1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
32 */
33
34 #include <sys/cdefs.h>
35 #include "opt_inet.h"
36 #include "opt_ipsec.h"
37 #include "opt_kern_tls.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_ratelimit.h"
40 #include "opt_route.h"
41 #include "opt_rss.h"
42 #include "opt_sctp.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/ktls.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/protosw.h>
54 #include <sys/sdt.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/ucred.h>
59
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_private.h>
63 #include <net/if_vlan_var.h>
64 #include <net/if_llatbl.h>
65 #include <net/ethernet.h>
66 #include <net/netisr.h>
67 #include <net/pfil.h>
68 #include <net/route.h>
69 #include <net/route/nhop.h>
70 #include <net/rss_config.h>
71 #include <net/vnet.h>
72
73 #include <netinet/in.h>
74 #include <netinet/in_fib.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_systm.h>
77 #include <netinet/ip.h>
78 #include <netinet/in_fib.h>
79 #include <netinet/in_pcb.h>
80 #include <netinet/in_rss.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip_var.h>
83 #include <netinet/ip_options.h>
84
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87
88 #if defined(SCTP) || defined(SCTP_SUPPORT)
89 #include <netinet/sctp.h>
90 #include <netinet/sctp_crc32.h>
91 #endif
92
93 #include <netipsec/ipsec_support.h>
94
95 #include <machine/in_cksum.h>
96
97 #include <security/mac/mac_framework.h>
98
99 #ifdef MBUF_STRESS_TEST
100 static int mbuf_frag_size = 0;
101 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
102 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
103 #endif
104
105 static void ip_mloopback(struct ifnet *, const struct mbuf *, int);
106
107 extern int in_mcast_loop;
108
109 static inline int
ip_output_pfil(struct mbuf ** mp,struct ifnet * ifp,int flags,struct inpcb * inp,struct sockaddr_in * dst,int * fibnum,int * error)110 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
111 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
112 {
113 struct m_tag *fwd_tag = NULL;
114 struct mbuf *m;
115 struct in_addr odst;
116 struct ip *ip;
117
118 m = *mp;
119 ip = mtod(m, struct ip *);
120
121 /* Run through list of hooks for output packets. */
122 odst.s_addr = ip->ip_dst.s_addr;
123 switch (pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp)) {
124 case PFIL_DROPPED:
125 *error = EACCES;
126 /* FALLTHROUGH */
127 case PFIL_CONSUMED:
128 return 1; /* Finished */
129 case PFIL_PASS:
130 *error = 0;
131 }
132 m = *mp;
133 ip = mtod(m, struct ip *);
134
135 /* See if destination IP address was changed by packet filter. */
136 if (odst.s_addr != ip->ip_dst.s_addr) {
137 m->m_flags |= M_SKIP_FIREWALL;
138 /* If destination is now ourself drop to ip_input(). */
139 if (in_localip(ip->ip_dst)) {
140 m->m_flags |= M_FASTFWD_OURS;
141 if (m->m_pkthdr.rcvif == NULL)
142 m->m_pkthdr.rcvif = V_loif;
143 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
144 m->m_pkthdr.csum_flags |=
145 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
146 m->m_pkthdr.csum_data = 0xffff;
147 }
148 m->m_pkthdr.csum_flags |=
149 CSUM_IP_CHECKED | CSUM_IP_VALID;
150 #if defined(SCTP) || defined(SCTP_SUPPORT)
151 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
152 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
153 #endif
154 *error = netisr_queue(NETISR_IP, m);
155 return 1; /* Finished */
156 }
157
158 bzero(dst, sizeof(*dst));
159 dst->sin_family = AF_INET;
160 dst->sin_len = sizeof(*dst);
161 dst->sin_addr = ip->ip_dst;
162
163 return -1; /* Reloop */
164 }
165 /* See if fib was changed by packet filter. */
166 if ((*fibnum) != M_GETFIB(m)) {
167 m->m_flags |= M_SKIP_FIREWALL;
168 *fibnum = M_GETFIB(m);
169 return -1; /* Reloop for FIB change */
170 }
171
172 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
173 if (m->m_flags & M_FASTFWD_OURS) {
174 if (m->m_pkthdr.rcvif == NULL)
175 m->m_pkthdr.rcvif = V_loif;
176 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
177 m->m_pkthdr.csum_flags |=
178 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
179 m->m_pkthdr.csum_data = 0xffff;
180 }
181 #if defined(SCTP) || defined(SCTP_SUPPORT)
182 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
183 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
184 #endif
185 m->m_pkthdr.csum_flags |=
186 CSUM_IP_CHECKED | CSUM_IP_VALID;
187
188 *error = netisr_queue(NETISR_IP, m);
189 return 1; /* Finished */
190 }
191 /* Or forward to some other address? */
192 if ((m->m_flags & M_IP_NEXTHOP) &&
193 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
194 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
195 m->m_flags |= M_SKIP_FIREWALL;
196 m->m_flags &= ~M_IP_NEXTHOP;
197 m_tag_delete(m, fwd_tag);
198
199 return -1; /* Reloop for CHANGE of dst */
200 }
201
202 return 0;
203 }
204
205 static int
ip_output_send(struct inpcb * inp,struct ifnet * ifp,struct mbuf * m,const struct sockaddr * gw,struct route * ro,bool stamp_tag)206 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
207 const struct sockaddr *gw, struct route *ro, bool stamp_tag)
208 {
209 #ifdef KERN_TLS
210 struct ktls_session *tls = NULL;
211 #endif
212 struct m_snd_tag *mst;
213 int error;
214
215 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
216 mst = NULL;
217
218 #ifdef KERN_TLS
219 /*
220 * If this is an unencrypted TLS record, save a reference to
221 * the record. This local reference is used to call
222 * ktls_output_eagain after the mbuf has been freed (thus
223 * dropping the mbuf's reference) in if_output.
224 */
225 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
226 tls = ktls_hold(m->m_next->m_epg_tls);
227 mst = tls->snd_tag;
228
229 /*
230 * If a TLS session doesn't have a valid tag, it must
231 * have had an earlier ifp mismatch, so drop this
232 * packet.
