1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_callout_profiling.h"
41 #include "opt_ddb.h"
42 #include "opt_rss.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bus.h>
47 #include <sys/callout.h>
48 #include <sys/domainset.h>
49 #include <sys/file.h>
50 #include <sys/interrupt.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/kthread.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/random.h>
59 #include <sys/sched.h>
60 #include <sys/sdt.h>
61 #include <sys/sleepqueue.h>
62 #include <sys/sysctl.h>
63 #include <sys/smp.h>
64 #include <sys/unistd.h>
65
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #include <ddb/db_sym.h>
69 #include <machine/_inttypes.h>
70 #endif
71
72 #ifdef SMP
73 #include <machine/cpu.h>
74 #endif
75
76 DPCPU_DECLARE(sbintime_t, hardclocktime);
77
78 SDT_PROVIDER_DEFINE(callout_execute);
79 SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
80 SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
81
82 static void softclock_thread(void *arg);
83
84 #ifdef CALLOUT_PROFILING
85 static int avg_depth;
86 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
87 "Average number of items examined per softclock call. Units = 1/1000");
88 static int avg_gcalls;
89 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
90 "Average number of Giant callouts made per softclock call. Units = 1/1000");
91 static int avg_lockcalls;
92 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
93 "Average number of lock callouts made per softclock call. Units = 1/1000");
94 static int avg_mpcalls;
95 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
96 "Average number of MP callouts made per softclock call. Units = 1/1000");
97 static int avg_depth_dir;
98 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
99 "Average number of direct callouts examined per callout_process call. "
100 "Units = 1/1000");
101 static int avg_lockcalls_dir;
102 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
103 &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
104 "callout_process call. Units = 1/1000");
105 static int avg_mpcalls_dir;
106 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
107 0, "Average number of MP direct callouts made per callout_process call. "
108 "Units = 1/1000");
109 #endif
110
111 static int ncallout;
112 SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
113 "Number of entries in callwheel and size of timeout() preallocation");
114
115 #ifdef RSS
116 static int pin_default_swi = 1;
117 static int pin_pcpu_swi = 1;
118 #else
119 static int pin_default_swi = 0;
120 static int pin_pcpu_swi = 0;
121 #endif
122
123 SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
124 0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
125 SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
126 0, "Pin the per-CPU swis (except PCPU 0, which is also default)");
127
128 /*
129 * TODO:
130 * allocate more timeout table slots when table overflows.
131 */
132 static u_int __read_mostly callwheelsize;
133 static u_int __read_mostly callwheelmask;
134
135 /*
136 * The callout cpu exec entities represent informations necessary for
137 * describing the state of callouts currently running on the CPU and the ones
138 * necessary for migrating callouts to the new callout cpu. In particular,
139 * the first entry of the array cc_exec_entity holds informations for callout
140 * running in SWI thread context, while the second one holds informations
141 * for callout running directly from hardware interrupt context.
142 * The cached informations are very important for deferring migration when
143 * the migrating callout is already running.
144 */
145 struct cc_exec {
146 struct callout *cc_curr;
147 callout_func_t *cc_drain;
148 void *cc_last_func;
149 void *cc_last_arg;
150 #ifdef SMP
151 callout_func_t *ce_migration_func;
152 void *ce_migration_arg;
153 sbintime_t ce_migration_time;
154 sbintime_t ce_migration_prec;
155 int ce_migration_cpu;
156 #endif
157 bool cc_cancel;
158 bool cc_waiting;
159 };
160
161 /*
162 * There is one struct callout_cpu per cpu, holding all relevant
163 * state for the callout processing thread on the individual CPU.
164 */
165 struct callout_cpu {
166 struct mtx_padalign cc_lock;
167 struct cc_exec cc_exec_entity[2];
168 struct callout *cc_next;
169 struct callout_list *cc_callwheel;
170 struct callout_tailq cc_expireq;
171 sbintime_t cc_firstevent;
172 sbintime_t cc_lastscan;
173 struct thread *cc_thread;
174 u_int cc_bucket;
175 #ifdef KTR
176 char cc_ktr_event_name[20];
177 #endif
178 };
179
180 #define callout_migrating(c) ((c)->c_iflags & CALLOUT_DFRMIGRATION)
181
182 #define cc_exec_curr(cc, dir) cc->cc_exec_entity[dir].cc_curr
183 #define cc_exec_last_func(cc, dir) cc->cc_exec_entity[dir].cc_last_func
184 #define cc_exec_last_arg(cc, dir) cc->cc_exec_entity[dir].cc_last_arg
185 #define cc_exec_drain(cc, dir) cc->cc_exec_entity[dir].cc_drain
186 #define cc_exec_next(cc) cc->cc_next
187 #define cc_exec_cancel(cc, dir) cc->cc_exec_entity[dir].cc_cancel
188 #define cc_exec_waiting(cc, dir) cc->cc_exec_entity[dir].cc_waiting
189 #ifdef SMP
190 #define cc_migration_func(cc, dir) cc->cc_exec_entity[dir].ce_migration_func
191 #define cc_migration_arg(cc, dir) cc->cc_exec_entity[dir].ce_migration_arg
192 #define cc_migration_cpu(cc, dir) cc->cc_exec_entity[dir].ce_migration_cpu
193 #define cc_migration_time(cc, dir) cc->cc_exec_entity[dir].ce_migration_time
194 #define cc_migration_prec(cc, dir) cc->cc_exec_entity[dir].ce_migration_prec
195
196 DPCPU_DEFINE_STATIC(struct callout_cpu, cc_cpu);
197 #define CPUBLOCK MAXCPU
198 #define CC_CPU(cpu) DPCPU_ID_PTR(cpu, cc_cpu)
199 #define CC_SELF() CC_CPU(PCPU_GET(cpuid))
200 #else
201 static struct callout_cpu cc_cpu;
202 #define CC_CPU(cpu) (&cc_cpu)
203 #define CC_SELF() (&cc_cpu)
204 #endif
205 #define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock)
206 #define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock)
207 #define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED)
208
209 static int __read_mostly cc_default_cpu;
210
211 static void callout_cpu_init(struct callout_cpu *cc, int cpu);
212 static void softclock_call_cc(struct callout *c, struct callout_cpu *cc,
213 #ifdef CALLOUT_PROFILING
214 int *mpcalls, int *lockcalls, int *gcalls,
215 #endif
216 int direct);
217
218 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
219
220 /**
221 * Locked by cc_lock:
222 * cc_curr - If a callout is in progress, it is cc_curr.
223 * If cc_curr is non-NULL, threads waiting in
224 * callout_drain() will be woken up as soon as the
225 * relevant callout completes.
