1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2013-2016 Vincenzo Maffione
5 * Copyright (C) 2013-2016 Luigi Rizzo
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * This module implements netmap support on top of standard,
32 * unmodified device drivers.
33 *
34 * A NIOCREGIF request is handled here if the device does not
35 * have native support. TX and RX rings are emulated as follows:
36 *
37 * NIOCREGIF
38 * We preallocate a block of TX mbufs (roughly as many as
39 * tx descriptors; the number is not critical) to speed up
40 * operation during transmissions. The refcount on most of
41 * these buffers is artificially bumped up so we can recycle
42 * them more easily. Also, the destructor is intercepted
43 * so we use it as an interrupt notification to wake up
44 * processes blocked on a poll().
45 *
46 * For each receive ring we allocate one "struct mbq"
47 * (an mbuf tailq plus a spinlock). We intercept packets
48 * (through if_input)
49 * on the receive path and put them in the mbq from which
50 * netmap receive routines can grab them.
51 *
52 * TX:
53 * in the generic_txsync() routine, netmap buffers are copied
54 * (or linked, in a future) to the preallocated mbufs
55 * and pushed to the transmit queue. Some of these mbufs
56 * (those with NS_REPORT, or otherwise every half ring)
57 * have the refcount=1, others have refcount=2.
58 * When the destructor is invoked, we take that as
59 * a notification that all mbufs up to that one in
60 * the specific ring have been completed, and generate
61 * the equivalent of a transmit interrupt.
62 *
63 * RX:
64 *
65 */
66
67 #ifdef __FreeBSD__
68
69 #include <sys/cdefs.h> /* prerequisite */
70 #include <sys/types.h>
71 #include <sys/errno.h>
72 #include <sys/malloc.h>
73 #include <sys/lock.h> /* PROT_EXEC */
74 #include <sys/rwlock.h>
75 #include <sys/socket.h> /* sockaddrs */
76 #include <sys/selinfo.h>
77 #include <net/if.h>
78 #include <net/if_types.h>
79 #include <net/if_var.h>
80 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
81
82 #include <net/netmap.h>
83 #include <dev/netmap/netmap_kern.h>
84 #include <dev/netmap/netmap_mem2.h>
85
86 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
87 #define smp_mb()
88
89 #elif defined _WIN32
90
91 #include "win_glue.h"
92
93 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid)
94 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid)
95 #define smp_mb() //XXX: to be correctly defined
96
97 #else /* linux */
98
99 #include "bsd_glue.h"
100
101 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
102 #include <linux/hrtimer.h>
103
104 static inline struct mbuf *
nm_os_get_mbuf(struct ifnet * ifp,int len)105 nm_os_get_mbuf(struct ifnet *ifp, int len)
106 {
107 return alloc_skb(LL_RESERVED_SPACE(ifp) + len +
108 ifp->needed_tailroom, GFP_ATOMIC);
109 }
110
111 #endif /* linux */
112
113
114 /* Common headers. */
115 #include <net/netmap.h>
116 #include <dev/netmap/netmap_kern.h>
117 #include <dev/netmap/netmap_mem2.h>
118
119
120 #define for_each_kring_n(_i, _k, _karr, _n) \
121 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
122
123 #define for_each_tx_kring(_i, _k, _na) \
124 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
125 #define for_each_tx_kring_h(_i, _k, _na) \
126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
127
128 #define for_each_rx_kring(_i, _k, _na) \
129 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
130 #define for_each_rx_kring_h(_i, _k, _na) \
131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
132
133
134 /* ======================== PERFORMANCE STATISTICS =========================== */
135
136 #ifdef RATE_GENERIC
137 #define IFRATE(x) x
138 struct rate_stats {
139 unsigned long txpkt;
140 unsigned long txsync;
141 unsigned long txirq;
142 unsigned long txrepl;
143 unsigned long txdrop;
144 unsigned long rxpkt;
145 unsigned long rxirq;
146 unsigned long rxsync;
147 };
148
149 struct rate_context {
150 unsigned refcount;
151 struct timer_list timer;
152 struct rate_stats new;
153 struct rate_stats old;
154 };
155
156 #define RATE_PRINTK(_NAME_) \
157 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
158 #define RATE_PERIOD 2
rate_callback(unsigned long arg)159 static void rate_callback(unsigned long arg)
160 {
161 struct rate_context * ctx = (struct rate_context *)arg;
162 struct rate_stats cur = ctx->new;
163 int r;
164
165 RATE_PRINTK(txpkt);
166 RATE_PRINTK(txsync);
167 RATE_PRINTK(txirq);
168 RATE_PRINTK(txrepl);
169 RATE_PRINTK(txdrop);
170 RATE_PRINTK(rxpkt);
171 RATE_PRINTK(rxsync);
172 RATE_PRINTK(rxirq);
173 printk("\n");
174
175 ctx->old = cur;