233 */
234 if (mst == NULL) {
235 m_freem(m);
236 error = EAGAIN;
237 goto done;
238 }
239 /*
240 * Always stamp tags that include NIC ktls.
241 */
242 stamp_tag = true;
243 }
244 #endif
245 #ifdef RATELIMIT
246 if (inp != NULL && mst == NULL) {
247 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
248 (inp->inp_snd_tag != NULL &&
249 inp->inp_snd_tag->ifp != ifp))
250 in_pcboutput_txrtlmt(inp, ifp, m);
251
252 if (inp->inp_snd_tag != NULL)
253 mst = inp->inp_snd_tag;
254 }
255 #endif
256 if (stamp_tag && mst != NULL) {
257 KASSERT(m->m_pkthdr.rcvif == NULL,
258 ("trying to add a send tag to a forwarded packet"));
259 if (mst->ifp != ifp) {
260 m_freem(m);
261 error = EAGAIN;
262 goto done;
263 }
264
265 /* stamp send tag on mbuf */
266 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
267 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
268 }
269
270 error = (*ifp->if_output)(ifp, m, gw, ro);
271
272 done:
273 /* Check for route change invalidating send tags. */
274 #ifdef KERN_TLS
275 if (tls != NULL) {
276 if (error == EAGAIN)
277 error = ktls_output_eagain(inp, tls);
278 ktls_free(tls);
279 }
280 #endif
281 #ifdef RATELIMIT
282 if (error == EAGAIN)
283 in_pcboutput_eagain(inp);
284 #endif
285 return (error);
286 }
287
288 /* rte<>ro_flags translation */
289 static inline void
rt_update_ro_flags(struct route * ro,const struct nhop_object * nh)290 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh)
291 {
292 int nh_flags = nh->nh_flags;
293
294 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
295
296 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
297 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
298 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
299 }
300
301 /*
302 * IP output. The packet in mbuf chain m contains a skeletal IP
303 * header (with len, off, ttl, proto, tos, src, dst).
304 * The mbuf chain containing the packet will be freed.
305 * The mbuf opt, if present, will not be freed.
306 * If route ro is present and has ro_rt initialized, route lookup would be
307 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
308 * then result of route lookup is stored in ro->ro_rt.
309 *
310 * In the IP forwarding case, the packet will arrive with options already
311 * inserted, so must have a NULL opt pointer.
312 */
313 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,struct inpcb * inp)314 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
315 struct ip_moptions *imo, struct inpcb *inp)
316 {
317 struct ip *ip;
318 struct ifnet *ifp = NULL; /* keep compiler happy */
319 struct mbuf *m0;
320 int hlen = sizeof (struct ip);
321 int mtu = 0;
322 int error = 0;
323 int vlan_pcp = -1;
324 struct sockaddr_in *dst;
325 const struct sockaddr *gw;
326 struct in_ifaddr *ia = NULL;
327 struct in_addr src;
328 int isbroadcast;
329 uint16_t ip_len, ip_off;
330 struct route iproute;
331 uint32_t fibnum;
332 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
333 int no_route_but_check_spd = 0;
334 #endif
335
336 M_ASSERTPKTHDR(m);
337 NET_EPOCH_ASSERT();
338
339 if (inp != NULL) {
340 INP_LOCK_ASSERT(inp);
341 M_SETFIB(m, inp->inp_inc.inc_fibnum);
342 if ((flags & IP_NODEFAULTFLOWID) == 0) {
343 m->m_pkthdr.flowid = inp->inp_flowid;
344 M_HASHTYPE_SET(m, inp->inp_flowtype);
345 }
346 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
347 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
348 INP_2PCP_SHIFT;
349 #ifdef NUMA
350 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
351 #endif
352 }
353
354 if (opt) {
355 int len = 0;
356 m = ip_insertoptions(m, opt, &len);
357 if (len != 0)
358 hlen = len; /* ip->ip_hl is updated above */
359 }
360 ip = mtod(m, struct ip *);
361 ip_len = ntohs(ip->ip_len);
362 ip_off = ntohs(ip->ip_off);
363
364 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
365 ip->ip_v = IPVERSION;
366 ip->ip_hl = hlen >> 2;
367 ip_fillid(ip);
368 } else {
369 /* Header already set, fetch hlen from there */
370 hlen = ip->ip_hl << 2;
371 }
372 if ((flags & IP_FORWARDING) == 0)
373 IPSTAT_INC(ips_localout);
374
375 /*
376 * dst/gw handling:
377 *
378 * gw is readonly but can point either to dst OR rt_gateway,
379 * therefore we need restore gw if we're redoing lookup.
380 */
381 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
382 if (ro == NULL) {
383 ro = &iproute;
384 bzero(ro, sizeof (*ro));
385 }
386 dst = (struct sockaddr_in *)&ro->ro_dst;
387 if (ro->ro_nh == NULL) {
388 dst->sin_family = AF_INET;
389 dst->sin_len = sizeof(*dst);
390 dst->sin_addr = ip->ip_dst;
391 }
392 gw = (const struct sockaddr *)dst;
393 again:
394 /*
395 * Validate route against routing table additions;
396 * a better/more specific route might have been added.
397 */
398 if (inp != NULL && ro->ro_nh != NULL)
399 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
400 /*
401 * If there is a cached route,
402 * check that it is to the same destination
403 * and is still up. If not, free it and try again.
404 * The address family should also be checked in case of sharing the
405 * cache with IPv6.
406 * Also check whether routing cache needs invalidation.
407 */
408 if (ro->ro_nh != NULL &&
409 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
410 dst->sin_addr.s_addr != ip->ip_dst.s_addr))
411 RO_INVALIDATE_CACHE(ro);
412 ia = NULL;
413 /*
414 * If routing to interface only, short circuit routing lookup.
415 * The use of an all-ones broadcast address implies this; an
416 * interface is specified by the broadcast address of an interface,
417 * or the destination address of a ptp interface.
