xref: /freebsd-14.2/sys/kern/vfs_cache.c (revision 72f8b18b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
35  */
36 
37 #include <sys/cdefs.h>
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/counter.h>
45 #include <sys/filedesc.h>
46 #include <sys/fnv_hash.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/fcntl.h>
52 #include <sys/jail.h>
53 #include <sys/mount.h>
54 #include <sys/namei.h>
55 #include <sys/proc.h>
56 #include <sys/seqc.h>
57 #include <sys/sdt.h>
58 #include <sys/smr.h>
59 #include <sys/smp.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysproto.h>
63 #include <sys/vnode.h>
64 #include <ck_queue.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #ifdef INVARIANTS
69 #include <machine/_inttypes.h>
70 #endif
71 
72 #include <security/audit/audit.h>
73 #include <security/mac/mac_framework.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <vm/uma.h>
80 
81 /*
82  * High level overview of name caching in the VFS layer.
83  *
84  * Originally caching was implemented as part of UFS, later extracted to allow
85  * use by other filesystems. A decision was made to make it optional and
86  * completely detached from the rest of the kernel, which comes with limitations
87  * outlined near the end of this comment block.
88  *
89  * This fundamental choice needs to be revisited. In the meantime, the current
90  * state is described below. Significance of all notable routines is explained
91  * in comments placed above their implementation. Scattered thoroughout the
92  * file are TODO comments indicating shortcomings which can be fixed without
93  * reworking everything (most of the fixes will likely be reusable). Various
94  * details are omitted from this explanation to not clutter the overview, they
95  * have to be checked by reading the code and associated commentary.
96  *
97  * Keep in mind that it's individual path components which are cached, not full
98  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
99  * one for each name.
100  *
101  * I. Data organization
102  *
103  * Entries are described by "struct namecache" objects and stored in a hash
104  * table. See cache_get_hash for more information.
105  *
106  * "struct vnode" contains pointers to source entries (names which can be found
107  * when traversing through said vnode), destination entries (names of that
108  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
109  * the parent vnode.
110  *
111  * The (directory vnode; name) tuple reliably determines the target entry if
112  * it exists.
113  *
114  * Since there are no small locks at this time (all are 32 bytes in size on
115  * LP64), the code works around the problem by introducing lock arrays to
116  * protect hash buckets and vnode lists.
117  *
118  * II. Filesystem integration
119  *
120  * Filesystems participating in name caching do the following:
121  * - set vop_lookup routine to vfs_cache_lookup
122  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
123  * - if they support lockless lookup (see below), vop_fplookup_vexec and
124  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
125  *   mount point
126  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
127  *   applicable
128  * - call cache_enter to add entries depending on the MAKEENTRY flag
129  *
130  * With the above in mind, there are 2 entry points when doing lookups:
131  * - ... -> namei -> cache_fplookup -- this is the default
132  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
133  *   should the above fail
134  *
135  * Example code flow how an entry is added:
136  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
137  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
138  *
139  * III. Performance considerations
140  *
141  * For lockless case forward lookup avoids any writes to shared areas apart
142  * from the terminal path component. In other words non-modifying lookups of
143  * different files don't suffer any scalability problems in the namecache.
144  * Looking up the same file is limited by VFS and goes beyond the scope of this
145  * file.
146  *
147  * At least on amd64 the single-threaded bottleneck for long paths is hashing
148  * (see cache_get_hash). There are cases where the code issues acquire fence
149  * multiple times, they can be combined on architectures which suffer from it.
150  *
151  * For locked case each encountered vnode has to be referenced and locked in
152  * order to be handed out to the caller (normally that's namei). This
153  * introduces significant hit single-threaded and serialization multi-threaded.
154  *
155  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
156  * avoids any writes to shared areas to any components.
157  *
158  * Unrelated insertions are partially serialized on updating the global entry
159  * counter and possibly serialized on colliding bucket or vnode locks.
160  *
161  * IV. Observability
162  *
163  * Note not everything has an explicit dtrace probe nor it should have, thus
164  * some of the one-liners below depend on implementation details.
165  *
166  * Examples:
167  *
168  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
169  * # line number, column 2 is status code (see cache_fpl_status)
170  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
171  *
172  * # Lengths of names added by binary name
173  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
174  *
175  * # Same as above but only those which exceed 64 characters
176  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
177  *
178  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
179  * # path is it
180  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
181  *
182  * V. Limitations and implementation defects
183  *
184  * - since it is possible there is no entry for an open file, tools like
185  *   "procstat" may fail to resolve fd -> vnode -> path to anything
186  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
187  *   shortage) in which case the above problem applies
188  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
189  *   way, resolving a name may return a different path than the one used to
190  *   open it (even if said path is still valid)
191  * - by default entries are not added for newly created files
192  * - adding an entry may need to evict negative entry first, which happens in 2
193  *   distinct places (evicting on lookup, adding in a later VOP) making it
194  *   impossible to simply reuse it
195  * - there is a simple scheme to evict negative entries as the cache is approaching
196  *   its capacity, but it is very unclear if doing so is a good idea to begin with
197  * - vnodes are subject to being recycled even if target inode is left in memory,
198  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
199  *   names get duplicated -- kept by filesystem itself and namecache separately
200  * - struct namecache has a fixed size and comes in 2 variants, often wasting space.
201  *   now hard to replace with malloc due to dependence on SMR.
202  * - lack of better integration with the kernel also turns nullfs into a layered
203  *   filesystem instead of something which can take advantage of caching
204  */
205 
206 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
207     "Name cache");
208 
209 SDT_PROVIDER_DECLARE(vfs);
210 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
211     "struct vnode *");
212 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
213     "struct vnode *");
214 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
215     "char *");
216 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
217     "const char *");
218 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
219     "struct namecache *", "int", "int");
220 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
221 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
222     "char *", "struct vnode *");
223 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
224 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
225     "struct vnode *", "char *");
226 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
227     "struct vnode *");
228 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
229     "struct vnode *", "char *");
230 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
231     "char *");
232 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
233     "struct componentname *");
234 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
235     "struct componentname *");
236 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
237 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
238 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
239 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
240 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
241     "struct vnode *");
242 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
243     "char *");
244 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
245     "char *");
246 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
247 
248 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
249 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
250 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
251 
252 static char __read_frequently cache_fast_lookup_enabled = true;
253 
254 /*
255  * This structure describes the elements in the cache of recent
256  * names looked up by namei.
257  */
258 struct negstate {
259 	u_char neg_flag;
260 	u_char neg_hit;
261 };
262 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
263     "the state must fit in a union with a pointer without growing it");
264 
265 struct	namecache {
266 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
267 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
268 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
269 	struct	vnode *nc_dvp;		/* vnode of parent of name */
270 	union {
271 		struct	vnode *nu_vp;	/* vnode the name refers to */
272 		struct	negstate nu_neg;/* negative entry state */
273 	} n_un;
274 	u_char	nc_flag;		/* flag bits */
275 	u_char	nc_nlen;		/* length of name */
276 	char	nc_name[];		/* segment name + nul */
277 };
278 
279 /*
280  * struct namecache_ts repeats struct namecache layout up to the
281  * nc_nlen member.
282  * struct namecache_ts is used in place of struct namecache when time(s) need
283  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
284  * both a non-dotdot directory name plus dotdot for the directory's
285  * parent.
286  *
287  * See below for alignment requirement.
288  */
289 struct	namecache_ts {
290 	struct	timespec nc_time;	/* timespec provided by fs */
291 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
292 	int	nc_ticks;		/* ticks value when entry was added */
293 	int	nc_pad;
294 	struct namecache nc_nc;
295 };
296 
297 TAILQ_HEAD(cache_freebatch, namecache);
298 
299 /*
300  * At least mips n32 performs 64-bit accesses to timespec as found
301  * in namecache_ts and requires them to be aligned. Since others
302  * may be in the same spot suffer a little bit and enforce the
303  * alignment for everyone. Note this is a nop for 64-bit platforms.
304  */
305 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
306 
307 /*
308  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
309  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
310  * smaller and the value was bumped to retain the total size, but it
311  * was never re-evaluated for suitability. A simple test counting
312  * lengths during package building shows that the value of 45 covers
313  * about 86% of all added entries, reaching 99% at 65.
314  *
315  * Regardless of the above, use of dedicated zones instead of malloc may be
316  * inducing additional waste. This may be hard to address as said zones are
317  * tied to VFS SMR. Even if retaining them, the current split should be
318  * re-evaluated.
319  */
320 #ifdef __LP64__
321 #define	CACHE_PATH_CUTOFF	45
322 #define	CACHE_LARGE_PAD		6
323 #else
324 #define	CACHE_PATH_CUTOFF	41
325 #define	CACHE_LARGE_PAD		2
326 #endif
327 
328 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
329 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
330 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
331 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
332 
333 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
334 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
335 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
336 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
337 
338 #define	nc_vp		n_un.nu_vp
339 #define	nc_neg		n_un.nu_neg
340 
341 /*
342  * Flags in namecache.nc_flag
343  */
344 #define NCF_WHITE	0x01
345 #define NCF_ISDOTDOT	0x02
346 #define	NCF_TS		0x04
347 #define	NCF_DTS		0x08
348 #define	NCF_DVDROP	0x10
349 #define	NCF_NEGATIVE	0x20
350 #define	NCF_INVALID	0x40
351 #define	NCF_WIP		0x80
352 
353 /*
354  * Flags in negstate.neg_flag
355  */
356 #define NEG_HOT		0x01
357 
358 static bool	cache_neg_evict_cond(u_long lnumcache);
359 
360 /*
361  * Mark an entry as invalid.
362  *
363  * This is called before it starts getting deconstructed.
364  */
365 static void
cache_ncp_invalidate(struct namecache * ncp)366 cache_ncp_invalidate(struct namecache *ncp)
367 {
368 
369 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
370 	    ("%s: entry %p already invalid", __func__, ncp));
371 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
372 	atomic_thread_fence_rel();
373 }
374 
375 /*
376  * Check whether the entry can be safely used.
377  *
378  * All places which elide locks are supposed to call this after they are
379  * done with reading from an entry.
380  */
381 #define cache_ncp_canuse(ncp)	({					\
382 	struct namecache *_ncp = (ncp);					\
383 	u_char _nc_flag;						\
384 									\
385 	atomic_thread_fence_acq();					\
386 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
387 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
388 })
389 
390 /*
391  * Like the above but also checks NCF_WHITE.
392  */
393 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
394 	struct namecache *_ncp = (ncp);					\
395 	u_char _nc_flag;						\
396 									\
397 	atomic_thread_fence_acq();					\
398 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
399 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
400 })
401 
402 VFS_SMR_DECLARE;
403 
404 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
405     "Name cache parameters");
406 
407 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
408 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
409     "Total namecache capacity");
410 
411 u_int ncsizefactor = 2;
412 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
413     "Size factor for namecache");
414 
415 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
416 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
417     "Ratio of negative namecache entries");
418 
419 /*
420  * Negative entry % of namecache capacity above which automatic eviction is allowed.
421  *
422  * Check cache_neg_evict_cond for details.
423  */
424 static u_int ncnegminpct = 3;
425 
426 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
427 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
428     "Negative entry count above which automatic eviction is allowed");
429 
430 /*
431  * Structures associated with name caching.
432  */
433 #define NCHHASH(hash) \
434 	(&nchashtbl[(hash) & nchash])
435 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
436 static u_long __read_mostly	nchash;			/* size of hash table */
437 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
438     "Size of namecache hash table");
439 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
440 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
441 
442 struct nchstats	nchstats;		/* cache effectiveness statistics */
443 
444 static u_int __exclusive_cache_line neg_cycle;
445 
446 #define ncneghash	3
447 #define	numneglists	(ncneghash + 1)
448 
449 struct neglist {
450 	struct mtx		nl_evict_lock;
451 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
452 	TAILQ_HEAD(, namecache) nl_list;
453 	TAILQ_HEAD(, namecache) nl_hotlist;
454 	u_long			nl_hotnum;
455 } __aligned(CACHE_LINE_SIZE);
456 
457 static struct neglist neglists[numneglists];
458 
459 static inline struct neglist *
NCP2NEGLIST(struct namecache * ncp)460 NCP2NEGLIST(struct namecache *ncp)
461 {
462 
463 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
464 }
465 
466 static inline struct negstate *
NCP2NEGSTATE(struct namecache * ncp)467 NCP2NEGSTATE(struct namecache *ncp)
468 {
469 
470 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
471 	return (&ncp->nc_neg);
472 }
473 
474 #define	numbucketlocks (ncbuckethash + 1)
475 static u_int __read_mostly  ncbuckethash;
476 static struct mtx_padalign __read_mostly  *bucketlocks;
477 #define	HASH2BUCKETLOCK(hash) \
478 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
479 
480 #define	numvnodelocks (ncvnodehash + 1)
481 static u_int __read_mostly  ncvnodehash;
482 static struct mtx __read_mostly *vnodelocks;
483 static inline struct mtx *
VP2VNODELOCK(struct vnode * vp)484 VP2VNODELOCK(struct vnode *vp)
485 {
486 
487 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
488 }
489 
490 static void
cache_out_ts(struct namecache * ncp,struct timespec * tsp,int * ticksp)491 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
492 {
493 	struct namecache_ts *ncp_ts;
494 
495 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
496 	    (tsp == NULL && ticksp == NULL),
497 	    ("No NCF_TS"));
498 
499 	if (tsp == NULL)
500 		return;
501 
502 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
503 	*tsp = ncp_ts->nc_time;
504 	*ticksp = ncp_ts->nc_ticks;
505 }
506 
507 #ifdef DEBUG_CACHE
508 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
509 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
510     "VFS namecache enabled");
511 #endif
512 
513 /* Export size information to userland */
514 SYSCTL_INT(_debug_sizeof, OID_AUTO, namecache, CTLFLAG_RD, SYSCTL_NULL_INT_PTR,
515     sizeof(struct namecache), "sizeof(struct namecache)");
516 
517 /*
518  * The new name cache statistics
519  */
520 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
521     "Name cache statistics");
522 
523 #define STATNODE_ULONG(name, varname, descr)					\
524 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
525 #define STATNODE_COUNTER(name, varname, descr)					\
526 	static COUNTER_U64_DEFINE_EARLY(varname);				\
527 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
528 	    descr);
529 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
530 STATNODE_ULONG(count, numcache, "Number of cache entries");
531 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
532 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
533 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
534 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
535 STATNODE_COUNTER(poszaps, numposzaps,
536     "Number of cache hits (positive) we do not want to cache");
537 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
538 STATNODE_COUNTER(negzaps, numnegzaps,
539     "Number of cache hits (negative) we do not want to cache");
540 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
541 /* These count for vn_getcwd(), too. */
542 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
543 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
544     "Number of fullpath search errors (VOP_VPTOCNP failures)");
545 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
546 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
547 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
548 
549 /*
550  * Debug or developer statistics.
551  */
552 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
553     "Name cache debugging");
554 #define DEBUGNODE_ULONG(name, varname, descr)					\
555 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
556 static u_long zap_bucket_relock_success;
557 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
558     "Number of successful removals after relocking");
559 static u_long zap_bucket_fail;
560 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
561 static u_long zap_bucket_fail2;
562 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
563 static u_long cache_lock_vnodes_cel_3_failures;
564 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
565     "Number of times 3-way vnode locking failed");
566 
567 static void cache_zap_locked(struct namecache *ncp);
568 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
569     char **retbuf, size_t *buflen, size_t addend);
570 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
571     char **retbuf, size_t *buflen);
572 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
573     char **retbuf, size_t *len, size_t addend);
574 
575 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
576 
577 static inline void
cache_assert_vlp_locked(struct mtx * vlp)578 cache_assert_vlp_locked(struct mtx *vlp)
579 {
580 
581 	if (vlp != NULL)
582 		mtx_assert(vlp, MA_OWNED);
583 }
584 
585 static inline void
cache_assert_vnode_locked(struct vnode * vp)586 cache_assert_vnode_locked(struct vnode *vp)
587 {
588 	struct mtx *vlp;
589 
590 	vlp = VP2VNODELOCK(vp);
591 	cache_assert_vlp_locked(vlp);
592 }
593 
594 /*
595  * Directory vnodes with entries are held for two reasons:
596  * 1. make them less of a target for reclamation in vnlru
597  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
598  *
599  * It will be feasible to stop doing it altogether if all filesystems start
600  * supporting lockless lookup.
601  */
602 static void
cache_hold_vnode(struct vnode * vp)603 cache_hold_vnode(struct vnode *vp)
604 {
605 
606 	cache_assert_vnode_locked(vp);
607 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
608 	vhold(vp);
609 	counter_u64_add(numcachehv, 1);
610 }
611 
612 static void
cache_drop_vnode(struct vnode * vp)613 cache_drop_vnode(struct vnode *vp)
614 {
615 
616 	/*
617 	 * Called after all locks are dropped, meaning we can't assert
618 	 * on the state of v_cache_src.
619 	 */
620 	vdrop(vp);
621 	counter_u64_add(numcachehv, -1);
622 }
623 
624 /*
625  * UMA zones.
626  */
627 static uma_zone_t __read_mostly cache_zone_small;
628 static uma_zone_t __read_mostly cache_zone_small_ts;
629 static uma_zone_t __read_mostly cache_zone_large;
630 static uma_zone_t __read_mostly cache_zone_large_ts;
631 
632 char *
cache_symlink_alloc(size_t size,int flags)633 cache_symlink_alloc(size_t size, int flags)
634 {
635 
636 	if (size < CACHE_ZONE_SMALL_SIZE) {
637 		return (uma_zalloc_smr(cache_zone_small, flags));
638 	}
639 	if (size < CACHE_ZONE_LARGE_SIZE) {
640 		return (uma_zalloc_smr(cache_zone_large, flags));
641 	}
642 	counter_u64_add(symlinktoobig, 1);
643 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
644 	return (NULL);
645 }
646 
647 void
cache_symlink_free(char * string,size_t size)648 cache_symlink_free(char *string, size_t size)
649 {
650 
651 	MPASS(string != NULL);
652 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
653 	    ("%s: size %zu too big", __func__, size));
654 
655 	if (size < CACHE_ZONE_SMALL_SIZE) {
656 		uma_zfree_smr(cache_zone_small, string);
657 		return;
658 	}
659 	if (size < CACHE_ZONE_LARGE_SIZE) {
660 		uma_zfree_smr(cache_zone_large, string);
661 		return;
662 	}
663 	__assert_unreachable();
664 }
665 
666 static struct namecache *
cache_alloc_uma(int len,bool ts)667 cache_alloc_uma(int len, bool ts)
668 {
669 	struct namecache_ts *ncp_ts;
670 	struct namecache *ncp;
671 
672 	if (__predict_false(ts)) {
673 		if (len <= CACHE_PATH_CUTOFF)
674 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
675 		else
676 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
677 		ncp = &ncp_ts->nc_nc;
678 	} else {
679 		if (len <= CACHE_PATH_CUTOFF)
680 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
681 		else
682 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
683 	}
684 	return (ncp);
685 }
686 
687 static void
cache_free_uma(struct namecache * ncp)688 cache_free_uma(struct namecache *ncp)
689 {
690 	struct namecache_ts *ncp_ts;
691 
692 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
693 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
694 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
695 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
696 		else
697 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
698 	} else {
699 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
700 			uma_zfree_smr(cache_zone_small, ncp);
701 		else
702 			uma_zfree_smr(cache_zone_large, ncp);
703 	}
704 }
705 
706 static struct namecache *
cache_alloc(int len,bool ts)707 cache_alloc(int len, bool ts)
708 {
709 	u_long lnumcache;
710 
711 	/*
712 	 * Avoid blowout in namecache entries.
713 	 *
714 	 * Bugs:
715 	 * 1. filesystems may end up trying to add an already existing entry
716 	 * (for example this can happen after a cache miss during concurrent
717 	 * lookup), in which case we will call cache_neg_evict despite not
718 	 * adding anything.
719 	 * 2. the routine may fail to free anything and no provisions are made
720 	 * to make it try harder (see the inside for failure modes)
721 	 * 3. it only ever looks at negative entries.
722 	 */
723 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
724 	if (cache_neg_evict_cond(lnumcache)) {
725 		lnumcache = atomic_load_long(&numcache);
726 	}
727 	if (__predict_false(lnumcache >= ncsize)) {
728 		atomic_subtract_long(&numcache, 1);
729 		counter_u64_add(numdrops, 1);
730 		return (NULL);
731 	}
732 	return (cache_alloc_uma(len, ts));
733 }
734 
735 static void
cache_free(struct namecache * ncp)736 cache_free(struct namecache *ncp)
737 {
738 
739 	MPASS(ncp != NULL);
740 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
741 		cache_drop_vnode(ncp->nc_dvp);
742 	}
743 	cache_free_uma(ncp);
744 	atomic_subtract_long(&numcache, 1);
745 }
746 
747 static void
cache_free_batch(struct cache_freebatch * batch)748 cache_free_batch(struct cache_freebatch *batch)
749 {
750 	struct namecache *ncp, *nnp;
751 	int i;
752 
753 	i = 0;
754 	if (TAILQ_EMPTY(batch))
755 		goto out;
756 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
757 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
758 			cache_drop_vnode(ncp->nc_dvp);
759 		}
760 		cache_free_uma(ncp);
761 		i++;
762 	}
763 	atomic_subtract_long(&numcache, i);
764 out:
765 	SDT_PROBE1(vfs, namecache, purge, batch, i);
766 }
767 
768 /*
769  * Hashing.
770  *
771  * The code was made to use FNV in 2001 and this choice needs to be revisited.
772  *
773  * Short summary of the difficulty:
774  * The longest name which can be inserted is NAME_MAX characters in length (or
775  * 255 at the time of writing this comment), while majority of names used in
776  * practice are significantly shorter (mostly below 10). More importantly
777  * majority of lookups performed find names are even shorter than that.
778  *
779  * This poses a problem where hashes which do better than FNV past word size
780  * (or so) tend to come with additional overhead when finalizing the result,
781  * making them noticeably slower for the most commonly used range.
782  *
783  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
784  *
785  * When looking it up the most time consuming part by a large margin (at least
786  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
787  * input would make the slowest part stand out even more.
788  */
789 
790 /*
791  * TODO: With the value stored we can do better than computing the hash based
792  * on the address.