176 r = mod_timer(&ctx->timer, jiffies +
177 msecs_to_jiffies(RATE_PERIOD * 1000));
178 if (unlikely(r))
179 nm_prerr("mod_timer() failed");
180 }
181
182 static struct rate_context rate_ctx;
183
generic_rate(int txp,int txs,int txi,int rxp,int rxs,int rxi)184 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
185 {
186 if (txp) rate_ctx.new.txpkt++;
187 if (txs) rate_ctx.new.txsync++;
188 if (txi) rate_ctx.new.txirq++;
189 if (rxp) rate_ctx.new.rxpkt++;
190 if (rxs) rate_ctx.new.rxsync++;
191 if (rxi) rate_ctx.new.rxirq++;
192 }
193
194 #else /* !RATE */
195 #define IFRATE(x)
196 #endif /* !RATE */
197
198
199 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
200
201 /*
202 * Wrapper used by the generic adapter layer to notify
203 * the poller threads. Differently from netmap_rx_irq(), we check
204 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
205 */
206 void
netmap_generic_irq(struct netmap_adapter * na,u_int q,u_int * work_done)207 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
208 {
209 if (unlikely(!nm_netmap_on(na)))
210 return;
211
212 netmap_common_irq(na, q, work_done);
213 #ifdef RATE_GENERIC
214 if (work_done)
215 rate_ctx.new.rxirq++;
216 else
217 rate_ctx.new.txirq++;
218 #endif /* RATE_GENERIC */
219 }
220
221 static int
generic_netmap_unregister(struct netmap_adapter * na)222 generic_netmap_unregister(struct netmap_adapter *na)
223 {
224 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
225 struct netmap_kring *kring = NULL;
226 int i, r;
227
228 if (na->active_fds == 0) {
229 na->na_flags &= ~NAF_NETMAP_ON;
230
231 /* Stop intercepting packets on the RX path. */
232 nm_os_catch_rx(gna, 0);
233
234 /* Release packet steering control. */
235 nm_os_catch_tx(gna, 0);
236 }
237
238 netmap_krings_mode_commit(na, /*onoff=*/0);
239
240 for_each_rx_kring(r, kring, na) {
241 /* Free the mbufs still pending in the RX queues,
242 * that did not end up into the corresponding netmap
243 * RX rings. */
244 mbq_safe_purge(&kring->rx_queue);
245 nm_os_mitigation_cleanup(&gna->mit[r]);
246 }
247
248 /* Decrement reference counter for the mbufs in the
249 * TX pools. These mbufs can be still pending in drivers,
250 * (e.g. this happens with virtio-net driver, which
251 * does lazy reclaiming of transmitted mbufs). */
252 for_each_tx_kring(r, kring, na) {
253 /* We must remove the destructor on the TX event,
254 * because the destructor invokes netmap code, and
255 * the netmap module may disappear before the
256 * TX event is consumed. */
257 mtx_lock_spin(&kring->tx_event_lock);
258 if (kring->tx_event) {
259 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
260 }
261 kring->tx_event = NULL;
262 mtx_unlock_spin(&kring->tx_event_lock);
263 }
264
265 if (na->active_fds == 0) {
266 nm_os_free(gna->mit);
267
268 for_each_rx_kring(r, kring, na) {
269 mbq_safe_fini(&kring->rx_queue);
270 }
271
272 for_each_tx_kring(r, kring, na) {
273 callout_drain(&kring->tx_event_callout);
274 mtx_destroy(&kring->tx_event_lock);
275 if (kring->tx_pool == NULL) {
276 continue;
277 }
278
279 for (i=0; i<na->num_tx_desc; i++) {
280 if (kring->tx_pool[i]) {
281 m_freem(kring->tx_pool[i]);
282 }
283 }
284 nm_os_free(kring->tx_pool);
285 kring->tx_pool = NULL;
286 }
287
288 #ifdef RATE_GENERIC
289 if (--rate_ctx.refcount == 0) {
290 nm_prinf("del_timer()");
291 del_timer(&rate_ctx.timer);
292 }
293 #endif
294 nm_prinf("Emulated adapter for %s deactivated", na->name);
295 }
296
297 return 0;
298 }
299
300 /* Enable/disable netmap mode for a generic network interface. */
301 static int
generic_netmap_register(struct netmap_adapter * na,int enable)302 generic_netmap_register(struct netmap_adapter *na, int enable)
303 {
304 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
305 struct netmap_kring *kring = NULL;
306 int error;
307 int i, r;
308
309 if (!na) {
310 return EINVAL;
311 }
312
313 if (!enable) {
314 /* This is actually an unregif. */
315 return generic_netmap_unregister(na);
316 }
317
318 if (na->active_fds == 0) {
319 nm_prinf("Emulated adapter for %s activated", na->name);
320 /* Do all memory allocations when (na->active_fds == 0), to
321 * simplify error management. */
322
323 /* Allocate memory for mitigation support on all the rx queues. */
324 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
325 if (!gna->mit) {
326 nm_prerr("mitigation allocation failed");
327 error = ENOMEM;
328 goto out;
329 }
330
331 for_each_rx_kring(r, kring, na) {
332 /* Init mitigation support. */
333 nm_os_mitigation_init(&gna->mit[r], r, na);
334
335 /* Initialize the rx queue, as generic_rx_handler() can
336 * be called as soon as nm_os_catch_rx() returns.
