xref: /freebsd-14.2/sys/dev/vte/if_vte.c (revision 6b1f5309)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <[email protected]>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 
70 #include <dev/vte/if_vtereg.h>
71 #include <dev/vte/if_vtevar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 MODULE_DEPEND(vte, pci, 1, 1, 1);
77 MODULE_DEPEND(vte, ether, 1, 1, 1);
78 MODULE_DEPEND(vte, miibus, 1, 1, 1);
79 
80 /* Tunables. */
81 static int tx_deep_copy = 1;
82 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
83 
84 /*
85  * Devices supported by this driver.
86  */
87 static const struct vte_ident vte_ident_table[] = {
88 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
89 	{ 0, 0, NULL}
90 };
91 
92 static int	vte_attach(device_t);
93 static int	vte_detach(device_t);
94 static int	vte_dma_alloc(struct vte_softc *);
95 static void	vte_dma_free(struct vte_softc *);
96 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
97 static struct vte_txdesc *
98 		vte_encap(struct vte_softc *, struct mbuf **);
99 static const struct vte_ident *
100 		vte_find_ident(device_t);
101 #ifndef __NO_STRICT_ALIGNMENT
102 static struct mbuf *
103 		vte_fixup_rx(if_t, struct mbuf *);
104 #endif
105 static void	vte_get_macaddr(struct vte_softc *);
106 static void	vte_init(void *);
107 static void	vte_init_locked(struct vte_softc *);
108 static int	vte_init_rx_ring(struct vte_softc *);
109 static int	vte_init_tx_ring(struct vte_softc *);
110 static void	vte_intr(void *);
111 static int	vte_ioctl(if_t, u_long, caddr_t);
112 static uint64_t	vte_get_counter(if_t, ift_counter);
113 static void	vte_mac_config(struct vte_softc *);
114 static int	vte_miibus_readreg(device_t, int, int);
115 static void	vte_miibus_statchg(device_t);
116 static int	vte_miibus_writereg(device_t, int, int, int);
117 static int	vte_mediachange(if_t);
118 static int	vte_mediachange_locked(if_t);
119 static void	vte_mediastatus(if_t, struct ifmediareq *);
120 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
121 static int	vte_probe(device_t);
122 static void	vte_reset(struct vte_softc *);
123 static int	vte_resume(device_t);
124 static void	vte_rxeof(struct vte_softc *);
125 static void	vte_rxfilter(struct vte_softc *);
126 static int	vte_shutdown(device_t);
127 static void	vte_start(if_t);
128 static void	vte_start_locked(struct vte_softc *);
129 static void	vte_start_mac(struct vte_softc *);
130 static void	vte_stats_clear(struct vte_softc *);
131 static void	vte_stats_update(struct vte_softc *);
132 static void	vte_stop(struct vte_softc *);
133 static void	vte_stop_mac(struct vte_softc *);
134 static int	vte_suspend(device_t);
135 static void	vte_sysctl_node(struct vte_softc *);
136 static void	vte_tick(void *);
137 static void	vte_txeof(struct vte_softc *);
138 static void	vte_watchdog(struct vte_softc *);
139 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
140 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
141 
142 static device_method_t vte_methods[] = {
143 	/* Device interface. */
144 	DEVMETHOD(device_probe,		vte_probe),
145 	DEVMETHOD(device_attach,	vte_attach),
146 	DEVMETHOD(device_detach,	vte_detach),
147 	DEVMETHOD(device_shutdown,	vte_shutdown),
148 	DEVMETHOD(device_suspend,	vte_suspend),
149 	DEVMETHOD(device_resume,	vte_resume),
150 
151 	/* MII interface. */
152 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
153 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
154 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
155 
156 	DEVMETHOD_END
157 };
158 
159 static driver_t vte_driver = {
160 	"vte",
161 	vte_methods,
162 	sizeof(struct vte_softc)
163 };
164 
165 DRIVER_MODULE(vte, pci, vte_driver, 0, 0);
166 DRIVER_MODULE(miibus, vte, miibus_driver, 0, 0);
167 
168 static int
vte_miibus_readreg(device_t dev,int phy,int reg)169 vte_miibus_readreg(device_t dev, int phy, int reg)
170 {
171 	struct vte_softc *sc;
172 	int i;
173 
174 	sc = device_get_softc(dev);
175 
176 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
177 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
178 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
179 		DELAY(5);
180 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
181 			break;
182 	}
183 
184 	if (i == 0) {
185 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
186 		return (0);
187 	}
188 
189 	return (CSR_READ_2(sc, VTE_MMRD));
190 }
191 
192 static int
vte_miibus_writereg(device_t dev,int phy,int reg,int val)193 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
194 {
195 	struct vte_softc *sc;
196 	int i;
197 
198 	sc = device_get_softc(dev);
199 
200 	CSR_WRITE_2(sc, VTE_MMWD, val);
201 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
202 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
203 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
204 		DELAY(5);
205 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
206 			break;
207 	}
208 
209 	if (i == 0)
210 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
211 
212 	return (0);
213 }
214 
215 static void
vte_miibus_statchg(device_t dev)216 vte_miibus_statchg(device_t dev)
217 {
218 	struct vte_softc *sc;
219 	struct mii_data *mii;
220 	if_t ifp;
221 	uint16_t val;
222 
223 	sc = device_get_softc(dev);
224 
225 	mii = device_get_softc(sc->vte_miibus);
226 	ifp = sc->vte_ifp;
227 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
228 		return;
229 
230 	sc->vte_flags &= ~VTE_FLAG_LINK;
231 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
232 	    (IFM_ACTIVE | IFM_AVALID)) {
233 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
234 		case IFM_10_T:
235 		case IFM_100_TX:
236 			sc->vte_flags |= VTE_FLAG_LINK;
237 			break;
238 		default:
239 			break;
240 		}
241 	}
242 
243 	/* Stop RX/TX MACs. */
244 	vte_stop_mac(sc);
245 	/* Program MACs with resolved duplex and flow control. */
246 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
247 		/*
248 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
249 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
250 		 */
251 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
252 			val = 18 << VTE_IM_TIMER_SHIFT;
253 		else
254 			val = 1 << VTE_IM_TIMER_SHIFT;
255 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
256 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
257 		CSR_WRITE_2(sc, VTE_MRICR, val);
258 
259 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
260 			val = 18 << VTE_IM_TIMER_SHIFT;
261 		else
262 			val = 1 << VTE_IM_TIMER_SHIFT;
263 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
264 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
265 		CSR_WRITE_2(sc, VTE_MTICR, val);
266 
267 		vte_mac_config(sc);
268 		vte_start_mac(sc);
269 	}
270 }
271 
272 static void
vte_mediastatus(if_t ifp,struct ifmediareq * ifmr)273 vte_mediastatus(if_t ifp, struct ifmediareq *ifmr)
274 {
275 	struct vte_softc *sc;
276 	struct mii_data *mii;
277 
278 	sc = if_getsoftc(ifp);
279 	VTE_LOCK(sc);
280 	if ((if_getflags(ifp) & IFF_UP) == 0) {
281 		VTE_UNLOCK(sc);
282 		return;
283 	}
284 	mii = device_get_softc(sc->vte_miibus);
285 
286 	mii_pollstat(mii);
287 	ifmr->ifm_status = mii->mii_media_status;
288 	ifmr->ifm_active = mii->mii_media_active;
289 	VTE_UNLOCK(sc);
290 }
291 
292 static int
vte_mediachange(if_t ifp)293 vte_mediachange(if_t ifp)
294 {
295 	struct vte_softc *sc;
296 	int error;
297 
298 	sc = if_getsoftc(ifp);
299 	VTE_LOCK(sc);
300 	error = vte_mediachange_locked(ifp);
301 	VTE_UNLOCK(sc);
302 	return (error);
303 }
304 
305 static int
vte_mediachange_locked(if_t ifp)306 vte_mediachange_locked(if_t ifp)
307 {
308 	struct vte_softc *sc;
309 	struct mii_data *mii;
310 	struct mii_softc *miisc;
311 	int error;
312 
313 	sc = if_getsoftc(ifp);
314 	mii = device_get_softc(sc->vte_miibus);
315 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
316 		PHY_RESET(miisc);
317 	error = mii_mediachg(mii);
318 
319 	return (error);
320 }
321 
322 static const struct vte_ident *
vte_find_ident(device_t dev)323 vte_find_ident(device_t dev)
324 {
325 	const struct vte_ident *ident;
326 	uint16_t vendor, devid;
327 
328 	vendor = pci_get_vendor(dev);
329 	devid = pci_get_device(dev);
330 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
331 		if (vendor == ident->vendorid && devid == ident->deviceid)
332 			return (ident);
333 	}
334 
335 	return (NULL);
336 }
337 
338 static int
vte_probe(device_t dev)339 vte_probe(device_t dev)
340 {
341 	const struct vte_ident *ident;
342 
343 	ident = vte_find_ident(dev);
344 	if (ident != NULL) {
345 		device_set_desc(dev, ident->name);
346 		return (BUS_PROBE_DEFAULT);
347 	}
348 
349 	return (ENXIO);
350 }
351 
352 static void
vte_get_macaddr(struct vte_softc * sc)353 vte_get_macaddr(struct vte_softc *sc)
354 {
355 	uint16_t mid;
356 
357 	/*
358 	 * It seems there is no way to reload station address and
359 	 * it is supposed to be set by BIOS.
