1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989 Stephen Deering
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Stephen Deering of Stanford University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36 */
37
38 /*
39 * IP multicast forwarding procedures
40 *
41 * Written by David Waitzman, BBN Labs, August 1988.
42 * Modified by Steve Deering, Stanford, February 1989.
43 * Modified by Mark J. Steiglitz, Stanford, May, 1991
44 * Modified by Van Jacobson, LBL, January 1993
45 * Modified by Ajit Thyagarajan, PARC, August 1993
46 * Modified by Bill Fenner, PARC, April 1995
47 * Modified by Ahmed Helmy, SGI, June 1996
48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50 * Modified by Hitoshi Asaeda, WIDE, August 2000
51 * Modified by Pavlin Radoslavov, ICSI, October 2002
52 * Modified by Wojciech Macek, Semihalf, May 2021
53 *
54 * MROUTING Revision: 3.5
55 * and PIM-SMv2 and PIM-DM support, advanced API support,
56 * bandwidth metering and signaling
57 */
58
59 /*
60 * TODO: Prefix functions with ipmf_.
61 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
62 * domain attachment (if_afdata) so we can track consumers of that service.
63 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
64 * move it to socket options.
65 * TODO: Cleanup LSRR removal further.
66 * TODO: Push RSVP stubs into raw_ip.c.
67 * TODO: Use bitstring.h for vif set.
68 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
69 * TODO: Sync ip6_mroute.c with this file.
70 */
71
72 #include <sys/cdefs.h>
73 #include "opt_inet.h"
74 #include "opt_mrouting.h"
75
76 #define _PIM_VT 1
77
78 #include <sys/types.h>
79 #include <sys/param.h>
80 #include <sys/kernel.h>
81 #include <sys/stddef.h>
82 #include <sys/condvar.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/kthread.h>
86 #include <sys/ktr.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/module.h>
90 #include <sys/priv.h>
91 #include <sys/protosw.h>
92 #include <sys/signalvar.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/sockio.h>
96 #include <sys/sx.h>
97 #include <sys/sysctl.h>
98 #include <sys/syslog.h>
99 #include <sys/systm.h>
100 #include <sys/taskqueue.h>
101 #include <sys/time.h>
102 #include <sys/counter.h>
103 #include <machine/atomic.h>
104
105 #include <net/if.h>
106 #include <net/if_var.h>
107 #include <net/if_private.h>
108 #include <net/if_types.h>
109 #include <net/netisr.h>
110 #include <net/route.h>
111 #include <net/vnet.h>
112
113 #include <netinet/in.h>
114 #include <netinet/igmp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/in_var.h>
117 #include <netinet/ip.h>
118 #include <netinet/ip_encap.h>
119 #include <netinet/ip_mroute.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip_options.h>
122 #include <netinet/pim.h>
123 #include <netinet/pim_var.h>
124 #include <netinet/udp.h>
125
126 #include <machine/in_cksum.h>
127
128 #ifndef KTR_IPMF
129 #define KTR_IPMF KTR_INET
130 #endif
131
132 #define VIFI_INVALID ((vifi_t) -1)
133
134 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
135
136 /*
137 * Locking. We use two locks: one for the virtual interface table and
138 * one for the forwarding table. These locks may be nested in which case
139 * the VIF lock must always be taken first. Note that each lock is used
140 * to cover not only the specific data structure but also related data
141 * structures.
142 */
143
144 static struct rwlock mrouter_lock;
145 #define MRW_RLOCK() rw_rlock(&mrouter_lock)
146 #define MRW_WLOCK() rw_wlock(&mrouter_lock)
147 #define MRW_RUNLOCK() rw_runlock(&mrouter_lock)
148 #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock)
149 #define MRW_UNLOCK() rw_unlock(&mrouter_lock)
150 #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED)
151 #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED)
152 #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock)
153 #define MRW_WOWNED() rw_wowned(&mrouter_lock)
154 #define MRW_LOCK_INIT() \
155 rw_init(&mrouter_lock, "IPv4 multicast forwarding")
156 #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock)
157
158 static int ip_mrouter_cnt; /* # of vnets with active mrouters */
159 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
160
161 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
162 VNET_PCPUSTAT_SYSINIT(mrtstat);
163 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
164 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
165 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
166 "netinet/ip_mroute.h)");
167
168 VNET_DEFINE_STATIC(u_long, mfchash);
169 #define V_mfchash VNET(mfchash)
170 #define MFCHASH(a, g) \
171 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
172 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
173 #define MFCHASHSIZE 256
174
175 static u_long mfchashsize = MFCHASHSIZE; /* Hash size */
176 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN,
177 &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size");
178 VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */
179 #define V_nexpire VNET(nexpire)
180 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
181 #define V_mfchashtbl VNET(mfchashtbl)
182 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
183 #define V_task_queue VNET(task_queue)
184 VNET_DEFINE_STATIC(struct task, task);
185 #define V_task VNET(task)
186
187 VNET_DEFINE_STATIC(vifi_t, numvifs);
188 #define V_numvifs VNET(numvifs)
189 VNET_DEFINE_STATIC(struct vif *, viftable);
190 #define V_viftable VNET(viftable)
191
192 static eventhandler_tag if_detach_event_tag = NULL;
193
194 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
195 #define V_expire_upcalls_ch VNET(expire_upcalls_ch)
196
197 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
198 #define V_buf_ring_mtx VNET(buf_ring_mtx)
199
200 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
201 #define UPCALL_EXPIRE 6 /* number of timeouts */
202
203 /*
204 * Bandwidth meter variables and constants
205 */
206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
207
208 /*
209 * Pending upcalls are stored in a ring which is flushed when
210 * full, or periodically
211 */
212 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
213 #define V_bw_upcalls_ch VNET(bw_upcalls_ch)
214 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
215 #define V_bw_upcalls_ring VNET(bw_upcalls_ring)
216 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
217 #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx)
218
219 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
220
221 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
222 VNET_PCPUSTAT_SYSINIT(pimstat);
223 VNET_PCPUSTAT_SYSUNINIT(pimstat);
224
225 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
226 "PIM");
227 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
228 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
229
230 static u_long pim_squelch_wholepkt = 0;
231 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN,
232 &pim_squelch_wholepkt, 0,
233 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
234
235 static const struct encaptab *pim_encap_cookie;
236 static int pim_encapcheck(const struct mbuf *, int, int, void *);
237 static int pim_input(struct mbuf *, int, int, void *);
238
239 extern int in_mcast_loop;
240
241 static const struct encap_config ipv4_encap_cfg = {
242 .proto = IPPROTO_PIM,
243 .min_length = sizeof(struct ip) + PIM_MINLEN,
244 .exact_match = 8,
245 .check = pim_encapcheck,
246 .input = pim_input
247 };
248
249 /*
250 * Note: the PIM Register encapsulation adds the following in front of a
251 * data packet:
252 *
253 * struct pim_encap_hdr {
254 * struct ip ip;
255 * struct pim_encap_pimhdr pim;
256 * }
257 *
258 */
259
260 struct pim_encap_pimhdr {
261 struct pim pim;
262 uint32_t flags;
263 };
264 #define PIM_ENCAP_TTL 64
265
266 static struct ip pim_encap_iphdr = {
267 #if BYTE_ORDER == LITTLE_ENDIAN
268 sizeof(struct ip) >> 2,
269 IPVERSION,
270 #else
271 IPVERSION,
272 sizeof(struct ip) >> 2,
273 #endif
274 0, /* tos */
275 sizeof(struct ip), /* total length */
276 0, /* id */
277 0, /* frag offset */
278 PIM_ENCAP_TTL,
279 IPPROTO_PIM,
280 0, /* checksum */
281 };
282
283 static struct pim_encap_pimhdr pim_encap_pimhdr = {
284 {
285 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
286 0, /* reserved */
287 0, /* checksum */
288 },
289 0 /* flags */
290 };
291
292 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
293 #define V_reg_vif_num VNET(reg_vif_num)
294 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
295 #define V_multicast_register_if VNET(multicast_register_if)
296
297 /*
298 * Private variables.
299 */
300
301 static u_long X_ip_mcast_src(int);
302 static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
303 struct ip_moptions *);
304 static int X_ip_mrouter_done(void);
305 static int X_ip_mrouter_get(struct socket *, struct sockopt *);
306 static int X_ip_mrouter_set(struct socket *, struct sockopt *);
307 static int X_legal_vif_num(int);
308 static int X_mrt_ioctl(u_long, caddr_t, int);
309
310 static int add_bw_upcall(struct bw_upcall *);
311 static int add_mfc(struct mfcctl2 *);
312 static int add_vif(struct vifctl *);
313 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
314 static void bw_meter_geq_receive_packet(struct bw_meter *, int,
315 struct timeval *);
316 static void bw_upcalls_send(void);
317 static int del_bw_upcall(struct bw_upcall *);
318 static int del_mfc(struct mfcctl2 *);
319 static int del_vif(vifi_t);
320 static int del_vif_locked(vifi_t, struct ifnet **, struct ifnet **);
321 static void expire_bw_upcalls_send(void *);
322 static void expire_mfc(struct mfc *);
323 static void expire_upcalls(void *);
324 static void free_bw_list(struct bw_meter *);
325 static int get_sg_cnt(struct sioc_sg_req *);
326 static int get_vif_cnt(struct sioc_vif_req *);
327 static void if_detached_event(void *, struct ifnet *);
328 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
329 static int ip_mrouter_init(struct socket *, int);
330 static __inline struct mfc *
331 mfc_find(struct in_addr *, struct in_addr *);
332 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
333 static struct mbuf *
334 pim_register_prepare(struct ip *, struct mbuf *);
335 static int pim_register_send(struct ip *, struct vif *,
336 struct mbuf *, struct mfc *);
337 static int pim_register_send_rp(struct ip *, struct vif *,
338 struct mbuf *, struct mfc *);
339 static int pim_register_send_upcall(struct ip *, struct vif *,
340 struct mbuf *, struct mfc *);
341 static void send_packet(struct vif *, struct mbuf *);
342 static int set_api_config(uint32_t *);
343 static int set_assert(int);
344 static int socket_send(struct socket *, struct mbuf *,
345 struct sockaddr_in *);
346
347 /*
348 * Kernel multicast forwarding API capabilities and setup.
349 * If more API capabilities are added to the kernel, they should be
350 * recorded in `mrt_api_support'.
351 */
352 #define MRT_API_VERSION 0x0305
353
354 static const int mrt_api_version = MRT_API_VERSION;
355 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
356 MRT_MFC_FLAGS_BORDER_VIF |
357 MRT_MFC_RP |
358 MRT_MFC_BW_UPCALL);
359 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
360 #define V_mrt_api_config VNET(mrt_api_config)
361 VNET_DEFINE_STATIC(int, pim_assert_enabled);
362 #define V_pim_assert_enabled VNET(pim_assert_enabled)
363 static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */
364
365 /*
366 * Find a route for a given origin IP address and multicast group address.