226 * cc_cancel - Changing to 1 with both callout_lock and cc_lock held
227 * guarantees that the current callout will not run.
228 * The softclock_call_cc() function sets this to 0 before it
229 * drops callout_lock to acquire c_lock, and it calls
230 * the handler only if curr_cancelled is still 0 after
231 * cc_lock is successfully acquired.
232 * cc_waiting - If a thread is waiting in callout_drain(), then
233 * callout_wait is nonzero. Set only when
234 * cc_curr is non-NULL.
235 */
236
237 /*
238 * Resets the execution entity tied to a specific callout cpu.
239 */
240 static void
cc_cce_cleanup(struct callout_cpu * cc,int direct)241 cc_cce_cleanup(struct callout_cpu *cc, int direct)
242 {
243
244 cc_exec_curr(cc, direct) = NULL;
245 cc_exec_cancel(cc, direct) = false;
246 cc_exec_waiting(cc, direct) = false;
247 #ifdef SMP
248 cc_migration_cpu(cc, direct) = CPUBLOCK;
249 cc_migration_time(cc, direct) = 0;
250 cc_migration_prec(cc, direct) = 0;
251 cc_migration_func(cc, direct) = NULL;
252 cc_migration_arg(cc, direct) = NULL;
253 #endif
254 }
255
256 /*
257 * Checks if migration is requested by a specific callout cpu.
258 */
259 static int
cc_cce_migrating(struct callout_cpu * cc,int direct)260 cc_cce_migrating(struct callout_cpu *cc, int direct)
261 {
262
263 #ifdef SMP
264 return (cc_migration_cpu(cc, direct) != CPUBLOCK);
265 #else
266 return (0);
267 #endif
268 }
269
270 /*
271 * Kernel low level callwheel initialization
272 * called on the BSP during kernel startup.
273 */
274 static void
callout_callwheel_init(void * dummy)275 callout_callwheel_init(void *dummy)
276 {
277 struct callout_cpu *cc;
278 int cpu;
279
280 /*
281 * Calculate the size of the callout wheel and the preallocated
282 * timeout() structures.
283 * XXX: Clip callout to result of previous function of maxusers
284 * maximum 384. This is still huge, but acceptable.
285 */
286 ncallout = imin(16 + maxproc + maxfiles, 18508);
287 TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
288
289 /*
290 * Calculate callout wheel size, should be next power of two higher
291 * than 'ncallout'.
292 */
293 callwheelsize = 1 << fls(ncallout);
294 callwheelmask = callwheelsize - 1;
295
296 /*
297 * Fetch whether we're pinning the swi's or not.
298 */
299 TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
300 TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
301
302 /*
303 * Initialize callout wheels. The software interrupt threads
304 * are created later.
305 */
306 cc_default_cpu = PCPU_GET(cpuid);
307 CPU_FOREACH(cpu) {
308 cc = CC_CPU(cpu);
309 callout_cpu_init(cc, cpu);
310 }
311 }
312 SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
313
314 /*
315 * Initialize the per-cpu callout structures.
316 */
317 static void
callout_cpu_init(struct callout_cpu * cc,int cpu)318 callout_cpu_init(struct callout_cpu *cc, int cpu)
319 {
320 int i;
321
322 mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN);
323 cc->cc_callwheel = malloc_domainset(sizeof(struct callout_list) *
324 callwheelsize, M_CALLOUT,
325 DOMAINSET_PREF(pcpu_find(cpu)->pc_domain), M_WAITOK);
326 for (i = 0; i < callwheelsize; i++)
327 LIST_INIT(&cc->cc_callwheel[i]);
328 TAILQ_INIT(&cc->cc_expireq);
329 cc->cc_firstevent = SBT_MAX;
330 for (i = 0; i < 2; i++)
331 cc_cce_cleanup(cc, i);
332 #ifdef KTR
333 snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
334 "callwheel cpu %d", cpu);
335 #endif
336 }
337
338 #ifdef SMP
339 /*
340 * Switches the cpu tied to a specific callout.
341 * The function expects a locked incoming callout cpu and returns with
342 * locked outcoming callout cpu.
343 */
344 static struct callout_cpu *
callout_cpu_switch(struct callout * c,struct callout_cpu * cc,int new_cpu)345 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
346 {
347 struct callout_cpu *new_cc;
348
349 MPASS(c != NULL && cc != NULL);
350 CC_LOCK_ASSERT(cc);
351
352 /*
353 * Avoid interrupts and preemption firing after the callout cpu
354 * is blocked in order to avoid deadlocks as the new thread
355 * may be willing to acquire the callout cpu lock.
356 */
357 c->c_cpu = CPUBLOCK;
358 spinlock_enter();
359 CC_UNLOCK(cc);
360 new_cc = CC_CPU(new_cpu);
361 CC_LOCK(new_cc);
362 spinlock_exit();
363 c->c_cpu = new_cpu;
364 return (new_cc);
365 }
366 #endif
367
368 /*
369 * Start softclock threads.
370 */
371 static void
start_softclock(void * dummy)372 start_softclock(void *dummy)
373 {
374 struct proc *p;
375 struct thread *td;
376 struct callout_cpu *cc;
377 int cpu, error;
378 bool pin_swi;
379
380 p = NULL;
381 CPU_FOREACH(cpu) {
382 cc = CC_CPU(cpu);
383 error = kproc_kthread_add(softclock_thread, cc, &p, &td,
384 RFSTOPPED, 0, "clock", "clock (%d)", cpu);
385 if (error != 0)
386 panic("failed to create softclock thread for cpu %d: %d",
387 cpu, error);
388 CC_LOCK(cc);
389 cc->cc_thread = td;
390 thread_lock(td);
391 sched_class(td, PRI_ITHD);
392 sched_ithread_prio(td, PI_SOFTCLOCK);
393 TD_SET_IWAIT(td);
394 thread_lock_set(td, (struct mtx *)&cc->cc_lock);
395 thread_unlock(td);
396 if (cpu == cc_default_cpu)
397 pin_swi = pin_default_swi;
398 else
399 pin_swi = pin_pcpu_swi;
400 if (pin_swi) {
401 error = cpuset_setithread(td->td_tid, cpu);
402 if (error != 0)
403 printf("%s: %s clock couldn't be pinned to cpu %d: %d\n",
404 __func__, cpu == cc_default_cpu ?