793  */
794 static void
cache_prehash(struct vnode * vp)795 cache_prehash(struct vnode *vp)
796 {
797 
798 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
799 }
800 
801 static uint32_t
cache_get_hash(char * name,u_char len,struct vnode * dvp)802 cache_get_hash(char *name, u_char len, struct vnode *dvp)
803 {
804 
805 	return (fnv_32_buf(name, len, dvp->v_nchash));
806 }
807 
808 static uint32_t
cache_get_hash_iter_start(struct vnode * dvp)809 cache_get_hash_iter_start(struct vnode *dvp)
810 {
811 
812 	return (dvp->v_nchash);
813 }
814 
815 static uint32_t
cache_get_hash_iter(char c,uint32_t hash)816 cache_get_hash_iter(char c, uint32_t hash)
817 {
818 
819 	return (fnv_32_buf(&c, 1, hash));
820 }
821 
822 static uint32_t
cache_get_hash_iter_finish(uint32_t hash)823 cache_get_hash_iter_finish(uint32_t hash)
824 {
825 
826 	return (hash);
827 }
828 
829 static inline struct nchashhead *
NCP2BUCKET(struct namecache * ncp)830 NCP2BUCKET(struct namecache *ncp)
831 {
832 	uint32_t hash;
833 
834 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
835 	return (NCHHASH(hash));
836 }
837 
838 static inline struct mtx *
NCP2BUCKETLOCK(struct namecache * ncp)839 NCP2BUCKETLOCK(struct namecache *ncp)
840 {
841 	uint32_t hash;
842 
843 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
844 	return (HASH2BUCKETLOCK(hash));
845 }
846 
847 #ifdef INVARIANTS
848 static void
cache_assert_bucket_locked(struct namecache * ncp)849 cache_assert_bucket_locked(struct namecache *ncp)
850 {
851 	struct mtx *blp;
852 
853 	blp = NCP2BUCKETLOCK(ncp);
854 	mtx_assert(blp, MA_OWNED);
855 }
856 
857 static void
cache_assert_bucket_unlocked(struct namecache * ncp)858 cache_assert_bucket_unlocked(struct namecache *ncp)
859 {
860 	struct mtx *blp;
861 
862 	blp = NCP2BUCKETLOCK(ncp);
863 	mtx_assert(blp, MA_NOTOWNED);
864 }
865 #else
866 #define cache_assert_bucket_locked(x) do { } while (0)
867 #define cache_assert_bucket_unlocked(x) do { } while (0)
868 #endif
869 
870 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
871 static void
_cache_sort_vnodes(void ** p1,void ** p2)872 _cache_sort_vnodes(void **p1, void **p2)
873 {
874 	void *tmp;
875 
876 	MPASS(*p1 != NULL || *p2 != NULL);
877 
878 	if (*p1 > *p2) {
879 		tmp = *p2;
880 		*p2 = *p1;
881 		*p1 = tmp;
882 	}
883 }
884 
885 static void
cache_lock_all_buckets(void)886 cache_lock_all_buckets(void)
887 {
888 	u_int i;
889 
890 	for (i = 0; i < numbucketlocks; i++)
891 		mtx_lock(&bucketlocks[i]);
892 }
893 
894 static void
cache_unlock_all_buckets(void)895 cache_unlock_all_buckets(void)
896 {
897 	u_int i;
898 
899 	for (i = 0; i < numbucketlocks; i++)
900 		mtx_unlock(&bucketlocks[i]);
901 }
902 
903 static void
cache_lock_all_vnodes(void)904 cache_lock_all_vnodes(void)
905 {
906 	u_int i;
907 
908 	for (i = 0; i < numvnodelocks; i++)
909 		mtx_lock(&vnodelocks[i]);
910 }
911 
912 static void
cache_unlock_all_vnodes(void)913 cache_unlock_all_vnodes(void)
914 {
915 	u_int i;
916 
917 	for (i = 0; i < numvnodelocks; i++)
918 		mtx_unlock(&vnodelocks[i]);
919 }
920 
921 static int
cache_trylock_vnodes(struct mtx * vlp1,struct mtx * vlp2)922 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
923 {
924 
925 	cache_sort_vnodes(&vlp1, &vlp2);
926 
927 	if (vlp1 != NULL) {
928 		if (!mtx_trylock(vlp1))
929 			return (EAGAIN);
930 	}
931 	if (!mtx_trylock(vlp2)) {
932 		if (vlp1 != NULL)
933 			mtx_unlock(vlp1);
934 		return (EAGAIN);
935 	}
936 
937 	return (0);
938 }
939 
940 static void
cache_lock_vnodes(struct mtx * vlp1,struct mtx * vlp2)941 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
942 {
943 
944 	MPASS(vlp1 != NULL || vlp2 != NULL);
945 	MPASS(vlp1 <= vlp2);
946 
947 	if (vlp1 != NULL)
948 		mtx_lock(vlp1);
949 	if (vlp2 != NULL)
950 		mtx_lock(vlp2);
951 }
952 
953 static void
cache_unlock_vnodes(struct mtx * vlp1,struct mtx * vlp2)954 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
955 {
956 
957 	MPASS(vlp1 != NULL || vlp2 != NULL);
958 
959 	if (vlp1 != NULL)
960 		mtx_unlock(vlp1);
961 	if (vlp2 != NULL)
962 		mtx_unlock(vlp2);
963 }
964 
965 static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)966 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
967 {
968 	struct nchstats snap;
969 
970 	if (req->oldptr == NULL)
971 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
972 
973 	snap = nchstats;
974 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
975 	snap.ncs_neghits = counter_u64_fetch(numneghits);
976 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
977 	    counter_u64_fetch(numnegzaps);
978 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
979 	    counter_u64_fetch(nummiss);
980 
981 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
982 }
983 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
984     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
985     "VFS cache effectiveness statistics");
986 
987 static int
sysctl_hitpct(SYSCTL_HANDLER_ARGS)988 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
989 {
990 	long poshits, neghits, miss, total;
991 	long pct;
992 
993 	poshits = counter_u64_fetch(numposhits);
994 	neghits = counter_u64_fetch(numneghits);
995 	miss = counter_u64_fetch(nummiss);
996 	total = poshits + neghits + miss;
997 
998 	pct = 0;
999 	if (total != 0)
1000 		pct = ((poshits + neghits) * 100) / total;
1001 	return (sysctl_handle_int(oidp, 0, pct, req));
1002 }
1003 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1004     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1005     "I", "Percentage of hits");
1006 
1007 static void
cache_recalc_neg_min(void)1008 cache_recalc_neg_min(void)
1009 {
1010 
1011 	neg_min = (ncsize * ncnegminpct) / 100;
1012 }
1013 
1014 static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)1015 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1016 {
1017 	u_int val;
1018 	int error;
1019 
1020 	val = ncnegminpct;
1021 	error = sysctl_handle_int(oidp, &val, 0, req);
1022 	if (error != 0 || req->newptr == NULL)
1023 		return (error);
1024 
1025 	if (val == ncnegminpct)
1026 		return (0);
1027 	if (val < 0 || val > 99)
1028 		return (EINVAL);
1029 	ncnegminpct = val;
1030 	cache_recalc_neg_min();
1031 	return (0);
1032 }
1033 
1034 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1035     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1036     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1037 
1038 #ifdef DEBUG_CACHE
1039 /*
1040  * Grab an atomic snapshot of the name cache hash chain lengths
1041  */
1042 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1043     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1044     "hash table stats");
1045 
1046 static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)1047 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1048 {
1049 	struct nchashhead *ncpp;
1050 	struct namecache *ncp;
1051 	int i, error, n_nchash, *cntbuf;
1052 
1053 retry:
1054 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1055 	if (req->oldptr == NULL)
1056 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1057 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1058 	cache_lock_all_buckets();
1059 	if (n_nchash != nchash + 1) {
1060 		cache_unlock_all_buckets();
1061 		free(cntbuf, M_TEMP);
1062 		goto retry;
1063 	}
1064 	/* Scan hash tables counting entries */
1065 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1066 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1067 			cntbuf[i]++;
1068 	cache_unlock_all_buckets();
1069 	for (error = 0, i = 0; i < n_nchash; i++)
1070 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1071 			break;
1072 	free(cntbuf, M_TEMP);
1073 	return (error);
1074 }
1075 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1076     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1077     "nchash chain lengths");
1078 
1079 static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)1080 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1081 {
1082 	int error;
1083 	struct nchashhead *ncpp;
1084 	struct namecache *ncp;
1085 	int n_nchash;
1086 	int count, maxlength, used, pct;
1087 
1088 	if (!req->oldptr)
1089 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1090 
1091 	cache_lock_all_buckets();
1092 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1093 	used = 0;
1094 	maxlength = 0;
1095 
1096 	/* Scan hash tables for applicable entries */
1097 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1098 		count = 0;
1099 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1100 			count++;
1101 		}
1102 		if (count)
1103 			used++;
1104 		if (maxlength < count)
1105 			maxlength = count;
1106 	}
1107 	n_nchash = nchash + 1;
1108 	cache_unlock_all_buckets();
1109 	pct = (used * 100) / (n_nchash / 100);
1110 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1111 	if (error)
1112 		return (error);
1113 	error = SYSCTL_OUT(req, &used, sizeof(used));
1114 	if (error)
1115 		return (error);
1116 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1117 	if (error)
1118 		return (error);
1119 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1120 	if (error)
1121 		return (error);
1122 	return (0);
1123 }
1124 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1125     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1126     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1127 #endif
1128 
1129 /*
1130  * Negative entries management
1131  *
1132  * Various workloads create plenty of negative entries and barely use them
1133  * afterwards. Moreover malicious users can keep performing bogus lookups
1134  * adding even more entries. For example "make tinderbox" as of writing this
1135  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1136  * negative.
1137  *
1138  * As such, a rather aggressive eviction method is needed. The currently
1139  * employed method is a placeholder.
1140  *
1141  * Entries are split over numneglists separate lists, each of which is further
1142  * split into hot and cold entries. Entries get promoted after getting a hit.
1143  * Eviction happens on addition of new entry.
1144  */
1145 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1146     "Name cache negative entry statistics");
1147 
1148 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1149     "Number of negative cache entries");
1150 
1151 static COUNTER_U64_DEFINE_EARLY(neg_created);
1152 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1153     "Number of created negative entries");
1154 
1155 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1156 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1157     "Number of evicted negative entries");
1158 
1159 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1160 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1161     &neg_evict_skipped_empty,
1162     "Number of times evicting failed due to lack of entries");
1163 
1164 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1165 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1166     &neg_evict_skipped_missed,
1167     "Number of times evicting failed due to target entry disappearing");
1168 
1169 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1170 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1171     &neg_evict_skipped_contended,
1172     "Number of times evicting failed due to contention");
1173 
1174 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1175     "Number of cache hits (negative)");
1176 
1177 static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)1178 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1179 {
1180 	int i, out;
1181 
1182 	out = 0;
1183 	for (i = 0; i < numneglists; i++)
1184 		out += neglists[i].nl_hotnum;
1185 
1186 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1187 }
1188 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1189     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1190     "Number of hot negative entries");
1191 
1192 static void
cache_neg_init(struct namecache * ncp)1193 cache_neg_init(struct namecache *ncp)
1194 {
1195 	struct negstate *ns;
1196 
1197 	ncp->nc_flag |= NCF_NEGATIVE;
1198 	ns = NCP2NEGSTATE(ncp);
1199 	ns->neg_flag = 0;
1200 	ns->neg_hit = 0;
1201 	counter_u64_add(neg_created, 1);
1202 }
1203 
1204 #define CACHE_NEG_PROMOTION_THRESH 2
1205 
1206 static bool
cache_neg_hit_prep(struct namecache * ncp)1207 cache_neg_hit_prep(struct namecache *ncp)
1208 {
1209 	struct negstate *ns;
1210 	u_char n;
1211 
1212 	ns = NCP2NEGSTATE(ncp);
1213 	n = atomic_load_char(&ns->neg_hit);
1214 	for (;;) {
1215 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1216 			return (false);
1217 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1218 			break;
1219 	}
1220 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1221 }
1222 
1223 /*
1224  * Nothing to do here but it is provided for completeness as some
1225  * cache_neg_hit_prep callers may end up returning without even
1226  * trying to promote.
1227  */
1228 #define cache_neg_hit_abort(ncp)	do { } while (0)
1229 
1230 static void
cache_neg_hit_finish(struct namecache * ncp)1231 cache_neg_hit_finish(struct namecache *ncp)
1232 {
1233 
1234 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1235 	counter_u64_add(numneghits, 1);
1236 }
1237 
1238 /*
1239  * Move a negative entry to the hot list.
1240  */
1241 static void
cache_neg_promote_locked(struct namecache * ncp)1242 cache_neg_promote_locked(struct namecache *ncp)
1243 {
1244 	struct neglist *nl;
1245 	struct negstate *ns;
1246 
1247 	ns = NCP2NEGSTATE(ncp);
1248 	nl = NCP2NEGLIST(ncp);
1249 	mtx_assert(&nl->nl_lock, MA_OWNED);
1250 	if ((ns->neg_flag & NEG_HOT) == 0) {
1251 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1252 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1253 		nl->nl_hotnum++;
1254 		ns->neg_flag |= NEG_HOT;
1255 	}
1256 }
1257 
1258 /*
1259  * Move a hot negative entry to the cold list.
1260  */
1261 static void
cache_neg_demote_locked(struct namecache * ncp)1262 cache_neg_demote_locked(struct namecache *ncp)
1263 {
1264 	struct neglist *nl;
1265 	struct negstate *ns;
1266 
1267 	ns = NCP2NEGSTATE(ncp);
1268 	nl = NCP2NEGLIST(ncp);
1269 	mtx_assert(&nl->nl_lock, MA_OWNED);
1270 	MPASS(ns->neg_flag & NEG_HOT);
1271 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1272 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1273 	nl->nl_hotnum--;
1274 	ns->neg_flag &= ~NEG_HOT;
1275 	atomic_store_char(&ns->neg_hit, 0);
1276 }
1277 
1278 /*
1279  * Move a negative entry to the hot list if it matches the lookup.
1280  *
1281  * We have to take locks, but they may be contended and in the worst
1282  * case we may need to go off CPU. We don't want to spin within the
1283  * smr section and we can't block with it. Exiting the section means
1284  * the found entry could have been evicted. We are going to look it
1285  * up again.
1286  */
1287 static bool
cache_neg_promote_cond(struct vnode * dvp,struct componentname * cnp,struct namecache * oncp,uint32_t hash)1288 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1289     struct namecache *oncp, uint32_t hash)
1290 {
1291 	struct namecache *ncp;
1292 	struct neglist *nl;
1293 	u_char nc_flag;
1294 
1295 	nl = NCP2NEGLIST(oncp);
1296 
1297 	mtx_lock(&nl->nl_lock);
1298 	/*
1299 	 * For hash iteration.
1300 	 */
1301 	vfs_smr_enter();
1302 
1303 	/*
1304 	 * Avoid all surprises by only succeeding if we got the same entry and
1305 	 * bailing completely otherwise.
1306 	 * XXX There are no provisions to keep the vnode around, meaning we may
1307 	 * end up promoting a negative entry for a *new* vnode and returning
1308 	 * ENOENT on its account. This is the error we want to return anyway
1309 	 * and promotion is harmless.
1310 	 *
1311 	 * In particular at this point there can be a new ncp which matches the
1312 	 * search but hashes to a different neglist.
1313 	 */
1314 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1315 		if (ncp == oncp)
1316 			break;
1317 	}
1318 
1319 	/*
1320 	 * No match to begin with.
1321 	 */
1322 	if (__predict_false(ncp == NULL)) {
1323 		goto out_abort;
1324 	}
1325 
1326 	/*
1327 	 * The newly found entry may be something different...
1328 	 */
1329 	if (!(ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1330 	    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))) {
1331 		goto out_abort;
1332 	}
1333 
1334 	/*
1335 	 * ... and not even negative.
1336 	 */
1337 	nc_flag = atomic_load_char(&ncp->nc_flag);
1338 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1339 		goto out_abort;
1340 	}
1341 
1342 	if (!cache_ncp_canuse(ncp)) {
1343 		goto out_abort;
1344 	}
1345 
1346 	cache_neg_promote_locked(ncp);
1347 	cache_neg_hit_finish(ncp);
1348 	vfs_smr_exit();
1349 	mtx_unlock(&nl->nl_lock);
1350 	return (true);
1351 out_abort:
1352 	vfs_smr_exit();
1353 	mtx_unlock(&nl->nl_lock);
1354 	return (false);
1355 }
1356 
1357 static void
cache_neg_promote(struct namecache * ncp)1358 cache_neg_promote(struct namecache *ncp)
1359 {
1360 	struct neglist *nl;
1361 
1362 	nl = NCP2NEGLIST(ncp);
1363 	mtx_lock(&nl->nl_lock);
1364 	cache_neg_promote_locked(ncp);
1365 	mtx_unlock(&nl->nl_lock);
1366 }
1367 
1368 static void
cache_neg_insert(struct namecache * ncp)1369 cache_neg_insert(struct namecache *ncp)
1370 {
1371 	struct neglist *nl;
1372 
1373 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1374 	cache_assert_bucket_locked(ncp);
1375 	nl = NCP2NEGLIST(ncp);
1376 	mtx_lock(&nl->nl_lock);
1377 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1378 	mtx_unlock(&nl->nl_lock);
1379 	atomic_add_long(&numneg, 1);
1380 }
1381 
1382 static void
cache_neg_remove(struct namecache * ncp)1383 cache_neg_remove(struct namecache *ncp)
1384 {
1385 	struct neglist *nl;
1386 	struct negstate *ns;
1387 
1388 	cache_assert_bucket_locked(ncp);
1389 	nl = NCP2NEGLIST(ncp);
1390 	ns = NCP2NEGSTATE(ncp);
1391 	mtx_lock(&nl->nl_lock);
1392 	if ((ns->neg_flag & NEG_HOT) != 0) {
1393 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1394 		nl->nl_hotnum--;
1395 	} else {
1396 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1397 	}
1398 	mtx_unlock(&nl->nl_lock);
1399 	atomic_subtract_long(&numneg, 1);
1400 }
1401 
1402 static struct neglist *
cache_neg_evict_select_list(void)1403 cache_neg_evict_select_list(void)
1404 {
1405 	struct neglist *nl;
1406 	u_int c;
1407 
1408 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1409 	nl = &neglists[c % numneglists];
1410 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1411 		counter_u64_add(neg_evict_skipped_contended, 1);
1412 		return (NULL);
1413 	}
1414 	return (nl);
1415 }
1416 
1417 static struct namecache *
cache_neg_evict_select_entry(struct neglist * nl)1418 cache_neg_evict_select_entry(struct neglist *nl)
1419 {
1420 	struct namecache *ncp, *lncp;
1421 	struct negstate *ns, *lns;
1422 	int i;
1423 
1424 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1425 	mtx_assert(&nl->nl_lock, MA_OWNED);
1426 	ncp = TAILQ_FIRST(&nl->nl_list);
1427 	if (ncp == NULL)
1428 		return (NULL);
1429 	lncp = ncp;
1430 	lns = NCP2NEGSTATE(lncp);
1431 	for (i = 1; i < 4; i++) {
1432 		ncp = TAILQ_NEXT(ncp, nc_dst);
1433 		if (ncp == NULL)
1434 			break;
1435 		ns = NCP2NEGSTATE(ncp);
1436 		if (ns->neg_hit < lns->neg_hit) {
1437 			lncp = ncp;
1438 			lns = ns;
1439 		}
1440 	}
1441 	return (lncp);
1442 }
1443 
1444 static bool
cache_neg_evict(void)1445 cache_neg_evict(void)
1446 {
1447 	struct namecache *ncp, *ncp2;
1448 	struct neglist *nl;
1449 	struct vnode *dvp;
1450 	struct mtx *dvlp;
1451 	struct mtx *blp;
1452 	uint32_t hash;
1453 	u_char nlen;
1454 	bool evicted;
1455 
1456 	nl = cache_neg_evict_select_list();
1457 	if (nl == NULL) {
1458 		return (false);
1459 	}
1460 
1461 	mtx_lock(&nl->nl_lock);
1462 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1463 	if (ncp != NULL) {
1464 		cache_neg_demote_locked(ncp);
1465 	}
1466 	ncp = cache_neg_evict_select_entry(nl);
1467 	if (ncp == NULL) {
1468 		counter_u64_add(neg_evict_skipped_empty, 1);
1469 		mtx_unlock(&nl->nl_lock);
1470 		mtx_unlock(&nl->nl_evict_lock);
1471 		return (false);
1472 	}
1473 	nlen = ncp->nc_nlen;
1474 	dvp = ncp->nc_dvp;
1475 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1476 	dvlp = VP2VNODELOCK(dvp);
1477 	blp = HASH2BUCKETLOCK(hash);
1478 	mtx_unlock(&nl->nl_lock);
1479 	mtx_unlock(&nl->nl_evict_lock);
1480 	mtx_lock(dvlp);
1481 	mtx_lock(blp);
1482 	/*
1483 	 * Note that since all locks were dropped above, the entry may be
1484 	 * gone or reallocated to be something else.
1485 	 */
1486 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1487 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1488 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1489 			break;
1490 	}
1491 	if (ncp2 == NULL) {
1492 		counter_u64_add(neg_evict_skipped_missed, 1);
1493 		ncp = NULL;
1494 		evicted = false;
1495 	} else {
1496 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1497 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1498 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1499 		    ncp->nc_name);
1500 		cache_zap_locked(ncp);
1501 		counter_u64_add(neg_evicted, 1);
1502 		evicted = true;
1503 	}
1504 	mtx_unlock(blp);
1505 	mtx_unlock(dvlp);
1506 	if (ncp != NULL)
1507 		cache_free(ncp);
1508 	return (evicted);
1509 }
1510 
1511 /*
1512  * Maybe evict a negative entry to create more room.
1513  *
1514  * The ncnegfactor parameter limits what fraction of the total count
1515  * can comprise of negative entries. However, if the cache is just
1516  * warming up this leads to excessive evictions.  As such, ncnegminpct
1517  * (recomputed to neg_min) dictates whether the above should be
1518  * applied.
1519  *
1520  * Try evicting if the cache is close to full capacity regardless of
1521  * other considerations.
1522  */
1523 static bool
cache_neg_evict_cond(u_long lnumcache)1524 cache_neg_evict_cond(u_long lnumcache)
1525 {
1526 	u_long lnumneg;
1527 
1528 	if (ncsize - 1000 < lnumcache)
1529 		goto out_evict;
1530 	lnumneg = atomic_load_long(&numneg);
1531 	if (lnumneg < neg_min)
1532 		return (false);
1533 	if (lnumneg * ncnegfactor < lnumcache)
1534 		return (false);
1535 out_evict:
1536 	return (cache_neg_evict());
1537 }
1538 
1539 /*
1540  * cache_zap_locked():
1541  *
1542  *   Removes a namecache entry from cache, whether it contains an actual
1543  *   pointer to a vnode or if it is just a negative cache entry.
1544  */
1545 static void
cache_zap_locked(struct namecache * ncp)1546 cache_zap_locked(struct namecache *ncp)
1547 {
1548 	struct nchashhead *ncpp;
1549 	struct vnode *dvp, *vp;
1550 
1551 	dvp = ncp->nc_dvp;
1552 	vp = ncp->nc_vp;
1553 
1554 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1555 		cache_assert_vnode_locked(vp);
1556 	cache_assert_vnode_locked(dvp);
1557 	cache_assert_bucket_locked(ncp);
1558 
1559 	cache_ncp_invalidate(ncp);
1560 
1561 	ncpp = NCP2BUCKET(ncp);
1562 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1563 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1564 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1565 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1566 		if (ncp == vp->v_cache_dd) {
1567 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1568 		}
1569 	} else {
1570 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1571 		cache_neg_remove(ncp);
1572 	}
1573 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1574 		if (ncp == dvp->v_cache_dd) {
1575 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1576 		}
1577 	} else {
1578 		LIST_REMOVE(ncp, nc_src);
1579 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1580 			ncp->nc_flag |= NCF_DVDROP;
1581 		}
1582 	}
1583 }
1584 
1585 static void
cache_zap_negative_locked_vnode_kl(struct namecache * ncp,struct vnode * vp)1586 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1587 {
1588 	struct mtx *blp;
1589 
1590 	MPASS(ncp->nc_dvp == vp);
1591 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1592 	cache_assert_vnode_locked(vp);
1593 
1594 	blp = NCP2BUCKETLOCK(ncp);
1595 	mtx_lock(blp);
1596 	cache_zap_locked(ncp);
1597 	mtx_unlock(blp);
1598 }
1599 
1600 static bool
cache_zap_locked_vnode_kl2(struct namecache * ncp,struct vnode * vp,struct mtx ** vlpp)1601 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1602     struct mtx **vlpp)
1603 {
1604 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1605 	struct mtx *blp;
1606 
1607 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1608 	cache_assert_vnode_locked(vp);
1609 
1610 	if (ncp->nc_flag & NCF_NEGATIVE) {
1611 		if (*vlpp != NULL) {
1612 			mtx_unlock(*vlpp);
1613 			*vlpp = NULL;
1614 		}
1615 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1616 		return (true);
1617 	}
1618 
1619 	pvlp = VP2VNODELOCK(vp);
1620 	blp = NCP2BUCKETLOCK(ncp);
1621 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1622 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1623 
1624 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1625 		to_unlock = *vlpp;
1626 		*vlpp = NULL;
1627 	} else {
1628 		if (*vlpp != NULL) {
1629 			mtx_unlock(*vlpp);
1630 			*vlpp = NULL;
1631 		}
1632 		cache_sort_vnodes(&vlp1, &vlp2);
1633 		if (vlp1 == pvlp) {
1634 			mtx_lock(vlp2);
1635 			to_unlock = vlp2;
1636 		} else {
1637 			if (!mtx_trylock(vlp1))
1638 				goto out_relock;
1639 			to_unlock = vlp1;
1640 		}
1641 	}
1642 	mtx_lock(blp);
1643 	cache_zap_locked(ncp);
1644 	mtx_unlock(blp);
1645 	if (to_unlock != NULL)
1646 		mtx_unlock(to_unlock);
1647 	return (true);
1648 
1649 out_relock:
1650 	mtx_unlock(vlp2);
1651 	mtx_lock(vlp1);
1652 	mtx_lock(vlp2);
1653 	MPASS(*vlpp == NULL);
1654 	*vlpp = vlp1;
1655 	return (false);
1656 }
1657 
1658 /*
1659  * If trylocking failed we can get here. We know enough to take all needed locks
1660  * in the right order and re-lookup the entry.