418 */
419 if (flags & IP_SENDONES) {
420 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
421 M_GETFIB(m)))) == NULL &&
422 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
423 M_GETFIB(m)))) == NULL) {
424 IPSTAT_INC(ips_noroute);
425 error = ENETUNREACH;
426 goto bad;
427 }
428 ip->ip_dst.s_addr = INADDR_BROADCAST;
429 dst->sin_addr = ip->ip_dst;
430 ifp = ia->ia_ifp;
431 mtu = ifp->if_mtu;
432 ip->ip_ttl = 1;
433 isbroadcast = 1;
434 src = IA_SIN(ia)->sin_addr;
435 } else if (flags & IP_ROUTETOIF) {
436 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
437 M_GETFIB(m)))) == NULL &&
438 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
439 M_GETFIB(m)))) == NULL) {
440 IPSTAT_INC(ips_noroute);
441 error = ENETUNREACH;
442 goto bad;
443 }
444 ifp = ia->ia_ifp;
445 mtu = ifp->if_mtu;
446 ip->ip_ttl = 1;
447 isbroadcast = ifp->if_flags & IFF_BROADCAST ?
448 in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
449 src = IA_SIN(ia)->sin_addr;
450 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
451 imo != NULL && imo->imo_multicast_ifp != NULL) {
452 /*
453 * Bypass the normal routing lookup for multicast
454 * packets if the interface is specified.
455 */
456 ifp = imo->imo_multicast_ifp;
457 mtu = ifp->if_mtu;
458 IFP_TO_IA(ifp, ia);
459 isbroadcast = 0; /* fool gcc */
460 /* Interface may have no addresses. */
461 if (ia != NULL)
462 src = IA_SIN(ia)->sin_addr;
463 else
464 src.s_addr = INADDR_ANY;
465 } else if (ro != &iproute) {
466 if (ro->ro_nh == NULL) {
467 /*
468 * We want to do any cloning requested by the link
469 * layer, as this is probably required in all cases
470 * for correct operation (as it is for ARP).
471 */
472 uint32_t flowid;
473 flowid = m->m_pkthdr.flowid;
474 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
475 NHR_REF, flowid);
476
477 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
478 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
479 /*
480 * There is no route for this packet, but it is
481 * possible that a matching SPD entry exists.
482 */
483 no_route_but_check_spd = 1;
484 goto sendit;
485 #endif
486 IPSTAT_INC(ips_noroute);
487 error = EHOSTUNREACH;
488 goto bad;
489 }
490 }
491 struct nhop_object *nh = ro->ro_nh;
492
493 ia = ifatoia(nh->nh_ifa);
494 ifp = nh->nh_ifp;
495 counter_u64_add(nh->nh_pksent, 1);
496 rt_update_ro_flags(ro, nh);
497 if (nh->nh_flags & NHF_GATEWAY)
498 gw = &nh->gw_sa;
499 if (nh->nh_flags & NHF_HOST)
500 isbroadcast = (nh->nh_flags & NHF_BROADCAST);
501 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET))
502 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia);
503 else
504 isbroadcast = 0;
505 mtu = nh->nh_mtu;
506 src = IA_SIN(ia)->sin_addr;
507 } else {
508 struct nhop_object *nh;
509
510 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE,
511 m->m_pkthdr.flowid);
512 if (nh == NULL) {
513 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
514 /*
515 * There is no route for this packet, but it is
516 * possible that a matching SPD entry exists.
517 */
518 no_route_but_check_spd = 1;
519 goto sendit;
520 #endif
521 IPSTAT_INC(ips_noroute);
522 error = EHOSTUNREACH;
523 goto bad;
524 }
525 ifp = nh->nh_ifp;
526 mtu = nh->nh_mtu;
527 rt_update_ro_flags(ro, nh);
528 if (nh->nh_flags & NHF_GATEWAY)
529 gw = &nh->gw_sa;
530 ia = ifatoia(nh->nh_ifa);
531 src = IA_SIN(ia)->sin_addr;
532 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
533 (NHF_HOST | NHF_BROADCAST)) ||
534 ((ifp->if_flags & IFF_BROADCAST) &&
535 (gw->sa_family == AF_INET) &&
536 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia)));
537 }
538
539 /* Catch a possible divide by zero later. */
540 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
541 __func__, mtu, ro,
542 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
543
544 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
545 m->m_flags |= M_MCAST;
546 /*
547 * IP destination address is multicast. Make sure "gw"
548 * still points to the address in "ro". (It may have been
549 * changed to point to a gateway address, above.)
550 */
551 gw = (const struct sockaddr *)dst;
552 /*
553 * See if the caller provided any multicast options
554 */
555 if (imo != NULL) {
556 ip->ip_ttl = imo->imo_multicast_ttl;
557 if (imo->imo_multicast_vif != -1)
558 ip->ip_src.s_addr =
559 ip_mcast_src ?
560 ip_mcast_src(imo->imo_multicast_vif) :
561 INADDR_ANY;
562 } else
563 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
564 /*
565 * Confirm that the outgoing interface supports multicast.
566 */
567 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
568 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
569 IPSTAT_INC(ips_noroute);
570 error = ENETUNREACH;
571 goto bad;
572 }
573 }
574 /*
575 * If source address not specified yet, use address
576 * of outgoing interface.
577 */
578 if (ip->ip_src.s_addr == INADDR_ANY)
579 ip->ip_src = src;
580
581 if ((imo == NULL && in_mcast_loop) ||
582 (imo && imo->imo_multicast_loop)) {
583 /*
584 * Loop back multicast datagram if not expressly
585 * forbidden to do so, even if we are not a member
586 * of the group; ip_input() will filter it later,
587 * thus deferring a hash lookup and mutex acquisition
588 * at the expense of a cheap copy using m_copym().
589 */
590 ip_mloopback(ifp, m, hlen);
591 } else {
592 /*
593 * If we are acting as a multicast router, perform
594 * multicast forwarding as if the packet had just
595 * arrived on the interface to which we are about
596 * to send. The multicast forwarding function
597 * recursively calls this function, using the
598 * IP_FORWARDING flag to prevent infinite recursion.
599 *
600 * Multicasts that are looped back by ip_mloopback(),
601 * above, will be forwarded by the ip_input() routine,
602 * if necessary.
