1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 #include <sys/disk.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/bio.h>
37 #include <sys/devicestat.h>
38 #include <sys/sdt.h>
39 #include <sys/sysctl.h>
40 #include <sys/malloc.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/conf.h>
44 #include <vm/vm.h>
45 #include <vm/pmap.h>
46
47 #include <machine/atomic.h>
48
49 SDT_PROVIDER_DEFINE(io);
50
51 SDT_PROBE_DEFINE2(io, , , start, "struct bio *", "struct devstat *");
52 SDT_PROBE_DEFINE2(io, , , done, "struct bio *", "struct devstat *");
53
54 #define DTRACE_DEVSTAT_BIO_START() SDT_PROBE2(io, , , start, bp, ds)
55 #define DTRACE_DEVSTAT_BIO_DONE() SDT_PROBE2(io, , , done, bp, ds)
56
57 static int devstat_num_devs;
58 static long devstat_generation = 1;
59 static int devstat_version = DEVSTAT_VERSION;
60 static int devstat_current_devnumber;
61 static struct mtx devstat_mutex;
62 MTX_SYSINIT(devstat_mutex, &devstat_mutex, "devstat", MTX_DEF);
63
64 static struct devstatlist device_statq = STAILQ_HEAD_INITIALIZER(device_statq);
65 static struct devstat *devstat_alloc(void);
66 static void devstat_free(struct devstat *);
67 static void devstat_add_entry(struct devstat *ds, const void *dev_name,
68 int unit_number, uint32_t block_size,
69 devstat_support_flags flags,
70 devstat_type_flags device_type,
71 devstat_priority priority);
72
73 /*
74 * Allocate a devstat and initialize it
75 */
76 struct devstat *
devstat_new_entry(const void * dev_name,int unit_number,uint32_t block_size,devstat_support_flags flags,devstat_type_flags device_type,devstat_priority priority)77 devstat_new_entry(const void *dev_name,
78 int unit_number, uint32_t block_size,
79 devstat_support_flags flags,
80 devstat_type_flags device_type,
81 devstat_priority priority)
82 {
83 struct devstat *ds;
84
85 mtx_assert(&devstat_mutex, MA_NOTOWNED);
86
87 ds = devstat_alloc();
88 mtx_lock(&devstat_mutex);
89 if (unit_number == -1) {
90 ds->unit_number = unit_number;
91 ds->id = dev_name;
92 binuptime(&ds->creation_time);
93 devstat_generation++;
94 } else {
95 devstat_add_entry(ds, dev_name, unit_number, block_size,
96 flags, device_type, priority);
97 }
98 mtx_unlock(&devstat_mutex);
99 return (ds);
100 }
101
102 /*
103 * Take a malloced and zeroed devstat structure given to us, fill it in
104 * and add it to the queue of devices.
105 */
106 static void
devstat_add_entry(struct devstat * ds,const void * dev_name,int unit_number,uint32_t block_size,devstat_support_flags flags,devstat_type_flags device_type,devstat_priority priority)107 devstat_add_entry(struct devstat *ds, const void *dev_name,
108 int unit_number, uint32_t block_size,
109 devstat_support_flags flags,
110 devstat_type_flags device_type,
111 devstat_priority priority)
112 {
113 struct devstatlist *devstat_head;
114 struct devstat *ds_tmp;
115
116 mtx_assert(&devstat_mutex, MA_OWNED);
117 devstat_num_devs++;
118
119 devstat_head = &device_statq;
120
121 /*
122 * Priority sort. Each driver passes in its priority when it adds
123 * its devstat entry. Drivers are sorted first by priority, and
124 * then by probe order.
125 *
126 * For the first device, we just insert it, since the priority
127 * doesn't really matter yet. Subsequent devices are inserted into
128 * the list using the order outlined above.
