xref: /freebsd-14.2/sys/dev/uart/uart_dev_ns8250.c (revision bedc8daa)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <machine/bus.h>
41 
42 #ifdef FDT
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/ofw_bus.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46 #endif
47 
48 #include <dev/uart/uart.h>
49 #include <dev/uart/uart_cpu.h>
50 #ifdef FDT
51 #include <dev/uart/uart_cpu_fdt.h>
52 #endif
53 #include <dev/uart/uart_bus.h>
54 #include <dev/uart/uart_dev_ns8250.h>
55 #include <dev/uart/uart_ppstypes.h>
56 #ifdef DEV_ACPI
57 #include <dev/uart/uart_cpu_acpi.h>
58 #include <contrib/dev/acpica/include/acpi.h>
59 #endif
60 
61 #include <dev/ic/ns16550.h>
62 
63 #include "uart_if.h"
64 
65 #define	DEFAULT_RCLK	1843200
66 
67 /*
68  * Set the default baudrate tolerance to 3.0%.
69  *
70  * Some embedded boards have odd reference clocks (eg 25MHz)
71  * and we need to handle higher variances in the target baud rate.
72  */
73 #ifndef	UART_DEV_TOLERANCE_PCT
74 #define	UART_DEV_TOLERANCE_PCT	30
75 #endif	/* UART_DEV_TOLERANCE_PCT */
76 
77 static int broken_txfifo = 0;
78 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
79 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
80 
81 /*
82  * Clear pending interrupts. THRE is cleared by reading IIR. Data
83  * that may have been received gets lost here.
84  */
85 static void
86 ns8250_clrint(struct uart_bas *bas)
87 {
88 	uint8_t iir, lsr;
89 
90 	iir = uart_getreg(bas, REG_IIR);
91 	while ((iir & IIR_NOPEND) == 0) {
92 		iir &= IIR_IMASK;
93 		if (iir == IIR_RLS) {
94 			lsr = uart_getreg(bas, REG_LSR);
95 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
96 				(void)uart_getreg(bas, REG_DATA);
97 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
98 			(void)uart_getreg(bas, REG_DATA);
99 		else if (iir == IIR_MLSC)
100 			(void)uart_getreg(bas, REG_MSR);
101 		uart_barrier(bas);
102 		iir = uart_getreg(bas, REG_IIR);
103 	}
104 }
105 
106 static int
107 ns8250_delay(struct uart_bas *bas)
108 {
109 	int divisor;
110 	u_char lcr;
111 
112 	lcr = uart_getreg(bas, REG_LCR);
113 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
114 	uart_barrier(bas);
115 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
116 	uart_barrier(bas);
117 	uart_setreg(bas, REG_LCR, lcr);
118 	uart_barrier(bas);
119 
120 	/* 1/10th the time to transmit 1 character (estimate). */
121 	if (divisor <= 134)
122 		return (16000000 * divisor / bas->rclk);
123 	return (16000 * divisor / (bas->rclk / 1000));
124 }
125 
126 static int
127 ns8250_divisor(int rclk, int baudrate)
128 {
129 	int actual_baud, divisor;
130 	int error;
131 
132 	if (baudrate == 0)
133 		return (0);
134 
135 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
136 	if (divisor == 0 || divisor >= 65536)
137 		return (0);
138 	actual_baud = rclk / (divisor << 4);
139 
140 	/* 10 times error in percent: */
141 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
142 
143 	/* enforce maximum error tolerance: */
144 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
145 		return (0);
146 
147 	return (divisor);
148 }
149 
150 static int
151 ns8250_drain(struct uart_bas *bas, int what)
152 {
153 	int delay, limit;
154 
155 	delay = ns8250_delay(bas);
156 
157 	if (what & UART_DRAIN_TRANSMITTER) {
158 		/*
159 		 * Pick an arbitrary high limit to avoid getting stuck in
160 		 * an infinite loop when the hardware is broken. Make the
161 		 * limit high enough to handle large FIFOs.
162 		 */
163 		limit = 10*1024;
164 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
165 			DELAY(delay);
166 		if (limit == 0) {
167 			/* printf("ns8250: transmitter appears stuck... "); */
168 			return (EIO);
169 		}
170 	}
171 
172 	if (what & UART_DRAIN_RECEIVER) {
173 		/*
174 		 * Pick an arbitrary high limit to avoid getting stuck in
175 		 * an infinite loop when the hardware is broken. Make the
176 		 * limit high enough to handle large FIFOs and integrated
177 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
178 		 * management board that tend to get a lot of data send
179 		 * to it when the UART is first activated.  Assume that we
180 		 * have finished draining if LSR_RXRDY is not asserted both
181 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
182 		 * asserted, read (and discard) characters as quickly as
183 		 * possible.