367 * Statistics must be updated by the caller.
368 */
369 static __inline struct mfc *
mfc_find(struct in_addr * o,struct in_addr * g)370 mfc_find(struct in_addr *o, struct in_addr *g)
371 {
372 struct mfc *rt;
373
374 /*
375 * Might be called both RLOCK and WLOCK.
376 * Check if any, it's caller responsibility
377 * to choose correct option.
378 */
379 MRW_LOCK_ASSERT();
380
381 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
382 if (in_hosteq(rt->mfc_origin, *o) &&
383 in_hosteq(rt->mfc_mcastgrp, *g) &&
384 buf_ring_empty(rt->mfc_stall_ring))
385 break;
386 }
387
388 return (rt);
389 }
390
391 static __inline struct mfc *
mfc_alloc(void)392 mfc_alloc(void)
393 {
394 struct mfc *rt;
395 rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
396 if (rt == NULL)
397 return rt;
398
399 rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
400 M_NOWAIT, &V_buf_ring_mtx);
401 if (rt->mfc_stall_ring == NULL) {
402 free(rt, M_MRTABLE);
403 return NULL;
404 }
405
406 return rt;
407 }
408
409 /*
410 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
411 */
412 static int
X_ip_mrouter_set(struct socket * so,struct sockopt * sopt)413 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
414 {
415 int error, optval;
416 vifi_t vifi;
417 struct vifctl vifc;
418 struct mfcctl2 mfc;
419 struct bw_upcall bw_upcall;
420 uint32_t i;
421
422 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
423 return EPERM;
424
425 error = 0;
426 switch (sopt->sopt_name) {
427 case MRT_INIT:
428 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
429 if (error)
430 break;
431 error = ip_mrouter_init(so, optval);
432 break;
433 case MRT_DONE:
434 error = ip_mrouter_done();
435 break;
436 case MRT_ADD_VIF:
437 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
438 if (error)
439 break;
440 error = add_vif(&vifc);
441 break;
442 case MRT_DEL_VIF:
443 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
444 if (error)
445 break;
446 error = del_vif(vifi);
447 break;
448 case MRT_ADD_MFC:
449 case MRT_DEL_MFC:
450 /*
451 * select data size depending on API version.
452 */
453 if (sopt->sopt_name == MRT_ADD_MFC &&
454 V_mrt_api_config & MRT_API_FLAGS_ALL) {
455 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
456 sizeof(struct mfcctl2));
457 } else {
458 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
459 sizeof(struct mfcctl));
460 bzero((caddr_t)&mfc + sizeof(struct mfcctl),
461 sizeof(mfc) - sizeof(struct mfcctl));
462 }
463 if (error)
464 break;
465 if (sopt->sopt_name == MRT_ADD_MFC)
466 error = add_mfc(&mfc);
467 else
468 error = del_mfc(&mfc);
469 break;
470
471 case MRT_ASSERT:
472 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
473 if (error)
474 break;
475 set_assert(optval);
476 break;
477
478 case MRT_API_CONFIG:
479 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
480 if (!error)
481 error = set_api_config(&i);
482 if (!error)
483 error = sooptcopyout(sopt, &i, sizeof i);
484 break;
485
486 case MRT_ADD_BW_UPCALL:
487 case MRT_DEL_BW_UPCALL:
488 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
489 sizeof bw_upcall);
490 if (error)
491 break;
492 if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
493 error = add_bw_upcall(&bw_upcall);
494 else
495 error = del_bw_upcall(&bw_upcall);
496 break;
497
498 default:
499 error = EOPNOTSUPP;
500 break;
501 }
502 return error;
503 }
504
505 /*
506 * Handle MRT getsockopt commands
507 */
508 static int
X_ip_mrouter_get(struct socket * so,struct sockopt * sopt)509 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
510 {
511 int error;
512
513 switch (sopt->sopt_name) {
514 case MRT_VERSION:
515 error = sooptcopyout(sopt, &mrt_api_version,
516 sizeof mrt_api_version);
517 break;
518 case MRT_ASSERT:
519 error = sooptcopyout(sopt, &V_pim_assert_enabled,
520 sizeof V_pim_assert_enabled);
521 break;
522 case MRT_API_SUPPORT:
523 error = sooptcopyout(sopt, &mrt_api_support,
524 sizeof mrt_api_support);
525 break;
526 case MRT_API_CONFIG:
527 error = sooptcopyout(sopt, &V_mrt_api_config,
528 sizeof V_mrt_api_config);
529 break;
530 default:
531 error = EOPNOTSUPP;
532 break;
533 }
534 return error;
535 }
536
537 /*
538 * Handle ioctl commands to obtain information from the cache
539 */
540 static int
X_mrt_ioctl(u_long cmd,caddr_t data,int fibnum __unused)541 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
542 {
543 int error;
544
545 /*
546 * Currently the only function calling this ioctl routine is rtioctl_fib().
547 * Typically, only root can create the raw socket in order to execute
548 * this ioctl method, however the request might be coming from a prison
549 */
550 error = priv_check(curthread, PRIV_NETINET_MROUTE);
551 if (error)
552 return (error);
553 switch (cmd) {
554 case (SIOCGETVIFCNT):
555 error = get_vif_cnt((struct sioc_vif_req *)data);
556 break;
557
558 case (SIOCGETSGCNT):
559 error = get_sg_cnt((struct sioc_sg_req *)data);
560 break;
561
562 default:
563 error = EINVAL;
564 break;
565 }
566 return error;
567 }
568
569 /*
570 * returns the packet, byte, rpf-failure count for the source group provided
571 */
572 static int
get_sg_cnt(struct sioc_sg_req * req)573 get_sg_cnt(struct sioc_sg_req *req)
574 {
575 struct mfc *rt;
576
577 MRW_RLOCK();
578 rt = mfc_find(&req->src, &req->grp);
579 if (rt == NULL) {
580 MRW_RUNLOCK();
581 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
582 return EADDRNOTAVAIL;
583 }
584 req->pktcnt = rt->mfc_pkt_cnt;
585 req->bytecnt = rt->mfc_byte_cnt;
586 req->wrong_if = rt->mfc_wrong_if;
587 MRW_RUNLOCK();
588 return 0;
589 }
590
591 /*
592 * returns the input and output packet and byte counts on the vif provided
593 */
594 static int
get_vif_cnt(struct sioc_vif_req * req)595 get_vif_cnt(struct sioc_vif_req *req)
596 {
597 vifi_t vifi = req->vifi;
598
599 MRW_RLOCK();
600 if (vifi >= V_numvifs) {
601 MRW_RUNLOCK();
602 return EINVAL;
603 }
604
605 mtx_lock_spin(&V_viftable[vifi].v_spin);
606 req->icount = V_viftable[vifi].v_pkt_in;
607 req->ocount = V_viftable[vifi].v_pkt_out;
608 req->ibytes = V_viftable[vifi].v_bytes_in;
609 req->obytes = V_viftable[vifi].v_bytes_out;
610 mtx_unlock_spin(&V_viftable[vifi].v_spin);
611 MRW_RUNLOCK();
612
613 return 0;
614 }
615
616 static void
if_detached_event(void * arg __unused,struct ifnet * ifp)617 if_detached_event(void *arg __unused, struct ifnet *ifp)
618 {
619 vifi_t vifi;
620 u_long i, vifi_cnt = 0;
621 struct ifnet *free_ptr, *multi_leave;
622
623 MRW_WLOCK();
624
625 if (V_ip_mrouter == NULL) {
626 MRW_WUNLOCK();
627 return;
628 }
629
630 /*
631 * Tear down multicast forwarder state associated with this ifnet.
632 * 1. Walk the vif list, matching vifs against this ifnet.
633 * 2. Walk the multicast forwarding cache (mfc) looking for
634 * inner matches with this vif's index.
635 * 3. Expire any matching multicast forwarding cache entries.
636 * 4. Free vif state. This should disable ALLMULTI on the interface.
637 */
638 restart:
639 for (vifi = 0; vifi < V_numvifs; vifi++) {
640 if (V_viftable[vifi].v_ifp != ifp)
641 continue;
642 for (i = 0; i < mfchashsize; i++) {
643 struct mfc *rt, *nrt;
644
645 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
646 if (rt->mfc_parent == vifi) {
647 expire_mfc(rt);
648 }
649 }
650 }
651 del_vif_locked(vifi, &multi_leave, &free_ptr);
652 if (free_ptr != NULL)
653 vifi_cnt++;
654 if (multi_leave) {
655 MRW_WUNLOCK();
656 if_allmulti(multi_leave, 0);
657 MRW_WLOCK();
658 goto restart;
659 }
660 }
661
662 MRW_WUNLOCK();
663
664 /*
665 * Free IFP. We don't have to use free_ptr here as it is the same
666 * that ifp. Perform free as many times as required in case
667 * refcount is greater than 1.
668 */
669 for (i = 0; i < vifi_cnt; i++)
670 if_free(ifp);
671 }
672
673 static void
ip_mrouter_upcall_thread(void * arg,int pending __unused)674 ip_mrouter_upcall_thread(void *arg, int pending __unused)
675 {
676 CURVNET_SET((struct vnet *) arg);
677
678 MRW_WLOCK();
679 bw_upcalls_send();
680 MRW_WUNLOCK();
681
682 CURVNET_RESTORE();
683 }
684
685 /*
686 * Enable multicast forwarding.
687 */
688 static int
ip_mrouter_init(struct socket * so,int version)689 ip_mrouter_init(struct socket *so, int version)
690 {
691
692 CTR2(KTR_IPMF, "%s: so %p", __func__, so);
693
694 if (version != 1)
695 return ENOPROTOOPT;
696
697 MRW_WLOCK();
698
699 if (ip_mrouter_unloading) {
700 MRW_WUNLOCK();
701 return ENOPROTOOPT;
702 }
703
704 if (V_ip_mrouter != NULL) {
705 MRW_WUNLOCK();
706 return EADDRINUSE;
707 }
708
709 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
710 HASH_NOWAIT);
711
712 /* Create upcall ring */
713 mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
714 V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
715 M_NOWAIT, &V_bw_upcalls_ring_mtx);
716 if (!V_bw_upcalls_ring) {
717 MRW_WUNLOCK();
718 return (ENOMEM);
719 }
720
721 TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
722 taskqueue_cancel(V_task_queue, &V_task, NULL);
723 taskqueue_unblock(V_task_queue);
724
725 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
726 curvnet);
727 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
728 curvnet);
729
730 V_ip_mrouter = so;
731 atomic_add_int(&ip_mrouter_cnt, 1);
732
733 /* This is a mutex required by buf_ring init, but not used internally */
734 mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
735
736 MRW_WUNLOCK();
737
738 CTR1(KTR_IPMF, "%s: done", __func__);
739
740 return 0;
741 }
742
743 /*
744 * Disable multicast forwarding.
