xref: /freebsd-14.2/sys/dev/nvme/nvme_ctrlr.c (revision 1dac1524)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46 
47 #include "nvme_private.h"
48 
49 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
50 
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52 						struct nvme_async_event_request *aer);
53 
54 static void
nvme_ctrlr_barrier(struct nvme_controller * ctrlr,int flags)55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59 
60 static void
nvme_ctrlr_devctl_log(struct nvme_controller * ctrlr,const char * type,const char * msg,...)61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63 	struct sbuf sb;
64 	va_list ap;
65 	int error;
66 
67 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68 		return;
69 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70 	va_start(ap, msg);
71 	sbuf_vprintf(&sb, msg, ap);
72 	va_end(ap);
73 	error = sbuf_finish(&sb);
74 	if (error == 0)
75 		printf("%s\n", sbuf_data(&sb));
76 
77 	sbuf_clear(&sb);
78 	sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79 	va_start(ap, msg);
80 	sbuf_vprintf(&sb, msg, ap);
81 	va_end(ap);
82 	sbuf_printf(&sb, "\"");
83 	error = sbuf_finish(&sb);
84 	if (error == 0)
85 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86 	sbuf_delete(&sb);
87 }
88 
89 static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller * ctrlr)90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92 	struct nvme_qpair	*qpair;
93 	uint32_t		num_entries;
94 	int			error;
95 
96 	qpair = &ctrlr->adminq;
97 	qpair->id = 0;
98 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99 	qpair->domain = ctrlr->domain;
100 
101 	num_entries = NVME_ADMIN_ENTRIES;
102 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103 	/*
104 	 * If admin_entries was overridden to an invalid value, revert it
105 	 *  back to our default value.
106 	 */
107 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
109 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110 		    "specified\n", num_entries);
111 		num_entries = NVME_ADMIN_ENTRIES;
112 	}
113 
114 	/*
115 	 * The admin queue's max xfer size is treated differently than the
116 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
117 	 */
118 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119 	     ctrlr);
120 	return (error);
121 }
122 
123 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
124 
125 static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller * ctrlr)126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128 	struct nvme_qpair	*qpair;
129 	uint32_t		cap_lo;
130 	uint16_t		mqes;
131 	int			c, error, i, n;
132 	int			num_entries, num_trackers, max_entries;
133 
134 	/*
135 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
136 	 * specify a smaller limit, so we need to check the MQES field in the
137 	 * capabilities register. We have to cap the number of entries to the
138 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
139 	 * are inaccessible. MQES should reflect this, and this is just a
140 	 * fail-safe.
141 	 */
142 	max_entries =
143 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144 	    (1 << (ctrlr->dstrd + 1));
145 	num_entries = NVME_IO_ENTRIES;
146 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148 	mqes = NVME_CAP_LO_MQES(cap_lo);
149 	num_entries = min(num_entries, mqes + 1);
150 	num_entries = min(num_entries, max_entries);
151 
152 	num_trackers = NVME_IO_TRACKERS;
153 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154 
155 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157 	/*
158 	 * No need to have more trackers than entries in the submit queue.  Note
159 	 * also that for a queue size of N, we can only have (N-1) commands
160 	 * outstanding, hence the "-1" here.
161 	 */
162 	num_trackers = min(num_trackers, (num_entries-1));
163 
164 	/*
165 	 * Our best estimate for the maximum number of I/Os that we should
166 	 * normally have in flight at one time. This should be viewed as a hint,
167 	 * not a hard limit and will need to be revisited when the upper layers
168 	 * of the storage system grows multi-queue support.
169 	 */
170 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171 
172 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173 	    M_NVME, M_ZERO | M_WAITOK);
174 
175 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176 		qpair = &ctrlr->ioq[i];
177 
178 		/*
179 		 * Admin queue has ID=0. IO queues start at ID=1 -
180 		 *  hence the 'i+1' here.
181 		 */
182 		qpair->id = i + 1;
183 		if (ctrlr->num_io_queues > 1) {
184 			/* Find number of CPUs served by this queue. */
185 			for (n = 1; QP(ctrlr, c + n) == i; n++)
186 				;
187 			/* Shuffle multiple NVMe devices between CPUs. */
188 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190 		} else {
191 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192 			qpair->domain = ctrlr->domain;
193 		}
194 
195 		/*
196 		 * For I/O queues, use the controller-wide max_xfer_size
197 		 *  calculated in nvme_attach().
198 		 */
199 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200 		    ctrlr);
201 		if (error)
202 			return (error);
203 
204 		/*
205 		 * Do not bother binding interrupts if we only have one I/O
206 		 *  interrupt thread for this controller.
207 		 */
208 		if (ctrlr->num_io_queues > 1)
209 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210 	}
211 
212 	return (0);
213 }
214 
215 static void
nvme_ctrlr_fail(struct nvme_controller * ctrlr)216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218 	int i;
219 
220 	/*
221 	 * No need to disable queues before failing them. Failing is a superet
222 	 * of disabling (though pedantically we'd abort the AERs silently with
223 	 * a different error, though when we fail, that hardly matters).
224 	 */
225 	ctrlr->is_failed = true;
226 	nvme_qpair_fail(&ctrlr->adminq);
227 	if (ctrlr->ioq != NULL) {
228 		for (i = 0; i < ctrlr->num_io_queues; i++) {
229 			nvme_qpair_fail(&ctrlr->ioq[i]);
230 		}
231 	}
232 	nvme_notify_fail_consumers(ctrlr);
233 }
234 
235 void
nvme_ctrlr_post_failed_request(struct nvme_controller * ctrlr,struct nvme_request * req)236 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
237     struct nvme_request *req)
238 {
239 
240 	mtx_lock(&ctrlr->lock);
241 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
242 	mtx_unlock(&ctrlr->lock);
243 	if (!ctrlr->is_dying)
244 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
245 }
246 
247 static void
nvme_ctrlr_fail_req_task(void * arg,int pending)248 nvme_ctrlr_fail_req_task(void *arg, int pending)
249 {
250 	struct nvme_controller	*ctrlr = arg;
251 	struct nvme_request	*req;
252 
253 	mtx_lock(&ctrlr->lock);
254 	while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
255 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
256 		mtx_unlock(&ctrlr->lock);
257 		nvme_qpair_manual_complete_request(req->qpair, req,
258 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
259 		mtx_lock(&ctrlr->lock);
260 	}
261 	mtx_unlock(&ctrlr->lock);
262 }
263 
264 /*
265  * Wait for RDY to change.