129 */
130 if (devstat_num_devs == 1)
131 STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
132 else {
133 STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
134 struct devstat *ds_next;
135
136 ds_next = STAILQ_NEXT(ds_tmp, dev_links);
137
138 /*
139 * If we find a break between higher and lower
140 * priority items, and if this item fits in the
141 * break, insert it. This also applies if the
142 * "lower priority item" is the end of the list.
143 */
144 if ((priority <= ds_tmp->priority)
145 && ((ds_next == NULL)
146 || (priority > ds_next->priority))) {
147 STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
148 dev_links);
149 break;
150 } else if (priority > ds_tmp->priority) {
151 /*
152 * If this is the case, we should be able
153 * to insert ourselves at the head of the
154 * list. If we can't, something is wrong.
155 */
156 if (ds_tmp == STAILQ_FIRST(devstat_head)) {
157 STAILQ_INSERT_HEAD(devstat_head,
158 ds, dev_links);
159 break;
160 } else {
161 STAILQ_INSERT_TAIL(devstat_head,
162 ds, dev_links);
163 printf("devstat_add_entry: HELP! "
164 "sorting problem detected "
165 "for name %p unit %d\n",
166 dev_name, unit_number);
167 break;
168 }
169 }
170 }
171 }
172
173 ds->device_number = devstat_current_devnumber++;
174 ds->unit_number = unit_number;
175 strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
176 ds->block_size = block_size;
177 ds->flags = flags;
178 ds->device_type = device_type;
179 ds->priority = priority;
180 binuptime(&ds->creation_time);
181 devstat_generation++;
182 }
183
184 /*
185 * Remove a devstat structure from the list of devices.
186 */
187 void
devstat_remove_entry(struct devstat * ds)188 devstat_remove_entry(struct devstat *ds)
189 {
190 struct devstatlist *devstat_head;
191
192 mtx_assert(&devstat_mutex, MA_NOTOWNED);
193 if (ds == NULL)
194 return;
195
196 mtx_lock(&devstat_mutex);
197
198 devstat_head = &device_statq;
199
200 /* Remove this entry from the devstat queue */
201 atomic_add_acq_int(&ds->sequence1, 1);
202 if (ds->unit_number != -1) {
203 devstat_num_devs--;
204 STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
205 }
206 devstat_free(ds);
207 devstat_generation++;
208 mtx_unlock(&devstat_mutex);
209 }
210
211 /*
212 * Record a transaction start.
213 *
214 * See comments for devstat_end_transaction(). Ordering is very important
215 * here.
216 */
217 void
devstat_start_transaction(struct devstat * ds,const struct bintime * now)218 devstat_start_transaction(struct devstat *ds, const struct bintime *now)
219 {
220
221 /* sanity check */
222 if (ds == NULL)
223 return;
224
225 atomic_add_acq_int(&ds->sequence1, 1);
226 /*
227 * We only want to set the start time when we are going from idle
228 * to busy. The start time is really the start of the latest busy
229 * period.
230 */
231 if (atomic_fetchadd_int(&ds->start_count, 1) == ds->end_count) {
232 if (now != NULL)
233 ds->busy_from = *now;
234 else
235 binuptime(&ds->busy_from);
236 }
237 atomic_add_rel_int(&ds->sequence0, 1);
238 }
239
240 void
devstat_start_transaction_bio(struct devstat * ds,struct bio * bp)241 devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
242 {
243
244 /* sanity check */
245 if (ds == NULL)
246 return;
247
248 binuptime(&bp->bio_t0);
249 devstat_start_transaction_bio_t0(ds, bp);
250 }
251
252 void
devstat_start_transaction_bio_t0(struct devstat * ds,struct bio * bp)253 devstat_start_transaction_bio_t0(struct devstat *ds, struct bio *bp)
254 {
255
256 /* sanity check */
257 if (ds == NULL)
258 return;
259
260 devstat_start_transaction(ds, &bp->bio_t0);
261 DTRACE_DEVSTAT_BIO_START();
262 }
263
264 /*
265 * Record the ending of a transaction, and incrment the various counters.