360 	 */
361 	mid = CSR_READ_2(sc, VTE_MID0L);
362 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
363 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
364 	mid = CSR_READ_2(sc, VTE_MID0M);
365 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
366 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
367 	mid = CSR_READ_2(sc, VTE_MID0H);
368 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
369 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
370 }
371 
372 static int
vte_attach(device_t dev)373 vte_attach(device_t dev)
374 {
375 	struct vte_softc *sc;
376 	if_t ifp;
377 	uint16_t macid;
378 	int error, rid;
379 
380 	error = 0;
381 	sc = device_get_softc(dev);
382 	sc->vte_dev = dev;
383 
384 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385 	    MTX_DEF);
386 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
387 	sc->vte_ident = vte_find_ident(dev);
388 
389 	/* Map the device. */
390 	pci_enable_busmaster(dev);
391 	sc->vte_res_id = PCIR_BAR(1);
392 	sc->vte_res_type = SYS_RES_MEMORY;
393 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
394 	    &sc->vte_res_id, RF_ACTIVE);
395 	if (sc->vte_res == NULL) {
396 		sc->vte_res_id = PCIR_BAR(0);
397 		sc->vte_res_type = SYS_RES_IOPORT;
398 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
399 		    &sc->vte_res_id, RF_ACTIVE);
400 		if (sc->vte_res == NULL) {
401 			device_printf(dev, "cannot map memory/ports.\n");
402 			mtx_destroy(&sc->vte_mtx);
403 			return (ENXIO);
404 		}
405 	}
406 	if (bootverbose) {
407 		device_printf(dev, "using %s space register mapping\n",
408 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
409 		device_printf(dev, "MAC Identifier : 0x%04x\n",
410 		    CSR_READ_2(sc, VTE_MACID));
411 		macid = CSR_READ_2(sc, VTE_MACID_REV);
412 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
413 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
414 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
415 	}
416 
417 	rid = 0;
418 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
419 	    RF_SHAREABLE | RF_ACTIVE);
420 	if (sc->vte_irq == NULL) {
421 		device_printf(dev, "cannot allocate IRQ resources.\n");
422 		error = ENXIO;
423 		goto fail;
424 	}
425 
426 	/* Reset the ethernet controller. */
427 	vte_reset(sc);
428 
429 	if ((error = vte_dma_alloc(sc)) != 0)
430 		goto fail;
431 
432 	/* Create device sysctl node. */
433 	vte_sysctl_node(sc);
434 
435 	/* Load station address. */
436 	vte_get_macaddr(sc);
437 
438 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
439 	if_setsoftc(ifp, sc);
440 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
441 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
442 	if_setioctlfn(ifp, vte_ioctl);
443 	if_setstartfn(ifp, vte_start);
444 	if_setinitfn(ifp, vte_init);
445 	if_setgetcounterfn(ifp, vte_get_counter);
446 	if_setsendqlen(ifp, VTE_TX_RING_CNT - 1);
447 	if_setsendqready(ifp);
448 
449 	/*
450 	 * Set up MII bus.
451 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
452 	 * status changes so driver may be able to extract
453 	 * configured PHY address.  Since it's common to see BIOS
454 	 * fails to initialize the register(including the sample
455 	 * board I have), let mii(4) probe it.  This is more
456 	 * reliable than relying on BIOS's initialization.
457 	 *
458 	 * Advertising flow control capability to mii(4) was
459 	 * intentionally disabled due to severe problems in TX
460 	 * pause frame generation.  See vte_rxeof() for more
461 	 * details.
462 	 */
463 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
464 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
465 	if (error != 0) {
466 		device_printf(dev, "attaching PHYs failed\n");
467 		goto fail;
468 	}
469 
470 	ether_ifattach(ifp, sc->vte_eaddr);
471 
472 	/* VLAN capability setup. */
473 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
474 	if_setcapenable(ifp, if_getcapabilities(ifp));
475 	/* Tell the upper layer we support VLAN over-sized frames. */
476 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
477 
478 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
479 	    NULL, vte_intr, sc, &sc->vte_intrhand);
480 	if (error != 0) {
481 		device_printf(dev, "could not set up interrupt handler.\n");
482 		ether_ifdetach(ifp);
483 		goto fail;
484 	}
485 
486 fail:
487 	if (error != 0)
488 		vte_detach(dev);
489 
490 	return (error);
491 }
492 
493 static int
vte_detach(device_t dev)494 vte_detach(device_t dev)
495 {
496 	struct vte_softc *sc;
497 	if_t ifp;
498 
499 	sc = device_get_softc(dev);
500 
501 	ifp = sc->vte_ifp;
502 	if (device_is_attached(dev)) {
503 		VTE_LOCK(sc);
504 		vte_stop(sc);
505 		VTE_UNLOCK(sc);
506 		callout_drain(&sc->vte_tick_ch);
507 		ether_ifdetach(ifp);
508 	}
509 
510 	if (sc->vte_miibus != NULL) {
511 		device_delete_child(dev, sc->vte_miibus);
512 		sc->vte_miibus = NULL;
513 	}
514 	bus_generic_detach(dev);
515 
516 	if (sc->vte_intrhand != NULL) {
517 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
518 		sc->vte_intrhand = NULL;
519 	}
520 	if (sc->vte_irq != NULL) {
521 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
522 		sc->vte_irq = NULL;
523 	}
524 	if (sc->vte_res != NULL) {
525 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
526 		    sc->vte_res);
527 		sc->vte_res = NULL;
528 	}
529 	if (ifp != NULL) {
530 		if_free(ifp);
531 		sc->vte_ifp = NULL;
532 	}
533 	vte_dma_free(sc);
534 	mtx_destroy(&sc->vte_mtx);
535 
536 	return (0);
537 }
538 
539 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
540 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
541 
542 static void
vte_sysctl_node(struct vte_softc * sc)543 vte_sysctl_node(struct vte_softc *sc)
544 {
545 	struct sysctl_ctx_list *ctx;
546 	struct sysctl_oid_list *child, *parent;
547 	struct sysctl_oid *tree;
548 	struct vte_hw_stats *stats;
549 	int error;
550 
551 	stats = &sc->vte_stats;
552 	ctx = device_get_sysctl_ctx(sc->vte_dev);
553 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
554 
555 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
556 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
557 	    &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I",
558 	    "vte RX interrupt moderation");
559 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
560 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
561 	    &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I",
562 	    "vte TX interrupt moderation");
563 	/* Pull in device tunables. */
564 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
565 	error = resource_int_value(device_get_name(sc->vte_dev),
566 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
567 	if (error == 0) {
568 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
569 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
570 			device_printf(sc->vte_dev, "int_rx_mod value out of "
571 			    "range; using default: %d\n",
572 			    VTE_IM_RX_BUNDLE_DEFAULT);
573 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
574 		}
575 	}
576 
577 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
578 	error = resource_int_value(device_get_name(sc->vte_dev),
579 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
580 	if (error == 0) {
581 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
582 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
583 			device_printf(sc->vte_dev, "int_tx_mod value out of "
584 			    "range; using default: %d\n",
585 			    VTE_IM_TX_BUNDLE_DEFAULT);
586 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
587 		}
588 	}
589 
590 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
591 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VTE statistics");
592 	parent = SYSCTL_CHILDREN(tree);
593 
594 	/* RX statistics. */
595 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
596 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
597 	child = SYSCTL_CHILDREN(tree);
598 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
599 	    &stats->rx_frames, "Good frames");
600 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
601 	    &stats->rx_bcast_frames, "Good broadcast frames");
602 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
603 	    &stats->rx_mcast_frames, "Good multicast frames");
604 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
605 	    &stats->rx_runts, "Too short frames");
606 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
607 	    &stats->rx_crcerrs, "CRC errors");
608 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
609 	    &stats->rx_long_frames,
610 	    "Frames that have longer length than maximum packet length");