745 */
746 static int
X_ip_mrouter_done(void)747 X_ip_mrouter_done(void)
748 {
749 struct ifnet **ifps;
750 int nifp;
751 u_long i;
752 vifi_t vifi;
753 struct bw_upcall *bu;
754
755 if (V_ip_mrouter == NULL)
756 return (EINVAL);
757
758 /*
759 * Detach/disable hooks to the reset of the system.
760 */
761 V_ip_mrouter = NULL;
762 atomic_subtract_int(&ip_mrouter_cnt, 1);
763 V_mrt_api_config = 0;
764
765 /*
766 * Wait for all epoch sections to complete to ensure
767 * V_ip_mrouter = NULL is visible to others.
768 */
769 NET_EPOCH_WAIT();
770
771 /* Stop and drain task queue */
772 taskqueue_block(V_task_queue);
773 while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
774 taskqueue_drain(V_task_queue, &V_task);
775 }
776
777 ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
778
779 MRW_WLOCK();
780 taskqueue_cancel(V_task_queue, &V_task, NULL);
781
782 /* Destroy upcall ring */
783 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
784 free(bu, M_MRTABLE);
785 }
786 buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
787 mtx_destroy(&V_bw_upcalls_ring_mtx);
788
789 /*
790 * For each phyint in use, prepare to disable promiscuous reception
791 * of all IP multicasts. Defer the actual call until the lock is released;
792 * just record the list of interfaces while locked. Some interfaces use
793 * sx locks in their ioctl routines, which is not allowed while holding
794 * a non-sleepable lock.
795 */
796 KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
797 for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
798 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
799 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
800 ifps[nifp++] = V_viftable[vifi].v_ifp;
801 }
802 }
803 bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
804 V_numvifs = 0;
805 V_pim_assert_enabled = 0;
806
807 callout_stop(&V_expire_upcalls_ch);
808 callout_stop(&V_bw_upcalls_ch);
809
810 /*
811 * Free all multicast forwarding cache entries.
812 * Do not use hashdestroy(), as we must perform other cleanup.
813 */
814 for (i = 0; i < mfchashsize; i++) {
815 struct mfc *rt, *nrt;
816
817 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
818 expire_mfc(rt);
819 }
820 }
821 free(V_mfchashtbl, M_MRTABLE);
822 V_mfchashtbl = NULL;
823
824 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
825
826 V_reg_vif_num = VIFI_INVALID;
827
828 mtx_destroy(&V_buf_ring_mtx);
829
830 MRW_WUNLOCK();
831
832 /*
833 * Now drop our claim on promiscuous multicast on the interfaces recorded
834 * above. This is safe to do now because ALLMULTI is reference counted.
835 */
836 for (vifi = 0; vifi < nifp; vifi++)
837 if_allmulti(ifps[vifi], 0);
838 free(ifps, M_TEMP);
839
840 CTR1(KTR_IPMF, "%s: done", __func__);
841
842 return 0;
843 }
844
845 /*
846 * Set PIM assert processing global
847 */
848 static int
set_assert(int i)849 set_assert(int i)
850 {
851 if ((i != 1) && (i != 0))
852 return EINVAL;
853
854 V_pim_assert_enabled = i;
855
856 return 0;
857 }
858
859 /*
860 * Configure API capabilities
861 */
862 int
set_api_config(uint32_t * apival)863 set_api_config(uint32_t *apival)
864 {
865 u_long i;
866
867 /*
868 * We can set the API capabilities only if it is the first operation
869 * after MRT_INIT. I.e.:
870 * - there are no vifs installed
871 * - pim_assert is not enabled
872 * - the MFC table is empty
873 */
874 if (V_numvifs > 0) {
875 *apival = 0;
876 return EPERM;
877 }
878 if (V_pim_assert_enabled) {
879 *apival = 0;
880 return EPERM;
881 }
882
883 MRW_RLOCK();
884
885 for (i = 0; i < mfchashsize; i++) {
886 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
887 MRW_RUNLOCK();
888 *apival = 0;
889 return EPERM;
890 }
891 }
892
893 MRW_RUNLOCK();
894
895 V_mrt_api_config = *apival & mrt_api_support;
896 *apival = V_mrt_api_config;
897
898 return 0;
899 }
900
901 /*
902 * Add a vif to the vif table
903 */
904 static int
add_vif(struct vifctl * vifcp)905 add_vif(struct vifctl *vifcp)
906 {
907 struct vif *vifp = V_viftable + vifcp->vifc_vifi;
908 struct sockaddr_in sin = {sizeof sin, AF_INET};
909 struct ifaddr *ifa;
910 struct ifnet *ifp;
911 int error;
912
913 if (vifcp->vifc_vifi >= MAXVIFS)
914 return EINVAL;
915 /* rate limiting is no longer supported by this code */
916 if (vifcp->vifc_rate_limit != 0) {
917 log(LOG_ERR, "rate limiting is no longer supported\n");
918 return EINVAL;
919 }
920
921 if (in_nullhost(vifcp->vifc_lcl_addr))
922 return EADDRNOTAVAIL;
923
924 /* Find the interface with an address in AF_INET family */
925 if (vifcp->vifc_flags & VIFF_REGISTER) {
926 /*
927 * XXX: Because VIFF_REGISTER does not really need a valid
928 * local interface (e.g. it could be 127.0.0.2), we don't
929 * check its address.
930 */
931 ifp = NULL;
932 } else {
933 struct epoch_tracker et;
934
935 sin.sin_addr = vifcp->vifc_lcl_addr;
936 NET_EPOCH_ENTER(et);
937 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
938 if (ifa == NULL) {
939 NET_EPOCH_EXIT(et);
940 return EADDRNOTAVAIL;
941 }
942 ifp = ifa->ifa_ifp;
943 /* XXX FIXME we need to take a ref on ifp and cleanup properly! */
944 NET_EPOCH_EXIT(et);
945 }
946
947 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
948 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
949 return EOPNOTSUPP;
950 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
951 ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
952 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
953 if (V_reg_vif_num == VIFI_INVALID) {
954 if_initname(V_multicast_register_if, "register_vif", 0);
955 V_reg_vif_num = vifcp->vifc_vifi;
956 }
957 } else { /* Make sure the interface supports multicast */
958 if ((ifp->if_flags & IFF_MULTICAST) == 0)
959 return EOPNOTSUPP;
960
961 /* Enable promiscuous reception of all IP multicasts from the if */
962 error = if_allmulti(ifp, 1);
963 if (error)
964 return error;
965 }
966
967 MRW_WLOCK();
968
969 if (!in_nullhost(vifp->v_lcl_addr)) {
970 if (ifp)
971 V_multicast_register_if = NULL;
972 MRW_WUNLOCK();
973 if (ifp)
974 if_free(ifp);
975 return EADDRINUSE;
976 }
977
978 vifp->v_flags = vifcp->vifc_flags;
979 vifp->v_threshold = vifcp->vifc_threshold;
980 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
981 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
982 vifp->v_ifp = ifp;
983 /* initialize per vif pkt counters */
984 vifp->v_pkt_in = 0;
985 vifp->v_pkt_out = 0;
986 vifp->v_bytes_in = 0;
987 vifp->v_bytes_out = 0;
988 sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
989 mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
990
991 /* Adjust numvifs up if the vifi is higher than numvifs */
992 if (V_numvifs <= vifcp->vifc_vifi)
993 V_numvifs = vifcp->vifc_vifi + 1;
994
995 MRW_WUNLOCK();
996
997 CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
998 (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
999 (int)vifcp->vifc_threshold);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * Delete a vif from the vif table
1006 */
1007 static int
del_vif_locked(vifi_t vifi,struct ifnet ** ifp_multi_leave,struct ifnet ** ifp_free)1008 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free)
1009 {
1010 struct vif *vifp;
1011
1012 *ifp_free = NULL;
1013 *ifp_multi_leave = NULL;
1014
1015 MRW_WLOCK_ASSERT();
1016
1017 if (vifi >= V_numvifs) {
1018 return EINVAL;
1019 }
1020 vifp = &V_viftable[vifi];
1021 if (in_nullhost(vifp->v_lcl_addr)) {
1022 return EADDRNOTAVAIL;
1023 }
1024
1025 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1026 *ifp_multi_leave = vifp->v_ifp;
1027
1028 if (vifp->v_flags & VIFF_REGISTER) {
1029 V_reg_vif_num = VIFI_INVALID;
1030 if (vifp->v_ifp) {
1031 if (vifp->v_ifp == V_multicast_register_if)
1032 V_multicast_register_if = NULL;
1033 *ifp_free = vifp->v_ifp;
1034 }
1035 }
1036
1037 mtx_destroy(&vifp->v_spin);
1038
1039 bzero((caddr_t)vifp, sizeof (*vifp));
1040
1041 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1042
1043 /* Adjust numvifs down */
1044 for (vifi = V_numvifs; vifi > 0; vifi--)
1045 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1046 break;
1047 V_numvifs = vifi;
1048
1049 return 0;
1050 }
1051
1052 static int
del_vif(vifi_t vifi)1053 del_vif(vifi_t vifi)
1054 {
1055 int cc;
1056 struct ifnet *free_ptr, *multi_leave;
1057
1058 MRW_WLOCK();
1059 cc = del_vif_locked(vifi, &multi_leave, &free_ptr);
1060 MRW_WUNLOCK();
1061
1062 if (multi_leave)
1063 if_allmulti(multi_leave, 0);
1064 if (free_ptr) {
1065 if_free(free_ptr);
1066 }
1067
1068 return cc;
1069 }
1070
1071 /*
1072 * update an mfc entry without resetting counters and S,G addresses.
1073 */
1074 static void
update_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)1075 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1076 {
1077 int i;
1078
1079 rt->mfc_parent = mfccp->mfcc_parent;
1080 for (i = 0; i < V_numvifs; i++) {
1081 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1082 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1083 MRT_MFC_FLAGS_ALL;
1084 }
1085 /* set the RP address */
1086 if (V_mrt_api_config & MRT_MFC_RP)
1087 rt->mfc_rp = mfccp->mfcc_rp;
1088 else
1089 rt->mfc_rp.s_addr = INADDR_ANY;
1090 }
1091
1092 /*
1093 * fully initialize an mfc entry from the parameter.
