xref: /freebsd-14.2/sys/kern/kern_thread.c (revision 6bf819c9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2001 Julian Elischer <[email protected]>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/msan.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/bitstring.h>
41 #include <sys/epoch.h>
42 #include <sys/rangelock.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sdt.h>
45 #include <sys/smp.h>
46 #include <sys/sched.h>
47 #include <sys/sleepqueue.h>
48 #include <sys/selinfo.h>
49 #include <sys/syscallsubr.h>
50 #include <sys/dtrace_bsd.h>
51 #include <sys/sysent.h>
52 #include <sys/turnstile.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtxvar.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef	HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62 #include <sys/priv.h>
63 
64 #include <security/audit/audit.h>
65 
66 #include <vm/pmap.h>
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/uma.h>
70 #include <vm/vm_phys.h>
71 #include <sys/eventhandler.h>
72 
73 /*
74  * Asserts below verify the stability of struct thread and struct proc
75  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
76  * to drift, change to the structures must be accompanied by the
77  * assert update.
78  *
79  * On the stable branches after KBI freeze, conditions must not be
80  * violated.  Typically new fields are moved to the end of the
81  * structures.
82  */
83 #ifdef __amd64__
84 _Static_assert(offsetof(struct thread, td_flags) == 0x108,
85     "struct thread KBI td_flags");
86 _Static_assert(offsetof(struct thread, td_pflags) == 0x114,
87     "struct thread KBI td_pflags");
88 _Static_assert(offsetof(struct thread, td_frame) == 0x4b8,
89     "struct thread KBI td_frame");
90 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6c0,
91     "struct thread KBI td_emuldata");
92 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
93     "struct proc KBI p_flag");
94 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
95     "struct proc KBI p_pid");
96 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
97     "struct proc KBI p_filemon");
98 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
99     "struct proc KBI p_comm");
100 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4d0,
101     "struct proc KBI p_emuldata");
102 #endif
103 #ifdef __i386__
104 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
105     "struct thread KBI td_flags");
106 _Static_assert(offsetof(struct thread, td_pflags) == 0xa8,
107     "struct thread KBI td_pflags");
108 _Static_assert(offsetof(struct thread, td_frame) == 0x314,
109     "struct thread KBI td_frame");
110 _Static_assert(offsetof(struct thread, td_emuldata) == 0x358,
111     "struct thread KBI td_emuldata");
112 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
113     "struct proc KBI p_flag");
114 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
115     "struct proc KBI p_pid");
116 _Static_assert(offsetof(struct proc, p_filemon) == 0x270,
117     "struct proc KBI p_filemon");
118 _Static_assert(offsetof(struct proc, p_comm) == 0x284,
119     "struct proc KBI p_comm");
120 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
121     "struct proc KBI p_emuldata");
122 #endif
123 
124 SDT_PROVIDER_DECLARE(proc);
125 SDT_PROBE_DEFINE(proc, , , lwp__exit);
126 
127 /*
128  * thread related storage.
129  */
130 static uma_zone_t thread_zone;
131 
132 struct thread_domain_data {
133 	struct thread	*tdd_zombies;
134 	int		tdd_reapticks;
135 } __aligned(CACHE_LINE_SIZE);
136 
137 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
138 
139 static struct task	thread_reap_task;
140 static struct callout  	thread_reap_callout;
141 
142 static void thread_zombie(struct thread *);
143 static void thread_reap(void);
144 static void thread_reap_all(void);
145 static void thread_reap_task_cb(void *, int);
146 static void thread_reap_callout_cb(void *);
147 static int thread_unsuspend_one(struct thread *td, struct proc *p,
148     bool boundary);
149 static void thread_free_batched(struct thread *td);
150 
151 static __exclusive_cache_line struct mtx tid_lock;
152 static bitstr_t *tid_bitmap;
153 
154 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
155 
156 static int maxthread;
157 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
158     &maxthread, 0, "Maximum number of threads");
159 
160 static __exclusive_cache_line int nthreads;
161 
162 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
163 static u_long	tidhash;
164 static u_long	tidhashlock;
165 static struct	rwlock *tidhashtbl_lock;
166 #define	TIDHASH(tid)		(&tidhashtbl[(tid) & tidhash])
167 #define	TIDHASHLOCK(tid)	(&tidhashtbl_lock[(tid) & tidhashlock])
168 
169 EVENTHANDLER_LIST_DEFINE(thread_ctor);
170 EVENTHANDLER_LIST_DEFINE(thread_dtor);
171 EVENTHANDLER_LIST_DEFINE(thread_init);
172 EVENTHANDLER_LIST_DEFINE(thread_fini);
173 
174 static bool
thread_count_inc_try(void)175 thread_count_inc_try(void)
176 {
177 	int nthreads_new;
178 
179 	nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
180 	if (nthreads_new >= maxthread - 100) {
181 		if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
182 		    nthreads_new >= maxthread) {
183 			atomic_subtract_int(&nthreads, 1);
184 			return (false);
185 		}
186 	}
187 	return (true);
188 }
189 
190 static bool
thread_count_inc(void)191 thread_count_inc(void)
192 {
193 	static struct timeval lastfail;
194 	static int curfail;
195 
196 	thread_reap();
197 	if (thread_count_inc_try()) {
198 		return (true);
199 	}
200 
201 	thread_reap_all();
202 	if (thread_count_inc_try()) {
203 		return (true);
204 	}
205 
206 	if (ppsratecheck(&lastfail, &curfail, 1)) {
207 		printf("maxthread limit exceeded by uid %u "
208 		    "(pid %d); consider increasing kern.maxthread\n",
209 		    curthread->td_ucred->cr_ruid, curproc->p_pid);
210 	}
211 	return (false);
212 }
213 
214 static void
thread_count_sub(int n)215 thread_count_sub(int n)
216 {
217 
218 	atomic_subtract_int(&nthreads, n);
219 }
220 
221 static void
thread_count_dec(void)222 thread_count_dec(void)
223 {
224 
225 	thread_count_sub(1);
226 }
227 
228 static lwpid_t
tid_alloc(void)229 tid_alloc(void)
230 {
231 	static lwpid_t trytid;
232 	lwpid_t tid;
233 
234 	mtx_lock(&tid_lock);
235 	/*
236 	 * It is an invariant that the bitmap is big enough to hold maxthread
237 	 * IDs. If we got to this point there has to be at least one free.
238 	 */
239 	if (trytid >= maxthread)
240 		trytid = 0;
241 	bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
242 	if (tid == -1) {
243 		KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
244 		trytid = 0;
245 		bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
246 		KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
247 	}
248 	bit_set(tid_bitmap, tid);
249 	trytid = tid + 1;
250 	mtx_unlock(&tid_lock);
251 	return (tid + NO_PID);
252 }
253 
254 static void
tid_free_locked(lwpid_t rtid)255 tid_free_locked(lwpid_t rtid)
256 {
257 	lwpid_t tid;
258 
259 	mtx_assert(&tid_lock, MA_OWNED);
260 	KASSERT(rtid >= NO_PID,
261 	    ("%s: invalid tid %d\n", __func__, rtid));
262 	tid = rtid - NO_PID;
263 	KASSERT(bit_test(tid_bitmap, tid) != 0,
264 	    ("thread ID %d not allocated\n", rtid));
265 	bit_clear(tid_bitmap, tid);
266 }
267 
268 static void
tid_free(lwpid_t rtid)269 tid_free(lwpid_t rtid)
270 {
271 
272 	mtx_lock(&tid_lock);
273 	tid_free_locked(rtid);
274 	mtx_unlock(&tid_lock);
275 }
276 
277 static void
tid_free_batch(lwpid_t * batch,int n)278 tid_free_batch(lwpid_t *batch, int n)
279 {
280 	int i;
281 
282 	mtx_lock(&tid_lock);
283 	for (i = 0; i < n; i++) {
284 		tid_free_locked(batch[i]);
285 	}
286 	mtx_unlock(&tid_lock);
287 }
288 
289 /*
290  * Batching for thread reapping.