405 "default" : "per-cpu", cpu, error);
406 }
407 }
408 }
409 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
410
411 #define CC_HASH_SHIFT 8
412
413 static inline u_int
callout_hash(sbintime_t sbt)414 callout_hash(sbintime_t sbt)
415 {
416
417 return (sbt >> (32 - CC_HASH_SHIFT));
418 }
419
420 static inline u_int
callout_get_bucket(sbintime_t sbt)421 callout_get_bucket(sbintime_t sbt)
422 {
423
424 return (callout_hash(sbt) & callwheelmask);
425 }
426
427 void
callout_process(sbintime_t now)428 callout_process(sbintime_t now)
429 {
430 struct callout_entropy {
431 struct callout_cpu *cc;
432 struct thread *td;
433 sbintime_t now;
434 } entropy;
435 struct callout *c, *next;
436 struct callout_cpu *cc;
437 struct callout_list *sc;
438 struct thread *td;
439 sbintime_t first, last, lookahead, max, tmp_max;
440 u_int firstb, lastb, nowb;
441 #ifdef CALLOUT_PROFILING
442 int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
443 #endif
444
445 cc = CC_SELF();
446 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
447
448 /* Compute the buckets of the last scan and present times. */
449 firstb = callout_hash(cc->cc_lastscan);
450 cc->cc_lastscan = now;
451 nowb = callout_hash(now);
452
453 /* Compute the last bucket and minimum time of the bucket after it. */
454 if (nowb == firstb)
455 lookahead = (SBT_1S / 16);
456 else if (nowb - firstb == 1)
457 lookahead = (SBT_1S / 8);
458 else
459 lookahead = SBT_1S;
460 first = last = now;
461 first += (lookahead / 2);
462 last += lookahead;
463 last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
464 lastb = callout_hash(last) - 1;
465 max = last;
466
467 /*
468 * Check if we wrapped around the entire wheel from the last scan.
469 * In case, we need to scan entirely the wheel for pending callouts.
470 */
471 if (lastb - firstb >= callwheelsize) {
472 lastb = firstb + callwheelsize - 1;
473 if (nowb - firstb >= callwheelsize)
474 nowb = lastb;
475 }
476
477 /* Iterate callwheel from firstb to nowb and then up to lastb. */
478 do {
479 sc = &cc->cc_callwheel[firstb & callwheelmask];
480 LIST_FOREACH_SAFE(c, sc, c_links.le, next) {
481 /* Run the callout if present time within allowed. */
482 if (c->c_time <= now) {
483 /*
484 * Consumer told us the callout may be run
485 * directly from hardware interrupt context.
486 */
487 if (c->c_iflags & CALLOUT_DIRECT) {
488 #ifdef CALLOUT_PROFILING
489 ++depth_dir;
490 #endif
491 cc_exec_next(cc) = next;
492 cc->cc_bucket = firstb & callwheelmask;
493 LIST_REMOVE(c, c_links.le);
494 softclock_call_cc(c, cc,
495 #ifdef CALLOUT_PROFILING
496 &mpcalls_dir, &lockcalls_dir, NULL,
497 #endif
498 1);
499 next = cc_exec_next(cc);
500 cc_exec_next(cc) = NULL;
501 } else {
502 LIST_REMOVE(c, c_links.le);
503 TAILQ_INSERT_TAIL(&cc->cc_expireq,
504 c, c_links.tqe);
505 c->c_iflags |= CALLOUT_PROCESSED;
506 }
507 } else if (c->c_time >= max) {
508 /*
509 * Skip events in the distant future.
510 */
511 ;
512 } else if (c->c_time > last) {
513 /*
514 * Event minimal time is bigger than present
515 * maximal time, so it cannot be aggregated.
516 */
517 lastb = nowb;
518 } else {
519 /*
520 * Update first and last time, respecting this
521 * event.
522 */
523 if (c->c_time < first)
524 first = c->c_time;
525 tmp_max = c->c_time + c->c_precision;
526 if (tmp_max < last)
527 last = tmp_max;
528 }
529 }
530 /* Proceed with the next bucket. */
531 firstb++;
532 /*
533 * Stop if we looked after present time and found
534 * some event we can't execute at now.
535 * Stop if we looked far enough into the future.
536 */
537 } while (((int)(firstb - lastb)) <= 0);
538 cc->cc_firstevent = last;
539 cpu_new_callout(curcpu, last, first);
540
541 #ifdef CALLOUT_PROFILING
542 avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
543 avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
544 avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
545 #endif
546 if (!TAILQ_EMPTY(&cc->cc_expireq)) {
547 entropy.cc = cc;
548 entropy.td = curthread;
549 entropy.now = now;
550 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_CALLOUT);
551
552 td = cc->cc_thread;
553 if (TD_AWAITING_INTR(td)) {
554 thread_lock_block_wait(td);
555 THREAD_LOCK_ASSERT(td, MA_OWNED);
556 TD_CLR_IWAIT(td);
557 sched_wakeup(td, SRQ_INTR);
558 } else
559 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
560 } else
561 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
562 }
563
564 static struct callout_cpu *
callout_lock(struct callout * c)565 callout_lock(struct callout *c)
566 {
567 struct callout_cpu *cc;
568 int cpu;
569
570 for (;;) {
571 cpu = c->c_cpu;
572 #ifdef SMP
573 if (cpu == CPUBLOCK) {
574 while (c->c_cpu == CPUBLOCK)
575 cpu_spinwait();
576 continue;
577 }
578 #endif
579 cc = CC_CPU(cpu);
580 CC_LOCK(cc);
581 if (cpu == c->c_cpu)
582 break;
583 CC_UNLOCK(cc);
584 }
585 return (cc);
586 }
587
588 static void
callout_cc_add(struct callout * c,struct callout_cpu * cc,sbintime_t sbt,sbintime_t precision,void (* func)(void *),void * arg,int flags)589 callout_cc_add(struct callout *c, struct callout_cpu *cc,
590 sbintime_t sbt, sbintime_t precision, void (*func)(void *),
591 void *arg, int flags)
592 {
593 int bucket;
594
595 CC_LOCK_ASSERT(cc);
596 if (sbt < cc->cc_lastscan)
597 sbt = cc->cc_lastscan;
598 c->c_arg = arg;
599 c->c_iflags |= CALLOUT_PENDING;
600 c->c_iflags &= ~CALLOUT_PROCESSED;
601 c->c_flags |= CALLOUT_ACTIVE;
602 if (flags & C_DIRECT_EXEC)
603 c->c_iflags |= CALLOUT_DIRECT;
604 c->c_func = func;
605 c->c_time = sbt;
606 c->c_precision = precision;
607 bucket = callout_get_bucket(c->c_time);
608 CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
609 c, (int)(c->c_precision >> 32),
610 (u_int)(c->c_precision & 0xffffffff));
611 LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
612 if (cc->cc_bucket == bucket)
613 cc_exec_next(cc) = c;
614
615 /*
616 * Inform the eventtimers(4) subsystem there's a new callout
617 * that has been inserted, but only if really required.