1094 */
1095 static void
init_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)1096 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1097 {
1098 rt->mfc_origin = mfccp->mfcc_origin;
1099 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1100
1101 update_mfc_params(rt, mfccp);
1102
1103 /* initialize pkt counters per src-grp */
1104 rt->mfc_pkt_cnt = 0;
1105 rt->mfc_byte_cnt = 0;
1106 rt->mfc_wrong_if = 0;
1107 timevalclear(&rt->mfc_last_assert);
1108 }
1109
1110 static void
expire_mfc(struct mfc * rt)1111 expire_mfc(struct mfc *rt)
1112 {
1113 struct rtdetq *rte;
1114
1115 MRW_WLOCK_ASSERT();
1116
1117 free_bw_list(rt->mfc_bw_meter_leq);
1118 free_bw_list(rt->mfc_bw_meter_geq);
1119
1120 while (!buf_ring_empty(rt->mfc_stall_ring)) {
1121 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1122 if (rte) {
1123 m_freem(rte->m);
1124 free(rte, M_MRTABLE);
1125 }
1126 }
1127 buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1128
1129 LIST_REMOVE(rt, mfc_hash);
1130 free(rt, M_MRTABLE);
1131 }
1132
1133 /*
1134 * Add an mfc entry
1135 */
1136 static int
add_mfc(struct mfcctl2 * mfccp)1137 add_mfc(struct mfcctl2 *mfccp)
1138 {
1139 struct mfc *rt;
1140 struct rtdetq *rte;
1141 u_long hash = 0;
1142 u_short nstl;
1143 struct epoch_tracker et;
1144
1145 MRW_WLOCK();
1146 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1147
1148 /* If an entry already exists, just update the fields */
1149 if (rt) {
1150 CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1151 __func__, ntohl(mfccp->mfcc_origin.s_addr),
1152 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1153 mfccp->mfcc_parent);
1154 update_mfc_params(rt, mfccp);
1155 MRW_WUNLOCK();
1156 return (0);
1157 }
1158
1159 /*
1160 * Find the entry for which the upcall was made and update
1161 */
1162 nstl = 0;
1163 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1164 NET_EPOCH_ENTER(et);
1165 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1166 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1167 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1168 !buf_ring_empty(rt->mfc_stall_ring)) {
1169 CTR5(KTR_IPMF,
1170 "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1171 __func__, ntohl(mfccp->mfcc_origin.s_addr),
1172 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1173 mfccp->mfcc_parent,
1174 rt->mfc_stall_ring);
1175 if (nstl++)
1176 CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1177
1178 init_mfc_params(rt, mfccp);
1179 rt->mfc_expire = 0; /* Don't clean this guy up */
1180 V_nexpire[hash]--;
1181
1182 /* Free queued packets, but attempt to forward them first. */
1183 while (!buf_ring_empty(rt->mfc_stall_ring)) {
1184 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1185 if (rte->ifp != NULL)
1186 ip_mdq(rte->m, rte->ifp, rt, -1);
1187 m_freem(rte->m);
1188 free(rte, M_MRTABLE);
1189 }
1190 }
1191 }
1192 NET_EPOCH_EXIT(et);
1193
1194 /*
1195 * It is possible that an entry is being inserted without an upcall
1196 */
1197 if (nstl == 0) {
1198 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1199 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1200 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1201 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1202 init_mfc_params(rt, mfccp);
1203 if (rt->mfc_expire)
1204 V_nexpire[hash]--;
1205 rt->mfc_expire = 0;
1206 break; /* XXX */
1207 }
1208 }
1209
1210 if (rt == NULL) { /* no upcall, so make a new entry */
1211 rt = mfc_alloc();
1212 if (rt == NULL) {
1213 MRW_WUNLOCK();
1214 return (ENOBUFS);
1215 }
1216
1217 init_mfc_params(rt, mfccp);
1218
1219 rt->mfc_expire = 0;
1220 rt->mfc_bw_meter_leq = NULL;
1221 rt->mfc_bw_meter_geq = NULL;
1222
1223 /* insert new entry at head of hash chain */
1224 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1225 }
1226 }
1227
1228 MRW_WUNLOCK();
1229
1230 return (0);
1231 }
1232
1233 /*
1234 * Delete an mfc entry
1235 */
1236 static int
del_mfc(struct mfcctl2 * mfccp)1237 del_mfc(struct mfcctl2 *mfccp)
1238 {
1239 struct in_addr origin;
1240 struct in_addr mcastgrp;
1241 struct mfc *rt;
1242
1243 origin = mfccp->mfcc_origin;
1244 mcastgrp = mfccp->mfcc_mcastgrp;
1245
1246 CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1247 ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1248
1249 MRW_WLOCK();
1250
1251 rt = mfc_find(&origin, &mcastgrp);
1252 if (rt == NULL) {
1253 MRW_WUNLOCK();
1254 return EADDRNOTAVAIL;
1255 }
1256
1257 /*
1258 * free the bw_meter entries
1259 */
1260 free_bw_list(rt->mfc_bw_meter_leq);
1261 rt->mfc_bw_meter_leq = NULL;
1262 free_bw_list(rt->mfc_bw_meter_geq);
1263 rt->mfc_bw_meter_geq = NULL;
1264
1265 LIST_REMOVE(rt, mfc_hash);
1266 free(rt, M_MRTABLE);
1267
1268 MRW_WUNLOCK();
1269
1270 return (0);
1271 }
1272
1273 /*
1274 * Send a message to the routing daemon on the multicast routing socket.
1275 */
1276 static int
socket_send(struct socket * s,struct mbuf * mm,struct sockaddr_in * src)1277 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1278 {
1279 if (s) {
1280 SOCKBUF_LOCK(&s->so_rcv);
1281 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1282 NULL) != 0) {
1283 sorwakeup_locked(s);
1284 return 0;
1285 }
1286 soroverflow_locked(s);
1287 }
1288 m_freem(mm);
1289 return -1;
1290 }
1291
1292 /*
1293 * IP multicast forwarding function. This function assumes that the packet
1294 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1295 * pointed to by "ifp", and the packet is to be relayed to other networks
1296 * that have members of the packet's destination IP multicast group.
1297 *
1298 * The packet is returned unscathed to the caller, unless it is
1299 * erroneous, in which case a non-zero return value tells the caller to
1300 * discard it.
1301 */
1302
1303 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1304
1305 static int
X_ip_mforward(struct ip * ip,struct ifnet * ifp,struct mbuf * m,struct ip_moptions * imo)1306 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1307 struct ip_moptions *imo)
1308 {
1309 struct mfc *rt;
1310 int error;
1311 vifi_t vifi;
1312 struct mbuf *mb0;
1313 struct rtdetq *rte;
1314 u_long hash;
1315 int hlen;
1316
1317 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1318 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1319
1320 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1321 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1322 /*
1323 * Packet arrived via a physical interface or
1324 * an encapsulated tunnel or a register_vif.
1325 */
1326 } else {
1327 /*
1328 * Packet arrived through a source-route tunnel.
1329 * Source-route tunnels are no longer supported.
1330 */
1331 return (1);
1332 }
1333
1334 /*
1335 * BEGIN: MCAST ROUTING HOT PATH
1336 */
1337 MRW_RLOCK();
1338 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1339 if (ip->ip_ttl < MAXTTL)
1340 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1341 error = ip_mdq(m, ifp, NULL, vifi);
1342 MRW_RUNLOCK();
1343 return error;
1344 }
1345
1346 /*
1347 * Don't forward a packet with time-to-live of zero or one,
1348 * or a packet destined to a local-only group.
1349 */
1350 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1351 MRW_RUNLOCK();
1352 return 0;
1353 }
1354
1355 mfc_find_retry:
1356 /*
1357 * Determine forwarding vifs from the forwarding cache table
1358 */
1359 MRTSTAT_INC(mrts_mfc_lookups);
1360 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1361
1362 /* Entry exists, so forward if necessary */
1363 if (rt != NULL) {
1364 error = ip_mdq(m, ifp, rt, -1);
1365 /* Generic unlock here as we might release R or W lock */
1366 MRW_UNLOCK();
1367 return error;
1368 }
1369
1370 /*
1371 * END: MCAST ROUTING HOT PATH
1372 */
1373
1374 /* Further processing must be done with WLOCK taken */
1375 if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1376 MRW_RUNLOCK();
1377 MRW_WLOCK();
1378 goto mfc_find_retry;
1379 }
1380
1381 /*
1382 * If we don't have a route for packet's origin,
1383 * Make a copy of the packet & send message to routing daemon
1384 */
1385 hlen = ip->ip_hl << 2;
1386
1387 MRTSTAT_INC(mrts_mfc_misses);
1388 MRTSTAT_INC(mrts_no_route);
1389 CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1390 ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1391
1392 /*
1393 * Allocate mbufs early so that we don't do extra work if we are
1394 * just going to fail anyway. Make sure to pullup the header so
1395 * that other people can't step on it.
1396 */
1397 rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO);
1398 if (rte == NULL) {
1399 MRW_WUNLOCK();
1400 return ENOBUFS;
1401 }
1402
1403 mb0 = m_copypacket(m, M_NOWAIT);
1404 if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1405 mb0 = m_pullup(mb0, hlen);
1406 if (mb0 == NULL) {
1407 free(rte, M_MRTABLE);
1408 MRW_WUNLOCK();
1409 return ENOBUFS;
1410 }
1411
1412 /* is there an upcall waiting for this flow ? */
1413 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1414 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1415 {
1416 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1417 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1418 !buf_ring_empty(rt->mfc_stall_ring))
1419 break;
1420 }
1421
1422 if (rt == NULL) {
1423 int i;
1424 struct igmpmsg *im;
1425 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1426 struct mbuf *mm;
1427
1428 /*
1429 * Locate the vifi for the incoming interface for this packet.
1430 * If none found, drop packet.