611 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
612 	    &stats->rx_fifo_full, "FIFO full");
613 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
614 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
615 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
616 	    &stats->rx_pause_frames, "Pause control frames");
617 
618 	/* TX statistics. */
619 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
620 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
621 	child = SYSCTL_CHILDREN(tree);
622 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
623 	    &stats->tx_frames, "Good frames");
624 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
625 	    &stats->tx_underruns, "FIFO underruns");
626 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
627 	    &stats->tx_late_colls, "Late collisions");
628 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
629 	    &stats->tx_pause_frames, "Pause control frames");
630 }
631 
632 #undef VTE_SYSCTL_STAT_ADD32
633 
634 struct vte_dmamap_arg {
635 	bus_addr_t	vte_busaddr;
636 };
637 
638 static void
vte_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)639 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
640 {
641 	struct vte_dmamap_arg *ctx;
642 
643 	if (error != 0)
644 		return;
645 
646 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
647 
648 	ctx = (struct vte_dmamap_arg *)arg;
649 	ctx->vte_busaddr = segs[0].ds_addr;
650 }
651 
652 static int
vte_dma_alloc(struct vte_softc * sc)653 vte_dma_alloc(struct vte_softc *sc)
654 {
655 	struct vte_txdesc *txd;
656 	struct vte_rxdesc *rxd;
657 	struct vte_dmamap_arg ctx;
658 	int error, i;
659 
660 	/* Create parent DMA tag. */
661 	error = bus_dma_tag_create(
662 	    bus_get_dma_tag(sc->vte_dev), /* parent */
663 	    1, 0,			/* alignment, boundary */
664 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
665 	    BUS_SPACE_MAXADDR,		/* highaddr */
666 	    NULL, NULL,			/* filter, filterarg */
667 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
668 	    0,				/* nsegments */
669 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
670 	    0,				/* flags */
671 	    NULL, NULL,			/* lockfunc, lockarg */
672 	    &sc->vte_cdata.vte_parent_tag);
673 	if (error != 0) {
674 		device_printf(sc->vte_dev,
675 		    "could not create parent DMA tag.\n");
676 		goto fail;
677 	}
678 
679 	/* Create DMA tag for TX descriptor ring. */
680 	error = bus_dma_tag_create(
681 	    sc->vte_cdata.vte_parent_tag, /* parent */
682 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
683 	    BUS_SPACE_MAXADDR,		/* lowaddr */
684 	    BUS_SPACE_MAXADDR,		/* highaddr */
685 	    NULL, NULL,			/* filter, filterarg */
686 	    VTE_TX_RING_SZ,		/* maxsize */
687 	    1,				/* nsegments */
688 	    VTE_TX_RING_SZ,		/* maxsegsize */
689 	    0,				/* flags */
690 	    NULL, NULL,			/* lockfunc, lockarg */
691 	    &sc->vte_cdata.vte_tx_ring_tag);
692 	if (error != 0) {
693 		device_printf(sc->vte_dev,
694 		    "could not create TX ring DMA tag.\n");
695 		goto fail;
696 	}
697 
698 	/* Create DMA tag for RX free descriptor ring. */
699 	error = bus_dma_tag_create(
700 	    sc->vte_cdata.vte_parent_tag, /* parent */
701 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
702 	    BUS_SPACE_MAXADDR,		/* lowaddr */
703 	    BUS_SPACE_MAXADDR,		/* highaddr */
704 	    NULL, NULL,			/* filter, filterarg */
705 	    VTE_RX_RING_SZ,		/* maxsize */
706 	    1,				/* nsegments */
707 	    VTE_RX_RING_SZ,		/* maxsegsize */
708 	    0,				/* flags */
709 	    NULL, NULL,			/* lockfunc, lockarg */
710 	    &sc->vte_cdata.vte_rx_ring_tag);
711 	if (error != 0) {
712 		device_printf(sc->vte_dev,
713 		    "could not create RX ring DMA tag.\n");
714 		goto fail;
715 	}
716 
717 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
718 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
719 	    (void **)&sc->vte_cdata.vte_tx_ring,
720 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
721 	    &sc->vte_cdata.vte_tx_ring_map);
722 	if (error != 0) {
723 		device_printf(sc->vte_dev,
724 		    "could not allocate DMA'able memory for TX ring.\n");
725 		goto fail;
726 	}
727 	ctx.vte_busaddr = 0;
728 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
729 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
730 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
731 	if (error != 0 || ctx.vte_busaddr == 0) {
732 		device_printf(sc->vte_dev,
733 		    "could not load DMA'able memory for TX ring.\n");
734 		goto fail;
735 	}
736 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
737 
738 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
739 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
740 	    (void **)&sc->vte_cdata.vte_rx_ring,
741 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
742 	    &sc->vte_cdata.vte_rx_ring_map);
743 	if (error != 0) {
744 		device_printf(sc->vte_dev,
745 		    "could not allocate DMA'able memory for RX ring.\n");
746 		goto fail;
747 	}
748 	ctx.vte_busaddr = 0;
749 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
750 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
751 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
752 	if (error != 0 || ctx.vte_busaddr == 0) {
753 		device_printf(sc->vte_dev,
754 		    "could not load DMA'able memory for RX ring.\n");
755 		goto fail;
756 	}
757 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
758 
759 	/* Create TX buffer parent tag. */
760 	error = bus_dma_tag_create(
761 	    bus_get_dma_tag(sc->vte_dev), /* parent */
762 	    1, 0,			/* alignment, boundary */
763 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
764 	    BUS_SPACE_MAXADDR,		/* highaddr */
765 	    NULL, NULL,			/* filter, filterarg */
766 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
767 	    0,				/* nsegments */
768 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
769 	    0,				/* flags */
770 	    NULL, NULL,			/* lockfunc, lockarg */
771 	    &sc->vte_cdata.vte_buffer_tag);
772 	if (error != 0) {
773 		device_printf(sc->vte_dev,
774 		    "could not create parent buffer DMA tag.\n");
775 		goto fail;
776 	}
777 
778 	/* Create DMA tag for TX buffers. */
779 	error = bus_dma_tag_create(
780 	    sc->vte_cdata.vte_buffer_tag, /* parent */
781 	    1, 0,			/* alignment, boundary */
782 	    BUS_SPACE_MAXADDR,		/* lowaddr */
783 	    BUS_SPACE_MAXADDR,		/* highaddr */
784 	    NULL, NULL,			/* filter, filterarg */
785 	    MCLBYTES,			/* maxsize */
786 	    1,				/* nsegments */
787 	    MCLBYTES,			/* maxsegsize */
788 	    0,				/* flags */
789 	    NULL, NULL,			/* lockfunc, lockarg */
790 	    &sc->vte_cdata.vte_tx_tag);
791 	if (error != 0) {
792 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
793 		goto fail;
794 	}
795 
796 	/* Create DMA tag for RX buffers. */
797 	error = bus_dma_tag_create(
798 	    sc->vte_cdata.vte_buffer_tag, /* parent */
799 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
800 	    BUS_SPACE_MAXADDR,		/* lowaddr */
801 	    BUS_SPACE_MAXADDR,		/* highaddr */
802 	    NULL, NULL,			/* filter, filterarg */
803 	    MCLBYTES,			/* maxsize */
804 	    1,				/* nsegments */
805 	    MCLBYTES,			/* maxsegsize */
806 	    0,				/* flags */
807 	    NULL, NULL,			/* lockfunc, lockarg */
808 	    &sc->vte_cdata.vte_rx_tag);
809 	if (error != 0) {
810 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
811 		goto fail;
812 	}
813 	/* Create DMA maps for TX buffers. */
814 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
815 		txd = &sc->vte_cdata.vte_txdesc[i];
816 		txd->tx_m = NULL;
817 		txd->tx_dmamap = NULL;
818 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
819 		    &txd->tx_dmamap);
820 		if (error != 0) {
821 			device_printf(sc->vte_dev,
822 			    "could not create TX dmamap.\n");
823 			goto fail;
824 		}
825 	}
826 	/* Create DMA maps for RX buffers. */
827 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
828 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
829 		device_printf(sc->vte_dev,
830 		    "could not create spare RX dmamap.\n");
831 		goto fail;
832 	}
833 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
834 		rxd = &sc->vte_cdata.vte_rxdesc[i];
835 		rxd->rx_m = NULL;
836 		rxd->rx_dmamap = NULL;
837 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
838 		    &rxd->rx_dmamap);
839 		if (error != 0) {
840 			device_printf(sc->vte_dev,
841 			    "could not create RX dmamap.\n");
842 			goto fail;
843 		}
844 	}
845 
846 fail:
847 	return (error);
848 }
849 
850 static void