291  */
292 struct tidbatch {
293 	lwpid_t tab[16];
294 	int n;
295 };
296 
297 static void
tidbatch_prep(struct tidbatch * tb)298 tidbatch_prep(struct tidbatch *tb)
299 {
300 
301 	tb->n = 0;
302 }
303 
304 static void
tidbatch_add(struct tidbatch * tb,struct thread * td)305 tidbatch_add(struct tidbatch *tb, struct thread *td)
306 {
307 
308 	KASSERT(tb->n < nitems(tb->tab),
309 	    ("%s: count too high %d", __func__, tb->n));
310 	tb->tab[tb->n] = td->td_tid;
311 	tb->n++;
312 }
313 
314 static void
tidbatch_process(struct tidbatch * tb)315 tidbatch_process(struct tidbatch *tb)
316 {
317 
318 	KASSERT(tb->n <= nitems(tb->tab),
319 	    ("%s: count too high %d", __func__, tb->n));
320 	if (tb->n == nitems(tb->tab)) {
321 		tid_free_batch(tb->tab, tb->n);
322 		tb->n = 0;
323 	}
324 }
325 
326 static void
tidbatch_final(struct tidbatch * tb)327 tidbatch_final(struct tidbatch *tb)
328 {
329 
330 	KASSERT(tb->n <= nitems(tb->tab),
331 	    ("%s: count too high %d", __func__, tb->n));
332 	if (tb->n != 0) {
333 		tid_free_batch(tb->tab, tb->n);
334 	}
335 }
336 
337 /*
338  * Batching thread count free, for consistency
339  */
340 struct tdcountbatch {
341 	int n;
342 };
343 
344 static void
tdcountbatch_prep(struct tdcountbatch * tb)345 tdcountbatch_prep(struct tdcountbatch *tb)
346 {
347 
348 	tb->n = 0;
349 }
350 
351 static void
tdcountbatch_add(struct tdcountbatch * tb,struct thread * td __unused)352 tdcountbatch_add(struct tdcountbatch *tb, struct thread *td __unused)
353 {
354 
355 	tb->n++;
356 }
357 
358 static void
tdcountbatch_process(struct tdcountbatch * tb)359 tdcountbatch_process(struct tdcountbatch *tb)
360 {
361 
362 	if (tb->n == 32) {
363 		thread_count_sub(tb->n);
364 		tb->n = 0;
365 	}
366 }
367 
368 static void
tdcountbatch_final(struct tdcountbatch * tb)369 tdcountbatch_final(struct tdcountbatch *tb)
370 {
371 
372 	if (tb->n != 0) {
373 		thread_count_sub(tb->n);
374 	}
375 }
376 
377 /*
378  * Prepare a thread for use.
379  */
380 static int
thread_ctor(void * mem,int size,void * arg,int flags)381 thread_ctor(void *mem, int size, void *arg, int flags)
382 {
383 	struct thread	*td;
384 
385 	td = (struct thread *)mem;
386 	TD_SET_STATE(td, TDS_INACTIVE);
387 	td->td_lastcpu = td->td_oncpu = NOCPU;
388 
389 	/*
390 	 * Note that td_critnest begins life as 1 because the thread is not
391 	 * running and is thereby implicitly waiting to be on the receiving
392 	 * end of a context switch.
393 	 */
394 	td->td_critnest = 1;
395 	td->td_lend_user_pri = PRI_MAX;
396 #ifdef AUDIT
397 	audit_thread_alloc(td);
398 #endif
399 #ifdef KDTRACE_HOOKS
400 	kdtrace_thread_ctor(td);
401 #endif
402 	umtx_thread_alloc(td);
403 	MPASS(td->td_sel == NULL);
404 	return (0);
405 }
406 
407 /*
408  * Reclaim a thread after use.
409  */
410 static void
thread_dtor(void * mem,int size,void * arg)411 thread_dtor(void *mem, int size, void *arg)
412 {
413 	struct thread *td;
414 
415 	td = (struct thread *)mem;
416 
417 #ifdef INVARIANTS
418 	/* Verify that this thread is in a safe state to free. */
419 	switch (TD_GET_STATE(td)) {
420 	case TDS_INHIBITED:
421 	case TDS_RUNNING:
422 	case TDS_CAN_RUN:
423 	case TDS_RUNQ:
424 		/*
425 		 * We must never unlink a thread that is in one of
426 		 * these states, because it is currently active.
427 		 */
428 		panic("bad state for thread unlinking");
429 		/* NOTREACHED */
430 	case TDS_INACTIVE:
431 		break;
432 	default:
433 		panic("bad thread state");
434 		/* NOTREACHED */
435 	}
436 #endif
437 #ifdef AUDIT
438 	audit_thread_free(td);
439 #endif
440 #ifdef KDTRACE_HOOKS
441 	kdtrace_thread_dtor(td);
442 #endif
443 	/* Free all OSD associated to this thread. */
444 	osd_thread_exit(td);
445 	ast_kclear(td);
446 	seltdfini(td);
447 }
448 
449 /*
450  * Initialize type-stable parts of a thread (when newly created).
451  */
452 static int
thread_init(void * mem,int size,int flags)453 thread_init(void *mem, int size, int flags)
454 {
455 	struct thread *td;
456 
457 	td = (struct thread *)mem;
458 
459 	td->td_allocdomain = vm_phys_domain(vtophys(td));
460 	td->td_sleepqueue = sleepq_alloc();
461 	td->td_turnstile = turnstile_alloc();
462 	td->td_rlqe = NULL;
463 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
464 	umtx_thread_init(td);
465 	td->td_kstack = 0;
466 	td->td_sel = NULL;
467 	return (0);
468 }
469 
470 /*
471  * Tear down type-stable parts of a thread (just before being discarded).
472  */
473 static void
thread_fini(void * mem,int size)474 thread_fini(void *mem, int size)
475 {
476 	struct thread *td;
477 
478 	td = (struct thread *)mem;
479 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
480 	rlqentry_free(td->td_rlqe);
481 	turnstile_free(td->td_turnstile);
482 	sleepq_free(td->td_sleepqueue);
483 	umtx_thread_fini(td);
484 	MPASS(td->td_sel == NULL);
485 }
486 
487 /*
488  * For a newly created process,
489  * link up all the structures and its initial threads etc.
490  * called from:
491  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
492  * proc_dtor() (should go away)
493  * proc_init()
494  */
495 void
proc_linkup0(struct proc * p,struct thread * td)496 proc_linkup0(struct proc *p, struct thread *td)
497 {
498 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
499 	proc_linkup(p, td);
500 }
501 
502 void
proc_linkup(struct proc * p,struct thread * td)503 proc_linkup(struct proc *p, struct thread *td)
504 {
505 
506 	sigqueue_init(&p->p_sigqueue, p);
507 	p->p_ksi = ksiginfo_alloc(M_WAITOK);
508 	if (p->p_ksi != NULL) {
509 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
510 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
511 	}
512 	LIST_INIT(&p->p_mqnotifier);
513 	p->p_numthreads = 0;
514 	thread_link(td, p);
515 }
516 
517 static void
ast_suspend(struct thread * td,int tda __unused)518 ast_suspend(struct thread *td, int tda __unused)
519 {
520 	struct proc *p;
521 
522 	p = td->td_proc;
523 	/*
524 	 * We need to check to see if we have to exit or wait due to a
525 	 * single threading requirement or some other STOP condition.