184 		 */
185 		limit=10*4096;
186 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
187 			do {
188 				(void)uart_getreg(bas, REG_DATA);
189 				uart_barrier(bas);
190 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
191 			uart_barrier(bas);
192 			DELAY(delay << 2);
193 		}
194 		if (limit == 0) {
195 			/* printf("ns8250: receiver appears broken... "); */
196 			return (EIO);
197 		}
198 	}
199 
200 	return (0);
201 }
202 
203 /*
204  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
205  * drained. WARNING: this function clobbers the FIFO setting!
206  */
207 static void
208 ns8250_flush(struct uart_bas *bas, int what)
209 {
210 	uint8_t fcr;
211 	uint8_t lsr;
212 	int drain = 0;
213 
214 	fcr = FCR_ENABLE;
215 #ifdef CPU_XBURST
216 	fcr |= FCR_UART_ON;
217 #endif
218 	if (what & UART_FLUSH_TRANSMITTER)
219 		fcr |= FCR_XMT_RST;
220 	if (what & UART_FLUSH_RECEIVER)
221 		fcr |= FCR_RCV_RST;
222 	uart_setreg(bas, REG_FCR, fcr);
223 	uart_barrier(bas);
224 
225 	/*
226 	 * Detect and work around emulated UARTs which don't implement the
227 	 * FCR register; on these systems we need to drain the FIFO since
228 	 * the flush we request doesn't happen.  One such system is the
229 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
230 	 * https://github.com/rust-vmm/vm-superio/issues/83
231 	 */
232 	lsr = uart_getreg(bas, REG_LSR);
233 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
234 		drain |= UART_DRAIN_TRANSMITTER;
235 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
236 		drain |= UART_DRAIN_RECEIVER;
237 	if (drain != 0) {
238 		printf("ns8250: UART FCR is broken\n");
239 		ns8250_drain(bas, drain);
240 	}
241 }
242 
243 static int
244 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
245     int parity)
246 {
247 	int divisor;
248 	uint8_t lcr;
249 
250 	/* Don't change settings when running on Hyper-V */
251 	if (vm_guest == VM_GUEST_HV)
252 		return (0);
253 
254 	lcr = 0;
255 	if (databits >= 8)
256 		lcr |= LCR_8BITS;
257 	else if (databits == 7)
258 		lcr |= LCR_7BITS;
259 	else if (databits == 6)
260 		lcr |= LCR_6BITS;
261 	else
262 		lcr |= LCR_5BITS;
263 	if (stopbits > 1)
264 		lcr |= LCR_STOPB;
265 	lcr |= parity << 3;
266 
267 	/* Set baudrate. */
268 	if (baudrate > 0) {
269 		divisor = ns8250_divisor(bas->rclk, baudrate);
270 		if (divisor == 0)
271 			return (EINVAL);
272 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
273 		uart_barrier(bas);
274 		uart_setreg(bas, REG_DLL, divisor & 0xff);
275 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
276 		uart_barrier(bas);
277 	}
278 
279 	/* Set LCR and clear DLAB. */
280 	uart_setreg(bas, REG_LCR, lcr);
281 	uart_barrier(bas);
282 	return (0);
283 }
284 
285 /*
286  * Low-level UART interface.
287  */
288 static int ns8250_probe(struct uart_bas *bas);
289 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
290 static void ns8250_term(struct uart_bas *bas);
291 static void ns8250_putc(struct uart_bas *bas, int);
292 static int ns8250_rxready(struct uart_bas *bas);
293 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
294 
295 struct uart_ops uart_ns8250_ops = {
296 	.probe = ns8250_probe,
297 	.init = ns8250_init,
298 	.term = ns8250_term,
299 	.putc = ns8250_putc,
300 	.rxready = ns8250_rxready,
301 	.getc = ns8250_getc,
302 };
303 
304 static int
305 ns8250_probe(struct uart_bas *bas)
306 {
307 	u_char val;
308 
309 #ifdef CPU_XBURST
310 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
311 #endif
312 
313 	/* Check known 0 bits that don't depend on DLAB. */
314 	val = uart_getreg(bas, REG_IIR);
315 	if (val & 0x30)
316 		return (ENXIO);
317 	/*
318 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
319 	 * chip, but otherwise doesn't seem to have a function. In
320 	 * other words, uart(4) works regardless. Ignore that bit so
321 	 * the probe succeeds.
