1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2012-2016 Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46
47 #include "nvme_private.h"
48
49 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */
50
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52 struct nvme_async_event_request *aer);
53
54 static void
nvme_ctrlr_barrier(struct nvme_controller * ctrlr,int flags)55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59
60 static void
nvme_ctrlr_devctl_log(struct nvme_controller * ctrlr,const char * type,const char * msg,...)61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63 struct sbuf sb;
64 va_list ap;
65 int error;
66
67 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68 return;
69 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70 va_start(ap, msg);
71 sbuf_vprintf(&sb, msg, ap);
72 va_end(ap);
73 error = sbuf_finish(&sb);
74 if (error == 0)
75 printf("%s\n", sbuf_data(&sb));
76
77 sbuf_clear(&sb);
78 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79 va_start(ap, msg);
80 sbuf_vprintf(&sb, msg, ap);
81 va_end(ap);
82 sbuf_printf(&sb, "\"");
83 error = sbuf_finish(&sb);
84 if (error == 0)
85 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86 sbuf_delete(&sb);
87 }
88
89 static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller * ctrlr)90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92 struct nvme_qpair *qpair;
93 uint32_t num_entries;
94 int error;
95
96 qpair = &ctrlr->adminq;
97 qpair->id = 0;
98 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99 qpair->domain = ctrlr->domain;
100
101 num_entries = NVME_ADMIN_ENTRIES;
102 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103 /*
104 * If admin_entries was overridden to an invalid value, revert it
105 * back to our default value.
106 */
107 if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108 num_entries > NVME_MAX_ADMIN_ENTRIES) {
109 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110 "specified\n", num_entries);
111 num_entries = NVME_ADMIN_ENTRIES;
112 }
113
114 /*
115 * The admin queue's max xfer size is treated differently than the
116 * max I/O xfer size. 16KB is sufficient here - maybe even less?
117 */
118 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119 ctrlr);
120 return (error);
121 }
122
123 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus)
124
125 static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller * ctrlr)126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128 struct nvme_qpair *qpair;
129 uint32_t cap_lo;
130 uint16_t mqes;
131 int c, error, i, n;
132 int num_entries, num_trackers, max_entries;
133
134 /*
135 * NVMe spec sets a hard limit of 64K max entries, but devices may
136 * specify a smaller limit, so we need to check the MQES field in the
137 * capabilities register. We have to cap the number of entries to the
138 * current stride allows for in BAR 0/1, otherwise the remainder entries
139 * are inaccessible. MQES should reflect this, and this is just a
140 * fail-safe.
141 */
142 max_entries =
143 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144 (1 << (ctrlr->dstrd + 1));
145 num_entries = NVME_IO_ENTRIES;
146 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148 mqes = NVME_CAP_LO_MQES(cap_lo);
149 num_entries = min(num_entries, mqes + 1);
150 num_entries = min(num_entries, max_entries);
151
152 num_trackers = NVME_IO_TRACKERS;
153 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154
155 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157 /*
158 * No need to have more trackers than entries in the submit queue. Note
159 * also that for a queue size of N, we can only have (N-1) commands
160 * outstanding, hence the "-1" here.
161 */
162 num_trackers = min(num_trackers, (num_entries-1));
163
164 /*
165 * Our best estimate for the maximum number of I/Os that we should
166 * normally have in flight at one time. This should be viewed as a hint,
167 * not a hard limit and will need to be revisited when the upper layers
168 * of the storage system grows multi-queue support.
169 */
170 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171
172 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173 M_NVME, M_ZERO | M_WAITOK);
174
175 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176 qpair = &ctrlr->ioq[i];
177
178 /*
179 * Admin queue has ID=0. IO queues start at ID=1 -
180 * hence the 'i+1' here.
181 */
182 qpair->id = i + 1;
183 if (ctrlr->num_io_queues > 1) {
184 /* Find number of CPUs served by this queue. */
185 for (n = 1; QP(ctrlr, c + n) == i; n++)
186 ;
187 /* Shuffle multiple NVMe devices between CPUs. */
188 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189 qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190 } else {
191 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192 qpair->domain = ctrlr->domain;
193 }
194
195 /*
196 * For I/O queues, use the controller-wide max_xfer_size
197 * calculated in nvme_attach().
198 */
199 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200 ctrlr);
201 if (error)
202 return (error);
203
204 /*
205 * Do not bother binding interrupts if we only have one I/O
206 * interrupt thread for this controller.
207 */
208 if (ctrlr->num_io_queues > 1)
209 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210 }
211
212 return (0);
213 }
214
215 static void
nvme_ctrlr_fail(struct nvme_controller * ctrlr)216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218 int i;
219
220 /*
221 * No need to disable queues before failing them. Failing is a superet
222 * of disabling (though pedantically we'd abort the AERs silently with
223 * a different error, though when we fail, that hardly matters).
224 */
225 ctrlr->is_failed = true;
226 nvme_qpair_fail(&ctrlr->adminq);
227 if (ctrlr->ioq != NULL) {
228 for (i = 0; i < ctrlr->num_io_queues; i++) {
229 nvme_qpair_fail(&ctrlr->ioq[i]);
230 }
231 }
232 nvme_notify_fail_consumers(ctrlr);
233 }
234
235 void
nvme_ctrlr_post_failed_request(struct nvme_controller * ctrlr,struct nvme_request * req)236 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
237 struct nvme_request *req)
238 {
239
240 mtx_lock(&ctrlr->lock);
241 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
242 mtx_unlock(&ctrlr->lock);
243 if (!ctrlr->is_dying)
244 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
245 }
246
247 static void
nvme_ctrlr_fail_req_task(void * arg,int pending)248 nvme_ctrlr_fail_req_task(void *arg, int pending)
249 {
250 struct nvme_controller *ctrlr = arg;
251 struct nvme_request *req;
252
253 mtx_lock(&ctrlr->lock);
254 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
255 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
256 mtx_unlock(&ctrlr->lock);
257 nvme_qpair_manual_complete_request(req->qpair, req,
258 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
259 mtx_lock(&ctrlr->lock);
260 }
261 mtx_unlock(&ctrlr->lock);
262 }
263
264 /*
265 * Wait for RDY to change.
266 *
267 * Starts sleeping for 1us and geometrically increases it the longer we wait,
268 * capped at 1ms.