603 */
604 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
605 /*
606 * If rsvp daemon is not running, do not
607 * set ip_moptions. This ensures that the packet
608 * is multicast and not just sent down one link
609 * as prescribed by rsvpd.
610 */
611 if (!V_rsvp_on)
612 imo = NULL;
613 if (ip_mforward &&
614 ip_mforward(ip, ifp, m, imo) != 0) {
615 m_freem(m);
616 goto done;
617 }
618 }
619 }
620
621 /*
622 * Multicasts with a time-to-live of zero may be looped-
623 * back, above, but must not be transmitted on a network.
624 * Also, multicasts addressed to the loopback interface
625 * are not sent -- the above call to ip_mloopback() will
626 * loop back a copy. ip_input() will drop the copy if
627 * this host does not belong to the destination group on
628 * the loopback interface.
629 */
630 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
631 m_freem(m);
632 goto done;
633 }
634
635 goto sendit;
636 }
637
638 /*
639 * If the source address is not specified yet, use the address
640 * of the outoing interface.
641 */
642 if (ip->ip_src.s_addr == INADDR_ANY)
643 ip->ip_src = src;
644
645 /*
646 * Look for broadcast address and
647 * verify user is allowed to send
648 * such a packet.
649 */
650 if (isbroadcast) {
651 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
652 error = EADDRNOTAVAIL;
653 goto bad;
654 }
655 if ((flags & IP_ALLOWBROADCAST) == 0) {
656 error = EACCES;
657 goto bad;
658 }
659 /* don't allow broadcast messages to be fragmented */
660 if (ip_len > mtu) {
661 error = EMSGSIZE;
662 goto bad;
663 }
664 m->m_flags |= M_BCAST;
665 } else {
666 m->m_flags &= ~M_BCAST;
667 }
668
669 sendit:
670 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
671 if (IPSEC_ENABLED(ipv4)) {
672 m = mb_unmapped_to_ext(m);
673 if (m == NULL) {
674 IPSTAT_INC(ips_odropped);
675 error = ENOBUFS;
676 goto bad;
677 }
678 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
679 if (error == EINPROGRESS)
680 error = 0;
681 goto done;
682 }
683 }
684 /*
685 * Check if there was a route for this packet; return error if not.
686 */
687 if (no_route_but_check_spd) {
688 IPSTAT_INC(ips_noroute);
689 error = EHOSTUNREACH;
690 goto bad;
691 }
692 /* Update variables that are affected by ipsec4_output(). */
693 ip = mtod(m, struct ip *);
694 hlen = ip->ip_hl << 2;
695 #endif /* IPSEC */
696
697 /* Jump over all PFIL processing if hooks are not active. */
698 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
699 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
700 &error)) {
701 case 1: /* Finished */
702 goto done;
703
704 case 0: /* Continue normally */
705 ip = mtod(m, struct ip *);
706 ip_len = ntohs(ip->ip_len);
707 break;
708
709 case -1: /* Need to try again */
710 /* Reset everything for a new round */
711 if (ro != NULL) {
712 RO_NHFREE(ro);
713 ro->ro_prepend = NULL;
714 }
715 gw = (const struct sockaddr *)dst;
716 ip = mtod(m, struct ip *);
717 goto again;
718 }
719 }
720
721 if (vlan_pcp > -1)
722 EVL_APPLY_PRI(m, vlan_pcp);
723
724 /* IN_LOOPBACK must not appear on the wire - RFC1122. */
725 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
726 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
727 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
728 IPSTAT_INC(ips_badaddr);
729 error = EADDRNOTAVAIL;
730 goto bad;
731 }
732 }
733
734 /* Ensure the packet data is mapped if the interface requires it. */
735 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
736 m = mb_unmapped_to_ext(m);
737 if (m == NULL) {
738 IPSTAT_INC(ips_odropped);
739 error = ENOBUFS;
740 goto bad;
741 }
742 }
743
744 m->m_pkthdr.csum_flags |= CSUM_IP;
745 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
746 in_delayed_cksum(m);
747 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
748 }
749 #if defined(SCTP) || defined(SCTP_SUPPORT)
750 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
751 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
752 m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
753 }
754 #endif
755
756 /*
757 * If small enough for interface, or the interface will take
758 * care of the fragmentation for us, we can just send directly.
759 * Note that if_vxlan could have requested TSO even though the outer
760 * frame is UDP. It is correct to not fragment such datagrams and
761 * instead just pass them on to the driver.
762 */
763 if (ip_len <= mtu ||
764 (m->m_pkthdr.csum_flags & ifp->if_hwassist &
765 (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
766 ip->ip_sum = 0;
767 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
768 ip->ip_sum = in_cksum(m, hlen);
769 m->m_pkthdr.csum_flags &= ~CSUM_IP;
770 }
771
772 /*
773 * Record statistics for this interface address.
774 * With CSUM_TSO the byte/packet count will be slightly
775 * incorrect because we count the IP+TCP headers only
776 * once instead of for every generated packet.
777 */
778 if (!(flags & IP_FORWARDING) && ia) {
779 if (m->m_pkthdr.csum_flags &
780 (CSUM_TSO | CSUM_INNER_TSO))
781 counter_u64_add(ia->ia_ifa.ifa_opackets,
782 m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
783 else
784 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
785
786 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
787 }
788 #ifdef MBUF_STRESS_TEST
789 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
790 m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
791 #endif
792 /*
793 * Reset layer specific mbuf flags
794 * to avoid confusing lower layers.
795 */
796 m_clrprotoflags(m);
797 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
798 error = ip_output_send(inp, ifp, m, gw, ro,
799 (flags & IP_NO_SND_TAG_RL) ? false : true);
800 goto done;
801 }
802
803 /* Balk when DF bit is set or the interface didn't support TSO. */
804 if ((ip_off & IP_DF) ||
805 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
806 error = EMSGSIZE;
807 IPSTAT_INC(ips_cantfrag);
808 goto bad;
809 }
810
811 /*
812 * Too large for interface; fragment if possible. If successful,
813 * on return, m will point to a list of packets to be sent.
