xref: /freebsd-14.2/sys/dev/msk/if_msk.c (revision 6b1f5309)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50  *
51  * Copyright (c) 1997, 1998, 1999, 2000
52  *	Bill Paul <[email protected]>.  All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  * 1. Redistributions of source code must retain the above copyright
58  *    notice, this list of conditions and the following disclaimer.
59  * 2. Redistributions in binary form must reproduce the above copyright
60  *    notice, this list of conditions and the following disclaimer in the
61  *    documentation and/or other materials provided with the distribution.
62  * 3. All advertising materials mentioning features or use of this software
63  *    must display the following acknowledgement:
64  *	This product includes software developed by Bill Paul.
65  * 4. Neither the name of the author nor the names of any co-contributors
66  *    may be used to endorse or promote products derived from this software
67  *    without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79  * THE POSSIBILITY OF SUCH DAMAGE.
80  */
81 /*-
82  * Copyright (c) 2003 Nathan L. Binkert <[email protected]>
83  *
84  * Permission to use, copy, modify, and distribute this software for any
85  * purpose with or without fee is hereby granted, provided that the above
86  * copyright notice and this permission notice appear in all copies.
87  *
88  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95  */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/cdefs.h>
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/module.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/queue.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/bpf.h>
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/if_var.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/if_types.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 
133 #include <machine/bus.h>
134 #include <machine/in_cksum.h>
135 #include <machine/resource.h>
136 #include <sys/rman.h>
137 
138 #include <dev/mii/mii.h>
139 #include <dev/mii/miivar.h>
140 
141 #include <dev/pci/pcireg.h>
142 #include <dev/pci/pcivar.h>
143 
144 #include <dev/msk/if_mskreg.h>
145 
146 MODULE_DEPEND(msk, pci, 1, 1, 1);
147 MODULE_DEPEND(msk, ether, 1, 1, 1);
148 MODULE_DEPEND(msk, miibus, 1, 1, 1);
149 
150 /* "device miibus" required.  See GENERIC if you get errors here. */
151 #include "miibus_if.h"
152 
153 /* Tunables. */
154 static int msi_disable = 0;
155 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
156 static int legacy_intr = 0;
157 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
158 static int jumbo_disable = 0;
159 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
160 
161 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
162 
163 /*
164  * Devices supported by this driver.
165  */
166 static const struct msk_product {
167 	uint16_t	msk_vendorid;
168 	uint16_t	msk_deviceid;
169 	const char	*msk_name;
170 } msk_products[] = {
171 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
172 	    "SK-9Sxx Gigabit Ethernet" },
173 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
174 	    "SK-9Exx Gigabit Ethernet"},
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
176 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
178 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
180 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
182 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
184 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
186 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
188 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
190 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
192 	    "Marvell Yukon 88E8035 Fast Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
194 	    "Marvell Yukon 88E8036 Fast Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
196 	    "Marvell Yukon 88E8038 Fast Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
198 	    "Marvell Yukon 88E8039 Fast Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
200 	    "Marvell Yukon 88E8040 Fast Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
202 	    "Marvell Yukon 88E8040T Fast Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
204 	    "Marvell Yukon 88E8042 Fast Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
206 	    "Marvell Yukon 88E8048 Fast Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
208 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
210 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
211 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
212 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
213 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
214 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
215 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
216 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
217 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
218 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
219 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
220 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
221 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
222 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
223 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
224 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
225 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
226 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
227 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
228 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
229 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