269 */
270 static int
nvme_ctrlr_wait_for_ready(struct nvme_controller * ctrlr,int desired_val)271 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
272 {
273 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
274 sbintime_t delta_t = SBT_1US;
275 uint32_t csts;
276
277 while (1) {
278 csts = nvme_mmio_read_4(ctrlr, csts);
279 if (csts == NVME_GONE) /* Hot unplug. */
280 return (ENXIO);
281 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val)
282 break;
283 if (timeout - ticks < 0) {
284 nvme_printf(ctrlr, "controller ready did not become %d "
285 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286 return (ENXIO);
287 }
288
289 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290 delta_t = min(SBT_1MS, delta_t * 3 / 2);
291 }
292
293 return (0);
294 }
295
296 static int
nvme_ctrlr_disable(struct nvme_controller * ctrlr)297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299 uint32_t cc;
300 uint32_t csts;
301 uint8_t en, rdy;
302 int err;
303
304 cc = nvme_mmio_read_4(ctrlr, cc);
305 csts = nvme_mmio_read_4(ctrlr, csts);
306
307 en = NVMEV(NVME_CC_REG_EN, cc);
308 rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
309
310 /*
311 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314 * isn't the desired value. Short circuit if we're already disabled.
315 */
316 if (en == 0) {
317 /* Wait for RDY == 0 or timeout & fail */
318 if (rdy == 0)
319 return (0);
320 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321 }
322 if (rdy == 0) {
323 /* EN == 1, wait for RDY == 1 or timeout & fail */
324 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325 if (err != 0)
326 return (err);
327 }
328
329 cc &= ~NVMEM(NVME_CC_REG_EN);
330 nvme_mmio_write_4(ctrlr, cc, cc);
331
332 /*
333 * A few drives have firmware bugs that freeze the drive if we access
334 * the mmio too soon after we disable.
335 */
336 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340
341 static int
nvme_ctrlr_enable(struct nvme_controller * ctrlr)342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344 uint32_t cc;
345 uint32_t csts;
346 uint32_t aqa;
347 uint32_t qsize;
348 uint8_t en, rdy;
349 int err;
350
351 cc = nvme_mmio_read_4(ctrlr, cc);
352 csts = nvme_mmio_read_4(ctrlr, csts);
353
354 en = NVMEV(NVME_CC_REG_EN, cc);
355 rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
356
357 /*
358 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359 */
360 if (en == 1) {
361 if (rdy == 1)
362 return (0);
363 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364 }
365
366 /* EN == 0 already wait for RDY == 0 or timeout & fail */
367 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368 if (err != 0)
369 return (err);
370
371 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373
374 /* acqs and asqs are 0-based. */
375 qsize = ctrlr->adminq.num_entries - 1;
376
377 aqa = 0;
378 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize);
379 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize);
380 nvme_mmio_write_4(ctrlr, aqa, aqa);
381
382 /* Initialization values for CC */
383 cc = 0;
384 cc |= NVMEF(NVME_CC_REG_EN, 1);
385 cc |= NVMEF(NVME_CC_REG_CSS, 0);
386 cc |= NVMEF(NVME_CC_REG_AMS, 0);
387 cc |= NVMEF(NVME_CC_REG_SHN, 0);
388 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */
389 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */
390
391 /*
392 * Use the Memory Page Size selected during device initialization. Note
393 * that value stored in mps is suitable to use here without adjusting by
394 * NVME_MPS_SHIFT.
395 */
396 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps);
397
398 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
399 nvme_mmio_write_4(ctrlr, cc, cc);
400
401 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
402 }
403
404 static void
nvme_ctrlr_disable_qpairs(struct nvme_controller * ctrlr)405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
406 {
407 int i;
408
409 nvme_admin_qpair_disable(&ctrlr->adminq);
410 /*
411 * I/O queues are not allocated before the initial HW
412 * reset, so do not try to disable them. Use is_initialized
413 * to determine if this is the initial HW reset.
414 */
415 if (ctrlr->is_initialized) {
416 for (i = 0; i < ctrlr->num_io_queues; i++)
417 nvme_io_qpair_disable(&ctrlr->ioq[i]);
418 }
419 }
420
421 static int
nvme_ctrlr_hw_reset(struct nvme_controller * ctrlr)422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
423 {
424 int err;
425
426 TSENTER();
427
428 nvme_ctrlr_disable_qpairs(ctrlr);
429
430 err = nvme_ctrlr_disable(ctrlr);
431 if (err != 0)
432 goto out;
433
434 err = nvme_ctrlr_enable(ctrlr);
435 out:
436
437 TSEXIT();
438 return (err);
439 }
440
441 void
nvme_ctrlr_reset(struct nvme_controller * ctrlr)442 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
443 {
444 int cmpset;
445
446 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
447
448 if (cmpset == 0 || ctrlr->is_failed)
449 /*
450 * Controller is already resetting or has failed. Return
451 * immediately since there is no need to kick off another
452 * reset in these cases.
453 */
454 return;
455
456 if (!ctrlr->is_dying)
457 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
458 }
459
460 static int
nvme_ctrlr_identify(struct nvme_controller * ctrlr)461 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
462 {
463 struct nvme_completion_poll_status status;
464
465 status.done = 0;
466 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
467 nvme_completion_poll_cb, &status);
468 nvme_completion_poll(&status);
469 if (nvme_completion_is_error(&status.cpl)) {
470 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
471 return (ENXIO);
472 }
473
474 /* Convert data to host endian */
475 nvme_controller_data_swapbytes(&ctrlr->cdata);
476
477 /*
478 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
479 * controller supports.
480 */
481 if (ctrlr->cdata.mdts > 0)
482 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
483 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
484 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
485
486 return (0);
487 }
488
489 static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller * ctrlr)490 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
491 {
492 struct nvme_completion_poll_status status;
493 int cq_allocated, sq_allocated;
494
495 status.done = 0;
496 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
497 nvme_completion_poll_cb, &status);
498 nvme_completion_poll(&status);
499 if (nvme_completion_is_error(&status.cpl)) {
500 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
501 return (ENXIO);
502 }
503
504 /*
505 * Data in cdw0 is 0-based.
506 * Lower 16-bits indicate number of submission queues allocated.
507 * Upper 16-bits indicate number of completion queues allocated.