1661  */
1662 static int
cache_zap_unlocked_bucket(struct namecache * ncp,struct componentname * cnp,struct vnode * dvp,struct mtx * dvlp,struct mtx * vlp,uint32_t hash,struct mtx * blp)1663 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1664     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1665     struct mtx *blp)
1666 {
1667 	struct namecache *rncp;
1668 	struct mtx *rvlp;
1669 
1670 	cache_assert_bucket_unlocked(ncp);
1671 
1672 	cache_sort_vnodes(&dvlp, &vlp);
1673 	cache_lock_vnodes(dvlp, vlp);
1674 	mtx_lock(blp);
1675 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1676 		if (rncp == ncp && rncp->nc_dvp == dvp &&
1677 		    rncp->nc_nlen == cnp->cn_namelen &&
1678 		    !bcmp(rncp->nc_name, cnp->cn_nameptr, rncp->nc_nlen))
1679 			break;
1680 	}
1681 
1682 	if (rncp == NULL)
1683 		goto out_mismatch;
1684 
1685 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1686 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1687 	else
1688 		rvlp = NULL;
1689 	if (rvlp != vlp)
1690 		goto out_mismatch;
1691 
1692 	cache_zap_locked(rncp);
1693 	mtx_unlock(blp);
1694 	cache_unlock_vnodes(dvlp, vlp);
1695 	atomic_add_long(&zap_bucket_relock_success, 1);
1696 	return (0);
1697 
1698 out_mismatch:
1699 	mtx_unlock(blp);
1700 	cache_unlock_vnodes(dvlp, vlp);
1701 	return (EAGAIN);
1702 }
1703 
1704 static int __noinline
cache_zap_locked_bucket(struct namecache * ncp,struct componentname * cnp,uint32_t hash,struct mtx * blp)1705 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1706     uint32_t hash, struct mtx *blp)
1707 {
1708 	struct mtx *dvlp, *vlp;
1709 	struct vnode *dvp;
1710 
1711 	cache_assert_bucket_locked(ncp);
1712 
1713 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1714 	vlp = NULL;
1715 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1716 		vlp = VP2VNODELOCK(ncp->nc_vp);
1717 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1718 		cache_zap_locked(ncp);
1719 		mtx_unlock(blp);
1720 		cache_unlock_vnodes(dvlp, vlp);
1721 		return (0);
1722 	}
1723 
1724 	dvp = ncp->nc_dvp;
1725 	mtx_unlock(blp);
1726 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1727 }
1728 
1729 static __noinline int
cache_remove_cnp(struct vnode * dvp,struct componentname * cnp)1730 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1731 {
1732 	struct namecache *ncp;
1733 	struct mtx *blp;
1734 	struct mtx *dvlp, *dvlp2;
1735 	uint32_t hash;
1736 	int error;
1737 
1738 	if (cnp->cn_namelen == 2 &&
1739 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1740 		dvlp = VP2VNODELOCK(dvp);
1741 		dvlp2 = NULL;
1742 		mtx_lock(dvlp);
1743 retry_dotdot:
1744 		ncp = dvp->v_cache_dd;
1745 		if (ncp == NULL) {
1746 			mtx_unlock(dvlp);
1747 			if (dvlp2 != NULL)
1748 				mtx_unlock(dvlp2);
1749 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1750 			return (0);
1751 		}
1752 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1753 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1754 				goto retry_dotdot;
1755 			MPASS(dvp->v_cache_dd == NULL);
1756 			mtx_unlock(dvlp);
1757 			if (dvlp2 != NULL)
1758 				mtx_unlock(dvlp2);
1759 			cache_free(ncp);
1760 		} else {
1761 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1762 			mtx_unlock(dvlp);
1763 			if (dvlp2 != NULL)
1764 				mtx_unlock(dvlp2);
1765 		}
1766 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1767 		return (1);
1768 	}
1769 
1770 	/*
1771 	 * XXX note that access here is completely unlocked with no provisions
1772 	 * to keep the hash allocated. If one is sufficiently unlucky a
1773 	 * parallel cache resize can reallocate the hash, unmap backing pages
1774 	 * and cause the empty check below to fault.
1775 	 *
1776 	 * Fixing this has epsilon priority, but can be done with no overhead
1777 	 * for this codepath with sufficient effort.
1778 	 */
1779 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1780 	blp = HASH2BUCKETLOCK(hash);
1781 retry:
1782 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1783 		goto out_no_entry;
1784 
1785 	mtx_lock(blp);
1786 
1787 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1788 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1789 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1790 			break;
1791 	}
1792 
1793 	if (ncp == NULL) {
1794 		mtx_unlock(blp);
1795 		goto out_no_entry;
1796 	}
1797 
1798 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1799 	if (__predict_false(error != 0)) {
1800 		atomic_add_long(&zap_bucket_fail, 1);
1801 		goto retry;
1802 	}
1803 	counter_u64_add(numposzaps, 1);
1804 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1805 	cache_free(ncp);
1806 	return (1);
1807 out_no_entry:
1808 	counter_u64_add(nummisszap, 1);
1809 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1810 	return (0);
1811 }
1812 
1813 static int __noinline
cache_lookup_dot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1814 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1815     struct timespec *tsp, int *ticksp)
1816 {
1817 	int ltype;
1818 
1819 	*vpp = dvp;
1820 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1821 	if (tsp != NULL)
1822 		timespecclear(tsp);
1823 	if (ticksp != NULL)
1824 		*ticksp = ticks;
1825 	vrefact(*vpp);
1826 	/*
1827 	 * When we lookup "." we still can be asked to lock it
1828 	 * differently...
1829 	 */
1830 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1831 	if (ltype != VOP_ISLOCKED(*vpp)) {
1832 		if (ltype == LK_EXCLUSIVE) {
1833 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1834 			if (VN_IS_DOOMED((*vpp))) {
1835 				/* forced unmount */
1836 				vrele(*vpp);
1837 				*vpp = NULL;
1838 				return (ENOENT);
1839 			}
1840 		} else
1841 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1842 	}
1843 	return (-1);
1844 }
1845 
1846 static int __noinline
cache_lookup_dotdot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1847 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1848     struct timespec *tsp, int *ticksp)
1849 {
1850 	struct namecache_ts *ncp_ts;
1851 	struct namecache *ncp;
1852 	struct mtx *dvlp;
1853 	enum vgetstate vs;
1854 	int error, ltype;
1855 	bool whiteout;
1856 
1857 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1858 
1859 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1860 		cache_remove_cnp(dvp, cnp);
1861 		return (0);
1862 	}
1863 
1864 retry:
1865 	dvlp = VP2VNODELOCK(dvp);
1866 	mtx_lock(dvlp);
1867 	ncp = dvp->v_cache_dd;
1868 	if (ncp == NULL) {
1869 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1870 		mtx_unlock(dvlp);
1871 		return (0);
1872 	}
1873 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1874 		if (ncp->nc_flag & NCF_NEGATIVE)
1875 			*vpp = NULL;
1876 		else
1877 			*vpp = ncp->nc_vp;
1878 	} else
1879 		*vpp = ncp->nc_dvp;
1880 	if (*vpp == NULL)
1881 		goto negative_success;
1882 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1883 	cache_out_ts(ncp, tsp, ticksp);
1884 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1885 	    NCF_DTS && tsp != NULL) {
1886 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1887 		*tsp = ncp_ts->nc_dotdottime;
1888 	}
1889 
1890 	MPASS(dvp != *vpp);
1891 	ltype = VOP_ISLOCKED(dvp);
1892 	VOP_UNLOCK(dvp);
1893 	vs = vget_prep(*vpp);
1894 	mtx_unlock(dvlp);
1895 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
1896 	vn_lock(dvp, ltype | LK_RETRY);
1897 	if (VN_IS_DOOMED(dvp)) {
1898 		if (error == 0)
1899 			vput(*vpp);
1900 		*vpp = NULL;
1901 		return (ENOENT);
1902 	}
1903 	if (error) {
1904 		*vpp = NULL;
1905 		goto retry;
1906 	}
1907 	return (-1);
1908 negative_success:
1909 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
1910 		if (cnp->cn_flags & ISLASTCN) {
1911 			counter_u64_add(numnegzaps, 1);
1912 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
1913 			mtx_unlock(dvlp);
1914 			cache_free(ncp);
1915 			return (0);
1916 		}
1917 	}
1918 
1919 	whiteout = (ncp->nc_flag & NCF_WHITE);
1920 	cache_out_ts(ncp, tsp, ticksp);
1921 	if (cache_neg_hit_prep(ncp))
1922 		cache_neg_promote(ncp);
1923 	else
1924 		cache_neg_hit_finish(ncp);
1925 	mtx_unlock(dvlp);
1926 	if (whiteout)
1927 		cnp->cn_flags |= ISWHITEOUT;
1928 	return (ENOENT);
1929 }
1930 
1931 /**
1932  * Lookup a name in the name cache
1933  *
1934  * # Arguments
1935  *
1936  * - dvp:	Parent directory in which to search.
1937  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
1938  * - cnp:	Parameters of the name search.  The most interesting bits of
1939  *   		the cn_flags field have the following meanings:
1940  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
1941  *   			it up.
1942  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
1943  * - tsp:	Return storage for cache timestamp.  On a successful (positive
1944  *   		or negative) lookup, tsp will be filled with any timespec that
1945  *   		was stored when this cache entry was created.  However, it will
1946  *   		be clear for "." entries.
1947  * - ticks:	Return storage for alternate cache timestamp.  On a successful
1948  *   		(positive or negative) lookup, it will contain the ticks value
1949  *   		that was current when the cache entry was created, unless cnp
1950  *   		was ".".
1951  *
1952  * Either both tsp and ticks have to be provided or neither of them.
1953  *
1954  * # Returns
1955  *
1956  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
1957  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
1958  *		to a forced unmount.  vpp will not be modified.  If the entry
1959  *		is a whiteout, then the ISWHITEOUT flag will be set in
1960  *		cnp->cn_flags.
1961  * - 0:		A cache miss.  vpp will not be modified.
1962  *
1963  * # Locking
1964  *
1965  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
1966  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
1967  * lock is not recursively acquired.
1968  */
1969 static int __noinline
cache_lookup_fallback(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1970 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1971     struct timespec *tsp, int *ticksp)
1972 {
1973 	struct namecache *ncp;
1974 	struct mtx *blp;
1975 	uint32_t hash;
1976 	enum vgetstate vs;
1977 	int error;
1978 	bool whiteout;
1979 
1980 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
1981 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
1982 
1983 retry:
1984 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1985 	blp = HASH2BUCKETLOCK(hash);
1986 	mtx_lock(blp);
1987 
1988 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1989 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
1990 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
1991 			break;
1992 	}
1993 
1994 	if (__predict_false(ncp == NULL)) {
1995 		mtx_unlock(blp);
1996 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
1997 		counter_u64_add(nummiss, 1);
1998 		return (0);
1999 	}
2000 
2001 	if (ncp->nc_flag & NCF_NEGATIVE)
2002 		goto negative_success;
2003 
2004 	counter_u64_add(numposhits, 1);
2005 	*vpp = ncp->nc_vp;
2006 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2007 	cache_out_ts(ncp, tsp, ticksp);
2008 	MPASS(dvp != *vpp);
2009 	vs = vget_prep(*vpp);
2010 	mtx_unlock(blp);
2011 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2012 	if (error) {
2013 		*vpp = NULL;
2014 		goto retry;
2015 	}
2016 	return (-1);
2017 negative_success:
2018 	/*
2019 	 * We don't get here with regular lookup apart from corner cases.
2020 	 */
2021 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2022 		if (cnp->cn_flags & ISLASTCN) {
2023 			counter_u64_add(numnegzaps, 1);
2024 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2025 			if (__predict_false(error != 0)) {
2026 				atomic_add_long(&zap_bucket_fail2, 1);
2027 				goto retry;
2028 			}
2029 			cache_free(ncp);
2030 			return (0);
2031 		}
2032 	}
2033 
2034 	whiteout = (ncp->nc_flag & NCF_WHITE);
2035 	cache_out_ts(ncp, tsp, ticksp);
2036 	if (cache_neg_hit_prep(ncp))
2037 		cache_neg_promote(ncp);
2038 	else
2039 		cache_neg_hit_finish(ncp);
2040 	mtx_unlock(blp);
2041 	if (whiteout)
2042 		cnp->cn_flags |= ISWHITEOUT;
2043 	return (ENOENT);
2044 }
2045 
2046 int
cache_lookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2047 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2048     struct timespec *tsp, int *ticksp)
2049 {
2050 	struct namecache *ncp;
2051 	uint32_t hash;
2052 	enum vgetstate vs;
2053 	int error;
2054 	bool whiteout, neg_promote;
2055 	u_short nc_flag;
2056 
2057 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2058 
2059 #ifdef DEBUG_CACHE
2060 	if (__predict_false(!doingcache)) {
2061 		cnp->cn_flags &= ~MAKEENTRY;
2062 		return (0);
2063 	}
2064 #endif
2065 
2066 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2067 		if (cnp->cn_namelen == 1)
2068 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2069 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2070 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2071 	}
2072 
2073 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2074 
2075 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2076 		cache_remove_cnp(dvp, cnp);
2077 		return (0);
2078 	}
2079 
2080 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2081 	vfs_smr_enter();
2082 
2083 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
2084 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
2085 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
2086 			break;
2087 	}
2088 
2089 	if (__predict_false(ncp == NULL)) {
2090 		vfs_smr_exit();
2091 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2092 		counter_u64_add(nummiss, 1);
2093 		return (0);
2094 	}
2095 
2096 	nc_flag = atomic_load_char(&ncp->nc_flag);
2097 	if (nc_flag & NCF_NEGATIVE)
2098 		goto negative_success;
2099 
2100 	counter_u64_add(numposhits, 1);
2101 	*vpp = ncp->nc_vp;
2102 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2103 	cache_out_ts(ncp, tsp, ticksp);
2104 	MPASS(dvp != *vpp);
2105 	if (!cache_ncp_canuse(ncp)) {
2106 		vfs_smr_exit();
2107 		*vpp = NULL;
2108 		goto out_fallback;
2109 	}
2110 	vs = vget_prep_smr(*vpp);
2111 	vfs_smr_exit();
2112 	if (__predict_false(vs == VGET_NONE)) {
2113 		*vpp = NULL;
2114 		goto out_fallback;
2115 	}
2116 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2117 	if (error) {
2118 		*vpp = NULL;
2119 		goto out_fallback;
2120 	}
2121 	return (-1);
2122 negative_success:
2123 	if (cnp->cn_nameiop == CREATE) {
2124 		if (cnp->cn_flags & ISLASTCN) {
2125 			vfs_smr_exit();
2126 			goto out_fallback;
2127 		}
2128 	}
2129 
2130 	cache_out_ts(ncp, tsp, ticksp);
2131 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2132 	neg_promote = cache_neg_hit_prep(ncp);
2133 	if (!cache_ncp_canuse(ncp)) {
2134 		cache_neg_hit_abort(ncp);
2135 		vfs_smr_exit();
2136 		goto out_fallback;
2137 	}
2138 	if (neg_promote) {
2139 		vfs_smr_exit();
2140 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2141 			goto out_fallback;
2142 	} else {
2143 		cache_neg_hit_finish(ncp);
2144 		vfs_smr_exit();
2145 	}
2146 	if (whiteout)
2147 		cnp->cn_flags |= ISWHITEOUT;
2148 	return (ENOENT);
2149 out_fallback:
2150 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2151 }
2152 
2153 struct celockstate {
2154 	struct mtx *vlp[3];
2155 	struct mtx *blp[2];
2156 };
2157 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2158 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2159 
2160 static inline void
cache_celockstate_init(struct celockstate * cel)2161 cache_celockstate_init(struct celockstate *cel)
2162 {
2163 
2164 	bzero(cel, sizeof(*cel));
2165 }
2166 
2167 static void
cache_lock_vnodes_cel(struct celockstate * cel,struct vnode * vp,struct vnode * dvp)2168 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2169     struct vnode *dvp)
2170 {
2171 	struct mtx *vlp1, *vlp2;
2172 
2173 	MPASS(cel->vlp[0] == NULL);
2174 	MPASS(cel->vlp[1] == NULL);
2175 	MPASS(cel->vlp[2] == NULL);
2176 
2177 	MPASS(vp != NULL || dvp != NULL);
2178 
2179 	vlp1 = VP2VNODELOCK(vp);
2180 	vlp2 = VP2VNODELOCK(dvp);
2181 	cache_sort_vnodes(&vlp1, &vlp2);
2182 
2183 	if (vlp1 != NULL) {
2184 		mtx_lock(vlp1);
2185 		cel->vlp[0] = vlp1;
2186 	}
2187 	mtx_lock(vlp2);
2188 	cel->vlp[1] = vlp2;
2189 }
2190 
2191 static void
cache_unlock_vnodes_cel(struct celockstate * cel)2192 cache_unlock_vnodes_cel(struct celockstate *cel)
2193 {
2194 
2195 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2196 
2197 	if (cel->vlp[0] != NULL)
2198 		mtx_unlock(cel->vlp[0]);
2199 	if (cel->vlp[1] != NULL)
2200 		mtx_unlock(cel->vlp[1]);
2201 	if (cel->vlp[2] != NULL)
2202 		mtx_unlock(cel->vlp[2]);
2203 }
2204 
2205 static bool
cache_lock_vnodes_cel_3(struct celockstate * cel,struct vnode * vp)2206 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2207 {
2208 	struct mtx *vlp;
2209 	bool ret;
2210 
2211 	cache_assert_vlp_locked(cel->vlp[0]);
2212 	cache_assert_vlp_locked(cel->vlp[1]);
2213 	MPASS(cel->vlp[2] == NULL);
2214 
2215 	MPASS(vp != NULL);
2216 	vlp = VP2VNODELOCK(vp);
2217 
2218 	ret = true;
2219 	if (vlp >= cel->vlp[1]) {
2220 		mtx_lock(vlp);
2221 	} else {
2222 		if (mtx_trylock(vlp))
2223 			goto out;
2224 		cache_unlock_vnodes_cel(cel);
2225 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2226 		if (vlp < cel->vlp[0]) {
2227 			mtx_lock(vlp);
2228 			mtx_lock(cel->vlp[0]);
2229 			mtx_lock(cel->vlp[1]);
2230 		} else {
2231 			if (cel->vlp[0] != NULL)
2232 				mtx_lock(cel->vlp[0]);
2233 			mtx_lock(vlp);
2234 			mtx_lock(cel->vlp[1]);
2235 		}
2236 		ret = false;
2237 	}
2238 out:
2239 	cel->vlp[2] = vlp;
2240 	return (ret);
2241 }
2242 
2243 static void
cache_lock_buckets_cel(struct celockstate * cel,struct mtx * blp1,struct mtx * blp2)2244 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2245     struct mtx *blp2)
2246 {
2247 
2248 	MPASS(cel->blp[0] == NULL);
2249 	MPASS(cel->blp[1] == NULL);
2250 
2251 	cache_sort_vnodes(&blp1, &blp2);
2252 
2253 	if (blp1 != NULL) {
2254 		mtx_lock(blp1);
2255 		cel->blp[0] = blp1;
2256 	}
2257 	mtx_lock(blp2);
2258 	cel->blp[1] = blp2;
2259 }
2260 
2261 static void
cache_unlock_buckets_cel(struct celockstate * cel)2262 cache_unlock_buckets_cel(struct celockstate *cel)
2263 {
2264 
2265 	if (cel->blp[0] != NULL)
2266 		mtx_unlock(cel->blp[0]);
2267 	mtx_unlock(cel->blp[1]);
2268 }
2269 
2270 /*
2271  * Lock part of the cache affected by the insertion.
2272  *
2273  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2274  * However, insertion can result in removal of an old entry. In this
2275  * case we have an additional vnode and bucketlock pair to lock.
2276  *
2277  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2278  * preserving the locking order (smaller address first).
2279  */
2280 static void
cache_enter_lock(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2281 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2282     uint32_t hash)
2283 {
2284 	struct namecache *ncp;
2285 	struct mtx *blps[2];
2286 	u_char nc_flag;
2287 
2288 	blps[0] = HASH2BUCKETLOCK(hash);
2289 	for (;;) {
2290 		blps[1] = NULL;
2291 		cache_lock_vnodes_cel(cel, dvp, vp);
2292 		if (vp == NULL || vp->v_type != VDIR)
2293 			break;
2294 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2295 		if (ncp == NULL)
2296 			break;
2297 		nc_flag = atomic_load_char(&ncp->nc_flag);
2298 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2299 			break;
2300 		MPASS(ncp->nc_dvp == vp);
2301 		blps[1] = NCP2BUCKETLOCK(ncp);
2302 		if ((nc_flag & NCF_NEGATIVE) != 0)
2303 			break;
2304 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2305 			break;
2306 		/*
2307 		 * All vnodes got re-locked. Re-validate the state and if
2308 		 * nothing changed we are done. Otherwise restart.
2309 		 */
2310 		if (ncp == vp->v_cache_dd &&
2311 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2312 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2313 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2314 			break;
2315 		cache_unlock_vnodes_cel(cel);
2316 		cel->vlp[0] = NULL;
2317 		cel->vlp[1] = NULL;
2318 		cel->vlp[2] = NULL;
2319 	}
2320 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2321 }
2322 
2323 static void
cache_enter_lock_dd(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2324 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2325     uint32_t hash)
2326 {
2327 	struct namecache *ncp;
2328 	struct mtx *blps[2];
2329 	u_char nc_flag;
2330 
2331 	blps[0] = HASH2BUCKETLOCK(hash);
2332 	for (;;) {
2333 		blps[1] = NULL;
2334 		cache_lock_vnodes_cel(cel, dvp, vp);
2335 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2336 		if (ncp == NULL)
2337 			break;
2338 		nc_flag = atomic_load_char(&ncp->nc_flag);
2339 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2340 			break;
2341 		MPASS(ncp->nc_dvp == dvp);
2342 		blps[1] = NCP2BUCKETLOCK(ncp);
2343 		if ((nc_flag & NCF_NEGATIVE) != 0)
2344 			break;
2345 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2346 			break;
2347 		if (ncp == dvp->v_cache_dd &&
2348 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2349 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2350 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2351 			break;
2352 		cache_unlock_vnodes_cel(cel);
2353 		cel->vlp[0] = NULL;
2354 		cel->vlp[1] = NULL;
2355 		cel->vlp[2] = NULL;
2356 	}
2357 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2358 }
2359 
2360 static void
cache_enter_unlock(struct celockstate * cel)2361 cache_enter_unlock(struct celockstate *cel)
2362 {
2363 
2364 	cache_unlock_buckets_cel(cel);
2365 	cache_unlock_vnodes_cel(cel);
2366 }
2367 
2368 static void __noinline
cache_enter_dotdot_prep(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)2369 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2370     struct componentname *cnp)
2371 {
2372 	struct celockstate cel;
2373 	struct namecache *ncp;
2374 	uint32_t hash;
2375 	int len;
2376 
2377 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2378 		return;
2379 	len = cnp->cn_namelen;
2380 	cache_celockstate_init(&cel);
2381 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2382 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2383 	ncp = dvp->v_cache_dd;
2384 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2385 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2386 		cache_zap_locked(ncp);
2387 	} else {
2388 		ncp = NULL;
2389 	}
2390 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2391 	cache_enter_unlock(&cel);
2392 	if (ncp != NULL)
2393 		cache_free(ncp);
2394 }
2395 
2396 /*
2397  * Add an entry to the cache.
2398  */
2399 void
cache_enter_time(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp)2400 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2401     struct timespec *tsp, struct timespec *dtsp)
2402 {
2403 	struct celockstate cel;
2404 	struct namecache *ncp, *n2, *ndd;
2405 	struct namecache_ts *ncp_ts;
2406 	struct nchashhead *ncpp;
2407 	uint32_t hash;
2408 	int flag;
2409 	int len;
2410 
2411 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2412 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2413 	    NAME_MAX));
2414 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2415 	VNPASS(dvp->v_type != VNON, dvp);
2416 	if (vp != NULL) {
2417 		VNPASS(!VN_IS_DOOMED(vp), vp);
2418 		VNPASS(vp->v_type != VNON, vp);
2419 	}
2420 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2421 		KASSERT(dvp == vp,
2422 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2423 		    dvp, vp));
2424 	} else {
2425 		KASSERT(dvp != vp,
2426 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2427 		    cnp->cn_nameptr, dvp));
2428 	}
2429 
2430 #ifdef DEBUG_CACHE
2431 	if (__predict_false(!doingcache))
2432 		return;
2433 #endif
2434 
2435 	flag = 0;
2436 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2437 		if (cnp->cn_namelen == 1)
2438 			return;
2439 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2440 			cache_enter_dotdot_prep(dvp, vp, cnp);
2441 			flag = NCF_ISDOTDOT;
2442 		}
2443 	}
2444 
2445 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2446 	if (ncp == NULL)
2447 		return;
2448 
2449 	cache_celockstate_init(&cel);
2450 	ndd = NULL;
2451 	ncp_ts = NULL;
2452 
2453 	/*
2454 	 * Calculate the hash key and setup as much of the new
2455 	 * namecache entry as possible before acquiring the lock.