322 	 */
323 	val = uart_getreg(bas, REG_MCR);
324 	if (val & 0xa0)
325 		return (ENXIO);
326 
327 	return (0);
328 }
329 
330 static void
331 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
332     int parity)
333 {
334 	u_char ier, val;
335 
336 	if (bas->rclk == 0)
337 		bas->rclk = DEFAULT_RCLK;
338 	ns8250_param(bas, baudrate, databits, stopbits, parity);
339 
340 	/* Disable all interrupt sources. */
341 	/*
342 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
343 	 * UARTs split the receive time-out interrupt bit out separately as
344 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
345 	 */
346 	ier = uart_getreg(bas, REG_IER) & 0xe0;
347 	uart_setreg(bas, REG_IER, ier);
348 	uart_barrier(bas);
349 
350 	/* Disable the FIFO (if present). */
351 	val = 0;
352 #ifdef CPU_XBURST
353 	val |= FCR_UART_ON;
354 #endif
355 	uart_setreg(bas, REG_FCR, val);
356 	uart_barrier(bas);
357 
358 	/* Set RTS & DTR. */
359 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
360 	uart_barrier(bas);
361 
362 	ns8250_clrint(bas);
363 }
364 
365 static void
366 ns8250_term(struct uart_bas *bas)
367 {
368 
369 	/* Clear RTS & DTR. */
370 	uart_setreg(bas, REG_MCR, MCR_IE);
371 	uart_barrier(bas);
372 }
373 
374 static void
375 ns8250_putc(struct uart_bas *bas, int c)
376 {
377 	int limit;
378 
379 	if (vm_guest != VM_GUEST_HV) {
380 		limit = 250000;
381 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
382 			DELAY(4);
383 	}
384 	uart_setreg(bas, REG_DATA, c);
385 	uart_barrier(bas);
386 }
387 
388 static int
389 ns8250_rxready(struct uart_bas *bas)
390 {
391 
392 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
393 }
394 
395 static int
396 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
397 {
398 	int c;
399 
400 	uart_lock(hwmtx);
401 
402 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
403 		uart_unlock(hwmtx);
404 		DELAY(4);
405 		uart_lock(hwmtx);
406 	}
407 
408 	c = uart_getreg(bas, REG_DATA);
409 
410 	uart_unlock(hwmtx);
411 
412 	return (c);
413 }
414 
415 static kobj_method_t ns8250_methods[] = {
416 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
417 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
418 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
419 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
420 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
421 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
422 	KOBJMETHOD(uart_param,		ns8250_bus_param),
423 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
424 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
425 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
426 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
427 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
428 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
429 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
430 	KOBJMETHOD_END
431 };
432 
433 struct uart_class uart_ns8250_class = {
434 	"ns8250",
435 	ns8250_methods,
436 	sizeof(struct ns8250_softc),
437 	.uc_ops = &uart_ns8250_ops,
438 	.uc_range = 8,
439 	.uc_rclk = DEFAULT_RCLK,
440 	.uc_rshift = 0
441 };
442 
443 /*
444  * XXX -- refactor out ACPI and FDT ifdefs
445  */
446 #ifdef DEV_ACPI
447 static struct acpi_uart_compat_data acpi_compat_data[] = {
448 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
449 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
450 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
451 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
452 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
453 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
454 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
455 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
456 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
457 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
458 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
459 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
460 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
461 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
462 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
463 };
464 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
465 #endif
466 
467 #ifdef FDT
468 static struct ofw_compat_data compat_data[] = {
469 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
470 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
471 	{NULL,			(uintptr_t)NULL},
472 };
473 UART_FDT_CLASS_AND_DEVICE(compat_data);
474 #endif
475 
476 /* Use token-pasting to form SER_ and MSR_ named constants. */
477 #define	SER(sig)	SER_##sig
478 #define	SERD(sig)	SER_D##sig
479 #define	MSR(sig)	MSR_##sig
480 #define	MSRD(sig)	MSR_D##sig
481 
482 /*
483  * Detect signal changes using software delta detection.  The previous state of
484  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
485  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
486  * new state of both the signal and the delta bits.