266  *
267  * Starts sleeping for 1us and geometrically increases it the longer we wait,
268  * capped at 1ms.
269  */
270 static int
nvme_ctrlr_wait_for_ready(struct nvme_controller * ctrlr,int desired_val)271 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
272 {
273 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
274 	sbintime_t delta_t = SBT_1US;
275 	uint32_t csts;
276 
277 	while (1) {
278 		csts = nvme_mmio_read_4(ctrlr, csts);
279 		if (csts == NVME_GONE)		/* Hot unplug. */
280 			return (ENXIO);
281 		if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val)
282 			break;
283 		if (timeout - ticks < 0) {
284 			nvme_printf(ctrlr, "controller ready did not become %d "
285 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286 			return (ENXIO);
287 		}
288 
289 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
291 	}
292 
293 	return (0);
294 }
295 
296 static int
nvme_ctrlr_disable(struct nvme_controller * ctrlr)297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299 	uint32_t cc;
300 	uint32_t csts;
301 	uint8_t  en, rdy;
302 	int err;
303 
304 	cc = nvme_mmio_read_4(ctrlr, cc);
305 	csts = nvme_mmio_read_4(ctrlr, csts);
306 
307 	en = NVMEV(NVME_CC_REG_EN, cc);
308 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
309 
310 	/*
311 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314 	 * isn't the desired value. Short circuit if we're already disabled.
315 	 */
316 	if (en == 0) {
317 		/* Wait for RDY == 0 or timeout & fail */
318 		if (rdy == 0)
319 			return (0);
320 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321 	}
322 	if (rdy == 0) {
323 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
324 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325 		if (err != 0)
326 			return (err);
327 	}
328 
329 	cc &= ~NVMEM(NVME_CC_REG_EN);
330 	nvme_mmio_write_4(ctrlr, cc, cc);
331 
332 	/*
333 	 * A few drives have firmware bugs that freeze the drive if we access
334 	 * the mmio too soon after we disable.
335 	 */
336 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340 
341 static int
nvme_ctrlr_enable(struct nvme_controller * ctrlr)342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344 	uint32_t	cc;
345 	uint32_t	csts;
346 	uint32_t	aqa;
347 	uint32_t	qsize;
348 	uint8_t		en, rdy;
349 	int		err;
350 
351 	cc = nvme_mmio_read_4(ctrlr, cc);
352 	csts = nvme_mmio_read_4(ctrlr, csts);
353 
354 	en = NVMEV(NVME_CC_REG_EN, cc);
355 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
356 
357 	/*
358 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359 	 */
360 	if (en == 1) {
361 		if (rdy == 1)
362 			return (0);
363 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364 	}
365 
366 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
367 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368 	if (err != 0)
369 		return (err);
370 
371 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373 
374 	/* acqs and asqs are 0-based. */
375 	qsize = ctrlr->adminq.num_entries - 1;
376 
377 	aqa = 0;
378 	aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize);
379 	aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize);
380 	nvme_mmio_write_4(ctrlr, aqa, aqa);
381 
382 	/* Initialization values for CC */
383 	cc = 0;
384 	cc |= NVMEF(NVME_CC_REG_EN, 1);
385 	cc |= NVMEF(NVME_CC_REG_CSS, 0);
386 	cc |= NVMEF(NVME_CC_REG_AMS, 0);
387 	cc |= NVMEF(NVME_CC_REG_SHN, 0);
388 	cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */
389 	cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */
390 
391 	/*
392 	 * Use the Memory Page Size selected during device initialization.  Note
393 	 * that value stored in mps is suitable to use here without adjusting by
394 	 * NVME_MPS_SHIFT.
395 	 */
396 	cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps);
397 
398 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
399 	nvme_mmio_write_4(ctrlr, cc, cc);
400 
401 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
402 }
403 
404 static void
nvme_ctrlr_disable_qpairs(struct nvme_controller * ctrlr)405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
406 {
407 	int i;
408 
409 	nvme_admin_qpair_disable(&ctrlr->adminq);
410 	/*
411 	 * I/O queues are not allocated before the initial HW
412 	 *  reset, so do not try to disable them.  Use is_initialized
413 	 *  to determine if this is the initial HW reset.
414 	 */
415 	if (ctrlr->is_initialized) {
416 		for (i = 0; i < ctrlr->num_io_queues; i++)
417 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
418 	}
419 }
420 
421 static int
nvme_ctrlr_hw_reset(struct nvme_controller * ctrlr)422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
423 {
424 	int err;
425 
426 	TSENTER();
427 
428 	nvme_ctrlr_disable_qpairs(ctrlr);
429 
430 	err = nvme_ctrlr_disable(ctrlr);
431 	if (err != 0)
432 		goto out;
433 
434 	err = nvme_ctrlr_enable(ctrlr);
435 out:
436 
437 	TSEXIT();
438 	return (err);
439 }
440 
441 void
nvme_ctrlr_reset(struct nvme_controller * ctrlr)442 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
443 {
444 	int cmpset;
445 
446 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
447 
448 	if (cmpset == 0 || ctrlr->is_failed)
449 		/*
450 		 * Controller is already resetting or has failed.  Return
451 		 *  immediately since there is no need to kick off another
452 		 *  reset in these cases.
453 		 */
454 		return;
455 
456 	if (!ctrlr->is_dying)
457 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
458 }
459 
460 static int
nvme_ctrlr_identify(struct nvme_controller * ctrlr)461 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
462 {
463 	struct nvme_completion_poll_status	status;
464 
465 	status.done = 0;
466 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
467 	    nvme_completion_poll_cb, &status);
468 	nvme_completion_poll(&status);
469 	if (nvme_completion_is_error(&status.cpl)) {
470 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
471 		return (ENXIO);
472 	}
473 
474 	/* Convert data to host endian */
475 	nvme_controller_data_swapbytes(&ctrlr->cdata);
476 
477 	/*
478 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
479 	 *  controller supports.
480 	 */
481 	if (ctrlr->cdata.mdts > 0)
482 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
483 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
484 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
485 
486 	return (0);
487 }
488 
489 static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller * ctrlr)490 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
491 {
492 	struct nvme_completion_poll_status	status;
493 	int					cq_allocated, sq_allocated;
494 
495 	status.done = 0;
496 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
497 	    nvme_completion_poll_cb, &status);
498 	nvme_completion_poll(&status);
499 	if (nvme_completion_is_error(&status.cpl)) {
500 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
501 		return (ENXIO);
502 	}
503 
504 	/*
505 	 * Data in cdw0 is 0-based.