2456 	 */
2457 	ncp->nc_flag = flag | NCF_WIP;
2458 	ncp->nc_vp = vp;
2459 	if (vp == NULL)
2460 		cache_neg_init(ncp);
2461 	ncp->nc_dvp = dvp;
2462 	if (tsp != NULL) {
2463 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2464 		ncp_ts->nc_time = *tsp;
2465 		ncp_ts->nc_ticks = ticks;
2466 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2467 		if (dtsp != NULL) {
2468 			ncp_ts->nc_dotdottime = *dtsp;
2469 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2470 		}
2471 	}
2472 	len = ncp->nc_nlen = cnp->cn_namelen;
2473 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2474 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2475 	ncp->nc_name[len] = '\0';
2476 	cache_enter_lock(&cel, dvp, vp, hash);
2477 
2478 	/*
2479 	 * See if this vnode or negative entry is already in the cache
2480 	 * with this name.  This can happen with concurrent lookups of
2481 	 * the same path name.
2482 	 */
2483 	ncpp = NCHHASH(hash);
2484 	CK_SLIST_FOREACH(n2, ncpp, nc_hash) {
2485 		if (n2->nc_dvp == dvp &&
2486 		    n2->nc_nlen == cnp->cn_namelen &&
2487 		    !bcmp(n2->nc_name, cnp->cn_nameptr, n2->nc_nlen)) {
2488 			MPASS(cache_ncp_canuse(n2));
2489 			if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2490 				KASSERT(vp == NULL,
2491 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2492 				    __func__, NULL, vp, cnp->cn_nameptr));
2493 			else
2494 				KASSERT(n2->nc_vp == vp,
2495 				    ("%s: found entry pointing to a different vnode (%p != %p) ; name [%s]",
2496 				    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2497 			/*
2498 			 * Entries are supposed to be immutable unless in the
2499 			 * process of getting destroyed. Accommodating for
2500 			 * changing timestamps is possible but not worth it.
2501 			 * This should be harmless in terms of correctness, in
2502 			 * the worst case resulting in an earlier expiration.
2503 			 * Alternatively, the found entry can be replaced
2504 			 * altogether.
2505 			 */
2506 			MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) == (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2507 #if 0
2508 			if (tsp != NULL) {
2509 				KASSERT((n2->nc_flag & NCF_TS) != 0,
2510 				    ("no NCF_TS"));
2511 				n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2512 				n2_ts->nc_time = ncp_ts->nc_time;
2513 				n2_ts->nc_ticks = ncp_ts->nc_ticks;
2514 				if (dtsp != NULL) {
2515 					n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2516 					n2_ts->nc_nc.nc_flag |= NCF_DTS;
2517 				}
2518 			}
2519 #endif
2520 			SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2521 			    vp);
2522 			goto out_unlock_free;
2523 		}
2524 	}
2525 
2526 	if (flag == NCF_ISDOTDOT) {
2527 		/*
2528 		 * See if we are trying to add .. entry, but some other lookup
2529 		 * has populated v_cache_dd pointer already.
2530 		 */
2531 		if (dvp->v_cache_dd != NULL)
2532 			goto out_unlock_free;
2533 		KASSERT(vp == NULL || vp->v_type == VDIR,
2534 		    ("wrong vnode type %p", vp));
2535 		atomic_thread_fence_rel();
2536 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2537 	}
2538 
2539 	if (vp != NULL) {
2540 		if (flag != NCF_ISDOTDOT) {
2541 			/*
2542 			 * For this case, the cache entry maps both the
2543 			 * directory name in it and the name ".." for the
2544 			 * directory's parent.
2545 			 */
2546 			if ((ndd = vp->v_cache_dd) != NULL) {
2547 				if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2548 					cache_zap_locked(ndd);
2549 				else
2550 					ndd = NULL;
2551 			}
2552 			atomic_thread_fence_rel();
2553 			atomic_store_ptr(&vp->v_cache_dd, ncp);
2554 		} else if (vp->v_type != VDIR) {
2555 			if (vp->v_cache_dd != NULL) {
2556 				atomic_store_ptr(&vp->v_cache_dd, NULL);
2557 			}
2558 		}
2559 	}
2560 
2561 	if (flag != NCF_ISDOTDOT) {
2562 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2563 			cache_hold_vnode(dvp);
2564 		}
2565 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2566 	}
2567 
2568 	/*
2569 	 * If the entry is "negative", we place it into the
2570 	 * "negative" cache queue, otherwise, we place it into the
2571 	 * destination vnode's cache entries queue.
2572 	 */
2573 	if (vp != NULL) {
2574 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2575 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2576 		    vp);
2577 	} else {
2578 		if (cnp->cn_flags & ISWHITEOUT)
2579 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2580 		cache_neg_insert(ncp);
2581 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2582 		    ncp->nc_name);
2583 	}
2584 
2585 	/*
2586 	 * Insert the new namecache entry into the appropriate chain
2587 	 * within the cache entries table.
2588 	 */
2589 	CK_SLIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2590 
2591 	atomic_thread_fence_rel();
2592 	/*
2593 	 * Mark the entry as fully constructed.
2594 	 * It is immutable past this point until its removal.
2595 	 */
2596 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2597 
2598 	cache_enter_unlock(&cel);
2599 	if (ndd != NULL)
2600 		cache_free(ndd);
2601 	return;
2602 out_unlock_free:
2603 	cache_enter_unlock(&cel);
2604 	cache_free(ncp);
2605 	return;
2606 }
2607 
2608 /*
2609  * A variant of the above accepting flags.
2610  *
2611  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2612  *
2613  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2614  * happens to match and it is doing it in an inefficient manner. It was added
2615  * to accommodate NFS which runs into a case where the target for a given name
2616  * may change from under it. Note this does nothing to solve the following
2617  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2618  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2619  */
2620 void
cache_enter_time_flags(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp,int flags)2621 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2622     struct timespec *tsp, struct timespec *dtsp, int flags)
2623 {
2624 
2625 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2626 
2627 	if (flags & VFS_CACHE_DROPOLD)
2628 		cache_remove_cnp(dvp, cnp);
2629 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2630 }
2631 
2632 static u_long
cache_roundup_2(u_long val)2633 cache_roundup_2(u_long val)
2634 {
2635 	u_long res;
2636 
2637 	for (res = 1; res <= val; res <<= 1)
2638 		continue;
2639 
2640 	return (res);
2641 }
2642 
2643 static struct nchashhead *
nchinittbl(u_long elements,u_long * hashmask)2644 nchinittbl(u_long elements, u_long *hashmask)
2645 {
2646 	struct nchashhead *hashtbl;
2647 	u_long hashsize, i;
2648 
2649 	hashsize = cache_roundup_2(elements) / 2;
2650 
2651 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2652 	for (i = 0; i < hashsize; i++)
2653 		CK_SLIST_INIT(&hashtbl[i]);
2654 	*hashmask = hashsize - 1;
2655 	return (hashtbl);
2656 }
2657 
2658 static void
ncfreetbl(struct nchashhead * hashtbl)2659 ncfreetbl(struct nchashhead *hashtbl)
2660 {
2661 
2662 	free(hashtbl, M_VFSCACHE);
2663 }
2664 
2665 /*
2666  * Name cache initialization, from vfs_init() when we are booting
2667  */
2668 static void
nchinit(void * dummy __unused)2669 nchinit(void *dummy __unused)
2670 {
2671 	u_int i;
2672 
2673 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2674 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2675 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2676 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2677 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2678 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2679 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2680 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2681 
2682 	VFS_SMR_ZONE_SET(cache_zone_small);
2683 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2684 	VFS_SMR_ZONE_SET(cache_zone_large);
2685 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2686 
2687 	ncsize = desiredvnodes * ncsizefactor;
2688 	cache_recalc_neg_min();
2689 	nchashtbl = nchinittbl(desiredvnodes * 2, &nchash);
2690 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2691 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2692 		ncbuckethash = 7;
2693 	if (ncbuckethash > nchash)
2694 		ncbuckethash = nchash;
2695 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2696 	    M_WAITOK | M_ZERO);
2697 	for (i = 0; i < numbucketlocks; i++)
2698 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2699 	ncvnodehash = ncbuckethash;
2700 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2701 	    M_WAITOK | M_ZERO);
2702 	for (i = 0; i < numvnodelocks; i++)
2703 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2704 
2705 	for (i = 0; i < numneglists; i++) {
2706 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2707 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2708 		TAILQ_INIT(&neglists[i].nl_list);
2709 		TAILQ_INIT(&neglists[i].nl_hotlist);
2710 	}
2711 }
2712 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2713 
2714 void
cache_vnode_init(struct vnode * vp)2715 cache_vnode_init(struct vnode *vp)
2716 {
2717 
2718 	LIST_INIT(&vp->v_cache_src);
2719 	TAILQ_INIT(&vp->v_cache_dst);
2720 	vp->v_cache_dd = NULL;
2721 	cache_prehash(vp);
2722 }
2723 
2724 /*
2725  * Induce transient cache misses for lockless operation in cache_lookup() by
2726  * using a temporary hash table.
2727  *
2728  * This will force a fs lookup.
2729  *
2730  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2731  * to observe all CPUs not performing the lookup.
2732  */
2733 static void
cache_changesize_set_temp(struct nchashhead * temptbl,u_long temphash)2734 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2735 {
2736 
2737 	MPASS(temphash < nchash);
2738 	/*
2739 	 * Change the size. The new size is smaller and can safely be used
2740 	 * against the existing table. All lookups which now hash wrong will
2741 	 * result in a cache miss, which all callers are supposed to know how
2742 	 * to handle.
2743 	 */
2744 	atomic_store_long(&nchash, temphash);
2745 	atomic_thread_fence_rel();
2746 	vfs_smr_synchronize();
2747 	/*
2748 	 * At this point everyone sees the updated hash value, but they still
2749 	 * see the old table.
2750 	 */
2751 	atomic_store_ptr(&nchashtbl, temptbl);
2752 	atomic_thread_fence_rel();
2753 	vfs_smr_synchronize();
2754 	/*
2755 	 * At this point everyone sees the updated table pointer and size pair.
2756 	 */
2757 }
2758 
2759 /*
2760  * Set the new hash table.
2761  *
2762  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2763  * lockless operation in cache_lookup().
2764  */
2765 static void
cache_changesize_set_new(struct nchashhead * new_tbl,u_long new_hash)2766 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2767 {
2768 
2769 	MPASS(nchash < new_hash);
2770 	/*
2771 	 * Change the pointer first. This wont result in out of bounds access
2772 	 * since the temporary table is guaranteed to be smaller.
2773 	 */
2774 	atomic_store_ptr(&nchashtbl, new_tbl);
2775 	atomic_thread_fence_rel();
2776 	vfs_smr_synchronize();
2777 	/*
2778 	 * At this point everyone sees the updated pointer value, but they
2779 	 * still see the old size.
2780 	 */
2781 	atomic_store_long(&nchash, new_hash);
2782 	atomic_thread_fence_rel();
2783 	vfs_smr_synchronize();
2784 	/*
2785 	 * At this point everyone sees the updated table pointer and size pair.
2786 	 */
2787 }
2788 
2789 void
cache_changesize(u_long newmaxvnodes)2790 cache_changesize(u_long newmaxvnodes)
2791 {
2792 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2793 	u_long new_nchash, old_nchash, temphash;
2794 	struct namecache *ncp;
2795 	uint32_t hash;
2796 	u_long newncsize;
2797 	u_long i;
2798 
2799 	newncsize = newmaxvnodes * ncsizefactor;
2800 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2801 	if (newmaxvnodes < numbucketlocks)
2802 		newmaxvnodes = numbucketlocks;
2803 
2804 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2805 	/* If same hash table size, nothing to do */
2806 	if (nchash == new_nchash) {
2807 		ncfreetbl(new_nchashtbl);
2808 		return;
2809 	}
2810 
2811 	temptbl = nchinittbl(1, &temphash);
2812 
2813 	/*
2814 	 * Move everything from the old hash table to the new table.
2815 	 * None of the namecache entries in the table can be removed
2816 	 * because to do so, they have to be removed from the hash table.
2817 	 */
2818 	cache_lock_all_vnodes();
2819 	cache_lock_all_buckets();
2820 	old_nchashtbl = nchashtbl;
2821 	old_nchash = nchash;
2822 	cache_changesize_set_temp(temptbl, temphash);
2823 	for (i = 0; i <= old_nchash; i++) {
2824 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2825 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2826 			    ncp->nc_dvp);
2827 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2828 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2829 		}
2830 	}
2831 	ncsize = newncsize;
2832 	cache_recalc_neg_min();
2833 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2834 	cache_unlock_all_buckets();
2835 	cache_unlock_all_vnodes();
2836 	ncfreetbl(old_nchashtbl);
2837 	ncfreetbl(temptbl);
2838 }
2839 
2840 /*
2841  * Remove all entries from and to a particular vnode.
2842  */
2843 static void
cache_purge_impl(struct vnode * vp)2844 cache_purge_impl(struct vnode *vp)
2845 {
2846 	struct cache_freebatch batch;
2847 	struct namecache *ncp;
2848 	struct mtx *vlp, *vlp2;
2849 
2850 	TAILQ_INIT(&batch);
2851 	vlp = VP2VNODELOCK(vp);
2852 	vlp2 = NULL;
2853 	mtx_lock(vlp);
2854 retry:
2855 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2856 		ncp = LIST_FIRST(&vp->v_cache_src);
2857 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2858 			goto retry;
2859 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2860 	}
2861 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2862 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2863 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2864 			goto retry;
2865 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2866 	}
2867 	ncp = vp->v_cache_dd;
2868 	if (ncp != NULL) {
2869 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2870 		   ("lost dotdot link"));
2871 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2872 			goto retry;
2873 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2874 	}
2875 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2876 	mtx_unlock(vlp);
2877 	if (vlp2 != NULL)
2878 		mtx_unlock(vlp2);
2879 	cache_free_batch(&batch);
2880 }
2881 
2882 /*
2883  * Opportunistic check to see if there is anything to do.
2884  */
2885 static bool
cache_has_entries(struct vnode * vp)2886 cache_has_entries(struct vnode *vp)
2887 {
2888 
2889 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2890 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2891 		return (false);
2892 	return (true);
2893 }
2894 
2895 void
cache_purge(struct vnode * vp)2896 cache_purge(struct vnode *vp)
2897 {
2898 
2899 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2900 	if (!cache_has_entries(vp))
2901 		return;
2902 	cache_purge_impl(vp);
2903 }
2904 
2905 /*
2906  * Only to be used by vgone.
2907  */
2908 void
cache_purge_vgone(struct vnode * vp)2909 cache_purge_vgone(struct vnode *vp)
2910 {
2911 	struct mtx *vlp;
2912 
2913 	VNPASS(VN_IS_DOOMED(vp), vp);
2914 	if (cache_has_entries(vp)) {
2915 		cache_purge_impl(vp);
2916 		return;
2917 	}
2918 
2919 	/*
2920 	 * Serialize against a potential thread doing cache_purge.
2921 	 */
2922 	vlp = VP2VNODELOCK(vp);
2923 	mtx_wait_unlocked(vlp);
2924 	if (cache_has_entries(vp)) {
2925 		cache_purge_impl(vp);
2926 		return;
2927 	}
2928 	return;
2929 }
2930 
2931 /*
2932  * Remove all negative entries for a particular directory vnode.
2933  */
2934 void
cache_purge_negative(struct vnode * vp)2935 cache_purge_negative(struct vnode *vp)
2936 {
2937 	struct cache_freebatch batch;
2938 	struct namecache *ncp, *nnp;
2939 	struct mtx *vlp;
2940 
2941 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
2942 	if (LIST_EMPTY(&vp->v_cache_src))
2943 		return;
2944 	TAILQ_INIT(&batch);
2945 	vlp = VP2VNODELOCK(vp);
2946 	mtx_lock(vlp);
2947 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
2948 		if (!(ncp->nc_flag & NCF_NEGATIVE))
2949 			continue;
2950 		cache_zap_negative_locked_vnode_kl(ncp, vp);
2951 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2952 	}
2953 	mtx_unlock(vlp);
2954 	cache_free_batch(&batch);
2955 }
2956 
2957 /*
2958  * Entry points for modifying VOP operations.
2959  */
2960 void
cache_vop_rename(struct vnode * fdvp,struct vnode * fvp,struct vnode * tdvp,struct vnode * tvp,struct componentname * fcnp,struct componentname * tcnp)2961 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
2962     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
2963 {
2964 
2965 	ASSERT_VOP_IN_SEQC(fdvp);
2966 	ASSERT_VOP_IN_SEQC(fvp);
2967 	ASSERT_VOP_IN_SEQC(tdvp);
2968 	if (tvp != NULL)
2969 		ASSERT_VOP_IN_SEQC(tvp);
2970 
2971 	cache_purge(fvp);
2972 	if (tvp != NULL) {
2973 		cache_purge(tvp);
2974 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
2975 		    ("%s: lingering negative entry", __func__));
2976 	} else {
2977 		cache_remove_cnp(tdvp, tcnp);
2978 	}
2979 
2980 	/*
2981 	 * TODO
2982 	 *
2983 	 * Historically renaming was always purging all revelang entries,
2984 	 * but that's quite wasteful. In particular turns out that in many cases
2985 	 * the target file is immediately accessed after rename, inducing a cache
2986 	 * miss.
2987 	 *
2988 	 * Recode this to reduce relocking and reuse the existing entry (if any)
2989 	 * instead of just removing it above and allocating a new one here.
2990 	 */
2991 	cache_enter(tdvp, fvp, tcnp);
2992 }
2993 
2994 void
cache_vop_rmdir(struct vnode * dvp,struct vnode * vp)2995 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
2996 {
2997 
2998 	ASSERT_VOP_IN_SEQC(dvp);
2999 	ASSERT_VOP_IN_SEQC(vp);
3000 	cache_purge(vp);
3001 }
3002 
3003 #ifdef INVARIANTS
3004 /*
3005  * Validate that if an entry exists it matches.
3006  */
3007 void
cache_validate(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)3008 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3009 {
3010 	struct namecache *ncp;
3011 	struct mtx *blp;
3012 	uint32_t hash;
3013 
3014 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3015 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3016 		return;
3017 	blp = HASH2BUCKETLOCK(hash);
3018 	mtx_lock(blp);
3019 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
3020 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
3021 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen)) {
3022 			if (ncp->nc_vp != vp)
3023 				panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3024 				    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3025 		}
3026 	}
3027 	mtx_unlock(blp);
3028 }
3029 
3030 void
cache_assert_no_entries(struct vnode * vp)3031 cache_assert_no_entries(struct vnode *vp)
3032 {
3033 
3034 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3035 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3036 	VNPASS(vp->v_cache_dd == NULL, vp);
3037 }
3038 #endif
3039 
3040 /*
3041  * Flush all entries referencing a particular filesystem.
3042  */
3043 void
cache_purgevfs(struct mount * mp)3044 cache_purgevfs(struct mount *mp)
3045 {
3046 	struct vnode *vp, *mvp;
3047 	size_t visited __sdt_used, purged __sdt_used;
3048 
3049 	visited = purged = 0;
3050 	/*
3051 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3052 	 * support filtering and avoid the interlock to begin with.
3053 	 */
3054 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3055 		visited++;
3056 		if (!cache_has_entries(vp)) {
3057 			VI_UNLOCK(vp);
3058 			continue;
3059 		}
3060 		vholdl(vp);
3061 		VI_UNLOCK(vp);
3062 		cache_purge(vp);
3063 		purged++;
3064 		vdrop(vp);
3065 	}
3066 
3067 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3068 }
3069 
3070 /*
3071  * Perform canonical checks and cache lookup and pass on to filesystem
3072  * through the vop_cachedlookup only if needed.
3073  */
3074 
3075 int
vfs_cache_lookup(struct vop_lookup_args * ap)3076 vfs_cache_lookup(struct vop_lookup_args *ap)
3077 {
3078 	struct vnode *dvp;
3079 	int error;
3080 	struct vnode **vpp = ap->a_vpp;
3081 	struct componentname *cnp = ap->a_cnp;
3082 	int flags = cnp->cn_flags;
3083 
3084 	*vpp = NULL;
3085 	dvp = ap->a_dvp;
3086 
3087 	if (dvp->v_type != VDIR)
3088 		return (ENOTDIR);
3089 
3090 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3091 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3092 		return (EROFS);
3093 
3094 	error = vn_dir_check_exec(dvp, cnp);
3095 	if (error != 0)
3096 		return (error);
3097 
3098 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3099 	if (error == 0)
3100 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3101 	if (error == -1)
3102 		return (0);
3103 	return (error);
3104 }
3105 
3106 /* Implementation of the getcwd syscall. */
3107 int
sys___getcwd(struct thread * td,struct __getcwd_args * uap)3108 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3109 {
3110 	char *buf, *retbuf;
3111 	size_t buflen;
3112 	int error;
3113 
3114 	buflen = uap->buflen;
3115 	if (__predict_false(buflen < 2))
3116 		return (EINVAL);
3117 	if (buflen > MAXPATHLEN)
3118 		buflen = MAXPATHLEN;
3119 
3120 	buf = uma_zalloc(namei_zone, M_WAITOK);
3121 	error = vn_getcwd(buf, &retbuf, &buflen);
3122 	if (error == 0)
3123 		error = copyout(retbuf, uap->buf, buflen);
3124 	uma_zfree(namei_zone, buf);
3125 	return (error);
3126 }
3127 
3128 int
vn_getcwd(char * buf,char ** retbuf,size_t * buflen)3129 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3130 {
3131 	struct pwd *pwd;
3132 	int error;
3133 
3134 	vfs_smr_enter();
3135 	pwd = pwd_get_smr();
3136 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3137 	    buflen, 0);
3138 	VFS_SMR_ASSERT_NOT_ENTERED();
3139 	if (error < 0) {
3140 		pwd = pwd_hold(curthread);
3141 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3142 		    retbuf, buflen);
3143 		pwd_drop(pwd);
3144 	}
3145 
3146 #ifdef KTRACE
3147 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3148 		ktrnamei(*retbuf);
3149 #endif
3150 	return (error);
3151 }
3152 
3153 /*
3154  * Canonicalize a path by walking it forward and back.
3155  *
3156  * BUGS:
3157  * - Nothing guarantees the integrity of the entire chain. Consider the case
3158  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3159  *   "foo" into "quux" during the backwards walk. The result will be
3160  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3161  *   walk in userspace. Moreover, the path we return is inaccessible if the
3162  *   calling thread lacks permission to traverse "quux".
3163  */
3164 static int
kern___realpathat(struct thread * td,int fd,const char * path,char * buf,size_t size,int flags,enum uio_seg pathseg)3165 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3166     size_t size, int flags, enum uio_seg pathseg)
3167 {
3168 	struct nameidata nd;
3169 	char *retbuf, *freebuf;
3170 	int error;
3171 
3172 	if (flags != 0)
3173 		return (EINVAL);
3174 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3175 	    pathseg, path, fd, &cap_fstat_rights);
3176 	if ((error = namei(&nd)) != 0)
3177 		return (error);
3178 
3179 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3180 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3181 		/*
3182 		 * This happens if vp is a file mount. The call to
3183 		 * vn_fullpath_hardlink can panic if path resolution can't be
3184 		 * handled without the directory.
3185 		 *
3186 		 * To resolve this, we find the vnode which was mounted on -
3187 		 * this should have a unique global path since we disallow
3188 		 * mounting on linked files.
