1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21 /*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28 /*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92 #include <sys/cdefs.h>
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/conf.h>
96 #include <sys/fcntl.h>
97 #include <sys/file.h>
98 #include <sys/filedesc.h>
99 #include <sys/filio.h>
100 #include <sys/kernel.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/ttycom.h>
104 #include <sys/stat.h>
105 #include <sys/malloc.h>
106 #include <sys/poll.h>
107 #include <sys/priv.h>
108 #include <sys/selinfo.h>
109 #include <sys/signalvar.h>
110 #include <sys/syscallsubr.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/user.h>
118 #include <sys/event.h>
119
120 #include <security/mac/mac_framework.h>
121
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131
132 /*
133 * Use this define if you want to disable *fancy* VM things. Expect an
134 * approx 30% decrease in transfer rate. This could be useful for
135 * NetBSD or OpenBSD.
136 */
137 /* #define PIPE_NODIRECT */
138
139 #define PIPE_PEER(pipe) \
140 (((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142 /*
143 * interfaces to the outside world
144 */
145 static fo_rdwr_t pipe_read;
146 static fo_rdwr_t pipe_write;
147 static fo_truncate_t pipe_truncate;
148 static fo_ioctl_t pipe_ioctl;
149 static fo_poll_t pipe_poll;
150 static fo_kqfilter_t pipe_kqfilter;
151 static fo_stat_t pipe_stat;
152 static fo_close_t pipe_close;
153 static fo_chmod_t pipe_chmod;
154 static fo_chown_t pipe_chown;
155 static fo_fill_kinfo_t pipe_fill_kinfo;
156
157 struct fileops pipeops = {
158 .fo_read = pipe_read,
159 .fo_write = pipe_write,
160 .fo_truncate = pipe_truncate,
161 .fo_ioctl = pipe_ioctl,
162 .fo_poll = pipe_poll,
163 .fo_kqfilter = pipe_kqfilter,
164 .fo_stat = pipe_stat,
165 .fo_close = pipe_close,
166 .fo_chmod = pipe_chmod,
167 .fo_chown = pipe_chown,
168 .fo_sendfile = invfo_sendfile,
169 .fo_fill_kinfo = pipe_fill_kinfo,
170 .fo_cmp = file_kcmp_generic,
171 .fo_flags = DFLAG_PASSABLE
172 };
173
174 static void filt_pipedetach(struct knote *kn);
175 static void filt_pipedetach_notsup(struct knote *kn);
176 static int filt_pipenotsup(struct knote *kn, long hint);
177 static int filt_piperead(struct knote *kn, long hint);
178 static int filt_pipewrite(struct knote *kn, long hint);
179
180 static struct filterops pipe_nfiltops = {
181 .f_isfd = 1,
182 .f_detach = filt_pipedetach_notsup,
183 .f_event = filt_pipenotsup
184 };
185 static struct filterops pipe_rfiltops = {
186 .f_isfd = 1,
187 .f_detach = filt_pipedetach,
188 .f_event = filt_piperead
189 };
190 static struct filterops pipe_wfiltops = {
191 .f_isfd = 1,
192 .f_detach = filt_pipedetach,
193 .f_event = filt_pipewrite
194 };
195
196 /*
197 * Default pipe buffer size(s), this can be kind-of large now because pipe
198 * space is pageable. The pipe code will try to maintain locality of
199 * reference for performance reasons, so small amounts of outstanding I/O
200 * will not wipe the cache.
201 */
202 #define MINPIPESIZE (PIPE_SIZE/3)
203 #define MAXPIPESIZE (2*PIPE_SIZE/3)
204
205 static long amountpipekva;
206 static int pipefragretry;
207 static int pipeallocfail;
208 static int piperesizefail;
209 static int piperesizeallowed = 1;
210 static long pipe_mindirect = PIPE_MINDIRECT;
211 static int pipebuf_reserv = 2;
212
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 &piperesizeallowed, 0, "Pipe resizing allowed");
225 SYSCTL_INT(_kern_ipc, OID_AUTO, pipebuf_reserv, CTLFLAG_RW,
226 &pipebuf_reserv, 0,
227 "Superuser-reserved percentage of the pipe buffers space");
228
229 static void pipeinit(void *dummy __unused);
230 static void pipeclose(struct pipe *cpipe);
231 static void pipe_free_kmem(struct pipe *cpipe);
232 static int pipe_create(struct pipe *pipe, bool backing);
233 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
234 static __inline int pipelock(struct pipe *cpipe, int catch);
235 static __inline void pipeunlock(struct pipe *cpipe);
236 static void pipe_timestamp(struct timespec *tsp);
237 #ifndef PIPE_NODIRECT
238 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
239 static void pipe_destroy_write_buffer(struct pipe *wpipe);
240 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
241 static void pipe_clone_write_buffer(struct pipe *wpipe);
242 #endif
243 static int pipespace(struct pipe *cpipe, int size);
244 static int pipespace_new(struct pipe *cpipe, int size);
245
246 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
247 static int pipe_zone_init(void *mem, int size, int flags);
248 static void pipe_zone_fini(void *mem, int size);
249
250 static uma_zone_t pipe_zone;
251 static struct unrhdr64 pipeino_unr;
252 static dev_t pipedev_ino;
253
254 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
255
256 static void
pipeinit(void * dummy __unused)257 pipeinit(void *dummy __unused)
258 {
259
260 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
261 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
262 UMA_ALIGN_PTR, 0);
263 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
264 new_unrhdr64(&pipeino_unr, 1);
265 pipedev_ino = devfs_alloc_cdp_inode();
266 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
267 }
268
269 static int
sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)270 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
271 {
272 int error = 0;
273 long tmp_pipe_mindirect = pipe_mindirect;
274
275 error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
276 if (error != 0 || req->newptr == NULL)
277 return (error);
278
279 /*
280 * Don't allow pipe_mindirect to be set so low that we violate
281 * atomicity requirements.
282 */
283 if (tmp_pipe_mindirect <= PIPE_BUF)
284 return (EINVAL);
285 pipe_mindirect = tmp_pipe_mindirect;
286 return (0);
287 }
288 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
289 &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L",
290 "Minimum write size triggering VM optimization");
291
292 static int
pipe_zone_ctor(void * mem,int size,void * arg,int flags)293 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
294 {
295 struct pipepair *pp;
296 struct pipe *rpipe, *wpipe;
297
298 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
299
300 pp = (struct pipepair *)mem;
301
302 /*
303 * We zero both pipe endpoints to make sure all the kmem pointers
304 * are NULL, flag fields are zero'd, etc. We timestamp both
305 * endpoints with the same time.
306 */
307 rpipe = &pp->pp_rpipe;
308 bzero(rpipe, sizeof(*rpipe));
309 pipe_timestamp(&rpipe->pipe_ctime);
310 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
311
312 wpipe = &pp->pp_wpipe;
313 bzero(wpipe, sizeof(*wpipe));
314 wpipe->pipe_ctime = rpipe->pipe_ctime;
315 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
316
317 rpipe->pipe_peer = wpipe;
318 rpipe->pipe_pair = pp;
319 wpipe->pipe_peer = rpipe;
320 wpipe->pipe_pair = pp;
321
322 /*
323 * Mark both endpoints as present; they will later get free'd
324 * one at a time. When both are free'd, then the whole pair
325 * is released.