508 */
509 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
510 cq_allocated = (status.cpl.cdw0 >> 16) + 1;
511
512 /*
513 * Controller may allocate more queues than we requested,
514 * so use the minimum of the number requested and what was
515 * actually allocated.
516 */
517 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
518 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
519 if (ctrlr->num_io_queues > vm_ndomains)
520 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
521
522 return (0);
523 }
524
525 static int
nvme_ctrlr_create_qpairs(struct nvme_controller * ctrlr)526 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
527 {
528 struct nvme_completion_poll_status status;
529 struct nvme_qpair *qpair;
530 int i;
531
532 for (i = 0; i < ctrlr->num_io_queues; i++) {
533 qpair = &ctrlr->ioq[i];
534
535 status.done = 0;
536 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
537 nvme_completion_poll_cb, &status);
538 nvme_completion_poll(&status);
539 if (nvme_completion_is_error(&status.cpl)) {
540 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
541 return (ENXIO);
542 }
543
544 status.done = 0;
545 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
546 nvme_completion_poll_cb, &status);
547 nvme_completion_poll(&status);
548 if (nvme_completion_is_error(&status.cpl)) {
549 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
550 return (ENXIO);
551 }
552 }
553
554 return (0);
555 }
556
557 static int
nvme_ctrlr_delete_qpairs(struct nvme_controller * ctrlr)558 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
559 {
560 struct nvme_completion_poll_status status;
561 struct nvme_qpair *qpair;
562
563 for (int i = 0; i < ctrlr->num_io_queues; i++) {
564 qpair = &ctrlr->ioq[i];
565
566 status.done = 0;
567 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
568 nvme_completion_poll_cb, &status);
569 nvme_completion_poll(&status);
570 if (nvme_completion_is_error(&status.cpl)) {
571 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
572 return (ENXIO);
573 }
574
575 status.done = 0;
576 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
577 nvme_completion_poll_cb, &status);
578 nvme_completion_poll(&status);
579 if (nvme_completion_is_error(&status.cpl)) {
580 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
581 return (ENXIO);
582 }
583 }
584
585 return (0);
586 }
587
588 static int
nvme_ctrlr_construct_namespaces(struct nvme_controller * ctrlr)589 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
590 {
591 struct nvme_namespace *ns;
592 uint32_t i;
593
594 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
595 ns = &ctrlr->ns[i];
596 nvme_ns_construct(ns, i+1, ctrlr);
597 }
598
599 return (0);
600 }
601
602 static bool
is_log_page_id_valid(uint8_t page_id)603 is_log_page_id_valid(uint8_t page_id)
604 {
605
606 switch (page_id) {
607 case NVME_LOG_ERROR:
608 case NVME_LOG_HEALTH_INFORMATION:
609 case NVME_LOG_FIRMWARE_SLOT:
610 case NVME_LOG_CHANGED_NAMESPACE:
611 case NVME_LOG_COMMAND_EFFECT:
612 case NVME_LOG_RES_NOTIFICATION:
613 case NVME_LOG_SANITIZE_STATUS:
614 return (true);
615 }
616
617 return (false);
618 }
619
620 static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller * ctrlr,uint8_t page_id)621 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
622 {
623 uint32_t log_page_size;
624
625 switch (page_id) {
626 case NVME_LOG_ERROR:
627 log_page_size = min(
628 sizeof(struct nvme_error_information_entry) *
629 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
630 break;
631 case NVME_LOG_HEALTH_INFORMATION:
632 log_page_size = sizeof(struct nvme_health_information_page);
633 break;
634 case NVME_LOG_FIRMWARE_SLOT:
635 log_page_size = sizeof(struct nvme_firmware_page);
636 break;
637 case NVME_LOG_CHANGED_NAMESPACE:
638 log_page_size = sizeof(struct nvme_ns_list);
639 break;
640 case NVME_LOG_COMMAND_EFFECT:
641 log_page_size = sizeof(struct nvme_command_effects_page);
642 break;
643 case NVME_LOG_RES_NOTIFICATION:
644 log_page_size = sizeof(struct nvme_res_notification_page);
645 break;
646 case NVME_LOG_SANITIZE_STATUS:
647 log_page_size = sizeof(struct nvme_sanitize_status_page);
648 break;
649 default:
650 log_page_size = 0;
651 break;
652 }
653
654 return (log_page_size);
655 }
656
657 static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller * ctrlr,uint8_t state)658 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
659 uint8_t state)
660 {
661
662 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
663 nvme_ctrlr_devctl_log(ctrlr, "critical",
664 "available spare space below threshold");
665
666 if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
667 nvme_ctrlr_devctl_log(ctrlr, "critical",
668 "temperature above threshold");
669
670 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
671 nvme_ctrlr_devctl_log(ctrlr, "critical",
672 "device reliability degraded");
673
674 if (state & NVME_CRIT_WARN_ST_READ_ONLY)
675 nvme_ctrlr_devctl_log(ctrlr, "critical",
676 "media placed in read only mode");
677
678 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
679 nvme_ctrlr_devctl_log(ctrlr, "critical",
680 "volatile memory backup device failed");
681
682 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
683 nvme_ctrlr_devctl_log(ctrlr, "critical",
684 "unknown critical warning(s): state = 0x%02x", state);
685 }
686
687 static void
nvme_ctrlr_async_event_log_page_cb(void * arg,const struct nvme_completion * cpl)688 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
689 {
690 struct nvme_async_event_request *aer = arg;
691 struct nvme_health_information_page *health_info;
692 struct nvme_ns_list *nsl;
693 struct nvme_error_information_entry *err;
694 int i;
695
696 /*
697 * If the log page fetch for some reason completed with an error,
698 * don't pass log page data to the consumers. In practice, this case
699 * should never happen.