487  */
488 #define SIGCHGSW(var, msr, sig)					\
489 	if ((msr) & MSR(sig)) {					\
490 		if ((var & SER(sig)) == 0)			\
491 			var |= SERD(sig) | SER(sig);		\
492 	} else {						\
493 		if ((var & SER(sig)) != 0)			\
494 			var = SERD(sig) | (var & ~SER(sig));	\
495 	}
496 
497 /*
498  * Detect signal changes using the hardware msr delta bits.  This is currently
499  * used only when PPS timing information is being captured using the "narrow
500  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
501  * by time the interrupt handler is invoked.  The hardware will latch the fact
502  * that it changed in the delta bits.
503  */
504 #define SIGCHGHW(var, msr, sig)					\
505 	if ((msr) & MSRD(sig)) {				\
506 		if (((msr) & MSR(sig)) != 0)			\
507 			var |= SERD(sig) | SER(sig);		\
508 		else						\
509 			var = SERD(sig) | (var & ~SER(sig));	\
510 	}
511 
512 int
513 ns8250_bus_attach(struct uart_softc *sc)
514 {
515 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
516 	struct uart_bas *bas;
517 	unsigned int ivar;
518 #ifdef FDT
519 	phandle_t node;
520 	pcell_t cell;
521 #endif
522 
523 #ifdef FDT
524 	/* Check whether uart has a broken txfifo. */
525 	node = ofw_bus_get_node(sc->sc_dev);
526 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
527 		broken_txfifo =  cell ? 1 : 0;
528 #endif
529 
530 	bas = &sc->sc_bas;
531 
532 	ns8250->busy_detect = bas->busy_detect;
533 	ns8250->mcr = uart_getreg(bas, REG_MCR);
534 	ns8250->fcr = FCR_ENABLE;
535 #ifdef CPU_XBURST
536 	ns8250->fcr |= FCR_UART_ON;
537 #endif
538 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
539 	    &ivar)) {
540 		if (UART_FLAGS_FCR_RX_LOW(ivar))
541 			ns8250->fcr |= FCR_RX_LOW;
542 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
543 			ns8250->fcr |= FCR_RX_MEDL;
544 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
545 			ns8250->fcr |= FCR_RX_HIGH;
546 		else
547 			ns8250->fcr |= FCR_RX_MEDH;
548 	} else
549 		ns8250->fcr |= FCR_RX_MEDH;
550 
551 	/* Get IER mask */
552 	ivar = 0xf0;
553 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
554 	    &ivar);
555 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
556 
557 	/* Get IER RX interrupt bits */
558 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
559 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
560 	    &ivar);
561 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
562 
563 	uart_setreg(bas, REG_FCR, ns8250->fcr);
564 	uart_barrier(bas);
565 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
566 
567 	if (ns8250->mcr & MCR_DTR)
568 		sc->sc_hwsig |= SER_DTR;
569 	if (ns8250->mcr & MCR_RTS)
570 		sc->sc_hwsig |= SER_RTS;
571 	ns8250_bus_getsig(sc);
572 
573 	ns8250_clrint(bas);
574 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
575 	ns8250->ier |= ns8250->ier_rxbits;
576 	uart_setreg(bas, REG_IER, ns8250->ier);
577 	uart_barrier(bas);
578 
579 	/*
580 	 * Timing of the H/W access was changed with r253161 of uart_core.c
581 	 * It has been observed that an ITE IT8513E would signal a break
582 	 * condition with pretty much every character it received, unless
583 	 * it had enough time to settle between ns8250_bus_attach() and
584 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
585 	 * It's not understood why the UART chip behaves this way and it
586 	 * could very well be that the DELAY make the H/W work in the same
587 	 * accidental manner as before. More analysis is warranted, but
588 	 * at least now we fixed a known regression.