1431 */
1432 for (vifi = 0; vifi < V_numvifs &&
1433 V_viftable[vifi].v_ifp != ifp; vifi++)
1434 ;
1435 if (vifi >= V_numvifs) /* vif not found, drop packet */
1436 goto non_fatal;
1437
1438 /* no upcall, so make a new entry */
1439 rt = mfc_alloc();
1440 if (rt == NULL)
1441 goto fail;
1442
1443 /* Make a copy of the header to send to the user level process */
1444 mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1445 if (mm == NULL)
1446 goto fail1;
1447
1448 /*
1449 * Send message to routing daemon to install
1450 * a route into the kernel table
1451 */
1452
1453 im = mtod(mm, struct igmpmsg*);
1454 im->im_msgtype = IGMPMSG_NOCACHE;
1455 im->im_mbz = 0;
1456 im->im_vif = vifi;
1457
1458 MRTSTAT_INC(mrts_upcalls);
1459
1460 k_igmpsrc.sin_addr = ip->ip_src;
1461 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1462 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1463 MRTSTAT_INC(mrts_upq_sockfull);
1464 fail1: free(rt, M_MRTABLE);
1465 fail: free(rte, M_MRTABLE);
1466 m_freem(mb0);
1467 MRW_WUNLOCK();
1468 return ENOBUFS;
1469 }
1470
1471 /* insert new entry at head of hash chain */
1472 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1473 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1474 rt->mfc_expire = UPCALL_EXPIRE;
1475 V_nexpire[hash]++;
1476 for (i = 0; i < V_numvifs; i++) {
1477 rt->mfc_ttls[i] = 0;
1478 rt->mfc_flags[i] = 0;
1479 }
1480 rt->mfc_parent = -1;
1481
1482 /* clear the RP address */
1483 rt->mfc_rp.s_addr = INADDR_ANY;
1484 rt->mfc_bw_meter_leq = NULL;
1485 rt->mfc_bw_meter_geq = NULL;
1486
1487 /* initialize pkt counters per src-grp */
1488 rt->mfc_pkt_cnt = 0;
1489 rt->mfc_byte_cnt = 0;
1490 rt->mfc_wrong_if = 0;
1491 timevalclear(&rt->mfc_last_assert);
1492
1493 buf_ring_enqueue(rt->mfc_stall_ring, rte);
1494
1495 /* Add RT to hashtable as it didn't exist before */
1496 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1497 } else {
1498 /* determine if queue has overflowed */
1499 if (buf_ring_full(rt->mfc_stall_ring)) {
1500 MRTSTAT_INC(mrts_upq_ovflw);
1501 non_fatal: free(rte, M_MRTABLE);
1502 m_freem(mb0);
1503 MRW_WUNLOCK();
1504 return (0);
1505 }
1506
1507 buf_ring_enqueue(rt->mfc_stall_ring, rte);
1508 }
1509
1510 rte->m = mb0;
1511 rte->ifp = ifp;
1512
1513 MRW_WUNLOCK();
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * Clean up the cache entry if upcall is not serviced
1520 */
1521 static void
expire_upcalls(void * arg)1522 expire_upcalls(void *arg)
1523 {
1524 u_long i;
1525
1526 CURVNET_SET((struct vnet *) arg);
1527
1528 /*This callout is always run with MRW_WLOCK taken. */
1529
1530 for (i = 0; i < mfchashsize; i++) {
1531 struct mfc *rt, *nrt;
1532
1533 if (V_nexpire[i] == 0)
1534 continue;
1535
1536 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1537 if (buf_ring_empty(rt->mfc_stall_ring))
1538 continue;
1539
1540 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1541 continue;
1542
1543 MRTSTAT_INC(mrts_cache_cleanups);
1544 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1545 (u_long)ntohl(rt->mfc_origin.s_addr),
1546 (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1547
1548 expire_mfc(rt);
1549 }
1550 }
1551
1552 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1553 curvnet);
1554
1555 CURVNET_RESTORE();
1556 }
1557
1558 /*
1559 * Packet forwarding routine once entry in the cache is made
1560 */
1561 static int
ip_mdq(struct mbuf * m,struct ifnet * ifp,struct mfc * rt,vifi_t xmt_vif)1562 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1563 {
1564 struct ip *ip = mtod(m, struct ip *);
1565 vifi_t vifi;
1566 int plen = ntohs(ip->ip_len);
1567
1568 MRW_LOCK_ASSERT();
1569 NET_EPOCH_ASSERT();
1570
1571 /*
1572 * If xmt_vif is not -1, send on only the requested vif.
1573 *
1574 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1575 */
1576 if (xmt_vif < V_numvifs) {
1577 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1578 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1579 else
1580 phyint_send(ip, V_viftable + xmt_vif, m);
1581 return 1;
1582 }
1583
1584 /*
1585 * Don't forward if it didn't arrive from the parent vif for its origin.
1586 */
1587 vifi = rt->mfc_parent;
1588 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1589 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1590 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1591 MRTSTAT_INC(mrts_wrong_if);
1592 ++rt->mfc_wrong_if;
1593 /*
1594 * If we are doing PIM assert processing, send a message
1595 * to the routing daemon.
1596 *
1597 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1598 * can complete the SPT switch, regardless of the type
1599 * of the iif (broadcast media, GRE tunnel, etc).
1600 */
1601 if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1602 V_viftable[vifi].v_ifp) {
1603 if (ifp == V_multicast_register_if)
1604 PIMSTAT_INC(pims_rcv_registers_wrongiif);
1605
1606 /* Get vifi for the incoming packet */
1607 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++)
1608 ;
1609 if (vifi >= V_numvifs)
1610 return 0; /* The iif is not found: ignore the packet. */
1611
1612 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1613 return 0; /* WRONGVIF disabled: ignore the packet */
1614
1615 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1616 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1617 struct igmpmsg *im;
1618 int hlen = ip->ip_hl << 2;
1619 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1620
1621 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1622 mm = m_pullup(mm, hlen);
1623 if (mm == NULL)
1624 return ENOBUFS;
1625
1626 im = mtod(mm, struct igmpmsg *);
1627 im->im_msgtype = IGMPMSG_WRONGVIF;
1628 im->im_mbz = 0;
1629 im->im_vif = vifi;
1630
1631 MRTSTAT_INC(mrts_upcalls);
1632
1633 k_igmpsrc.sin_addr = im->im_src;
1634 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1635 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1636 MRTSTAT_INC(mrts_upq_sockfull);
1637 return ENOBUFS;
1638 }
1639 }
1640 }
1641 return 0;
1642 }
1643
1644 /* If I sourced this packet, it counts as output, else it was input. */
1645 mtx_lock_spin(&V_viftable[vifi].v_spin);
1646 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1647 V_viftable[vifi].v_pkt_out++;
1648 V_viftable[vifi].v_bytes_out += plen;
1649 } else {
1650 V_viftable[vifi].v_pkt_in++;
1651 V_viftable[vifi].v_bytes_in += plen;
1652 }
1653 mtx_unlock_spin(&V_viftable[vifi].v_spin);
1654
1655 rt->mfc_pkt_cnt++;
1656 rt->mfc_byte_cnt += plen;
1657
1658 /*
1659 * For each vif, decide if a copy of the packet should be forwarded.
1660 * Forward if:
1661 * - the ttl exceeds the vif's threshold
1662 * - there are group members downstream on interface
1663 */
1664 for (vifi = 0; vifi < V_numvifs; vifi++)
1665 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1666 V_viftable[vifi].v_pkt_out++;
1667 V_viftable[vifi].v_bytes_out += plen;
1668 if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1669 pim_register_send(ip, V_viftable + vifi, m, rt);
1670 else
1671 phyint_send(ip, V_viftable + vifi, m);
1672 }
1673
1674 /*
1675 * Perform upcall-related bw measuring.
1676 */
1677 if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1678 struct bw_meter *x;
1679 struct timeval now;
1680
1681 microtime(&now);
1682 /* Process meters for Greater-or-EQual case */
1683 for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1684 bw_meter_geq_receive_packet(x, plen, &now);
1685
1686 /* Process meters for Lower-or-EQual case */
1687 for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1688 /*
1689 * Record that a packet is received.
1690 * Spin lock has to be taken as callout context
1691 * (expire_bw_meter_leq) might modify these fields
1692 * as well
1693 */
1694 mtx_lock_spin(&x->bm_spin);
1695 x->bm_measured.b_packets++;
1696 x->bm_measured.b_bytes += plen;
1697 mtx_unlock_spin(&x->bm_spin);
1698 }
1699 }
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1706 */
1707 static int
X_legal_vif_num(int vif)1708 X_legal_vif_num(int vif)
1709 {
1710 int ret;
1711
1712 ret = 0;
1713 if (vif < 0)
1714 return (ret);
1715
1716 MRW_RLOCK();
1717 if (vif < V_numvifs)
1718 ret = 1;
1719 MRW_RUNLOCK();
1720
1721 return (ret);
1722 }
1723
1724 /*
1725 * Return the local address used by this vif
1726 */
1727 static u_long
X_ip_mcast_src(int vifi)1728 X_ip_mcast_src(int vifi)
1729 {
1730 in_addr_t addr;
1731
1732 addr = INADDR_ANY;
1733 if (vifi < 0)
1734 return (addr);
1735
1736 MRW_RLOCK();
1737 if (vifi < V_numvifs)
1738 addr = V_viftable[vifi].v_lcl_addr.s_addr;
1739 MRW_RUNLOCK();
1740
1741 return (addr);
1742 }
1743
1744 static void
phyint_send(struct ip * ip,struct vif * vifp,struct mbuf * m)1745 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1746 {
1747 struct mbuf *mb_copy;
1748 int hlen = ip->ip_hl << 2;
1749
1750 MRW_LOCK_ASSERT();
1751
1752 /*
1753 * Make a new reference to the packet; make sure that
1754 * the IP header is actually copied, not just referenced,
1755 * so that ip_output() only scribbles on the copy.
1756 */
1757 mb_copy = m_copypacket(m, M_NOWAIT);
1758 if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1759 mb_copy = m_pullup(mb_copy, hlen);
1760 if (mb_copy == NULL)
1761 return;
1762
1763 send_packet(vifp, mb_copy);
1764 }
1765
1766 static void
send_packet(struct vif * vifp,struct mbuf * m)1767 send_packet(struct vif *vifp, struct mbuf *m)
1768 {
1769 struct ip_moptions imo;
1770 int error __unused;
1771
1772 MRW_LOCK_ASSERT();
1773 NET_EPOCH_ASSERT();
1774
1775 imo.imo_multicast_ifp = vifp->v_ifp;
1776 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1777 imo.imo_multicast_loop = !!in_mcast_loop;
1778 imo.imo_multicast_vif = -1;
1779 STAILQ_INIT(&imo.imo_head);
1780
1781 /*
1782 * Re-entrancy should not be a problem here, because
1783 * the packets that we send out and are looped back at us
1784 * should get rejected because they appear to come from
1785 * the loopback interface, thus preventing looping.
1786 */
1787 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1788 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1789 (ptrdiff_t)(vifp - V_viftable), error);
1790 }
1791
1792 /*
1793 * Stubs for old RSVP socket shim implementation.