526 	 */
527 	PROC_LOCK(p);
528 	thread_suspend_check(0);
529 	PROC_UNLOCK(p);
530 }
531 
532 extern int max_threads_per_proc;
533 
534 /*
535  * Initialize global thread allocation resources.
536  */
537 void
threadinit(void)538 threadinit(void)
539 {
540 	u_long i;
541 	lwpid_t tid0;
542 
543 	/*
544 	 * Place an upper limit on threads which can be allocated.
545 	 *
546 	 * Note that other factors may make the de facto limit much lower.
547 	 *
548 	 * Platform limits are somewhat arbitrary but deemed "more than good
549 	 * enough" for the foreseable future.
550 	 */
551 	if (maxthread == 0) {
552 #ifdef _LP64
553 		maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
554 #else
555 		maxthread = MIN(maxproc * max_threads_per_proc, 100000);
556 #endif
557 	}
558 
559 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
560 	tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
561 	/*
562 	 * Handle thread0.
563 	 */
564 	thread_count_inc();
565 	tid0 = tid_alloc();
566 	if (tid0 != THREAD0_TID)
567 		panic("tid0 %d != %d\n", tid0, THREAD0_TID);
568 
569 	/*
570 	 * Thread structures are specially aligned so that (at least) the
571 	 * 5 lower bits of a pointer to 'struct thead' must be 0.  These bits
572 	 * are used by synchronization primitives to store flags in pointers to
573 	 * such structures.
574 	 */
575 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
576 	    thread_ctor, thread_dtor, thread_init, thread_fini,
577 	    UMA_ALIGN_CACHE_AND_MASK(32 - 1), UMA_ZONE_NOFREE);
578 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
579 	tidhashlock = (tidhash + 1) / 64;
580 	if (tidhashlock > 0)
581 		tidhashlock--;
582 	tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
583 	    M_TIDHASH, M_WAITOK | M_ZERO);
584 	for (i = 0; i < tidhashlock + 1; i++)
585 		rw_init(&tidhashtbl_lock[i], "tidhash");
586 
587 	TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
588 	callout_init(&thread_reap_callout, 1);
589 	callout_reset(&thread_reap_callout, 5 * hz,
590 	    thread_reap_callout_cb, NULL);
591 	ast_register(TDA_SUSPEND, ASTR_ASTF_REQUIRED, 0, ast_suspend);
592 }
593 
594 /*
595  * Place an unused thread on the zombie list.
596  */
597 void
thread_zombie(struct thread * td)598 thread_zombie(struct thread *td)
599 {
600 	struct thread_domain_data *tdd;
601 	struct thread *ztd;
602 
603 	tdd = &thread_domain_data[td->td_allocdomain];
604 	ztd = atomic_load_ptr(&tdd->tdd_zombies);
605 	for (;;) {
606 		td->td_zombie = ztd;
607 		if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
608 		    (uintptr_t *)&ztd, (uintptr_t)td))
609 			break;
610 		continue;
611 	}
612 }
613 
614 /*
615  * Release a thread that has exited after cpu_throw().
616  */
617 void
thread_stash(struct thread * td)618 thread_stash(struct thread *td)
619 {
620 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
621 	thread_zombie(td);
622 }
623 
624 /*
625  * Reap zombies from passed domain.
626  */
627 static void
thread_reap_domain(struct thread_domain_data * tdd)628 thread_reap_domain(struct thread_domain_data *tdd)
629 {
630 	struct thread *itd, *ntd;
631 	struct tidbatch tidbatch;
632 	struct credbatch credbatch;
633 	struct limbatch limbatch;
634 	struct tdcountbatch tdcountbatch;
635 
636 	/*
637 	 * Reading upfront is pessimal if followed by concurrent atomic_swap,
638 	 * but most of the time the list is empty.
639 	 */
640 	if (tdd->tdd_zombies == NULL)
641 		return;
642 
643 	itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
644 	    (uintptr_t)NULL);
645 	if (itd == NULL)
646 		return;
647 
648 	/*
649 	 * Multiple CPUs can get here, the race is fine as ticks is only
650 	 * advisory.
651 	 */
652 	tdd->tdd_reapticks = ticks;
653 
654 	tidbatch_prep(&tidbatch);
655 	credbatch_prep(&credbatch);
656 	limbatch_prep(&limbatch);
657 	tdcountbatch_prep(&tdcountbatch);
658 
659 	while (itd != NULL) {
660 		ntd = itd->td_zombie;
661 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
662 
663 		tidbatch_add(&tidbatch, itd);
664 		credbatch_add(&credbatch, itd);
665 		limbatch_add(&limbatch, itd);
666 		tdcountbatch_add(&tdcountbatch, itd);
667 
668 		thread_free_batched(itd);
669 
670 		tidbatch_process(&tidbatch);
671 		credbatch_process(&credbatch);
672 		limbatch_process(&limbatch);
673 		tdcountbatch_process(&tdcountbatch);
674 
675 		itd = ntd;
676 	}
677 
678 	tidbatch_final(&tidbatch);
679 	credbatch_final(&credbatch);
680 	limbatch_final(&limbatch);
681 	tdcountbatch_final(&tdcountbatch);
682 }
683 
684 /*
685  * Reap zombies from all domains.
686  */
687 static void
thread_reap_all(void)688 thread_reap_all(void)
689 {
690 	struct thread_domain_data *tdd;
691 	int i, domain;
692 
693 	domain = PCPU_GET(domain);
694 	for (i = 0; i < vm_ndomains; i++) {
695 		tdd = &thread_domain_data[(i + domain) % vm_ndomains];
696 		thread_reap_domain(tdd);
697 	}
698 }
699 
700 /*
701  * Reap zombies from local domain.
702  */
703 static void
thread_reap(void)704 thread_reap(void)
705 {
706 	struct thread_domain_data *tdd;
707 	int domain;
708 
709 	domain = PCPU_GET(domain);
710 	tdd = &thread_domain_data[domain];
711 
712 	thread_reap_domain(tdd);
713 }
714 
715 static void
thread_reap_task_cb(void * arg __unused,int pending __unused)716 thread_reap_task_cb(void *arg __unused, int pending __unused)
717 {
718 
719 	thread_reap_all();
720 }
721 
722 static void
thread_reap_callout_cb(void * arg __unused)723 thread_reap_callout_cb(void *arg __unused)
724 {
725 	struct thread_domain_data *tdd;
726 	int i, cticks, lticks;
727 	bool wantreap;
728 
729 	wantreap = false;
730 	cticks = atomic_load_int(&ticks);
731 	for (i = 0; i < vm_ndomains; i++) {
732 		tdd = &thread_domain_data[i];
733 		lticks = tdd->tdd_reapticks;
734 		if (tdd->tdd_zombies != NULL &&
735 		    (u_int)(cticks - lticks) > 5 * hz) {
736 			wantreap = true;
737 			break;
738 		}
739 	}
740 
741 	if (wantreap)
742 		taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
743 	callout_reset(&thread_reap_callout, 5 * hz,
744 	    thread_reap_callout_cb, NULL);
745 }
746 
747 /*
748  * Calling this function guarantees that any thread that exited before
749  * the call is reaped when the function returns.  By 'exited' we mean
750  * a thread removed from the process linkage with thread_unlink().