326 */
327 rpipe->pipe_present = PIPE_ACTIVE;
328 wpipe->pipe_present = PIPE_ACTIVE;
329
330 /*
331 * Eventually, the MAC Framework may initialize the label
332 * in ctor or init, but for now we do it elswhere to avoid
333 * blocking in ctor or init.
334 */
335 pp->pp_label = NULL;
336
337 return (0);
338 }
339
340 static int
pipe_zone_init(void * mem,int size,int flags)341 pipe_zone_init(void *mem, int size, int flags)
342 {
343 struct pipepair *pp;
344
345 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
346
347 pp = (struct pipepair *)mem;
348
349 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
350 return (0);
351 }
352
353 static void
pipe_zone_fini(void * mem,int size)354 pipe_zone_fini(void *mem, int size)
355 {
356 struct pipepair *pp;
357
358 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
359
360 pp = (struct pipepair *)mem;
361
362 mtx_destroy(&pp->pp_mtx);
363 }
364
365 static int
pipe_paircreate(struct thread * td,struct pipepair ** p_pp)366 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
367 {
368 struct pipepair *pp;
369 struct pipe *rpipe, *wpipe;
370 int error;
371
372 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
373 #ifdef MAC
374 /*
375 * The MAC label is shared between the connected endpoints. As a
376 * result mac_pipe_init() and mac_pipe_create() are called once
377 * for the pair, and not on the endpoints.
378 */
379 mac_pipe_init(pp);
380 mac_pipe_create(td->td_ucred, pp);
381 #endif
382 rpipe = &pp->pp_rpipe;
383 wpipe = &pp->pp_wpipe;
384 pp->pp_owner = crhold(td->td_ucred);
385
386 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
387 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
388
389 /*
390 * Only the forward direction pipe is backed by big buffer by
391 * default.
392 */
393 error = pipe_create(rpipe, true);
394 if (error != 0)
395 goto fail;
396 error = pipe_create(wpipe, false);
397 if (error != 0) {
398 /*
399 * This cleanup leaves the pipe inode number for rpipe
400 * still allocated, but never used. We do not free
401 * inode numbers for opened pipes, which is required
402 * for correctness because numbers must be unique.
403 * But also it avoids any memory use by the unr
404 * allocator, so stashing away the transient inode
405 * number is reasonable.
406 */
407 pipe_free_kmem(rpipe);
408 goto fail;
409 }
410
411 rpipe->pipe_state |= PIPE_DIRECTOK;
412 wpipe->pipe_state |= PIPE_DIRECTOK;
413 return (0);
414
415 fail:
416 knlist_destroy(&rpipe->pipe_sel.si_note);
417 knlist_destroy(&wpipe->pipe_sel.si_note);
418 crfree(pp->pp_owner);
419 #ifdef MAC
420 mac_pipe_destroy(pp);
421 #endif
422 uma_zfree(pipe_zone, pp);
423 return (error);
424 }
425
426 int
pipe_named_ctor(struct pipe ** ppipe,struct thread * td)427 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
428 {
429 struct pipepair *pp;
430 int error;
431
432 error = pipe_paircreate(td, &pp);
433 if (error != 0)
434 return (error);
435 pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
436 *ppipe = &pp->pp_rpipe;
437 return (0);
438 }
439
440 void
pipe_dtor(struct pipe * dpipe)441 pipe_dtor(struct pipe *dpipe)
442 {
443 struct pipe *peer;
444
445 peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
446 funsetown(&dpipe->pipe_sigio);
447 pipeclose(dpipe);
448 if (peer != NULL) {
449 funsetown(&peer->pipe_sigio);
450 pipeclose(peer);
451 }
452 }
453
454 /*
455 * Get a timestamp.
456 *
457 * This used to be vfs_timestamp but the higher precision is unnecessary and
458 * can very negatively affect performance in virtualized environments (e.g., on
459 * vms running on amd64 when using the rdtscp instruction).
460 */
461 static void
pipe_timestamp(struct timespec * tsp)462 pipe_timestamp(struct timespec *tsp)
463 {
464
465 getnanotime(tsp);
466 }
467
468 /*
469 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
470 * the zone pick up the pieces via pipeclose().
471 */
472 int
kern_pipe(struct thread * td,int fildes[2],int flags,struct filecaps * fcaps1,struct filecaps * fcaps2)473 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
474 struct filecaps *fcaps2)
475 {
476 struct file *rf, *wf;
477 struct pipe *rpipe, *wpipe;
478 struct pipepair *pp;
479 int fd, fflags, error;
480
481 error = pipe_paircreate(td, &pp);
482 if (error != 0)
483 return (error);
484 rpipe = &pp->pp_rpipe;
485 wpipe = &pp->pp_wpipe;
486 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
487 if (error) {
488 pipeclose(rpipe);
489 pipeclose(wpipe);
490 return (error);
491 }
492 /* An extra reference on `rf' has been held for us by falloc_caps(). */
493 fildes[0] = fd;
494
495 fflags = FREAD | FWRITE;
496 if ((flags & O_NONBLOCK) != 0)
497 fflags |= FNONBLOCK;
498
499 /*
500 * Warning: once we've gotten past allocation of the fd for the
501 * read-side, we can only drop the read side via fdrop() in order
502 * to avoid races against processes which manage to dup() the read
503 * side while we are blocked trying to allocate the write side.
504 */
505 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
506 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
507 if (error) {
508 fdclose(td, rf, fildes[0]);
509 fdrop(rf, td);
510 /* rpipe has been closed by fdrop(). */
511 pipeclose(wpipe);
512 return (error);
513 }
514 /* An extra reference on `wf' has been held for us by falloc_caps(). */
515 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
516 fdrop(wf, td);
517 fildes[1] = fd;
518 fdrop(rf, td);
519
520 return (0);
521 }
522
523 #ifdef COMPAT_FREEBSD10
524 /* ARGSUSED */
525 int
freebsd10_pipe(struct thread * td,struct freebsd10_pipe_args * uap __unused)526 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
527 {
528 int error;
529 int fildes[2];
530
531 error = kern_pipe(td, fildes, 0, NULL, NULL);
532 if (error)
533 return (error);
534
535 td->td_retval[0] = fildes[0];
536 td->td_retval[1] = fildes[1];
537
538 return (0);
539 }
540 #endif
541
542 int
sys_pipe2(struct thread * td,struct pipe2_args * uap)543 sys_pipe2(struct thread *td, struct pipe2_args *uap)
544 {
545 int error, fildes[2];
546
547 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
548 return (EINVAL);
549 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
550 if (error)
551 return (error);
552 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
553 if (error) {
554 (void)kern_close(td, fildes[0]);
555 (void)kern_close(td, fildes[1]);
556 }
557 return (error);
558 }
559
560 /*
561 * Allocate kva for pipe circular buffer, the space is pageable
562 * This routine will 'realloc' the size of a pipe safely, if it fails
563 * it will retain the old buffer.
564 * If it fails it will return ENOMEM.