506 	 * Lower 16-bits indicate number of submission queues allocated.
507 	 * Upper 16-bits indicate number of completion queues allocated.
508 	 */
509 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
510 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
511 
512 	/*
513 	 * Controller may allocate more queues than we requested,
514 	 *  so use the minimum of the number requested and what was
515 	 *  actually allocated.
516 	 */
517 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
518 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
519 	if (ctrlr->num_io_queues > vm_ndomains)
520 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
521 
522 	return (0);
523 }
524 
525 static int
nvme_ctrlr_create_qpairs(struct nvme_controller * ctrlr)526 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
527 {
528 	struct nvme_completion_poll_status	status;
529 	struct nvme_qpair			*qpair;
530 	int					i;
531 
532 	for (i = 0; i < ctrlr->num_io_queues; i++) {
533 		qpair = &ctrlr->ioq[i];
534 
535 		status.done = 0;
536 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
537 		    nvme_completion_poll_cb, &status);
538 		nvme_completion_poll(&status);
539 		if (nvme_completion_is_error(&status.cpl)) {
540 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
541 			return (ENXIO);
542 		}
543 
544 		status.done = 0;
545 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
546 		    nvme_completion_poll_cb, &status);
547 		nvme_completion_poll(&status);
548 		if (nvme_completion_is_error(&status.cpl)) {
549 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
550 			return (ENXIO);
551 		}
552 	}
553 
554 	return (0);
555 }
556 
557 static int
nvme_ctrlr_delete_qpairs(struct nvme_controller * ctrlr)558 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
559 {
560 	struct nvme_completion_poll_status	status;
561 	struct nvme_qpair			*qpair;
562 
563 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
564 		qpair = &ctrlr->ioq[i];
565 
566 		status.done = 0;
567 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
568 		    nvme_completion_poll_cb, &status);
569 		nvme_completion_poll(&status);
570 		if (nvme_completion_is_error(&status.cpl)) {
571 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
572 			return (ENXIO);
573 		}
574 
575 		status.done = 0;
576 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
577 		    nvme_completion_poll_cb, &status);
578 		nvme_completion_poll(&status);
579 		if (nvme_completion_is_error(&status.cpl)) {
580 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
581 			return (ENXIO);
582 		}
583 	}
584 
585 	return (0);
586 }
587 
588 static int
nvme_ctrlr_construct_namespaces(struct nvme_controller * ctrlr)589 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
590 {
591 	struct nvme_namespace	*ns;
592 	uint32_t 		i;
593 
594 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
595 		ns = &ctrlr->ns[i];
596 		nvme_ns_construct(ns, i+1, ctrlr);
597 	}
598 
599 	return (0);
600 }
601 
602 static bool
is_log_page_id_valid(uint8_t page_id)603 is_log_page_id_valid(uint8_t page_id)
604 {
605 
606 	switch (page_id) {
607 	case NVME_LOG_ERROR:
608 	case NVME_LOG_HEALTH_INFORMATION:
609 	case NVME_LOG_FIRMWARE_SLOT:
610 	case NVME_LOG_CHANGED_NAMESPACE:
611 	case NVME_LOG_COMMAND_EFFECT:
612 	case NVME_LOG_RES_NOTIFICATION:
613 	case NVME_LOG_SANITIZE_STATUS:
614 		return (true);
615 	}
616 
617 	return (false);
618 }
619 
620 static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller * ctrlr,uint8_t page_id)621 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
622 {
623 	uint32_t	log_page_size;
624 
625 	switch (page_id) {
626 	case NVME_LOG_ERROR:
627 		log_page_size = min(
628 		    sizeof(struct nvme_error_information_entry) *
629 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
630 		break;
631 	case NVME_LOG_HEALTH_INFORMATION:
632 		log_page_size = sizeof(struct nvme_health_information_page);
633 		break;
634 	case NVME_LOG_FIRMWARE_SLOT:
635 		log_page_size = sizeof(struct nvme_firmware_page);
636 		break;
637 	case NVME_LOG_CHANGED_NAMESPACE:
638 		log_page_size = sizeof(struct nvme_ns_list);
639 		break;
640 	case NVME_LOG_COMMAND_EFFECT:
641 		log_page_size = sizeof(struct nvme_command_effects_page);
642 		break;
643 	case NVME_LOG_RES_NOTIFICATION:
644 		log_page_size = sizeof(struct nvme_res_notification_page);
645 		break;
646 	case NVME_LOG_SANITIZE_STATUS:
647 		log_page_size = sizeof(struct nvme_sanitize_status_page);
648 		break;
649 	default:
650 		log_page_size = 0;
651 		break;
652 	}
653 
654 	return (log_page_size);
655 }
656 
657 static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller * ctrlr,uint8_t state)658 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
659     uint8_t state)
660 {
661 
662 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
663 		nvme_ctrlr_devctl_log(ctrlr, "critical",
664 		    "available spare space below threshold");
665 
666 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
667 		nvme_ctrlr_devctl_log(ctrlr, "critical",
668 		    "temperature above threshold");
669 
670 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
671 		nvme_ctrlr_devctl_log(ctrlr, "critical",
672 		    "device reliability degraded");
673 
674 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
675 		nvme_ctrlr_devctl_log(ctrlr, "critical",
676 		    "media placed in read only mode");
677 
678 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
679 		nvme_ctrlr_devctl_log(ctrlr, "critical",
680 		    "volatile memory backup device failed");
681 
682 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
683 		nvme_ctrlr_devctl_log(ctrlr, "critical",
684 		    "unknown critical warning(s): state = 0x%02x", state);
685 }
686 
687 static void
nvme_ctrlr_async_event_log_page_cb(void * arg,const struct nvme_completion * cpl)688 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
689 {
690 	struct nvme_async_event_request		*aer = arg;
691 	struct nvme_health_information_page	*health_info;
692 	struct nvme_ns_list			*nsl;
693 	struct nvme_error_information_entry	*err;
694 	int i;
695 
696 	/*
697 	 * If the log page fetch for some reason completed with an error,
698 	 *  don't pass log page data to the consumers.  In practice, this case
699 	 *  should never happen.