vte_dma_free(struct vte_softc * sc)851 vte_dma_free(struct vte_softc *sc)
852 {
853 	struct vte_txdesc *txd;
854 	struct vte_rxdesc *rxd;
855 	int i;
856 
857 	/* TX buffers. */
858 	if (sc->vte_cdata.vte_tx_tag != NULL) {
859 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
860 			txd = &sc->vte_cdata.vte_txdesc[i];
861 			if (txd->tx_dmamap != NULL) {
862 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
863 				    txd->tx_dmamap);
864 				txd->tx_dmamap = NULL;
865 			}
866 		}
867 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
868 		sc->vte_cdata.vte_tx_tag = NULL;
869 	}
870 	/* RX buffers */
871 	if (sc->vte_cdata.vte_rx_tag != NULL) {
872 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
873 			rxd = &sc->vte_cdata.vte_rxdesc[i];
874 			if (rxd->rx_dmamap != NULL) {
875 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
876 				    rxd->rx_dmamap);
877 				rxd->rx_dmamap = NULL;
878 			}
879 		}
880 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
881 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
882 			    sc->vte_cdata.vte_rx_sparemap);
883 			sc->vte_cdata.vte_rx_sparemap = NULL;
884 		}
885 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
886 		sc->vte_cdata.vte_rx_tag = NULL;
887 	}
888 	/* TX descriptor ring. */
889 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
890 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
891 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
892 			    sc->vte_cdata.vte_tx_ring_map);
893 		if (sc->vte_cdata.vte_tx_ring != NULL)
894 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
895 			    sc->vte_cdata.vte_tx_ring,
896 			    sc->vte_cdata.vte_tx_ring_map);
897 		sc->vte_cdata.vte_tx_ring = NULL;
898 		sc->vte_cdata.vte_tx_ring_paddr = 0;
899 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
900 		sc->vte_cdata.vte_tx_ring_tag = NULL;
901 	}
902 	/* RX ring. */
903 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
904 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
905 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
906 			    sc->vte_cdata.vte_rx_ring_map);
907 		if (sc->vte_cdata.vte_rx_ring != NULL)
908 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
909 			    sc->vte_cdata.vte_rx_ring,
910 			    sc->vte_cdata.vte_rx_ring_map);
911 		sc->vte_cdata.vte_rx_ring = NULL;
912 		sc->vte_cdata.vte_rx_ring_paddr = 0;
913 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
914 		sc->vte_cdata.vte_rx_ring_tag = NULL;
915 	}
916 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
917 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
918 		sc->vte_cdata.vte_buffer_tag = NULL;
919 	}
920 	if (sc->vte_cdata.vte_parent_tag != NULL) {
921 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
922 		sc->vte_cdata.vte_parent_tag = NULL;
923 	}
924 }
925 
926 static int
vte_shutdown(device_t dev)927 vte_shutdown(device_t dev)
928 {
929 
930 	return (vte_suspend(dev));
931 }
932 
933 static int
vte_suspend(device_t dev)934 vte_suspend(device_t dev)
935 {
936 	struct vte_softc *sc;
937 	if_t ifp;
938 
939 	sc = device_get_softc(dev);
940 
941 	VTE_LOCK(sc);
942 	ifp = sc->vte_ifp;
943 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
944 		vte_stop(sc);
945 	VTE_UNLOCK(sc);
946 
947 	return (0);
948 }
949 
950 static int
vte_resume(device_t dev)951 vte_resume(device_t dev)
952 {
953 	struct vte_softc *sc;
954 	if_t ifp;
955 
956 	sc = device_get_softc(dev);
957 
958 	VTE_LOCK(sc);
959 	ifp = sc->vte_ifp;
960 	if ((if_getflags(ifp) & IFF_UP) != 0) {
961 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
962 		vte_init_locked(sc);
963 	}
964 	VTE_UNLOCK(sc);
965 
966 	return (0);
967 }
968 
969 static struct vte_txdesc *
vte_encap(struct vte_softc * sc,struct mbuf ** m_head)970 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
971 {
972 	struct vte_txdesc *txd;
973 	struct mbuf *m, *n;
974 	bus_dma_segment_t txsegs[1];
975 	int copy, error, nsegs, padlen;
976 
977 	VTE_LOCK_ASSERT(sc);
978 
979 	M_ASSERTPKTHDR((*m_head));
980 
981 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
982 	m = *m_head;
983 	/*
984 	 * Controller doesn't auto-pad, so we have to make sure pad
985 	 * short frames out to the minimum frame length.
986 	 */
987 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
988 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
989 	else
990 		padlen = 0;
991 
992 	/*
993 	 * Controller does not support multi-fragmented TX buffers.
994 	 * Controller spends most of its TX processing time in
995 	 * de-fragmenting TX buffers.  Either faster CPU or more
996 	 * advanced controller DMA engine is required to speed up
997 	 * TX path processing.
998 	 * To mitigate the de-fragmenting issue, perform deep copy
999 	 * from fragmented mbuf chains to a pre-allocated mbuf
1000 	 * cluster with extra cost of kernel memory.  For frames
1001 	 * that is composed of single TX buffer, the deep copy is
1002 	 * bypassed.
1003 	 */
1004 	if (tx_deep_copy != 0) {
1005 		copy = 0;
1006 		if (m->m_next != NULL)
1007 			copy++;
1008 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1009 		    padlen > M_TRAILINGSPACE(m)))
1010 			copy++;
1011 		if (copy != 0) {
1012 			/* Avoid expensive m_defrag(9) and do deep copy. */
1013 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1014 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1015 			n->m_pkthdr.len = m->m_pkthdr.len;
1016 			n->m_len = m->m_pkthdr.len;
1017 			m = n;
1018 			txd->tx_flags |= VTE_TXMBUF;
1019 		}
1020 
1021 		if (padlen > 0) {
1022 			/* Zero out the bytes in the pad area. */
1023 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1024 			m->m_pkthdr.len += padlen;
1025 			m->m_len = m->m_pkthdr.len;
1026 		}
1027 	} else {
1028 		if (M_WRITABLE(m) == 0) {
1029 			if (m->m_next != NULL || padlen > 0) {
1030 				/* Get a writable copy. */
1031 				m = m_dup(*m_head, M_NOWAIT);
1032 				/* Release original mbuf chains. */
1033 				m_freem(*m_head);
1034 				if (m == NULL) {
1035 					*m_head = NULL;
1036 					return (NULL);
1037 				}
1038 				*m_head = m;
1039 			}
1040 		}
1041 
1042 		if (m->m_next != NULL) {
1043 			m = m_defrag(*m_head, M_NOWAIT);
1044 			if (m == NULL) {
1045 				m_freem(*m_head);
1046 				*m_head = NULL;
1047 				return (NULL);
1048 			}
1049 			*m_head = m;
1050 		}
1051 
1052 		if (padlen > 0) {
1053 			if (M_TRAILINGSPACE(m) < padlen) {
1054 				m = m_defrag(*m_head, M_NOWAIT);
1055 				if (m == NULL) {
1056 					m_freem(*m_head);
1057 					*m_head = NULL;
1058 					return (NULL);
1059 				}
1060 				*m_head = m;
1061 			}
1062 			/* Zero out the bytes in the pad area. */
1063 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1064 			m->m_pkthdr.len += padlen;
1065 			m->m_len = m->m_pkthdr.len;
1066 		}
1067 	}
1068 
1069 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1070 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1071 	if (error != 0) {
1072 		txd->tx_flags &= ~VTE_TXMBUF;
1073 		return (NULL);
1074 	}
1075 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1076 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1077 	    BUS_DMASYNC_PREWRITE);
1078 
1079 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1080 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1081 	sc->vte_cdata.vte_tx_cnt++;
1082 	/* Update producer index. */
1083 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1084 
1085 	/* Finally hand over ownership to controller. */
1086 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1087 	txd->tx_m = m;
1088 
1089 	return (txd);
1090 }
1091 
1092 static void
vte_start(if_t ifp)1093 vte_start(if_t ifp)
1094 {
1095 	struct vte_softc *sc;
1096 
1097 	sc = if_getsoftc(ifp);
1098 	VTE_LOCK(sc);
1099 	vte_start_locked(sc);
1100 	VTE_UNLOCK(sc);
1101 }
1102 
1103 static void
vte_start_locked(struct vte_softc * sc)1104 vte_start_locked(struct vte_softc *sc)
1105 {
1106 	if_t ifp;
1107 	struct vte_txdesc *txd;
1108 	struct mbuf *m_head;
1109 	int enq;
1110 
1111 	ifp = sc->vte_ifp;
1112 
1113 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1114 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1115 		return;
1116 
1117 	for (enq = 0; !if_sendq_empty(ifp); ) {
1118 		/* Reserve one free TX descriptor. */
1119 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1120 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1121 			break;
1122 		}
1123 		m_head = if_dequeue(ifp);
1124 		if (m_head == NULL)
1125 			break;
1126 		/*
1127 		 * Pack the data into the transmit ring. If we
1128 		 * don't have room, set the OACTIVE flag and wait
1129 		 * for the NIC to drain the ring.