589 	 */
590 	DELAY(200);
591 	return (0);
592 }
593 
594 int
595 ns8250_bus_detach(struct uart_softc *sc)
596 {
597 	struct ns8250_softc *ns8250;
598 	struct uart_bas *bas;
599 	u_char ier;
600 
601 	ns8250 = (struct ns8250_softc *)sc;
602 	bas = &sc->sc_bas;
603 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
604 	uart_setreg(bas, REG_IER, ier);
605 	uart_barrier(bas);
606 	ns8250_clrint(bas);
607 	return (0);
608 }
609 
610 int
611 ns8250_bus_flush(struct uart_softc *sc, int what)
612 {
613 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
614 	struct uart_bas *bas;
615 	int error;
616 
617 	bas = &sc->sc_bas;
618 	uart_lock(sc->sc_hwmtx);
619 	if (sc->sc_rxfifosz > 1) {
620 		ns8250_flush(bas, what);
621 		uart_setreg(bas, REG_FCR, ns8250->fcr);
622 		uart_barrier(bas);
623 		error = 0;
624 	} else
625 		error = ns8250_drain(bas, what);
626 	uart_unlock(sc->sc_hwmtx);
627 	return (error);
628 }
629 
630 int
631 ns8250_bus_getsig(struct uart_softc *sc)
632 {
633 	uint32_t old, sig;
634 	uint8_t msr;
635 
636 	/*
637 	 * The delta bits are reputed to be broken on some hardware, so use
638 	 * software delta detection by default.  Use the hardware delta bits
639 	 * when capturing PPS pulses which are too narrow for software detection
640 	 * to see the edges.  Hardware delta for RI doesn't work like the
641 	 * others, so always use software for it.  Other threads may be changing
642 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
643 	 * update without other changes happening.  Note that the SIGCHGxx()
644 	 * macros carefully preserve the delta bits when we have to loop several
645 	 * times and a signal transitions between iterations.
646 	 */
647 	do {
648 		old = sc->sc_hwsig;
649 		sig = old;
650 		uart_lock(sc->sc_hwmtx);
651 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
652 		uart_unlock(sc->sc_hwmtx);
653 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
654 			SIGCHGHW(sig, msr, DSR);
655 			SIGCHGHW(sig, msr, CTS);
656 			SIGCHGHW(sig, msr, DCD);
657 		} else {
658 			SIGCHGSW(sig, msr, DSR);
659 			SIGCHGSW(sig, msr, CTS);
660 			SIGCHGSW(sig, msr, DCD);
661 		}
662 		SIGCHGSW(sig, msr, RI);
663 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
664 	return (sig);
665 }
666 
667 int
668 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
669 {
670 	struct uart_bas *bas;
671 	int baudrate, divisor, error;
672 	uint8_t efr, lcr;
673 
674 	bas = &sc->sc_bas;
675 	error = 0;
676 	uart_lock(sc->sc_hwmtx);
677 	switch (request) {
678 	case UART_IOCTL_BREAK:
679 		lcr = uart_getreg(bas, REG_LCR);
680 		if (data)
681 			lcr |= LCR_SBREAK;
682 		else
683 			lcr &= ~LCR_SBREAK;
684 		uart_setreg(bas, REG_LCR, lcr);
685 		uart_barrier(bas);
686 		break;
687 	case UART_IOCTL_IFLOW:
688 		lcr = uart_getreg(bas, REG_LCR);
689 		uart_barrier(bas);
690 		uart_setreg(bas, REG_LCR, 0xbf);
691 		uart_barrier(bas);
692 		efr = uart_getreg(bas, REG_EFR);
693 		if (data)
694 			efr |= EFR_RTS;
695 		else
696 			efr &= ~EFR_RTS;
697 		uart_setreg(bas, REG_EFR, efr);
698 		uart_barrier(bas);
699 		uart_setreg(bas, REG_LCR, lcr);
700 		uart_barrier(bas);
701 		break;
702 	case UART_IOCTL_OFLOW:
703 		lcr = uart_getreg(bas, REG_LCR);
704 		uart_barrier(bas);
705 		uart_setreg(bas, REG_LCR, 0xbf);
706 		uart_barrier(bas);
707 		efr = uart_getreg(bas, REG_EFR);
708 		if (data)
709 			efr |= EFR_CTS;
710 		else
711 			efr &= ~EFR_CTS;
712 		uart_setreg(bas, REG_EFR, efr);
713 		uart_barrier(bas);
714 		uart_setreg(bas, REG_LCR, lcr);
715 		uart_barrier(bas);
716 		break;
717 	case UART_IOCTL_BAUD:
718 		lcr = uart_getreg(bas, REG_LCR);
719 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
720 		uart_barrier(bas);
721 		divisor = uart_getreg(bas, REG_DLL) |
722 		    (uart_getreg(bas, REG_DLH) << 8);
723 		uart_barrier(bas);
724 		uart_setreg(bas, REG_LCR, lcr);
725 		uart_barrier(bas);
726 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