565 */
566 static int
pipespace_new(struct pipe * cpipe,int size)567 pipespace_new(struct pipe *cpipe, int size)
568 {
569 caddr_t buffer;
570 int error, cnt, firstseg;
571 static int curfail = 0;
572 static struct timeval lastfail;
573
574 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
575 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
576 ("pipespace: resize of direct writes not allowed"));
577 retry:
578 cnt = cpipe->pipe_buffer.cnt;
579 if (cnt > size)
580 size = cnt;
581
582 size = round_page(size);
583 buffer = (caddr_t) vm_map_min(pipe_map);
584
585 if (!chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo,
586 size, lim_cur(curthread, RLIMIT_PIPEBUF))) {
587 if (cpipe->pipe_buffer.buffer == NULL &&
588 size > SMALL_PIPE_SIZE) {
589 size = SMALL_PIPE_SIZE;
590 goto retry;
591 }
592 return (ENOMEM);
593 }
594
595 vm_map_lock(pipe_map);
596 if (priv_check(curthread, PRIV_PIPEBUF) != 0 && maxpipekva / 100 *
597 (100 - pipebuf_reserv) < amountpipekva + size) {
598 vm_map_unlock(pipe_map);
599 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0);
600 if (cpipe->pipe_buffer.buffer == NULL &&
601 size > SMALL_PIPE_SIZE) {
602 size = SMALL_PIPE_SIZE;
603 pipefragretry++;
604 goto retry;
605 }
606 return (ENOMEM);
607 }
608 error = vm_map_find_locked(pipe_map, NULL, 0, (vm_offset_t *)&buffer,
609 size, 0, VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
610 vm_map_unlock(pipe_map);
611 if (error != KERN_SUCCESS) {
612 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo, -size, 0);
613 if (cpipe->pipe_buffer.buffer == NULL &&
614 size > SMALL_PIPE_SIZE) {
615 size = SMALL_PIPE_SIZE;
616 pipefragretry++;
617 goto retry;
618 }
619 if (cpipe->pipe_buffer.buffer == NULL) {
620 pipeallocfail++;
621 if (ppsratecheck(&lastfail, &curfail, 1))
622 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
623 } else {
624 piperesizefail++;
625 }
626 return (ENOMEM);
627 }
628
629 /* copy data, then free old resources if we're resizing */
630 if (cnt > 0) {
631 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
632 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
633 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
634 buffer, firstseg);
635 if ((cnt - firstseg) > 0)
636 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
637 cpipe->pipe_buffer.in);
638 } else {
639 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
640 buffer, cnt);
641 }
642 }
643 pipe_free_kmem(cpipe);
644 cpipe->pipe_buffer.buffer = buffer;
645 cpipe->pipe_buffer.size = size;
646 cpipe->pipe_buffer.in = cnt;
647 cpipe->pipe_buffer.out = 0;
648 cpipe->pipe_buffer.cnt = cnt;
649 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
650 return (0);
651 }
652
653 /*
654 * Wrapper for pipespace_new() that performs locking assertions.
655 */
656 static int
pipespace(struct pipe * cpipe,int size)657 pipespace(struct pipe *cpipe, int size)
658 {
659
660 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
661 ("Unlocked pipe passed to pipespace"));
662 return (pipespace_new(cpipe, size));
663 }
664
665 /*
666 * lock a pipe for I/O, blocking other access
667 */
668 static __inline int
pipelock(struct pipe * cpipe,int catch)669 pipelock(struct pipe *cpipe, int catch)
670 {
671 int error, prio;
672
673 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
674
675 prio = PRIBIO;
676 if (catch)
677 prio |= PCATCH;
678 while (cpipe->pipe_state & PIPE_LOCKFL) {
679 KASSERT(cpipe->pipe_waiters >= 0,
680 ("%s: bad waiter count %d", __func__,
681 cpipe->pipe_waiters));
682 cpipe->pipe_waiters++;
683 error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio,
684 "pipelk", 0);
685 cpipe->pipe_waiters--;
686 if (error != 0)
687 return (error);
688 }
689 cpipe->pipe_state |= PIPE_LOCKFL;
690 return (0);
691 }
692
693 /*
694 * unlock a pipe I/O lock
695 */
696 static __inline void
pipeunlock(struct pipe * cpipe)697 pipeunlock(struct pipe *cpipe)
698 {
699
700 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
701 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
702 ("Unlocked pipe passed to pipeunlock"));
703 KASSERT(cpipe->pipe_waiters >= 0,
704 ("%s: bad waiter count %d", __func__,
705 cpipe->pipe_waiters));
706 cpipe->pipe_state &= ~PIPE_LOCKFL;
707 if (cpipe->pipe_waiters > 0)
708 wakeup_one(&cpipe->pipe_waiters);
709 }
710
711 void
pipeselwakeup(struct pipe * cpipe)712 pipeselwakeup(struct pipe *cpipe)
713 {
714
715 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
716 if (cpipe->pipe_state & PIPE_SEL) {
717 selwakeuppri(&cpipe->pipe_sel, PSOCK);
718 if (!SEL_WAITING(&cpipe->pipe_sel))
719 cpipe->pipe_state &= ~PIPE_SEL;
720 }
721 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
722 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
723 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
724 }
725
726 /*
727 * Initialize and allocate VM and memory for pipe. The structure
728 * will start out zero'd from the ctor, so we just manage the kmem.
729 */
730 static int
pipe_create(struct pipe * pipe,bool large_backing)731 pipe_create(struct pipe *pipe, bool large_backing)
732 {
733 int error;
734
735 error = pipespace_new(pipe, !large_backing || amountpipekva >
736 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
737 if (error == 0)
738 pipe->pipe_ino = alloc_unr64(&pipeino_unr);
739 return (error);
740 }
741
742 /* ARGSUSED */
743 static int
pipe_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)744 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
745 int flags, struct thread *td)
746 {
747 struct pipe *rpipe;
748 int error;
749 int nread = 0;
750 int size;
751
752 rpipe = fp->f_data;
753
754 /*
755 * Try to avoid locking the pipe if we have nothing to do.
756 *
757 * There are programs which share one pipe amongst multiple processes
758 * and perform non-blocking reads in parallel, even if the pipe is
759 * empty. This in particular is the case with BSD make, which when
760 * spawned with a high -j number can find itself with over half of the
761 * calls failing to find anything.
762 */
763 if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) {
764 if (__predict_false(uio->uio_resid == 0))
765 return (0);
766 if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 &&
767 atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 &&
768 atomic_load_int(&rpipe->pipe_pages.cnt) == 0)
769 return (EAGAIN);
770 }
771
772 PIPE_LOCK(rpipe);
773 ++rpipe->pipe_busy;
774 error = pipelock(rpipe, 1);
775 if (error)
776 goto unlocked_error;
777
778 #ifdef MAC
779 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
780 if (error)
781 goto locked_error;
782 #endif
783 if (amountpipekva > (3 * maxpipekva) / 4) {
784 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
785 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
786 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
787 piperesizeallowed == 1) {
788 PIPE_UNLOCK(rpipe);
789 pipespace(rpipe, SMALL_PIPE_SIZE);
790 PIPE_LOCK(rpipe);
791 }
792 }
793
794 while (uio->uio_resid) {
795 /*
796 * normal pipe buffer receive
797 */
798 if (rpipe->pipe_buffer.cnt > 0) {
799 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
800 if (size > rpipe->pipe_buffer.cnt)
801 size = rpipe->pipe_buffer.cnt;
802 if (size > uio->uio_resid)
803 size = uio->uio_resid;
804
805 PIPE_UNLOCK(rpipe);
806 error = uiomove(
807 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
808 size, uio);
809 PIPE_LOCK(rpipe);
810 if (error)
811 break;
812
813 rpipe->pipe_buffer.out += size;
814 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
815 rpipe->pipe_buffer.out = 0;
816
817 rpipe->pipe_buffer.cnt -= size;
818
819 /*
820 * If there is no more to read in the pipe, reset
821 * its pointers to the beginning. This improves
822 * cache hit stats.