814 */
815 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
816 if (error)
817 goto bad;
818 for (; m; m = m0) {
819 m0 = m->m_nextpkt;
820 m->m_nextpkt = 0;
821 if (error == 0) {
822 /* Record statistics for this interface address. */
823 if (ia != NULL) {
824 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
825 counter_u64_add(ia->ia_ifa.ifa_obytes,
826 m->m_pkthdr.len);
827 }
828 /*
829 * Reset layer specific mbuf flags
830 * to avoid confusing upper layers.
831 */
832 m_clrprotoflags(m);
833
834 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
835 mtod(m, struct ip *), NULL);
836 error = ip_output_send(inp, ifp, m, gw, ro, true);
837 } else
838 m_freem(m);
839 }
840
841 if (error == 0)
842 IPSTAT_INC(ips_fragmented);
843
844 done:
845 return (error);
846 bad:
847 m_freem(m);
848 goto done;
849 }
850
851 /*
852 * Create a chain of fragments which fit the given mtu. m_frag points to the
853 * mbuf to be fragmented; on return it points to the chain with the fragments.
854 * Return 0 if no error. If error, m_frag may contain a partially built
855 * chain of fragments that should be freed by the caller.
856 *
857 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
858 */
859 int
ip_fragment(struct ip * ip,struct mbuf ** m_frag,int mtu,u_long if_hwassist_flags)860 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
861 u_long if_hwassist_flags)
862 {
863 int error = 0;
864 int hlen = ip->ip_hl << 2;
865 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
866 int off;
867 struct mbuf *m0 = *m_frag; /* the original packet */
868 int firstlen;
869 struct mbuf **mnext;
870 int nfrags;
871 uint16_t ip_len, ip_off;
872
873 ip_len = ntohs(ip->ip_len);
874 ip_off = ntohs(ip->ip_off);
875
876 /*
877 * Packet shall not have "Don't Fragment" flag and have at least 8
878 * bytes of payload.
879 */
880 if (__predict_false((ip_off & IP_DF) || len < 8)) {
881 IPSTAT_INC(ips_cantfrag);
882 return (EMSGSIZE);
883 }
884
885 /*
886 * If the interface will not calculate checksums on
887 * fragmented packets, then do it here.
888 */
889 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
890 in_delayed_cksum(m0);
891 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
892 }
893 #if defined(SCTP) || defined(SCTP_SUPPORT)
894 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
895 sctp_delayed_cksum(m0, hlen);
896 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
897 }
898 #endif
899 if (len > PAGE_SIZE) {
900 /*
901 * Fragment large datagrams such that each segment
902 * contains a multiple of PAGE_SIZE amount of data,
903 * plus headers. This enables a receiver to perform
904 * page-flipping zero-copy optimizations.
905 *
906 * XXX When does this help given that sender and receiver
907 * could have different page sizes, and also mtu could
908 * be less than the receiver's page size ?
909 */
910 int newlen;
911
912 off = MIN(mtu, m0->m_pkthdr.len);
913
914 /*
915 * firstlen (off - hlen) must be aligned on an
916 * 8-byte boundary
917 */
918 if (off < hlen)
919 goto smart_frag_failure;
920 off = ((off - hlen) & ~7) + hlen;
921 newlen = (~PAGE_MASK) & mtu;
922 if ((newlen + sizeof (struct ip)) > mtu) {
923 /* we failed, go back the default */
924 smart_frag_failure:
925 newlen = len;
926 off = hlen + len;
927 }
928 len = newlen;
929
930 } else {
931 off = hlen + len;
932 }
933
934 firstlen = off - hlen;
935 mnext = &m0->m_nextpkt; /* pointer to next packet */
936
937 /*
938 * Loop through length of segment after first fragment,
939 * make new header and copy data of each part and link onto chain.
940 * Here, m0 is the original packet, m is the fragment being created.
941 * The fragments are linked off the m_nextpkt of the original
942 * packet, which after processing serves as the first fragment.
943 */
944 for (nfrags = 1; off < ip_len; off += len, nfrags++) {
945 struct ip *mhip; /* ip header on the fragment */
946 struct mbuf *m;
947 int mhlen = sizeof (struct ip);
948
949 m = m_gethdr(M_NOWAIT, MT_DATA);
950 if (m == NULL) {
951 error = ENOBUFS;
952 IPSTAT_INC(ips_odropped);
953 goto done;
954 }
955 /*
956 * Make sure the complete packet header gets copied
957 * from the originating mbuf to the newly created
958 * mbuf. This also ensures that existing firewall
959 * classification(s), VLAN tags and so on get copied
960 * to the resulting fragmented packet(s):
961 */
962 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
963 m_free(m);
964 error = ENOBUFS;
965 IPSTAT_INC(ips_odropped);
966 goto done;
967 }
968 /*
969 * In the first mbuf, leave room for the link header, then
970 * copy the original IP header including options. The payload
971 * goes into an additional mbuf chain returned by m_copym().
972 */
973 m->m_data += max_linkhdr;
974 mhip = mtod(m, struct ip *);
975 *mhip = *ip;
976 if (hlen > sizeof (struct ip)) {
977 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
978 mhip->ip_v = IPVERSION;
979 mhip->ip_hl = mhlen >> 2;
980 }
981 m->m_len = mhlen;
982 /* XXX do we need to add ip_off below ? */
983 mhip->ip_off = ((off - hlen) >> 3) + ip_off;
984 if (off + len >= ip_len)
985 len = ip_len - off;
986 else
987 mhip->ip_off |= IP_MF;
988 mhip->ip_len = htons((u_short)(len + mhlen));
989 m->m_next = m_copym(m0, off, len, M_NOWAIT);
990 if (m->m_next == NULL) { /* copy failed */
991 m_free(m);
992 error = ENOBUFS; /* ??? */
993 IPSTAT_INC(ips_odropped);
994 goto done;
995 }
996 m->m_pkthdr.len = mhlen + len;
997 #ifdef MAC
998 mac_netinet_fragment(m0, m);
999 #endif
1000 mhip->ip_off = htons(mhip->ip_off);
1001 mhip->ip_sum = 0;
1002 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1003 mhip->ip_sum = in_cksum(m, mhlen);
1004 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1005 }
1006 *mnext = m;
1007 mnext = &m->m_nextpkt;
1008 }
1009 IPSTAT_ADD(ips_ofragments, nfrags);
1010
1011 /*
1012 * Update first fragment by trimming what's been copied out
1013 * and updating header.