700 	 */
701 	if (nvme_completion_is_error(cpl))
702 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
703 		    aer->log_page_id, NULL, 0);
704 	else {
705 		/* Convert data to host endian */
706 		switch (aer->log_page_id) {
707 		case NVME_LOG_ERROR:
708 			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
709 			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
710 				nvme_error_information_entry_swapbytes(err++);
711 			break;
712 		case NVME_LOG_HEALTH_INFORMATION:
713 			nvme_health_information_page_swapbytes(
714 			    (struct nvme_health_information_page *)aer->log_page_buffer);
715 			break;
716 		case NVME_LOG_CHANGED_NAMESPACE:
717 			nvme_ns_list_swapbytes(
718 			    (struct nvme_ns_list *)aer->log_page_buffer);
719 			break;
720 		case NVME_LOG_COMMAND_EFFECT:
721 			nvme_command_effects_page_swapbytes(
722 			    (struct nvme_command_effects_page *)aer->log_page_buffer);
723 			break;
724 		case NVME_LOG_RES_NOTIFICATION:
725 			nvme_res_notification_page_swapbytes(
726 			    (struct nvme_res_notification_page *)aer->log_page_buffer);
727 			break;
728 		case NVME_LOG_SANITIZE_STATUS:
729 			nvme_sanitize_status_page_swapbytes(
730 			    (struct nvme_sanitize_status_page *)aer->log_page_buffer);
731 			break;
732 		default:
733 			break;
734 		}
735 
736 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
737 			health_info = (struct nvme_health_information_page *)
738 			    aer->log_page_buffer;
739 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
740 			    health_info->critical_warning);
741 			/*
742 			 * Critical warnings reported through the
743 			 *  SMART/health log page are persistent, so
744 			 *  clear the associated bits in the async event
745 			 *  config so that we do not receive repeated
746 			 *  notifications for the same event.
747 			 */
748 			aer->ctrlr->async_event_config &=
749 			    ~health_info->critical_warning;
750 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
751 			    aer->ctrlr->async_event_config, NULL, NULL);
752 		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
753 		    !nvme_use_nvd) {
754 			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
755 			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
756 				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
757 					break;
758 				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
759 			}
760 		}
761 
762 		/*
763 		 * Pass the cpl data from the original async event completion,
764 		 *  not the log page fetch.
765 		 */
766 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
767 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
768 	}
769 
770 	/*
771 	 * Repost another asynchronous event request to replace the one
772 	 *  that just completed.
773 	 */
774 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
775 }
776 
777 static void
nvme_ctrlr_async_event_cb(void * arg,const struct nvme_completion * cpl)778 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
779 {
780 	struct nvme_async_event_request	*aer = arg;
781 
782 	if (nvme_completion_is_error(cpl)) {
783 		/*
784 		 *  Do not retry failed async event requests.  This avoids
785 		 *  infinite loops where a new async event request is submitted
786 		 *  to replace the one just failed, only to fail again and
787 		 *  perpetuate the loop.
788 		 */
789 		return;
790 	}
791 
792 	/* Associated log page is in bits 23:16 of completion entry dw0. */
793 	aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0);
794 
795 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
796 	    " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0),
797 	    NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0),
798 	    aer->log_page_id);
799 
800 	if (is_log_page_id_valid(aer->log_page_id)) {
801 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
802 		    aer->log_page_id);
803 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
804 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
805 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
806 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
807 		    aer);
808 		/* Wait to notify consumers until after log page is fetched. */
809 	} else {
810 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
811 		    NULL, 0);
812 
813 		/*
814 		 * Repost another asynchronous event request to replace the one
815 		 *  that just completed.
816 		 */
817 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
818 	}
819 }
820 
821 static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller * ctrlr,struct nvme_async_event_request * aer)822 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
823     struct nvme_async_event_request *aer)
824 {
825 	struct nvme_request *req;
826 
827 	aer->ctrlr = ctrlr;
828 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
829 	aer->req = req;
830 
831 	/*
832 	 * Disable timeout here, since asynchronous event requests should by
833 	 *  nature never be timed out.
834 	 */
835 	req->timeout = false;
836 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
837 	nvme_ctrlr_submit_admin_request(ctrlr, req);
838 }
839 
840 static void
nvme_ctrlr_configure_aer(struct nvme_controller * ctrlr)841 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
842 {
843 	struct nvme_completion_poll_status	status;
844 	struct nvme_async_event_request		*aer;
845 	uint32_t				i;
846 
847 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
848 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
849 	    NVME_CRIT_WARN_ST_READ_ONLY |
850 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
851 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
852 		ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
853 		    NVME_ASYNC_EVENT_FW_ACTIVATE;
854 
855 	status.done = 0;
856 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
857 	    0, NULL, 0, nvme_completion_poll_cb, &status);
858 	nvme_completion_poll(&status);
859 	if (nvme_completion_is_error(&status.cpl) ||
860 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
861 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
862 		nvme_printf(ctrlr, "temperature threshold not supported\n");
863 	} else
864 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
865 
866 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
867 	    ctrlr->async_event_config, NULL, NULL);
868 
869 	/* aerl is a zero-based value, so we need to add 1 here. */
870 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
871 
872 	for (i = 0; i < ctrlr->num_aers; i++) {
873 		aer = &ctrlr->aer[i];
874 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
875 	}
876 }
877 
878 static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller * ctrlr)879 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
880 {
881 
882 	ctrlr->int_coal_time = 0;
883 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
884 	    &ctrlr->int_coal_time);
885 
886 	ctrlr->int_coal_threshold = 0;
887 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
888 	    &ctrlr->int_coal_threshold);
889 
890 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
891 	    ctrlr->int_coal_threshold, NULL, NULL);
892 }
893 
894 static void
nvme_ctrlr_hmb_free(struct nvme_controller * ctrlr)895 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
896 {
897 	struct nvme_hmb_chunk *hmbc;
898 	int i;
899 
900 	if (ctrlr->hmb_desc_paddr) {
901 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
902 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
903 		    ctrlr->hmb_desc_map);
904 		ctrlr->hmb_desc_paddr = 0;
905 	}
906 	if (ctrlr->hmb_desc_tag) {
907 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
908 		ctrlr->hmb_desc_tag = NULL;
909 	}
910 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
911 		hmbc = &ctrlr->hmb_chunks[i];
912 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
913 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
914 		    hmbc->hmbc_map);
915 	}
916 	ctrlr->hmb_nchunks = 0;
917 	if (ctrlr->hmb_tag) {
918 		bus_dma_tag_destroy(ctrlr->hmb_tag);
919 		ctrlr->hmb_tag = NULL;
920 	}
921 	if (ctrlr->hmb_chunks) {
922 		free(ctrlr->hmb_chunks, M_NVME);
923 		ctrlr->hmb_chunks = NULL;
924 	}
925 }
926 
927 static void
nvme_ctrlr_hmb_alloc(struct nvme_controller * ctrlr)928 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
929 {
930 	struct nvme_hmb_chunk *hmbc;
931 	size_t pref, min, minc, size;
932 	int err, i;
933 	uint64_t max;
934 
935 	/* Limit HMB to 5% of RAM size per device by default. */
936 	max = (uint64_t)physmem * PAGE_SIZE / 20;
937 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
938 
939 	/*
940 	 * Units of Host Memory Buffer in the Identify info are always in terms
941 	 * of 4k units.