1130 		 */
1131 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1132 			if (m_head != NULL)
1133 				if_sendq_prepend(ifp, m_head);
1134 			break;
1135 		}
1136 
1137 		enq++;
1138 		/*
1139 		 * If there's a BPF listener, bounce a copy of this frame
1140 		 * to him.
1141 		 */
1142 		ETHER_BPF_MTAP(ifp, m_head);
1143 		/* Free consumed TX frame. */
1144 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1145 			m_freem(m_head);
1146 	}
1147 
1148 	if (enq > 0) {
1149 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1150 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1151 		    BUS_DMASYNC_PREWRITE);
1152 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1153 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1154 	}
1155 }
1156 
1157 static void
vte_watchdog(struct vte_softc * sc)1158 vte_watchdog(struct vte_softc *sc)
1159 {
1160 	if_t ifp;
1161 
1162 	VTE_LOCK_ASSERT(sc);
1163 
1164 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1165 		return;
1166 
1167 	ifp = sc->vte_ifp;
1168 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1169 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1170 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1171 	vte_init_locked(sc);
1172 	if (!if_sendq_empty(ifp))
1173 		vte_start_locked(sc);
1174 }
1175 
1176 static int
vte_ioctl(if_t ifp,u_long cmd,caddr_t data)1177 vte_ioctl(if_t ifp, u_long cmd, caddr_t data)
1178 {
1179 	struct vte_softc *sc;
1180 	struct ifreq *ifr;
1181 	struct mii_data *mii;
1182 	int error;
1183 
1184 	sc = if_getsoftc(ifp);
1185 	ifr = (struct ifreq *)data;
1186 	error = 0;
1187 	switch (cmd) {
1188 	case SIOCSIFFLAGS:
1189 		VTE_LOCK(sc);
1190 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1191 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1192 			    ((if_getflags(ifp) ^ sc->vte_if_flags) &
1193 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1194 				vte_rxfilter(sc);
1195 			else
1196 				vte_init_locked(sc);
1197 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1198 			vte_stop(sc);
1199 		sc->vte_if_flags = if_getflags(ifp);
1200 		VTE_UNLOCK(sc);
1201 		break;
1202 	case SIOCADDMULTI:
1203 	case SIOCDELMULTI:
1204 		VTE_LOCK(sc);
1205 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1206 			vte_rxfilter(sc);
1207 		VTE_UNLOCK(sc);
1208 		break;
1209 	case SIOCSIFMEDIA:
1210 	case SIOCGIFMEDIA:
1211 		mii = device_get_softc(sc->vte_miibus);
1212 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1213 		break;
1214 	default:
1215 		error = ether_ioctl(ifp, cmd, data);
1216 		break;
1217 	}
1218 
1219 	return (error);
1220 }
1221 
1222 static void
vte_mac_config(struct vte_softc * sc)1223 vte_mac_config(struct vte_softc *sc)
1224 {
1225 	struct mii_data *mii;
1226 	uint16_t mcr;
1227 
1228 	VTE_LOCK_ASSERT(sc);
1229 
1230 	mii = device_get_softc(sc->vte_miibus);
1231 	mcr = CSR_READ_2(sc, VTE_MCR0);
1232 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1233 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1234 		mcr |= MCR0_FULL_DUPLEX;
1235 #ifdef notyet
1236 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1237 			mcr |= MCR0_FC_ENB;
1238 		/*
1239 		 * The data sheet is not clear whether the controller
1240 		 * honors received pause frames or not.  The is no
1241 		 * separate control bit for RX pause frame so just
1242 		 * enable MCR0_FC_ENB bit.
1243 		 */
1244 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1245 			mcr |= MCR0_FC_ENB;
1246 #endif
1247 	}
1248 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1249 }
1250 
1251 static void
vte_stats_clear(struct vte_softc * sc)1252 vte_stats_clear(struct vte_softc *sc)
1253 {
1254 
1255 	/* Reading counter registers clears its contents. */
1256 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1257 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1258 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1259 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1260 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1261 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1262 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1263 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1264 }
1265 
1266 static void
vte_stats_update(struct vte_softc * sc)1267 vte_stats_update(struct vte_softc *sc)
1268 {
1269 	struct vte_hw_stats *stat;
1270 	uint16_t value;
1271 
1272 	VTE_LOCK_ASSERT(sc);
1273 
1274 	stat = &sc->vte_stats;
1275 
1276 	CSR_READ_2(sc, VTE_MECISR);
1277 	/* RX stats. */
1278 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1279 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1280 	stat->rx_bcast_frames += (value >> 8);
1281 	stat->rx_mcast_frames += (value & 0xFF);
1282 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1283 	stat->rx_runts += (value >> 8);
1284 	stat->rx_crcerrs += (value & 0xFF);
1285 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1286 	stat->rx_long_frames += (value & 0xFF);
1287 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1288 	stat->rx_fifo_full += (value >> 8);
1289 	stat->rx_desc_unavail += (value & 0xFF);
1290 
1291 	/* TX stats. */
1292 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1293 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1294 	stat->tx_underruns += (value >> 8);
1295 	stat->tx_late_colls += (value & 0xFF);
1296 
1297 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1298 	stat->tx_pause_frames += (value >> 8);
1299 	stat->rx_pause_frames += (value & 0xFF);
1300 }
1301 
1302 static uint64_t
vte_get_counter(if_t ifp,ift_counter cnt)1303 vte_get_counter(if_t ifp, ift_counter cnt)
1304 {
1305 	struct vte_softc *sc;
1306 	struct vte_hw_stats *stat;
1307 
1308 	sc = if_getsoftc(ifp);
1309 	stat = &sc->vte_stats;
1310 
1311 	switch (cnt) {
1312 	case IFCOUNTER_OPACKETS:
1313 		return (stat->tx_frames);
1314 	case IFCOUNTER_COLLISIONS:
1315 		return (stat->tx_late_colls);
1316 	case IFCOUNTER_OERRORS:
1317 		return (stat->tx_late_colls + stat->tx_underruns);
1318 	case IFCOUNTER_IPACKETS:
1319 		return (stat->rx_frames);
1320 	case IFCOUNTER_IERRORS:
1321 		return (stat->rx_crcerrs + stat->rx_runts +
1322 		    stat->rx_long_frames + stat->rx_fifo_full);
1323 	default:
1324 		return (if_get_counter_default(ifp, cnt));
1325 	}
1326 }
1327 
1328 static void
vte_intr(void * arg)1329 vte_intr(void *arg)
1330 {
1331 	struct vte_softc *sc;
1332 	if_t ifp;
1333 	uint16_t status;
1334 	int n;
1335 
1336 	sc = (struct vte_softc *)arg;
1337 	VTE_LOCK(sc);
1338 
1339 	ifp = sc->vte_ifp;
1340 	/* Reading VTE_MISR acknowledges interrupts. */
1341 	status = CSR_READ_2(sc, VTE_MISR);
1342 	if ((status & VTE_INTRS) == 0) {
1343 		/* Not ours. */
1344 		VTE_UNLOCK(sc);
1345 		return;
1346 	}
1347 
1348 	/* Disable interrupts. */
1349 	CSR_WRITE_2(sc, VTE_MIER, 0);
1350 	for (n = 8; (status & VTE_INTRS) != 0;) {
1351 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1352 			break;
1353 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1354 		    MISR_RX_FIFO_FULL)) != 0)
1355 			vte_rxeof(sc);
1356 		if ((status & MISR_TX_DONE) != 0)
1357 			vte_txeof(sc);
1358 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1359 			vte_stats_update(sc);
1360 		if (!if_sendq_empty(ifp))
1361 			vte_start_locked(sc);
1362 		if (--n > 0)
1363 			status = CSR_READ_2(sc, VTE_MISR);
1364 		else
1365 			break;
1366 	}
1367 
1368 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1369 		/* Re-enable interrupts. */
1370 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1371 	}
1372 	VTE_UNLOCK(sc);
1373 }
1374 
1375 static void
vte_txeof(struct vte_softc * sc)1376 vte_txeof(struct vte_softc *sc)
1377 {
1378 	if_t ifp;
1379 	struct vte_txdesc *txd;
1380 	uint16_t status;
1381 	int cons, prog;
1382 
1383 	VTE_LOCK_ASSERT(sc);
1384 
1385 	ifp = sc->vte_ifp;
1386 
1387 	if (sc->vte_cdata.vte_tx_cnt == 0)
1388 		return;
1389 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1390 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1391 	    BUS_DMASYNC_POSTWRITE);
1392 	cons = sc->vte_cdata.vte_tx_cons;
1393 	/*
1394 	 * Go through our TX list and free mbufs for those
1395 	 * frames which have been transmitted.