1014 */
1015 m_adj(m0, hlen + firstlen - ip_len);
1016 m0->m_pkthdr.len = hlen + firstlen;
1017 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1018 ip->ip_off = htons(ip_off | IP_MF);
1019 ip->ip_sum = 0;
1020 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1021 ip->ip_sum = in_cksum(m0, hlen);
1022 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1023 }
1024
1025 done:
1026 *m_frag = m0;
1027 return error;
1028 }
1029
1030 void
in_delayed_cksum(struct mbuf * m)1031 in_delayed_cksum(struct mbuf *m)
1032 {
1033 struct ip *ip;
1034 struct udphdr *uh;
1035 uint16_t cklen, csum, offset;
1036
1037 ip = mtod(m, struct ip *);
1038 offset = ip->ip_hl << 2 ;
1039
1040 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1041 /* if udp header is not in the first mbuf copy udplen */
1042 if (offset + sizeof(struct udphdr) > m->m_len) {
1043 m_copydata(m, offset + offsetof(struct udphdr,
1044 uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1045 cklen = ntohs(cklen);
1046 } else {
1047 uh = (struct udphdr *)mtodo(m, offset);
1048 cklen = ntohs(uh->uh_ulen);
1049 }
1050 csum = in_cksum_skip(m, cklen + offset, offset);
1051 if (csum == 0)
1052 csum = 0xffff;
1053 } else {
1054 cklen = ntohs(ip->ip_len);
1055 csum = in_cksum_skip(m, cklen, offset);
1056 }
1057 offset += m->m_pkthdr.csum_data; /* checksum offset */
1058
1059 if (offset + sizeof(csum) > m->m_len)
1060 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1061 else
1062 *(u_short *)mtodo(m, offset) = csum;
1063 }
1064
1065 /*
1066 * IP socket option processing.
1067 */
1068 int
ip_ctloutput(struct socket * so,struct sockopt * sopt)1069 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1070 {
1071 struct inpcb *inp = sotoinpcb(so);
1072 int error, optval;
1073 #ifdef RSS
1074 uint32_t rss_bucket;
1075 int retval;
1076 #endif
1077
1078 error = optval = 0;
1079 if (sopt->sopt_level != IPPROTO_IP) {
1080 error = EINVAL;
1081
1082 if (sopt->sopt_level == SOL_SOCKET &&
1083 sopt->sopt_dir == SOPT_SET) {
1084 switch (sopt->sopt_name) {
1085 case SO_SETFIB:
1086 INP_WLOCK(inp);
1087 inp->inp_inc.inc_fibnum = so->so_fibnum;
1088 INP_WUNLOCK(inp);
1089 error = 0;
1090 break;
1091 case SO_MAX_PACING_RATE:
1092 #ifdef RATELIMIT
1093 INP_WLOCK(inp);
1094 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1095 INP_WUNLOCK(inp);
1096 error = 0;
1097 #else
1098 error = EOPNOTSUPP;
1099 #endif
1100 break;
1101 default:
1102 break;
1103 }
1104 }
1105 return (error);
1106 }
1107
1108 switch (sopt->sopt_dir) {
1109 case SOPT_SET:
1110 switch (sopt->sopt_name) {
1111 case IP_OPTIONS:
1112 #ifdef notyet
1113 case IP_RETOPTS:
1114 #endif
1115 {
1116 struct mbuf *m;
1117 if (sopt->sopt_valsize > MLEN) {
1118 error = EMSGSIZE;
1119 break;
1120 }
1121 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1122 if (m == NULL) {
1123 error = ENOBUFS;
1124 break;
1125 }
1126 m->m_len = sopt->sopt_valsize;
1127 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1128 m->m_len);
1129 if (error) {
1130 m_free(m);
1131 break;
1132 }
1133 INP_WLOCK(inp);
1134 error = ip_pcbopts(inp, sopt->sopt_name, m);
1135 INP_WUNLOCK(inp);
1136 return (error);
1137 }
1138
1139 case IP_BINDANY:
1140 if (sopt->sopt_td != NULL) {
1141 error = priv_check(sopt->sopt_td,
1142 PRIV_NETINET_BINDANY);
1143 if (error)
1144 break;
1145 }
1146 /* FALLTHROUGH */
1147 case IP_TOS:
1148 case IP_TTL:
1149 case IP_MINTTL:
1150 case IP_RECVOPTS:
1151 case IP_RECVRETOPTS:
1152 case IP_ORIGDSTADDR:
1153 case IP_RECVDSTADDR:
1154 case IP_RECVTTL:
1155 case IP_RECVIF:
1156 case IP_ONESBCAST:
1157 case IP_DONTFRAG:
1158 case IP_RECVTOS:
1159 case IP_RECVFLOWID:
1160 #ifdef RSS
1161 case IP_RECVRSSBUCKETID:
1162 #endif
1163 case IP_VLAN_PCP:
1164 error = sooptcopyin(sopt, &optval, sizeof optval,
1165 sizeof optval);
1166 if (error)
1167 break;
1168
1169 switch (sopt->sopt_name) {
1170 case IP_TOS:
1171 inp->inp_ip_tos = optval;
1172 break;
1173
1174 case IP_TTL:
1175 inp->inp_ip_ttl = optval;
1176 break;
1177
1178 case IP_MINTTL:
1179 if (optval >= 0 && optval <= MAXTTL)
1180 inp->inp_ip_minttl = optval;
1181 else
1182 error = EINVAL;
1183 break;
1184
1185 #define OPTSET(bit) do { \
1186 INP_WLOCK(inp); \
1187 if (optval) \
1188 inp->inp_flags |= bit; \
1189 else \
1190 inp->inp_flags &= ~bit; \