700 */
701 if (nvme_completion_is_error(cpl))
702 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
703 aer->log_page_id, NULL, 0);
704 else {
705 /* Convert data to host endian */
706 switch (aer->log_page_id) {
707 case NVME_LOG_ERROR:
708 err = (struct nvme_error_information_entry *)aer->log_page_buffer;
709 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
710 nvme_error_information_entry_swapbytes(err++);
711 break;
712 case NVME_LOG_HEALTH_INFORMATION:
713 nvme_health_information_page_swapbytes(
714 (struct nvme_health_information_page *)aer->log_page_buffer);
715 break;
716 case NVME_LOG_CHANGED_NAMESPACE:
717 nvme_ns_list_swapbytes(
718 (struct nvme_ns_list *)aer->log_page_buffer);
719 break;
720 case NVME_LOG_COMMAND_EFFECT:
721 nvme_command_effects_page_swapbytes(
722 (struct nvme_command_effects_page *)aer->log_page_buffer);
723 break;
724 case NVME_LOG_RES_NOTIFICATION:
725 nvme_res_notification_page_swapbytes(
726 (struct nvme_res_notification_page *)aer->log_page_buffer);
727 break;
728 case NVME_LOG_SANITIZE_STATUS:
729 nvme_sanitize_status_page_swapbytes(
730 (struct nvme_sanitize_status_page *)aer->log_page_buffer);
731 break;
732 default:
733 break;
734 }
735
736 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
737 health_info = (struct nvme_health_information_page *)
738 aer->log_page_buffer;
739 nvme_ctrlr_log_critical_warnings(aer->ctrlr,
740 health_info->critical_warning);
741 /*
742 * Critical warnings reported through the
743 * SMART/health log page are persistent, so
744 * clear the associated bits in the async event
745 * config so that we do not receive repeated
746 * notifications for the same event.
747 */
748 aer->ctrlr->async_event_config &=
749 ~health_info->critical_warning;
750 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
751 aer->ctrlr->async_event_config, NULL, NULL);
752 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
753 !nvme_use_nvd) {
754 nsl = (struct nvme_ns_list *)aer->log_page_buffer;
755 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
756 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
757 break;
758 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
759 }
760 }
761
762 /*
763 * Pass the cpl data from the original async event completion,
764 * not the log page fetch.
765 */
766 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
767 aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
768 }
769
770 /*
771 * Repost another asynchronous event request to replace the one
772 * that just completed.
773 */
774 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
775 }
776
777 static void
nvme_ctrlr_async_event_cb(void * arg,const struct nvme_completion * cpl)778 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
779 {
780 struct nvme_async_event_request *aer = arg;
781
782 if (nvme_completion_is_error(cpl)) {
783 /*
784 * Do not retry failed async event requests. This avoids
785 * infinite loops where a new async event request is submitted
786 * to replace the one just failed, only to fail again and
787 * perpetuate the loop.
788 */
789 return;
790 }
791
792 /* Associated log page is in bits 23:16 of completion entry dw0. */
793 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0);
794
795 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
796 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0),
797 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0),
798 aer->log_page_id);
799
800 if (is_log_page_id_valid(aer->log_page_id)) {
801 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
802 aer->log_page_id);
803 memcpy(&aer->cpl, cpl, sizeof(*cpl));
804 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
805 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
806 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
807 aer);
808 /* Wait to notify consumers until after log page is fetched. */
809 } else {
810 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
811 NULL, 0);
812
813 /*
814 * Repost another asynchronous event request to replace the one
815 * that just completed.
816 */
817 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
818 }
819 }
820
821 static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller * ctrlr,struct nvme_async_event_request * aer)822 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
823 struct nvme_async_event_request *aer)
824 {
825 struct nvme_request *req;
826
827 aer->ctrlr = ctrlr;
828 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
829 aer->req = req;
830
831 /*
832 * Disable timeout here, since asynchronous event requests should by
833 * nature never be timed out.
834 */
835 req->timeout = false;
836 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
837 nvme_ctrlr_submit_admin_request(ctrlr, req);
838 }
839
840 static void
nvme_ctrlr_configure_aer(struct nvme_controller * ctrlr)841 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
842 {
843 struct nvme_completion_poll_status status;
844 struct nvme_async_event_request *aer;
845 uint32_t i;
846
847 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
848 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
849 NVME_CRIT_WARN_ST_READ_ONLY |
850 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
851 if (ctrlr->cdata.ver >= NVME_REV(1, 2))
852 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
853 NVME_ASYNC_EVENT_FW_ACTIVATE;
854
855 status.done = 0;
856 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
857 0, NULL, 0, nvme_completion_poll_cb, &status);
858 nvme_completion_poll(&status);
859 if (nvme_completion_is_error(&status.cpl) ||
860 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
861 (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
862 nvme_printf(ctrlr, "temperature threshold not supported\n");
863 } else
864 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
865
866 nvme_ctrlr_cmd_set_async_event_config(ctrlr,
867 ctrlr->async_event_config, NULL, NULL);
868
869 /* aerl is a zero-based value, so we need to add 1 here. */
870 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
871
872 for (i = 0; i < ctrlr->num_aers; i++) {
873 aer = &ctrlr->aer[i];
874 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
875 }
876 }
877
878 static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller * ctrlr)879 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
880 {
881
882 ctrlr->int_coal_time = 0;
883 TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
884 &ctrlr->int_coal_time);
885
886 ctrlr->int_coal_threshold = 0;
887 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
888 &ctrlr->int_coal_threshold);
889
890 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
891 ctrlr->int_coal_threshold, NULL, NULL);
892 }
893
894 static void
nvme_ctrlr_hmb_free(struct nvme_controller * ctrlr)895 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
896 {
897 struct nvme_hmb_chunk *hmbc;
898 int i;
899
900 if (ctrlr->hmb_desc_paddr) {
901 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
902 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
903 ctrlr->hmb_desc_map);
904 ctrlr->hmb_desc_paddr = 0;
905 }
906 if (ctrlr->hmb_desc_tag) {
907 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
908 ctrlr->hmb_desc_tag = NULL;
909 }
910 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
911 hmbc = &ctrlr->hmb_chunks[i];
912 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
913 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
914 hmbc->hmbc_map);
915 }
916 ctrlr->hmb_nchunks = 0;
917 if (ctrlr->hmb_tag) {
918 bus_dma_tag_destroy(ctrlr->hmb_tag);
919 ctrlr->hmb_tag = NULL;
920 }
921 if (ctrlr->hmb_chunks) {
922 free(ctrlr->hmb_chunks, M_NVME);
923 ctrlr->hmb_chunks = NULL;
924 }
925 }
926
927 static void
nvme_ctrlr_hmb_alloc(struct nvme_controller * ctrlr)928 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
929 {
930 struct nvme_hmb_chunk *hmbc;
931 size_t pref, min, minc, size;
932 int err, i;
933 uint64_t max;
934
935 /* Limit HMB to 5% of RAM size per device by default. */
936 max = (uint64_t)physmem * PAGE_SIZE / 20;
937 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
938
939 /*
940 * Units of Host Memory Buffer in the Identify info are always in terms
941 * of 4k units.