337 */
338 mbq_safe_init(&kring->rx_queue);
339 }
340
341 /*
342 * Prepare mbuf pools (parallel to the tx rings), for packet
343 * transmission. Don't preallocate the mbufs here, it's simpler
344 * to leave this task to txsync.
345 */
346 for_each_tx_kring(r, kring, na) {
347 kring->tx_pool = NULL;
348 }
349 for_each_tx_kring(r, kring, na) {
350 kring->tx_pool =
351 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
352 if (!kring->tx_pool) {
353 nm_prerr("tx_pool allocation failed");
354 error = ENOMEM;
355 goto free_tx_pools;
356 }
357 mtx_init(&kring->tx_event_lock, "tx_event_lock",
358 NULL, MTX_SPIN);
359 callout_init_mtx(&kring->tx_event_callout,
360 &kring->tx_event_lock,
361 CALLOUT_RETURNUNLOCKED);
362 }
363 }
364
365 netmap_krings_mode_commit(na, /*onoff=*/1);
366
367 for_each_tx_kring(r, kring, na) {
368 /* Initialize tx_pool and tx_event. */
369 for (i=0; i<na->num_tx_desc; i++) {
370 kring->tx_pool[i] = NULL;
371 }
372
373 kring->tx_event = NULL;
374 }
375
376 if (na->active_fds == 0) {
377 /* Prepare to intercept incoming traffic. */
378 error = nm_os_catch_rx(gna, 1);
379 if (error) {
380 nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
381 goto free_tx_pools;
382 }
383
384 /* Let netmap control the packet steering. */
385 error = nm_os_catch_tx(gna, 1);
386 if (error) {
387 nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
388 goto catch_rx;
389 }
390
391 na->na_flags |= NAF_NETMAP_ON;
392
393 #ifdef RATE_GENERIC
394 if (rate_ctx.refcount == 0) {
395 nm_prinf("setup_timer()");
396 memset(&rate_ctx, 0, sizeof(rate_ctx));
397 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
398 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
399 nm_prerr("Error: mod_timer()");
400 }
401 }
402 rate_ctx.refcount++;
403 #endif /* RATE */
404 }
405
406 return 0;
407
408 /* Here (na->active_fds == 0) holds. */
409 catch_rx:
410 nm_os_catch_rx(gna, 0);
411 free_tx_pools:
412 for_each_tx_kring(r, kring, na) {
413 mtx_destroy(&kring->tx_event_lock);
414 if (kring->tx_pool == NULL) {
415 continue;
416 }
417 nm_os_free(kring->tx_pool);
418 kring->tx_pool = NULL;
419 }
420 for_each_rx_kring(r, kring, na) {
421 mbq_safe_fini(&kring->rx_queue);
422 }
423 nm_os_free(gna->mit);
424 out:
425
426 return error;
427 }
428
429 /*
430 * Callback invoked when the device driver frees an mbuf used
431 * by netmap to transmit a packet. This usually happens when
432 * the NIC notifies the driver that transmission is completed.
433 */
434 static void
generic_mbuf_dtor(struct mbuf * m)435 generic_mbuf_dtor(struct mbuf *m)
436 {
437 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
438 struct netmap_kring *kring;
439 unsigned int r = MBUF_TXQ(m);
440 unsigned int r_orig = r;
441
442 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
443 nm_prerr("Error: no netmap adapter on device %p",
444 GEN_TX_MBUF_IFP(m));
445 return;
446 }
447
448 /*
449 * First, clear the event mbuf.
450 * In principle, the event 'm' should match the one stored
451 * on ring 'r'. However we check it explicitly to stay
452 * safe against lower layers (qdisc, driver, etc.) changing
453 * MBUF_TXQ(m) under our feet. If the match is not found
454 * on 'r', we try to see if it belongs to some other ring.