3189 		 */
3190 		struct vnode *covered_vp;
3191 		error = vn_lock(nd.ni_vp, LK_SHARED);
3192 		if (error != 0)
3193 			goto out;
3194 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3195 		vref(covered_vp);
3196 		VOP_UNLOCK(nd.ni_vp);
3197 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3198 		vrele(covered_vp);
3199 	} else {
3200 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp, nd.ni_cnd.cn_nameptr,
3201 		    nd.ni_cnd.cn_namelen, &retbuf, &freebuf, &size);
3202 	}
3203 	if (error == 0) {
3204 		error = copyout(retbuf, buf, size);
3205 		free(freebuf, M_TEMP);
3206 	}
3207 out:
3208 	vrele(nd.ni_vp);
3209 	vrele(nd.ni_dvp);
3210 	NDFREE_PNBUF(&nd);
3211 	return (error);
3212 }
3213 
3214 int
sys___realpathat(struct thread * td,struct __realpathat_args * uap)3215 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3216 {
3217 
3218 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3219 	    uap->flags, UIO_USERSPACE));
3220 }
3221 
3222 /*
3223  * Retrieve the full filesystem path that correspond to a vnode from the name
3224  * cache (if available)
3225  */
3226 int
vn_fullpath(struct vnode * vp,char ** retbuf,char ** freebuf)3227 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3228 {
3229 	struct pwd *pwd;
3230 	char *buf;
3231 	size_t buflen;
3232 	int error;
3233 
3234 	if (__predict_false(vp == NULL))
3235 		return (EINVAL);
3236 
3237 	buflen = MAXPATHLEN;
3238 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3239 	vfs_smr_enter();
3240 	pwd = pwd_get_smr();
3241 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3242 	VFS_SMR_ASSERT_NOT_ENTERED();
3243 	if (error < 0) {
3244 		pwd = pwd_hold(curthread);
3245 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3246 		pwd_drop(pwd);
3247 	}
3248 	if (error == 0)
3249 		*freebuf = buf;
3250 	else
3251 		free(buf, M_TEMP);
3252 	return (error);
3253 }
3254 
3255 /*
3256  * This function is similar to vn_fullpath, but it attempts to lookup the
3257  * pathname relative to the global root mount point.  This is required for the
3258  * auditing sub-system, as audited pathnames must be absolute, relative to the
3259  * global root mount point.
3260  */
3261 int
vn_fullpath_global(struct vnode * vp,char ** retbuf,char ** freebuf)3262 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3263 {
3264 	char *buf;
3265 	size_t buflen;
3266 	int error;
3267 
3268 	if (__predict_false(vp == NULL))
3269 		return (EINVAL);
3270 	buflen = MAXPATHLEN;
3271 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3272 	vfs_smr_enter();
3273 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3274 	VFS_SMR_ASSERT_NOT_ENTERED();
3275 	if (error < 0) {
3276 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3277 	}
3278 	if (error == 0)
3279 		*freebuf = buf;
3280 	else
3281 		free(buf, M_TEMP);
3282 	return (error);
3283 }
3284 
3285 static struct namecache *
vn_dd_from_dst(struct vnode * vp)3286 vn_dd_from_dst(struct vnode *vp)
3287 {
3288 	struct namecache *ncp;
3289 
3290 	cache_assert_vnode_locked(vp);
3291 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3292 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3293 			return (ncp);
3294 	}
3295 	return (NULL);
3296 }
3297 
3298 int
vn_vptocnp(struct vnode ** vp,char * buf,size_t * buflen)3299 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3300 {
3301 	struct vnode *dvp;
3302 	struct namecache *ncp;
3303 	struct mtx *vlp;
3304 	int error;
3305 
3306 	vlp = VP2VNODELOCK(*vp);
3307 	mtx_lock(vlp);
3308 	ncp = (*vp)->v_cache_dd;
3309 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3310 		KASSERT(ncp == vn_dd_from_dst(*vp),
3311 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3312 		    ncp, vn_dd_from_dst(*vp)));
3313 	} else {
3314 		ncp = vn_dd_from_dst(*vp);
3315 	}
3316 	if (ncp != NULL) {
3317 		if (*buflen < ncp->nc_nlen) {
3318 			mtx_unlock(vlp);
3319 			vrele(*vp);
3320 			counter_u64_add(numfullpathfail4, 1);
3321 			error = ENOMEM;
3322 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3323 			    vp, NULL);
3324 			return (error);
3325 		}
3326 		*buflen -= ncp->nc_nlen;
3327 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3328 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3329 		    ncp->nc_name, vp);
3330 		dvp = *vp;
3331 		*vp = ncp->nc_dvp;
3332 		vref(*vp);
3333 		mtx_unlock(vlp);
3334 		vrele(dvp);
3335 		return (0);
3336 	}
3337 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3338 
3339 	mtx_unlock(vlp);
3340 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3341 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3342 	vput(*vp);
3343 	if (error) {
3344 		counter_u64_add(numfullpathfail2, 1);
3345 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3346 		return (error);
3347 	}
3348 
3349 	*vp = dvp;
3350 	if (VN_IS_DOOMED(dvp)) {
3351 		/* forced unmount */
3352 		vrele(dvp);
3353 		error = ENOENT;
3354 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3355 		return (error);
3356 	}
3357 	/*
3358 	 * *vp has its use count incremented still.
3359 	 */
3360 
3361 	return (0);
3362 }
3363 
3364 /*
3365  * Resolve a directory to a pathname.
3366  *
3367  * The name of the directory can always be found in the namecache or fetched
3368  * from the filesystem. There is also guaranteed to be only one parent, meaning
3369  * we can just follow vnodes up until we find the root.
3370  *
3371  * The vnode must be referenced.
3372  */
3373 static int
vn_fullpath_dir(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * len,size_t addend)3374 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3375     size_t *len, size_t addend)
3376 {
3377 #ifdef KDTRACE_HOOKS
3378 	struct vnode *startvp = vp;
3379 #endif
3380 	struct vnode *vp1;
3381 	size_t buflen;
3382 	int error;
3383 	bool slash_prefixed;
3384 
3385 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3386 	VNPASS(vp->v_usecount > 0, vp);
3387 
3388 	buflen = *len;
3389 
3390 	slash_prefixed = true;
3391 	if (addend == 0) {
3392 		MPASS(*len >= 2);
3393 		buflen--;
3394 		buf[buflen] = '\0';
3395 		slash_prefixed = false;
3396 	}
3397 
3398 	error = 0;
3399 
3400 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3401 	counter_u64_add(numfullpathcalls, 1);
3402 	while (vp != rdir && vp != rootvnode) {
3403 		/*
3404 		 * The vp vnode must be already fully constructed,
3405 		 * since it is either found in namecache or obtained
3406 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3407 		 * without obtaining the vnode lock.
3408 		 */
3409 		if ((vp->v_vflag & VV_ROOT) != 0) {
3410 			vn_lock(vp, LK_RETRY | LK_SHARED);
3411 
3412 			/*
3413 			 * With the vnode locked, check for races with
3414 			 * unmount, forced or not.  Note that we
3415 			 * already verified that vp is not equal to
3416 			 * the root vnode, which means that
3417 			 * mnt_vnodecovered can be NULL only for the
3418 			 * case of unmount.
3419 			 */
3420 			if (VN_IS_DOOMED(vp) ||
3421 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3422 			    vp1->v_mountedhere != vp->v_mount) {
3423 				vput(vp);
3424 				error = ENOENT;
3425 				SDT_PROBE3(vfs, namecache, fullpath, return,
3426 				    error, vp, NULL);
3427 				break;
3428 			}
3429 
3430 			vref(vp1);
3431 			vput(vp);
3432 			vp = vp1;
3433 			continue;
3434 		}
3435 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3436 		error = vn_vptocnp(&vp, buf, &buflen);
3437 		if (error)
3438 			break;
3439 		if (buflen == 0) {
3440 			vrele(vp);
3441 			error = ENOMEM;
3442 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3443 			    startvp, NULL);
3444 			break;
3445 		}
3446 		buf[--buflen] = '/';
3447 		slash_prefixed = true;
3448 	}
3449 	if (error)
3450 		return (error);
3451 	if (!slash_prefixed) {
3452 		if (buflen == 0) {
3453 			vrele(vp);
3454 			counter_u64_add(numfullpathfail4, 1);
3455 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3456 			    startvp, NULL);
3457 			return (ENOMEM);
3458 		}
3459 		buf[--buflen] = '/';
3460 	}
3461 	counter_u64_add(numfullpathfound, 1);
3462 	vrele(vp);
3463 
3464 	*retbuf = buf + buflen;
3465 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3466 	*len -= buflen;
3467 	*len += addend;
3468 	return (0);
3469 }
3470 
3471 /*
3472  * Resolve an arbitrary vnode to a pathname.
3473  *
3474  * Note 2 caveats:
3475  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3476  *   resolve to a different path than the one used to find it
3477  * - namecache is not mandatory, meaning names are not guaranteed to be added
3478  *   (in which case resolving fails)
3479  */
3480 static void __inline
cache_rev_failed_impl(int * reason,int line)3481 cache_rev_failed_impl(int *reason, int line)
3482 {
3483 
3484 	*reason = line;
3485 }
3486 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3487 
3488 static int
vn_fullpath_any_smr(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen,size_t addend)3489 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3490     char **retbuf, size_t *buflen, size_t addend)
3491 {
3492 #ifdef KDTRACE_HOOKS
3493 	struct vnode *startvp = vp;
3494 #endif
3495 	struct vnode *tvp;
3496 	struct mount *mp;
3497 	struct namecache *ncp;
3498 	size_t orig_buflen;
3499 	int reason;
3500 	int error;
3501 #ifdef KDTRACE_HOOKS
3502 	int i;
3503 #endif
3504 	seqc_t vp_seqc, tvp_seqc;
3505 	u_char nc_flag;
3506 
3507 	VFS_SMR_ASSERT_ENTERED();
3508 
3509 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3510 		vfs_smr_exit();
3511 		return (-1);
3512 	}
3513 
3514 	orig_buflen = *buflen;
3515 
3516 	if (addend == 0) {
3517 		MPASS(*buflen >= 2);
3518 		*buflen -= 1;
3519 		buf[*buflen] = '\0';
3520 	}
3521 
3522 	if (vp == rdir || vp == rootvnode) {
3523 		if (addend == 0) {
3524 			*buflen -= 1;
3525 			buf[*buflen] = '/';
3526 		}
3527 		goto out_ok;
3528 	}
3529 
3530 #ifdef KDTRACE_HOOKS
3531 	i = 0;
3532 #endif
3533 	error = -1;
3534 	ncp = NULL; /* for sdt probe down below */
3535 	vp_seqc = vn_seqc_read_any(vp);
3536 	if (seqc_in_modify(vp_seqc)) {
3537 		cache_rev_failed(&reason);
3538 		goto out_abort;
3539 	}
3540 
3541 	for (;;) {
3542 #ifdef KDTRACE_HOOKS
3543 		i++;
3544 #endif
3545 		if ((vp->v_vflag & VV_ROOT) != 0) {
3546 			mp = atomic_load_ptr(&vp->v_mount);
3547 			if (mp == NULL) {
3548 				cache_rev_failed(&reason);
3549 				goto out_abort;
3550 			}
3551 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3552 			tvp_seqc = vn_seqc_read_any(tvp);
3553 			if (seqc_in_modify(tvp_seqc)) {
3554 				cache_rev_failed(&reason);
3555 				goto out_abort;
3556 			}
3557 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3558 				cache_rev_failed(&reason);
3559 				goto out_abort;
3560 			}
3561 			vp = tvp;
3562 			vp_seqc = tvp_seqc;
3563 			continue;
3564 		}
3565 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3566 		if (ncp == NULL) {
3567 			cache_rev_failed(&reason);
3568 			goto out_abort;
3569 		}
3570 		nc_flag = atomic_load_char(&ncp->nc_flag);
3571 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3572 			cache_rev_failed(&reason);
3573 			goto out_abort;
3574 		}
3575 		if (ncp->nc_nlen >= *buflen) {
3576 			cache_rev_failed(&reason);
3577 			error = ENOMEM;
3578 			goto out_abort;
3579 		}
3580 		*buflen -= ncp->nc_nlen;
3581 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3582 		*buflen -= 1;
3583 		buf[*buflen] = '/';
3584 		tvp = ncp->nc_dvp;
3585 		tvp_seqc = vn_seqc_read_any(tvp);
3586 		if (seqc_in_modify(tvp_seqc)) {
3587 			cache_rev_failed(&reason);
3588 			goto out_abort;
3589 		}
3590 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3591 			cache_rev_failed(&reason);
3592 			goto out_abort;
3593 		}
3594 		/*
3595 		 * Acquire fence provided by vn_seqc_read_any above.
3596 		 */
3597 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3598 			cache_rev_failed(&reason);
3599 			goto out_abort;
3600 		}
3601 		if (!cache_ncp_canuse(ncp)) {
3602 			cache_rev_failed(&reason);
3603 			goto out_abort;
3604 		}
3605 		vp = tvp;
3606 		vp_seqc = tvp_seqc;
3607 		if (vp == rdir || vp == rootvnode)
3608 			break;
3609 	}
3610 out_ok:
3611 	vfs_smr_exit();
3612 	*retbuf = buf + *buflen;
3613 	*buflen = orig_buflen - *buflen + addend;
3614 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3615 	return (0);
3616 
3617 out_abort:
3618 	*buflen = orig_buflen;
3619 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3620 	vfs_smr_exit();
3621 	return (error);
3622 }
3623 
3624 static int
vn_fullpath_any(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen)3625 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3626     size_t *buflen)
3627 {
3628 	size_t orig_buflen, addend;
3629 	int error;
3630 
3631 	if (*buflen < 2)
3632 		return (EINVAL);
3633 
3634 	orig_buflen = *buflen;
3635 
3636 	vref(vp);
3637 	addend = 0;
3638 	if (vp->v_type != VDIR) {
3639 		*buflen -= 1;
3640 		buf[*buflen] = '\0';
3641 		error = vn_vptocnp(&vp, buf, buflen);
3642 		if (error)
3643 			return (error);
3644 		if (*buflen == 0) {
3645 			vrele(vp);
3646 			return (ENOMEM);
3647 		}
3648 		*buflen -= 1;
3649 		buf[*buflen] = '/';
3650 		addend = orig_buflen - *buflen;
3651 	}
3652 
3653 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3654 }
3655 
3656 /*
3657  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3658  *
3659  * Since the namecache does not track hardlinks, the caller is expected to
3660  * first look up the target vnode with WANTPARENT flag passed to namei to get
3661  * dvp and vp.
3662  *
3663  * Then we have 2 cases:
3664  * - if the found vnode is a directory, the path can be constructed just by
3665  *   following names up the chain
3666  * - otherwise we populate the buffer with the saved name and start resolving
3667  *   from the parent
3668  */
3669 int
vn_fullpath_hardlink(struct vnode * vp,struct vnode * dvp,const char * hrdl_name,size_t hrdl_name_length,char ** retbuf,char ** freebuf,size_t * buflen)3670 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3671     const char *hrdl_name, size_t hrdl_name_length,
3672     char **retbuf, char **freebuf, size_t *buflen)
3673 {
3674 	char *buf, *tmpbuf;
3675 	struct pwd *pwd;
3676 	size_t addend;
3677 	int error;
3678 	__enum_uint8(vtype) type;
3679 
3680 	if (*buflen < 2)
3681 		return (EINVAL);
3682 	if (*buflen > MAXPATHLEN)
3683 		*buflen = MAXPATHLEN;
3684 
3685 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3686 
3687 	addend = 0;
3688 
3689 	/*
3690 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3691 	 *
3692 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3693 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3694 	 * If the type is VDIR (like in this very case) we can skip looking
3695 	 * at ni_dvp in the first place. However, since vnodes get passed here
3696 	 * unlocked the target may transition to doomed state (type == VBAD)
3697 	 * before we get to evaluate the condition. If this happens, we will
3698 	 * populate part of the buffer and descend to vn_fullpath_dir with
3699 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3700 	 */
3701 	type = atomic_load_8(&vp->v_type);
3702 	if (type == VBAD) {
3703 		error = ENOENT;
3704 		goto out_bad;
3705 	}
3706 	if (type != VDIR) {
3707 		addend = hrdl_name_length + 2;
3708 		if (*buflen < addend) {
3709 			error = ENOMEM;
3710 			goto out_bad;
3711 		}
3712 		*buflen -= addend;
3713 		tmpbuf = buf + *buflen;
3714 		tmpbuf[0] = '/';
3715 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3716 		tmpbuf[addend - 1] = '\0';
3717 		vp = dvp;
3718 	}
3719 
3720 	vfs_smr_enter();
3721 	pwd = pwd_get_smr();
3722 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3723 	    addend);
3724 	VFS_SMR_ASSERT_NOT_ENTERED();
3725 	if (error < 0) {
3726 		pwd = pwd_hold(curthread);
3727 		vref(vp);
3728 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3729 		    addend);
3730 		pwd_drop(pwd);
3731 	}
3732 	if (error != 0)
3733 		goto out_bad;
3734 
3735 	*freebuf = buf;
3736 
3737 	return (0);
3738 out_bad:
3739 	free(buf, M_TEMP);
3740 	return (error);
3741 }
3742 
3743 struct vnode *
vn_dir_dd_ino(struct vnode * vp)3744 vn_dir_dd_ino(struct vnode *vp)
3745 {
3746 	struct namecache *ncp;
3747 	struct vnode *ddvp;
3748 	struct mtx *vlp;
3749 	enum vgetstate vs;
3750 
3751 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3752 	vlp = VP2VNODELOCK(vp);
3753 	mtx_lock(vlp);
3754 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3755 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3756 			continue;
3757 		ddvp = ncp->nc_dvp;
3758 		vs = vget_prep(ddvp);
3759 		mtx_unlock(vlp);
3760 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3761 			return (NULL);
3762 		return (ddvp);
3763 	}
3764 	mtx_unlock(vlp);
3765 	return (NULL);
3766 }
3767 
3768 int
vn_commname(struct vnode * vp,char * buf,u_int buflen)3769 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3770 {
3771 	struct namecache *ncp;
3772 	struct mtx *vlp;
3773 	int l;
3774 
3775 	vlp = VP2VNODELOCK(vp);
3776 	mtx_lock(vlp);
3777 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3778 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3779 			break;
3780 	if (ncp == NULL) {
3781 		mtx_unlock(vlp);
3782 		return (ENOENT);
3783 	}
3784 	l = min(ncp->nc_nlen, buflen - 1);
3785 	memcpy(buf, ncp->nc_name, l);
3786 	mtx_unlock(vlp);
3787 	buf[l] = '\0';
3788 	return (0);
3789 }
3790 
3791 /*
3792  * This function updates path string to vnode's full global path
3793  * and checks the size of the new path string against the pathlen argument.
3794  *
3795  * Requires a locked, referenced vnode.
3796  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3797  *
3798  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3799  * because it falls back to the ".." lookup if the namecache lookup fails.
3800  */
3801 int
vn_path_to_global_path(struct thread * td,struct vnode * vp,char * path,u_int pathlen)3802 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3803     u_int pathlen)
3804 {
3805 	struct nameidata nd;
3806 	struct vnode *vp1;
3807 	char *rpath, *fbuf;
3808 	int error;
3809 
3810 	ASSERT_VOP_ELOCKED(vp, __func__);
3811 
3812 	/* Construct global filesystem path from vp. */
3813 	VOP_UNLOCK(vp);
3814 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3815 
3816 	if (error != 0) {
3817 		vrele(vp);
3818 		return (error);
3819 	}
3820 
3821 	if (strlen(rpath) >= pathlen) {
3822 		vrele(vp);
3823 		error = ENAMETOOLONG;
3824 		goto out;
3825 	}
3826 
3827 	/*
3828 	 * Re-lookup the vnode by path to detect a possible rename.
3829 	 * As a side effect, the vnode is relocked.
3830 	 * If vnode was renamed, return ENOENT.
3831 	 */
3832 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3833 	error = namei(&nd);
3834 	if (error != 0) {
3835 		vrele(vp);
3836 		goto out;
3837 	}
3838 	NDFREE_PNBUF(&nd);
3839 	vp1 = nd.ni_vp;
3840 	vrele(vp);
3841 	if (vp1 == vp)
3842 		strcpy(path, rpath);
3843 	else {
3844 		vput(vp1);
3845 		error = ENOENT;
3846 	}
3847 
3848 out:
3849 	free(fbuf, M_TEMP);
3850 	return (error);
3851 }
3852 
3853 /*
3854  * This is similar to vn_path_to_global_path but allows for regular
3855  * files which may not be present in the cache.
3856  *
3857  * Requires a locked, referenced vnode.
3858  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3859  */
3860 int
vn_path_to_global_path_hardlink(struct thread * td,struct vnode * vp,struct vnode * dvp,char * path,u_int pathlen,const char * leaf_name,size_t leaf_length)3861 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3862     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3863     size_t leaf_length)
3864 {
3865 	struct nameidata nd;
3866 	struct vnode *vp1;
3867 	char *rpath, *fbuf;
3868 	size_t len;
3869 	int error;
3870 
3871 	ASSERT_VOP_ELOCKED(vp, __func__);
3872 
3873 	/*
3874 	 * Construct global filesystem path from dvp, vp and leaf
3875 	 * name.
3876 	 */
3877 	VOP_UNLOCK(vp);
3878 	len = pathlen;
3879 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3880 	    &rpath, &fbuf, &len);
3881 
3882 	if (error != 0) {
3883 		vrele(vp);
3884 		return (error);
3885 	}
3886 
3887 	if (strlen(rpath) >= pathlen) {
3888 		vrele(vp);
3889 		error = ENAMETOOLONG;
3890 		goto out;
3891 	}
3892 
3893 	/*
3894 	 * Re-lookup the vnode by path to detect a possible rename.
3895 	 * As a side effect, the vnode is relocked.
3896 	 * If vnode was renamed, return ENOENT.
3897 	 */
3898 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3899 	error = namei(&nd);
3900 	if (error != 0) {
3901 		vrele(vp);
3902 		goto out;
3903 	}
3904 	NDFREE_PNBUF(&nd);
3905 	vp1 = nd.ni_vp;
3906 	vrele(vp);
3907 	if (vp1 == vp)
3908 		strcpy(path, rpath);
3909 	else {
3910 		vput(vp1);
3911 		error = ENOENT;
3912 	}
3913 
3914 out:
3915 	free(fbuf, M_TEMP);
3916 	return (error);
3917 }
3918 
3919 #ifdef DDB
3920 static void
db_print_vpath(struct vnode * vp)3921 db_print_vpath(struct vnode *vp)
3922 {
3923 
3924 	while (vp != NULL) {
3925 		db_printf("%p: ", vp);
3926 		if (vp == rootvnode) {
3927 			db_printf("/");
3928 			vp = NULL;
3929 		} else {
3930 			if (vp->v_vflag & VV_ROOT) {
3931 				db_printf("<mount point>");
3932 				vp = vp->v_mount->mnt_vnodecovered;
3933 			} else {
3934 				struct namecache *ncp;
3935 				char *ncn;
3936 				int i;
3937 
3938 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
3939 				if (ncp != NULL) {
3940 					ncn = ncp->nc_name;
3941 					for (i = 0; i < ncp->nc_nlen; i++)
3942 						db_printf("%c", *ncn++);
3943 					vp = ncp->nc_dvp;
3944 				} else {
3945 					vp = NULL;
3946 				}
3947 			}
3948 		}
3949 		db_printf("\n");
3950 	}
3951 
3952 	return;
3953 }
3954 
DB_SHOW_COMMAND(vpath,db_show_vpath)3955 DB_SHOW_COMMAND(vpath, db_show_vpath)
3956 {
3957 	struct vnode *vp;
3958 
3959 	if (!have_addr) {
3960 		db_printf("usage: show vpath <struct vnode *>\n");
3961 		return;
3962 	}
3963 
3964 	vp = (struct vnode *)addr;
3965 	db_print_vpath(vp);
3966 }
3967 
3968 #endif
3969 
3970 static int cache_fast_lookup = 1;
3971 
3972 #define CACHE_FPL_FAILED	-2020
3973 
3974 static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args * v)3975 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
3976 {
3977 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
3978 	panic("no proper vop_fplookup_vexec");
3979 }
3980 
3981 static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args * v)3982 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
3983 {
3984 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
3985 	panic("no proper vop_fplookup_symlink");
3986 }
3987 
3988 void
cache_vop_vector_register(struct vop_vector * v)3989 cache_vop_vector_register(struct vop_vector *v)
3990 {
3991 	size_t ops;
3992 
3993 	ops = 0;
3994 	if (v->vop_fplookup_vexec != NULL) {
3995 		ops++;
3996 	}
3997 	if (v->vop_fplookup_symlink != NULL) {
3998 		ops++;
3999 	}
4000 
4001 	if (ops == 2) {
4002 		return;
4003 	}
4004 
4005 	if (ops == 0) {
4006 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4007 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4008 		return;
4009 	}
4010 
4011 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4012 	    "need to be provided",  __func__, v);
4013 	if (v->vop_fplookup_vexec == NULL) {
4014 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4015 	}
4016 	if (v->vop_fplookup_symlink == NULL) {
4017 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4018 	}
4019 	panic("bad vop vector %p", v);
4020 }
4021 
4022 #ifdef INVARIANTS
4023 void
cache_validate_vop_vector(struct mount * mp,struct vop_vector * vops)4024 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4025 {
4026 	if (mp == NULL)
4027 		return;
4028 
4029 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4030 		return;
4031 
4032 	if (vops->vop_fplookup_vexec == NULL ||
4033 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4034 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4035 		    vops, mp->mnt_vfc->vfc_name);
4036 
4037 	if (vops->vop_fplookup_symlink == NULL ||
4038 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4039 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4040 		    vops, mp->mnt_vfc->vfc_name);
4041 }
4042 #endif
4043 
4044 void
cache_fast_lookup_enabled_recalc(void)4045 cache_fast_lookup_enabled_recalc(void)
4046 {
4047 	int lookup_flag;
4048 	int mac_on;
4049 
4050 #ifdef MAC
4051 	mac_on = mac_vnode_check_lookup_enabled();
4052 	mac_on |= mac_vnode_check_readlink_enabled();
4053 #else
4054 	mac_on = 0;
4055 #endif
4056 
4057 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4058 	if (lookup_flag && !mac_on) {
4059 		atomic_store_char(&cache_fast_lookup_enabled, true);
4060 	} else {
4061 		atomic_store_char(&cache_fast_lookup_enabled, false);
4062 	}
4063 }
4064 
4065 static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)4066 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4067 {
4068 	int error, old;
4069 
4070 	old = atomic_load_int(&cache_fast_lookup);
4071 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4072 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4073 		cache_fast_lookup_enabled_recalc();
4074 	return (error);
4075 }
4076 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4077     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4078 
4079 /*
4080  * Components of nameidata (or objects it can point to) which may
4081  * need restoring in case fast path lookup fails.