751  * Practically this means that caller must lock/unlock corresponding
752  * process lock before the call, to synchronize with thread_exit().
753  */
754 void
thread_reap_barrier(void)755 thread_reap_barrier(void)
756 {
757 	struct task *t;
758 
759 	/*
760 	 * First do context switches to each CPU to ensure that all
761 	 * PCPU pc_deadthreads are moved to zombie list.
762 	 */
763 	quiesce_all_cpus("", PDROP);
764 
765 	/*
766 	 * Second, fire the task in the same thread as normal
767 	 * thread_reap() is done, to serialize reaping.
768 	 */
769 	t = malloc(sizeof(*t), M_TEMP, M_WAITOK);
770 	TASK_INIT(t, 0, thread_reap_task_cb, t);
771 	taskqueue_enqueue(taskqueue_thread, t);
772 	taskqueue_drain(taskqueue_thread, t);
773 	free(t, M_TEMP);
774 }
775 
776 /*
777  * Allocate a thread.
778  */
779 struct thread *
thread_alloc(int pages)780 thread_alloc(int pages)
781 {
782 	struct thread *td;
783 	lwpid_t tid;
784 
785 	if (!thread_count_inc()) {
786 		return (NULL);
787 	}
788 
789 	tid = tid_alloc();
790 	td = uma_zalloc(thread_zone, M_WAITOK);
791 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
792 	if (!vm_thread_new(td, pages)) {
793 		uma_zfree(thread_zone, td);
794 		tid_free(tid);
795 		thread_count_dec();
796 		return (NULL);
797 	}
798 	td->td_tid = tid;
799 	bzero(&td->td_sa.args, sizeof(td->td_sa.args));
800 	kmsan_thread_alloc(td);
801 	cpu_thread_alloc(td);
802 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
803 	return (td);
804 }
805 
806 int
thread_alloc_stack(struct thread * td,int pages)807 thread_alloc_stack(struct thread *td, int pages)
808 {
809 
810 	KASSERT(td->td_kstack == 0,
811 	    ("thread_alloc_stack called on a thread with kstack"));
812 	if (!vm_thread_new(td, pages))
813 		return (0);
814 	cpu_thread_alloc(td);
815 	return (1);
816 }
817 
818 /*
819  * Deallocate a thread.
820  */
821 static void
thread_free_batched(struct thread * td)822 thread_free_batched(struct thread *td)
823 {
824 
825 	lock_profile_thread_exit(td);
826 	if (td->td_cpuset)
827 		cpuset_rel(td->td_cpuset);
828 	td->td_cpuset = NULL;
829 	cpu_thread_free(td);
830 	if (td->td_kstack != 0)
831 		vm_thread_dispose(td);
832 	callout_drain(&td->td_slpcallout);
833 	/*
834 	 * Freeing handled by the caller.
835 	 */
836 	td->td_tid = -1;
837 	kmsan_thread_free(td);
838 	uma_zfree(thread_zone, td);
839 }
840 
841 void
thread_free(struct thread * td)842 thread_free(struct thread *td)
843 {
844 	lwpid_t tid;
845 
846 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
847 	tid = td->td_tid;
848 	thread_free_batched(td);
849 	tid_free(tid);
850 	thread_count_dec();
851 }
852 
853 void
thread_cow_get_proc(struct thread * newtd,struct proc * p)854 thread_cow_get_proc(struct thread *newtd, struct proc *p)
855 {
856 
857 	PROC_LOCK_ASSERT(p, MA_OWNED);
858 	newtd->td_realucred = crcowget(p->p_ucred);
859 	newtd->td_ucred = newtd->td_realucred;
860 	newtd->td_limit = lim_hold(p->p_limit);
861 	newtd->td_cowgen = p->p_cowgen;
862 }
863 
864 void
thread_cow_get(struct thread * newtd,struct thread * td)865 thread_cow_get(struct thread *newtd, struct thread *td)
866 {
867 
868 	MPASS(td->td_realucred == td->td_ucred);
869 	newtd->td_realucred = crcowget(td->td_realucred);
870 	newtd->td_ucred = newtd->td_realucred;
871 	newtd->td_limit = lim_hold(td->td_limit);
872 	newtd->td_cowgen = td->td_cowgen;
873 }
874 
875 void
thread_cow_free(struct thread * td)876 thread_cow_free(struct thread *td)
877 {
878 
879 	if (td->td_realucred != NULL)
880 		crcowfree(td);
881 	if (td->td_limit != NULL)
882 		lim_free(td->td_limit);
883 }
884 
885 void
thread_cow_update(struct thread * td)886 thread_cow_update(struct thread *td)
887 {
888 	struct proc *p;
889 	struct ucred *oldcred;
890 	struct plimit *oldlimit;
891 
892 	p = td->td_proc;
893 	PROC_LOCK(p);
894 	oldcred = crcowsync();
895 	oldlimit = lim_cowsync();
896 	td->td_cowgen = p->p_cowgen;
897 	PROC_UNLOCK(p);
898 	if (oldcred != NULL)
899 		crfree(oldcred);
900 	if (oldlimit != NULL)
901 		lim_free(oldlimit);
902 }
903 
904 void
thread_cow_synced(struct thread * td)905 thread_cow_synced(struct thread *td)
906 {
907 	struct proc *p;
908 
909 	p = td->td_proc;
910 	PROC_LOCK_ASSERT(p, MA_OWNED);
911 	MPASS(td->td_cowgen != p->p_cowgen);
912 	MPASS(td->td_ucred == p->p_ucred);
913 	MPASS(td->td_limit == p->p_limit);
914 	td->td_cowgen = p->p_cowgen;
915 }
916 
917 /*
918  * Discard the current thread and exit from its context.
919  * Always called with scheduler locked.
920  *
921  * Because we can't free a thread while we're operating under its context,
922  * push the current thread into our CPU's deadthread holder. This means
923  * we needn't worry about someone else grabbing our context before we
924  * do a cpu_throw().
925  */
926 void
thread_exit(void)927 thread_exit(void)
928 {
929 	uint64_t runtime, new_switchtime;
930 	struct thread *td;
931 	struct thread *td2;
932 	struct proc *p;
933 	int wakeup_swapper;
934 
935 	td = curthread;
936 	p = td->td_proc;
937 
938 	PROC_SLOCK_ASSERT(p, MA_OWNED);
939 	mtx_assert(&Giant, MA_NOTOWNED);
940 
941 	PROC_LOCK_ASSERT(p, MA_OWNED);
942 	KASSERT(p != NULL, ("thread exiting without a process"));
943 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
944 	    (long)p->p_pid, td->td_name);
945 	SDT_PROBE0(proc, , , lwp__exit);
946 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
947 	MPASS(td->td_realucred == td->td_ucred);
948 
949 	/*
950 	 * drop FPU & debug register state storage, or any other
951 	 * architecture specific resources that
952 	 * would not be on a new untouched process.
953 	 */
954 	cpu_thread_exit(td);
955 
956 	/*
957 	 * The last thread is left attached to the process
958 	 * So that the whole bundle gets recycled. Skip
959 	 * all this stuff if we never had threads.
960 	 * EXIT clears all sign of other threads when
961 	 * it goes to single threading, so the last thread always
962 	 * takes the short path.
963 	 */
964 	if (p->p_flag & P_HADTHREADS) {
965 		if (p->p_numthreads > 1) {
966 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
967 			thread_unlink(td);
968 			td2 = FIRST_THREAD_IN_PROC(p);
969 			sched_exit_thread(td2, td);
970 
971 			/*
972 			 * The test below is NOT true if we are the
973 			 * sole exiting thread. P_STOPPED_SINGLE is unset
974 			 * in exit1() after it is the only survivor.