455 */
456 for (;;) {
457 bool match = false;
458
459 kring = na->tx_rings[r];
460 mtx_lock_spin(&kring->tx_event_lock);
461 if (kring->tx_event == m) {
462 kring->tx_event = NULL;
463 match = true;
464 }
465 mtx_unlock_spin(&kring->tx_event_lock);
466
467 if (match) {
468 if (r != r_orig) {
469 nm_prlim(1, "event %p migrated: ring %u --> %u",
470 m, r_orig, r);
471 }
472 break;
473 }
474
475 if (++r == na->num_tx_rings) r = 0;
476
477 if (r == r_orig) {
478 #ifndef __FreeBSD__
479 /*
480 * On FreeBSD this situation can arise if the tx_event
481 * callout handler cleared a stuck packet.
482 */
483 nm_prlim(1, "Cannot match event %p", m);
484 #endif
485 nm_generic_mbuf_dtor(m);
486 return;
487 }
488 }
489
490 /* Second, wake up clients. They will reclaim the event through
491 * txsync. */
492 netmap_generic_irq(na, r, NULL);
493 nm_generic_mbuf_dtor(m);
494 }
495
496 /* Record completed transmissions and update hwtail.
497 *
498 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
499 * nr_hwcur is the first unsent buffer.
500 */
501 static u_int
generic_netmap_tx_clean(struct netmap_kring * kring,int txqdisc)502 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
503 {
504 u_int const lim = kring->nkr_num_slots - 1;
505 u_int nm_i = nm_next(kring->nr_hwtail, lim);
506 u_int hwcur = kring->nr_hwcur;
507 u_int n = 0;
508 struct mbuf **tx_pool = kring->tx_pool;
509
510 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
511
512 while (nm_i != hwcur) { /* buffers not completed */
513 struct mbuf *m = tx_pool[nm_i];
514
515 if (txqdisc) {
516 if (m == NULL) {
517 /* Nothing to do, this is going
518 * to be replenished. */
519 nm_prlim(3, "Is this happening?");
520
521 } else if (MBUF_QUEUED(m)) {
522 break; /* Not dequeued yet. */
523
524 } else if (MBUF_REFCNT(m) != 1) {
525 /* This mbuf has been dequeued but is still busy
526 * (refcount is 2).
527 * Leave it to the driver and replenish. */
528 m_freem(m);
529 tx_pool[nm_i] = NULL;
530 }
531
532 } else {
533 if (unlikely(m == NULL)) {
534 int event_consumed;
535
536 /* This slot was used to place an event. */
537 mtx_lock_spin(&kring->tx_event_lock);
538 event_consumed = (kring->tx_event == NULL);
539 mtx_unlock_spin(&kring->tx_event_lock);
540 if (!event_consumed) {
541 /* The event has not been consumed yet,
542 * still busy in the driver. */
543 break;
544 }
545 /* The event has been consumed, we can go
546 * ahead. */
547 } else if (MBUF_REFCNT(m) != 1) {
548 /* This mbuf is still busy: its refcnt is 2. */
549 break;
550 }
551 }
552
553 n++;
554 nm_i = nm_next(nm_i, lim);
555 }
556 kring->nr_hwtail = nm_prev(nm_i, lim);
557 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
558
559 return n;
560 }
561
562 /* Compute a slot index in the middle between inf and sup. */
563 static inline u_int
ring_middle(u_int inf,u_int sup,u_int lim)564 ring_middle(u_int inf, u_int sup, u_int lim)
565 {
566 u_int n = lim + 1;
567 u_int e;
568
569 if (sup >= inf) {
570 e = (sup + inf) / 2;
571 } else { /* wrap around */
572 e = (sup + n + inf) / 2;
573 if (e >= n) {
574 e -= n;
575 }
576 }
577
578 if (unlikely(e >= n)) {
579 nm_prerr("This cannot happen");
580 e = 0;
581 }
582
583 return e;
584 }
585
586 #ifdef __FreeBSD__
587 static void
generic_tx_callout(void * arg)588 generic_tx_callout(void *arg)
589 {
590 struct netmap_kring *kring = arg;
591
592 kring->tx_event = NULL;
593 mtx_unlock_spin(&kring->tx_event_lock);
594 netmap_generic_irq(kring->na, kring->ring_id, NULL);
595 }
596 #endif
597
598 static void
generic_set_tx_event(struct netmap_kring * kring,u_int hwcur)599 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
600 {
601 u_int lim = kring->nkr_num_slots - 1;
602 struct mbuf *m;
603 u_int e;
604 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
605
606 if (ntc == hwcur) {
607 return; /* all buffers are free */
608 }
609
610 /*
611 * We have pending packets in the driver between hwtail+1
612 * and hwcur, and we have to chose one of these slot to
613 * generate a notification.