942 	 */
943 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
944 	if (max == 0 || max < min)
945 		return;
946 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
947 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
948 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
949 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
950 	ctrlr->hmb_chunk = pref;
951 
952 again:
953 	/*
954 	 * However, the chunk sizes, number of chunks, and alignment of chunks
955 	 * are all based on the current MPS (ctrlr->page_size).
956 	 */
957 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
958 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
959 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
960 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
961 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
962 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
963 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
964 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
965 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
966 	if (err != 0) {
967 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
968 		nvme_ctrlr_hmb_free(ctrlr);
969 		return;
970 	}
971 
972 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
973 		hmbc = &ctrlr->hmb_chunks[i];
974 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
975 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
976 		    &hmbc->hmbc_map)) {
977 			nvme_printf(ctrlr, "failed to alloc HMB\n");
978 			break;
979 		}
980 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
981 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
982 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
983 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
984 			    hmbc->hmbc_map);
985 			nvme_printf(ctrlr, "failed to load HMB\n");
986 			break;
987 		}
988 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
989 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
990 	}
991 
992 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
993 	    ctrlr->hmb_chunk / 2 >= minc) {
994 		ctrlr->hmb_nchunks = i;
995 		nvme_ctrlr_hmb_free(ctrlr);
996 		ctrlr->hmb_chunk /= 2;
997 		goto again;
998 	}
999 	ctrlr->hmb_nchunks = i;
1000 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1001 		nvme_ctrlr_hmb_free(ctrlr);
1002 		return;
1003 	}
1004 
1005 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1006 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1007 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1008 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1009 	if (err != 0) {
1010 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1011 		nvme_ctrlr_hmb_free(ctrlr);
1012 		return;
1013 	}
1014 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1015 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1016 	    &ctrlr->hmb_desc_map)) {
1017 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1018 		nvme_ctrlr_hmb_free(ctrlr);
1019 		return;
1020 	}
1021 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1022 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1023 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1024 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1025 		    ctrlr->hmb_desc_map);
1026 		nvme_printf(ctrlr, "failed to load HMB desc\n");
1027 		nvme_ctrlr_hmb_free(ctrlr);
1028 		return;
1029 	}
1030 
1031 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1032 		memset(&ctrlr->hmb_desc_vaddr[i], 0,
1033 		    sizeof(struct nvme_hmb_desc));
1034 		ctrlr->hmb_desc_vaddr[i].addr =
1035 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1036 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1037 	}
1038 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1039 	    BUS_DMASYNC_PREWRITE);
1040 
1041 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1042 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1043 	    / 1024 / 1024);
1044 }
1045 
1046 static void
nvme_ctrlr_hmb_enable(struct nvme_controller * ctrlr,bool enable,bool memret)1047 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1048 {
1049 	struct nvme_completion_poll_status	status;
1050 	uint32_t cdw11;
1051 
1052 	cdw11 = 0;
1053 	if (enable)
1054 		cdw11 |= 1;
1055 	if (memret)
1056 		cdw11 |= 2;
1057 	status.done = 0;
1058 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1059 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1060 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1061 	    ctrlr->hmb_nchunks, NULL, 0,
1062 	    nvme_completion_poll_cb, &status);
1063 	nvme_completion_poll(&status);
1064 	if (nvme_completion_is_error(&status.cpl))
1065 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1066 }
1067 
1068 static void
nvme_ctrlr_start(void * ctrlr_arg,bool resetting)1069 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1070 {
1071 	struct nvme_controller *ctrlr = ctrlr_arg;
1072 	uint32_t old_num_io_queues;
1073 	int i;
1074 
1075 	TSENTER();
1076 
1077 	/*
1078 	 * Only reset adminq here when we are restarting the
1079 	 *  controller after a reset.  During initialization,
1080 	 *  we have already submitted admin commands to get
1081 	 *  the number of I/O queues supported, so cannot reset
1082 	 *  the adminq again here.
1083 	 */
1084 	if (resetting) {
1085 		nvme_qpair_reset(&ctrlr->adminq);
1086 		nvme_admin_qpair_enable(&ctrlr->adminq);
1087 	}
1088 
1089 	if (ctrlr->ioq != NULL) {
1090 		for (i = 0; i < ctrlr->num_io_queues; i++)
1091 			nvme_qpair_reset(&ctrlr->ioq[i]);
1092 	}
1093 
1094 	/*
1095 	 * If it was a reset on initialization command timeout, just
1096 	 * return here, letting initialization code fail gracefully.
1097 	 */
1098 	if (resetting && !ctrlr->is_initialized)
1099 		return;
1100 
1101 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1102 		nvme_ctrlr_fail(ctrlr);
1103 		return;
1104 	}
1105 
1106 	/*
1107 	 * The number of qpairs are determined during controller initialization,
1108 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1109 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1110 	 *  after any reset for controllers that depend on the driver to
1111 	 *  explicit specify how many queues it will use.  This value should
1112 	 *  never change between resets, so panic if somehow that does happen.
1113 	 */
1114 	if (resetting) {
1115 		old_num_io_queues = ctrlr->num_io_queues;
1116 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1117 			nvme_ctrlr_fail(ctrlr);
1118 			return;
1119 		}
1120 
1121 		if (old_num_io_queues != ctrlr->num_io_queues) {
1122 			panic("num_io_queues changed from %u to %u",
1123 			      old_num_io_queues, ctrlr->num_io_queues);
1124 		}
1125 	}
1126 
1127 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1128 		nvme_ctrlr_hmb_alloc(ctrlr);
1129 		if (ctrlr->hmb_nchunks > 0)
1130 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1131 	} else if (ctrlr->hmb_nchunks > 0)
1132 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1133 
1134 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1135 		nvme_ctrlr_fail(ctrlr);
1136 		return;
1137 	}
1138 
1139 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1140 		nvme_ctrlr_fail(ctrlr);
1141 		return;
1142 	}
1143 
1144 	nvme_ctrlr_configure_aer(ctrlr);
1145 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1146 
1147 	for (i = 0; i < ctrlr->num_io_queues; i++)
1148 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1149 	TSEXIT();
1150 }
1151 
1152 void
nvme_ctrlr_start_config_hook(void * arg)1153 nvme_ctrlr_start_config_hook(void *arg)
1154 {
1155 	struct nvme_controller *ctrlr = arg;
1156 
1157 	TSENTER();
1158 
1159 	/*
1160 	 * Don't call pre/post reset here. We've not yet created the qpairs,
1161 	 * haven't setup the ISRs, so there's no need to 'drain' them or
1162 	 * 'exclude' them.