975 			 */
976 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
977 				if (p->p_numthreads == p->p_suspcount) {
978 					thread_lock(p->p_singlethread);
979 					wakeup_swapper = thread_unsuspend_one(
980 						p->p_singlethread, p, false);
981 					if (wakeup_swapper)
982 						kick_proc0();
983 				}
984 			}
985 
986 			PCPU_SET(deadthread, td);
987 		} else {
988 			/*
989 			 * The last thread is exiting.. but not through exit()
990 			 */
991 			panic ("thread_exit: Last thread exiting on its own");
992 		}
993 	}
994 #ifdef	HWPMC_HOOKS
995 	/*
996 	 * If this thread is part of a process that is being tracked by hwpmc(4),
997 	 * inform the module of the thread's impending exit.
998 	 */
999 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
1000 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1001 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
1002 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
1003 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
1004 #endif
1005 	PROC_UNLOCK(p);
1006 	PROC_STATLOCK(p);
1007 	thread_lock(td);
1008 	PROC_SUNLOCK(p);
1009 
1010 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
1011 	new_switchtime = cpu_ticks();
1012 	runtime = new_switchtime - PCPU_GET(switchtime);
1013 	td->td_runtime += runtime;
1014 	td->td_incruntime += runtime;
1015 	PCPU_SET(switchtime, new_switchtime);
1016 	PCPU_SET(switchticks, ticks);
1017 	VM_CNT_INC(v_swtch);
1018 
1019 	/* Save our resource usage in our process. */
1020 	td->td_ru.ru_nvcsw++;
1021 	ruxagg_locked(p, td);
1022 	rucollect(&p->p_ru, &td->td_ru);
1023 	PROC_STATUNLOCK(p);
1024 
1025 	TD_SET_STATE(td, TDS_INACTIVE);
1026 #ifdef WITNESS
1027 	witness_thread_exit(td);
1028 #endif
1029 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
1030 	sched_throw(td);
1031 	panic("I'm a teapot!");
1032 	/* NOTREACHED */
1033 }
1034 
1035 /*
1036  * Do any thread specific cleanups that may be needed in wait()
1037  * called with Giant, proc and schedlock not held.
1038  */
1039 void
thread_wait(struct proc * p)1040 thread_wait(struct proc *p)
1041 {
1042 	struct thread *td;
1043 
1044 	mtx_assert(&Giant, MA_NOTOWNED);
1045 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
1046 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
1047 	td = FIRST_THREAD_IN_PROC(p);
1048 	/* Lock the last thread so we spin until it exits cpu_throw(). */
1049 	thread_lock(td);
1050 	thread_unlock(td);
1051 	lock_profile_thread_exit(td);
1052 	cpuset_rel(td->td_cpuset);
1053 	td->td_cpuset = NULL;
1054 	cpu_thread_clean(td);
1055 	thread_cow_free(td);
1056 	callout_drain(&td->td_slpcallout);
1057 	thread_reap();	/* check for zombie threads etc. */
1058 }
1059 
1060 /*
1061  * Link a thread to a process.
1062  * set up anything that needs to be initialized for it to
1063  * be used by the process.
1064  */
1065 void
thread_link(struct thread * td,struct proc * p)1066 thread_link(struct thread *td, struct proc *p)
1067 {
1068 
1069 	/*
1070 	 * XXX This can't be enabled because it's called for proc0 before
1071 	 * its lock has been created.
1072 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
1073 	 */
1074 	TD_SET_STATE(td, TDS_INACTIVE);
1075 	td->td_proc     = p;
1076 	td->td_flags    = TDF_INMEM;
1077 
1078 	LIST_INIT(&td->td_contested);
1079 	LIST_INIT(&td->td_lprof[0]);
1080 	LIST_INIT(&td->td_lprof[1]);
1081 #ifdef EPOCH_TRACE
1082 	SLIST_INIT(&td->td_epochs);
1083 #endif
1084 	sigqueue_init(&td->td_sigqueue, p);
1085 	callout_init(&td->td_slpcallout, 1);
1086 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1087 	p->p_numthreads++;
1088 }
1089 
1090 /*
1091  * Called from:
1092  *  thread_exit()
1093  */
1094 void
thread_unlink(struct thread * td)1095 thread_unlink(struct thread *td)
1096 {
1097 	struct proc *p = td->td_proc;
1098 
1099 	PROC_LOCK_ASSERT(p, MA_OWNED);
1100 #ifdef EPOCH_TRACE
1101 	MPASS(SLIST_EMPTY(&td->td_epochs));
1102 #endif
1103 
1104 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1105 	p->p_numthreads--;
1106 	/* could clear a few other things here */
1107 	/* Must  NOT clear links to proc! */
1108 }
1109 
1110 static int
calc_remaining(struct proc * p,int mode)1111 calc_remaining(struct proc *p, int mode)
1112 {
1113 	int remaining;
1114 
1115 	PROC_LOCK_ASSERT(p, MA_OWNED);
1116 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1117 	if (mode == SINGLE_EXIT)
1118 		remaining = p->p_numthreads;
1119 	else if (mode == SINGLE_BOUNDARY)
1120 		remaining = p->p_numthreads - p->p_boundary_count;
1121 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1122 		remaining = p->p_numthreads - p->p_suspcount;
1123 	else
1124 		panic("calc_remaining: wrong mode %d", mode);
1125 	return (remaining);
1126 }
1127 
1128 static int
remain_for_mode(int mode)1129 remain_for_mode(int mode)
1130 {
1131 
1132 	return (mode == SINGLE_ALLPROC ? 0 : 1);
1133 }
1134 
1135 static int
weed_inhib(int mode,struct thread * td2,struct proc * p)1136 weed_inhib(int mode, struct thread *td2, struct proc *p)
1137 {
1138 	int wakeup_swapper;
1139 
1140 	PROC_LOCK_ASSERT(p, MA_OWNED);
1141 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1142 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
1143 
1144 	wakeup_swapper = 0;
1145 
1146 	/*
1147 	 * Since the thread lock is dropped by the scheduler we have
1148 	 * to retry to check for races.
1149 	 */
1150 restart:
1151 	switch (mode) {
1152 	case SINGLE_EXIT:
1153 		if (TD_IS_SUSPENDED(td2)) {
1154 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1155 			thread_lock(td2);
1156 			goto restart;
1157 		}
1158 		if (TD_CAN_ABORT(td2)) {
1159 			wakeup_swapper |= sleepq_abort(td2, EINTR);
1160 			return (wakeup_swapper);
1161 		}
1162 		break;
1163 	case SINGLE_BOUNDARY:
1164 	case SINGLE_NO_EXIT:
1165 		if (TD_IS_SUSPENDED(td2) &&
1166 		    (td2->td_flags & TDF_BOUNDARY) == 0) {
1167 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1168 			thread_lock(td2);
1169 			goto restart;
1170 		}
1171 		if (TD_CAN_ABORT(td2)) {
1172 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1173 			return (wakeup_swapper);
1174 		}
1175 		break;
1176 	case SINGLE_ALLPROC:
1177 		/*
1178 		 * ALLPROC suspend tries to avoid spurious EINTR for
1179 		 * threads sleeping interruptable, by suspending the
1180 		 * thread directly, similarly to sig_suspend_threads().
1181 		 * Since such sleep is not neccessary performed at the user
1182 		 * boundary, TDF_ALLPROCSUSP is used to avoid immediate
1183 		 * un-suspend.