942 */
943 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
944 if (max == 0 || max < min)
945 return;
946 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
947 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
948 if (min > 0 && ctrlr->cdata.hmmaxd > 0)
949 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
950 ctrlr->hmb_chunk = pref;
951
952 again:
953 /*
954 * However, the chunk sizes, number of chunks, and alignment of chunks
955 * are all based on the current MPS (ctrlr->page_size).
956 */
957 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
958 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
959 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
960 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
961 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
962 ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
963 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
964 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
965 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
966 if (err != 0) {
967 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
968 nvme_ctrlr_hmb_free(ctrlr);
969 return;
970 }
971
972 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
973 hmbc = &ctrlr->hmb_chunks[i];
974 if (bus_dmamem_alloc(ctrlr->hmb_tag,
975 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
976 &hmbc->hmbc_map)) {
977 nvme_printf(ctrlr, "failed to alloc HMB\n");
978 break;
979 }
980 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
981 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
982 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
983 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
984 hmbc->hmbc_map);
985 nvme_printf(ctrlr, "failed to load HMB\n");
986 break;
987 }
988 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
989 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
990 }
991
992 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
993 ctrlr->hmb_chunk / 2 >= minc) {
994 ctrlr->hmb_nchunks = i;
995 nvme_ctrlr_hmb_free(ctrlr);
996 ctrlr->hmb_chunk /= 2;
997 goto again;
998 }
999 ctrlr->hmb_nchunks = i;
1000 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1001 nvme_ctrlr_hmb_free(ctrlr);
1002 return;
1003 }
1004
1005 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1006 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1007 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1008 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1009 if (err != 0) {
1010 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1011 nvme_ctrlr_hmb_free(ctrlr);
1012 return;
1013 }
1014 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1015 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1016 &ctrlr->hmb_desc_map)) {
1017 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1018 nvme_ctrlr_hmb_free(ctrlr);
1019 return;
1020 }
1021 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1022 ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1023 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1024 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1025 ctrlr->hmb_desc_map);
1026 nvme_printf(ctrlr, "failed to load HMB desc\n");
1027 nvme_ctrlr_hmb_free(ctrlr);
1028 return;
1029 }
1030
1031 for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1032 memset(&ctrlr->hmb_desc_vaddr[i], 0,
1033 sizeof(struct nvme_hmb_desc));
1034 ctrlr->hmb_desc_vaddr[i].addr =
1035 htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1036 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1037 }
1038 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1039 BUS_DMASYNC_PREWRITE);
1040
1041 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1042 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1043 / 1024 / 1024);
1044 }
1045
1046 static void
nvme_ctrlr_hmb_enable(struct nvme_controller * ctrlr,bool enable,bool memret)1047 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1048 {
1049 struct nvme_completion_poll_status status;
1050 uint32_t cdw11;
1051
1052 cdw11 = 0;
1053 if (enable)
1054 cdw11 |= 1;
1055 if (memret)
1056 cdw11 |= 2;
1057 status.done = 0;
1058 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1059 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1060 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1061 ctrlr->hmb_nchunks, NULL, 0,
1062 nvme_completion_poll_cb, &status);
1063 nvme_completion_poll(&status);
1064 if (nvme_completion_is_error(&status.cpl))
1065 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1066 }
1067
1068 static void
nvme_ctrlr_start(void * ctrlr_arg,bool resetting)1069 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1070 {
1071 struct nvme_controller *ctrlr = ctrlr_arg;
1072 uint32_t old_num_io_queues;
1073 int i;
1074
1075 TSENTER();
1076
1077 /*
1078 * Only reset adminq here when we are restarting the
1079 * controller after a reset. During initialization,
1080 * we have already submitted admin commands to get
1081 * the number of I/O queues supported, so cannot reset
1082 * the adminq again here.
1083 */
1084 if (resetting) {
1085 nvme_qpair_reset(&ctrlr->adminq);
1086 nvme_admin_qpair_enable(&ctrlr->adminq);
1087 }
1088
1089 if (ctrlr->ioq != NULL) {
1090 for (i = 0; i < ctrlr->num_io_queues; i++)
1091 nvme_qpair_reset(&ctrlr->ioq[i]);
1092 }
1093
1094 /*
1095 * If it was a reset on initialization command timeout, just
1096 * return here, letting initialization code fail gracefully.
1097 */
1098 if (resetting && !ctrlr->is_initialized)
1099 return;
1100
1101 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1102 nvme_ctrlr_fail(ctrlr);
1103 return;
1104 }
1105
1106 /*
1107 * The number of qpairs are determined during controller initialization,
1108 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1109 * HW limit. We call SET_FEATURES again here so that it gets called
1110 * after any reset for controllers that depend on the driver to
1111 * explicit specify how many queues it will use. This value should
1112 * never change between resets, so panic if somehow that does happen.
1113 */
1114 if (resetting) {
1115 old_num_io_queues = ctrlr->num_io_queues;
1116 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1117 nvme_ctrlr_fail(ctrlr);
1118 return;
1119 }
1120
1121 if (old_num_io_queues != ctrlr->num_io_queues) {
1122 panic("num_io_queues changed from %u to %u",
1123 old_num_io_queues, ctrlr->num_io_queues);
1124 }
1125 }
1126
1127 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1128 nvme_ctrlr_hmb_alloc(ctrlr);
1129 if (ctrlr->hmb_nchunks > 0)
1130 nvme_ctrlr_hmb_enable(ctrlr, true, false);
1131 } else if (ctrlr->hmb_nchunks > 0)
1132 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1133
1134 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1135 nvme_ctrlr_fail(ctrlr);
1136 return;
1137 }
1138
1139 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1140 nvme_ctrlr_fail(ctrlr);
1141 return;
1142 }
1143
1144 nvme_ctrlr_configure_aer(ctrlr);
1145 nvme_ctrlr_configure_int_coalescing(ctrlr);
1146
1147 for (i = 0; i < ctrlr->num_io_queues; i++)
1148 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1149 TSEXIT();
1150 }
1151
1152 void
nvme_ctrlr_start_config_hook(void * arg)1153 nvme_ctrlr_start_config_hook(void *arg)
1154 {
1155 struct nvme_controller *ctrlr = arg;
1156
1157 TSENTER();
1158
1159 /*
1160 * Don't call pre/post reset here. We've not yet created the qpairs,
1161 * haven't setup the ISRs, so there's no need to 'drain' them or
1162 * 'exclude' them.