1163 	 */
1164 	if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1165 fail:
1166 		nvme_ctrlr_fail(ctrlr);
1167 		config_intrhook_disestablish(&ctrlr->config_hook);
1168 		return;
1169 	}
1170 
1171 #ifdef NVME_2X_RESET
1172 	/*
1173 	 * Reset controller twice to ensure we do a transition from cc.en==1 to
1174 	 * cc.en==0.  This is because we don't really know what status the
1175 	 * controller was left in when boot handed off to OS.  Linux doesn't do
1176 	 * this, however, and when the controller is in state cc.en == 0, no
1177 	 * I/O can happen.
1178 	 */
1179 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1180 		goto fail;
1181 #endif
1182 
1183 	nvme_qpair_reset(&ctrlr->adminq);
1184 	nvme_admin_qpair_enable(&ctrlr->adminq);
1185 
1186 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1187 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1188 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1189 		nvme_ctrlr_start(ctrlr, false);
1190 	else
1191 		goto fail;
1192 
1193 	nvme_sysctl_initialize_ctrlr(ctrlr);
1194 	config_intrhook_disestablish(&ctrlr->config_hook);
1195 
1196 	ctrlr->is_initialized = 1;
1197 	nvme_notify_new_controller(ctrlr);
1198 	TSEXIT();
1199 }
1200 
1201 static void
nvme_ctrlr_reset_task(void * arg,int pending)1202 nvme_ctrlr_reset_task(void *arg, int pending)
1203 {
1204 	struct nvme_controller	*ctrlr = arg;
1205 	int			status;
1206 
1207 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1208 	status = nvme_ctrlr_hw_reset(ctrlr);
1209 	if (status == 0)
1210 		nvme_ctrlr_start(ctrlr, true);
1211 	else
1212 		nvme_ctrlr_fail(ctrlr);
1213 
1214 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1215 }
1216 
1217 /*
1218  * Poll all the queues enabled on the device for completion.
1219  */
1220 void
nvme_ctrlr_poll(struct nvme_controller * ctrlr)1221 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1222 {
1223 	int i;
1224 
1225 	nvme_qpair_process_completions(&ctrlr->adminq);
1226 
1227 	for (i = 0; i < ctrlr->num_io_queues; i++)
1228 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1229 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1230 }
1231 
1232 /*
1233  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1234  * there's only a single vector. While we're polling, we mask further
1235  * interrupts in the controller.
1236  */
1237 void
nvme_ctrlr_shared_handler(void * arg)1238 nvme_ctrlr_shared_handler(void *arg)
1239 {
1240 	struct nvme_controller *ctrlr = arg;
1241 
1242 	nvme_mmio_write_4(ctrlr, intms, 1);
1243 	nvme_ctrlr_poll(ctrlr);
1244 	nvme_mmio_write_4(ctrlr, intmc, 1);
1245 }
1246 
1247 static void
nvme_pt_done(void * arg,const struct nvme_completion * cpl)1248 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1249 {
1250 	struct nvme_pt_command *pt = arg;
1251 	struct mtx *mtx = pt->driver_lock;
1252 	uint16_t status;
1253 
1254 	bzero(&pt->cpl, sizeof(pt->cpl));
1255 	pt->cpl.cdw0 = cpl->cdw0;
1256 
1257 	status = cpl->status;
1258 	status &= ~NVMEM(NVME_STATUS_P);
1259 	pt->cpl.status = status;
1260 
1261 	mtx_lock(mtx);
1262 	pt->driver_lock = NULL;
1263 	wakeup(pt);
1264 	mtx_unlock(mtx);
1265 }
1266 
1267 int
nvme_ctrlr_passthrough_cmd(struct nvme_controller * ctrlr,struct nvme_pt_command * pt,uint32_t nsid,int is_user_buffer,int is_admin_cmd)1268 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1269     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1270     int is_admin_cmd)
1271 {
1272 	struct nvme_request	*req;
1273 	struct mtx		*mtx;
1274 	struct buf		*buf = NULL;
1275 	int			ret = 0;
1276 
1277 	if (pt->len > 0) {
1278 		if (pt->len > ctrlr->max_xfer_size) {
1279 			nvme_printf(ctrlr, "pt->len (%d) "
1280 			    "exceeds max_xfer_size (%d)\n", pt->len,
1281 			    ctrlr->max_xfer_size);
1282 			return EIO;
1283 		}
1284 		if (is_user_buffer) {
1285 			/*
1286 			 * Ensure the user buffer is wired for the duration of
1287 			 *  this pass-through command.