618 */
619 if (SBT_MAX - c->c_time < c->c_precision)
620 c->c_precision = SBT_MAX - c->c_time;
621 sbt = c->c_time + c->c_precision;
622 if (sbt < cc->cc_firstevent) {
623 cc->cc_firstevent = sbt;
624 cpu_new_callout(c->c_cpu, sbt, c->c_time);
625 }
626 }
627
628 static void
softclock_call_cc(struct callout * c,struct callout_cpu * cc,int * mpcalls,int * lockcalls,int * gcalls,int direct)629 softclock_call_cc(struct callout *c, struct callout_cpu *cc,
630 #ifdef CALLOUT_PROFILING
631 int *mpcalls, int *lockcalls, int *gcalls,
632 #endif
633 int direct)
634 {
635 struct rm_priotracker tracker;
636 callout_func_t *c_func, *drain;
637 void *c_arg;
638 struct lock_class *class;
639 struct lock_object *c_lock;
640 uintptr_t lock_status;
641 int c_iflags;
642 #ifdef SMP
643 struct callout_cpu *new_cc;
644 callout_func_t *new_func;
645 void *new_arg;
646 int flags, new_cpu;
647 sbintime_t new_prec, new_time;
648 #endif
649 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
650 sbintime_t sbt1, sbt2;
651 struct timespec ts2;
652 static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */
653 static callout_func_t *lastfunc;
654 #endif
655
656 KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
657 ("softclock_call_cc: pend %p %x", c, c->c_iflags));
658 KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
659 ("softclock_call_cc: act %p %x", c, c->c_flags));
660 class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
661 lock_status = 0;
662 if (c->c_iflags & CALLOUT_SHAREDLOCK) {
663 if (class == &lock_class_rm)
664 lock_status = (uintptr_t)&tracker;
665 else
666 lock_status = 1;
667 }
668 c_lock = c->c_lock;
669 c_func = c->c_func;
670 c_arg = c->c_arg;
671 c_iflags = c->c_iflags;
672 c->c_iflags &= ~CALLOUT_PENDING;
673
674 cc_exec_curr(cc, direct) = c;
675 cc_exec_last_func(cc, direct) = c_func;
676 cc_exec_last_arg(cc, direct) = c_arg;
677 cc_exec_cancel(cc, direct) = false;
678 cc_exec_drain(cc, direct) = NULL;
679 CC_UNLOCK(cc);
680 if (c_lock != NULL) {
681 class->lc_lock(c_lock, lock_status);
682 /*
683 * The callout may have been cancelled
684 * while we switched locks.
685 */
686 if (cc_exec_cancel(cc, direct)) {
687 class->lc_unlock(c_lock);
688 goto skip;
689 }
690 /* The callout cannot be stopped now. */
691 cc_exec_cancel(cc, direct) = true;
692 if (c_lock == &Giant.lock_object) {
693 #ifdef CALLOUT_PROFILING
694 (*gcalls)++;
695 #endif
696 CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
697 c, c_func, c_arg);
698 } else {
699 #ifdef CALLOUT_PROFILING
700 (*lockcalls)++;
701 #endif
702 CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
703 c, c_func, c_arg);
704 }
705 } else {
706 #ifdef CALLOUT_PROFILING
707 (*mpcalls)++;
708 #endif
709 CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
710 c, c_func, c_arg);
711 }
712 KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
713 "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
714 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
715 sbt1 = sbinuptime();
716 #endif
717 THREAD_NO_SLEEPING();
718 SDT_PROBE1(callout_execute, , , callout__start, c);
719 c_func(c_arg);
720 SDT_PROBE1(callout_execute, , , callout__end, c);
721 THREAD_SLEEPING_OK();
722 #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
723 sbt2 = sbinuptime();
724 sbt2 -= sbt1;
725 if (sbt2 > maxdt) {
726 if (lastfunc != c_func || sbt2 > maxdt * 2) {
727 ts2 = sbttots(sbt2);
728 printf(
729 "Expensive callout(9) function: %p(%p) %jd.%09ld s\n",
730 c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
731 }
732 maxdt = sbt2;
733 lastfunc = c_func;
734 }
735 #endif
736 KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
737 CTR1(KTR_CALLOUT, "callout %p finished", c);
738 if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
739 class->lc_unlock(c_lock);
740 skip:
741 CC_LOCK(cc);
742 KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
743 cc_exec_curr(cc, direct) = NULL;
744 if (cc_exec_drain(cc, direct)) {
745 drain = cc_exec_drain(cc, direct);
746 cc_exec_drain(cc, direct) = NULL;
747 CC_UNLOCK(cc);
748 drain(c_arg);
749 CC_LOCK(cc);
750 }
751 if (cc_exec_waiting(cc, direct)) {
752 /*
753 * There is someone waiting for the
754 * callout to complete.
755 * If the callout was scheduled for
756 * migration just cancel it.
757 */
758 if (cc_cce_migrating(cc, direct)) {
759 cc_cce_cleanup(cc, direct);
760
761 /*
762 * It should be assert here that the callout is not
763 * destroyed but that is not easy.
764 */
765 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
766 }
767 cc_exec_waiting(cc, direct) = false;
768 CC_UNLOCK(cc);
769 wakeup(&cc_exec_waiting(cc, direct));
770 CC_LOCK(cc);
771 } else if (cc_cce_migrating(cc, direct)) {
772 #ifdef SMP
773 /*
774 * If the callout was scheduled for
775 * migration just perform it now.
776 */
777 new_cpu = cc_migration_cpu(cc, direct);
778 new_time = cc_migration_time(cc, direct);
779 new_prec = cc_migration_prec(cc, direct);
780 new_func = cc_migration_func(cc, direct);
781 new_arg = cc_migration_arg(cc, direct);
782 cc_cce_cleanup(cc, direct);
783
784 /*
785 * It should be assert here that the callout is not destroyed
786 * but that is not easy.
787 *
788 * As first thing, handle deferred callout stops.