1184 		 */
1185 		if (TD_IS_SUSPENDED(td2) &&
1186 		    (td2->td_flags & TDF_ALLPROCSUSP) == 0) {
1187 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1188 			thread_lock(td2);
1189 			goto restart;
1190 		}
1191 		if (TD_CAN_ABORT(td2)) {
1192 			td2->td_flags |= TDF_ALLPROCSUSP;
1193 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1194 			return (wakeup_swapper);
1195 		}
1196 		break;
1197 	default:
1198 		break;
1199 	}
1200 	thread_unlock(td2);
1201 	return (wakeup_swapper);
1202 }
1203 
1204 /*
1205  * Enforce single-threading.
1206  *
1207  * Returns 1 if the caller must abort (another thread is waiting to
1208  * exit the process or similar). Process is locked!
1209  * Returns 0 when you are successfully the only thread running.
1210  * A process has successfully single threaded in the suspend mode when
1211  * There are no threads in user mode. Threads in the kernel must be
1212  * allowed to continue until they get to the user boundary. They may even
1213  * copy out their return values and data before suspending. They may however be
1214  * accelerated in reaching the user boundary as we will wake up
1215  * any sleeping threads that are interruptable. (PCATCH).
1216  */
1217 int
thread_single(struct proc * p,int mode)1218 thread_single(struct proc *p, int mode)
1219 {
1220 	struct thread *td;
1221 	struct thread *td2;
1222 	int remaining, wakeup_swapper;
1223 
1224 	td = curthread;
1225 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1226 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1227 	    ("invalid mode %d", mode));
1228 	/*
1229 	 * If allowing non-ALLPROC singlethreading for non-curproc
1230 	 * callers, calc_remaining() and remain_for_mode() should be
1231 	 * adjusted to also account for td->td_proc != p.  For now
1232 	 * this is not implemented because it is not used.
1233 	 */
1234 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1235 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
1236 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1237 	mtx_assert(&Giant, MA_NOTOWNED);
1238 	PROC_LOCK_ASSERT(p, MA_OWNED);
1239 
1240 	/*
1241 	 * Is someone already single threading?
1242 	 * Or may be singlethreading is not needed at all.
1243 	 */
1244 	if (mode == SINGLE_ALLPROC) {
1245 		while ((p->p_flag & P_STOPPED_SINGLE) != 0) {
1246 			if ((p->p_flag2 & P2_WEXIT) != 0)
1247 				return (1);
1248 			msleep(&p->p_flag, &p->p_mtx, PCATCH, "thrsgl", 0);
1249 		}
1250 		if ((p->p_flag & (P_STOPPED_SIG | P_TRACED)) != 0 ||
1251 		    (p->p_flag2 & P2_WEXIT) != 0)
1252 			return (1);
1253 	} else if ((p->p_flag & P_HADTHREADS) == 0)
1254 		return (0);
1255 	if (p->p_singlethread != NULL && p->p_singlethread != td)
1256 		return (1);
1257 
1258 	if (mode == SINGLE_EXIT) {
1259 		p->p_flag |= P_SINGLE_EXIT;
1260 		p->p_flag &= ~P_SINGLE_BOUNDARY;
1261 	} else {
1262 		p->p_flag &= ~P_SINGLE_EXIT;
1263 		if (mode == SINGLE_BOUNDARY)
1264 			p->p_flag |= P_SINGLE_BOUNDARY;
1265 		else
1266 			p->p_flag &= ~P_SINGLE_BOUNDARY;
1267 	}
1268 	if (mode == SINGLE_ALLPROC)
1269 		p->p_flag |= P_TOTAL_STOP;
1270 	p->p_flag |= P_STOPPED_SINGLE;
1271 	PROC_SLOCK(p);
1272 	p->p_singlethread = td;
1273 	remaining = calc_remaining(p, mode);
1274 	while (remaining != remain_for_mode(mode)) {
1275 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1276 			goto stopme;
1277 		wakeup_swapper = 0;
1278 		FOREACH_THREAD_IN_PROC(p, td2) {
1279 			if (td2 == td)
1280 				continue;
1281 			thread_lock(td2);
1282 			ast_sched_locked(td2, TDA_SUSPEND);
1283 			if (TD_IS_INHIBITED(td2)) {
1284 				wakeup_swapper |= weed_inhib(mode, td2, p);
1285 #ifdef SMP
1286 			} else if (TD_IS_RUNNING(td2)) {
1287 				forward_signal(td2);
1288 				thread_unlock(td2);
1289 #endif
1290 			} else
1291 				thread_unlock(td2);
1292 		}
1293 		if (wakeup_swapper)
1294 			kick_proc0();
1295 		remaining = calc_remaining(p, mode);
1296 
1297 		/*
1298 		 * Maybe we suspended some threads.. was it enough?
1299 		 */
1300 		if (remaining == remain_for_mode(mode))
1301 			break;
1302 
1303 stopme:
1304 		/*
1305 		 * Wake us up when everyone else has suspended.
1306 		 * In the mean time we suspend as well.
1307 		 */
1308 		thread_suspend_switch(td, p);
1309 		remaining = calc_remaining(p, mode);
1310 	}
1311 	if (mode == SINGLE_EXIT) {
1312 		/*
1313 		 * Convert the process to an unthreaded process.  The
1314 		 * SINGLE_EXIT is called by exit1() or execve(), in
1315 		 * both cases other threads must be retired.
1316 		 */
1317 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1318 		p->p_singlethread = NULL;
1319 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1320 
1321 		/*
1322 		 * Wait for any remaining threads to exit cpu_throw().
1323 		 */
1324 		while (p->p_exitthreads != 0) {
1325 			PROC_SUNLOCK(p);
1326 			PROC_UNLOCK(p);
1327 			sched_relinquish(td);
1328 			PROC_LOCK(p);
1329 			PROC_SLOCK(p);
1330 		}
1331 	} else if (mode == SINGLE_BOUNDARY) {
1332 		/*
1333 		 * Wait until all suspended threads are removed from
1334 		 * the processors.  The thread_suspend_check()
1335 		 * increments p_boundary_count while it is still
1336 		 * running, which makes it possible for the execve()
1337 		 * to destroy vmspace while our other threads are
1338 		 * still using the address space.
1339 		 *
1340 		 * We lock the thread, which is only allowed to
1341 		 * succeed after context switch code finished using
1342 		 * the address space.
1343 		 */
1344 		FOREACH_THREAD_IN_PROC(p, td2) {
1345 			if (td2 == td)
1346 				continue;
1347 			thread_lock(td2);
1348 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1349 			    ("td %p not on boundary", td2));
1350 			KASSERT(TD_IS_SUSPENDED(td2),
1351 			    ("td %p is not suspended", td2));
1352 			thread_unlock(td2);
1353 		}
1354 	}
1355 	PROC_SUNLOCK(p);
1356 	return (0);
1357 }
1358 
1359 bool
thread_suspend_check_needed(void)1360 thread_suspend_check_needed(void)
1361 {
1362 	struct proc *p;
1363 	struct thread *td;
1364 
1365 	td = curthread;
1366 	p = td->td_proc;
1367 	PROC_LOCK_ASSERT(p, MA_OWNED);
1368 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1369 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
1370 }
1371 
1372 /*
1373  * Called in from locations that can safely check to see
1374  * whether we have to suspend or at least throttle for a
1375  * single-thread event (e.g. fork).
1376  *
1377  * Such locations include userret().
