1 /*-
2 * Copyright (c) 2000 Doug Rabson
3 * Copyright (c) 2014 Jeff Roberson
4 * Copyright (c) 2016 Matthew Macy
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/libkern.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/epoch.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/gtaskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48
49 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
50 static void gtaskqueue_thread_enqueue(void *);
51 static void gtaskqueue_thread_loop(void *arg);
52 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
53 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
54
55 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
56
57 struct gtaskqueue_busy {
58 struct gtask *tb_running;
59 u_int tb_seq;
60 LIST_ENTRY(gtaskqueue_busy) tb_link;
61 };
62
63 typedef void (*gtaskqueue_enqueue_fn)(void *context);
64
65 struct gtaskqueue {
66 STAILQ_HEAD(, gtask) tq_queue;
67 LIST_HEAD(, gtaskqueue_busy) tq_active;
68 u_int tq_seq;
69 int tq_callouts;
70 struct mtx_padalign tq_mutex;
71 gtaskqueue_enqueue_fn tq_enqueue;
72 void *tq_context;
73 char *tq_name;
74 struct thread **tq_threads;
75 int tq_tcount;
76 int tq_spin;
77 int tq_flags;
78 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
79 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
80 };
81
82 #define TQ_FLAGS_ACTIVE (1 << 0)
83 #define TQ_FLAGS_BLOCKED (1 << 1)
84 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
85
86 #define DT_CALLOUT_ARMED (1 << 0)
87
88 #define TQ_LOCK(tq) \
89 do { \
90 if ((tq)->tq_spin) \
91 mtx_lock_spin(&(tq)->tq_mutex); \
92 else \
93 mtx_lock(&(tq)->tq_mutex); \
94 } while (0)
95 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
96
97 #define TQ_UNLOCK(tq) \
98 do { \
99 if ((tq)->tq_spin) \
100 mtx_unlock_spin(&(tq)->tq_mutex); \
101 else \
102 mtx_unlock(&(tq)->tq_mutex); \
103 } while (0)
104 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
105
106 #ifdef INVARIANTS
107 static void
gtask_dump(struct gtask * gtask)108 gtask_dump(struct gtask *gtask)
109 {
110 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
111 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
112 }
113 #endif
114
115 static __inline int
TQ_SLEEP(struct gtaskqueue * tq,void * p,const char * wm)116 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
117 {
118 if (tq->tq_spin)
119 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
120 return (msleep(p, &tq->tq_mutex, 0, wm, 0));
121 }
122
123 static struct gtaskqueue *
_gtaskqueue_create(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context,int mtxflags,const char * mtxname __unused)124 _gtaskqueue_create(const char *name, int mflags,
125 taskqueue_enqueue_fn enqueue, void *context,
126 int mtxflags, const char *mtxname __unused)
127 {
128 struct gtaskqueue *queue;
129 char *tq_name;
130
131 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
132 if (!tq_name)
133 return (NULL);
134
135 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
136
137 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
138 if (!queue) {
139 free(tq_name, M_GTASKQUEUE);
140 return (NULL);
141 }
142
143 STAILQ_INIT(&queue->tq_queue);
144 LIST_INIT(&queue->tq_active);
145 queue->tq_enqueue = enqueue;
146 queue->tq_context = context;
147 queue->tq_name = tq_name;
148 queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
149 queue->tq_flags |= TQ_FLAGS_ACTIVE;
150 if (enqueue == gtaskqueue_thread_enqueue)
151 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
152 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
153
154 return (queue);
155 }
156
157 /*
158 * Signal a taskqueue thread to terminate.