266 *
267 * Ordering in this function, and in devstat_start_transaction() is VERY
268 * important. The idea here is to run without locks, so we are very
269 * careful to only modify some fields on the way "down" (i.e. at
270 * transaction start) and some fields on the way "up" (i.e. at transaction
271 * completion). One exception is busy_from, which we only modify in
272 * devstat_start_transaction() when there are no outstanding transactions,
273 * and thus it can't be modified in devstat_end_transaction()
274 * simultaneously.
275 *
276 * The sequence0 and sequence1 fields are provided to enable an application
277 * spying on the structures with mmap(2) to tell when a structure is in a
278 * consistent state or not.
279 *
280 * For this to work 100% reliably, it is important that the two fields
281 * are at opposite ends of the structure and that they are incremented
282 * in the opposite order of how a memcpy(3) in userland would copy them.
283 * We assume that the copying happens front to back, but there is actually
284 * no way short of writing your own memcpy(3) replacement to guarantee
285 * this will be the case.
286 *
287 * In addition to this, being a kind of locks, they must be updated with
288 * atomic instructions using appropriate memory barriers.
289 */
290 void
devstat_end_transaction(struct devstat * ds,uint32_t bytes,devstat_tag_type tag_type,devstat_trans_flags flags,const struct bintime * now,const struct bintime * then)291 devstat_end_transaction(struct devstat *ds, uint32_t bytes,
292 devstat_tag_type tag_type, devstat_trans_flags flags,
293 const struct bintime *now, const struct bintime *then)
294 {
295 struct bintime dt, lnow;
296
297 /* sanity check */
298 if (ds == NULL)
299 return;
300
301 if (now == NULL) {
302 binuptime(&lnow);
303 now = &lnow;
304 }
305
306 atomic_add_acq_int(&ds->sequence1, 1);
307 /* Update byte and operations counts */
308 ds->bytes[flags] += bytes;
309 ds->operations[flags]++;
310
311 /*
312 * Keep a count of the various tag types sent.
313 */
314 if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
315 tag_type != DEVSTAT_TAG_NONE)
316 ds->tag_types[tag_type]++;
317
318 if (then != NULL) {
319 /* Update duration of operations */
320 dt = *now;
321 bintime_sub(&dt, then);
322 bintime_add(&ds->duration[flags], &dt);
323 }
324
325 /* Accumulate busy time */
326 dt = *now;
327 bintime_sub(&dt, &ds->busy_from);
328 bintime_add(&ds->busy_time, &dt);
329 ds->busy_from = *now;
330
331 ds->end_count++;
332 atomic_add_rel_int(&ds->sequence0, 1);
333 }
334
335 void
devstat_end_transaction_bio(struct devstat * ds,const struct bio * bp)336 devstat_end_transaction_bio(struct devstat *ds, const struct bio *bp)
337 {
338
339 devstat_end_transaction_bio_bt(ds, bp, NULL);
340 }
341
342 void
devstat_end_transaction_bio_bt(struct devstat * ds,const struct bio * bp,const struct bintime * now)343 devstat_end_transaction_bio_bt(struct devstat *ds, const struct bio *bp,
344 const struct bintime *now)
345 {
346 devstat_trans_flags flg;
347 devstat_tag_type tag;
348
349 /* sanity check */
350 if (ds == NULL)
351 return;
352
353 if (bp->bio_flags & BIO_ORDERED)
354 tag = DEVSTAT_TAG_ORDERED;
355 else
356 tag = DEVSTAT_TAG_SIMPLE;
357 if (bp->bio_cmd == BIO_DELETE)
358 flg = DEVSTAT_FREE;
359 else if ((bp->bio_cmd == BIO_READ)
360 || ((bp->bio_cmd == BIO_ZONE)
361 && (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES)))
362 flg = DEVSTAT_READ;
363 else if (bp->bio_cmd == BIO_WRITE)
364 flg = DEVSTAT_WRITE;
365 else
366 flg = DEVSTAT_NO_DATA;
367
368 devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
369 tag, flg, now, &bp->bio_t0);
370 DTRACE_DEVSTAT_BIO_DONE();
371 }
372
373 /*
374 * This is the sysctl handler for the devstat package. The data pushed out
375 * on the kern.devstat.all sysctl variable consists of the current devstat
376 * generation number, and then an array of devstat structures, one for each
377 * device in the system.