727 		if (baudrate > 0)
728 			*(int*)data = baudrate;
729 		else
730 			error = ENXIO;
731 		break;
732 	default:
733 		error = EINVAL;
734 		break;
735 	}
736 	uart_unlock(sc->sc_hwmtx);
737 	return (error);
738 }
739 
740 int
741 ns8250_bus_ipend(struct uart_softc *sc)
742 {
743 	struct uart_bas *bas;
744 	struct ns8250_softc *ns8250;
745 	int ipend;
746 	uint8_t iir, lsr;
747 
748 	ns8250 = (struct ns8250_softc *)sc;
749 	bas = &sc->sc_bas;
750 	uart_lock(sc->sc_hwmtx);
751 	iir = uart_getreg(bas, REG_IIR);
752 
753 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
754 		(void)uart_getreg(bas, DW_REG_USR);
755 		uart_unlock(sc->sc_hwmtx);
756 		return (0);
757 	}
758 	if (iir & IIR_NOPEND) {
759 		uart_unlock(sc->sc_hwmtx);
760 		return (0);
761 	}
762 	ipend = 0;
763 	if (iir & IIR_RXRDY) {
764 		lsr = uart_getreg(bas, REG_LSR);
765 		if (lsr & LSR_OE)
766 			ipend |= SER_INT_OVERRUN;
767 		if (lsr & LSR_BI)
768 			ipend |= SER_INT_BREAK;
769 		if (lsr & LSR_RXRDY)
770 			ipend |= SER_INT_RXREADY;
771 	} else {
772 		if (iir & IIR_TXRDY) {
773 			ipend |= SER_INT_TXIDLE;
774 			ns8250->ier &= ~IER_ETXRDY;
775 			uart_setreg(bas, REG_IER, ns8250->ier);
776 			uart_barrier(bas);
777 		} else
778 			ipend |= SER_INT_SIGCHG;
779 	}
780 	if (ipend == 0)
781 		ns8250_clrint(bas);
782 	uart_unlock(sc->sc_hwmtx);
783 	return (ipend);
784 }
785 
786 int
787 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
788     int stopbits, int parity)
789 {
790 	struct ns8250_softc *ns8250;
791 	struct uart_bas *bas;
792 	int error, limit;
793 
794 	ns8250 = (struct ns8250_softc*)sc;
795 	bas = &sc->sc_bas;
796 	uart_lock(sc->sc_hwmtx);
797 	/*
798 	 * When using DW UART with BUSY detection it is necessary to wait
799 	 * until all serial transfers are finished before manipulating the
800 	 * line control. LCR will not be affected when UART is busy.
801 	 */
802 	if (ns8250->busy_detect != 0) {
803 		/*
804 		 * Pick an arbitrary high limit to avoid getting stuck in
805 		 * an infinite loop in case when the hardware is broken.
806 		 */
807 		limit = 10 * 1024;
808 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
809 		    --limit)
810 			DELAY(4);
811 
812 		if (limit <= 0) {
813 			/* UART appears to be stuck */
814 			uart_unlock(sc->sc_hwmtx);
815 			return (EIO);
816 		}
817 	}
818 
819 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
820 	uart_unlock(sc->sc_hwmtx);
821 	return (error);
822 }
823 
824 int
825 ns8250_bus_probe(struct uart_softc *sc)
826 {
827 	struct uart_bas *bas;
828 	int count, delay, error, limit;
829 	uint8_t lsr, mcr, ier;
830 	uint8_t val;
831 
832 	bas = &sc->sc_bas;
833 
834 	error = ns8250_probe(bas);
835 	if (error)
836 		return (error);
837 
838 	mcr = MCR_IE;
839 	if (sc->sc_sysdev == NULL) {
840 		/* By using ns8250_init() we also set DTR and RTS. */
841 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
842 	} else
843 		mcr |= MCR_DTR | MCR_RTS;
844 
845 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
846 	if (error)
847 		return (error);
848 
849 	/*
850 	 * Set loopback mode. This avoids having garbage on the wire and
851 	 * also allows us send and receive data. We set DTR and RTS to
852 	 * avoid the possibility that automatic flow-control prevents
853 	 * any data from being sent.
854 	 */
855 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
856 	uart_barrier(bas);
857 
858 	/*
859 	 * Enable FIFOs. And check that the UART has them. If not, we're
860 	 * done. Since this is the first time we enable the FIFOs, we reset
861 	 * them.
862 	 */
863 	val = FCR_ENABLE;
864 #ifdef CPU_XBURST
865 	val |= FCR_UART_ON;
866 #endif
867 	uart_setreg(bas, REG_FCR, val);
868 	uart_barrier(bas);
869 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
870 		/*
871 		 * NS16450 or INS8250. We don't bother to differentiate
872 		 * between them. They're too old to be interesting.