823 */
824 if (rpipe->pipe_buffer.cnt == 0) {
825 rpipe->pipe_buffer.in = 0;
826 rpipe->pipe_buffer.out = 0;
827 }
828 nread += size;
829 #ifndef PIPE_NODIRECT
830 /*
831 * Direct copy, bypassing a kernel buffer.
832 */
833 } else if ((size = rpipe->pipe_pages.cnt) != 0) {
834 if (size > uio->uio_resid)
835 size = (u_int) uio->uio_resid;
836 PIPE_UNLOCK(rpipe);
837 error = uiomove_fromphys(rpipe->pipe_pages.ms,
838 rpipe->pipe_pages.pos, size, uio);
839 PIPE_LOCK(rpipe);
840 if (error)
841 break;
842 nread += size;
843 rpipe->pipe_pages.pos += size;
844 rpipe->pipe_pages.cnt -= size;
845 if (rpipe->pipe_pages.cnt == 0) {
846 rpipe->pipe_state &= ~PIPE_WANTW;
847 wakeup(rpipe);
848 }
849 #endif
850 } else {
851 /*
852 * detect EOF condition
853 * read returns 0 on EOF, no need to set error
854 */
855 if (rpipe->pipe_state & PIPE_EOF)
856 break;
857
858 /*
859 * If the "write-side" has been blocked, wake it up now.
860 */
861 if (rpipe->pipe_state & PIPE_WANTW) {
862 rpipe->pipe_state &= ~PIPE_WANTW;
863 wakeup(rpipe);
864 }
865
866 /*
867 * Break if some data was read.
868 */
869 if (nread > 0)
870 break;
871
872 /*
873 * Unlock the pipe buffer for our remaining processing.
874 * We will either break out with an error or we will
875 * sleep and relock to loop.
876 */
877 pipeunlock(rpipe);
878
879 /*
880 * Handle non-blocking mode operation or
881 * wait for more data.
882 */
883 if (fp->f_flag & FNONBLOCK) {
884 error = EAGAIN;
885 } else {
886 rpipe->pipe_state |= PIPE_WANTR;
887 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
888 PRIBIO | PCATCH,
889 "piperd", 0)) == 0)
890 error = pipelock(rpipe, 1);
891 }
892 if (error)
893 goto unlocked_error;
894 }
895 }
896 #ifdef MAC
897 locked_error:
898 #endif
899 pipeunlock(rpipe);
900
901 /* XXX: should probably do this before getting any locks. */
902 if (error == 0)
903 pipe_timestamp(&rpipe->pipe_atime);
904 unlocked_error:
905 --rpipe->pipe_busy;
906
907 /*
908 * PIPE_WANT processing only makes sense if pipe_busy is 0.
909 */
910 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
911 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
912 wakeup(rpipe);
913 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
914 /*
915 * Handle write blocking hysteresis.
916 */
917 if (rpipe->pipe_state & PIPE_WANTW) {
918 rpipe->pipe_state &= ~PIPE_WANTW;
919 wakeup(rpipe);
920 }
921 }
922
923 /*
924 * Only wake up writers if there was actually something read.
925 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
926 */
927 if (nread > 0 &&
928 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
929 pipeselwakeup(rpipe);
930
931 PIPE_UNLOCK(rpipe);
932 if (nread > 0)
933 td->td_ru.ru_msgrcv++;
934 return (error);
935 }
936
937 #ifndef PIPE_NODIRECT
938 /*
939 * Map the sending processes' buffer into kernel space and wire it.
940 * This is similar to a physical write operation.
941 */
942 static int
pipe_build_write_buffer(struct pipe * wpipe,struct uio * uio)943 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
944 {
945 u_int size;
946 int i;
947
948 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
949 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
950 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
951 KASSERT(wpipe->pipe_pages.cnt == 0,
952 ("%s: pipe map for %p contains residual data", __func__, wpipe));
953
954 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
955 size = wpipe->pipe_buffer.size;
956 else
957 size = uio->uio_iov->iov_len;
958
959 wpipe->pipe_state |= PIPE_DIRECTW;
960 PIPE_UNLOCK(wpipe);
961 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
962 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
963 wpipe->pipe_pages.ms, PIPENPAGES);
964 PIPE_LOCK(wpipe);
965 if (i < 0) {
966 wpipe->pipe_state &= ~PIPE_DIRECTW;
967 return (EFAULT);
968 }
969
970 wpipe->pipe_pages.npages = i;
971 wpipe->pipe_pages.pos =
972 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
973 wpipe->pipe_pages.cnt = size;
974
975 uio->uio_iov->iov_len -= size;
976 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
977 if (uio->uio_iov->iov_len == 0) {
978 uio->uio_iov++;
979 uio->uio_iovcnt--;
980 }
981 uio->uio_resid -= size;
982 uio->uio_offset += size;
983 return (0);
984 }
985
986 /*
987 * Unwire the process buffer.
988 */
989 static void
pipe_destroy_write_buffer(struct pipe * wpipe)990 pipe_destroy_write_buffer(struct pipe *wpipe)
991 {
992
993 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
994 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
995 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
996 KASSERT(wpipe->pipe_pages.cnt == 0,
997 ("%s: pipe map for %p contains residual data", __func__, wpipe));
998
999 wpipe->pipe_state &= ~PIPE_DIRECTW;
1000 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
1001 wpipe->pipe_pages.npages = 0;
1002 }
1003
1004 /*
1005 * In the case of a signal, the writing process might go away. This
1006 * code copies the data into the circular buffer so that the source
1007 * pages can be freed without loss of data.
1008 */
1009 static void
pipe_clone_write_buffer(struct pipe * wpipe)1010 pipe_clone_write_buffer(struct pipe *wpipe)
1011 {
1012 struct uio uio;
1013 struct iovec iov;
1014 int size;
1015 int pos;
1016
1017 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1018 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
1019 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
1020
1021 size = wpipe->pipe_pages.cnt;
1022 pos = wpipe->pipe_pages.pos;
1023 wpipe->pipe_pages.cnt = 0;
1024
1025 wpipe->pipe_buffer.in = size;
1026 wpipe->pipe_buffer.out = 0;
1027 wpipe->pipe_buffer.cnt = size;
1028
1029 PIPE_UNLOCK(wpipe);
1030 iov.iov_base = wpipe->pipe_buffer.buffer;
1031 iov.iov_len = size;
1032 uio.uio_iov = &iov;
1033 uio.uio_iovcnt = 1;
1034 uio.uio_offset = 0;
1035 uio.uio_resid = size;
1036 uio.uio_segflg = UIO_SYSSPACE;
1037 uio.uio_rw = UIO_READ;
1038 uio.uio_td = curthread;
1039 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
1040 PIPE_LOCK(wpipe);
1041 pipe_destroy_write_buffer(wpipe);
1042 }
1043
1044 /*
1045 * This implements the pipe buffer write mechanism. Note that only
1046 * a direct write OR a normal pipe write can be pending at any given time.