4082  */
4083 struct nameidata_outer {
4084 	size_t ni_pathlen;
4085 	int cn_flags;
4086 };
4087 
4088 struct nameidata_saved {
4089 #ifdef INVARIANTS
4090 	char *cn_nameptr;
4091 	size_t ni_pathlen;
4092 #endif
4093 };
4094 
4095 #ifdef INVARIANTS
4096 struct cache_fpl_debug {
4097 	size_t ni_pathlen;
4098 };
4099 #endif
4100 
4101 struct cache_fpl {
4102 	struct nameidata *ndp;
4103 	struct componentname *cnp;
4104 	char *nulchar;
4105 	struct vnode *dvp;
4106 	struct vnode *tvp;
4107 	seqc_t dvp_seqc;
4108 	seqc_t tvp_seqc;
4109 	uint32_t hash;
4110 	struct nameidata_saved snd;
4111 	struct nameidata_outer snd_outer;
4112 	int line;
4113 	enum cache_fpl_status status:8;
4114 	bool in_smr;
4115 	bool fsearch;
4116 	struct pwd **pwd;
4117 #ifdef INVARIANTS
4118 	struct cache_fpl_debug debug;
4119 #endif
4120 };
4121 
4122 static bool cache_fplookup_mp_supported(struct mount *mp);
4123 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4124 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4125 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4126 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4127 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4128 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4129 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4130 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4131 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4132 
4133 static void
cache_fpl_cleanup_cnp(struct componentname * cnp)4134 cache_fpl_cleanup_cnp(struct componentname *cnp)
4135 {
4136 
4137 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4138 	cnp->cn_pnbuf = NULL;
4139 	cnp->cn_nameptr = NULL;
4140 }
4141 
4142 static struct vnode *
cache_fpl_handle_root(struct cache_fpl * fpl)4143 cache_fpl_handle_root(struct cache_fpl *fpl)
4144 {
4145 	struct nameidata *ndp;
4146 	struct componentname *cnp;
4147 
4148 	ndp = fpl->ndp;
4149 	cnp = fpl->cnp;
4150 
4151 	MPASS(*(cnp->cn_nameptr) == '/');
4152 	cnp->cn_nameptr++;
4153 	cache_fpl_pathlen_dec(fpl);
4154 
4155 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4156 		do {
4157 			cnp->cn_nameptr++;
4158 			cache_fpl_pathlen_dec(fpl);
4159 		} while (*(cnp->cn_nameptr) == '/');
4160 	}
4161 
4162 	return (ndp->ni_rootdir);
4163 }
4164 
4165 static void
cache_fpl_checkpoint_outer(struct cache_fpl * fpl)4166 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4167 {
4168 
4169 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4170 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4171 }
4172 
4173 static void
cache_fpl_checkpoint(struct cache_fpl * fpl)4174 cache_fpl_checkpoint(struct cache_fpl *fpl)
4175 {
4176 
4177 #ifdef INVARIANTS
4178 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4179 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4180 #endif
4181 }
4182 
4183 static void
cache_fpl_restore_partial(struct cache_fpl * fpl)4184 cache_fpl_restore_partial(struct cache_fpl *fpl)
4185 {
4186 
4187 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4188 #ifdef INVARIANTS
4189 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4190 #endif
4191 }
4192 
4193 static void
cache_fpl_restore_abort(struct cache_fpl * fpl)4194 cache_fpl_restore_abort(struct cache_fpl *fpl)
4195 {
4196 
4197 	cache_fpl_restore_partial(fpl);
4198 	/*
4199 	 * It is 0 on entry by API contract.
4200 	 */
4201 	fpl->ndp->ni_resflags = 0;
4202 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4203 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4204 }
4205 
4206 #ifdef INVARIANTS
4207 #define cache_fpl_smr_assert_entered(fpl) ({			\
4208 	struct cache_fpl *_fpl = (fpl);				\
4209 	MPASS(_fpl->in_smr == true);				\
4210 	VFS_SMR_ASSERT_ENTERED();				\
4211 })
4212 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4213 	struct cache_fpl *_fpl = (fpl);				\
4214 	MPASS(_fpl->in_smr == false);				\
4215 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4216 })
4217 static void
cache_fpl_assert_status(struct cache_fpl * fpl)4218 cache_fpl_assert_status(struct cache_fpl *fpl)
4219 {
4220 
4221 	switch (fpl->status) {
4222 	case CACHE_FPL_STATUS_UNSET:
4223 		__assert_unreachable();
4224 		break;
4225 	case CACHE_FPL_STATUS_DESTROYED:
4226 	case CACHE_FPL_STATUS_ABORTED:
4227 	case CACHE_FPL_STATUS_PARTIAL:
4228 	case CACHE_FPL_STATUS_HANDLED:
4229 		break;
4230 	}
4231 }
4232 #else
4233 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4234 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4235 #define cache_fpl_assert_status(fpl) do { } while (0)
4236 #endif
4237 
4238 #define cache_fpl_smr_enter_initial(fpl) ({			\
4239 	struct cache_fpl *_fpl = (fpl);				\
4240 	vfs_smr_enter();					\
4241 	_fpl->in_smr = true;					\
4242 })
4243 
4244 #define cache_fpl_smr_enter(fpl) ({				\
4245 	struct cache_fpl *_fpl = (fpl);				\
4246 	MPASS(_fpl->in_smr == false);				\
4247 	vfs_smr_enter();					\
4248 	_fpl->in_smr = true;					\
4249 })
4250 
4251 #define cache_fpl_smr_exit(fpl) ({				\
4252 	struct cache_fpl *_fpl = (fpl);				\
4253 	MPASS(_fpl->in_smr == true);				\
4254 	vfs_smr_exit();						\
4255 	_fpl->in_smr = false;					\
4256 })
4257 
4258 static int
cache_fpl_aborted_early_impl(struct cache_fpl * fpl,int line)4259 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4260 {
4261 
4262 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4263 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4264 		    ("%s: converting to abort from %d at %d, set at %d\n",
4265 		    __func__, fpl->status, line, fpl->line));
4266 	}
4267 	cache_fpl_smr_assert_not_entered(fpl);
4268 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4269 	fpl->line = line;
4270 	return (CACHE_FPL_FAILED);
4271 }
4272 
4273 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4274 
4275 static int __noinline
cache_fpl_aborted_impl(struct cache_fpl * fpl,int line)4276 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4277 {
4278 	struct nameidata *ndp;
4279 	struct componentname *cnp;
4280 
4281 	ndp = fpl->ndp;
4282 	cnp = fpl->cnp;
4283 
4284 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4285 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4286 		    ("%s: converting to abort from %d at %d, set at %d\n",
4287 		    __func__, fpl->status, line, fpl->line));
4288 	}
4289 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4290 	fpl->line = line;
4291 	if (fpl->in_smr)
4292 		cache_fpl_smr_exit(fpl);
4293 	cache_fpl_restore_abort(fpl);
4294 	/*
4295 	 * Resolving symlinks overwrites data passed by the caller.
4296 	 * Let namei know.
4297 	 */
4298 	if (ndp->ni_loopcnt > 0) {
4299 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4300 		cache_fpl_cleanup_cnp(cnp);
4301 	}
4302 	return (CACHE_FPL_FAILED);
4303 }
4304 
4305 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4306 
4307 static int __noinline
cache_fpl_partial_impl(struct cache_fpl * fpl,int line)4308 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4309 {
4310 
4311 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4312 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4313 	    __func__, line, fpl->status, fpl->line));
4314 	cache_fpl_smr_assert_entered(fpl);
4315 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4316 	fpl->line = line;
4317 	return (cache_fplookup_partial_setup(fpl));
4318 }
4319 
4320 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4321 
4322 static int
cache_fpl_handled_impl(struct cache_fpl * fpl,int line)4323 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4324 {
4325 
4326 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4327 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4328 	    __func__, line, fpl->status, fpl->line));
4329 	cache_fpl_smr_assert_not_entered(fpl);
4330 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4331 	fpl->line = line;
4332 	return (0);
4333 }
4334 
4335 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4336 
4337 static int
cache_fpl_handled_error_impl(struct cache_fpl * fpl,int error,int line)4338 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4339 {
4340 
4341 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4342 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4343 	    __func__, line, fpl->status, fpl->line));
4344 	MPASS(error != 0);
4345 	MPASS(error != CACHE_FPL_FAILED);
4346 	cache_fpl_smr_assert_not_entered(fpl);
4347 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4348 	fpl->line = line;
4349 	fpl->dvp = NULL;
4350 	fpl->tvp = NULL;
4351 	return (error);
4352 }
4353 
4354 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4355 
4356 static bool
cache_fpl_terminated(struct cache_fpl * fpl)4357 cache_fpl_terminated(struct cache_fpl *fpl)
4358 {
4359 
4360 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4361 }
4362 
4363 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4364 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4365 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4366 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4367 	 OPENWRITE | WANTIOCTLCAPS)
4368 
4369 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4370 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4371 
4372 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4373     "supported and internal flags overlap");
4374 
4375 static bool
cache_fpl_islastcn(struct nameidata * ndp)4376 cache_fpl_islastcn(struct nameidata *ndp)
4377 {
4378 
4379 	return (*ndp->ni_next == 0);
4380 }
4381 
4382 static bool
cache_fpl_istrailingslash(struct cache_fpl * fpl)4383 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4384 {
4385 
4386 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4387 	return (*(fpl->nulchar - 1) == '/');
4388 }
4389 
4390 static bool
cache_fpl_isdotdot(struct componentname * cnp)4391 cache_fpl_isdotdot(struct componentname *cnp)
4392 {
4393 
4394 	if (cnp->cn_namelen == 2 &&
4395 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4396 		return (true);
4397 	return (false);
4398 }
4399 
4400 static bool
cache_can_fplookup(struct cache_fpl * fpl)4401 cache_can_fplookup(struct cache_fpl *fpl)
4402 {
4403 	struct nameidata *ndp;
4404 	struct componentname *cnp;
4405 	struct thread *td;
4406 
4407 	ndp = fpl->ndp;
4408 	cnp = fpl->cnp;
4409 	td = curthread;
4410 
4411 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4412 		cache_fpl_aborted_early(fpl);
4413 		return (false);
4414 	}
4415 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4416 		cache_fpl_aborted_early(fpl);
4417 		return (false);
4418 	}
4419 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4420 		cache_fpl_aborted_early(fpl);
4421 		return (false);
4422 	}
4423 	if (AUDITING_TD(td)) {
4424 		cache_fpl_aborted_early(fpl);
4425 		return (false);
4426 	}
4427 	if (ndp->ni_startdir != NULL) {
4428 		cache_fpl_aborted_early(fpl);
4429 		return (false);
4430 	}
4431 	return (true);
4432 }
4433 
4434 static int __noinline
cache_fplookup_dirfd(struct cache_fpl * fpl,struct vnode ** vpp)4435 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4436 {
4437 	struct nameidata *ndp;
4438 	struct componentname *cnp;
4439 	int error;
4440 	bool fsearch;
4441 
4442 	ndp = fpl->ndp;
4443 	cnp = fpl->cnp;
4444 
4445 	error = fgetvp_lookup_smr(ndp, vpp, &fsearch);
4446 	if (__predict_false(error != 0)) {
4447 		return (cache_fpl_aborted(fpl));
4448 	}
4449 	fpl->fsearch = fsearch;
4450 	if ((*vpp)->v_type != VDIR) {
4451 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4452 			cache_fpl_smr_exit(fpl);
4453 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4454 		}
4455 	}
4456 	return (0);
4457 }
4458 
4459 static int __noinline
cache_fplookup_negative_promote(struct cache_fpl * fpl,struct namecache * oncp,uint32_t hash)4460 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4461     uint32_t hash)
4462 {
4463 	struct componentname *cnp;
4464 	struct vnode *dvp;
4465 
4466 	cnp = fpl->cnp;
4467 	dvp = fpl->dvp;
4468 
4469 	cache_fpl_smr_exit(fpl);
4470 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4471 		return (cache_fpl_handled_error(fpl, ENOENT));
4472 	else
4473 		return (cache_fpl_aborted(fpl));
4474 }
4475 
4476 /*
4477  * The target vnode is not supported, prepare for the slow path to take over.
4478  */
4479 static int __noinline
cache_fplookup_partial_setup(struct cache_fpl * fpl)4480 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4481 {
4482 	struct nameidata *ndp;
4483 	struct componentname *cnp;
4484 	enum vgetstate dvs;
4485 	struct vnode *dvp;
4486 	struct pwd *pwd;
4487 	seqc_t dvp_seqc;
4488 
4489 	ndp = fpl->ndp;
4490 	cnp = fpl->cnp;
4491 	pwd = *(fpl->pwd);
4492 	dvp = fpl->dvp;
4493 	dvp_seqc = fpl->dvp_seqc;
4494 
4495 	if (!pwd_hold_smr(pwd)) {
4496 		return (cache_fpl_aborted(fpl));
4497 	}
4498 
4499 	/*
4500 	 * Note that seqc is checked before the vnode is locked, so by
4501 	 * the time regular lookup gets to it it may have moved.
4502 	 *
4503 	 * Ultimately this does not affect correctness, any lookup errors
4504 	 * are userspace racing with itself. It is guaranteed that any
4505 	 * path which ultimately gets found could also have been found
4506 	 * by regular lookup going all the way in absence of concurrent
4507 	 * modifications.
4508 	 */
4509 	dvs = vget_prep_smr(dvp);
4510 	cache_fpl_smr_exit(fpl);
4511 	if (__predict_false(dvs == VGET_NONE)) {
4512 		pwd_drop(pwd);
4513 		return (cache_fpl_aborted(fpl));
4514 	}
4515 
4516 	vget_finish_ref(dvp, dvs);
4517 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4518 		vrele(dvp);
4519 		pwd_drop(pwd);
4520 		return (cache_fpl_aborted(fpl));
4521 	}
4522 
4523 	cache_fpl_restore_partial(fpl);
4524 #ifdef INVARIANTS
4525 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4526 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4527 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4528 	}
4529 #endif
4530 
4531 	ndp->ni_startdir = dvp;
4532 	cnp->cn_flags |= MAKEENTRY;
4533 	if (cache_fpl_islastcn(ndp))
4534 		cnp->cn_flags |= ISLASTCN;
4535 	if (cache_fpl_isdotdot(cnp))
4536 		cnp->cn_flags |= ISDOTDOT;
4537 
4538 	/*
4539 	 * Skip potential extra slashes parsing did not take care of.
4540 	 * cache_fplookup_skip_slashes explains the mechanism.
4541 	 */
4542 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4543 		do {
4544 			cnp->cn_nameptr++;
4545 			cache_fpl_pathlen_dec(fpl);
4546 		} while (*(cnp->cn_nameptr) == '/');
4547 	}
4548 
4549 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4550 #ifdef INVARIANTS
4551 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4552 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4553 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4554 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4555 	}
4556 #endif
4557 	return (0);
4558 }
4559 
4560 static int
cache_fplookup_final_child(struct cache_fpl * fpl,enum vgetstate tvs)4561 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4562 {
4563 	struct componentname *cnp;
4564 	struct vnode *tvp;
4565 	seqc_t tvp_seqc;
4566 	int error, lkflags;
4567 
4568 	cnp = fpl->cnp;
4569 	tvp = fpl->tvp;
4570 	tvp_seqc = fpl->tvp_seqc;
4571 
4572 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4573 		lkflags = LK_SHARED;
4574 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4575 			lkflags = LK_EXCLUSIVE;
4576 		error = vget_finish(tvp, lkflags, tvs);
4577 		if (__predict_false(error != 0)) {
4578 			return (cache_fpl_aborted(fpl));
4579 		}
4580 	} else {
4581 		vget_finish_ref(tvp, tvs);
4582 	}
4583 
4584 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4585 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4586 			vput(tvp);
4587 		else
4588 			vrele(tvp);
4589 		return (cache_fpl_aborted(fpl));
4590 	}
4591 
4592 	return (cache_fpl_handled(fpl));
4593 }
4594 
4595 /*
4596  * They want to possibly modify the state of the namecache.
4597  */
4598 static int __noinline
cache_fplookup_final_modifying(struct cache_fpl * fpl)4599 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4600 {
4601 	struct nameidata *ndp __diagused;
4602 	struct componentname *cnp;
4603 	enum vgetstate dvs;
4604 	struct vnode *dvp, *tvp;
4605 	struct mount *mp;
4606 	seqc_t dvp_seqc;
4607 	int error;
4608 	bool docache;
4609 
4610 	ndp = fpl->ndp;
4611 	cnp = fpl->cnp;
4612 	dvp = fpl->dvp;
4613 	dvp_seqc = fpl->dvp_seqc;
4614 
4615 	MPASS(*(cnp->cn_nameptr) != '/');
4616 	MPASS(cache_fpl_islastcn(ndp));
4617 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4618 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4619 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4620 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4621 	    cnp->cn_nameiop == RENAME);
4622 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4623 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4624 
4625 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4626 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4627 		docache = false;
4628 
4629 	/*
4630 	 * Regular lookup nulifies the slash, which we don't do here.
4631 	 * Don't take chances with filesystem routines seeing it for
4632 	 * the last entry.
4633 	 */
4634 	if (cache_fpl_istrailingslash(fpl)) {
4635 		return (cache_fpl_partial(fpl));
4636 	}
4637 
4638 	mp = atomic_load_ptr(&dvp->v_mount);
4639 	if (__predict_false(mp == NULL)) {
4640 		return (cache_fpl_aborted(fpl));
4641 	}
4642 
4643 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4644 		cache_fpl_smr_exit(fpl);
4645 		/*
4646 		 * Original code keeps not checking for CREATE which
4647 		 * might be a bug. For now let the old lookup decide.
4648 		 */
4649 		if (cnp->cn_nameiop == CREATE) {
4650 			return (cache_fpl_aborted(fpl));
4651 		}
4652 		return (cache_fpl_handled_error(fpl, EROFS));
4653 	}
4654 
4655 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4656 		cache_fpl_smr_exit(fpl);
4657 		return (cache_fpl_handled_error(fpl, EEXIST));
4658 	}
4659 
4660 	/*
4661 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4662 	 * reasoning.
4663 	 *
4664 	 * XXX At least UFS requires its lookup routine to be called for
4665 	 * the last path component, which leads to some level of complication
4666 	 * and inefficiency:
4667 	 * - the target routine always locks the target vnode, but our caller
4668 	 *   may not need it locked
4669 	 * - some of the VOP machinery asserts that the parent is locked, which
4670 	 *   once more may be not required
4671 	 *
4672 	 * TODO: add a flag for filesystems which don't need this.
4673 	 */
4674 	dvs = vget_prep_smr(dvp);
4675 	cache_fpl_smr_exit(fpl);
4676 	if (__predict_false(dvs == VGET_NONE)) {
4677 		return (cache_fpl_aborted(fpl));
4678 	}
4679 
4680 	vget_finish_ref(dvp, dvs);
4681 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4682 		vrele(dvp);
4683 		return (cache_fpl_aborted(fpl));
4684 	}
4685 
4686 	error = vn_lock(dvp, LK_EXCLUSIVE);
4687 	if (__predict_false(error != 0)) {
4688 		vrele(dvp);
4689 		return (cache_fpl_aborted(fpl));
4690 	}
4691 
4692 	tvp = NULL;
4693 	cnp->cn_flags |= ISLASTCN;
4694 	if (docache)
4695 		cnp->cn_flags |= MAKEENTRY;
4696 	if (cache_fpl_isdotdot(cnp))
4697 		cnp->cn_flags |= ISDOTDOT;
4698 	cnp->cn_lkflags = LK_EXCLUSIVE;
4699 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4700 	switch (error) {
4701 	case EJUSTRETURN:
4702 	case 0:
4703 		break;
4704 	case ENOTDIR:
4705 	case ENOENT:
4706 		vput(dvp);
4707 		return (cache_fpl_handled_error(fpl, error));
4708 	default:
4709 		vput(dvp);
4710 		return (cache_fpl_aborted(fpl));
4711 	}
4712 
4713 	fpl->tvp = tvp;
4714 
4715 	if (tvp == NULL) {
4716 		MPASS(error == EJUSTRETURN);
4717 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4718 			VOP_UNLOCK(dvp);
4719 		}
4720 		return (cache_fpl_handled(fpl));
4721 	}
4722 
4723 	/*
4724 	 * There are very hairy corner cases concerning various flag combinations
4725 	 * and locking state. In particular here we only hold one lock instead of
4726 	 * two.
4727 	 *
4728 	 * Skip the complexity as it is of no significance for normal workloads.
4729 	 */
4730 	if (__predict_false(tvp == dvp)) {
4731 		vput(dvp);
4732 		vrele(tvp);
4733 		return (cache_fpl_aborted(fpl));
4734 	}
4735 
4736 	/*
4737 	 * If they want the symlink itself we are fine, but if they want to
4738 	 * follow it regular lookup has to be engaged.
4739 	 */
4740 	if (tvp->v_type == VLNK) {
4741 		if ((cnp->cn_flags & FOLLOW) != 0) {
4742 			vput(dvp);
4743 			vput(tvp);
4744 			return (cache_fpl_aborted(fpl));
4745 		}
4746 	}
4747 
4748 	/*
4749 	 * Since we expect this to be the terminal vnode it should almost never
4750 	 * be a mount point.
4751 	 */
4752 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4753 		vput(dvp);
4754 		vput(tvp);
4755 		return (cache_fpl_aborted(fpl));
4756 	}
4757 
4758 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4759 		vput(dvp);
4760 		vput(tvp);
4761 		return (cache_fpl_handled_error(fpl, EEXIST));
4762 	}
4763 
4764 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4765 		VOP_UNLOCK(tvp);
4766 	}
4767 
4768 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4769 		VOP_UNLOCK(dvp);
4770 	}
4771 
4772 	return (cache_fpl_handled(fpl));
4773 }
4774 
4775 static int __noinline
cache_fplookup_modifying(struct cache_fpl * fpl)4776 cache_fplookup_modifying(struct cache_fpl *fpl)
4777 {
4778 	struct nameidata *ndp;
4779 
4780 	ndp = fpl->ndp;
4781 
4782 	if (!cache_fpl_islastcn(ndp)) {
4783 		return (cache_fpl_partial(fpl));
4784 	}
4785 	return (cache_fplookup_final_modifying(fpl));
4786 }
4787 
4788 static int __noinline
cache_fplookup_final_withparent(struct cache_fpl * fpl)4789 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4790 {
4791 	struct componentname *cnp;
4792 	enum vgetstate dvs, tvs;
4793 	struct vnode *dvp, *tvp;
4794 	seqc_t dvp_seqc;
4795 	int error;
4796 
4797 	cnp = fpl->cnp;
4798 	dvp = fpl->dvp;
4799 	dvp_seqc = fpl->dvp_seqc;
4800 	tvp = fpl->tvp;
4801 
4802 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4803 
4804 	/*
4805 	 * This is less efficient than it can be for simplicity.