873 		 */
874 		uart_setreg(bas, REG_MCR, mcr);
875 		uart_barrier(bas);
876 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
877 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
878 		return (0);
879 	}
880 
881 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
882 #ifdef CPU_XBURST
883 	val |= FCR_UART_ON;
884 #endif
885 	uart_setreg(bas, REG_FCR, val);
886 	uart_barrier(bas);
887 
888 	count = 0;
889 	delay = ns8250_delay(bas);
890 
891 	/* We have FIFOs. Drain the transmitter and receiver. */
892 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
893 	if (error) {
894 		uart_setreg(bas, REG_MCR, mcr);
895 		val = 0;
896 #ifdef CPU_XBURST
897 		val |= FCR_UART_ON;
898 #endif
899 		uart_setreg(bas, REG_FCR, val);
900 		uart_barrier(bas);
901 		goto describe;
902 	}
903 
904 	/*
905 	 * We should have a sufficiently clean "pipe" to determine the
906 	 * size of the FIFOs. We send as much characters as is reasonable
907 	 * and wait for the overflow bit in the LSR register to be
908 	 * asserted, counting the characters as we send them. Based on
909 	 * that count we know the FIFO size.
910 	 */
911 	do {
912 		uart_setreg(bas, REG_DATA, 0);
913 		uart_barrier(bas);
914 		count++;
915 
916 		limit = 30;
917 		lsr = 0;
918 		/*
919 		 * LSR bits are cleared upon read, so we must accumulate
920 		 * them to be able to test LSR_OE below.
921 		 */
922 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
923 		    --limit)
924 			DELAY(delay);
925 		if (limit == 0) {
926 			/* See the comment in ns8250_init(). */
927 			ier = uart_getreg(bas, REG_IER) & 0xe0;
928 			uart_setreg(bas, REG_IER, ier);
929 			uart_setreg(bas, REG_MCR, mcr);
930 			val = 0;
931 #ifdef CPU_XBURST
932 			val |= FCR_UART_ON;
933 #endif
934 			uart_setreg(bas, REG_FCR, val);
935 			uart_barrier(bas);
936 			count = 0;
937 			goto describe;
938 		}
939 	} while ((lsr & LSR_OE) == 0 && count < 260);
940 	count--;
941 
942 	uart_setreg(bas, REG_MCR, mcr);
943 
944 	/* Reset FIFOs. */
945 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
946 
947  describe:
948 	if (count >= 14 && count <= 16) {
949 		sc->sc_rxfifosz = 16;
950 		device_set_desc(sc->sc_dev, "16550 or compatible");
951 	} else if (count >= 28 && count <= 32) {
952 		sc->sc_rxfifosz = 32;
953 		device_set_desc(sc->sc_dev, "16650 or compatible");
954 	} else if (count >= 56 && count <= 64) {
955 		sc->sc_rxfifosz = 64;
956 		device_set_desc(sc->sc_dev, "16750 or compatible");
957 	} else if (count >= 112 && count <= 128) {
958 		sc->sc_rxfifosz = 128;
959 		device_set_desc(sc->sc_dev, "16950 or compatible");
960 	} else if (count >= 224 && count <= 256) {
961 		sc->sc_rxfifosz = 256;
962 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
963 	} else {
964 		sc->sc_rxfifosz = 16;
965 		device_set_desc(sc->sc_dev,
966 		    "Non-standard ns8250 class UART with FIFOs");
967 	}
968 
969 	/*
970 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
971 	 * Tx trigger. Also, we assume that all data has been sent when the
972 	 * interrupt happens.
973 	 */
974 	sc->sc_txfifosz = 16;
975 
976 #if 0
977 	/*
978 	 * XXX there are some issues related to hardware flow control and
979 	 * it's likely that uart(4) is the cause. This basically needs more
980 	 * investigation, but we avoid using for hardware flow control
981 	 * until then.