1047 * If there are any characters in the pipe buffer, the direct write will
1048 * be deferred until the receiving process grabs all of the bytes from
1049 * the pipe buffer. Then the direct mapping write is set-up.
1050 */
1051 static int
pipe_direct_write(struct pipe * wpipe,struct uio * uio)1052 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1053 {
1054 int error;
1055
1056 retry:
1057 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1058 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1059 error = EPIPE;
1060 goto error1;
1061 }
1062 if (wpipe->pipe_state & PIPE_DIRECTW) {
1063 if (wpipe->pipe_state & PIPE_WANTR) {
1064 wpipe->pipe_state &= ~PIPE_WANTR;
1065 wakeup(wpipe);
1066 }
1067 pipeselwakeup(wpipe);
1068 wpipe->pipe_state |= PIPE_WANTW;
1069 pipeunlock(wpipe);
1070 error = msleep(wpipe, PIPE_MTX(wpipe),
1071 PRIBIO | PCATCH, "pipdww", 0);
1072 pipelock(wpipe, 0);
1073 if (error != 0)
1074 goto error1;
1075 goto retry;
1076 }
1077 if (wpipe->pipe_buffer.cnt > 0) {
1078 if (wpipe->pipe_state & PIPE_WANTR) {
1079 wpipe->pipe_state &= ~PIPE_WANTR;
1080 wakeup(wpipe);
1081 }
1082 pipeselwakeup(wpipe);
1083 wpipe->pipe_state |= PIPE_WANTW;
1084 pipeunlock(wpipe);
1085 error = msleep(wpipe, PIPE_MTX(wpipe),
1086 PRIBIO | PCATCH, "pipdwc", 0);
1087 pipelock(wpipe, 0);
1088 if (error != 0)
1089 goto error1;
1090 goto retry;
1091 }
1092
1093 error = pipe_build_write_buffer(wpipe, uio);
1094 if (error) {
1095 goto error1;
1096 }
1097
1098 while (wpipe->pipe_pages.cnt != 0 &&
1099 (wpipe->pipe_state & PIPE_EOF) == 0) {
1100 if (wpipe->pipe_state & PIPE_WANTR) {
1101 wpipe->pipe_state &= ~PIPE_WANTR;
1102 wakeup(wpipe);
1103 }
1104 pipeselwakeup(wpipe);
1105 wpipe->pipe_state |= PIPE_WANTW;
1106 pipeunlock(wpipe);
1107 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1108 "pipdwt", 0);
1109 pipelock(wpipe, 0);
1110 if (error != 0)
1111 break;
1112 }
1113
1114 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1115 wpipe->pipe_pages.cnt = 0;
1116 pipe_destroy_write_buffer(wpipe);
1117 pipeselwakeup(wpipe);
1118 error = EPIPE;
1119 } else if (error == EINTR || error == ERESTART) {
1120 pipe_clone_write_buffer(wpipe);
1121 } else {
1122 pipe_destroy_write_buffer(wpipe);
1123 }
1124 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1125 ("pipe %p leaked PIPE_DIRECTW", wpipe));
1126 return (error);
1127
1128 error1:
1129 wakeup(wpipe);
1130 return (error);
1131 }
1132 #endif
1133
1134 static int
pipe_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1135 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1136 int flags, struct thread *td)
1137 {
1138 struct pipe *wpipe, *rpipe;
1139 ssize_t orig_resid;
1140 int desiredsize, error;
1141
1142 rpipe = fp->f_data;
1143 wpipe = PIPE_PEER(rpipe);
1144 PIPE_LOCK(rpipe);
1145 error = pipelock(wpipe, 1);
1146 if (error) {
1147 PIPE_UNLOCK(rpipe);
1148 return (error);
1149 }
1150 /*
1151 * detect loss of pipe read side, issue SIGPIPE if lost.
1152 */
1153 if (wpipe->pipe_present != PIPE_ACTIVE ||
1154 (wpipe->pipe_state & PIPE_EOF)) {
1155 pipeunlock(wpipe);
1156 PIPE_UNLOCK(rpipe);
1157 return (EPIPE);
1158 }
1159 #ifdef MAC
1160 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1161 if (error) {
1162 pipeunlock(wpipe);
1163 PIPE_UNLOCK(rpipe);
1164 return (error);
1165 }
1166 #endif
1167 ++wpipe->pipe_busy;
1168
1169 /* Choose a larger size if it's advantageous */
1170 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1171 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1172 if (piperesizeallowed != 1)
1173 break;
1174 if (amountpipekva > maxpipekva / 2)
1175 break;
1176 if (desiredsize == BIG_PIPE_SIZE)
1177 break;
1178 desiredsize = desiredsize * 2;
1179 }
1180
1181 /* Choose a smaller size if we're in a OOM situation */
1182 if (amountpipekva > (3 * maxpipekva) / 4 &&
1183 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1184 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1185 piperesizeallowed == 1)
1186 desiredsize = SMALL_PIPE_SIZE;
1187
1188 /* Resize if the above determined that a new size was necessary */
1189 if (desiredsize != wpipe->pipe_buffer.size &&
1190 (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1191 PIPE_UNLOCK(wpipe);
1192 pipespace(wpipe, desiredsize);
1193 PIPE_LOCK(wpipe);
1194 }
1195 MPASS(wpipe->pipe_buffer.size != 0);
1196
1197 orig_resid = uio->uio_resid;
1198
1199 while (uio->uio_resid) {
1200 int space;
1201
1202 if (wpipe->pipe_state & PIPE_EOF) {
1203 error = EPIPE;
1204 break;
1205 }
1206 #ifndef PIPE_NODIRECT
1207 /*
1208 * If the transfer is large, we can gain performance if
1209 * we do process-to-process copies directly.
1210 * If the write is non-blocking, we don't use the
1211 * direct write mechanism.
1212 *
1213 * The direct write mechanism will detect the reader going
1214 * away on us.
1215 */
1216 if (uio->uio_segflg == UIO_USERSPACE &&
1217 uio->uio_iov->iov_len >= pipe_mindirect &&
1218 wpipe->pipe_buffer.size >= pipe_mindirect &&
1219 (fp->f_flag & FNONBLOCK) == 0) {
1220 error = pipe_direct_write(wpipe, uio);
1221 if (error != 0)
1222 break;
1223 continue;
1224 }
1225 #endif
1226
1227 /*
1228 * Pipe buffered writes cannot be coincidental with
1229 * direct writes. We wait until the currently executing
1230 * direct write is completed before we start filling the
1231 * pipe buffer. We break out if a signal occurs or the
1232 * reader goes away.