1163 */
1164 if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1165 fail:
1166 nvme_ctrlr_fail(ctrlr);
1167 config_intrhook_disestablish(&ctrlr->config_hook);
1168 return;
1169 }
1170
1171 #ifdef NVME_2X_RESET
1172 /*
1173 * Reset controller twice to ensure we do a transition from cc.en==1 to
1174 * cc.en==0. This is because we don't really know what status the
1175 * controller was left in when boot handed off to OS. Linux doesn't do
1176 * this, however, and when the controller is in state cc.en == 0, no
1177 * I/O can happen.
1178 */
1179 if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1180 goto fail;
1181 #endif
1182
1183 nvme_qpair_reset(&ctrlr->adminq);
1184 nvme_admin_qpair_enable(&ctrlr->adminq);
1185
1186 if (nvme_ctrlr_identify(ctrlr) == 0 &&
1187 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1188 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1189 nvme_ctrlr_start(ctrlr, false);
1190 else
1191 goto fail;
1192
1193 nvme_sysctl_initialize_ctrlr(ctrlr);
1194 config_intrhook_disestablish(&ctrlr->config_hook);
1195
1196 ctrlr->is_initialized = 1;
1197 nvme_notify_new_controller(ctrlr);
1198 TSEXIT();
1199 }
1200
1201 static void
nvme_ctrlr_reset_task(void * arg,int pending)1202 nvme_ctrlr_reset_task(void *arg, int pending)
1203 {
1204 struct nvme_controller *ctrlr = arg;
1205 int status;
1206
1207 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1208 status = nvme_ctrlr_hw_reset(ctrlr);
1209 if (status == 0)
1210 nvme_ctrlr_start(ctrlr, true);
1211 else
1212 nvme_ctrlr_fail(ctrlr);
1213
1214 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1215 }
1216
1217 /*
1218 * Poll all the queues enabled on the device for completion.
1219 */
1220 void
nvme_ctrlr_poll(struct nvme_controller * ctrlr)1221 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1222 {
1223 int i;
1224
1225 nvme_qpair_process_completions(&ctrlr->adminq);
1226
1227 for (i = 0; i < ctrlr->num_io_queues; i++)
1228 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1229 nvme_qpair_process_completions(&ctrlr->ioq[i]);
1230 }
1231
1232 /*
1233 * Poll the single-vector interrupt case: num_io_queues will be 1 and
1234 * there's only a single vector. While we're polling, we mask further
1235 * interrupts in the controller.
1236 */
1237 void
nvme_ctrlr_shared_handler(void * arg)1238 nvme_ctrlr_shared_handler(void *arg)
1239 {
1240 struct nvme_controller *ctrlr = arg;
1241
1242 nvme_mmio_write_4(ctrlr, intms, 1);
1243 nvme_ctrlr_poll(ctrlr);
1244 nvme_mmio_write_4(ctrlr, intmc, 1);
1245 }
1246
1247 static void
nvme_pt_done(void * arg,const struct nvme_completion * cpl)1248 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1249 {
1250 struct nvme_pt_command *pt = arg;
1251 struct mtx *mtx = pt->driver_lock;
1252 uint16_t status;
1253
1254 bzero(&pt->cpl, sizeof(pt->cpl));
1255 pt->cpl.cdw0 = cpl->cdw0;
1256
1257 status = cpl->status;
1258 status &= ~NVMEM(NVME_STATUS_P);
1259 pt->cpl.status = status;
1260
1261 mtx_lock(mtx);
1262 pt->driver_lock = NULL;
1263 wakeup(pt);
1264 mtx_unlock(mtx);
1265 }
1266
1267 int
nvme_ctrlr_passthrough_cmd(struct nvme_controller * ctrlr,struct nvme_pt_command * pt,uint32_t nsid,int is_user_buffer,int is_admin_cmd)1268 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1269 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1270 int is_admin_cmd)
1271 {
1272 struct nvme_request *req;
1273 struct mtx *mtx;
1274 struct buf *buf = NULL;
1275 int ret = 0;
1276
1277 if (pt->len > 0) {
1278 if (pt->len > ctrlr->max_xfer_size) {
1279 nvme_printf(ctrlr, "pt->len (%d) "
1280 "exceeds max_xfer_size (%d)\n", pt->len,
1281 ctrlr->max_xfer_size);
1282 return EIO;
1283 }
1284 if (is_user_buffer) {
1285 /*
1286 * Ensure the user buffer is wired for the duration of
1287 * this pass-through command.