789 */
790 if (!callout_migrating(c)) {
791 CTR3(KTR_CALLOUT,
792 "deferred cancelled %p func %p arg %p",
793 c, new_func, new_arg);
794 return;
795 }
796 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
797
798 new_cc = callout_cpu_switch(c, cc, new_cpu);
799 flags = (direct) ? C_DIRECT_EXEC : 0;
800 callout_cc_add(c, new_cc, new_time, new_prec, new_func,
801 new_arg, flags);
802 CC_UNLOCK(new_cc);
803 CC_LOCK(cc);
804 #else
805 panic("migration should not happen");
806 #endif
807 }
808 }
809
810 /*
811 * The callout mechanism is based on the work of Adam M. Costello and
812 * George Varghese, published in a technical report entitled "Redesigning
813 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
814 * in FreeBSD by Justin T. Gibbs. The original work on the data structures
815 * used in this implementation was published by G. Varghese and T. Lauck in
816 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
817 * the Efficient Implementation of a Timer Facility" in the Proceedings of
818 * the 11th ACM Annual Symposium on Operating Systems Principles,
819 * Austin, Texas Nov 1987.
820 */
821
822 /*
823 * Software (low priority) clock interrupt thread handler.
824 * Run periodic events from timeout queue.
825 */
826 static void
softclock_thread(void * arg)827 softclock_thread(void *arg)
828 {
829 struct thread *td = curthread;
830 struct callout_cpu *cc;
831 struct callout *c;
832 #ifdef CALLOUT_PROFILING
833 int depth, gcalls, lockcalls, mpcalls;
834 #endif
835
836 cc = (struct callout_cpu *)arg;
837 CC_LOCK(cc);
838 for (;;) {
839 while (TAILQ_EMPTY(&cc->cc_expireq)) {
840 /*
841 * Use CC_LOCK(cc) as the thread_lock while
842 * idle.
843 */
844 thread_lock(td);
845 thread_lock_set(td, (struct mtx *)&cc->cc_lock);
846 TD_SET_IWAIT(td);
847 mi_switch(SW_VOL | SWT_IWAIT);
848
849 /* mi_switch() drops thread_lock(). */
850 CC_LOCK(cc);
851 }
852
853 #ifdef CALLOUT_PROFILING
854 depth = gcalls = lockcalls = mpcalls = 0;
855 #endif
856 while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
857 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
858 softclock_call_cc(c, cc,
859 #ifdef CALLOUT_PROFILING
860 &mpcalls, &lockcalls, &gcalls,
861 #endif
862 0);
863 #ifdef CALLOUT_PROFILING
864 ++depth;
865 #endif
866 }
867 #ifdef CALLOUT_PROFILING
868 avg_depth += (depth * 1000 - avg_depth) >> 8;
869 avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
870 avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
871 avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
872 #endif
873 }
874 }
875
876 void
callout_when(sbintime_t sbt,sbintime_t precision,int flags,sbintime_t * res,sbintime_t * prec_res)877 callout_when(sbintime_t sbt, sbintime_t precision, int flags,
878 sbintime_t *res, sbintime_t *prec_res)
879 {
880 sbintime_t to_sbt, to_pr;
881
882 if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
883 *res = sbt;
884 *prec_res = precision;
885 return;
886 }
887 if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
888 sbt = tick_sbt;
889 if ((flags & C_HARDCLOCK) != 0 || sbt >= sbt_tickthreshold) {
890 /*
891 * Obtain the time of the last hardclock() call on
892 * this CPU directly from the kern_clocksource.c.
893 * This value is per-CPU, but it is equal for all
894 * active ones.
895 */
896 #ifdef __LP64__
897 to_sbt = DPCPU_GET(hardclocktime);
898 #else
899 spinlock_enter();
900 to_sbt = DPCPU_GET(hardclocktime);
901 spinlock_exit();
902 #endif
903 if (cold && to_sbt == 0)
904 to_sbt = sbinuptime();
905 if ((flags & C_HARDCLOCK) == 0)
906 to_sbt += tick_sbt;
907 } else
908 to_sbt = sbinuptime();
909 if (SBT_MAX - to_sbt < sbt)
910 to_sbt = SBT_MAX;
911 else
912 to_sbt += sbt;
913 *res = to_sbt;
914 to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
915 sbt >> C_PRELGET(flags));
916 *prec_res = to_pr > precision ? to_pr : precision;
917 }
918
919 /*
920 * New interface; clients allocate their own callout structures.
921 *
922 * callout_reset() - establish or change a timeout
923 * callout_stop() - disestablish a timeout
924 * callout_init() - initialize a callout structure so that it can
925 * safely be passed to callout_reset() and callout_stop()
926 *
927 * <sys/callout.h> defines three convenience macros:
928 *
929 * callout_active() - returns truth if callout has not been stopped,
930 * drained, or deactivated since the last time the callout was
931 * reset.
932 * callout_pending() - returns truth if callout is still waiting for timeout
933 * callout_deactivate() - marks the callout as having been serviced
934 */
935 int
callout_reset_sbt_on(struct callout * c,sbintime_t sbt,sbintime_t prec,callout_func_t * ftn,void * arg,int cpu,int flags)936 callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
937 callout_func_t *ftn, void *arg, int cpu, int flags)
938 {
939 sbintime_t to_sbt, precision;
940 struct callout_cpu *cc;
941 int cancelled, direct;
942
943 cancelled = 0;
944 callout_when(sbt, prec, flags, &to_sbt, &precision);
945
946 /*
947 * This flag used to be added by callout_cc_add, but the
948 * first time you call this we could end up with the
949 * wrong direct flag if we don't do it before we add.
950 */
951 if (flags & C_DIRECT_EXEC) {
952 direct = 1;
953 } else {
954 direct = 0;
955 }
956 KASSERT(!direct || c->c_lock == NULL ||
957 (LOCK_CLASS(c->c_lock)->lc_flags & LC_SPINLOCK),
958 ("%s: direct callout %p has non-spin lock", __func__, c));
959
960 cc = callout_lock(c);
961 if (cpu == -1)
962 cpu = c->c_cpu;
963 KASSERT(cpu >= 0 && cpu <= mp_maxid && !CPU_ABSENT(cpu),
964 ("%s: invalid cpu %d", __func__, cpu));
965
966 if (cc_exec_curr(cc, direct) == c) {
967 /*
968 * We're being asked to reschedule a callout which is
969 * currently in progress. If there is a lock then we
970 * can cancel the callout if it has not really started.
971 */
972 if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
973 cancelled = cc_exec_cancel(cc, direct) = true;
974 if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
975 /*
976 * Someone has called callout_drain to kill this
977 * callout. Don't reschedule.
978 */
979 CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
980 cancelled ? "cancelled" : "failed to cancel",
981 c, c->c_func, c->c_arg);
982 CC_UNLOCK(cc);
983 return (cancelled);
984 }
985 #ifdef SMP
986 if (callout_migrating(c)) {
987 /*
988 * This only occurs when a second callout_reset_sbt_on
989 * is made after a previous one moved it into
990 * deferred migration (below). Note we do *not* change
991 * the prev_cpu even though the previous target may
992 * be different.