4806 	 */
4807 	dvs = vget_prep_smr(dvp);
4808 	if (__predict_false(dvs == VGET_NONE)) {
4809 		return (cache_fpl_aborted(fpl));
4810 	}
4811 	tvs = vget_prep_smr(tvp);
4812 	if (__predict_false(tvs == VGET_NONE)) {
4813 		cache_fpl_smr_exit(fpl);
4814 		vget_abort(dvp, dvs);
4815 		return (cache_fpl_aborted(fpl));
4816 	}
4817 
4818 	cache_fpl_smr_exit(fpl);
4819 
4820 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4821 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4822 		if (__predict_false(error != 0)) {
4823 			vget_abort(tvp, tvs);
4824 			return (cache_fpl_aborted(fpl));
4825 		}
4826 	} else {
4827 		vget_finish_ref(dvp, dvs);
4828 	}
4829 
4830 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4831 		vget_abort(tvp, tvs);
4832 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4833 			vput(dvp);
4834 		else
4835 			vrele(dvp);
4836 		return (cache_fpl_aborted(fpl));
4837 	}
4838 
4839 	error = cache_fplookup_final_child(fpl, tvs);
4840 	if (__predict_false(error != 0)) {
4841 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4842 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
4843 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4844 			vput(dvp);
4845 		else
4846 			vrele(dvp);
4847 		return (error);
4848 	}
4849 
4850 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
4851 	return (0);
4852 }
4853 
4854 static int
cache_fplookup_final(struct cache_fpl * fpl)4855 cache_fplookup_final(struct cache_fpl *fpl)
4856 {
4857 	struct componentname *cnp;
4858 	enum vgetstate tvs;
4859 	struct vnode *dvp, *tvp;
4860 	seqc_t dvp_seqc;
4861 
4862 	cnp = fpl->cnp;
4863 	dvp = fpl->dvp;
4864 	dvp_seqc = fpl->dvp_seqc;
4865 	tvp = fpl->tvp;
4866 
4867 	MPASS(*(cnp->cn_nameptr) != '/');
4868 
4869 	if (cnp->cn_nameiop != LOOKUP) {
4870 		return (cache_fplookup_final_modifying(fpl));
4871 	}
4872 
4873 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
4874 		return (cache_fplookup_final_withparent(fpl));
4875 
4876 	tvs = vget_prep_smr(tvp);
4877 	if (__predict_false(tvs == VGET_NONE)) {
4878 		return (cache_fpl_partial(fpl));
4879 	}
4880 
4881 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4882 		cache_fpl_smr_exit(fpl);
4883 		vget_abort(tvp, tvs);
4884 		return (cache_fpl_aborted(fpl));
4885 	}
4886 
4887 	cache_fpl_smr_exit(fpl);
4888 	return (cache_fplookup_final_child(fpl, tvs));
4889 }
4890 
4891 /*
4892  * Comment from locked lookup:
4893  * Check for degenerate name (e.g. / or "") which is a way of talking about a
4894  * directory, e.g. like "/." or ".".
4895  */
4896 static int __noinline
cache_fplookup_degenerate(struct cache_fpl * fpl)4897 cache_fplookup_degenerate(struct cache_fpl *fpl)
4898 {
4899 	struct componentname *cnp;
4900 	struct vnode *dvp;
4901 	enum vgetstate dvs;
4902 	int error, lkflags;
4903 #ifdef INVARIANTS
4904 	char *cp;
4905 #endif
4906 
4907 	fpl->tvp = fpl->dvp;
4908 	fpl->tvp_seqc = fpl->dvp_seqc;
4909 
4910 	cnp = fpl->cnp;
4911 	dvp = fpl->dvp;
4912 
4913 #ifdef INVARIANTS
4914 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
4915 		KASSERT(*cp == '/',
4916 		    ("%s: encountered non-slash; string [%s]\n", __func__,
4917 		    cnp->cn_pnbuf));
4918 	}
4919 #endif
4920 
4921 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
4922 		cache_fpl_smr_exit(fpl);
4923 		return (cache_fpl_handled_error(fpl, EISDIR));
4924 	}
4925 
4926 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
4927 		return (cache_fplookup_final_withparent(fpl));
4928 	}
4929 
4930 	dvs = vget_prep_smr(dvp);
4931 	cache_fpl_smr_exit(fpl);
4932 	if (__predict_false(dvs == VGET_NONE)) {
4933 		return (cache_fpl_aborted(fpl));
4934 	}
4935 
4936 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4937 		lkflags = LK_SHARED;
4938 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4939 			lkflags = LK_EXCLUSIVE;
4940 		error = vget_finish(dvp, lkflags, dvs);
4941 		if (__predict_false(error != 0)) {
4942 			return (cache_fpl_aborted(fpl));
4943 		}
4944 	} else {
4945 		vget_finish_ref(dvp, dvs);
4946 	}
4947 	return (cache_fpl_handled(fpl));
4948 }
4949 
4950 static int __noinline
cache_fplookup_emptypath(struct cache_fpl * fpl)4951 cache_fplookup_emptypath(struct cache_fpl *fpl)
4952 {
4953 	struct nameidata *ndp;
4954 	struct componentname *cnp;
4955 	enum vgetstate tvs;
4956 	struct vnode *tvp;
4957 	int error, lkflags;
4958 
4959 	fpl->tvp = fpl->dvp;
4960 	fpl->tvp_seqc = fpl->dvp_seqc;
4961 
4962 	ndp = fpl->ndp;
4963 	cnp = fpl->cnp;
4964 	tvp = fpl->tvp;
4965 
4966 	MPASS(*cnp->cn_pnbuf == '\0');
4967 
4968 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
4969 		cache_fpl_smr_exit(fpl);
4970 		return (cache_fpl_handled_error(fpl, ENOENT));
4971 	}
4972 
4973 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
4974 
4975 	tvs = vget_prep_smr(tvp);
4976 	cache_fpl_smr_exit(fpl);
4977 	if (__predict_false(tvs == VGET_NONE)) {
4978 		return (cache_fpl_aborted(fpl));
4979 	}
4980 
4981 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4982 		lkflags = LK_SHARED;
4983 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4984 			lkflags = LK_EXCLUSIVE;
4985 		error = vget_finish(tvp, lkflags, tvs);
4986 		if (__predict_false(error != 0)) {
4987 			return (cache_fpl_aborted(fpl));
4988 		}
4989 	} else {
4990 		vget_finish_ref(tvp, tvs);
4991 	}
4992 
4993 	ndp->ni_resflags |= NIRES_EMPTYPATH;
4994 	return (cache_fpl_handled(fpl));
4995 }
4996 
4997 static int __noinline
cache_fplookup_noentry(struct cache_fpl * fpl)4998 cache_fplookup_noentry(struct cache_fpl *fpl)
4999 {
5000 	struct nameidata *ndp;
5001 	struct componentname *cnp;
5002 	enum vgetstate dvs;
5003 	struct vnode *dvp, *tvp;
5004 	seqc_t dvp_seqc;
5005 	int error;
5006 
5007 	ndp = fpl->ndp;
5008 	cnp = fpl->cnp;
5009 	dvp = fpl->dvp;
5010 	dvp_seqc = fpl->dvp_seqc;
5011 
5012 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5013 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5014 	if (cnp->cn_nameiop == LOOKUP)
5015 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5016 	MPASS(!cache_fpl_isdotdot(cnp));
5017 
5018 	/*
5019 	 * Hack: delayed name len checking.
5020 	 */
5021 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5022 		cache_fpl_smr_exit(fpl);
5023 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5024 	}
5025 
5026 	if (cnp->cn_nameptr[0] == '/') {
5027 		return (cache_fplookup_skip_slashes(fpl));
5028 	}
5029 
5030 	if (cnp->cn_pnbuf[0] == '\0') {
5031 		return (cache_fplookup_emptypath(fpl));
5032 	}
5033 
5034 	if (cnp->cn_nameptr[0] == '\0') {
5035 		if (fpl->tvp == NULL) {
5036 			return (cache_fplookup_degenerate(fpl));
5037 		}
5038 		return (cache_fplookup_trailingslash(fpl));
5039 	}
5040 
5041 	if (cnp->cn_nameiop != LOOKUP) {
5042 		fpl->tvp = NULL;
5043 		return (cache_fplookup_modifying(fpl));
5044 	}
5045 
5046 	/*
5047 	 * Only try to fill in the component if it is the last one,
5048 	 * otherwise not only there may be several to handle but the
5049 	 * walk may be complicated.
5050 	 */
5051 	if (!cache_fpl_islastcn(ndp)) {
5052 		return (cache_fpl_partial(fpl));
5053 	}
5054 
5055 	/*
5056 	 * Regular lookup nulifies the slash, which we don't do here.
5057 	 * Don't take chances with filesystem routines seeing it for
5058 	 * the last entry.
5059 	 */
5060 	if (cache_fpl_istrailingslash(fpl)) {
5061 		return (cache_fpl_partial(fpl));
5062 	}
5063 
5064 	/*
5065 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5066 	 * reasoning.
5067 	 */
5068 	dvs = vget_prep_smr(dvp);
5069 	cache_fpl_smr_exit(fpl);
5070 	if (__predict_false(dvs == VGET_NONE)) {
5071 		return (cache_fpl_aborted(fpl));
5072 	}
5073 
5074 	vget_finish_ref(dvp, dvs);
5075 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5076 		vrele(dvp);
5077 		return (cache_fpl_aborted(fpl));
5078 	}
5079 
5080 	error = vn_lock(dvp, LK_SHARED);
5081 	if (__predict_false(error != 0)) {
5082 		vrele(dvp);
5083 		return (cache_fpl_aborted(fpl));
5084 	}
5085 
5086 	tvp = NULL;
5087 	/*
5088 	 * TODO: provide variants which don't require locking either vnode.
5089 	 */
5090 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5091 	cnp->cn_lkflags = LK_SHARED;
5092 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5093 		cnp->cn_lkflags = LK_EXCLUSIVE;
5094 	}
5095 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5096 	switch (error) {
5097 	case EJUSTRETURN:
5098 	case 0:
5099 		break;
5100 	case ENOTDIR:
5101 	case ENOENT:
5102 		vput(dvp);
5103 		return (cache_fpl_handled_error(fpl, error));
5104 	default:
5105 		vput(dvp);
5106 		return (cache_fpl_aborted(fpl));
5107 	}
5108 
5109 	fpl->tvp = tvp;
5110 
5111 	if (tvp == NULL) {
5112 		MPASS(error == EJUSTRETURN);
5113 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5114 			vput(dvp);
5115 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5116 			VOP_UNLOCK(dvp);
5117 		}
5118 		return (cache_fpl_handled(fpl));
5119 	}
5120 
5121 	if (tvp->v_type == VLNK) {
5122 		if ((cnp->cn_flags & FOLLOW) != 0) {
5123 			vput(dvp);
5124 			vput(tvp);
5125 			return (cache_fpl_aborted(fpl));
5126 		}
5127 	}
5128 
5129 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5130 		vput(dvp);
5131 		vput(tvp);
5132 		return (cache_fpl_aborted(fpl));
5133 	}
5134 
5135 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5136 		VOP_UNLOCK(tvp);
5137 	}
5138 
5139 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5140 		vput(dvp);
5141 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5142 		VOP_UNLOCK(dvp);
5143 	}
5144 	return (cache_fpl_handled(fpl));
5145 }
5146 
5147 static int __noinline
cache_fplookup_dot(struct cache_fpl * fpl)5148 cache_fplookup_dot(struct cache_fpl *fpl)
5149 {
5150 	int error;
5151 
5152 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5153 
5154 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5155 		cache_fpl_smr_exit(fpl);
5156 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5157 	}
5158 
5159 	/*
5160 	 * Just re-assign the value. seqc will be checked later for the first
5161 	 * non-dot path component in line and/or before deciding to return the
5162 	 * vnode.
5163 	 */
5164 	fpl->tvp = fpl->dvp;
5165 	fpl->tvp_seqc = fpl->dvp_seqc;
5166 
5167 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5168 
5169 	error = 0;
5170 	if (cache_fplookup_is_mp(fpl)) {
5171 		error = cache_fplookup_cross_mount(fpl);
5172 	}
5173 	return (error);
5174 }
5175 
5176 static int __noinline
cache_fplookup_dotdot(struct cache_fpl * fpl)5177 cache_fplookup_dotdot(struct cache_fpl *fpl)
5178 {
5179 	struct nameidata *ndp;
5180 	struct componentname *cnp;
5181 	struct namecache *ncp;
5182 	struct vnode *dvp;
5183 	struct prison *pr;
5184 	u_char nc_flag;
5185 
5186 	ndp = fpl->ndp;
5187 	cnp = fpl->cnp;
5188 	dvp = fpl->dvp;
5189 
5190 	MPASS(cache_fpl_isdotdot(cnp));
5191 
5192 	/*
5193 	 * XXX this is racy the same way regular lookup is
5194 	 */
5195 	for (pr = cnp->cn_cred->cr_prison; pr != NULL;
5196 	    pr = pr->pr_parent)
5197 		if (dvp == pr->pr_root)
5198 			break;
5199 
5200 	if (dvp == ndp->ni_rootdir ||
5201 	    dvp == ndp->ni_topdir ||
5202 	    dvp == rootvnode ||
5203 	    pr != NULL) {
5204 		fpl->tvp = dvp;
5205 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5206 		if (seqc_in_modify(fpl->tvp_seqc)) {
5207 			return (cache_fpl_aborted(fpl));
5208 		}
5209 		return (0);
5210 	}
5211 
5212 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5213 		/*
5214 		 * TODO
5215 		 * The opposite of climb mount is needed here.
5216 		 */
5217 		return (cache_fpl_partial(fpl));
5218 	}
5219 
5220 	if (__predict_false(dvp->v_type != VDIR)) {
5221 		cache_fpl_smr_exit(fpl);
5222 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5223 	}
5224 
5225 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5226 	if (ncp == NULL) {
5227 		return (cache_fpl_aborted(fpl));
5228 	}
5229 
5230 	nc_flag = atomic_load_char(&ncp->nc_flag);
5231 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5232 		if ((nc_flag & NCF_NEGATIVE) != 0)
5233 			return (cache_fpl_aborted(fpl));
5234 		fpl->tvp = ncp->nc_vp;
5235 	} else {
5236 		fpl->tvp = ncp->nc_dvp;
5237 	}
5238 
5239 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5240 	if (seqc_in_modify(fpl->tvp_seqc)) {
5241 		return (cache_fpl_partial(fpl));
5242 	}
5243 
5244 	/*
5245 	 * Acquire fence provided by vn_seqc_read_any above.
5246 	 */
5247 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5248 		return (cache_fpl_aborted(fpl));
5249 	}
5250 
5251 	if (!cache_ncp_canuse(ncp)) {
5252 		return (cache_fpl_aborted(fpl));
5253 	}
5254 
5255 	return (0);
5256 }
5257 
5258 static int __noinline
cache_fplookup_neg(struct cache_fpl * fpl,struct namecache * ncp,uint32_t hash)5259 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5260 {
5261 	u_char nc_flag __diagused;
5262 	bool neg_promote;
5263 
5264 #ifdef INVARIANTS
5265 	nc_flag = atomic_load_char(&ncp->nc_flag);
5266 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5267 #endif
5268 	/*
5269 	 * If they want to create an entry we need to replace this one.
5270 	 */
5271 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5272 		fpl->tvp = NULL;
5273 		return (cache_fplookup_modifying(fpl));
5274 	}
5275 	neg_promote = cache_neg_hit_prep(ncp);
5276 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5277 		cache_neg_hit_abort(ncp);
5278 		return (cache_fpl_partial(fpl));
5279 	}
5280 	if (neg_promote) {
5281 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5282 	}
5283 	cache_neg_hit_finish(ncp);
5284 	cache_fpl_smr_exit(fpl);
5285 	return (cache_fpl_handled_error(fpl, ENOENT));
5286 }
5287 
5288 /*
5289  * Resolve a symlink. Called by filesystem-specific routines.
5290  *
5291  * Code flow is:
5292  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5293  */
5294 int
cache_symlink_resolve(struct cache_fpl * fpl,const char * string,size_t len)5295 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5296 {
5297 	struct nameidata *ndp;
5298 	struct componentname *cnp;
5299 	size_t adjust;
5300 
5301 	ndp = fpl->ndp;
5302 	cnp = fpl->cnp;
5303 
5304 	if (__predict_false(len == 0)) {
5305 		return (ENOENT);
5306 	}
5307 
5308 	if (__predict_false(len > MAXPATHLEN - 2)) {
5309 		if (cache_fpl_istrailingslash(fpl)) {
5310 			return (EAGAIN);
5311 		}
5312 	}
5313 
5314 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5315 #ifdef INVARIANTS
5316 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5317 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5318 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5319 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5320 	}
5321 #endif
5322 
5323 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5324 		return (ENAMETOOLONG);
5325 	}
5326 
5327 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5328 		return (ELOOP);
5329 	}
5330 
5331 	adjust = len;
5332 	if (ndp->ni_pathlen > 1) {
5333 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5334 	} else {
5335 		if (cache_fpl_istrailingslash(fpl)) {
5336 			adjust = len + 1;
5337 			cnp->cn_pnbuf[len] = '/';
5338 			cnp->cn_pnbuf[len + 1] = '\0';
5339 		} else {
5340 			cnp->cn_pnbuf[len] = '\0';
5341 		}
5342 	}
5343 	bcopy(string, cnp->cn_pnbuf, len);
5344 
5345 	ndp->ni_pathlen += adjust;
5346 	cache_fpl_pathlen_add(fpl, adjust);
5347 	cnp->cn_nameptr = cnp->cn_pnbuf;
5348 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5349 	fpl->tvp = NULL;
5350 	return (0);
5351 }
5352 
5353 static int __noinline
cache_fplookup_symlink(struct cache_fpl * fpl)5354 cache_fplookup_symlink(struct cache_fpl *fpl)
5355 {
5356 	struct mount *mp;
5357 	struct nameidata *ndp;
5358 	struct componentname *cnp;
5359 	struct vnode *dvp, *tvp;
5360 	struct pwd *pwd;
5361 	int error;
5362 
5363 	ndp = fpl->ndp;
5364 	cnp = fpl->cnp;
5365 	dvp = fpl->dvp;
5366 	tvp = fpl->tvp;
5367 	pwd = *(fpl->pwd);
5368 
5369 	if (cache_fpl_islastcn(ndp)) {
5370 		if ((cnp->cn_flags & FOLLOW) == 0) {
5371 			return (cache_fplookup_final(fpl));
5372 		}
5373 	}
5374 
5375 	mp = atomic_load_ptr(&dvp->v_mount);
5376 	if (__predict_false(mp == NULL)) {
5377 		return (cache_fpl_aborted(fpl));
5378 	}
5379 
5380 	/*
5381 	 * Note this check races against setting the flag just like regular
5382 	 * lookup.
5383 	 */
5384 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5385 		cache_fpl_smr_exit(fpl);
5386 		return (cache_fpl_handled_error(fpl, EACCES));
5387 	}
5388 
5389 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5390 	if (__predict_false(error != 0)) {
5391 		switch (error) {
5392 		case EAGAIN:
5393 			return (cache_fpl_partial(fpl));
5394 		case ENOENT:
5395 		case ENAMETOOLONG:
5396 		case ELOOP:
5397 			cache_fpl_smr_exit(fpl);
5398 			return (cache_fpl_handled_error(fpl, error));
5399 		default:
5400 			return (cache_fpl_aborted(fpl));
5401 		}
5402 	}
5403 
5404 	if (*(cnp->cn_nameptr) == '/') {
5405 		fpl->dvp = cache_fpl_handle_root(fpl);
5406 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5407 		if (seqc_in_modify(fpl->dvp_seqc)) {
5408 			return (cache_fpl_aborted(fpl));
5409 		}
5410 		/*
5411 		 * The main loop assumes that ->dvp points to a vnode belonging
5412 		 * to a filesystem which can do lockless lookup, but the absolute
5413 		 * symlink can be wandering off to one which does not.
5414 		 */
5415 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5416 		if (__predict_false(mp == NULL)) {
5417 			return (cache_fpl_aborted(fpl));
5418 		}
5419 		if (!cache_fplookup_mp_supported(mp)) {
5420 			cache_fpl_checkpoint(fpl);
5421 			return (cache_fpl_partial(fpl));
5422 		}
5423 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5424 			return (cache_fpl_aborted(fpl));
5425 		}
5426 	}
5427 	return (0);
5428 }
5429 
5430 static int
cache_fplookup_next(struct cache_fpl * fpl)5431 cache_fplookup_next(struct cache_fpl *fpl)
5432 {
5433 	struct componentname *cnp;
5434 	struct namecache *ncp;
5435 	struct vnode *dvp, *tvp;
5436 	u_char nc_flag;
5437 	uint32_t hash;
5438 	int error;
5439 
5440 	cnp = fpl->cnp;
5441 	dvp = fpl->dvp;
5442 	hash = fpl->hash;
5443 
5444 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5445 		if (cnp->cn_namelen == 1) {
5446 			return (cache_fplookup_dot(fpl));
5447 		}
5448 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5449 			return (cache_fplookup_dotdot(fpl));
5450 		}
5451 	}
5452 
5453 	MPASS(!cache_fpl_isdotdot(cnp));
5454 
5455 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
5456 		if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen &&
5457 		    !bcmp(ncp->nc_name, cnp->cn_nameptr, ncp->nc_nlen))
5458 			break;
5459 	}
5460 
5461 	if (__predict_false(ncp == NULL)) {
5462 		return (cache_fplookup_noentry(fpl));
5463 	}
5464 
5465 	tvp = atomic_load_ptr(&ncp->nc_vp);
5466 	nc_flag = atomic_load_char(&ncp->nc_flag);
5467 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5468 		return (cache_fplookup_neg(fpl, ncp, hash));
5469 	}
5470 
5471 	if (!cache_ncp_canuse(ncp)) {
5472 		return (cache_fpl_partial(fpl));
5473 	}
5474 
5475 	fpl->tvp = tvp;
5476 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5477 	if (seqc_in_modify(fpl->tvp_seqc)) {
5478 		return (cache_fpl_partial(fpl));
5479 	}
5480 
5481 	counter_u64_add(numposhits, 1);
5482 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5483 
5484 	error = 0;
5485 	if (cache_fplookup_is_mp(fpl)) {
5486 		error = cache_fplookup_cross_mount(fpl);
5487 	}
5488 	return (error);
5489 }
5490 
5491 static bool
cache_fplookup_mp_supported(struct mount * mp)5492 cache_fplookup_mp_supported(struct mount *mp)
5493 {
5494 
5495 	MPASS(mp != NULL);
5496 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5497 		return (false);
5498 	return (true);
5499 }
5500 
5501 /*
5502  * Walk up the mount stack (if any).
5503  *
5504  * Correctness is provided in the following ways:
5505  * - all vnodes are protected from freeing with SMR
5506  * - struct mount objects are type stable making them always safe to access
5507  * - stability of the particular mount is provided by busying it
5508  * - relationship between the vnode which is mounted on and the mount is
5509  *   verified with the vnode sequence counter after busying
5510  * - association between root vnode of the mount and the mount is protected
5511  *   by busy
5512  *
5513  * From that point on we can read the sequence counter of the root vnode
5514  * and get the next mount on the stack (if any) using the same protection.
5515  *
5516  * By the end of successful walk we are guaranteed the reached state was
5517  * indeed present at least at some point which matches the regular lookup.