1288 */
1289 PHOLD(curproc);
1290 buf = uma_zalloc(pbuf_zone, M_WAITOK);
1291 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1292 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1293 ret = EFAULT;
1294 goto err;
1295 }
1296 req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1297 nvme_pt_done, pt);
1298 } else
1299 req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1300 nvme_pt_done, pt);
1301 } else
1302 req = nvme_allocate_request_null(nvme_pt_done, pt);
1303
1304 /* Assume user space already converted to little-endian */
1305 req->cmd.opc = pt->cmd.opc;
1306 req->cmd.fuse = pt->cmd.fuse;
1307 req->cmd.rsvd2 = pt->cmd.rsvd2;
1308 req->cmd.rsvd3 = pt->cmd.rsvd3;
1309 req->cmd.cdw10 = pt->cmd.cdw10;
1310 req->cmd.cdw11 = pt->cmd.cdw11;
1311 req->cmd.cdw12 = pt->cmd.cdw12;
1312 req->cmd.cdw13 = pt->cmd.cdw13;
1313 req->cmd.cdw14 = pt->cmd.cdw14;
1314 req->cmd.cdw15 = pt->cmd.cdw15;
1315
1316 req->cmd.nsid = htole32(nsid);
1317
1318 mtx = mtx_pool_find(mtxpool_sleep, pt);
1319 pt->driver_lock = mtx;
1320
1321 if (is_admin_cmd)
1322 nvme_ctrlr_submit_admin_request(ctrlr, req);
1323 else
1324 nvme_ctrlr_submit_io_request(ctrlr, req);
1325
1326 mtx_lock(mtx);
1327 while (pt->driver_lock != NULL)
1328 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1329 mtx_unlock(mtx);
1330
1331 if (buf != NULL) {
1332 vunmapbuf(buf);
1333 err:
1334 uma_zfree(pbuf_zone, buf);
1335 PRELE(curproc);
1336 }
1337
1338 return (ret);
1339 }
1340
1341 static int
nvme_ctrlr_ioctl(struct cdev * cdev,u_long cmd,caddr_t arg,int flag,struct thread * td)1342 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1343 struct thread *td)
1344 {
1345 struct nvme_controller *ctrlr;
1346 struct nvme_pt_command *pt;
1347
1348 ctrlr = cdev->si_drv1;
1349
1350 switch (cmd) {
1351 case NVME_RESET_CONTROLLER:
1352 nvme_ctrlr_reset(ctrlr);
1353 break;
1354 case NVME_PASSTHROUGH_CMD:
1355 pt = (struct nvme_pt_command *)arg;
1356 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1357 1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1358 case NVME_GET_NSID:
1359 {
1360 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1361 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1362 sizeof(gnsid->cdev));
1363 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1364 gnsid->nsid = 0;
1365 break;
1366 }
1367 case NVME_GET_MAX_XFER_SIZE:
1368 *(uint64_t *)arg = ctrlr->max_xfer_size;
1369 break;
1370 default:
1371 return (ENOTTY);
1372 }
1373
1374 return (0);
1375 }
1376
1377 static struct cdevsw nvme_ctrlr_cdevsw = {
1378 .d_version = D_VERSION,
1379 .d_flags = 0,
1380 .d_ioctl = nvme_ctrlr_ioctl
1381 };
1382
1383 int
nvme_ctrlr_construct(struct nvme_controller * ctrlr,device_t dev)1384 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1385 {
1386 struct make_dev_args md_args;
1387 uint32_t cap_lo;
1388 uint32_t cap_hi;
1389 uint32_t to, vs, pmrcap;
1390 int status, timeout_period;
1391
1392 ctrlr->dev = dev;
1393
1394 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1395 if (bus_get_domain(dev, &ctrlr->domain) != 0)
1396 ctrlr->domain = 0;
1397
1398 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1399 if (bootverbose) {
1400 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1401 cap_lo, NVME_CAP_LO_MQES(cap_lo),
1402 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1403 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1404 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1405 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1406 NVME_CAP_LO_TO(cap_lo));
1407 }
1408 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1409 if (bootverbose) {
1410 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1411 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
1412 NVME_CAP_HI_DSTRD(cap_hi),
1413 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1414 NVME_CAP_HI_CSS(cap_hi),
1415 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1416 NVME_CAP_HI_CPS(cap_hi),
1417 NVME_CAP_HI_MPSMIN(cap_hi),
1418 NVME_CAP_HI_MPSMAX(cap_hi),
1419 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1420 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
1421 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
1422 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
1423 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
1424 }
1425 if (bootverbose) {
1426 vs = nvme_mmio_read_4(ctrlr, vs);
1427 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1428 NVME_MAJOR(vs), NVME_MINOR(vs));
1429 }
1430 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1431 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1432 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1433 "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1434 NVME_PMRCAP_BIR(pmrcap),
1435 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1436 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1437 NVME_PMRCAP_PMRTU(pmrcap),
1438 NVME_PMRCAP_PMRWBM(pmrcap),
1439 NVME_PMRCAP_PMRTO(pmrcap),
1440 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1441 }
1442
1443 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1444
1445 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1446 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1447
1448 /* Get ready timeout value from controller, in units of 500ms. */
1449 to = NVME_CAP_LO_TO(cap_lo) + 1;
1450 ctrlr->ready_timeout_in_ms = to * 500;
1451
1452 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1453 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1454 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1455 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1456 ctrlr->admin_timeout_period = timeout_period;
1457
1458 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1459 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1460 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1461 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1462 ctrlr->timeout_period = timeout_period;
1463
1464 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1465 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1466
1467 ctrlr->enable_aborts = 0;
1468 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1469
1470 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1471 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1472 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1473 return (ENXIO);
1474
1475 /*
1476 * Create 2 threads for the taskqueue. The reset thread will block when
1477 * it detects that the controller has failed until all I/O has been
1478 * failed up the stack. The fail_req task needs to be able to run in
1479 * this case to finish the request failure for some cases.
1480 *
1481 * We could partially solve this race by draining the failed requeust
1482 * queue before proceding to free the sim, though nothing would stop
1483 * new I/O from coming in after we do that drain, but before we reach
1484 * cam_sim_free, so this big hammer is used instead.
1485 */
1486 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1487 taskqueue_thread_enqueue, &ctrlr->taskqueue);
1488 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1489
1490 ctrlr->is_resetting = 0;
1491 ctrlr->is_initialized = 0;
1492 ctrlr->notification_sent = 0;
1493 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1494 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1495 STAILQ_INIT(&ctrlr->fail_req);
1496 ctrlr->is_failed = false;
1497
1498 make_dev_args_init(&md_args);
1499 md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1500 md_args.mda_uid = UID_ROOT;
1501 md_args.mda_gid = GID_WHEEL;
1502 md_args.mda_mode = 0600;
1503 md_args.mda_unit = device_get_unit(dev);
1504 md_args.mda_si_drv1 = (void *)ctrlr;
1505 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1506 device_get_unit(dev));
1507 if (status != 0)
1508 return (ENXIO);
1509
1510 return (0);
1511 }
1512
1513 void
nvme_ctrlr_destruct(struct nvme_controller * ctrlr,device_t dev)1514 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1515 {
1516 int gone, i;
1517
1518 ctrlr->is_dying = true;
1519
1520 if (ctrlr->resource == NULL)
1521 goto nores;
1522 if (!mtx_initialized(&ctrlr->adminq.lock))
1523 goto noadminq;
1524
1525 /*
1526 * Check whether it is a hot unplug or a clean driver detach.
1527 * If device is not there any more, skip any shutdown commands.