1288 			 */
1289 			PHOLD(curproc);
1290 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1291 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1292 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1293 				ret = EFAULT;
1294 				goto err;
1295 			}
1296 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1297 			    nvme_pt_done, pt);
1298 		} else
1299 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1300 			    nvme_pt_done, pt);
1301 	} else
1302 		req = nvme_allocate_request_null(nvme_pt_done, pt);
1303 
1304 	/* Assume user space already converted to little-endian */
1305 	req->cmd.opc = pt->cmd.opc;
1306 	req->cmd.fuse = pt->cmd.fuse;
1307 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1308 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1309 	req->cmd.cdw10 = pt->cmd.cdw10;
1310 	req->cmd.cdw11 = pt->cmd.cdw11;
1311 	req->cmd.cdw12 = pt->cmd.cdw12;
1312 	req->cmd.cdw13 = pt->cmd.cdw13;
1313 	req->cmd.cdw14 = pt->cmd.cdw14;
1314 	req->cmd.cdw15 = pt->cmd.cdw15;
1315 
1316 	req->cmd.nsid = htole32(nsid);
1317 
1318 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1319 	pt->driver_lock = mtx;
1320 
1321 	if (is_admin_cmd)
1322 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1323 	else
1324 		nvme_ctrlr_submit_io_request(ctrlr, req);
1325 
1326 	mtx_lock(mtx);
1327 	while (pt->driver_lock != NULL)
1328 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1329 	mtx_unlock(mtx);
1330 
1331 	if (buf != NULL) {
1332 		vunmapbuf(buf);
1333 err:
1334 		uma_zfree(pbuf_zone, buf);
1335 		PRELE(curproc);
1336 	}
1337 
1338 	return (ret);
1339 }
1340 
1341 static int
nvme_ctrlr_ioctl(struct cdev * cdev,u_long cmd,caddr_t arg,int flag,struct thread * td)1342 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1343     struct thread *td)
1344 {
1345 	struct nvme_controller			*ctrlr;
1346 	struct nvme_pt_command			*pt;
1347 
1348 	ctrlr = cdev->si_drv1;
1349 
1350 	switch (cmd) {
1351 	case NVME_RESET_CONTROLLER:
1352 		nvme_ctrlr_reset(ctrlr);
1353 		break;
1354 	case NVME_PASSTHROUGH_CMD:
1355 		pt = (struct nvme_pt_command *)arg;
1356 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1357 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1358 	case NVME_GET_NSID:
1359 	{
1360 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1361 		strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1362 		    sizeof(gnsid->cdev));
1363 		gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1364 		gnsid->nsid = 0;
1365 		break;
1366 	}
1367 	case NVME_GET_MAX_XFER_SIZE:
1368 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1369 		break;
1370 	default:
1371 		return (ENOTTY);
1372 	}
1373 
1374 	return (0);
1375 }
1376 
1377 static struct cdevsw nvme_ctrlr_cdevsw = {
1378 	.d_version =	D_VERSION,
1379 	.d_flags =	0,
1380 	.d_ioctl =	nvme_ctrlr_ioctl
1381 };
1382 
1383 int
nvme_ctrlr_construct(struct nvme_controller * ctrlr,device_t dev)1384 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1385 {
1386 	struct make_dev_args	md_args;
1387 	uint32_t	cap_lo;
1388 	uint32_t	cap_hi;
1389 	uint32_t	to, vs, pmrcap;
1390 	int		status, timeout_period;
1391 
1392 	ctrlr->dev = dev;
1393 
1394 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1395 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1396 		ctrlr->domain = 0;
1397 
1398 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1399 	if (bootverbose) {
1400 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1401 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1402 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1403 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1404 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1405 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1406 		    NVME_CAP_LO_TO(cap_lo));
1407 	}
1408 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1409 	if (bootverbose) {
1410 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1411 		    "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
1412 		    NVME_CAP_HI_DSTRD(cap_hi),
1413 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1414 		    NVME_CAP_HI_CSS(cap_hi),
1415 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1416 		    NVME_CAP_HI_CPS(cap_hi),
1417 		    NVME_CAP_HI_MPSMIN(cap_hi),
1418 		    NVME_CAP_HI_MPSMAX(cap_hi),
1419 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1420 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
1421 		    NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
1422 		    NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
1423 		    NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
1424 	}
1425 	if (bootverbose) {
1426 		vs = nvme_mmio_read_4(ctrlr, vs);
1427 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1428 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1429 	}
1430 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1431 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1432 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1433 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1434 		    NVME_PMRCAP_BIR(pmrcap),
1435 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1436 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1437 		    NVME_PMRCAP_PMRTU(pmrcap),
1438 		    NVME_PMRCAP_PMRWBM(pmrcap),
1439 		    NVME_PMRCAP_PMRTO(pmrcap),
1440 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1441 	}
1442 
1443 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1444 
1445 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1446 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1447 
1448 	/* Get ready timeout value from controller, in units of 500ms. */
1449 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1450 	ctrlr->ready_timeout_in_ms = to * 500;
1451 
1452 	timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1453 	TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1454 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1455 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1456 	ctrlr->admin_timeout_period = timeout_period;
1457 
1458 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1459 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1460 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1461 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1462 	ctrlr->timeout_period = timeout_period;
1463 
1464 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1465 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1466 
1467 	ctrlr->enable_aborts = 0;
1468 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1469 
1470 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1471 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1472 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1473 		return (ENXIO);
1474 
1475 	/*
1476 	 * Create 2 threads for the taskqueue. The reset thread will block when
1477 	 * it detects that the controller has failed until all I/O has been
1478 	 * failed up the stack. The fail_req task needs to be able to run in
1479 	 * this case to finish the request failure for some cases.
1480 	 *
1481 	 * We could partially solve this race by draining the failed requeust
1482 	 * queue before proceding to free the sim, though nothing would stop
1483 	 * new I/O from coming in after we do that drain, but before we reach
1484 	 * cam_sim_free, so this big hammer is used instead.
1485 	 */
1486 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1487 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1488 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1489 
1490 	ctrlr->is_resetting = 0;
1491 	ctrlr->is_initialized = 0;
1492 	ctrlr->notification_sent = 0;
1493 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1494 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1495 	STAILQ_INIT(&ctrlr->fail_req);
1496 	ctrlr->is_failed = false;
1497 
1498 	make_dev_args_init(&md_args);
1499 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1500 	md_args.mda_uid = UID_ROOT;
1501 	md_args.mda_gid = GID_WHEEL;
1502 	md_args.mda_mode = 0600;
1503 	md_args.mda_unit = device_get_unit(dev);
1504 	md_args.mda_si_drv1 = (void *)ctrlr;
1505 	status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1506 	    device_get_unit(dev));
1507 	if (status != 0)
1508 		return (ENXIO);
1509 
1510 	return (0);
1511 }
1512 
1513 void
nvme_ctrlr_destruct(struct nvme_controller * ctrlr,device_t dev)1514 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1515 {
1516 	int	gone, i;
1517 
1518 	ctrlr->is_dying = true;
1519 
1520 	if (ctrlr->resource == NULL)
1521 		goto nores;
1522 	if (!mtx_initialized(&ctrlr->adminq.lock))
1523 		goto noadminq;
1524 
1525 	/*
1526 	 * Check whether it is a hot unplug or a clean driver detach.
1527 	 * If device is not there any more, skip any shutdown commands.