1396 	 */
1397 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1398 		txd = &sc->vte_cdata.vte_txdesc[cons];
1399 		status = le16toh(txd->tx_desc->dtst);
1400 		if ((status & VTE_DTST_TX_OWN) != 0)
1401 			break;
1402 		sc->vte_cdata.vte_tx_cnt--;
1403 		/* Reclaim transmitted mbufs. */
1404 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1405 		    BUS_DMASYNC_POSTWRITE);
1406 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1407 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1408 			m_freem(txd->tx_m);
1409 		txd->tx_flags &= ~VTE_TXMBUF;
1410 		txd->tx_m = NULL;
1411 		prog++;
1412 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1413 	}
1414 
1415 	if (prog > 0) {
1416 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1417 		sc->vte_cdata.vte_tx_cons = cons;
1418 		/*
1419 		 * Unarm watchdog timer only when there is no pending
1420 		 * frames in TX queue.
1421 		 */
1422 		if (sc->vte_cdata.vte_tx_cnt == 0)
1423 			sc->vte_watchdog_timer = 0;
1424 	}
1425 }
1426 
1427 static int
vte_newbuf(struct vte_softc * sc,struct vte_rxdesc * rxd)1428 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1429 {
1430 	struct mbuf *m;
1431 	bus_dma_segment_t segs[1];
1432 	bus_dmamap_t map;
1433 	int nsegs;
1434 
1435 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1436 	if (m == NULL)
1437 		return (ENOBUFS);
1438 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1439 	m_adj(m, sizeof(uint32_t));
1440 
1441 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1442 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1443 		m_freem(m);
1444 		return (ENOBUFS);
1445 	}
1446 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1447 
1448 	if (rxd->rx_m != NULL) {
1449 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1450 		    BUS_DMASYNC_POSTREAD);
1451 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1452 	}
1453 	map = rxd->rx_dmamap;
1454 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1455 	sc->vte_cdata.vte_rx_sparemap = map;
1456 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1457 	    BUS_DMASYNC_PREREAD);
1458 	rxd->rx_m = m;
1459 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1460 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1461 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1462 
1463 	return (0);
1464 }
1465 
1466 /*
1467  * It's not supposed to see this controller on strict-alignment
1468  * architectures but make it work for completeness.
1469  */
1470 #ifndef __NO_STRICT_ALIGNMENT
1471 static struct mbuf *
vte_fixup_rx(if_t ifp,struct mbuf * m)1472 vte_fixup_rx(if_t ifp, struct mbuf *m)
1473 {
1474         uint16_t *src, *dst;
1475         int i;
1476 
1477 	src = mtod(m, uint16_t *);
1478 	dst = src - 1;
1479 
1480 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1481 		*dst++ = *src++;
1482 	m->m_data -= ETHER_ALIGN;
1483 	return (m);
1484 }
1485 #endif
1486 
1487 static void
vte_rxeof(struct vte_softc * sc)1488 vte_rxeof(struct vte_softc *sc)
1489 {
1490 	if_t ifp;
1491 	struct vte_rxdesc *rxd;
1492 	struct mbuf *m;
1493 	uint16_t status, total_len;
1494 	int cons, prog;
1495 
1496 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1497 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1498 	    BUS_DMASYNC_POSTWRITE);
1499 	cons = sc->vte_cdata.vte_rx_cons;
1500 	ifp = sc->vte_ifp;
1501 	for (prog = 0; (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0; prog++,
1502 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1503 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1504 		status = le16toh(rxd->rx_desc->drst);
1505 		if ((status & VTE_DRST_RX_OWN) != 0)
1506 			break;
1507 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1508 		m = rxd->rx_m;
1509 		if ((status & VTE_DRST_RX_OK) == 0) {
1510 			/* Discard errored frame. */
1511 			rxd->rx_desc->drlen =
1512 			    htole16(MCLBYTES - sizeof(uint32_t));
1513 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1514 			continue;
1515 		}
1516 		if (vte_newbuf(sc, rxd) != 0) {
1517 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1518 			rxd->rx_desc->drlen =
1519 			    htole16(MCLBYTES - sizeof(uint32_t));
1520 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1521 			continue;
1522 		}
1523 
1524 		/*
1525 		 * It seems there is no way to strip FCS bytes.
1526 		 */
1527 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1528 		m->m_pkthdr.rcvif = ifp;
1529 #ifndef __NO_STRICT_ALIGNMENT
1530 		vte_fixup_rx(ifp, m);
1531 #endif
1532 		VTE_UNLOCK(sc);
1533 		if_input(ifp, m);
1534 		VTE_LOCK(sc);
1535 	}
1536 
1537 	if (prog > 0) {
1538 		/* Update the consumer index. */
1539 		sc->vte_cdata.vte_rx_cons = cons;
1540 		/*
1541 		 * Sync updated RX descriptors such that controller see
1542 		 * modified RX buffer addresses.
1543 		 */
1544 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1545 		    sc->vte_cdata.vte_rx_ring_map,
1546 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1547 #ifdef notyet
1548 		/*
1549 		 * Update residue counter.  Controller does not
1550 		 * keep track of number of available RX descriptors
1551 		 * such that driver should have to update VTE_MRDCR
1552 		 * to make controller know how many free RX
1553 		 * descriptors were added to controller.  This is
1554 		 * a similar mechanism used in VIA velocity
1555 		 * controllers and it indicates controller just
1556 		 * polls OWN bit of current RX descriptor pointer.
1557 		 * A couple of severe issues were seen on sample
1558 		 * board where the controller continuously emits TX
1559 		 * pause frames once RX pause threshold crossed.
1560 		 * Once triggered it never recovered form that
1561 		 * state, I couldn't find a way to make it back to
1562 		 * work at least.  This issue effectively
1563 		 * disconnected the system from network.  Also, the
1564 		 * controller used 00:00:00:00:00:00 as source
1565 		 * station address of TX pause frame. Probably this
1566 		 * is one of reason why vendor recommends not to
1567 		 * enable flow control on R6040 controller.