1794 */
1795
1796 static int
X_ip_rsvp_vif(struct socket * so __unused,struct sockopt * sopt __unused)1797 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1798 {
1799
1800 return (EOPNOTSUPP);
1801 }
1802
1803 static void
X_ip_rsvp_force_done(struct socket * so __unused)1804 X_ip_rsvp_force_done(struct socket *so __unused)
1805 {
1806
1807 }
1808
1809 static int
X_rsvp_input(struct mbuf ** mp,int * offp,int proto)1810 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1811 {
1812 struct mbuf *m;
1813
1814 m = *mp;
1815 *mp = NULL;
1816 if (!V_rsvp_on)
1817 m_freem(m);
1818 return (IPPROTO_DONE);
1819 }
1820
1821 /*
1822 * Code for bandwidth monitors
1823 */
1824
1825 /*
1826 * Define common interface for timeval-related methods
1827 */
1828 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1829 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1830 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1831
1832 static uint32_t
compute_bw_meter_flags(struct bw_upcall * req)1833 compute_bw_meter_flags(struct bw_upcall *req)
1834 {
1835 uint32_t flags = 0;
1836
1837 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1838 flags |= BW_METER_UNIT_PACKETS;
1839 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1840 flags |= BW_METER_UNIT_BYTES;
1841 if (req->bu_flags & BW_UPCALL_GEQ)
1842 flags |= BW_METER_GEQ;
1843 if (req->bu_flags & BW_UPCALL_LEQ)
1844 flags |= BW_METER_LEQ;
1845
1846 return flags;
1847 }
1848
1849 static void
expire_bw_meter_leq(void * arg)1850 expire_bw_meter_leq(void *arg)
1851 {
1852 struct bw_meter *x = arg;
1853 struct timeval now;
1854 /*
1855 * INFO:
1856 * callout is always executed with MRW_WLOCK taken
1857 */
1858
1859 CURVNET_SET((struct vnet *)x->arg);
1860
1861 microtime(&now);
1862
1863 /*
1864 * Test if we should deliver an upcall
1865 */
1866 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1867 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1868 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1869 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1870 /* Prepare an upcall for delivery */
1871 bw_meter_prepare_upcall(x, &now);
1872 }
1873
1874 /* Send all upcalls that are pending delivery */
1875 taskqueue_enqueue(V_task_queue, &V_task);
1876
1877 /* Reset counters */
1878 x->bm_start_time = now;
1879 /* Spin lock has to be taken as ip_forward context
1880 * might modify these fields as well
1881 */
1882 mtx_lock_spin(&x->bm_spin);
1883 x->bm_measured.b_bytes = 0;
1884 x->bm_measured.b_packets = 0;
1885 mtx_unlock_spin(&x->bm_spin);
1886
1887 callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1888
1889 CURVNET_RESTORE();
1890 }
1891
1892 /*
1893 * Add a bw_meter entry
1894 */
1895 static int
add_bw_upcall(struct bw_upcall * req)1896 add_bw_upcall(struct bw_upcall *req)
1897 {
1898 struct mfc *mfc;
1899 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1900 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1901 struct timeval now;
1902 struct bw_meter *x, **bwm_ptr;
1903 uint32_t flags;
1904
1905 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1906 return EOPNOTSUPP;
1907
1908 /* Test if the flags are valid */
1909 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1910 return EINVAL;
1911 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1912 return EINVAL;
1913 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1914 return EINVAL;
1915
1916 /* Test if the threshold time interval is valid */
1917 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1918 return EINVAL;
1919
1920 flags = compute_bw_meter_flags(req);
1921
1922 /*
1923 * Find if we have already same bw_meter entry
1924 */
1925 MRW_WLOCK();
1926 mfc = mfc_find(&req->bu_src, &req->bu_dst);
1927 if (mfc == NULL) {
1928 MRW_WUNLOCK();
1929 return EADDRNOTAVAIL;
1930 }
1931
1932 /* Choose an appropriate bw_meter list */
1933 if (req->bu_flags & BW_UPCALL_GEQ)
1934 bwm_ptr = &mfc->mfc_bw_meter_geq;
1935 else
1936 bwm_ptr = &mfc->mfc_bw_meter_leq;
1937
1938 for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1939 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1940 &req->bu_threshold.b_time, ==))
1941 && (x->bm_threshold.b_packets
1942 == req->bu_threshold.b_packets)
1943 && (x->bm_threshold.b_bytes
1944 == req->bu_threshold.b_bytes)
1945 && (x->bm_flags & BW_METER_USER_FLAGS)
1946 == flags) {
1947 MRW_WUNLOCK();
1948 return 0; /* XXX Already installed */
1949 }
1950 }
1951
1952 /* Allocate the new bw_meter entry */
1953 x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT);
1954 if (x == NULL) {
1955 MRW_WUNLOCK();
1956 return ENOBUFS;
1957 }
1958
1959 /* Set the new bw_meter entry */
1960 x->bm_threshold.b_time = req->bu_threshold.b_time;
1961 microtime(&now);
1962 x->bm_start_time = now;
1963 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1964 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1965 x->bm_measured.b_packets = 0;
1966 x->bm_measured.b_bytes = 0;
1967 x->bm_flags = flags;
1968 x->bm_time_next = NULL;
1969 x->bm_mfc = mfc;
1970 x->arg = curvnet;
1971 sprintf(x->bm_spin_name, "BM spin %p", x);
1972 mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1973
1974 /* For LEQ case create periodic callout */
1975 if (req->bu_flags & BW_UPCALL_LEQ) {
1976 callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK);
1977 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1978 expire_bw_meter_leq, x);
1979 }
1980
1981 /* Add the new bw_meter entry to the front of entries for this MFC */
1982 x->bm_mfc_next = *bwm_ptr;
1983 *bwm_ptr = x;
1984
1985 MRW_WUNLOCK();
1986
1987 return 0;
1988 }
1989
1990 static void
free_bw_list(struct bw_meter * list)1991 free_bw_list(struct bw_meter *list)
1992 {
1993 while (list != NULL) {
1994 struct bw_meter *x = list;
1995
1996 /* MRW_WLOCK must be held here */
1997 if (x->bm_flags & BW_METER_LEQ) {
1998 callout_drain(&x->bm_meter_callout);
1999 mtx_destroy(&x->bm_spin);
2000 }
2001
2002 list = list->bm_mfc_next;
2003 free(x, M_BWMETER);
2004 }
2005 }
2006
2007 /*
2008 * Delete one or multiple bw_meter entries
2009 */
2010 static int
del_bw_upcall(struct bw_upcall * req)2011 del_bw_upcall(struct bw_upcall *req)
2012 {
2013 struct mfc *mfc;
2014 struct bw_meter *x, **bwm_ptr;
2015
2016 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2017 return EOPNOTSUPP;
2018
2019 MRW_WLOCK();
2020
2021 /* Find the corresponding MFC entry */
2022 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2023 if (mfc == NULL) {
2024 MRW_WUNLOCK();
2025 return EADDRNOTAVAIL;
2026 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2027 /*
2028 * Delete all bw_meter entries for this mfc
2029 */
2030 struct bw_meter *list;
2031
2032 /* Free LEQ list */
2033 list = mfc->mfc_bw_meter_leq;
2034 mfc->mfc_bw_meter_leq = NULL;
2035 free_bw_list(list);
2036
2037 /* Free GEQ list */
2038 list = mfc->mfc_bw_meter_geq;
2039 mfc->mfc_bw_meter_geq = NULL;
2040 free_bw_list(list);
2041 MRW_WUNLOCK();
2042 return 0;
2043 } else { /* Delete a single bw_meter entry */
2044 struct bw_meter *prev;
2045 uint32_t flags = 0;
2046
2047 flags = compute_bw_meter_flags(req);
2048
2049 /* Choose an appropriate bw_meter list */
2050 if (req->bu_flags & BW_UPCALL_GEQ)
2051 bwm_ptr = &mfc->mfc_bw_meter_geq;
2052 else
2053 bwm_ptr = &mfc->mfc_bw_meter_leq;
2054
2055 /* Find the bw_meter entry to delete */
2056 for (prev = NULL, x = *bwm_ptr; x != NULL;
2057 prev = x, x = x->bm_mfc_next) {
2058 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) &&
2059 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2060 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2061 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2062 break;
2063 }
2064 if (x != NULL) { /* Delete entry from the list for this MFC */
2065 if (prev != NULL)
2066 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2067 else
2068 *bwm_ptr = x->bm_mfc_next;/* new head of list */
2069
2070 if (req->bu_flags & BW_UPCALL_LEQ)
2071 callout_stop(&x->bm_meter_callout);
2072
2073 MRW_WUNLOCK();
2074 /* Free the bw_meter entry */
2075 free(x, M_BWMETER);
2076 return 0;
2077 } else {
2078 MRW_WUNLOCK();
2079 return EINVAL;
2080 }
2081 }
2082 __assert_unreachable();
2083 }
2084
2085 /*
2086 * Perform bandwidth measurement processing that may result in an upcall
2087 */
2088 static void
bw_meter_geq_receive_packet(struct bw_meter * x,int plen,struct timeval * nowp)2089 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2090 {
2091 struct timeval delta;
2092
2093 MRW_LOCK_ASSERT();
2094
2095 delta = *nowp;
2096 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2097
2098 /*
2099 * Processing for ">=" type of bw_meter entry.
2100 * bm_spin does not have to be hold here as in GEQ
2101 * case this is the only context accessing bm_measured.
2102 */
2103 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2104 /* Reset the bw_meter entry */
2105 x->bm_start_time = *nowp;
2106 x->bm_measured.b_packets = 0;
2107 x->bm_measured.b_bytes = 0;
2108 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2109 }
2110
2111 /* Record that a packet is received */
2112 x->bm_measured.b_packets++;
2113 x->bm_measured.b_bytes += plen;
2114
2115 /*
2116 * Test if we should deliver an upcall
2117 */
2118 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2119 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2120 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2121 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2122 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2123 /* Prepare an upcall for delivery */
2124 bw_meter_prepare_upcall(x, nowp);
2125 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2126 }
2127 }
2128 }
2129
2130 /*
2131 * Prepare a bandwidth-related upcall
2132 */
2133 static void
bw_meter_prepare_upcall(struct bw_meter * x,struct timeval * nowp)2134 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2135 {
2136 struct timeval delta;
2137 struct bw_upcall *u;
2138
2139 MRW_LOCK_ASSERT();
2140
2141 /*
2142 * Compute the measured time interval
2143 */
2144 delta = *nowp;
2145 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2146
2147 /*
2148 * Set the bw_upcall entry
2149 */
2150 u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2151 if (!u) {
2152 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2153 return;
2154 }
2155 u->bu_src = x->bm_mfc->mfc_origin;
2156 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2157 u->bu_threshold.b_time = x->bm_threshold.b_time;
2158 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2159 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2160 u->bu_measured.b_time = delta;
2161 u->bu_measured.b_packets = x->bm_measured.b_packets;
2162 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2163 u->bu_flags = 0;
2164 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2165 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2166 if (x->bm_flags & BW_METER_UNIT_BYTES)
2167 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2168 if (x->bm_flags & BW_METER_GEQ)
2169 u->bu_flags |= BW_UPCALL_GEQ;
2170 if (x->bm_flags & BW_METER_LEQ)
2171 u->bu_flags |= BW_UPCALL_LEQ;
2172
2173 if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2174 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2175 if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2176 taskqueue_enqueue(V_task_queue, &V_task);
2177 }
2178 }
2179 /*
2180 * Send the pending bandwidth-related upcalls
2181 */
2182 static void
bw_upcalls_send(void)2183 bw_upcalls_send(void)
2184 {
2185 struct mbuf *m;
2186 int len = 0;
2187 struct bw_upcall *bu;
2188 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2189 static struct igmpmsg igmpmsg = {
2190 0, /* unused1 */
2191 0, /* unused2 */
2192 IGMPMSG_BW_UPCALL,/* im_msgtype */
2193 0, /* im_mbz */
2194 0, /* im_vif */
2195 0, /* unused3 */
2196 { 0 }, /* im_src */
2197 { 0 } /* im_dst */
2198 };
2199
2200 MRW_LOCK_ASSERT();
2201
2202 if (buf_ring_empty(V_bw_upcalls_ring))
2203 return;
2204
2205 /*
2206 * Allocate a new mbuf, initialize it with the header and
2207 * the payload for the pending calls.