982 	 */
983 	/* 16650s or higher have automatic flow control. */
984 	if (sc->sc_rxfifosz > 16) {
985 		sc->sc_hwiflow = 1;
986 		sc->sc_hwoflow = 1;
987 	}
988 #endif
989 
990 	return (0);
991 }
992 
993 int
994 ns8250_bus_receive(struct uart_softc *sc)
995 {
996 	struct uart_bas *bas;
997 	int xc;
998 	uint8_t lsr;
999 
1000 	bas = &sc->sc_bas;
1001 	uart_lock(sc->sc_hwmtx);
1002 	lsr = uart_getreg(bas, REG_LSR);
1003 	while (lsr & LSR_RXRDY) {
1004 		if (uart_rx_full(sc)) {
1005 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1006 			break;
1007 		}
1008 		xc = uart_getreg(bas, REG_DATA);
1009 		if (lsr & LSR_FE)
1010 			xc |= UART_STAT_FRAMERR;
1011 		if (lsr & LSR_PE)
1012 			xc |= UART_STAT_PARERR;
1013 		uart_rx_put(sc, xc);
1014 		lsr = uart_getreg(bas, REG_LSR);
1015 	}
1016 	/* Discard everything left in the Rx FIFO. */
1017 	while (lsr & LSR_RXRDY) {
1018 		(void)uart_getreg(bas, REG_DATA);
1019 		uart_barrier(bas);
1020 		lsr = uart_getreg(bas, REG_LSR);
1021 	}
1022 	uart_unlock(sc->sc_hwmtx);
1023  	return (0);
1024 }
1025 
1026 int
1027 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1028 {
1029 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1030 	struct uart_bas *bas;
1031 	uint32_t new, old;
1032 
1033 	bas = &sc->sc_bas;
1034 	do {
1035 		old = sc->sc_hwsig;
1036 		new = old;
1037 		if (sig & SER_DDTR) {
1038 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1039 		}
1040 		if (sig & SER_DRTS) {
1041 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1042 		}
1043 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1044 	uart_lock(sc->sc_hwmtx);
1045 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1046 	if (new & SER_DTR)
1047 		ns8250->mcr |= MCR_DTR;
1048 	if (new & SER_RTS)
1049 		ns8250->mcr |= MCR_RTS;
1050 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1051 	uart_barrier(bas);
1052 	uart_unlock(sc->sc_hwmtx);
1053 	return (0);
1054 }
1055 
1056 int
1057 ns8250_bus_transmit(struct uart_softc *sc)
1058 {
1059 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1060 	struct uart_bas *bas;
1061 	int i;
1062 
1063 	bas = &sc->sc_bas;
1064 	uart_lock(sc->sc_hwmtx);
1065 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1066 		DELAY(4);
1067 	for (i = 0; i < sc->sc_txdatasz; i++) {
1068 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1069 		uart_barrier(bas);
1070 	}
1071 	if (!broken_txfifo)
1072 		ns8250->ier |= IER_ETXRDY;
1073 	uart_setreg(bas, REG_IER, ns8250->ier);
1074 	uart_barrier(bas);
1075 	if (broken_txfifo)
1076 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1077 	else
1078 		sc->sc_txbusy = 1;
1079 	uart_unlock(sc->sc_hwmtx);
1080 	if (broken_txfifo)
1081 		uart_sched_softih(sc, SER_INT_TXIDLE);
1082 	return (0);
1083 }
1084 
1085 bool
1086 ns8250_bus_txbusy(struct uart_softc *sc)
1087 {
1088 	struct uart_bas *bas = &sc->sc_bas;
1089 
1090 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1091 	    (LSR_TEMT | LSR_THRE))
1092 		return (true);
1093 	return (false);
1094 }
1095 
1096 void
1097 ns8250_bus_grab(struct uart_softc *sc)
1098 {
1099 	struct uart_bas *bas = &sc->sc_bas;
1100 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1101 	u_char ier;
1102 
1103 	/*
1104 	 * turn off all interrupts to enter polling mode. Leave the
1105 	 * saved mask alone. We'll restore whatever it was in ungrab.
1106 	 * All pending interrupt signals are reset when IER is set to 0.
1107 	 */
1108 	uart_lock(sc->sc_hwmtx);
1109 	ier = uart_getreg(bas, REG_IER);
1110 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1111 	uart_barrier(bas);
1112 	uart_unlock(sc->sc_hwmtx);
1113 }
1114 
1115 void
1116 ns8250_bus_ungrab(struct uart_softc *sc)
1117 {
1118 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1119 	struct uart_bas *bas = &sc->sc_bas;
1120 
1121 	/*
1122 	 * Restore previous interrupt mask
1123 	 */
1124 	uart_lock(sc->sc_hwmtx);
1125 	uart_setreg(bas, REG_IER, ns8250->ier);
1126 	uart_barrier(bas);
1127 	uart_unlock(sc->sc_hwmtx);
1128 }
1129