159 */
160 static void
gtaskqueue_terminate(struct thread ** pp,struct gtaskqueue * tq)161 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
162 {
163
164 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
165 wakeup(tq);
166 TQ_SLEEP(tq, pp, "gtq_destroy");
167 }
168 }
169
170 static void __unused
gtaskqueue_free(struct gtaskqueue * queue)171 gtaskqueue_free(struct gtaskqueue *queue)
172 {
173
174 TQ_LOCK(queue);
175 queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
176 gtaskqueue_terminate(queue->tq_threads, queue);
177 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
178 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
179 mtx_destroy(&queue->tq_mutex);
180 free(queue->tq_threads, M_GTASKQUEUE);
181 free(queue->tq_name, M_GTASKQUEUE);
182 free(queue, M_GTASKQUEUE);
183 }
184
185 /*
186 * Wait for all to complete, then prevent it from being enqueued
187 */
188 void
grouptask_block(struct grouptask * grouptask)189 grouptask_block(struct grouptask *grouptask)
190 {
191 struct gtaskqueue *queue = grouptask->gt_taskqueue;
192 struct gtask *gtask = &grouptask->gt_task;
193
194 #ifdef INVARIANTS
195 if (queue == NULL) {
196 gtask_dump(gtask);
197 panic("queue == NULL");
198 }
199 #endif
200 TQ_LOCK(queue);
201 gtask->ta_flags |= TASK_NOENQUEUE;
202 gtaskqueue_drain_locked(queue, gtask);
203 TQ_UNLOCK(queue);
204 }
205
206 void
grouptask_unblock(struct grouptask * grouptask)207 grouptask_unblock(struct grouptask *grouptask)
208 {
209 struct gtaskqueue *queue = grouptask->gt_taskqueue;
210 struct gtask *gtask = &grouptask->gt_task;
211
212 #ifdef INVARIANTS
213 if (queue == NULL) {
214 gtask_dump(gtask);
215 panic("queue == NULL");
216 }
217 #endif
218 TQ_LOCK(queue);
219 gtask->ta_flags &= ~TASK_NOENQUEUE;
220 TQ_UNLOCK(queue);
221 }
222
223 int
grouptaskqueue_enqueue(struct gtaskqueue * queue,struct gtask * gtask)224 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
225 {
226 #ifdef INVARIANTS
227 if (queue == NULL) {
228 gtask_dump(gtask);
229 panic("queue == NULL");
230 }
231 #endif
232 TQ_LOCK(queue);
233 if (gtask->ta_flags & TASK_ENQUEUED) {
234 TQ_UNLOCK(queue);
235 return (0);
236 }
237 if (gtask->ta_flags & TASK_NOENQUEUE) {
238 TQ_UNLOCK(queue);
239 return (EAGAIN);
240 }
241 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
242 gtask->ta_flags |= TASK_ENQUEUED;
243 TQ_UNLOCK(queue);
244 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
245 queue->tq_enqueue(queue->tq_context);
246 return (0);
247 }
248
249 static void
gtaskqueue_task_nop_fn(void * context)250 gtaskqueue_task_nop_fn(void *context)
251 {
252 }
253
254 /*
255 * Block until all currently queued tasks in this taskqueue
256 * have begun execution. Tasks queued during execution of
257 * this function are ignored.
258 */
259 static void
gtaskqueue_drain_tq_queue(struct gtaskqueue * queue)260 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
261 {
262 struct gtask t_barrier;
263
264 if (STAILQ_EMPTY(&queue->tq_queue))
265 return;
266
267 /*
268 * Enqueue our barrier after all current tasks, but with
269 * the highest priority so that newly queued tasks cannot
270 * pass it. Because of the high priority, we can not use
271 * taskqueue_enqueue_locked directly (which drops the lock
272 * anyway) so just insert it at tail while we have the
273 * queue lock.
274 */
275 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
276 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
277 t_barrier.ta_flags |= TASK_ENQUEUED;
278
279 /*
280 * Once the barrier has executed, all previously queued tasks
281 * have completed or are currently executing.
282 */
283 while (t_barrier.ta_flags & TASK_ENQUEUED)
284 TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
285 }
286
287 /*
288 * Block until all currently executing tasks for this taskqueue
289 * complete. Tasks that begin execution during the execution
290 * of this function are ignored.