378 *
379 * This is more cryptic that obvious, but basically we neither can nor
380 * want to hold the devstat_mutex for any amount of time, so we grab it
381 * only when we need to and keep an eye on devstat_generation all the time.
382 */
383 static int
sysctl_devstat(SYSCTL_HANDLER_ARGS)384 sysctl_devstat(SYSCTL_HANDLER_ARGS)
385 {
386 int error;
387 long mygen;
388 struct devstat *nds;
389
390 mtx_assert(&devstat_mutex, MA_NOTOWNED);
391
392 /*
393 * XXX devstat_generation should really be "volatile" but that
394 * XXX freaks out the sysctl macro below. The places where we
395 * XXX change it and inspect it are bracketed in the mutex which
396 * XXX guarantees us proper write barriers. I don't believe the
397 * XXX compiler is allowed to optimize mygen away across calls
398 * XXX to other functions, so the following is belived to be safe.
399 */
400 mygen = devstat_generation;
401
402 error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
403
404 if (devstat_num_devs == 0)
405 return(0);
406
407 if (error != 0)
408 return (error);
409
410 mtx_lock(&devstat_mutex);
411 nds = STAILQ_FIRST(&device_statq);
412 if (mygen != devstat_generation)
413 error = EBUSY;
414 mtx_unlock(&devstat_mutex);
415
416 if (error != 0)
417 return (error);
418
419 for (;nds != NULL;) {
420 error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
421 if (error != 0)
422 return (error);
423 mtx_lock(&devstat_mutex);
424 if (mygen != devstat_generation)
425 error = EBUSY;
426 else
427 nds = STAILQ_NEXT(nds, dev_links);
428 mtx_unlock(&devstat_mutex);
429 if (error != 0)
430 return (error);
431 }
432 return(error);
433 }
434
435 /*
436 * Sysctl entries for devstat. The first one is a node that all the rest
437 * hang off of.
438 */
439 static SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
440 "Device Statistics");
441
442 SYSCTL_PROC(_kern_devstat, OID_AUTO, all,
443 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
444 sysctl_devstat, "S,devstat",
445 "All devices in the devstat list");
446 /*
447 * Export the number of devices in the system so that userland utilities
448 * can determine how much memory to allocate to hold all the devices.