1568 		 */
1569 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1570 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1571 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1572 #endif
1573 	}
1574 }
1575 
1576 static void
vte_tick(void * arg)1577 vte_tick(void *arg)
1578 {
1579 	struct vte_softc *sc;
1580 	struct mii_data *mii;
1581 
1582 	sc = (struct vte_softc *)arg;
1583 
1584 	VTE_LOCK_ASSERT(sc);
1585 
1586 	mii = device_get_softc(sc->vte_miibus);
1587 	mii_tick(mii);
1588 	vte_stats_update(sc);
1589 	vte_txeof(sc);
1590 	vte_watchdog(sc);
1591 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1592 }
1593 
1594 static void
vte_reset(struct vte_softc * sc)1595 vte_reset(struct vte_softc *sc)
1596 {
1597 	uint16_t mcr, mdcsc;
1598 	int i;
1599 
1600 	mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1601 	mcr = CSR_READ_2(sc, VTE_MCR1);
1602 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1603 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1604 		DELAY(10);
1605 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1606 			break;
1607 	}
1608 	if (i == 0)
1609 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1610 	/*
1611 	 * Follow the guide of vendor recommended way to reset MAC.
1612 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1613 	 * not reliable so manually reset internal state machine.
1614 	 */
1615 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1616 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1617 	DELAY(5000);
1618 
1619 	/*
1620 	 * On some SoCs (like Vortex86DX3) MDC speed control register value
1621 	 * needs to be restored to original value instead of default one,
1622 	 * otherwise some PHY registers may fail to be read.
1623 	 */
1624 	if (mdcsc != MDCSC_DEFAULT)
1625 		CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1626 }
1627 
1628 static void
vte_init(void * xsc)1629 vte_init(void *xsc)
1630 {
1631 	struct vte_softc *sc;
1632 
1633 	sc = (struct vte_softc *)xsc;
1634 	VTE_LOCK(sc);
1635 	vte_init_locked(sc);
1636 	VTE_UNLOCK(sc);
1637 }
1638 
1639 static void
vte_init_locked(struct vte_softc * sc)1640 vte_init_locked(struct vte_softc *sc)
1641 {
1642 	if_t ifp;
1643 	bus_addr_t paddr;
1644 	uint8_t *eaddr;
1645 
1646 	VTE_LOCK_ASSERT(sc);
1647 
1648 	ifp = sc->vte_ifp;
1649 
1650 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1651 		return;
1652 	/*
1653 	 * Cancel any pending I/O.
1654 	 */
1655 	vte_stop(sc);
1656 	/*
1657 	 * Reset the chip to a known state.
1658 	 */
1659 	vte_reset(sc);
1660 
1661 	/* Initialize RX descriptors. */
1662 	if (vte_init_rx_ring(sc) != 0) {
1663 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1664 		vte_stop(sc);
1665 		return;
1666 	}
1667 	if (vte_init_tx_ring(sc) != 0) {
1668 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1669 		vte_stop(sc);
1670 		return;
1671 	}
1672 
1673 	/*
1674 	 * Reprogram the station address.  Controller supports up
1675 	 * to 4 different station addresses so driver programs the
1676 	 * first station address as its own ethernet address and
1677 	 * configure the remaining three addresses as perfect
1678 	 * multicast addresses.
1679 	 */
1680 	eaddr = if_getlladdr(sc->vte_ifp);
1681 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1682 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1683 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1684 
1685 	/* Set TX descriptor base addresses. */
1686 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1687 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1688 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1689 	/* Set RX descriptor base addresses. */
1690 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1691 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1692 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1693 	/*
1694 	 * Initialize RX descriptor residue counter and set RX
1695 	 * pause threshold to 20% of available RX descriptors.
1696 	 * See comments on vte_rxeof() for details on flow control
1697 	 * issues.
1698 	 */
1699 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1700 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1701 
1702 	/*
1703 	 * Always use maximum frame size that controller can
1704 	 * support.  Otherwise received frames that has longer
1705 	 * frame length than vte(4) MTU would be silently dropped
1706 	 * in controller.  This would break path-MTU discovery as
1707 	 * sender wouldn't get any responses from receiver. The
1708 	 * RX buffer size should be multiple of 4.
1709 	 * Note, jumbo frames are silently ignored by controller
1710 	 * and even MAC counters do not detect them.
1711 	 */
1712 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1713 
1714 	/* Configure FIFO. */
1715 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1716 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1717 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1718 
1719 	/*
1720 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1721 	 * control configuration is done after detecting a valid
1722 	 * link.  Note, we don't generate early interrupt here
1723 	 * as well since FreeBSD does not have interrupt latency
1724 	 * problems like Windows.
1725 	 */
1726 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1727 	/*
1728 	 * We manually keep track of PHY status changes to
1729 	 * configure resolved duplex and flow control since only
1730 	 * duplex configuration can be automatically reflected to
1731 	 * MCR0.
1732 	 */
1733 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1734 	    MCR1_EXCESS_COL_RETRY_16);
1735 
1736 	/* Initialize RX filter. */
1737 	vte_rxfilter(sc);
1738 
1739 	/* Disable TX/RX interrupt moderation control. */
1740 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1741 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1742 
1743 	/* Enable MAC event counter interrupts. */
1744 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1745 	/* Clear MAC statistics. */
1746 	vte_stats_clear(sc);
1747 
1748 	/* Acknowledge all pending interrupts and clear it. */
1749 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1750 	CSR_WRITE_2(sc, VTE_MISR, 0);
1751 
1752 	sc->vte_flags &= ~VTE_FLAG_LINK;
1753 	/* Switch to the current media. */
1754 	vte_mediachange_locked(ifp);
1755 
1756 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1757 
1758 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1759 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1760 }
1761 
1762 static void
vte_stop(struct vte_softc * sc)1763 vte_stop(struct vte_softc *sc)
1764 {
1765 	if_t ifp;
1766 	struct vte_txdesc *txd;
1767 	struct vte_rxdesc *rxd;
1768 	int i;
1769 
1770 	VTE_LOCK_ASSERT(sc);
1771 	/*
1772 	 * Mark the interface down and cancel the watchdog timer.
1773 	 */
1774 	ifp = sc->vte_ifp;
1775 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1776 	sc->vte_flags &= ~VTE_FLAG_LINK;
1777 	callout_stop(&sc->vte_tick_ch);
1778 	sc->vte_watchdog_timer = 0;
1779 	vte_stats_update(sc);
1780 	/* Disable interrupts. */
1781 	CSR_WRITE_2(sc, VTE_MIER, 0);
1782 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1783 	/* Stop RX/TX MACs. */
1784 	vte_stop_mac(sc);
1785 	/* Clear interrupts. */
1786 	CSR_READ_2(sc, VTE_MISR);
1787 	/*
1788 	 * Free TX/RX mbufs still in the queues.