291 */
292 static void
gtaskqueue_drain_tq_active(struct gtaskqueue * queue)293 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
294 {
295 struct gtaskqueue_busy *tb;
296 u_int seq;
297
298 if (LIST_EMPTY(&queue->tq_active))
299 return;
300
301 /* Block taskq_terminate().*/
302 queue->tq_callouts++;
303
304 /* Wait for any active task with sequence from the past. */
305 seq = queue->tq_seq;
306 restart:
307 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
308 if ((int)(tb->tb_seq - seq) <= 0) {
309 TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
310 goto restart;
311 }
312 }
313
314 /* Release taskqueue_terminate(). */
315 queue->tq_callouts--;
316 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
317 wakeup_one(queue->tq_threads);
318 }
319
320 void
gtaskqueue_block(struct gtaskqueue * queue)321 gtaskqueue_block(struct gtaskqueue *queue)
322 {
323
324 TQ_LOCK(queue);
325 queue->tq_flags |= TQ_FLAGS_BLOCKED;
326 TQ_UNLOCK(queue);
327 }
328
329 void
gtaskqueue_unblock(struct gtaskqueue * queue)330 gtaskqueue_unblock(struct gtaskqueue *queue)
331 {
332
333 TQ_LOCK(queue);
334 queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
335 if (!STAILQ_EMPTY(&queue->tq_queue))
336 queue->tq_enqueue(queue->tq_context);
337 TQ_UNLOCK(queue);
338 }
339
340 static void
gtaskqueue_run_locked(struct gtaskqueue * queue)341 gtaskqueue_run_locked(struct gtaskqueue *queue)
342 {
343 struct epoch_tracker et;
344 struct gtaskqueue_busy tb;
345 struct gtask *gtask;
346 bool in_net_epoch;
347
348 KASSERT(queue != NULL, ("tq is NULL"));
349 TQ_ASSERT_LOCKED(queue);
350 tb.tb_running = NULL;
351 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
352 in_net_epoch = false;
353
354 while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
355 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
356 gtask->ta_flags &= ~TASK_ENQUEUED;
357 tb.tb_running = gtask;
358 tb.tb_seq = ++queue->tq_seq;
359 TQ_UNLOCK(queue);
360
361 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
362 if (!in_net_epoch && TASK_IS_NET(gtask)) {
363 in_net_epoch = true;
364 NET_EPOCH_ENTER(et);
365 } else if (in_net_epoch && !TASK_IS_NET(gtask)) {
366 NET_EPOCH_EXIT(et);
367 in_net_epoch = false;
368 }
369 gtask->ta_func(gtask->ta_context);
370
371 TQ_LOCK(queue);
372 wakeup(gtask);
373 }
374 if (in_net_epoch)
375 NET_EPOCH_EXIT(et);
376 LIST_REMOVE(&tb, tb_link);
377 }
378
379 static int
task_is_running(struct gtaskqueue * queue,struct gtask * gtask)380 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
381 {
382 struct gtaskqueue_busy *tb;
383
384 TQ_ASSERT_LOCKED(queue);
385 LIST_FOREACH(tb, &queue->tq_active, tb_link) {
386 if (tb->tb_running == gtask)
387 return (1);
388 }
389 return (0);
390 }
391
392 static int
gtaskqueue_cancel_locked(struct gtaskqueue * queue,struct gtask * gtask)393 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
394 {
395
396 if (gtask->ta_flags & TASK_ENQUEUED)
397 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
398 gtask->ta_flags &= ~TASK_ENQUEUED;
399 return (task_is_running(queue, gtask) ? EBUSY : 0);
400 }
401
402 int
gtaskqueue_cancel(struct gtaskqueue * queue,struct gtask * gtask)403 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
404 {
405 int error;
406
407 TQ_LOCK(queue);
408 error = gtaskqueue_cancel_locked(queue, gtask);
409 TQ_UNLOCK(queue);
410
411 return (error);
412 }
413
414 static void
gtaskqueue_drain_locked(struct gtaskqueue * queue,struct gtask * gtask)415 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
416 {
417 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
418 TQ_SLEEP(queue, gtask, "gtq_drain");
419 }
420
421 void
gtaskqueue_drain(struct gtaskqueue * queue,struct gtask * gtask)422 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
423 {
424
425 if (!queue->tq_spin)
426 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