993 */
994 cc_migration_cpu(cc, direct) = cpu;
995 cc_migration_time(cc, direct) = to_sbt;
996 cc_migration_prec(cc, direct) = precision;
997 cc_migration_func(cc, direct) = ftn;
998 cc_migration_arg(cc, direct) = arg;
999 cancelled = 1;
1000 CC_UNLOCK(cc);
1001 return (cancelled);
1002 }
1003 #endif
1004 }
1005 if (c->c_iflags & CALLOUT_PENDING) {
1006 if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1007 if (cc_exec_next(cc) == c)
1008 cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1009 LIST_REMOVE(c, c_links.le);
1010 } else {
1011 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1012 }
1013 cancelled = 1;
1014 c->c_iflags &= ~ CALLOUT_PENDING;
1015 c->c_flags &= ~ CALLOUT_ACTIVE;
1016 }
1017
1018 #ifdef SMP
1019 /*
1020 * If the callout must migrate try to perform it immediately.
1021 * If the callout is currently running, just defer the migration
1022 * to a more appropriate moment.
1023 */
1024 if (c->c_cpu != cpu) {
1025 if (cc_exec_curr(cc, direct) == c) {
1026 /*
1027 * Pending will have been removed since we are
1028 * actually executing the callout on another
1029 * CPU. That callout should be waiting on the
1030 * lock the caller holds. If we set both
1031 * active/and/pending after we return and the
1032 * lock on the executing callout proceeds, it
1033 * will then see pending is true and return.
1034 * At the return from the actual callout execution
1035 * the migration will occur in softclock_call_cc
1036 * and this new callout will be placed on the
1037 * new CPU via a call to callout_cpu_switch() which
1038 * will get the lock on the right CPU followed
1039 * by a call callout_cc_add() which will add it there.
1040 * (see above in softclock_call_cc()).
1041 */
1042 cc_migration_cpu(cc, direct) = cpu;
1043 cc_migration_time(cc, direct) = to_sbt;
1044 cc_migration_prec(cc, direct) = precision;
1045 cc_migration_func(cc, direct) = ftn;
1046 cc_migration_arg(cc, direct) = arg;
1047 c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1048 c->c_flags |= CALLOUT_ACTIVE;
1049 CTR6(KTR_CALLOUT,
1050 "migration of %p func %p arg %p in %d.%08x to %u deferred",
1051 c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1052 (u_int)(to_sbt & 0xffffffff), cpu);
1053 CC_UNLOCK(cc);
1054 return (cancelled);
1055 }
1056 cc = callout_cpu_switch(c, cc, cpu);
1057 }
1058 #endif
1059
1060 callout_cc_add(c, cc, to_sbt, precision, ftn, arg, flags);
1061 CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1062 cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1063 (u_int)(to_sbt & 0xffffffff));
1064 CC_UNLOCK(cc);
1065
1066 return (cancelled);
1067 }
1068
1069 /*
1070 * Common idioms that can be optimized in the future.
1071 */
1072 int
callout_schedule_on(struct callout * c,int to_ticks,int cpu)1073 callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1074 {
1075 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1076 }
1077
1078 int
callout_schedule(struct callout * c,int to_ticks)1079 callout_schedule(struct callout *c, int to_ticks)
1080 {
1081 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1082 }
1083
1084 int
_callout_stop_safe(struct callout * c,int flags,callout_func_t * drain)1085 _callout_stop_safe(struct callout *c, int flags, callout_func_t *drain)
1086 {
1087 struct callout_cpu *cc, *old_cc;
1088 struct lock_class *class;
1089 int direct, sq_locked, use_lock;
1090 int cancelled, not_on_a_list;
1091
1092 if ((flags & CS_DRAIN) != 0)
1093 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1094 "calling %s", __func__);
1095
1096 KASSERT((flags & CS_DRAIN) == 0 || drain == NULL,
1097 ("Cannot set drain callback and CS_DRAIN flag at the same time"));
1098
1099 /*
1100 * Some old subsystems don't hold Giant while running a callout_stop(),
1101 * so just discard this check for the moment.
1102 */
1103 if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1104 if (c->c_lock == &Giant.lock_object)
1105 use_lock = mtx_owned(&Giant);
1106 else {
1107 use_lock = 1;
1108 class = LOCK_CLASS(c->c_lock);
1109 class->lc_assert(c->c_lock, LA_XLOCKED);
1110 }
1111 } else
1112 use_lock = 0;
1113 if (c->c_iflags & CALLOUT_DIRECT) {
1114 direct = 1;
1115 } else {
1116 direct = 0;
1117 }
1118 sq_locked = 0;
1119 old_cc = NULL;
1120 again:
1121 cc = callout_lock(c);
1122
1123 if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1124 (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1125 ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1126 /*
1127 * Special case where this slipped in while we
1128 * were migrating *as* the callout is about to
1129 * execute. The caller probably holds the lock
1130 * the callout wants.
1131 *
1132 * Get rid of the migration first. Then set
1133 * the flag that tells this code *not* to
1134 * try to remove it from any lists (its not
1135 * on one yet). When the callout wheel runs,
1136 * it will ignore this callout.
1137 */
1138 c->c_iflags &= ~CALLOUT_PENDING;
1139 c->c_flags &= ~CALLOUT_ACTIVE;
1140 not_on_a_list = 1;
1141 } else {
1142 not_on_a_list = 0;
1143 }
1144
1145 /*
1146 * If the callout was migrating while the callout cpu lock was
1147 * dropped, just drop the sleepqueue lock and check the states
1148 * again.
1149 */
1150 if (sq_locked != 0 && cc != old_cc) {
1151 #ifdef SMP
1152 CC_UNLOCK(cc);
1153 sleepq_release(&cc_exec_waiting(old_cc, direct));
1154 sq_locked = 0;
1155 old_cc = NULL;
1156 goto again;
1157 #else
1158 panic("migration should not happen");
1159 #endif
1160 }
1161
1162 /*
1163 * If the callout is running, try to stop it or drain it.
1164 */
1165 if (cc_exec_curr(cc, direct) == c) {
1166 /*
1167 * Succeed we to stop it or not, we must clear the
1168 * active flag - this is what API users expect. If we're
1169 * draining and the callout is currently executing, first wait
1170 * until it finishes.
1171 */
1172 if ((flags & CS_DRAIN) == 0)
1173 c->c_flags &= ~CALLOUT_ACTIVE;
1174
1175 if ((flags & CS_DRAIN) != 0) {
1176 /*
1177 * The current callout is running (or just
1178 * about to run) and blocking is allowed, so
1179 * just wait for the current invocation to
1180 * finish.