1789 	 */
1790 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1791 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1792 		if (rxd->rx_m != NULL) {
1793 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1794 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1795 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1796 			    rxd->rx_dmamap);
1797 			m_freem(rxd->rx_m);
1798 			rxd->rx_m = NULL;
1799 		}
1800 	}
1801 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1802 		txd = &sc->vte_cdata.vte_txdesc[i];
1803 		if (txd->tx_m != NULL) {
1804 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1805 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1806 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1807 			    txd->tx_dmamap);
1808 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1809 				m_freem(txd->tx_m);
1810 			txd->tx_m = NULL;
1811 			txd->tx_flags &= ~VTE_TXMBUF;
1812 		}
1813 	}
1814 	/* Free TX mbuf pools used for deep copy. */
1815 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1816 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1817 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1818 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1819 		}
1820 	}
1821 }
1822 
1823 static void
vte_start_mac(struct vte_softc * sc)1824 vte_start_mac(struct vte_softc *sc)
1825 {
1826 	uint16_t mcr;
1827 	int i;
1828 
1829 	VTE_LOCK_ASSERT(sc);
1830 
1831 	/* Enable RX/TX MACs. */
1832 	mcr = CSR_READ_2(sc, VTE_MCR0);
1833 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1834 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1835 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1836 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1837 		for (i = VTE_TIMEOUT; i > 0; i--) {
1838 			mcr = CSR_READ_2(sc, VTE_MCR0);
1839 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1840 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1841 				break;
1842 			DELAY(10);
1843 		}
1844 		if (i == 0)
1845 			device_printf(sc->vte_dev,
1846 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1847 	}
1848 }
1849 
1850 static void
vte_stop_mac(struct vte_softc * sc)1851 vte_stop_mac(struct vte_softc *sc)
1852 {
1853 	uint16_t mcr;
1854 	int i;
1855 
1856 	VTE_LOCK_ASSERT(sc);
1857 
1858 	/* Disable RX/TX MACs. */
1859 	mcr = CSR_READ_2(sc, VTE_MCR0);
1860 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1861 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1862 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1863 		for (i = VTE_TIMEOUT; i > 0; i--) {
1864 			mcr = CSR_READ_2(sc, VTE_MCR0);
1865 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1866 				break;
1867 			DELAY(10);
1868 		}
1869 		if (i == 0)
1870 			device_printf(sc->vte_dev,
1871 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1872 	}
1873 }
1874 
1875 static int
vte_init_tx_ring(struct vte_softc * sc)1876 vte_init_tx_ring(struct vte_softc *sc)
1877 {
1878 	struct vte_tx_desc *desc;
1879 	struct vte_txdesc *txd;
1880 	bus_addr_t addr;
1881 	int i;
1882 
1883 	VTE_LOCK_ASSERT(sc);
1884 
1885 	sc->vte_cdata.vte_tx_prod = 0;
1886 	sc->vte_cdata.vte_tx_cons = 0;
1887 	sc->vte_cdata.vte_tx_cnt = 0;
1888 
1889 	/* Pre-allocate TX mbufs for deep copy. */
1890 	if (tx_deep_copy != 0) {
1891 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1892 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1893 			    MT_DATA, M_PKTHDR);
1894 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1895 				return (ENOBUFS);
1896 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1897 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1898 		}
1899 	}
1900 	desc = sc->vte_cdata.vte_tx_ring;
1901 	bzero(desc, VTE_TX_RING_SZ);
1902 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1903 		txd = &sc->vte_cdata.vte_txdesc[i];
1904 		txd->tx_m = NULL;
1905 		if (i != VTE_TX_RING_CNT - 1)
1906 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1907 			    sizeof(struct vte_tx_desc) * (i + 1);
1908 		else
1909 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1910 			    sizeof(struct vte_tx_desc) * 0;
1911 		desc = &sc->vte_cdata.vte_tx_ring[i];
1912 		desc->dtnp = htole32(addr);
1913 		txd->tx_desc = desc;
1914 	}
1915 
1916 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1917 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1918 	    BUS_DMASYNC_PREWRITE);
1919 	return (0);
1920 }
1921 
1922 static int
vte_init_rx_ring(struct vte_softc * sc)1923 vte_init_rx_ring(struct vte_softc *sc)
1924 {
1925 	struct vte_rx_desc *desc;
1926 	struct vte_rxdesc *rxd;
1927 	bus_addr_t addr;
1928 	int i;
1929 
1930 	VTE_LOCK_ASSERT(sc);
1931 
1932 	sc->vte_cdata.vte_rx_cons = 0;
1933 	desc = sc->vte_cdata.vte_rx_ring;
1934 	bzero(desc, VTE_RX_RING_SZ);
1935 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1936 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1937 		rxd->rx_m = NULL;
1938 		if (i != VTE_RX_RING_CNT - 1)
1939 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1940 			    sizeof(struct vte_rx_desc) * (i + 1);
1941 		else
1942 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1943 			    sizeof(struct vte_rx_desc) * 0;
1944 		desc = &sc->vte_cdata.vte_rx_ring[i];
1945 		desc->drnp = htole32(addr);
1946 		rxd->rx_desc = desc;
1947 		if (vte_newbuf(sc, rxd) != 0)
1948 			return (ENOBUFS);
1949 	}
1950 
1951 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1952 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1953 	    BUS_DMASYNC_PREWRITE);
1954 
1955 	return (0);
1956 }
1957 
1958 struct vte_maddr_ctx {
1959 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1960 	uint16_t mchash[4];
1961 	u_int nperf;
1962 };
1963 
1964 static u_int
vte_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)1965 vte_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1966 {
1967 	struct vte_maddr_ctx *ctx = arg;
1968 	uint8_t *eaddr;
1969 	uint32_t crc;
1970 
1971 	/*
1972 	 * Program the first 3 multicast groups into the perfect filter.
1973 	 * For all others, use the hash table.
1974 	 */
1975 	if (ctx->nperf < VTE_RXFILT_PERFECT_CNT) {
1976 		eaddr = LLADDR(sdl);
1977 		ctx->rxfilt_perf[ctx->nperf][0] = eaddr[1] << 8 | eaddr[0];
1978 		ctx->rxfilt_perf[ctx->nperf][1] = eaddr[3] << 8 | eaddr[2];
1979 		ctx->rxfilt_perf[ctx->nperf][2] = eaddr[5] << 8 | eaddr[4];
1980 		ctx->nperf++;
1981 
1982 		return (1);
1983 	}
1984 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
1985 	ctx->mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1986 
1987 	return (1);
1988 }
1989 
1990 static void
vte_rxfilter(struct vte_softc * sc)1991 vte_rxfilter(struct vte_softc *sc)
1992 {
1993 	if_t ifp;
1994 	struct vte_maddr_ctx ctx;
1995 	uint16_t mcr;
1996 	int i;
1997 
1998 	VTE_LOCK_ASSERT(sc);
1999 
2000 	ifp = sc->vte_ifp;
2001 
2002 	bzero(ctx.mchash, sizeof(ctx.mchash));
2003 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2004 		ctx.rxfilt_perf[i][0] = 0xFFFF;
2005 		ctx.rxfilt_perf[i][1] = 0xFFFF;
2006 		ctx.rxfilt_perf[i][2] = 0xFFFF;
2007 	}
2008 	ctx.nperf = 0;
2009 
2010 	mcr = CSR_READ_2(sc, VTE_MCR0);
2011 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
2012 	mcr |= MCR0_BROADCAST_DIS;
2013 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2014 		mcr &= ~MCR0_BROADCAST_DIS;
2015 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2016 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2017 			mcr |= MCR0_PROMISC;
2018 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2019 			mcr |= MCR0_MULTICAST;
2020 		ctx.mchash[0] = 0xFFFF;
2021 		ctx.mchash[1] = 0xFFFF;
2022 		ctx.mchash[2] = 0xFFFF;
2023 		ctx.mchash[3] = 0xFFFF;
2024 		goto chipit;
2025 	}
2026 
2027 	if_foreach_llmaddr(ifp, vte_hash_maddr, &ctx);
2028 	if (ctx.mchash[0] != 0 || ctx.mchash[1] != 0 ||
2029 	    ctx.mchash[2] != 0 || ctx.mchash[3] != 0)
2030 		mcr |= MCR0_MULTICAST;
2031 
2032 chipit:
2033 	/* Program multicast hash table. */
2034 	CSR_WRITE_2(sc, VTE_MAR0, ctx.mchash[0]);
2035 	CSR_WRITE_2(sc, VTE_MAR1, ctx.mchash[1]);
2036 	CSR_WRITE_2(sc, VTE_MAR2, ctx.mchash[2]);
2037 	CSR_WRITE_2(sc, VTE_MAR3, ctx.mchash[3]);
2038 	/* Program perfect filter table. */
2039 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2040 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2041 		    ctx.rxfilt_perf[i][0]);
2042 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2043 		    ctx.rxfilt_perf[i][1]);
2044 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2045 		    ctx.rxfilt_perf[i][2]);
2046 	}
2047 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2048 	CSR_READ_2(sc, VTE_MCR0);
2049 }
2050 
2051 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)2052 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2053 {
2054 	int error, value;
2055 
2056 	if (arg1 == NULL)
2057 		return (EINVAL);
2058 	value = *(int *)arg1;
2059 	error = sysctl_handle_int(oidp, &value, 0, req);
2060 	if (error || req->newptr == NULL)
2061 		return (error);
2062 	if (value < low || value > high)
2063 		return (EINVAL);
2064 	*(int *)arg1 = value;
2065 
2066 	return (0);
2067 }
2068 
2069 static int
sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)2070 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2071 {
2072 
2073 	return (sysctl_int_range(oidp, arg1, arg2, req,
2074 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2075 }
2076