1528 	 */
1529 	gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1530 	if (gone)
1531 		nvme_ctrlr_fail(ctrlr);
1532 	else
1533 		nvme_notify_fail_consumers(ctrlr);
1534 
1535 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1536 		nvme_ns_destruct(&ctrlr->ns[i]);
1537 
1538 	if (ctrlr->cdev)
1539 		destroy_dev(ctrlr->cdev);
1540 
1541 	if (ctrlr->is_initialized) {
1542 		if (!gone) {
1543 			if (ctrlr->hmb_nchunks > 0)
1544 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1545 			nvme_ctrlr_delete_qpairs(ctrlr);
1546 		}
1547 		nvme_ctrlr_hmb_free(ctrlr);
1548 	}
1549 	if (ctrlr->ioq != NULL) {
1550 		for (i = 0; i < ctrlr->num_io_queues; i++)
1551 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1552 		free(ctrlr->ioq, M_NVME);
1553 	}
1554 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1555 
1556 	/*
1557 	 *  Notify the controller of a shutdown, even though this is due to
1558 	 *   a driver unload, not a system shutdown (this path is not invoked
1559 	 *   during shutdown).  This ensures the controller receives a
1560 	 *   shutdown notification in case the system is shutdown before
1561 	 *   reloading the driver.
1562 	 */
1563 	if (!gone)
1564 		nvme_ctrlr_shutdown(ctrlr);
1565 
1566 	if (!gone)
1567 		nvme_ctrlr_disable(ctrlr);
1568 
1569 noadminq:
1570 	if (ctrlr->taskqueue)
1571 		taskqueue_free(ctrlr->taskqueue);
1572 
1573 	if (ctrlr->tag)
1574 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1575 
1576 	if (ctrlr->res)
1577 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1578 		    rman_get_rid(ctrlr->res), ctrlr->res);
1579 
1580 	if (ctrlr->bar4_resource != NULL) {
1581 		bus_release_resource(dev, SYS_RES_MEMORY,
1582 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1583 	}
1584 
1585 	bus_release_resource(dev, SYS_RES_MEMORY,
1586 	    ctrlr->resource_id, ctrlr->resource);
1587 
1588 nores:
1589 	mtx_destroy(&ctrlr->lock);
1590 }
1591 
1592 void
nvme_ctrlr_shutdown(struct nvme_controller * ctrlr)1593 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1594 {
1595 	uint32_t	cc;
1596 	uint32_t	csts;
1597 	int		timeout;
1598 
1599 	cc = nvme_mmio_read_4(ctrlr, cc);
1600 	cc &= ~NVMEM(NVME_CC_REG_SHN);
1601 	cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
1602 	nvme_mmio_write_4(ctrlr, cc, cc);
1603 
1604 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1605 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1606 	while (1) {
1607 		csts = nvme_mmio_read_4(ctrlr, csts);
1608 		if (csts == NVME_GONE)		/* Hot unplug. */
1609 			break;
1610 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1611 			break;
1612 		if (timeout - ticks < 0) {
1613 			nvme_printf(ctrlr, "shutdown timeout\n");
1614 			break;
1615 		}
1616 		pause("nvmeshut", 1);
1617 	}
1618 }
1619 
1620 void
nvme_ctrlr_submit_admin_request(struct nvme_controller * ctrlr,struct nvme_request * req)1621 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1622     struct nvme_request *req)
1623 {
1624 
1625 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1626 }
1627 
1628 void
nvme_ctrlr_submit_io_request(struct nvme_controller * ctrlr,struct nvme_request * req)1629 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1630     struct nvme_request *req)
1631 {
1632 	struct nvme_qpair       *qpair;
1633 
1634 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1635 	nvme_qpair_submit_request(qpair, req);
1636 }
1637 
1638 device_t
nvme_ctrlr_get_device(struct nvme_controller * ctrlr)1639 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1640 {
1641 
1642 	return (ctrlr->dev);
1643 }
1644 
1645 const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller * ctrlr)1646 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1647 {
1648 
1649 	return (&ctrlr->cdata);
1650 }
1651 
1652 int
nvme_ctrlr_suspend(struct nvme_controller * ctrlr)1653 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1654 {
1655 	int to = hz;
1656 
1657 	/*
1658 	 * Can't touch failed controllers, so it's already suspended.
1659 	 */
1660 	if (ctrlr->is_failed)
1661 		return (0);
1662 
1663 	/*
1664 	 * We don't want the reset taskqueue running, since it does similar
1665 	 * things, so prevent it from running after we start. Wait for any reset
1666 	 * that may have been started to complete. The reset process we follow
1667 	 * will ensure that any new I/O will queue and be given to the hardware
1668 	 * after we resume (though there should be none).
1669 	 */
1670 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1671 		pause("nvmesusp", 1);
1672 	if (to <= 0) {
1673 		nvme_printf(ctrlr,
1674 		    "Competing reset task didn't finish. Try again later.\n");
1675 		return (EWOULDBLOCK);
1676 	}
1677 
1678 	if (ctrlr->hmb_nchunks > 0)
1679 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1680 
1681 	/*
1682 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1683 	 * delete the hardware I/O queues, and then shutdown. This properly
1684 	 * flushes any metadata the drive may have stored so it can survive
1685 	 * having its power removed and prevents the unsafe shutdown count from
1686 	 * incriminating. Once we delete the qpairs, we have to disable them
1687 	 * before shutting down.
1688 	 */
1689 	nvme_ctrlr_delete_qpairs(ctrlr);
1690 	nvme_ctrlr_disable_qpairs(ctrlr);
1691 	nvme_ctrlr_shutdown(ctrlr);
1692 
1693 	return (0);
1694 }
1695 
1696 int
nvme_ctrlr_resume(struct nvme_controller * ctrlr)1697 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1698 {
1699 
1700 	/*
1701 	 * Can't touch failed controllers, so nothing to do to resume.
1702 	 */
1703 	if (ctrlr->is_failed)
1704 		return (0);
1705 
1706 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1707 		goto fail;
1708 
1709 	/*
1710 	 * Now that we've reset the hardware, we can restart the controller. Any
1711 	 * I/O that was pending is requeued. Any admin commands are aborted with
1712 	 * an error. Once we've restarted, take the controller out of reset.
1713 	 */
1714 	nvme_ctrlr_start(ctrlr, true);
1715 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1716 
1717 	return (0);
1718 fail:
1719 	/*
1720 	 * Since we can't bring the controller out of reset, announce and fail
1721 	 * the controller. However, we have to return success for the resume
1722 	 * itself, due to questionable APIs.
1723 	 */
1724 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1725 	nvme_ctrlr_fail(ctrlr);
1726 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1727 	return (0);
1728 }
1729