1378  * If the "return_instead" argument is non zero, the thread must be able to
1379  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1380  *
1381  * The 'return_instead' argument tells the function if it may do a
1382  * thread_exit() or suspend, or whether the caller must abort and back
1383  * out instead.
1384  *
1385  * If the thread that set the single_threading request has set the
1386  * P_SINGLE_EXIT bit in the process flags then this call will never return
1387  * if 'return_instead' is false, but will exit.
1388  *
1389  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1390  *---------------+--------------------+---------------------
1391  *       0       | returns 0          |   returns 0 or 1
1392  *               | when ST ends       |   immediately
1393  *---------------+--------------------+---------------------
1394  *       1       | thread exits       |   returns 1
1395  *               |                    |  immediately
1396  * 0 = thread_exit() or suspension ok,
1397  * other = return error instead of stopping the thread.
1398  *
1399  * While a full suspension is under effect, even a single threading
1400  * thread would be suspended if it made this call (but it shouldn't).
1401  * This call should only be made from places where
1402  * thread_exit() would be safe as that may be the outcome unless
1403  * return_instead is set.
1404  */
1405 int
thread_suspend_check(int return_instead)1406 thread_suspend_check(int return_instead)
1407 {
1408 	struct thread *td;
1409 	struct proc *p;
1410 	int wakeup_swapper;
1411 
1412 	td = curthread;
1413 	p = td->td_proc;
1414 	mtx_assert(&Giant, MA_NOTOWNED);
1415 	PROC_LOCK_ASSERT(p, MA_OWNED);
1416 	while (thread_suspend_check_needed()) {
1417 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1418 			KASSERT(p->p_singlethread != NULL,
1419 			    ("singlethread not set"));
1420 			/*
1421 			 * The only suspension in action is a
1422 			 * single-threading. Single threader need not stop.
1423 			 * It is safe to access p->p_singlethread unlocked
1424 			 * because it can only be set to our address by us.
1425 			 */
1426 			if (p->p_singlethread == td)
1427 				return (0);	/* Exempt from stopping. */
1428 		}
1429 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1430 			return (EINTR);
1431 
1432 		/* Should we goto user boundary if we didn't come from there? */
1433 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1434 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1435 			return (ERESTART);
1436 
1437 		/*
1438 		 * Ignore suspend requests if they are deferred.
1439 		 */
1440 		if ((td->td_flags & TDF_SBDRY) != 0) {
1441 			KASSERT(return_instead,
1442 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
1443 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1444 			    (TDF_SEINTR | TDF_SERESTART),
1445 			    ("both TDF_SEINTR and TDF_SERESTART"));
1446 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1447 		}
1448 
1449 		/*
1450 		 * If the process is waiting for us to exit,
1451 		 * this thread should just suicide.
1452 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1453 		 */
1454 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1455 			PROC_UNLOCK(p);
1456 
1457 			/*
1458 			 * Allow Linux emulation layer to do some work
1459 			 * before thread suicide.
1460 			 */
1461 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1462 				(p->p_sysent->sv_thread_detach)(td);
1463 			umtx_thread_exit(td);
1464 			kern_thr_exit(td);
1465 			panic("stopped thread did not exit");
1466 		}
1467 
1468 		PROC_SLOCK(p);
1469 		thread_stopped(p);
1470 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1471 			if (p->p_numthreads == p->p_suspcount + 1) {
1472 				thread_lock(p->p_singlethread);
1473 				wakeup_swapper = thread_unsuspend_one(
1474 				    p->p_singlethread, p, false);
1475 				if (wakeup_swapper)
1476 					kick_proc0();
1477 			}
1478 		}
1479 		PROC_UNLOCK(p);
1480 		thread_lock(td);
1481 		/*
1482 		 * When a thread suspends, it just
1483 		 * gets taken off all queues.
1484 		 */
1485 		thread_suspend_one(td);
1486 		if (return_instead == 0) {
1487 			p->p_boundary_count++;
1488 			td->td_flags |= TDF_BOUNDARY;
1489 		}
1490 		PROC_SUNLOCK(p);
1491 		mi_switch(SW_INVOL | SWT_SUSPEND);
1492 		PROC_LOCK(p);
1493 	}
1494 	return (0);
1495 }
1496 
1497 /*
1498  * Check for possible stops and suspensions while executing a
1499  * casueword or similar transiently failing operation.
1500  *
1501  * The sleep argument controls whether the function can handle a stop
1502  * request itself or it should return ERESTART and the request is
1503  * proceed at the kernel/user boundary in ast.
1504  *
1505  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1506  * should handle the stop requests there, with exception of cases when
1507  * the thread owns a kernel resource, for instance busied the umtx
1508  * key, or when functions return immediately if thread_check_susp()
1509  * returned non-zero.  On the other hand, retrying the whole lock
1510  * operation, we better not stop there but delegate the handling to
1511  * ast.
1512  *
1513  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1514  * handle it at all, and simply return EINTR.
1515  */
1516 int
thread_check_susp(struct thread * td,bool sleep)1517 thread_check_susp(struct thread *td, bool sleep)
1518 {
1519 	struct proc *p;
1520 	int error;
1521 
1522 	/*
1523 	 * The check for TDA_SUSPEND is racy, but it is enough to
1524 	 * eventually break the lockstep loop.
1525 	 */
1526 	if (!td_ast_pending(td, TDA_SUSPEND))
1527 		return (0);
1528 	error = 0;
1529 	p = td->td_proc;
1530 	PROC_LOCK(p);
1531 	if (p->p_flag & P_SINGLE_EXIT)
1532 		error = EINTR;
1533 	else if (P_SHOULDSTOP(p) ||
1534 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1535 		error = sleep ? thread_suspend_check(0) : ERESTART;
1536 	PROC_UNLOCK(p);
1537 	return (error);
1538 }
1539 
1540 void
thread_suspend_switch(struct thread * td,struct proc * p)1541 thread_suspend_switch(struct thread *td, struct proc *p)
1542 {
1543 
1544 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1545 	PROC_LOCK_ASSERT(p, MA_OWNED);
1546 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1547 	/*
1548 	 * We implement thread_suspend_one in stages here to avoid
1549 	 * dropping the proc lock while the thread lock is owned.
1550 	 */
1551 	if (p == td->td_proc) {
1552 		thread_stopped(p);
1553 		p->p_suspcount++;
1554 	}
1555 	PROC_UNLOCK(p);
1556 	thread_lock(td);
1557 	ast_unsched_locked(td, TDA_SUSPEND);
1558 	TD_SET_SUSPENDED(td);
1559 	sched_sleep(td, 0);
1560 	PROC_SUNLOCK(p);
1561 	DROP_GIANT();
1562 	mi_switch(SW_VOL | SWT_SUSPEND);
1563 	PICKUP_GIANT();
1564 	PROC_LOCK(p);
1565 	PROC_SLOCK(p);
1566 }
1567 
1568 void
thread_suspend_one(struct thread * td)1569 thread_suspend_one(struct thread *td)
1570 {
1571 	struct proc *p;
1572 
1573 	p = td->td_proc;
1574 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1575 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1576 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1577 	p->p_suspcount++;
1578 	ast_unsched_locked(td, TDA_SUSPEND);
1579 	TD_SET_SUSPENDED(td);
1580 	sched_sleep(td, 0);
1581 }
1582 
1583 static int
thread_unsuspend_one(struct thread * td,struct proc * p,bool boundary)1584 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1585 {
1586 
1587 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1588 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1589 	TD_CLR_SUSPENDED(td);
1590 	td->td_flags &= ~TDF_ALLPROCSUSP;
1591 	if (td->td_proc == p) {
1592 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1593 		p->p_suspcount--;
1594 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1595 			td->td_flags &= ~TDF_BOUNDARY;
1596 			p->p_boundary_count--;
1597 		}
1598 	}
1599 	return (setrunnable(td, 0));
1600 }
1601 
1602 void
thread_run_flash(struct thread * td)1603 thread_run_flash(struct thread *td)
1604 {
1605 	struct proc *p;
1606 
1607 	p = td->td_proc;
1608 	PROC_LOCK_ASSERT(p, MA_OWNED);
1609 
1610 	if (TD_ON_SLEEPQ(td))
1611 		sleepq_remove_nested(td);
1612 	else
1613 		thread_lock(td);
1614 
1615 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1616 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1617 
1618 	TD_CLR_SUSPENDED(td);
1619 	PROC_SLOCK(p);
1620 	MPASS(p->p_suspcount > 0);
1621 	p->p_suspcount--;
1622 	PROC_SUNLOCK(p);
1623 	if (setrunnable(td, 0))
1624 		kick_proc0();
1625 }
1626 
1627 /*
1628  * Allow all threads blocked by single threading to continue running.