427
428 TQ_LOCK(queue);
429 gtaskqueue_drain_locked(queue, gtask);
430 TQ_UNLOCK(queue);
431 }
432
433 void
gtaskqueue_drain_all(struct gtaskqueue * queue)434 gtaskqueue_drain_all(struct gtaskqueue *queue)
435 {
436
437 if (!queue->tq_spin)
438 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
439
440 TQ_LOCK(queue);
441 gtaskqueue_drain_tq_queue(queue);
442 gtaskqueue_drain_tq_active(queue);
443 TQ_UNLOCK(queue);
444 }
445
446 static int
_gtaskqueue_start_threads(struct gtaskqueue ** tqp,int count,int pri,cpuset_t * mask,const char * name,va_list ap)447 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
448 cpuset_t *mask, const char *name, va_list ap)
449 {
450 char ktname[MAXCOMLEN + 1];
451 struct thread *td;
452 struct gtaskqueue *tq;
453 int i, error;
454
455 if (count <= 0)
456 return (EINVAL);
457
458 vsnprintf(ktname, sizeof(ktname), name, ap);
459 tq = *tqp;
460
461 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
462 M_NOWAIT | M_ZERO);
463 if (tq->tq_threads == NULL) {
464 printf("%s: no memory for %s threads\n", __func__, ktname);
465 return (ENOMEM);
466 }
467
468 for (i = 0; i < count; i++) {
469 if (count == 1)
470 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
471 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
472 else
473 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
474 &tq->tq_threads[i], RFSTOPPED, 0,
475 "%s_%d", ktname, i);
476 if (error) {
477 /* should be ok to continue, taskqueue_free will dtrt */
478 printf("%s: kthread_add(%s): error %d", __func__,
479 ktname, error);
480 tq->tq_threads[i] = NULL; /* paranoid */
481 } else
482 tq->tq_tcount++;
483 }
484 for (i = 0; i < count; i++) {
485 if (tq->tq_threads[i] == NULL)
486 continue;
487 td = tq->tq_threads[i];
488 if (mask) {
489 error = cpuset_setthread(td->td_tid, mask);
490 /*
491 * Failing to pin is rarely an actual fatal error;
492 * it'll just affect performance.
493 */
494 if (error)
495 printf("%s: curthread=%llu: can't pin; "
496 "error=%d\n",
497 __func__,
498 (unsigned long long) td->td_tid,
499 error);
500 }
501 thread_lock(td);
502 sched_prio(td, pri);
503 sched_add(td, SRQ_BORING);
504 }
505
506 return (0);
507 }
508
509 static int
gtaskqueue_start_threads(struct gtaskqueue ** tqp,int count,int pri,const char * name,...)510 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
511 const char *name, ...)
512 {
513 va_list ap;
514 int error;
515
516 va_start(ap, name);
517 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
518 va_end(ap);
519 return (error);
520 }
521
522 static inline void
gtaskqueue_run_callback(struct gtaskqueue * tq,enum taskqueue_callback_type cb_type)523 gtaskqueue_run_callback(struct gtaskqueue *tq,
524 enum taskqueue_callback_type cb_type)
525 {
526 taskqueue_callback_fn tq_callback;
527
528 TQ_ASSERT_UNLOCKED(tq);
529 tq_callback = tq->tq_callbacks[cb_type];
530 if (tq_callback != NULL)
531 tq_callback(tq->tq_cb_contexts[cb_type]);
532 }
533
534 static void
gtaskqueue_thread_loop(void * arg)535 gtaskqueue_thread_loop(void *arg)
536 {
537 struct gtaskqueue **tqp, *tq;
538
539 tqp = arg;
540 tq = *tqp;
541 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
542 TQ_LOCK(tq);
543 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
544 /* XXX ? */
545 gtaskqueue_run_locked(tq);
546 /*
547 * Because taskqueue_run() can drop tq_mutex, we need to
548 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
549 * meantime, which means we missed a wakeup.
550 */
551 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
552 break;
553 TQ_SLEEP(tq, tq, "-");
554 }
555 gtaskqueue_run_locked(tq);
556 /*
557 * This thread is on its way out, so just drop the lock temporarily
558 * in order to call the shutdown callback. This allows the callback
559 * to look at the taskqueue, even just before it dies.