1181 */
1182 if (cc_exec_curr(cc, direct) == c) {
1183 /*
1184 * Use direct calls to sleepqueue interface
1185 * instead of cv/msleep in order to avoid
1186 * a LOR between cc_lock and sleepqueue
1187 * chain spinlocks. This piece of code
1188 * emulates a msleep_spin() call actually.
1189 *
1190 * If we already have the sleepqueue chain
1191 * locked, then we can safely block. If we
1192 * don't already have it locked, however,
1193 * we have to drop the cc_lock to lock
1194 * it. This opens several races, so we
1195 * restart at the beginning once we have
1196 * both locks. If nothing has changed, then
1197 * we will end up back here with sq_locked
1198 * set.
1199 */
1200 if (!sq_locked) {
1201 CC_UNLOCK(cc);
1202 sleepq_lock(
1203 &cc_exec_waiting(cc, direct));
1204 sq_locked = 1;
1205 old_cc = cc;
1206 goto again;
1207 }
1208
1209 /*
1210 * Migration could be cancelled here, but
1211 * as long as it is still not sure when it
1212 * will be packed up, just let softclock()
1213 * take care of it.
1214 */
1215 cc_exec_waiting(cc, direct) = true;
1216 DROP_GIANT();
1217 CC_UNLOCK(cc);
1218 sleepq_add(
1219 &cc_exec_waiting(cc, direct),
1220 &cc->cc_lock.lock_object, "codrain",
1221 SLEEPQ_SLEEP, 0);
1222 sleepq_wait(
1223 &cc_exec_waiting(cc, direct),
1224 0);
1225 sq_locked = 0;
1226 old_cc = NULL;
1227
1228 /* Reacquire locks previously released. */
1229 PICKUP_GIANT();
1230 goto again;
1231 }
1232 c->c_flags &= ~CALLOUT_ACTIVE;
1233 } else if (use_lock &&
1234 !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1235
1236 /*
1237 * The current callout is waiting for its
1238 * lock which we hold. Cancel the callout
1239 * and return. After our caller drops the
1240 * lock, the callout will be skipped in
1241 * softclock(). This *only* works with a
1242 * callout_stop() *not* callout_drain() or
1243 * callout_async_drain().
1244 */
1245 cc_exec_cancel(cc, direct) = true;
1246 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1247 c, c->c_func, c->c_arg);
1248 KASSERT(!cc_cce_migrating(cc, direct),
1249 ("callout wrongly scheduled for migration"));
1250 if (callout_migrating(c)) {
1251 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1252 #ifdef SMP
1253 cc_migration_cpu(cc, direct) = CPUBLOCK;
1254 cc_migration_time(cc, direct) = 0;
1255 cc_migration_prec(cc, direct) = 0;
1256 cc_migration_func(cc, direct) = NULL;
1257 cc_migration_arg(cc, direct) = NULL;
1258 #endif
1259 }
1260 CC_UNLOCK(cc);
1261 KASSERT(!sq_locked, ("sleepqueue chain locked"));
1262 return (1);
1263 } else if (callout_migrating(c)) {
1264 /*
1265 * The callout is currently being serviced
1266 * and the "next" callout is scheduled at
1267 * its completion with a migration. We remove
1268 * the migration flag so it *won't* get rescheduled,
1269 * but we can't stop the one thats running so
1270 * we return 0.
1271 */
1272 c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1273 #ifdef SMP
1274 /*
1275 * We can't call cc_cce_cleanup here since
1276 * if we do it will remove .ce_curr and
1277 * its still running. This will prevent a
1278 * reschedule of the callout when the
1279 * execution completes.
1280 */
1281 cc_migration_cpu(cc, direct) = CPUBLOCK;
1282 cc_migration_time(cc, direct) = 0;
1283 cc_migration_prec(cc, direct) = 0;
1284 cc_migration_func(cc, direct) = NULL;
1285 cc_migration_arg(cc, direct) = NULL;
1286 #endif
1287 CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1288 c, c->c_func, c->c_arg);
1289 if (drain) {
1290 KASSERT(cc_exec_drain(cc, direct) == NULL,
1291 ("callout drain function already set to %p",
1292 cc_exec_drain(cc, direct)));
1293 cc_exec_drain(cc, direct) = drain;
1294 }
1295 CC_UNLOCK(cc);
1296 return (0);
1297 } else {
1298 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1299 c, c->c_func, c->c_arg);
1300 if (drain) {
1301 KASSERT(cc_exec_drain(cc, direct) == NULL,
1302 ("callout drain function already set to %p",
1303 cc_exec_drain(cc, direct)));
1304 cc_exec_drain(cc, direct) = drain;
1305 }
1306 }
1307 KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1308 cancelled = 0;
1309 } else
1310 cancelled = 1;
1311
1312 if (sq_locked)
1313 sleepq_release(&cc_exec_waiting(cc, direct));
1314
1315 if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1316 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1317 c, c->c_func, c->c_arg);
1318 /*
1319 * For not scheduled and not executing callout return
1320 * negative value.
1321 */
1322 if (cc_exec_curr(cc, direct) != c)
1323 cancelled = -1;
1324 CC_UNLOCK(cc);
1325 return (cancelled);
1326 }
1327
1328 c->c_iflags &= ~CALLOUT_PENDING;
1329 c->c_flags &= ~CALLOUT_ACTIVE;
1330
1331 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1332 c, c->c_func, c->c_arg);
1333 if (not_on_a_list == 0) {
1334 if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1335 if (cc_exec_next(cc) == c)
1336 cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1337 LIST_REMOVE(c, c_links.le);
1338 } else {
1339 TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1340 }
1341 }
1342 CC_UNLOCK(cc);
1343 return (cancelled);
1344 }
1345
1346 void
callout_init(struct callout * c,int mpsafe)1347 callout_init(struct callout *c, int mpsafe)
1348 {
1349 bzero(c, sizeof *c);
1350 if (mpsafe) {
1351 c->c_lock = NULL;
1352 c->c_iflags = CALLOUT_RETURNUNLOCKED;
1353 } else {
1354 c->c_lock = &Giant.lock_object;
1355 c->c_iflags = 0;
1356 }
1357 c->c_cpu = cc_default_cpu;
1358 }
1359
1360 void
_callout_init_lock(struct callout * c,struct lock_object * lock,int flags)1361 _callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1362 {
1363 bzero(c, sizeof *c);
1364 c->c_lock = lock;
1365 KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1366 ("callout_init_lock: bad flags %d", flags));
1367 KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1368 ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1369 KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & LC_SLEEPABLE),
1370 ("%s: callout %p has sleepable lock", __func__, c));
1371 c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1372 c->c_cpu = cc_default_cpu;
1373 }
1374
1375 static int
flssbt(sbintime_t sbt)1376 flssbt(sbintime_t sbt)
1377 {
1378
1379 sbt += (uint64_t)sbt >> 1;
1380 if (sizeof(long) >= sizeof(sbintime_t))
1381 return (flsl(sbt));
1382 if (sbt >= SBT_1S)
1383 return (flsl(((uint64_t)sbt) >> 32) + 32);
1384 return (flsl(sbt));
1385 }
1386
1387 /*
1388 * Dump immediate statistic snapshot of the scheduled callouts.