1629  */
1630 void
thread_unsuspend(struct proc * p)1631 thread_unsuspend(struct proc *p)
1632 {
1633 	struct thread *td;
1634 	int wakeup_swapper;
1635 
1636 	PROC_LOCK_ASSERT(p, MA_OWNED);
1637 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1638 	wakeup_swapper = 0;
1639 	if (!P_SHOULDSTOP(p)) {
1640                 FOREACH_THREAD_IN_PROC(p, td) {
1641 			thread_lock(td);
1642 			if (TD_IS_SUSPENDED(td))
1643 				wakeup_swapper |= thread_unsuspend_one(td, p,
1644 				    true);
1645 			else
1646 				thread_unlock(td);
1647 		}
1648 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1649 	    p->p_numthreads == p->p_suspcount) {
1650 		/*
1651 		 * Stopping everything also did the job for the single
1652 		 * threading request. Now we've downgraded to single-threaded,
1653 		 * let it continue.
1654 		 */
1655 		if (p->p_singlethread->td_proc == p) {
1656 			thread_lock(p->p_singlethread);
1657 			wakeup_swapper = thread_unsuspend_one(
1658 			    p->p_singlethread, p, false);
1659 		}
1660 	}
1661 	if (wakeup_swapper)
1662 		kick_proc0();
1663 }
1664 
1665 /*
1666  * End the single threading mode..
1667  */
1668 void
thread_single_end(struct proc * p,int mode)1669 thread_single_end(struct proc *p, int mode)
1670 {
1671 	struct thread *td;
1672 	int wakeup_swapper;
1673 
1674 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1675 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1676 	    ("invalid mode %d", mode));
1677 	PROC_LOCK_ASSERT(p, MA_OWNED);
1678 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1679 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1680 	    ("mode %d does not match P_TOTAL_STOP", mode));
1681 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1682 	    ("thread_single_end from other thread %p %p",
1683 	    curthread, p->p_singlethread));
1684 	KASSERT(mode != SINGLE_BOUNDARY ||
1685 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1686 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1687 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1688 	    P_TOTAL_STOP);
1689 	PROC_SLOCK(p);
1690 	p->p_singlethread = NULL;
1691 	wakeup_swapper = 0;
1692 	/*
1693 	 * If there are other threads they may now run,
1694 	 * unless of course there is a blanket 'stop order'
1695 	 * on the process. The single threader must be allowed
1696 	 * to continue however as this is a bad place to stop.
1697 	 */
1698 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1699                 FOREACH_THREAD_IN_PROC(p, td) {
1700 			thread_lock(td);
1701 			if (TD_IS_SUSPENDED(td)) {
1702 				wakeup_swapper |= thread_unsuspend_one(td, p,
1703 				    true);
1704 			} else
1705 				thread_unlock(td);
1706 		}
1707 	}
1708 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1709 	    ("inconsistent boundary count %d", p->p_boundary_count));
1710 	PROC_SUNLOCK(p);
1711 	if (wakeup_swapper)
1712 		kick_proc0();
1713 	wakeup(&p->p_flag);
1714 }
1715 
1716 /*
1717  * Locate a thread by number and return with proc lock held.
1718  *
1719  * thread exit establishes proc -> tidhash lock ordering, but lookup
1720  * takes tidhash first and needs to return locked proc.
1721  *
1722  * The problem is worked around by relying on type-safety of both
1723  * structures and doing the work in 2 steps:
1724  * - tidhash-locked lookup which saves both thread and proc pointers
1725  * - proc-locked verification that the found thread still matches
1726  */
1727 static bool
tdfind_hash(lwpid_t tid,pid_t pid,struct proc ** pp,struct thread ** tdp)1728 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1729 {
1730 #define RUN_THRESH	16
1731 	struct proc *p;
1732 	struct thread *td;
1733 	int run;
1734 	bool locked;
1735 
1736 	run = 0;
1737 	rw_rlock(TIDHASHLOCK(tid));
1738 	locked = true;
1739 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1740 		if (td->td_tid != tid) {
1741 			run++;
1742 			continue;
1743 		}
1744 		p = td->td_proc;
1745 		if (pid != -1 && p->p_pid != pid) {
1746 			td = NULL;
1747 			break;
1748 		}
1749 		if (run > RUN_THRESH) {
1750 			if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1751 				LIST_REMOVE(td, td_hash);
1752 				LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1753 					td, td_hash);
1754 				rw_wunlock(TIDHASHLOCK(tid));
1755 				locked = false;
1756 				break;
1757 			}
1758 		}
1759 		break;
1760 	}
1761 	if (locked)
1762 		rw_runlock(TIDHASHLOCK(tid));
1763 	if (td == NULL)
1764 		return (false);
1765 	*pp = p;
1766 	*tdp = td;
1767 	return (true);
1768 }
1769 
1770 struct thread *
tdfind(lwpid_t tid,pid_t pid)1771 tdfind(lwpid_t tid, pid_t pid)
1772 {
1773 	struct proc *p;
1774 	struct thread *td;
1775 
1776 	td = curthread;
1777 	if (td->td_tid == tid) {
1778 		if (pid != -1 && td->td_proc->p_pid != pid)
1779 			return (NULL);
1780 		PROC_LOCK(td->td_proc);
1781 		return (td);
1782 	}
1783 
1784 	for (;;) {
1785 		if (!tdfind_hash(tid, pid, &p, &td))
1786 			return (NULL);
1787 		PROC_LOCK(p);
1788 		if (td->td_tid != tid) {
1789 			PROC_UNLOCK(p);
1790 			continue;
1791 		}
1792 		if (td->td_proc != p) {
1793 			PROC_UNLOCK(p);
1794 			continue;
1795 		}
1796 		if (p->p_state == PRS_NEW) {
1797 			PROC_UNLOCK(p);
1798 			return (NULL);
1799 		}
1800 		return (td);
1801 	}
1802 }
1803 
1804 void
tidhash_add(struct thread * td)1805 tidhash_add(struct thread *td)
1806 {
1807 	rw_wlock(TIDHASHLOCK(td->td_tid));
1808 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1809 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1810 }
1811 
1812 void
tidhash_remove(struct thread * td)1813 tidhash_remove(struct thread *td)
1814 {
1815 
1816 	rw_wlock(TIDHASHLOCK(td->td_tid));
1817 	LIST_REMOVE(td, td_hash);
1818 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1819 }
1820