614 * There is a race but this is only called within txsync which
615 * does a double check.
616 */
617 #if 0
618 /* Choose a slot in the middle, so that we don't risk ending
619 * up in a situation where the client continuously wake up,
620 * fills one or a few TX slots and go to sleep again. */
621 e = ring_middle(ntc, hwcur, lim);
622 #else
623 /* Choose the first pending slot, to be safe against driver
624 * reordering mbuf transmissions. */
625 e = ntc;
626 #endif
627
628 m = kring->tx_pool[e];
629 if (m == NULL) {
630 /* An event is already in place. */
631 return;
632 }
633
634 mtx_lock_spin(&kring->tx_event_lock);
635 if (kring->tx_event) {
636 /* An event is already in place. */
637 mtx_unlock_spin(&kring->tx_event_lock);
638 return;
639 }
640
641 SET_MBUF_DESTRUCTOR(m, generic_mbuf_dtor);
642 kring->tx_event = m;
643 #ifdef __FreeBSD__
644 /*
645 * Handle the possibility that the transmitted buffer isn't reclaimed
646 * within a bounded period of time. This can arise when transmitting
647 * out of multiple ports via a lagg or bridge interface, since the
648 * member ports may legitimately only free transmitted buffers in
649 * batches.
650 *
651 * The callout handler clears the stuck packet from the ring, allowing
652 * transmission to proceed. In the common case we let
653 * generic_mbuf_dtor() unstick the ring, allowing mbufs to be
654 * reused most of the time.
655 */
656 callout_reset_sbt_curcpu(&kring->tx_event_callout, SBT_1MS, 0,
657 generic_tx_callout, kring, 0);
658 #endif
659 mtx_unlock_spin(&kring->tx_event_lock);
660
661 kring->tx_pool[e] = NULL;
662
663 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
664
665 /* Decrement the refcount. This will free it if we lose the race
666 * with the driver. */
667 m_freem(m);
668 }
669
670 /*
671 * generic_netmap_txsync() transforms netmap buffers into mbufs
672 * and passes them to the standard device driver
673 * (ndo_start_xmit() or ifp->if_transmit() ).
674 * On linux this is not done directly, but using dev_queue_xmit(),
675 * since it implements the TX flow control (and takes some locks).
676 */
677 static int
generic_netmap_txsync(struct netmap_kring * kring,int flags)678 generic_netmap_txsync(struct netmap_kring *kring, int flags)
679 {
680 struct netmap_adapter *na = kring->na;
681 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
682 if_t ifp = na->ifp;
683 struct netmap_ring *ring = kring->ring;
684 u_int nm_i; /* index into the netmap ring */ // j
685 u_int const lim = kring->nkr_num_slots - 1;
686 u_int const head = kring->rhead;
687 u_int ring_nr = kring->ring_id;
688
689 IFRATE(rate_ctx.new.txsync++);
690
691 rmb();
692
693 /*
694 * First part: process new packets to send.
695 */
696 nm_i = kring->nr_hwcur;
697 if (nm_i != head) { /* we have new packets to send */
698 struct nm_os_gen_arg a;
699 u_int event = -1;
700 #ifdef __FreeBSD__
701 struct epoch_tracker et;
702
703 NET_EPOCH_ENTER(et);
704 #endif
705
706 if (gna->txqdisc && nm_kr_txempty(kring)) {
707 /* In txqdisc mode, we ask for a delayed notification,
708 * but only when cur == hwtail, which means that the
709 * client is going to block. */
710 event = ring_middle(nm_i, head, lim);
711 nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
712 "head=%u,hwtail=%u)", nm_i, event, head,
713 kring->nr_hwtail);
714 }
715
716 a.ifp = ifp;
717 a.ring_nr = ring_nr;
718 a.head = a.tail = NULL;
719
720 while (nm_i != head) {
721 struct netmap_slot *slot = &ring->slot[nm_i];
722 u_int len = slot->len;
723 void *addr = NMB(na, slot);
724 /* device-specific */
725 struct mbuf *m;
726 int tx_ret;
727
728 NM_CHECK_ADDR_LEN(na, addr, len);
729
730 /* Tale a mbuf from the tx pool (replenishing the pool
731 * entry if necessary) and copy in the user packet. */
732 m = kring->tx_pool[nm_i];
733 if (unlikely(m == NULL)) {
734 kring->tx_pool[nm_i] = m =
735 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
736 if (m == NULL) {
737 nm_prlim(2, "Failed to replenish mbuf");
738 /* Here we could schedule a timer which
739 * retries to replenish after a while,
740 * and notifies the client when it
741 * manages to replenish some slots. In
742 * any case we break early to avoid
743 * crashes. */
744 break;
745 }
746 IFRATE(rate_ctx.new.txrepl++);
747 } else {
748 nm_os_mbuf_reinit(m);
749 }
750
751 a.m = m;
752 a.addr = addr;
753 a.len = len;
754 a.qevent = (nm_i == event);
755 /* When not in txqdisc mode, we should ask
756 * notifications when NS_REPORT is set, or roughly
757 * every half ring. To optimize this, we set a
758 * notification event when the client runs out of
759 * TX ring space, or when transmission fails. In
760 * the latter case we also break early.
