421 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3422 cmd.value, filetype, NULL)))
3423 break;
3424 cmd.size -= 1;
3425 cmd.value += 1;
3426 }
3427 break;
3428
3429 case FFS_BLK_FREE:
3430 #ifdef DIAGNOSTIC
3431 if (fsckcmds) {
3432 if (cmd.size == 1)
3433 printf("%s: free block %jd\n",
3434 mp->mnt_stat.f_mntonname,
3435 (intmax_t)cmd.value);
3436 else
3437 printf("%s: free blocks %jd-%jd\n",
3438 mp->mnt_stat.f_mntonname,
3439 (intmax_t)cmd.value,
3440 (intmax_t)cmd.value + cmd.size - 1);
3441 }
3442 #endif /* DIAGNOSTIC */
3443 blkno = cmd.value;
3444 blkcnt = cmd.size;
3445 blksize = fs->fs_frag - (blkno % fs->fs_frag);
3446 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3447 while (blkcnt > 0) {
3448 if (blkcnt < blksize)
3449 blksize = blkcnt;
3450 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3451 blksize * fs->fs_fsize, UFS_ROOTINO,
3452 VDIR, NULL, key);
3453 blkno += blksize;
3454 blkcnt -= blksize;
3455 blksize = fs->fs_frag;
3456 }
3457 ffs_blkrelease_finish(ump, key);
3458 break;
3459
3460 /*
3461 * Adjust superblock summaries. fsck(8) is expected to
3462 * submit deltas when necessary.
3463 */
3464 case FFS_ADJ_NDIR:
3465 #ifdef DIAGNOSTIC
3466 if (fsckcmds) {
3467 printf("%s: adjust number of directories by %jd\n",
3468 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3469 }
3470 #endif /* DIAGNOSTIC */
3471 fs->fs_cstotal.cs_ndir += cmd.value;
3472 break;
3473
3474 case FFS_ADJ_NBFREE:
3475 #ifdef DIAGNOSTIC
3476 if (fsckcmds) {
3477 printf("%s: adjust number of free blocks by %+jd\n",
3478 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3479 }
3480 #endif /* DIAGNOSTIC */
3481 fs->fs_cstotal.cs_nbfree += cmd.value;
3482 break;
3483
3484 case FFS_ADJ_NIFREE:
3485 #ifdef DIAGNOSTIC
3486 if (fsckcmds) {
3487 printf("%s: adjust number of free inodes by %+jd\n",
3488 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3489 }
3490 #endif /* DIAGNOSTIC */
3491 fs->fs_cstotal.cs_nifree += cmd.value;
3492 break;
3493
3494 case FFS_ADJ_NFFREE:
3495 #ifdef DIAGNOSTIC
3496 if (fsckcmds) {
3497 printf("%s: adjust number of free frags by %+jd\n",
3498 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3499 }
3500 #endif /* DIAGNOSTIC */
3501 fs->fs_cstotal.cs_nffree += cmd.value;
3502 break;
3503
3504 case FFS_ADJ_NUMCLUSTERS:
3505 #ifdef DIAGNOSTIC
3506 if (fsckcmds) {
3507 printf("%s: adjust number of free clusters by %+jd\n",
3508 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3509 }
3510 #endif /* DIAGNOSTIC */
3511 fs->fs_cstotal.cs_numclusters += cmd.value;
3512 break;
3513
3514 case FFS_SET_CWD:
3515 #ifdef DIAGNOSTIC
3516 if (fsckcmds) {
3517 printf("%s: set current directory to inode %jd\n",
3518 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3519 }
3520 #endif /* DIAGNOSTIC */
3521 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3522 break;
3523 AUDIT_ARG_VNODE1(vp);
3524 if ((error = change_dir(vp, td)) != 0) {
3525 vput(vp);
3526 break;
3527 }
3528 VOP_UNLOCK(vp);
3529 pwd_chdir(td, vp);
3530 break;
3531
3532 case FFS_SET_DOTDOT:
3533 #ifdef DIAGNOSTIC
3534 if (fsckcmds) {
3535 printf("%s: change .. in cwd from %jd to %jd\n",
3536 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3537 (intmax_t)cmd.size);
3538 }
3539 #endif /* DIAGNOSTIC */
3540 /*
3541 * First we have to get and lock the parent directory
3542 * to which ".." points.
3543 */
3544 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3545 if (error)
3546 break;
3547 /*
3548 * Now we get and lock the child directory containing "..".
3549 */
3550 pwd = pwd_hold(td);
3551 dvp = pwd->pwd_cdir;
3552 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3553 vput(fdvp);
3554 pwd_drop(pwd);
3555 break;
3556 }
3557 dp = VTOI(dvp);
3558 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */
3559 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3560 DT_DIR, 0);
3561 cache_purge(fdvp);
3562 cache_purge(dvp);
3563 vput(dvp);
3564 vput(fdvp);
3565 pwd_drop(pwd);
3566 break;
3567
3568 case FFS_UNLINK:
3569 #ifdef DIAGNOSTIC
3570 if (fsckcmds) {
3571 char buf[32];
3572
3573 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3574 strncpy(buf, "Name_too_long", 32);
3575 printf("%s: unlink %s (inode %jd)\n",
3576 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3577 }
3578 #endif /* DIAGNOSTIC */
3579 /*
3580 * kern_funlinkat will do its own start/finish writes and
3581 * they do not nest, so drop ours here. Setting mp == NULL
3582 * indicates that vn_finished_write is not needed down below.
3583 */
3584 vn_finished_write(mp);
3585 mp = NULL;
3586 error = kern_funlinkat(td, AT_FDCWD,
3587 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3588 0, (ino_t)cmd.size);
3589 break;
3590
3591 default:
3592 #ifdef DIAGNOSTIC
3593 if (fsckcmds) {
3594 printf("Invalid request %d from fsck\n",
3595 oidp->oid_number);
3596 }
3597 #endif /* DIAGNOSTIC */
3598 error = EINVAL;
3599 break;
3600 }
3601 fdrop(fp, td);
3602 vn_finished_write(mp);
3603 return (error);
3604 }
3605