1389 */
1390 static int
sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)1391 sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1392 {
1393 struct callout *tmp;
1394 struct callout_cpu *cc;
1395 struct callout_list *sc;
1396 sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1397 int ct[64], cpr[64], ccpbk[32];
1398 int error, val, i, count, tcum, pcum, maxc, c, medc;
1399 int cpu;
1400
1401 val = 0;
1402 error = sysctl_handle_int(oidp, &val, 0, req);
1403 if (error != 0 || req->newptr == NULL)
1404 return (error);
1405 count = maxc = 0;
1406 st = spr = maxt = maxpr = 0;
1407 bzero(ccpbk, sizeof(ccpbk));
1408 bzero(ct, sizeof(ct));
1409 bzero(cpr, sizeof(cpr));
1410 now = sbinuptime();
1411 CPU_FOREACH(cpu) {
1412 cc = CC_CPU(cpu);
1413 CC_LOCK(cc);
1414 for (i = 0; i < callwheelsize; i++) {
1415 sc = &cc->cc_callwheel[i];
1416 c = 0;
1417 LIST_FOREACH(tmp, sc, c_links.le) {
1418 c++;
1419 t = tmp->c_time - now;
1420 if (t < 0)
1421 t = 0;
1422 st += t / SBT_1US;
1423 spr += tmp->c_precision / SBT_1US;
1424 if (t > maxt)
1425 maxt = t;
1426 if (tmp->c_precision > maxpr)
1427 maxpr = tmp->c_precision;
1428 ct[flssbt(t)]++;
1429 cpr[flssbt(tmp->c_precision)]++;
1430 }
1431 if (c > maxc)
1432 maxc = c;
1433 ccpbk[fls(c + c / 2)]++;
1434 count += c;
1435 }
1436 CC_UNLOCK(cc);
1437 }
1438
1439 for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1440 tcum += ct[i];
1441 medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1442 for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1443 pcum += cpr[i];
1444 medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1445 for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1446 c += ccpbk[i];
1447 medc = (i >= 2) ? (1 << (i - 2)) : 0;
1448
1449 printf("Scheduled callouts statistic snapshot:\n");
1450 printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n",
1451 count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1452 printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n",
1453 medc,
1454 count / callwheelsize / mp_ncpus,
1455 (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1456 maxc);
1457 printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1458 medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1459 (st / count) / 1000000, (st / count) % 1000000,
1460 maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1461 printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1462 medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1463 (spr / count) / 1000000, (spr / count) % 1000000,
1464 maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1465 printf(" Distribution: \tbuckets\t time\t tcum\t"
1466 " prec\t pcum\n");
1467 for (i = 0, tcum = pcum = 0; i < 64; i++) {
1468 if (ct[i] == 0 && cpr[i] == 0)
1469 continue;
1470 t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1471 tcum += ct[i];
1472 pcum += cpr[i];
1473 printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1474 t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1475 i - 1 - (32 - CC_HASH_SHIFT),
1476 ct[i], tcum, cpr[i], pcum);
1477 }
1478 return (error);
1479 }
1480 SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1481 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1482 0, 0, sysctl_kern_callout_stat, "I",
1483 "Dump immediate statistic snapshot of the scheduled callouts");
1484
1485 #ifdef DDB
1486 static void
_show_callout(struct callout * c)1487 _show_callout(struct callout *c)
1488 {
1489
1490 db_printf("callout %p\n", c);
1491 #define C_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, c->e);
1492 db_printf(" &c_links = %p\n", &(c->c_links));
1493 C_DB_PRINTF("%" PRId64, c_time);
1494 C_DB_PRINTF("%" PRId64, c_precision);
1495 C_DB_PRINTF("%p", c_arg);
1496 C_DB_PRINTF("%p", c_func);
1497 C_DB_PRINTF("%p", c_lock);
1498 C_DB_PRINTF("%#x", c_flags);
1499 C_DB_PRINTF("%#x", c_iflags);
1500 C_DB_PRINTF("%d", c_cpu);
1501 #undef C_DB_PRINTF
1502 }
1503
DB_SHOW_COMMAND(callout,db_show_callout)1504 DB_SHOW_COMMAND(callout, db_show_callout)
1505 {
1506
1507 if (!have_addr) {
1508 db_printf("usage: show callout <struct callout *>\n");
1509 return;
1510 }
1511
1512 _show_callout((struct callout *)addr);
1513 }
1514
1515 static void
_show_last_callout(int cpu,int direct,const char * dirstr)1516 _show_last_callout(int cpu, int direct, const char *dirstr)
1517 {
1518 struct callout_cpu *cc;
1519 void *func, *arg;
1520
1521 cc = CC_CPU(cpu);
1522 func = cc_exec_last_func(cc, direct);
1523 arg = cc_exec_last_arg(cc, direct);
1524 db_printf("cpu %d last%s callout function: %p ", cpu, dirstr, func);
1525 db_printsym((db_expr_t)func, DB_STGY_ANY);
1526 db_printf("\ncpu %d last%s callout argument: %p\n", cpu, dirstr, arg);
1527 }
1528
DB_SHOW_COMMAND_FLAGS(callout_last,db_show_callout_last,DB_CMD_MEMSAFE)1529 DB_SHOW_COMMAND_FLAGS(callout_last, db_show_callout_last, DB_CMD_MEMSAFE)
1530 {
1531 int cpu, last;
1532
1533 if (have_addr) {
1534 if (addr < 0 || addr > mp_maxid || CPU_ABSENT(addr)) {
1535 db_printf("no such cpu: %d\n", (int)addr);
1536 return;
1537 }
1538 cpu = last = addr;
1539 } else {
1540 cpu = 0;
1541 last = mp_maxid;
1542 }
1543
1544 while (cpu <= last) {
1545 if (!CPU_ABSENT(cpu)) {
1546 _show_last_callout(cpu, 0, "");
1547 _show_last_callout(cpu, 1, " direct");
1548 }
1549 cpu++;
1550 }
1551 }
1552 #endif /* DDB */
1553