560 */
561 TQ_UNLOCK(tq);
562 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
563 TQ_LOCK(tq);
564
565 /* rendezvous with thread that asked us to terminate */
566 tq->tq_tcount--;
567 wakeup_one(tq->tq_threads);
568 TQ_UNLOCK(tq);
569 kthread_exit();
570 }
571
572 static void
gtaskqueue_thread_enqueue(void * context)573 gtaskqueue_thread_enqueue(void *context)
574 {
575 struct gtaskqueue **tqp, *tq;
576
577 tqp = context;
578 tq = *tqp;
579 wakeup_any(tq);
580 }
581
582 static struct gtaskqueue *
gtaskqueue_create_fast(const char * name,int mflags,taskqueue_enqueue_fn enqueue,void * context)583 gtaskqueue_create_fast(const char *name, int mflags,
584 taskqueue_enqueue_fn enqueue, void *context)
585 {
586 return _gtaskqueue_create(name, mflags, enqueue, context,
587 MTX_SPIN, "fast_taskqueue");
588 }
589
590 struct taskqgroup_cpu {
591 LIST_HEAD(, grouptask) tgc_tasks;
592 struct gtaskqueue *tgc_taskq;
593 int tgc_cnt;
594 int tgc_cpu;
595 };
596
597 struct taskqgroup {
598 struct taskqgroup_cpu tqg_queue[MAXCPU];
599 struct mtx tqg_lock;
600 const char * tqg_name;
601 int tqg_cnt;
602 };
603
604 struct taskq_bind_task {
605 struct gtask bt_task;
606 int bt_cpuid;
607 };
608
609 static void
taskqgroup_cpu_create(struct taskqgroup * qgroup,int idx,int cpu)610 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
611 {
612 struct taskqgroup_cpu *qcpu;
613
614 qcpu = &qgroup->tqg_queue[idx];
615 LIST_INIT(&qcpu->tgc_tasks);
616 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
617 gtaskqueue_thread_enqueue, &qcpu->tgc_taskq);
618 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
619 "%s_%d", qgroup->tqg_name, idx);
620 qcpu->tgc_cpu = cpu;
621 }
622
623 /*
624 * Find the taskq with least # of tasks that doesn't currently have any
625 * other queues from the uniq identifier.
626 */
627 static int
taskqgroup_find(struct taskqgroup * qgroup,void * uniq)628 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
629 {
630 struct grouptask *n;
631 int i, idx, mincnt;
632 int strict;
633
634 mtx_assert(&qgroup->tqg_lock, MA_OWNED);
635 KASSERT(qgroup->tqg_cnt != 0,
636 ("qgroup %s has no queues", qgroup->tqg_name));
637
638 /*
639 * Two passes: first scan for a queue with the least tasks that
640 * does not already service this uniq id. If that fails simply find
641 * the queue with the least total tasks.
642 */
643 for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
644 strict = 0) {
645 for (i = 0; i < qgroup->tqg_cnt; i++) {
646 if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
647 continue;
648 if (strict) {
649 LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
650 gt_list)
651 if (n->gt_uniq == uniq)
652 break;
653 if (n != NULL)
654 continue;
655 }
656 mincnt = qgroup->tqg_queue[i].tgc_cnt;
657 idx = i;
658 }
659 }
660 if (idx == -1)
661 panic("%s: failed to pick a qid.", __func__);
662
663 return (idx);
664 }
665
666 void
taskqgroup_attach(struct taskqgroup * qgroup,struct grouptask * gtask,void * uniq,device_t dev,struct resource * irq,const char * name)667 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
668 void *uniq, device_t dev, struct resource *irq, const char *name)
669 {
670 int cpu, qid, error;
671
672 KASSERT(qgroup->tqg_cnt > 0,
673 ("qgroup %s has no queues", qgroup->tqg_name));
674
675 gtask->gt_uniq = uniq;
676 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
677 gtask->gt_dev = dev;
678 gtask->gt_irq = irq;
679 gtask->gt_cpu = -1;
680 mtx_lock(&qgroup->tqg_lock);
681 qid = taskqgroup_find(qgroup, uniq);
682 qgroup->tqg_queue[qid].tgc_cnt++;
683 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
684 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
685 if (dev != NULL && irq != NULL) {
686 cpu = qgroup->tqg_queue[qid].tgc_cpu;
687 gtask->gt_cpu = cpu;
688 mtx_unlock(&qgroup->tqg_lock);
689 error = bus_bind_intr(dev, irq, cpu);
690 if (error)
691 printf("%s: binding interrupt failed for %s: %d\n",
692 __func__, gtask->gt_name, error);
693 } else
694 mtx_unlock(&qgroup->tqg_lock);