1233 */
1234 if (wpipe->pipe_pages.cnt != 0) {
1235 if (wpipe->pipe_state & PIPE_WANTR) {
1236 wpipe->pipe_state &= ~PIPE_WANTR;
1237 wakeup(wpipe);
1238 }
1239 pipeselwakeup(wpipe);
1240 wpipe->pipe_state |= PIPE_WANTW;
1241 pipeunlock(wpipe);
1242 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1243 "pipbww", 0);
1244 pipelock(wpipe, 0);
1245 if (error != 0)
1246 break;
1247 continue;
1248 }
1249
1250 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1251
1252 /* Writes of size <= PIPE_BUF must be atomic. */
1253 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1254 space = 0;
1255
1256 if (space > 0) {
1257 int size; /* Transfer size */
1258 int segsize; /* first segment to transfer */
1259
1260 /*
1261 * Transfer size is minimum of uio transfer
1262 * and free space in pipe buffer.
1263 */
1264 if (space > uio->uio_resid)
1265 size = uio->uio_resid;
1266 else
1267 size = space;
1268 /*
1269 * First segment to transfer is minimum of
1270 * transfer size and contiguous space in
1271 * pipe buffer. If first segment to transfer
1272 * is less than the transfer size, we've got
1273 * a wraparound in the buffer.
1274 */
1275 segsize = wpipe->pipe_buffer.size -
1276 wpipe->pipe_buffer.in;
1277 if (segsize > size)
1278 segsize = size;
1279
1280 /* Transfer first segment */
1281
1282 PIPE_UNLOCK(rpipe);
1283 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1284 segsize, uio);
1285 PIPE_LOCK(rpipe);
1286
1287 if (error == 0 && segsize < size) {
1288 KASSERT(wpipe->pipe_buffer.in + segsize ==
1289 wpipe->pipe_buffer.size,
1290 ("Pipe buffer wraparound disappeared"));
1291 /*
1292 * Transfer remaining part now, to
1293 * support atomic writes. Wraparound
1294 * happened.
1295 */
1296
1297 PIPE_UNLOCK(rpipe);
1298 error = uiomove(
1299 &wpipe->pipe_buffer.buffer[0],
1300 size - segsize, uio);
1301 PIPE_LOCK(rpipe);
1302 }
1303 if (error == 0) {
1304 wpipe->pipe_buffer.in += size;
1305 if (wpipe->pipe_buffer.in >=
1306 wpipe->pipe_buffer.size) {
1307 KASSERT(wpipe->pipe_buffer.in ==
1308 size - segsize +
1309 wpipe->pipe_buffer.size,
1310 ("Expected wraparound bad"));
1311 wpipe->pipe_buffer.in = size - segsize;
1312 }
1313
1314 wpipe->pipe_buffer.cnt += size;
1315 KASSERT(wpipe->pipe_buffer.cnt <=
1316 wpipe->pipe_buffer.size,
1317 ("Pipe buffer overflow"));
1318 }
1319 if (error != 0)
1320 break;
1321 continue;
1322 } else {
1323 /*
1324 * If the "read-side" has been blocked, wake it up now.
1325 */
1326 if (wpipe->pipe_state & PIPE_WANTR) {
1327 wpipe->pipe_state &= ~PIPE_WANTR;
1328 wakeup(wpipe);
1329 }
1330
1331 /*
1332 * don't block on non-blocking I/O
1333 */
1334 if (fp->f_flag & FNONBLOCK) {
1335 error = EAGAIN;
1336 break;
1337 }
1338
1339 /*
1340 * We have no more space and have something to offer,
1341 * wake up select/poll.
1342 */
1343 pipeselwakeup(wpipe);
1344
1345 wpipe->pipe_state |= PIPE_WANTW;
1346 pipeunlock(wpipe);
1347 error = msleep(wpipe, PIPE_MTX(rpipe),
1348 PRIBIO | PCATCH, "pipewr", 0);
1349 pipelock(wpipe, 0);
1350 if (error != 0)
1351 break;
1352 continue;
1353 }
1354 }
1355
1356 --wpipe->pipe_busy;
1357
1358 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1359 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1360 wakeup(wpipe);
1361 } else if (wpipe->pipe_buffer.cnt > 0) {
1362 /*
1363 * If we have put any characters in the buffer, we wake up
1364 * the reader.
1365 */
1366 if (wpipe->pipe_state & PIPE_WANTR) {
1367 wpipe->pipe_state &= ~PIPE_WANTR;
1368 wakeup(wpipe);
1369 }
1370 }
1371
1372 /*
1373 * Don't return EPIPE if any byte was written.
1374 * EINTR and other interrupts are handled by generic I/O layer.
1375 * Do not pretend that I/O succeeded for obvious user error
1376 * like EFAULT.
1377 */
1378 if (uio->uio_resid != orig_resid && error == EPIPE)
1379 error = 0;
1380
1381 if (error == 0)
1382 pipe_timestamp(&wpipe->pipe_mtime);
1383
1384 /*
1385 * We have something to offer,
1386 * wake up select/poll.
1387 */
1388 if (wpipe->pipe_buffer.cnt)
1389 pipeselwakeup(wpipe);
1390
1391 pipeunlock(wpipe);
1392 PIPE_UNLOCK(rpipe);
1393 if (uio->uio_resid != orig_resid)
1394 td->td_ru.ru_msgsnd++;
1395 return (error);
1396 }
1397
1398 /* ARGSUSED */
1399 static int
pipe_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1400 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1401 struct thread *td)
1402 {
1403 struct pipe *cpipe;
1404 int error;
1405
1406 cpipe = fp->f_data;
1407 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1408 error = vnops.fo_truncate(fp, length, active_cred, td);
1409 else
1410 error = invfo_truncate(fp, length, active_cred, td);
1411 return (error);
1412 }
1413
1414 /*
1415 * we implement a very minimal set of ioctls for compatibility with sockets.