1191 INP_WUNLOCK(inp); \
1192 } while (0)
1193
1194 #define OPTSET2(bit, val) do { \
1195 INP_WLOCK(inp); \
1196 if (val) \
1197 inp->inp_flags2 |= bit; \
1198 else \
1199 inp->inp_flags2 &= ~bit; \
1200 INP_WUNLOCK(inp); \
1201 } while (0)
1202
1203 case IP_RECVOPTS:
1204 OPTSET(INP_RECVOPTS);
1205 break;
1206
1207 case IP_RECVRETOPTS:
1208 OPTSET(INP_RECVRETOPTS);
1209 break;
1210
1211 case IP_RECVDSTADDR:
1212 OPTSET(INP_RECVDSTADDR);
1213 break;
1214
1215 case IP_ORIGDSTADDR:
1216 OPTSET2(INP_ORIGDSTADDR, optval);
1217 break;
1218
1219 case IP_RECVTTL:
1220 OPTSET(INP_RECVTTL);
1221 break;
1222
1223 case IP_RECVIF:
1224 OPTSET(INP_RECVIF);
1225 break;
1226
1227 case IP_ONESBCAST:
1228 OPTSET(INP_ONESBCAST);
1229 break;
1230 case IP_DONTFRAG:
1231 OPTSET(INP_DONTFRAG);
1232 break;
1233 case IP_BINDANY:
1234 OPTSET(INP_BINDANY);
1235 break;
1236 case IP_RECVTOS:
1237 OPTSET(INP_RECVTOS);
1238 break;
1239 case IP_RECVFLOWID:
1240 OPTSET2(INP_RECVFLOWID, optval);
1241 break;
1242 #ifdef RSS
1243 case IP_RECVRSSBUCKETID:
1244 OPTSET2(INP_RECVRSSBUCKETID, optval);
1245 break;
1246 #endif
1247 case IP_VLAN_PCP:
1248 if ((optval >= -1) && (optval <=
1249 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1250 if (optval == -1) {
1251 INP_WLOCK(inp);
1252 inp->inp_flags2 &=
1253 ~(INP_2PCP_SET |
1254 INP_2PCP_MASK);
1255 INP_WUNLOCK(inp);
1256 } else {
1257 INP_WLOCK(inp);
1258 inp->inp_flags2 |=
1259 INP_2PCP_SET;
1260 inp->inp_flags2 &=
1261 ~INP_2PCP_MASK;
1262 inp->inp_flags2 |=
1263 optval << INP_2PCP_SHIFT;
1264 INP_WUNLOCK(inp);
1265 }
1266 } else
1267 error = EINVAL;
1268 break;
1269 }
1270 break;
1271 #undef OPTSET
1272 #undef OPTSET2
1273
1274 /*
1275 * Multicast socket options are processed by the in_mcast
1276 * module.
1277 */
1278 case IP_MULTICAST_IF:
1279 case IP_MULTICAST_VIF:
1280 case IP_MULTICAST_TTL:
1281 case IP_MULTICAST_LOOP:
1282 case IP_ADD_MEMBERSHIP:
1283 case IP_DROP_MEMBERSHIP:
1284 case IP_ADD_SOURCE_MEMBERSHIP:
1285 case IP_DROP_SOURCE_MEMBERSHIP:
1286 case IP_BLOCK_SOURCE:
1287 case IP_UNBLOCK_SOURCE:
1288 case IP_MSFILTER:
1289 case MCAST_JOIN_GROUP:
1290 case MCAST_LEAVE_GROUP:
1291 case MCAST_JOIN_SOURCE_GROUP:
1292 case MCAST_LEAVE_SOURCE_GROUP:
1293 case MCAST_BLOCK_SOURCE:
1294 case MCAST_UNBLOCK_SOURCE:
1295 error = inp_setmoptions(inp, sopt);
1296 break;
1297
1298 case IP_PORTRANGE:
1299 error = sooptcopyin(sopt, &optval, sizeof optval,
1300 sizeof optval);
1301 if (error)
1302 break;
1303
1304 INP_WLOCK(inp);
1305 switch (optval) {
1306 case IP_PORTRANGE_DEFAULT:
1307 inp->inp_flags &= ~(INP_LOWPORT);
1308 inp->inp_flags &= ~(INP_HIGHPORT);
1309 break;
1310
1311 case IP_PORTRANGE_HIGH:
1312 inp->inp_flags &= ~(INP_LOWPORT);
1313 inp->inp_flags |= INP_HIGHPORT;
1314 break;
1315
1316 case IP_PORTRANGE_LOW:
1317 inp->inp_flags &= ~(INP_HIGHPORT);
1318 inp->inp_flags |= INP_LOWPORT;
1319 break;
1320
1321 default:
1322 error = EINVAL;
1323 break;
1324 }
1325 INP_WUNLOCK(inp);
1326 break;
1327
1328 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1329 case IP_IPSEC_POLICY:
1330 if (IPSEC_ENABLED(ipv4)) {
1331 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1332 break;
1333 }
1334 /* FALLTHROUGH */
1335 #endif /* IPSEC */
1336
1337 default:
1338 error = ENOPROTOOPT;
1339 break;
1340 }
1341 break;
1342
1343 case SOPT_GET:
1344 switch (sopt->sopt_name) {
1345 case IP_OPTIONS:
1346 case IP_RETOPTS:
1347 INP_RLOCK(inp);
1348 if (inp->inp_options) {
1349 struct mbuf *options;
1350
1351 options = m_copym(inp->inp_options, 0,
1352 M_COPYALL, M_NOWAIT);
1353 INP_RUNLOCK(inp);
1354 if (options != NULL) {
1355 error = sooptcopyout(sopt,
1356 mtod(options, char *),
1357 options->m_len);
1358 m_freem(options);
1359 } else
1360 error = ENOMEM;
1361 } else {
1362 INP_RUNLOCK(inp);
1363 sopt->sopt_valsize = 0;
1364 }
1365 break;
1366
1367 case IP_TOS:
1368 case IP_TTL:
1369 case IP_MINTTL:
1370 case IP_RECVOPTS:
1371 case IP_RECVRETOPTS:
1372 case IP_ORIGDSTADDR:
1373 case IP_RECVDSTADDR:
1374 case IP_RECVTTL:
1375 case IP_RECVIF:
1376 case IP_PORTRANGE:
1377 case IP_ONESBCAST:
1378 case IP_DONTFRAG:
1379 case IP_BINDANY:
1380 case IP_RECVTOS:
1381 case IP_FLOWID:
1382 case IP_FLOWTYPE:
1383 case IP_RECVFLOWID:
1384 #ifdef RSS
1385 case IP_RSSBUCKETID:
1386 case IP_RECVRSSBUCKETID:
1387 #endif
1388 case IP_VLAN_PCP:
1389 switch (sopt->sopt_name) {
1390 case IP_TOS:
1391 optval = inp->inp_ip_tos;
1392 break;
1393
1394 case IP_TTL:
1395 optval = inp->inp_ip_ttl;
1396 break;
1397
1398 case IP_MINTTL:
1399 optval = inp->inp_ip_minttl;
1400 break;
1401
1402 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1403 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
1404
1405 case IP_RECVOPTS:
1406 optval = OPTBIT(INP_RECVOPTS);
1407 break;
1408
1409 case IP_RECVRETOPTS:
1410 optval = OPTBIT(INP_RECVRETOPTS);
1411 break;
1412
1413 case IP_RECVDSTADDR:
1414 optval = OPTBIT(INP_RECVDSTADDR);
1415 break;
1416
1417 case IP_ORIGDSTADDR:
1418 optval = OPTBIT2(INP_ORIGDSTADDR);
1419 break;
1420
1421 case IP_RECVTTL:
1422 optval = OPTBIT(INP_RECVTTL);
1423 break;
1424
1425 case IP_RECVIF:
1426 optval = OPTBIT(INP_RECVIF);
1427 break;
1428
1429 case IP_PORTRANGE:
1430 if (inp->inp_flags & INP_HIGHPORT)
1431 optval = IP_PORTRANGE_HIGH;
1432 else if (inp->inp_flags & INP_LOWPORT)
1433 optval = IP_PORTRANGE_LOW;
1434 else
1435 optval = 0;
1436 break;
1437
1438 case IP_ONESBCAST:
1439 optval = OPTBIT(INP_ONESBCAST);
1440 break;
1441 case IP_DONTFRAG:
1442 optval = OPTBIT(INP_DONTFRAG);
1443 break;
1444 case IP_BINDANY:
1445 optval = OPTBIT(INP_BINDANY);
1446 break;
1447 case IP_RECVTOS:
1448 optval = OPTBIT(INP_RECVTOS);
1449 break;
1450 case IP_FLOWID:
1451 optval = inp->inp_flowid;
1452 break;
1453 case IP_FLOWTYPE:
1454 optval = inp->inp_flowtype;
1455 break;
1456 case IP_RECVFLOWID:
1457 optval = OPTBIT2(INP_RECVFLOWID);
1458 break;
1459 #ifdef RSS
1460 case IP_RSSBUCKETID:
1461 retval = rss_hash2bucket(inp->inp_flowid,
1462 inp->inp_flowtype,
1463 &rss_bucket);
1464 if (retval == 0)
1465 optval = rss_bucket;
1466 else
1467 error = EINVAL;
1468 break;
1469 case IP_RECVRSSBUCKETID:
1470 optval = OPTBIT2(INP_RECVRSSBUCKETID);
1471 break;
1472 #endif
1473 case IP_VLAN_PCP:
1474 if (OPTBIT2(INP_2PCP_SET)) {
1475 optval = (inp->inp_flags2 &
1476 INP_2PCP_MASK) >> INP_2PCP_SHIFT;
1477 } else {
1478 optval = -1;
1479 }
1480 break;
1481 }
1482 error = sooptcopyout(sopt, &optval, sizeof optval);
1483 break;
1484
1485 /*
1486 * Multicast socket options are processed by the in_mcast
1487 * module.
1488 */
1489 case IP_MULTICAST_IF:
1490 case IP_MULTICAST_VIF:
1491 case IP_MULTICAST_TTL:
1492 case IP_MULTICAST_LOOP:
1493 case IP_MSFILTER:
1494 error = inp_getmoptions(inp, sopt);
1495 break;
1496
1497 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1498 case IP_IPSEC_POLICY:
1499 if (IPSEC_ENABLED(ipv4)) {
1500 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1501 break;
1502 }
1503 /* FALLTHROUGH */
1504 #endif /* IPSEC */
1505
1506 default:
1507 error = ENOPROTOOPT;
1508 break;
1509 }
1510 break;
1511 }
1512 return (error);
1513 }
1514
1515 /*
1516 * Routine called from ip_output() to loop back a copy of an IP multicast
1517 * packet to the input queue of a specified interface. Note that this
1518 * calls the output routine of the loopback "driver", but with an interface
1519 * pointer that might NOT be a loopback interface -- evil, but easier than
1520 * replicating that code here.
1521 */
1522 static void
ip_mloopback(struct ifnet * ifp,const struct mbuf * m,int hlen)1523 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1524 {
1525 struct ip *ip;
1526 struct mbuf *copym;
1527
1528 /*
1529 * Make a deep copy of the packet because we're going to
1530 * modify the pack in order to generate checksums.
1531 */
1532 copym = m_dup(m, M_NOWAIT);
1533 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1534 copym = m_pullup(copym, hlen);
1535 if (copym != NULL) {
1536 /* If needed, compute the checksum and mark it as valid. */
1537 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1538 in_delayed_cksum(copym);
1539 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1540 copym->m_pkthdr.csum_flags |=
1541 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1542 copym->m_pkthdr.csum_data = 0xffff;
1543 }
1544 /*
1545 * We don't bother to fragment if the IP length is greater
1546 * than the interface's MTU. Can this possibly matter?
1547 */
1548 ip = mtod(copym, struct ip *);
1549 ip->ip_sum = 0;
1550 ip->ip_sum = in_cksum(copym, hlen);
1551 if_simloop(ifp, copym, AF_INET, 0);
1552 }
1553 }
1554