5518  */
5519 static int __noinline
cache_fplookup_climb_mount(struct cache_fpl * fpl)5520 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5521 {
5522 	struct mount *mp, *prev_mp;
5523 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5524 	struct vnode *vp;
5525 	seqc_t vp_seqc;
5526 
5527 	vp = fpl->tvp;
5528 	vp_seqc = fpl->tvp_seqc;
5529 
5530 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5531 	mp = atomic_load_ptr(&vp->v_mountedhere);
5532 	if (__predict_false(mp == NULL)) {
5533 		return (0);
5534 	}
5535 
5536 	prev_mp = NULL;
5537 	for (;;) {
5538 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5539 			if (prev_mp != NULL)
5540 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5541 			return (cache_fpl_partial(fpl));
5542 		}
5543 		if (prev_mp != NULL)
5544 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5545 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5546 			vfs_op_thread_exit_crit(mp, mpcpu);
5547 			return (cache_fpl_partial(fpl));
5548 		}
5549 		if (!cache_fplookup_mp_supported(mp)) {
5550 			vfs_op_thread_exit_crit(mp, mpcpu);
5551 			return (cache_fpl_partial(fpl));
5552 		}
5553 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5554 		if (vp == NULL) {
5555 			vfs_op_thread_exit_crit(mp, mpcpu);
5556 			return (cache_fpl_partial(fpl));
5557 		}
5558 		vp_seqc = vn_seqc_read_any(vp);
5559 		if (seqc_in_modify(vp_seqc)) {
5560 			vfs_op_thread_exit_crit(mp, mpcpu);
5561 			return (cache_fpl_partial(fpl));
5562 		}
5563 		prev_mp = mp;
5564 		prev_mpcpu = mpcpu;
5565 		mp = atomic_load_ptr(&vp->v_mountedhere);
5566 		if (mp == NULL)
5567 			break;
5568 	}
5569 
5570 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5571 	fpl->tvp = vp;
5572 	fpl->tvp_seqc = vp_seqc;
5573 	return (0);
5574 }
5575 
5576 static int __noinline
cache_fplookup_cross_mount(struct cache_fpl * fpl)5577 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5578 {
5579 	struct mount *mp;
5580 	struct mount_pcpu *mpcpu;
5581 	struct vnode *vp;
5582 	seqc_t vp_seqc;
5583 
5584 	vp = fpl->tvp;
5585 	vp_seqc = fpl->tvp_seqc;
5586 
5587 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5588 	mp = atomic_load_ptr(&vp->v_mountedhere);
5589 	if (__predict_false(mp == NULL)) {
5590 		return (0);
5591 	}
5592 
5593 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5594 		return (cache_fpl_partial(fpl));
5595 	}
5596 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5597 		vfs_op_thread_exit_crit(mp, mpcpu);
5598 		return (cache_fpl_partial(fpl));
5599 	}
5600 	if (!cache_fplookup_mp_supported(mp)) {
5601 		vfs_op_thread_exit_crit(mp, mpcpu);
5602 		return (cache_fpl_partial(fpl));
5603 	}
5604 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5605 	if (__predict_false(vp == NULL)) {
5606 		vfs_op_thread_exit_crit(mp, mpcpu);
5607 		return (cache_fpl_partial(fpl));
5608 	}
5609 	vp_seqc = vn_seqc_read_any(vp);
5610 	vfs_op_thread_exit_crit(mp, mpcpu);
5611 	if (seqc_in_modify(vp_seqc)) {
5612 		return (cache_fpl_partial(fpl));
5613 	}
5614 	mp = atomic_load_ptr(&vp->v_mountedhere);
5615 	if (__predict_false(mp != NULL)) {
5616 		/*
5617 		 * There are possibly more mount points on top.
5618 		 * Normally this does not happen so for simplicity just start
5619 		 * over.
5620 		 */
5621 		return (cache_fplookup_climb_mount(fpl));
5622 	}
5623 
5624 	fpl->tvp = vp;
5625 	fpl->tvp_seqc = vp_seqc;
5626 	return (0);
5627 }
5628 
5629 /*
5630  * Check if a vnode is mounted on.
5631  */
5632 static bool
cache_fplookup_is_mp(struct cache_fpl * fpl)5633 cache_fplookup_is_mp(struct cache_fpl *fpl)
5634 {
5635 	struct vnode *vp;
5636 
5637 	vp = fpl->tvp;
5638 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5639 }
5640 
5641 /*
5642  * Parse the path.
5643  *
5644  * The code was originally copy-pasted from regular lookup and despite
5645  * clean ups leaves performance on the table. Any modifications here
5646  * must take into account that in case off fallback the resulting
5647  * nameidata state has to be compatible with the original.
5648  */
5649 
5650 /*
5651  * Debug ni_pathlen tracking.
5652  */
5653 #ifdef INVARIANTS
5654 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5655 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5656 {
5657 
5658 	fpl->debug.ni_pathlen += n;
5659 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5660 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5661 }
5662 
5663 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5664 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5665 {
5666 
5667 	fpl->debug.ni_pathlen -= n;
5668 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5669 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5670 }
5671 
5672 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5673 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5674 {
5675 
5676 	cache_fpl_pathlen_add(fpl, 1);
5677 }
5678 
5679 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5680 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5681 {
5682 
5683 	cache_fpl_pathlen_sub(fpl, 1);
5684 }
5685 #else
5686 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5687 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5688 {
5689 }
5690 
5691 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5692 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5693 {
5694 }
5695 
5696 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5697 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5698 {
5699 }
5700 
5701 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5702 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5703 {
5704 }
5705 #endif
5706 
5707 static void
cache_fplookup_parse(struct cache_fpl * fpl)5708 cache_fplookup_parse(struct cache_fpl *fpl)
5709 {
5710 	struct nameidata *ndp;
5711 	struct componentname *cnp;
5712 	struct vnode *dvp;
5713 	char *cp;
5714 	uint32_t hash;
5715 
5716 	ndp = fpl->ndp;
5717 	cnp = fpl->cnp;
5718 	dvp = fpl->dvp;
5719 
5720 	/*
5721 	 * Find the end of this path component, it is either / or nul.
5722 	 *
5723 	 * Store / as a temporary sentinel so that we only have one character
5724 	 * to test for. Pathnames tend to be short so this should not be
5725 	 * resulting in cache misses.
5726 	 *
5727 	 * TODO: fix this to be word-sized.
5728 	 */
5729 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5730 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5731 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5732 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5733 	    fpl->nulchar, cnp->cn_pnbuf));
5734 	KASSERT(*fpl->nulchar == '\0',
5735 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5736 	    cnp->cn_pnbuf));
5737 	hash = cache_get_hash_iter_start(dvp);
5738 	*fpl->nulchar = '/';
5739 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5740 		KASSERT(*cp != '\0',
5741 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5742 		    cnp->cn_nameptr));
5743 		hash = cache_get_hash_iter(*cp, hash);
5744 		continue;
5745 	}
5746 	*fpl->nulchar = '\0';
5747 	fpl->hash = cache_get_hash_iter_finish(hash);
5748 
5749 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5750 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5751 
5752 #ifdef INVARIANTS
5753 	/*
5754 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5755 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5756 	 */
5757 	if (cnp->cn_namelen <= NAME_MAX) {
5758 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5759 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5760 			    cnp->cn_nameptr, cnp->cn_namelen);
5761 		}
5762 	}
5763 #endif
5764 
5765 	/*
5766 	 * Hack: we have to check if the found path component's length exceeds
5767 	 * NAME_MAX. However, the condition is very rarely true and check can
5768 	 * be elided in the common case -- if an entry was found in the cache,
5769 	 * then it could not have been too long to begin with.
5770 	 */
5771 	ndp->ni_next = cp;
5772 }
5773 
5774 static void
cache_fplookup_parse_advance(struct cache_fpl * fpl)5775 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5776 {
5777 	struct nameidata *ndp;
5778 	struct componentname *cnp;
5779 
5780 	ndp = fpl->ndp;
5781 	cnp = fpl->cnp;
5782 
5783 	cnp->cn_nameptr = ndp->ni_next;
5784 	KASSERT(*(cnp->cn_nameptr) == '/',
5785 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5786 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5787 	cnp->cn_nameptr++;
5788 	cache_fpl_pathlen_dec(fpl);
5789 }
5790 
5791 /*
5792  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5793  *
5794  * Lockless lookup tries to elide checking for spurious slashes and should they
5795  * be present is guaranteed to fail to find an entry. In this case the caller
5796  * must check if the name starts with a slash and call this routine.  It is
5797  * going to fast forward across the spurious slashes and set the state up for
5798  * retry.
5799  */
5800 static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl * fpl)5801 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5802 {
5803 	struct nameidata *ndp;
5804 	struct componentname *cnp;
5805 
5806 	ndp = fpl->ndp;
5807 	cnp = fpl->cnp;
5808 
5809 	MPASS(*(cnp->cn_nameptr) == '/');
5810 	do {
5811 		cnp->cn_nameptr++;
5812 		cache_fpl_pathlen_dec(fpl);
5813 	} while (*(cnp->cn_nameptr) == '/');
5814 
5815 	/*
5816 	 * Go back to one slash so that cache_fplookup_parse_advance has
5817 	 * something to skip.
5818 	 */
5819 	cnp->cn_nameptr--;
5820 	cache_fpl_pathlen_inc(fpl);
5821 
5822 	/*
5823 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5824 	 */
5825 	ndp->ni_next = cnp->cn_nameptr;
5826 
5827 	/*
5828 	 * See cache_fplookup_dot.
5829 	 */
5830 	fpl->tvp = fpl->dvp;
5831 	fpl->tvp_seqc = fpl->dvp_seqc;
5832 
5833 	return (0);
5834 }
5835 
5836 /*
5837  * Handle trailing slashes (e.g., "foo/").
5838  *
5839  * If a trailing slash is found the terminal vnode must be a directory.
5840  * Regular lookup shortens the path by nulifying the first trailing slash and
5841  * sets the TRAILINGSLASH flag to denote this took place. There are several
5842  * checks on it performed later.
5843  *
5844  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5845  * manner relying on an invariant that a non-directory vnode will get a miss.
5846  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5847  *
5848  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5849  * and denotes this is the last path component, which avoids looping back.
5850  *
5851  * Only plain lookups are supported for now to restrict corner cases to handle.
5852  */
5853 static int __noinline
cache_fplookup_trailingslash(struct cache_fpl * fpl)5854 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5855 {
5856 #ifdef INVARIANTS
5857 	size_t ni_pathlen;
5858 #endif
5859 	struct nameidata *ndp;
5860 	struct componentname *cnp;
5861 	struct namecache *ncp;
5862 	struct vnode *tvp;
5863 	char *cn_nameptr_orig, *cn_nameptr_slash;
5864 	seqc_t tvp_seqc;
5865 	u_char nc_flag;
5866 
5867 	ndp = fpl->ndp;
5868 	cnp = fpl->cnp;
5869 	tvp = fpl->tvp;
5870 	tvp_seqc = fpl->tvp_seqc;
5871 
5872 	MPASS(fpl->dvp == fpl->tvp);
5873 	KASSERT(cache_fpl_istrailingslash(fpl),
5874 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
5875 	    cnp->cn_pnbuf));
5876 	KASSERT(cnp->cn_nameptr[0] == '\0',
5877 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
5878 	    cnp->cn_pnbuf));
5879 	KASSERT(cnp->cn_namelen == 0,
5880 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
5881 	    cnp->cn_pnbuf));
5882 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
5883 
5884 	if (cnp->cn_nameiop != LOOKUP) {
5885 		return (cache_fpl_aborted(fpl));
5886 	}
5887 
5888 	if (__predict_false(tvp->v_type != VDIR)) {
5889 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
5890 			return (cache_fpl_aborted(fpl));
5891 		}
5892 		cache_fpl_smr_exit(fpl);
5893 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5894 	}
5895 
5896 	/*
5897 	 * Denote the last component.
5898 	 */
5899 	ndp->ni_next = &cnp->cn_nameptr[0];
5900 	MPASS(cache_fpl_islastcn(ndp));
5901 
5902 	/*
5903 	 * Unwind trailing slashes.
5904 	 */
5905 	cn_nameptr_orig = cnp->cn_nameptr;
5906 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
5907 		cnp->cn_nameptr--;
5908 		if (cnp->cn_nameptr[0] != '/') {
5909 			break;
5910 		}
5911 	}
5912 
5913 	/*
5914 	 * Unwind to the beginning of the path component.
5915 	 *
5916 	 * Note the path may or may not have started with a slash.
5917 	 */
5918 	cn_nameptr_slash = cnp->cn_nameptr;
5919 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
5920 		cnp->cn_nameptr--;
5921 		if (cnp->cn_nameptr[0] == '/') {
5922 			break;
5923 		}
5924 	}
5925 	if (cnp->cn_nameptr[0] == '/') {
5926 		cnp->cn_nameptr++;
5927 	}
5928 
5929 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
5930 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
5931 	cache_fpl_checkpoint(fpl);
5932 
5933 #ifdef INVARIANTS
5934 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
5935 	if (ni_pathlen != fpl->debug.ni_pathlen) {
5936 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5937 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5938 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5939 	}
5940 #endif
5941 
5942 	/*
5943 	 * If this was a "./" lookup the parent directory is already correct.
5944 	 */
5945 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
5946 		return (0);
5947 	}
5948 
5949 	/*
5950 	 * Otherwise we need to look it up.
5951 	 */
5952 	tvp = fpl->tvp;
5953 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
5954 	if (__predict_false(ncp == NULL)) {
5955 		return (cache_fpl_aborted(fpl));
5956 	}
5957 	nc_flag = atomic_load_char(&ncp->nc_flag);
5958 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5959 		return (cache_fpl_aborted(fpl));
5960 	}
5961 	fpl->dvp = ncp->nc_dvp;
5962 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5963 	if (seqc_in_modify(fpl->dvp_seqc)) {
5964 		return (cache_fpl_aborted(fpl));
5965 	}
5966 	return (0);
5967 }
5968 
5969 /*
5970  * See the API contract for VOP_FPLOOKUP_VEXEC.
5971  */
5972 static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl * fpl,int error)5973 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
5974 {
5975 	struct componentname *cnp;
5976 	struct vnode *dvp;
5977 	seqc_t dvp_seqc;
5978 
5979 	cnp = fpl->cnp;
5980 	dvp = fpl->dvp;
5981 	dvp_seqc = fpl->dvp_seqc;
5982 
5983 	/*
5984 	 * Hack: delayed empty path checking.
5985 	 */
5986 	if (cnp->cn_pnbuf[0] == '\0') {
5987 		return (cache_fplookup_emptypath(fpl));
5988 	}
5989 
5990 	/*
5991 	 * TODO: Due to ignoring trailing slashes lookup will perform a
5992 	 * permission check on the last dir when it should not be doing it.  It
5993 	 * may fail, but said failure should be ignored. It is possible to fix
5994 	 * it up fully without resorting to regular lookup, but for now just
5995 	 * abort.
5996 	 */
5997 	if (cache_fpl_istrailingslash(fpl)) {
5998 		return (cache_fpl_aborted(fpl));
5999 	}
6000 
6001 	/*
6002 	 * Hack: delayed degenerate path checking.
6003 	 */
6004 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6005 		return (cache_fplookup_degenerate(fpl));
6006 	}
6007 
6008 	/*
6009 	 * Hack: delayed name len checking.
6010 	 */
6011 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6012 		cache_fpl_smr_exit(fpl);
6013 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6014 	}
6015 
6016 	/*
6017 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6018 	 * In such a case we need to return ENOTDIR, but we may happen to get
6019 	 * here with a different error.
6020 	 */
6021 	if (dvp->v_type != VDIR) {
6022 		error = ENOTDIR;
6023 	}
6024 
6025 	/*
6026 	 * Hack: handle O_SEARCH.
6027 	 *
6028 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6029 	 * <quote>
6030 	 * If the access mode of the open file description associated with the
6031 	 * file descriptor is not O_SEARCH, the function shall check whether
6032 	 * directory searches are permitted using the current permissions of
6033 	 * the directory underlying the file descriptor. If the access mode is
6034 	 * O_SEARCH, the function shall not perform the check.
6035 	 * </quote>
6036 	 *
6037 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6038 	 * component to decide whether to do the permission check. However,
6039 	 * since most lookups never have the flag (and when they do it is only
6040 	 * present for the first path component), lockless lookup only acts on
6041 	 * it if there is a permission problem. Here the flag is represented
6042 	 * with a boolean so that we don't have to clear it on the way out.
6043 	 *
6044 	 * For simplicity this always aborts.
6045 	 * TODO: check if this is the first lookup and ignore the permission
6046 	 * problem. Note the flag has to survive fallback (if it happens to be
6047 	 * performed).
6048 	 */
6049 	if (fpl->fsearch) {
6050 		return (cache_fpl_aborted(fpl));
6051 	}
6052 
6053 	switch (error) {
6054 	case EAGAIN:
6055 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6056 			error = cache_fpl_aborted(fpl);
6057 		} else {
6058 			cache_fpl_partial(fpl);
6059 		}
6060 		break;
6061 	default:
6062 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6063 			error = cache_fpl_aborted(fpl);
6064 		} else {
6065 			cache_fpl_smr_exit(fpl);
6066 			cache_fpl_handled_error(fpl, error);
6067 		}
6068 		break;
6069 	}
6070 	return (error);
6071 }
6072 
6073 static int
cache_fplookup_impl(struct vnode * dvp,struct cache_fpl * fpl)6074 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6075 {
6076 	struct nameidata *ndp;
6077 	struct componentname *cnp;
6078 	struct mount *mp;
6079 	int error;
6080 
6081 	ndp = fpl->ndp;
6082 	cnp = fpl->cnp;
6083 
6084 	cache_fpl_checkpoint(fpl);
6085 
6086 	/*
6087 	 * The vnode at hand is almost always stable, skip checking for it.
6088 	 * Worst case this postpones the check towards the end of the iteration
6089 	 * of the main loop.
6090 	 */
6091 	fpl->dvp = dvp;
6092 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6093 
6094 	mp = atomic_load_ptr(&dvp->v_mount);
6095 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6096 		return (cache_fpl_aborted(fpl));
6097 	}
6098 
6099 	MPASS(fpl->tvp == NULL);
6100 
6101 	for (;;) {
6102 		cache_fplookup_parse(fpl);
6103 
6104 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6105 		if (__predict_false(error != 0)) {
6106 			error = cache_fplookup_failed_vexec(fpl, error);
6107 			break;
6108 		}
6109 
6110 		error = cache_fplookup_next(fpl);
6111 		if (__predict_false(cache_fpl_terminated(fpl))) {
6112 			break;
6113 		}
6114 
6115 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6116 
6117 		if (fpl->tvp->v_type == VLNK) {
6118 			error = cache_fplookup_symlink(fpl);
6119 			if (cache_fpl_terminated(fpl)) {
6120 				break;
6121 			}
6122 		} else {
6123 			if (cache_fpl_islastcn(ndp)) {
6124 				error = cache_fplookup_final(fpl);
6125 				break;
6126 			}
6127 
6128 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6129 				error = cache_fpl_aborted(fpl);
6130 				break;
6131 			}
6132 
6133 			fpl->dvp = fpl->tvp;
6134 			fpl->dvp_seqc = fpl->tvp_seqc;
6135 			cache_fplookup_parse_advance(fpl);
6136 		}
6137 
6138 		cache_fpl_checkpoint(fpl);
6139 	}
6140 
6141 	return (error);
6142 }
6143 
6144 /*
6145  * Fast path lookup protected with SMR and sequence counters.
6146  *
6147  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6148  *
6149  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6150  * outlined below.
6151  *
6152  * Traditional vnode lookup conceptually looks like this:
6153  *
6154  * vn_lock(current);
6155  * for (;;) {
6156  *	next = find();
6157  *	vn_lock(next);
6158  *	vn_unlock(current);
6159  *	current = next;
6160  *	if (last)
6161  *	    break;
6162  * }
6163  * return (current);
6164  *
6165  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6166  * any modifications thanks to holding respective locks.
6167  *
6168  * The same guarantee can be provided with a combination of safe memory
6169  * reclamation and sequence counters instead. If all operations which affect
6170  * the relationship between the current vnode and the one we are looking for
6171  * also modify the counter, we can verify whether all the conditions held as
6172  * we made the jump. This includes things like permissions, mount points etc.
6173  * Counter modification is provided by enclosing relevant places in
6174  * vn_seqc_write_begin()/end() calls.
6175  *
6176  * Thus this translates to:
6177  *
6178  * vfs_smr_enter();
6179  * dvp_seqc = seqc_read_any(dvp);
6180  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6181  *     abort();
6182  * for (;;) {
6183  * 	tvp = find();
6184  * 	tvp_seqc = seqc_read_any(tvp);
6185  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6186  * 	    abort();
6187  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6188  * 	    abort();
6189  * 	dvp = tvp; // we know nothing of importance has changed
6190  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6191  * 	if (last)
6192  * 	    break;
6193  * }
6194  * vget(); // secure the vnode
6195  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6196  * 	    abort();
6197  * // at this point we know nothing has changed for any parent<->child pair
6198  * // as they were crossed during the lookup, meaning we matched the guarantee
6199  * // of the locked variant
6200  * return (tvp);
6201  *
6202  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6203  * - they are called while within vfs_smr protection which they must never exit
6204  * - EAGAIN can be returned to denote checking could not be performed, it is
6205  *   always valid to return it
6206  * - if the sequence counter has not changed the result must be valid
6207  * - if the sequence counter has changed both false positives and false negatives
6208  *   are permitted (since the result will be rejected later)
6209  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6210  *
6211  * Caveats to watch out for:
6212  * - vnodes are passed unlocked and unreferenced with nothing stopping
6213  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6214  *   to use atomic_load_ptr to fetch it.
6215  * - the aforementioned object can also get freed, meaning absent other means it
6216  *   should be protected with vfs_smr
6217  * - either safely checking permissions as they are modified or guaranteeing
6218  *   their stability is left to the routine
6219  */
6220 int
cache_fplookup(struct nameidata * ndp,enum cache_fpl_status * status,struct pwd ** pwdp)6221 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6222     struct pwd **pwdp)
6223 {
6224 	struct cache_fpl fpl;
6225 	struct pwd *pwd;
6226 	struct vnode *dvp;
6227 	struct componentname *cnp;
6228 	int error;
6229 
6230 	fpl.status = CACHE_FPL_STATUS_UNSET;
6231 	fpl.in_smr = false;
6232 	fpl.ndp = ndp;
6233 	fpl.cnp = cnp = &ndp->ni_cnd;
6234 	MPASS(ndp->ni_lcf == 0);
6235 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6236 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6237 	    cnp->cn_flags));
6238 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6239 	MPASS(ndp->ni_resflags == 0);
6240 
6241 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6242 		*status = fpl.status;
6243 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6244 		return (EOPNOTSUPP);
6245 	}
6246 
6247 	cache_fpl_checkpoint_outer(&fpl);
6248 
6249 	cache_fpl_smr_enter_initial(&fpl);
6250 #ifdef INVARIANTS
6251 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6252 #endif
6253 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6254 	fpl.fsearch = false;
6255 	fpl.tvp = NULL; /* for degenerate path handling */
6256 	fpl.pwd = pwdp;
6257 	pwd = pwd_get_smr();
6258 	*(fpl.pwd) = pwd;
6259 	namei_setup_rootdir(ndp, cnp, pwd);
6260 	ndp->ni_topdir = pwd->pwd_jdir;
6261 
6262 	if (cnp->cn_pnbuf[0] == '/') {
6263 		dvp = cache_fpl_handle_root(&fpl);
6264 		ndp->ni_resflags = NIRES_ABS;
6265 	} else {
6266 		if (ndp->ni_dirfd == AT_FDCWD) {
6267 			dvp = pwd->pwd_cdir;
6268 		} else {
6269 			error = cache_fplookup_dirfd(&fpl, &dvp);
6270 			if (__predict_false(error != 0)) {
6271 				goto out;
6272 			}
6273 		}
6274 	}
6275 
6276 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6277 	error = cache_fplookup_impl(dvp, &fpl);
6278 out:
6279 	cache_fpl_smr_assert_not_entered(&fpl);
6280 	cache_fpl_assert_status(&fpl);
6281 	*status = fpl.status;
6282 	if (SDT_PROBES_ENABLED()) {
6283 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6284 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6285 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6286 			    ndp);
6287 	}
6288 
6289 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6290 		MPASS(error != CACHE_FPL_FAILED);
6291 		if (error != 0) {
6292 			cache_fpl_cleanup_cnp(fpl.cnp);
6293 			MPASS(fpl.dvp == NULL);
6294 			MPASS(fpl.tvp == NULL);
6295 		}
6296 		ndp->ni_dvp = fpl.dvp;
6297 		ndp->ni_vp = fpl.tvp;
6298 	}
6299 	return (error);
6300 }
6301