2208 */
2209 m = m_gethdr(M_NOWAIT, MT_DATA);
2210 if (m == NULL) {
2211 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2212 return;
2213 }
2214
2215 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2216 len += sizeof(struct igmpmsg);
2217 while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2218 m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2219 len += sizeof(struct bw_upcall);
2220 free(bu, M_MRTABLE);
2221 }
2222
2223 /*
2224 * Send the upcalls
2225 * XXX do we need to set the address in k_igmpsrc ?
2226 */
2227 MRTSTAT_INC(mrts_upcalls);
2228 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2229 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2230 MRTSTAT_INC(mrts_upq_sockfull);
2231 }
2232 }
2233
2234 /*
2235 * A periodic function for sending all upcalls that are pending delivery
2236 */
2237 static void
expire_bw_upcalls_send(void * arg)2238 expire_bw_upcalls_send(void *arg)
2239 {
2240 CURVNET_SET((struct vnet *) arg);
2241
2242 /* This callout is run with MRW_RLOCK taken */
2243
2244 bw_upcalls_send();
2245
2246 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2247 curvnet);
2248 CURVNET_RESTORE();
2249 }
2250
2251 /*
2252 * End of bandwidth monitoring code
2253 */
2254
2255 /*
2256 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2257 *
2258 */
2259 static int
pim_register_send(struct ip * ip,struct vif * vifp,struct mbuf * m,struct mfc * rt)2260 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2261 struct mfc *rt)
2262 {
2263 struct mbuf *mb_copy, *mm;
2264
2265 /*
2266 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2267 * rendezvous point was unspecified, and we were told not to.
2268 */
2269 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2270 in_nullhost(rt->mfc_rp))
2271 return 0;
2272
2273 mb_copy = pim_register_prepare(ip, m);
2274 if (mb_copy == NULL)
2275 return ENOBUFS;
2276
2277 /*
2278 * Send all the fragments. Note that the mbuf for each fragment
2279 * is freed by the sending machinery.
2280 */
2281 for (mm = mb_copy; mm; mm = mb_copy) {
2282 mb_copy = mm->m_nextpkt;
2283 mm->m_nextpkt = 0;
2284 mm = m_pullup(mm, sizeof(struct ip));
2285 if (mm != NULL) {
2286 ip = mtod(mm, struct ip *);
2287 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2288 pim_register_send_rp(ip, vifp, mm, rt);
2289 } else {
2290 pim_register_send_upcall(ip, vifp, mm, rt);
2291 }
2292 }
2293 }
2294
2295 return 0;
2296 }
2297
2298 /*
2299 * Return a copy of the data packet that is ready for PIM Register
2300 * encapsulation.
2301 * XXX: Note that in the returned copy the IP header is a valid one.
2302 */
2303 static struct mbuf *
pim_register_prepare(struct ip * ip,struct mbuf * m)2304 pim_register_prepare(struct ip *ip, struct mbuf *m)
2305 {
2306 struct mbuf *mb_copy = NULL;
2307 int mtu;
2308
2309 /* Take care of delayed checksums */
2310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2311 in_delayed_cksum(m);
2312 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2313 }
2314
2315 /*
2316 * Copy the old packet & pullup its IP header into the
2317 * new mbuf so we can modify it.
2318 */
2319 mb_copy = m_copypacket(m, M_NOWAIT);
2320 if (mb_copy == NULL)
2321 return NULL;
2322 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2323 if (mb_copy == NULL)
2324 return NULL;
2325
2326 /* take care of the TTL */
2327 ip = mtod(mb_copy, struct ip *);
2328 --ip->ip_ttl;
2329
2330 /* Compute the MTU after the PIM Register encapsulation */
2331 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2332
2333 if (ntohs(ip->ip_len) <= mtu) {
2334 /* Turn the IP header into a valid one */
2335 ip->ip_sum = 0;
2336 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2337 } else {
2338 /* Fragment the packet */
2339 mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2340 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2341 m_freem(mb_copy);
2342 return NULL;
2343 }
2344 }
2345 return mb_copy;
2346 }
2347
2348 /*
2349 * Send an upcall with the data packet to the user-level process.
2350 */
2351 static int
pim_register_send_upcall(struct ip * ip,struct vif * vifp,struct mbuf * mb_copy,struct mfc * rt)2352 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2353 struct mbuf *mb_copy, struct mfc *rt)
2354 {
2355 struct mbuf *mb_first;
2356 int len = ntohs(ip->ip_len);
2357 struct igmpmsg *im;
2358 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2359
2360 MRW_LOCK_ASSERT();
2361
2362 /*
2363 * Add a new mbuf with an upcall header
2364 */
2365 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2366 if (mb_first == NULL) {
2367 m_freem(mb_copy);
2368 return ENOBUFS;
2369 }
2370 mb_first->m_data += max_linkhdr;
2371 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2372 mb_first->m_len = sizeof(struct igmpmsg);
2373 mb_first->m_next = mb_copy;
2374
2375 /* Send message to routing daemon */
2376 im = mtod(mb_first, struct igmpmsg *);
2377 im->im_msgtype = IGMPMSG_WHOLEPKT;
2378 im->im_mbz = 0;
2379 im->im_vif = vifp - V_viftable;
2380 im->im_src = ip->ip_src;
2381 im->im_dst = ip->ip_dst;
2382
2383 k_igmpsrc.sin_addr = ip->ip_src;
2384
2385 MRTSTAT_INC(mrts_upcalls);
2386
2387 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2388 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2389 MRTSTAT_INC(mrts_upq_sockfull);
2390 return ENOBUFS;
2391 }
2392
2393 /* Keep statistics */
2394 PIMSTAT_INC(pims_snd_registers_msgs);
2395 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2396
2397 return 0;
2398 }
2399
2400 /*
2401 * Encapsulate the data packet in PIM Register message and send it to the RP.
2402 */
2403 static int
pim_register_send_rp(struct ip * ip,struct vif * vifp,struct mbuf * mb_copy,struct mfc * rt)2404 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2405 struct mfc *rt)
2406 {
2407 struct mbuf *mb_first;
2408 struct ip *ip_outer;
2409 struct pim_encap_pimhdr *pimhdr;
2410 int len = ntohs(ip->ip_len);
2411 vifi_t vifi = rt->mfc_parent;
2412
2413 MRW_LOCK_ASSERT();
2414
2415 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2416 m_freem(mb_copy);
2417 return EADDRNOTAVAIL; /* The iif vif is invalid */
2418 }
2419
2420 /*
2421 * Add a new mbuf with the encapsulating header
2422 */
2423 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2424 if (mb_first == NULL) {
2425 m_freem(mb_copy);
2426 return ENOBUFS;
2427 }
2428 mb_first->m_data += max_linkhdr;
2429 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2430 mb_first->m_next = mb_copy;
2431
2432 mb_first->m_pkthdr.len = len + mb_first->m_len;
2433
2434 /*
2435 * Fill in the encapsulating IP and PIM header
2436 */
2437 ip_outer = mtod(mb_first, struct ip *);
2438 *ip_outer = pim_encap_iphdr;
2439 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2440 sizeof(pim_encap_pimhdr));
2441 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2442 ip_outer->ip_dst = rt->mfc_rp;
2443 /*
2444 * Copy the inner header TOS to the outer header, and take care of the
2445 * IP_DF bit.
2446 */
2447 ip_outer->ip_tos = ip->ip_tos;
2448 if (ip->ip_off & htons(IP_DF))
2449 ip_outer->ip_off |= htons(IP_DF);
2450 ip_fillid(ip_outer);
2451 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2452 + sizeof(pim_encap_iphdr));
2453 *pimhdr = pim_encap_pimhdr;
2454 /* If the iif crosses a border, set the Border-bit */
2455 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2456 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2457
2458 mb_first->m_data += sizeof(pim_encap_iphdr);
2459 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2460 mb_first->m_data -= sizeof(pim_encap_iphdr);
2461
2462 send_packet(vifp, mb_first);
2463
2464 /* Keep statistics */
2465 PIMSTAT_INC(pims_snd_registers_msgs);
2466 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2467
2468 return 0;
2469 }
2470
2471 /*
2472 * pim_encapcheck() is called by the encap4_input() path at runtime to
2473 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2474 * into the kernel.
2475 */
2476 static int
pim_encapcheck(const struct mbuf * m __unused,int off __unused,int proto __unused,void * arg __unused)2477 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2478 int proto __unused, void *arg __unused)
2479 {
2480
2481 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2482 return (8); /* claim the datagram. */
2483 }
2484
2485 /*
2486 * PIM-SMv2 and PIM-DM messages processing.
2487 * Receives and verifies the PIM control messages, and passes them
2488 * up to the listening socket, using rip_input().
2489 * The only message with special processing is the PIM_REGISTER message
2490 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2491 * is passed to if_simloop().
2492 */
2493 static int
pim_input(struct mbuf * m,int off,int proto,void * arg __unused)2494 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2495 {
2496 struct ip *ip = mtod(m, struct ip *);
2497 struct pim *pim;
2498 int iphlen = off;
2499 int minlen;
2500 int datalen = ntohs(ip->ip_len) - iphlen;
2501 int ip_tos;
2502
2503 /* Keep statistics */
2504 PIMSTAT_INC(pims_rcv_total_msgs);
2505 PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2506
2507 /*
2508 * Validate lengths
2509 */
2510 if (datalen < PIM_MINLEN) {
2511 PIMSTAT_INC(pims_rcv_tooshort);
2512 CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2513 __func__, datalen, ntohl(ip->ip_src.s_addr));
2514 m_freem(m);
2515 return (IPPROTO_DONE);
2516 }
2517
2518 /*
2519 * If the packet is at least as big as a REGISTER, go agead
2520 * and grab the PIM REGISTER header size, to avoid another
2521 * possible m_pullup() later.
2522 *
2523 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
2524 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2525 */
2526 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2527 /*
2528 * Get the IP and PIM headers in contiguous memory, and
2529 * possibly the PIM REGISTER header.
2530 */
2531 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2532 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2533 return (IPPROTO_DONE);
2534 }
2535
2536 /* m_pullup() may have given us a new mbuf so reset ip. */
2537 ip = mtod(m, struct ip *);
2538 ip_tos = ip->ip_tos;
2539
2540 /* adjust mbuf to point to the PIM header */
2541 m->m_data += iphlen;
2542 m->m_len -= iphlen;
2543 pim = mtod(m, struct pim *);
2544
2545 /*
2546 * Validate checksum. If PIM REGISTER, exclude the data packet.
2547 *
2548 * XXX: some older PIMv2 implementations don't make this distinction,
2549 * so for compatibility reason perform the checksum over part of the
2550 * message, and if error, then over the whole message.