695 }
696
697 int
taskqgroup_attach_cpu(struct taskqgroup * qgroup,struct grouptask * gtask,void * uniq,int cpu,device_t dev,struct resource * irq,const char * name)698 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
699 void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
700 {
701 int i, qid, error;
702
703 gtask->gt_uniq = uniq;
704 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
705 gtask->gt_dev = dev;
706 gtask->gt_irq = irq;
707 gtask->gt_cpu = cpu;
708 mtx_lock(&qgroup->tqg_lock);
709 for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
710 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
711 qid = i;
712 break;
713 }
714 if (qid == -1) {
715 mtx_unlock(&qgroup->tqg_lock);
716 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
717 return (EINVAL);
718 }
719 qgroup->tqg_queue[qid].tgc_cnt++;
720 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
721 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
722 cpu = qgroup->tqg_queue[qid].tgc_cpu;
723 mtx_unlock(&qgroup->tqg_lock);
724
725 if (dev != NULL && irq != NULL) {
726 error = bus_bind_intr(dev, irq, cpu);
727 if (error)
728 printf("%s: binding interrupt failed for %s: %d\n",
729 __func__, gtask->gt_name, error);
730 }
731 return (0);
732 }
733
734 void
taskqgroup_detach(struct taskqgroup * qgroup,struct grouptask * gtask)735 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
736 {
737 int i;
738
739 grouptask_block(gtask);
740 mtx_lock(&qgroup->tqg_lock);
741 for (i = 0; i < qgroup->tqg_cnt; i++)
742 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
743 break;
744 if (i == qgroup->tqg_cnt)
745 panic("%s: task %s not in group", __func__, gtask->gt_name);
746 qgroup->tqg_queue[i].tgc_cnt--;
747 LIST_REMOVE(gtask, gt_list);
748 mtx_unlock(&qgroup->tqg_lock);
749 gtask->gt_taskqueue = NULL;
750 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
751 }
752
753 static void
taskqgroup_binder(void * ctx)754 taskqgroup_binder(void *ctx)
755 {
756 struct taskq_bind_task *gtask;
757 cpuset_t mask;
758 int error;
759
760 gtask = ctx;
761 CPU_ZERO(&mask);
762 CPU_SET(gtask->bt_cpuid, &mask);
763 error = cpuset_setthread(curthread->td_tid, &mask);
764 thread_lock(curthread);
765 sched_bind(curthread, gtask->bt_cpuid);
766 thread_unlock(curthread);
767
768 if (error)
769 printf("%s: binding curthread failed: %d\n", __func__, error);
770 free(gtask, M_DEVBUF);
771 }
772
773 void
taskqgroup_bind(struct taskqgroup * qgroup)774 taskqgroup_bind(struct taskqgroup *qgroup)
775 {
776 struct taskq_bind_task *gtask;
777 int i;
778
779 /*
780 * Bind taskqueue threads to specific CPUs, if they have been assigned
781 * one.
782 */
783 if (qgroup->tqg_cnt == 1)
784 return;
785
786 for (i = 0; i < qgroup->tqg_cnt; i++) {
787 gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
788 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask);
789 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
790 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
791 >ask->bt_task);
792 }
793 }
794
795 struct taskqgroup *
taskqgroup_create(const char * name,int cnt,int stride)796 taskqgroup_create(const char *name, int cnt, int stride)
797 {
798 struct taskqgroup *qgroup;
799 int cpu, i, j;
800
801 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
802 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
803 qgroup->tqg_name = name;
804 qgroup->tqg_cnt = cnt;
805
806 for (cpu = i = 0; i < cnt; i++) {
807 taskqgroup_cpu_create(qgroup, i, cpu);
808 for (j = 0; j < stride; j++)
809 cpu = CPU_NEXT(cpu);
810 }
811 return (qgroup);
812 }
813
814 void
taskqgroup_destroy(struct taskqgroup * qgroup)815 taskqgroup_destroy(struct taskqgroup *qgroup)
816 {
817 }
818
819 void
taskqgroup_drain_all(struct taskqgroup * tqg)820 taskqgroup_drain_all(struct taskqgroup *tqg)
821 {
822 struct gtaskqueue *q;
823
824 for (int i = 0; i < mp_ncpus; i++) {
825 q = tqg->tqg_queue[i].tgc_taskq;
826 if (q == NULL)
827 continue;
828 gtaskqueue_drain_all(q);
829 }
830 }
831