761 */
762 tx_ret = nm_os_generic_xmit_frame(&a);
763 if (unlikely(tx_ret)) {
764 if (!gna->txqdisc) {
765 /*
766 * No room for this mbuf in the device driver.
767 * Request a notification FOR A PREVIOUS MBUF,
768 * then call generic_netmap_tx_clean(kring) to do the
769 * double check and see if we can free more buffers.
770 * If there is space continue, else break;
771 * NOTE: the double check is necessary if the problem
772 * occurs in the txsync call after selrecord().
773 * Also, we need some way to tell the caller that not
774 * all buffers were queued onto the device (this was
775 * not a problem with native netmap driver where space
776 * is preallocated). The bridge has a similar problem
777 * and we solve it there by dropping the excess packets.
778 */
779 generic_set_tx_event(kring, nm_i);
780 if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
781 /* space now available */
782 continue;
783 } else {
784 break;
785 }
786 }
787
788 /* In txqdisc mode, the netmap-aware qdisc
789 * queue has the same length as the number of
790 * netmap slots (N). Since tail is advanced
791 * only when packets are dequeued, qdisc
792 * queue overrun cannot happen, so
793 * nm_os_generic_xmit_frame() did not fail
794 * because of that.
795 * However, packets can be dropped because
796 * carrier is off, or because our qdisc is
797 * being deactivated, or possibly for other
798 * reasons. In these cases, we just let the
799 * packet to be dropped. */
800 IFRATE(rate_ctx.new.txdrop++);
801 }
802
803 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
804 nm_i = nm_next(nm_i, lim);
805 IFRATE(rate_ctx.new.txpkt++);
806 }
807 if (a.head != NULL) {
808 a.addr = NULL;
809 nm_os_generic_xmit_frame(&a);
810 }
811 /* Update hwcur to the next slot to transmit. Here nm_i
812 * is not necessarily head, we could break early. */
813 kring->nr_hwcur = nm_i;
814
815 #ifdef __FreeBSD__
816 NET_EPOCH_EXIT(et);
817 #endif
818 }
819
820 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
821 /* No more available slots? Set a notification event
822 * on a netmap slot that will be cleaned in the future.
823 * No doublecheck is performed, since txsync() will be
824 * called twice by netmap_poll().
825 */
826 generic_set_tx_event(kring, nm_i);
827 }
828
829 /*
830 * Second, reclaim completed buffers
831 */
832 generic_netmap_tx_clean(kring, gna->txqdisc);
833
834 return 0;
835 }
836
837
838 /*
839 * This handler is registered (through nm_os_catch_rx())
840 * within the attached network interface
841 * in the RX subsystem, so that every mbuf passed up by
842 * the driver can be stolen to the network stack.
843 * Stolen packets are put in a queue where the
844 * generic_netmap_rxsync() callback can extract them.
845 * Returns 1 if the packet was stolen, 0 otherwise.
846 */
847 int
generic_rx_handler(if_t ifp,struct mbuf * m)848 generic_rx_handler(if_t ifp, struct mbuf *m)
849 {
850 struct netmap_adapter *na = NA(ifp);
851 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
852 struct netmap_kring *kring;
853 u_int work_done;
854 u_int r = MBUF_RXQ(m); /* receive ring number */
855
856 if (r >= na->num_rx_rings) {
857 r = r % na->num_rx_rings;
858 }
859
860 kring = na->rx_rings[r];
861
862 if (kring->nr_mode == NKR_NETMAP_OFF) {
863 /* We must not intercept this mbuf. */
864 return 0;
865 }
866
867 /* limit the size of the queue */
868 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
869 /* This may happen when GRO/LRO features are enabled for
870 * the NIC driver when the generic adapter does not
871 * support RX scatter-gather. */
872 nm_prlim(2, "Warning: driver pushed up big packet "
873 "(size=%d)", (int)MBUF_LEN(m));
874 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
875 m_freem(m);
876 } else if (unlikely(mbq_len(&kring->rx_queue) > na->num_rx_desc)) {
877 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
878 m_freem(m);
879 } else {
880 mbq_safe_enqueue(&kring->rx_queue, m);
881 }
882
883 if (netmap_generic_mit < 32768) {
884 /* no rx mitigation, pass notification up */
885 netmap_generic_irq(na, r, &work_done);
886 } else {
887 /* same as send combining, filter notification if there is a
888 * pending timer, otherwise pass it up and start a timer.