1528 */
1529 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1530 if (gone)
1531 nvme_ctrlr_fail(ctrlr);
1532 else
1533 nvme_notify_fail_consumers(ctrlr);
1534
1535 for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1536 nvme_ns_destruct(&ctrlr->ns[i]);
1537
1538 if (ctrlr->cdev)
1539 destroy_dev(ctrlr->cdev);
1540
1541 if (ctrlr->is_initialized) {
1542 if (!gone) {
1543 if (ctrlr->hmb_nchunks > 0)
1544 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1545 nvme_ctrlr_delete_qpairs(ctrlr);
1546 }
1547 nvme_ctrlr_hmb_free(ctrlr);
1548 }
1549 if (ctrlr->ioq != NULL) {
1550 for (i = 0; i < ctrlr->num_io_queues; i++)
1551 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1552 free(ctrlr->ioq, M_NVME);
1553 }
1554 nvme_admin_qpair_destroy(&ctrlr->adminq);
1555
1556 /*
1557 * Notify the controller of a shutdown, even though this is due to
1558 * a driver unload, not a system shutdown (this path is not invoked
1559 * during shutdown). This ensures the controller receives a
1560 * shutdown notification in case the system is shutdown before
1561 * reloading the driver.
1562 */
1563 if (!gone)
1564 nvme_ctrlr_shutdown(ctrlr);
1565
1566 if (!gone)
1567 nvme_ctrlr_disable(ctrlr);
1568
1569 noadminq:
1570 if (ctrlr->taskqueue)
1571 taskqueue_free(ctrlr->taskqueue);
1572
1573 if (ctrlr->tag)
1574 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1575
1576 if (ctrlr->res)
1577 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1578 rman_get_rid(ctrlr->res), ctrlr->res);
1579
1580 if (ctrlr->bar4_resource != NULL) {
1581 bus_release_resource(dev, SYS_RES_MEMORY,
1582 ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1583 }
1584
1585 bus_release_resource(dev, SYS_RES_MEMORY,
1586 ctrlr->resource_id, ctrlr->resource);
1587
1588 nores:
1589 mtx_destroy(&ctrlr->lock);
1590 }
1591
1592 void
nvme_ctrlr_shutdown(struct nvme_controller * ctrlr)1593 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1594 {
1595 uint32_t cc;
1596 uint32_t csts;
1597 int timeout;
1598
1599 cc = nvme_mmio_read_4(ctrlr, cc);
1600 cc &= ~NVMEM(NVME_CC_REG_SHN);
1601 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
1602 nvme_mmio_write_4(ctrlr, cc, cc);
1603
1604 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1605 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1606 while (1) {
1607 csts = nvme_mmio_read_4(ctrlr, csts);
1608 if (csts == NVME_GONE) /* Hot unplug. */
1609 break;
1610 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1611 break;
1612 if (timeout - ticks < 0) {
1613 nvme_printf(ctrlr, "shutdown timeout\n");
1614 break;
1615 }
1616 pause("nvmeshut", 1);
1617 }
1618 }
1619
1620 void
nvme_ctrlr_submit_admin_request(struct nvme_controller * ctrlr,struct nvme_request * req)1621 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1622 struct nvme_request *req)
1623 {
1624
1625 nvme_qpair_submit_request(&ctrlr->adminq, req);
1626 }
1627
1628 void
nvme_ctrlr_submit_io_request(struct nvme_controller * ctrlr,struct nvme_request * req)1629 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1630 struct nvme_request *req)
1631 {
1632 struct nvme_qpair *qpair;
1633
1634 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1635 nvme_qpair_submit_request(qpair, req);
1636 }
1637
1638 device_t
nvme_ctrlr_get_device(struct nvme_controller * ctrlr)1639 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1640 {
1641
1642 return (ctrlr->dev);
1643 }
1644
1645 const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller * ctrlr)1646 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1647 {
1648
1649 return (&ctrlr->cdata);
1650 }
1651
1652 int
nvme_ctrlr_suspend(struct nvme_controller * ctrlr)1653 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1654 {
1655 int to = hz;
1656
1657 /*
1658 * Can't touch failed controllers, so it's already suspended.
1659 */
1660 if (ctrlr->is_failed)
1661 return (0);
1662
1663 /*
1664 * We don't want the reset taskqueue running, since it does similar
1665 * things, so prevent it from running after we start. Wait for any reset
1666 * that may have been started to complete. The reset process we follow
1667 * will ensure that any new I/O will queue and be given to the hardware
1668 * after we resume (though there should be none).
1669 */
1670 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1671 pause("nvmesusp", 1);
1672 if (to <= 0) {
1673 nvme_printf(ctrlr,
1674 "Competing reset task didn't finish. Try again later.\n");
1675 return (EWOULDBLOCK);
1676 }
1677
1678 if (ctrlr->hmb_nchunks > 0)
1679 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1680
1681 /*
1682 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1683 * delete the hardware I/O queues, and then shutdown. This properly
1684 * flushes any metadata the drive may have stored so it can survive
1685 * having its power removed and prevents the unsafe shutdown count from
1686 * incriminating. Once we delete the qpairs, we have to disable them
1687 * before shutting down.
1688 */
1689 nvme_ctrlr_delete_qpairs(ctrlr);
1690 nvme_ctrlr_disable_qpairs(ctrlr);
1691 nvme_ctrlr_shutdown(ctrlr);
1692
1693 return (0);
1694 }
1695
1696 int
nvme_ctrlr_resume(struct nvme_controller * ctrlr)1697 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1698 {
1699
1700 /*
1701 * Can't touch failed controllers, so nothing to do to resume.
1702 */
1703 if (ctrlr->is_failed)
1704 return (0);
1705
1706 if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1707 goto fail;
1708
1709 /*
1710 * Now that we've reset the hardware, we can restart the controller. Any
1711 * I/O that was pending is requeued. Any admin commands are aborted with
1712 * an error. Once we've restarted, take the controller out of reset.
1713 */
1714 nvme_ctrlr_start(ctrlr, true);
1715 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1716
1717 return (0);
1718 fail:
1719 /*
1720 * Since we can't bring the controller out of reset, announce and fail
1721 * the controller. However, we have to return success for the resume
1722 * itself, due to questionable APIs.
1723 */
1724 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1725 nvme_ctrlr_fail(ctrlr);
1726 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1727 return (0);
1728 }
1729