1416 */
1417 static int
pipe_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)1418 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1419 struct thread *td)
1420 {
1421 struct pipe *mpipe = fp->f_data;
1422 int error;
1423
1424 PIPE_LOCK(mpipe);
1425
1426 #ifdef MAC
1427 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1428 if (error) {
1429 PIPE_UNLOCK(mpipe);
1430 return (error);
1431 }
1432 #endif
1433
1434 error = 0;
1435 switch (cmd) {
1436 case FIONBIO:
1437 break;
1438
1439 case FIOASYNC:
1440 if (*(int *)data) {
1441 mpipe->pipe_state |= PIPE_ASYNC;
1442 } else {
1443 mpipe->pipe_state &= ~PIPE_ASYNC;
1444 }
1445 break;
1446
1447 case FIONREAD:
1448 if (!(fp->f_flag & FREAD)) {
1449 *(int *)data = 0;
1450 PIPE_UNLOCK(mpipe);
1451 return (0);
1452 }
1453 if (mpipe->pipe_pages.cnt != 0)
1454 *(int *)data = mpipe->pipe_pages.cnt;
1455 else
1456 *(int *)data = mpipe->pipe_buffer.cnt;
1457 break;
1458
1459 case FIOSETOWN:
1460 PIPE_UNLOCK(mpipe);
1461 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1462 goto out_unlocked;
1463
1464 case FIOGETOWN:
1465 *(int *)data = fgetown(&mpipe->pipe_sigio);
1466 break;
1467
1468 /* This is deprecated, FIOSETOWN should be used instead. */
1469 case TIOCSPGRP:
1470 PIPE_UNLOCK(mpipe);
1471 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1472 goto out_unlocked;
1473
1474 /* This is deprecated, FIOGETOWN should be used instead. */
1475 case TIOCGPGRP:
1476 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1477 break;
1478
1479 default:
1480 error = ENOTTY;
1481 break;
1482 }
1483 PIPE_UNLOCK(mpipe);
1484 out_unlocked:
1485 return (error);
1486 }
1487
1488 static int
pipe_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1489 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1490 struct thread *td)
1491 {
1492 struct pipe *rpipe;
1493 struct pipe *wpipe;
1494 int levents, revents;
1495 #ifdef MAC
1496 int error;
1497 #endif
1498
1499 revents = 0;
1500 rpipe = fp->f_data;
1501 wpipe = PIPE_PEER(rpipe);
1502 PIPE_LOCK(rpipe);
1503 #ifdef MAC
1504 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1505 if (error)
1506 goto locked_error;
1507 #endif
1508 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1509 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1510 revents |= events & (POLLIN | POLLRDNORM);
1511
1512 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1513 if (wpipe->pipe_present != PIPE_ACTIVE ||
1514 (wpipe->pipe_state & PIPE_EOF) ||
1515 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1516 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1517 wpipe->pipe_buffer.size == 0)))
1518 revents |= events & (POLLOUT | POLLWRNORM);
1519
1520 levents = events &
1521 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1522 if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1523 fp->f_pipegen == rpipe->pipe_wgen)
1524 events |= POLLINIGNEOF;
1525
1526 if ((events & POLLINIGNEOF) == 0) {
1527 if (rpipe->pipe_state & PIPE_EOF) {
1528 if (fp->f_flag & FREAD)
1529 revents |= (events & (POLLIN | POLLRDNORM));
1530 if (wpipe->pipe_present != PIPE_ACTIVE ||
1531 (wpipe->pipe_state & PIPE_EOF))
1532 revents |= POLLHUP;
1533 }
1534 }
1535
1536 if (revents == 0) {
1537 /*
1538 * Add ourselves regardless of eventmask as we have to return
1539 * POLLHUP even if it was not asked for.
1540 */
1541 if ((fp->f_flag & FREAD) != 0) {
1542 selrecord(td, &rpipe->pipe_sel);
1543 if (SEL_WAITING(&rpipe->pipe_sel))
1544 rpipe->pipe_state |= PIPE_SEL;
1545 }
1546
1547 if ((fp->f_flag & FWRITE) != 0 &&
1548 wpipe->pipe_present == PIPE_ACTIVE) {
1549 selrecord(td, &wpipe->pipe_sel);
1550 if (SEL_WAITING(&wpipe->pipe_sel))
1551 wpipe->pipe_state |= PIPE_SEL;
1552 }
1553 }
1554 #ifdef MAC
1555 locked_error:
1556 #endif
1557 PIPE_UNLOCK(rpipe);
1558
1559 return (revents);
1560 }
1561
1562 /*
1563 * We shouldn't need locks here as we're doing a read and this should
1564 * be a natural race.
1565 */
1566 static int
pipe_stat(struct file * fp,struct stat * ub,struct ucred * active_cred)1567 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1568 {
1569 struct pipe *pipe;
1570 #ifdef MAC
1571 int error;
1572 #endif
1573
1574 pipe = fp->f_data;
1575 #ifdef MAC
1576 if (mac_pipe_check_stat_enabled()) {
1577 PIPE_LOCK(pipe);
1578 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1579 PIPE_UNLOCK(pipe);
1580 if (error) {
1581 return (error);
1582 }
1583 }
1584 #endif
1585
1586 /* For named pipes ask the underlying filesystem. */
1587 if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1588 return (vnops.fo_stat(fp, ub, active_cred));
1589 }
1590
1591 bzero(ub, sizeof(*ub));
1592 ub->st_mode = S_IFIFO;
1593 ub->st_blksize = PAGE_SIZE;
1594 if (pipe->pipe_pages.cnt != 0)
1595 ub->st_size = pipe->pipe_pages.cnt;
1596 else
1597 ub->st_size = pipe->pipe_buffer.cnt;
1598 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1599 ub->st_atim = pipe->pipe_atime;
1600 ub->st_mtim = pipe->pipe_mtime;
1601 ub->st_ctim = pipe->pipe_ctime;
1602 ub->st_uid = fp->f_cred->cr_uid;
1603 ub->st_gid = fp->f_cred->cr_gid;
1604 ub->st_dev = pipedev_ino;
1605 ub->st_ino = pipe->pipe_ino;
1606 /*
1607 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1608 */
1609 return (0);
1610 }
1611
1612 /* ARGSUSED */
1613 static int
pipe_close(struct file * fp,struct thread * td)1614 pipe_close(struct file *fp, struct thread *td)
1615 {
1616
1617 if (fp->f_vnode != NULL)
1618 return vnops.fo_close(fp, td);
1619 fp->f_ops = &badfileops;
1620 pipe_dtor(fp->f_data);
1621 fp->f_data = NULL;
1622 return (0);
1623 }
1624
1625 static int
pipe_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)1626 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1627 {
1628 struct pipe *cpipe;
1629 int error;
1630
1631 cpipe = fp->f_data;
1632 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1633 error = vn_chmod(fp, mode, active_cred, td);
1634 else
1635 error = invfo_chmod(fp, mode, active_cred, td);
1636 return (error);
1637 }
1638
1639 static int
pipe_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)1640 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1641 struct thread *td)
1642 {
1643 struct pipe *cpipe;
1644 int error;
1645
1646 cpipe = fp->f_data;
1647 if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1648 error = vn_chown(fp, uid, gid, active_cred, td);
1649 else
1650 error = invfo_chown(fp, uid, gid, active_cred, td);
1651 return (error);
1652 }
1653
1654 static int
pipe_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1655 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1656 {
1657 struct pipe *pi;
1658
1659 if (fp->f_type == DTYPE_FIFO)
1660 return (vn_fill_kinfo(fp, kif, fdp));
1661 kif->kf_type = KF_TYPE_PIPE;
1662 pi = fp->f_data;
1663 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1664 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1665 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1666 kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in;
1667 kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out;
1668 kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size;
1669 return (0);
1670 }
1671
1672 static void
pipe_free_kmem(struct pipe * cpipe)1673 pipe_free_kmem(struct pipe *cpipe)
1674 {
1675
1676 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1677 ("pipe_free_kmem: pipe mutex locked"));
1678
1679 if (cpipe->pipe_buffer.buffer != NULL) {
1680 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1681 chgpipecnt(cpipe->pipe_pair->pp_owner->cr_ruidinfo,
1682 -cpipe->pipe_buffer.size, 0);
1683 vm_map_remove(pipe_map,
1684 (vm_offset_t)cpipe->pipe_buffer.buffer,
1685 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1686 cpipe->pipe_buffer.buffer = NULL;
1687 }
1688 #ifndef PIPE_NODIRECT
1689 {
1690 cpipe->pipe_pages.cnt = 0;
1691 cpipe->pipe_pages.pos = 0;
1692 cpipe->pipe_pages.npages = 0;
1693 }
1694 #endif
1695 }
1696
1697 /*
1698 * shutdown the pipe
1699 */
1700 static void
pipeclose(struct pipe * cpipe)1701 pipeclose(struct pipe *cpipe)
1702 {
1703 #ifdef MAC
1704 struct pipepair *pp;
1705 #endif
1706 struct pipe *ppipe;
1707
1708 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1709
1710 PIPE_LOCK(cpipe);
1711 pipelock(cpipe, 0);
1712 #ifdef MAC
1713 pp = cpipe->pipe_pair;
1714 #endif
1715
1716 /*
1717 * If the other side is blocked, wake it up saying that
1718 * we want to close it down.