889 */
890 if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
891 /* Record that there is some pending work. */
892 gna->mit[r].mit_pending = 1;
893 } else {
894 netmap_generic_irq(na, r, &work_done);
895 nm_os_mitigation_start(&gna->mit[r]);
896 }
897 }
898
899 /* We have intercepted the mbuf. */
900 return 1;
901 }
902
903 /*
904 * generic_netmap_rxsync() extracts mbufs from the queue filled by
905 * generic_netmap_rx_handler() and puts their content in the netmap
906 * receive ring.
907 * Access must be protected because the rx handler is asynchronous,
908 */
909 static int
generic_netmap_rxsync(struct netmap_kring * kring,int flags)910 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
911 {
912 struct netmap_ring *ring = kring->ring;
913 struct netmap_adapter *na = kring->na;
914 u_int nm_i; /* index into the netmap ring */ //j,
915 u_int n;
916 u_int const lim = kring->nkr_num_slots - 1;
917 u_int const head = kring->rhead;
918 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
919
920 /* Adapter-specific variables. */
921 u_int nm_buf_len = NETMAP_BUF_SIZE(na);
922 struct mbq tmpq;
923 struct mbuf *m;
924 int avail; /* in bytes */
925 int mlen;
926 int copy;
927
928 if (head > lim)
929 return netmap_ring_reinit(kring);
930
931 IFRATE(rate_ctx.new.rxsync++);
932
933 /*
934 * First part: skip past packets that userspace has released.
935 * This can possibly make room for the second part.
936 */
937 nm_i = kring->nr_hwcur;
938 if (nm_i != head) {
939 /* Userspace has released some packets. */
940 for (n = 0; nm_i != head; n++) {
941 struct netmap_slot *slot = &ring->slot[nm_i];
942
943 slot->flags &= ~NS_BUF_CHANGED;
944 nm_i = nm_next(nm_i, lim);
945 }
946 kring->nr_hwcur = head;
947 }
948
949 /*
950 * Second part: import newly received packets.
951 */
952 if (!netmap_no_pendintr && !force_update) {
953 return 0;
954 }
955
956 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
957
958 /* Compute the available space (in bytes) in this netmap ring.
959 * The first slot that is not considered in is the one before
960 * nr_hwcur. */
961
962 avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
963 if (avail < 0)
964 avail += lim + 1;
965 avail *= nm_buf_len;
966
967 /* First pass: While holding the lock on the RX mbuf queue,
968 * extract as many mbufs as they fit the available space,
969 * and put them in a temporary queue.
970 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
971 * to update avail, we do the update in a while loop that we
972 * also use to set the RX slots, but without performing the copy. */
973 mbq_init(&tmpq);
974 mbq_lock(&kring->rx_queue);
975 for (n = 0;; n++) {
976 m = mbq_peek(&kring->rx_queue);
977 if (!m) {
978 /* No more packets from the driver. */
979 break;
980 }
981
982 mlen = MBUF_LEN(m);
983 if (mlen > avail) {
984 /* No more space in the ring. */
985 break;
986 }
987
988 mbq_dequeue(&kring->rx_queue);
989
990 while (mlen) {
991 copy = nm_buf_len;
992 if (mlen < copy) {
993 copy = mlen;
994 }
995 mlen -= copy;
996 avail -= nm_buf_len;
997
998 ring->slot[nm_i].len = copy;
999 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
1000 nm_i = nm_next(nm_i, lim);
1001 }
1002
1003 mbq_enqueue(&tmpq, m);
1004 }
1005 mbq_unlock(&kring->rx_queue);
1006
1007 /* Second pass: Drain the temporary queue, going over the used RX slots,
1008 * and perform the copy out of the RX queue lock. */
1009 nm_i = kring->nr_hwtail;
1010
1011 for (;;) {
1012 void *nmaddr;
1013 int ofs = 0;
1014 int morefrag;
1015
1016 m = mbq_dequeue(&tmpq);
1017 if (!m) {
1018 break;
1019 }
1020
1021 do {
1022 nmaddr = NMB(na, &ring->slot[nm_i]);
1023 /* We only check the address here on generic rx rings. */
1024 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
1025 m_freem(m);
1026 mbq_purge(&tmpq);
1027 mbq_fini(&tmpq);
1028 return netmap_ring_reinit(kring);
1029 }
1030
1031 copy = ring->slot[nm_i].len;
1032 m_copydata(m, ofs, copy, nmaddr);
1033 ofs += copy;
1034 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1035 nm_i = nm_next(nm_i, lim);
1036 } while (morefrag);
1037
1038 m_freem(m);
1039 }
1040
1041 mbq_fini(&tmpq);
1042
1043 if (n) {
1044 kring->nr_hwtail = nm_i;
1045 IFRATE(rate_ctx.new.rxpkt += n);
1046 }
1047 kring->nr_kflags &= ~NKR_PENDINTR;
1048
1049 return 0;
1050 }
1051
1052 static void
generic_netmap_dtor(struct netmap_adapter * na)1053 generic_netmap_dtor(struct netmap_adapter *na)
1054 {
1055 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1056 if_t ifp = netmap_generic_getifp(gna);
1057 struct netmap_adapter *prev_na = gna->prev;
1058
1059 if (prev_na != NULL) {
1060 netmap_adapter_put(prev_na);
1061 if (nm_iszombie(na)) {
1062 /*
1063 * The driver has been removed without releasing
1064 * the reference so we need to do it here.