2551 */
2552 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2553 /* do nothing, checksum okay */
2554 } else if (in_cksum(m, datalen)) {
2555 PIMSTAT_INC(pims_rcv_badsum);
2556 CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2557 m_freem(m);
2558 return (IPPROTO_DONE);
2559 }
2560
2561 /* PIM version check */
2562 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2563 PIMSTAT_INC(pims_rcv_badversion);
2564 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2565 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2566 m_freem(m);
2567 return (IPPROTO_DONE);
2568 }
2569
2570 /* restore mbuf back to the outer IP */
2571 m->m_data -= iphlen;
2572 m->m_len += iphlen;
2573
2574 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2575 /*
2576 * Since this is a REGISTER, we'll make a copy of the register
2577 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2578 * routing daemon.
2579 */
2580 struct sockaddr_in dst = { sizeof(dst), AF_INET };
2581 struct mbuf *mcp;
2582 struct ip *encap_ip;
2583 u_int32_t *reghdr;
2584 struct ifnet *vifp;
2585
2586 MRW_RLOCK();
2587 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2588 MRW_RUNLOCK();
2589 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2590 (int)V_reg_vif_num);
2591 m_freem(m);
2592 return (IPPROTO_DONE);
2593 }
2594 /* XXX need refcnt? */
2595 vifp = V_viftable[V_reg_vif_num].v_ifp;
2596 MRW_RUNLOCK();
2597
2598 /*
2599 * Validate length
2600 */
2601 if (datalen < PIM_REG_MINLEN) {
2602 PIMSTAT_INC(pims_rcv_tooshort);
2603 PIMSTAT_INC(pims_rcv_badregisters);
2604 CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2605 m_freem(m);
2606 return (IPPROTO_DONE);
2607 }
2608
2609 reghdr = (u_int32_t *)(pim + 1);
2610 encap_ip = (struct ip *)(reghdr + 1);
2611
2612 CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2613 __func__, ntohl(encap_ip->ip_src.s_addr),
2614 ntohs(encap_ip->ip_len));
2615
2616 /* verify the version number of the inner packet */
2617 if (encap_ip->ip_v != IPVERSION) {
2618 PIMSTAT_INC(pims_rcv_badregisters);
2619 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2620 m_freem(m);
2621 return (IPPROTO_DONE);
2622 }
2623
2624 /* verify the inner packet is destined to a mcast group */
2625 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2626 PIMSTAT_INC(pims_rcv_badregisters);
2627 CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2628 ntohl(encap_ip->ip_dst.s_addr));
2629 m_freem(m);
2630 return (IPPROTO_DONE);
2631 }
2632
2633 /* If a NULL_REGISTER, pass it to the daemon */
2634 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2635 goto pim_input_to_daemon;
2636
2637 /*
2638 * Copy the TOS from the outer IP header to the inner IP header.
2639 */
2640 if (encap_ip->ip_tos != ip_tos) {
2641 /* Outer TOS -> inner TOS */
2642 encap_ip->ip_tos = ip_tos;
2643 /* Recompute the inner header checksum. Sigh... */
2644
2645 /* adjust mbuf to point to the inner IP header */
2646 m->m_data += (iphlen + PIM_MINLEN);
2647 m->m_len -= (iphlen + PIM_MINLEN);
2648
2649 encap_ip->ip_sum = 0;
2650 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2651
2652 /* restore mbuf to point back to the outer IP header */
2653 m->m_data -= (iphlen + PIM_MINLEN);
2654 m->m_len += (iphlen + PIM_MINLEN);
2655 }
2656
2657 /*
2658 * Decapsulate the inner IP packet and loopback to forward it
2659 * as a normal multicast packet. Also, make a copy of the
2660 * outer_iphdr + pimhdr + reghdr + encap_iphdr
2661 * to pass to the daemon later, so it can take the appropriate
2662 * actions (e.g., send back PIM_REGISTER_STOP).
2663 * XXX: here m->m_data points to the outer IP header.
2664 */
2665 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2666 if (mcp == NULL) {
2667 CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2668 m_freem(m);
2669 return (IPPROTO_DONE);
2670 }
2671
2672 /* Keep statistics */
2673 /* XXX: registers_bytes include only the encap. mcast pkt */
2674 PIMSTAT_INC(pims_rcv_registers_msgs);
2675 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2676
2677 /*
2678 * forward the inner ip packet; point m_data at the inner ip.
2679 */
2680 m_adj(m, iphlen + PIM_MINLEN);
2681
2682 CTR4(KTR_IPMF,
2683 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2684 __func__,
2685 (u_long)ntohl(encap_ip->ip_src.s_addr),
2686 (u_long)ntohl(encap_ip->ip_dst.s_addr),
2687 (int)V_reg_vif_num);
2688
2689 /* NB: vifp was collected above; can it change on us? */
2690 if_simloop(vifp, m, dst.sin_family, 0);
2691
2692 /* prepare the register head to send to the mrouting daemon */
2693 m = mcp;
2694 }
2695
2696 pim_input_to_daemon:
2697 /*
2698 * Pass the PIM message up to the daemon; if it is a Register message,
2699 * pass the 'head' only up to the daemon. This includes the
2700 * outer IP header, PIM header, PIM-Register header and the
2701 * inner IP header.
2702 * XXX: the outer IP header pkt size of a Register is not adjust to
2703 * reflect the fact that the inner multicast data is truncated.
2704 */
2705 return (rip_input(&m, &off, proto));
2706 }
2707
2708 static int
sysctl_mfctable(SYSCTL_HANDLER_ARGS)2709 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2710 {
2711 struct mfc *rt;
2712 int error, i;
2713
2714 if (req->newptr)
2715 return (EPERM);
2716 if (V_mfchashtbl == NULL) /* XXX unlocked */
2717 return (0);
2718 error = sysctl_wire_old_buffer(req, 0);
2719 if (error)
2720 return (error);
2721
2722 MRW_RLOCK();
2723 for (i = 0; i < mfchashsize; i++) {
2724 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2725 error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2726 if (error)
2727 goto out_locked;
2728 }
2729 }
2730 out_locked:
2731 MRW_RUNLOCK();
2732 return (error);
2733 }
2734
2735 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2736 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2737 "IPv4 Multicast Forwarding Table "
2738 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2739
2740 static int
sysctl_viflist(SYSCTL_HANDLER_ARGS)2741 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2742 {
2743 int error, i;
2744
2745 if (req->newptr)
2746 return (EPERM);
2747 if (V_viftable == NULL) /* XXX unlocked */
2748 return (0);
2749 error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2750 if (error)
2751 return (error);
2752
2753 MRW_RLOCK();
2754 /* Copy out user-visible portion of vif entry. */
2755 for (i = 0; i < MAXVIFS; i++) {
2756 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2757 if (error)
2758 break;
2759 }
2760 MRW_RUNLOCK();
2761 return (error);
2762 }
2763
2764 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2765 CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2766 sysctl_viflist, "S,vif[MAXVIFS]",
2767 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2768
2769 static void
vnet_mroute_init(const void * unused __unused)2770 vnet_mroute_init(const void *unused __unused)
2771 {
2772
2773 V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2774
2775 V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2776 M_MRTABLE, M_WAITOK|M_ZERO);
2777
2778 callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0);
2779 callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0);
2780
2781 /* Prepare taskqueue */
2782 V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2783 taskqueue_thread_enqueue, &V_task_queue);
2784 taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2785 }
2786
2787 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2788 NULL);
2789
2790 static void
vnet_mroute_uninit(const void * unused __unused)2791 vnet_mroute_uninit(const void *unused __unused)
2792 {
2793
2794 /* Taskqueue should be cancelled and drained before freeing */
2795 taskqueue_free(V_task_queue);
2796
2797 free(V_viftable, M_MRTABLE);
2798 free(V_nexpire, M_MRTABLE);
2799 V_nexpire = NULL;
2800 }
2801
2802 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2803 vnet_mroute_uninit, NULL);
2804
2805 static int
ip_mroute_modevent(module_t mod,int type,void * unused)2806 ip_mroute_modevent(module_t mod, int type, void *unused)
2807 {
2808
2809 switch (type) {
2810 case MOD_LOAD:
2811 MRW_LOCK_INIT();
2812
2813 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2814 if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2815 if (if_detach_event_tag == NULL) {
2816 printf("ip_mroute: unable to register "
2817 "ifnet_departure_event handler\n");
2818 MRW_LOCK_DESTROY();
2819 return (EINVAL);
2820 }
2821
2822 if (!powerof2(mfchashsize)) {
2823 printf("WARNING: %s not a power of 2; using default\n",
2824 "net.inet.ip.mfchashsize");
2825 mfchashsize = MFCHASHSIZE;
2826 }
2827
2828 pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2829
2830 ip_mcast_src = X_ip_mcast_src;
2831 ip_mforward = X_ip_mforward;
2832 ip_mrouter_done = X_ip_mrouter_done;
2833 ip_mrouter_get = X_ip_mrouter_get;
2834 ip_mrouter_set = X_ip_mrouter_set;
2835
2836 ip_rsvp_force_done = X_ip_rsvp_force_done;
2837 ip_rsvp_vif = X_ip_rsvp_vif;
2838
2839 legal_vif_num = X_legal_vif_num;
2840 mrt_ioctl = X_mrt_ioctl;
2841 rsvp_input_p = X_rsvp_input;
2842 break;
2843
2844 case MOD_UNLOAD:
2845 /*
2846 * Typically module unload happens after the user-level
2847 * process has shutdown the kernel services (the check
2848 * below insures someone can't just yank the module out
2849 * from under a running process). But if the module is
2850 * just loaded and then unloaded w/o starting up a user
2851 * process we still need to cleanup.
2852 */
2853 MRW_WLOCK();
2854 if (ip_mrouter_cnt != 0) {
2855 MRW_WUNLOCK();
2856 return (EINVAL);
2857 }
2858 ip_mrouter_unloading = 1;
2859 MRW_WUNLOCK();
2860
2861 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2862
2863 if (pim_encap_cookie) {
2864 ip_encap_detach(pim_encap_cookie);
2865 pim_encap_cookie = NULL;
2866 }
2867
2868 ip_mcast_src = NULL;
2869 ip_mforward = NULL;
2870 ip_mrouter_done = NULL;
2871 ip_mrouter_get = NULL;
2872 ip_mrouter_set = NULL;
2873
2874 ip_rsvp_force_done = NULL;
2875 ip_rsvp_vif = NULL;
2876
2877 legal_vif_num = NULL;
2878 mrt_ioctl = NULL;
2879 rsvp_input_p = NULL;
2880
2881 MRW_LOCK_DESTROY();
2882 break;
2883
2884 default:
2885 return EOPNOTSUPP;
2886 }
2887 return 0;
2888 }
2889
2890 static moduledata_t ip_mroutemod = {
2891 "ip_mroute",
2892 ip_mroute_modevent,
2893 0
2894 };
2895
2896 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2897