449 */
450 SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
451 &devstat_num_devs, 0, "Number of devices in the devstat list");
452 SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
453 &devstat_generation, 0, "Devstat list generation");
454 SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
455 &devstat_version, 0, "Devstat list version number");
456
457 /*
458 * Allocator for struct devstat structures. We sub-allocate these from pages
459 * which we get from malloc. These pages are exported for mmap(2)'ing through
460 * a miniature device driver
461 */
462
463 #define statsperpage (PAGE_SIZE / sizeof(struct devstat))
464
465 static d_ioctl_t devstat_ioctl;
466 static d_mmap_t devstat_mmap;
467
468 static struct cdevsw devstat_cdevsw = {
469 .d_version = D_VERSION,
470 .d_ioctl = devstat_ioctl,
471 .d_mmap = devstat_mmap,
472 .d_name = "devstat",
473 };
474
475 struct statspage {
476 TAILQ_ENTRY(statspage) list;
477 struct devstat *stat;
478 u_int nfree;
479 };
480
481 static size_t pagelist_pages = 0;
482 static TAILQ_HEAD(, statspage) pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
483 static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
484
485 static int
devstat_ioctl(struct cdev * dev,u_long cmd,caddr_t data,int fflag,struct thread * td)486 devstat_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
487 struct thread *td)
488 {
489 int error = ENOTTY;
490
491 switch (cmd) {
492 case DIOCGMEDIASIZE:
493 error = 0;
494 *(off_t *)data = pagelist_pages * PAGE_SIZE;
495 break;
496 }
497
498 return (error);
499 }
500
501 static int
devstat_mmap(struct cdev * dev,vm_ooffset_t offset,vm_paddr_t * paddr,int nprot,vm_memattr_t * memattr)502 devstat_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
503 int nprot, vm_memattr_t *memattr)
504 {
505 struct statspage *spp;
506
507 if (nprot != VM_PROT_READ)
508 return (-1);
509 mtx_lock(&devstat_mutex);
510 TAILQ_FOREACH(spp, &pagelist, list) {
511 if (offset == 0) {
512 *paddr = vtophys(spp->stat);
513 mtx_unlock(&devstat_mutex);
514 return (0);
515 }
516 offset -= PAGE_SIZE;
517 }
518 mtx_unlock(&devstat_mutex);
519 return (-1);
520 }
521
522 static struct devstat *
devstat_alloc(void)523 devstat_alloc(void)
524 {
525 struct devstat *dsp;
526 struct statspage *spp, *spp2;
527 u_int u;
528 static int once;
529
530 mtx_assert(&devstat_mutex, MA_NOTOWNED);
531 if (!once) {
532 make_dev_credf(MAKEDEV_ETERNAL | MAKEDEV_CHECKNAME,
533 &devstat_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0444,
534 DEVSTAT_DEVICE_NAME);
535 once = 1;
536 }
537 spp2 = NULL;
538 mtx_lock(&devstat_mutex);
539 for (;;) {
540 TAILQ_FOREACH(spp, &pagelist, list) {
541 if (spp->nfree > 0)
542 break;
543 }
544 if (spp != NULL)
545 break;
546 mtx_unlock(&devstat_mutex);
547 spp2 = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
548 spp2->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
549 spp2->nfree = statsperpage;
550
551 /*
552 * If free statspages were added while the lock was released
553 * just reuse them.
554 */
555 mtx_lock(&devstat_mutex);
556 TAILQ_FOREACH(spp, &pagelist, list)
557 if (spp->nfree > 0)
558 break;
559 if (spp == NULL) {
560 spp = spp2;
561
562 /*
563 * It would make more sense to add the new page at the
564 * head but the order on the list determine the
565 * sequence of the mapping so we can't do that.
566 */
567 pagelist_pages++;
568 TAILQ_INSERT_TAIL(&pagelist, spp, list);
569 } else
570 break;
571 }
572 dsp = spp->stat;
573 for (u = 0; u < statsperpage; u++) {
574 if (dsp->allocated == 0)
575 break;
576 dsp++;
577 }
578 spp->nfree--;
579 dsp->allocated = 1;
580 mtx_unlock(&devstat_mutex);
581 if (spp2 != NULL && spp2 != spp) {
582 free(spp2->stat, M_DEVSTAT);
583 free(spp2, M_DEVSTAT);
584 }
585 return (dsp);
586 }
587
588 static void
devstat_free(struct devstat * dsp)589 devstat_free(struct devstat *dsp)
590 {
591 struct statspage *spp;
592
593 mtx_assert(&devstat_mutex, MA_OWNED);
594 bzero(dsp, sizeof *dsp);
595 TAILQ_FOREACH(spp, &pagelist, list) {
596 if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
597 spp->nfree++;
598 return;
599 }
600 }
601 }
602
603 SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
604 SYSCTL_NULL_INT_PTR, sizeof(struct devstat), "sizeof(struct devstat)");
605