1065 */
1066 netmap_adapter_put(prev_na);
1067 }
1068 nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1069 }
1070 NM_RESTORE_NA(ifp, prev_na);
1071 na->ifp = NULL;
1072 nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1073 }
1074
1075 int
na_is_generic(struct netmap_adapter * na)1076 na_is_generic(struct netmap_adapter *na)
1077 {
1078 return na->nm_register == generic_netmap_register;
1079 }
1080
1081 /*
1082 * generic_netmap_attach() makes it possible to use netmap on
1083 * a device without native netmap support.
1084 * This is less performant than native support but potentially
1085 * faster than raw sockets or similar schemes.
1086 *
1087 * In this "emulated" mode, netmap rings do not necessarily
1088 * have the same size as those in the NIC. We use a default
1089 * value and possibly override it if the OS has ways to fetch the
1090 * actual configuration.
1091 */
1092 int
generic_netmap_attach(if_t ifp)1093 generic_netmap_attach(if_t ifp)
1094 {
1095 struct netmap_adapter *na;
1096 struct netmap_generic_adapter *gna;
1097 int retval;
1098 u_int num_tx_desc, num_rx_desc;
1099
1100 #ifdef __FreeBSD__
1101 if (if_gettype(ifp) == IFT_LOOP) {
1102 nm_prerr("if_loop is not supported by %s", __func__);
1103 return EINVAL;
1104 }
1105 #endif
1106
1107 if (NM_NA_CLASH(ifp)) {
1108 /* If NA(ifp) is not null but there is no valid netmap
1109 * adapter it means that someone else is using the same
1110 * pointer (e.g. ax25_ptr on linux). This happens for
1111 * instance when also PF_RING is in use. */
1112 nm_prerr("Error: netmap adapter hook is busy");
1113 return EBUSY;
1114 }
1115
1116 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1117
1118 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1119 if (num_tx_desc == 0 || num_rx_desc == 0) {
1120 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1121 return EINVAL;
1122 }
1123
1124 gna = nm_os_malloc(sizeof(*gna));
1125 if (gna == NULL) {
1126 nm_prerr("no memory on attach, give up");
1127 return ENOMEM;
1128 }
1129 na = (struct netmap_adapter *)gna;
1130 strlcpy(na->name, if_name(ifp), sizeof(na->name));
1131 na->ifp = ifp;
1132 na->num_tx_desc = num_tx_desc;
1133 na->num_rx_desc = num_rx_desc;
1134 na->rx_buf_maxsize = 32768;
1135 na->nm_register = &generic_netmap_register;
1136 na->nm_txsync = &generic_netmap_txsync;
1137 na->nm_rxsync = &generic_netmap_rxsync;
1138 na->nm_dtor = &generic_netmap_dtor;
1139 /* when using generic, NAF_NETMAP_ON is set so we force
1140 * NAF_SKIP_INTR to use the regular interrupt handler
1141 */
1142 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1143
1144 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1145 ifp->num_tx_queues, ifp->real_num_tx_queues,
1146 ifp->tx_queue_len);
1147 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1148 ifp->num_rx_queues, ifp->real_num_rx_queues);
1149
1150 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1151
1152 retval = netmap_attach_common(na);
1153 if (retval) {
1154 nm_os_free(gna);
1155 return retval;
1156 }
1157
1158 if (NM_NA_VALID(ifp)) {
1159 gna->prev = NA(ifp); /* save old na */
1160 netmap_adapter_get(gna->prev);
1161 }
1162 NM_ATTACH_NA(ifp, na);
1163
1164 nm_os_generic_set_features(gna);
1165
1166 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1167 gna->prev ? gna->prev->name : "NULL");
1168
1169 return retval;
1170 }
1171