1719 */
1720 cpipe->pipe_state |= PIPE_EOF;
1721 while (cpipe->pipe_busy) {
1722 wakeup(cpipe);
1723 cpipe->pipe_state |= PIPE_WANT;
1724 pipeunlock(cpipe);
1725 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1726 pipelock(cpipe, 0);
1727 }
1728
1729 pipeselwakeup(cpipe);
1730
1731 /*
1732 * Disconnect from peer, if any.
1733 */
1734 ppipe = cpipe->pipe_peer;
1735 if (ppipe->pipe_present == PIPE_ACTIVE) {
1736 ppipe->pipe_state |= PIPE_EOF;
1737 wakeup(ppipe);
1738 pipeselwakeup(ppipe);
1739 }
1740
1741 /*
1742 * Mark this endpoint as free. Release kmem resources. We
1743 * don't mark this endpoint as unused until we've finished
1744 * doing that, or the pipe might disappear out from under
1745 * us.
1746 */
1747 PIPE_UNLOCK(cpipe);
1748 pipe_free_kmem(cpipe);
1749 PIPE_LOCK(cpipe);
1750 cpipe->pipe_present = PIPE_CLOSING;
1751 pipeunlock(cpipe);
1752
1753 /*
1754 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1755 * PIPE_FINALIZED, that allows other end to free the
1756 * pipe_pair, only after the knotes are completely dismantled.
1757 */
1758 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1759 cpipe->pipe_present = PIPE_FINALIZED;
1760 seldrain(&cpipe->pipe_sel);
1761 knlist_destroy(&cpipe->pipe_sel.si_note);
1762
1763 /*
1764 * If both endpoints are now closed, release the memory for the
1765 * pipe pair. If not, unlock.
1766 */
1767 if (ppipe->pipe_present == PIPE_FINALIZED) {
1768 PIPE_UNLOCK(cpipe);
1769 crfree(cpipe->pipe_pair->pp_owner);
1770 #ifdef MAC
1771 mac_pipe_destroy(pp);
1772 #endif
1773 uma_zfree(pipe_zone, cpipe->pipe_pair);
1774 } else
1775 PIPE_UNLOCK(cpipe);
1776 }
1777
1778 /*ARGSUSED*/
1779 static int
pipe_kqfilter(struct file * fp,struct knote * kn)1780 pipe_kqfilter(struct file *fp, struct knote *kn)
1781 {
1782 struct pipe *cpipe;
1783
1784 /*
1785 * If a filter is requested that is not supported by this file
1786 * descriptor, don't return an error, but also don't ever generate an
1787 * event.
1788 */
1789 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1790 kn->kn_fop = &pipe_nfiltops;
1791 return (0);
1792 }
1793 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1794 kn->kn_fop = &pipe_nfiltops;
1795 return (0);
1796 }
1797 cpipe = fp->f_data;
1798 PIPE_LOCK(cpipe);
1799 switch (kn->kn_filter) {
1800 case EVFILT_READ:
1801 kn->kn_fop = &pipe_rfiltops;
1802 break;
1803 case EVFILT_WRITE:
1804 kn->kn_fop = &pipe_wfiltops;
1805 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1806 /* other end of pipe has been closed */
1807 PIPE_UNLOCK(cpipe);
1808 return (EPIPE);
1809 }
1810 cpipe = PIPE_PEER(cpipe);
1811 break;
1812 default:
1813 if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1814 PIPE_UNLOCK(cpipe);
1815 return (vnops.fo_kqfilter(fp, kn));
1816 }
1817 PIPE_UNLOCK(cpipe);
1818 return (EINVAL);
1819 }
1820
1821 kn->kn_hook = cpipe;
1822 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1823 PIPE_UNLOCK(cpipe);
1824 return (0);
1825 }
1826
1827 static void
filt_pipedetach(struct knote * kn)1828 filt_pipedetach(struct knote *kn)
1829 {
1830 struct pipe *cpipe = kn->kn_hook;
1831
1832 PIPE_LOCK(cpipe);
1833 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1834 PIPE_UNLOCK(cpipe);
1835 }
1836
1837 /*ARGSUSED*/
1838 static int
filt_piperead(struct knote * kn,long hint)1839 filt_piperead(struct knote *kn, long hint)
1840 {
1841 struct file *fp = kn->kn_fp;
1842 struct pipe *rpipe = kn->kn_hook;
1843
1844 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1845 kn->kn_data = rpipe->pipe_buffer.cnt;
1846 if (kn->kn_data == 0)
1847 kn->kn_data = rpipe->pipe_pages.cnt;
1848
1849 if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1850 ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1851 fp->f_pipegen != rpipe->pipe_wgen)) {
1852 kn->kn_flags |= EV_EOF;
1853 return (1);
1854 }
1855 kn->kn_flags &= ~EV_EOF;
1856 return (kn->kn_data > 0);
1857 }
1858
1859 /*ARGSUSED*/
1860 static int
filt_pipewrite(struct knote * kn,long hint)1861 filt_pipewrite(struct knote *kn, long hint)
1862 {
1863 struct pipe *wpipe = kn->kn_hook;
1864
1865 /*
1866 * If this end of the pipe is closed, the knote was removed from the
1867 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1868 */
1869 if (wpipe->pipe_present == PIPE_ACTIVE ||
1870 (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1871 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1872
1873 if (wpipe->pipe_state & PIPE_DIRECTW) {
1874 kn->kn_data = 0;
1875 } else if (wpipe->pipe_buffer.size > 0) {
1876 kn->kn_data = wpipe->pipe_buffer.size -
1877 wpipe->pipe_buffer.cnt;
1878 } else {
1879 kn->kn_data = PIPE_BUF;
1880 }
1881 }
1882
1883 if (wpipe->pipe_present != PIPE_ACTIVE ||
1884 (wpipe->pipe_state & PIPE_EOF)) {
1885 kn->kn_flags |= EV_EOF;
1886 return (1);
1887 }
1888 kn->kn_flags &= ~EV_EOF;
1889 return (kn->kn_data >= PIPE_BUF);
1890 }
1891
1892 static void
filt_pipedetach_notsup(struct knote * kn)1893 filt_pipedetach_notsup(struct knote *kn)
1894 {
1895
1896 }
1897
1898 static int
filt_pipenotsup(struct knote * kn,long hint)1899 filt_pipenotsup(struct knote *kn, long hint)
1900 {
1901
1902 return (0);
1903 }
1904