230 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
231 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
232 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
233 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
234 	    "D-Link 550SX Gigabit Ethernet" },
235 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
236 	    "D-Link 560SX Gigabit Ethernet" },
237 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
238 	    "D-Link 560T Gigabit Ethernet" }
239 };
240 
241 static const char *model_name[] = {
242 	"Yukon XL",
243         "Yukon EC Ultra",
244         "Yukon EX",
245         "Yukon EC",
246         "Yukon FE",
247         "Yukon FE+",
248         "Yukon Supreme",
249         "Yukon Ultra 2",
250         "Yukon Unknown",
251         "Yukon Optima",
252 };
253 
254 static int mskc_probe(device_t);
255 static int mskc_attach(device_t);
256 static int mskc_detach(device_t);
257 static int mskc_shutdown(device_t);
258 static int mskc_setup_rambuffer(struct msk_softc *);
259 static int mskc_suspend(device_t);
260 static int mskc_resume(device_t);
261 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
262 static void mskc_reset(struct msk_softc *);
263 
264 static int msk_probe(device_t);
265 static int msk_attach(device_t);
266 static int msk_detach(device_t);
267 
268 static void msk_tick(void *);
269 static void msk_intr(void *);
270 static void msk_intr_phy(struct msk_if_softc *);
271 static void msk_intr_gmac(struct msk_if_softc *);
272 static __inline void msk_rxput(struct msk_if_softc *);
273 static int msk_handle_events(struct msk_softc *);
274 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
275 static void msk_intr_hwerr(struct msk_softc *);
276 #ifndef __NO_STRICT_ALIGNMENT
277 static __inline void msk_fixup_rx(struct mbuf *);
278 #endif
279 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
280 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
281 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
282 static void msk_txeof(struct msk_if_softc *, int);
283 static int msk_encap(struct msk_if_softc *, struct mbuf **);
284 static void msk_start(if_t);
285 static void msk_start_locked(if_t);
286 static int msk_ioctl(if_t, u_long, caddr_t);
287 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
288 static void msk_set_rambuffer(struct msk_if_softc *);
289 static void msk_set_tx_stfwd(struct msk_if_softc *);
290 static void msk_init(void *);
291 static void msk_init_locked(struct msk_if_softc *);
292 static void msk_stop(struct msk_if_softc *);
293 static void msk_watchdog(struct msk_if_softc *);
294 static int msk_mediachange(if_t);
295 static void msk_mediastatus(if_t, struct ifmediareq *);
296 static void msk_phy_power(struct msk_softc *, int);
297 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
298 static int msk_status_dma_alloc(struct msk_softc *);
299 static void msk_status_dma_free(struct msk_softc *);
300 static int msk_txrx_dma_alloc(struct msk_if_softc *);
301 static int msk_rx_dma_jalloc(struct msk_if_softc *);
302 static void msk_txrx_dma_free(struct msk_if_softc *);
303 static void msk_rx_dma_jfree(struct msk_if_softc *);
304 static int msk_rx_fill(struct msk_if_softc *, int);
305 static int msk_init_rx_ring(struct msk_if_softc *);
306 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
307 static void msk_init_tx_ring(struct msk_if_softc *);
308 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
309 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
310 static int msk_newbuf(struct msk_if_softc *, int);
311 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
312 
313 static int msk_phy_readreg(struct msk_if_softc *, int, int);
314 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
315 static int msk_miibus_readreg(device_t, int, int);
316 static int msk_miibus_writereg(device_t, int, int, int);
317 static void msk_miibus_statchg(device_t);
318 
319 static void msk_rxfilter(struct msk_if_softc *);
320 static void msk_setvlan(struct msk_if_softc *, if_t);
321 
322 static void msk_stats_clear(struct msk_if_softc *);
323 static void msk_stats_update(struct msk_if_softc *);
324 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
325 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
326 static void msk_sysctl_node(struct msk_if_softc *);
327 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
328 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
329 
330 static device_method_t mskc_methods[] = {
331 	/* Device interface */
332 	DEVMETHOD(device_probe,		mskc_probe),
333 	DEVMETHOD(device_attach,	mskc_attach),
334 	DEVMETHOD(device_detach,	mskc_detach),
335 	DEVMETHOD(device_suspend,	mskc_suspend),
336 	DEVMETHOD(device_resume,	mskc_resume),
337 	DEVMETHOD(device_shutdown,	mskc_shutdown),
338 
339 	DEVMETHOD(bus_get_dma_tag,	mskc_get_dma_tag),
340 
341 	DEVMETHOD_END
342 };
343 
344 static driver_t mskc_driver = {
345 	"mskc",
346 	mskc_methods,
347 	sizeof(struct msk_softc)
348 };
349 
350 static device_method_t msk_methods[] = {
351 	/* Device interface */
352 	DEVMETHOD(device_probe,		msk_probe),
353 	DEVMETHOD(device_attach,	msk_attach),
354 	DEVMETHOD(device_detach,	msk_detach),
355 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
356 
357 	/* MII interface */
358 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
359 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
360 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
361 
362 	DEVMETHOD_END
363 };
364 
365 static driver_t msk_driver = {
366 	"msk",
367 	msk_methods,
368 	sizeof(struct msk_if_softc)
369 };
370 
371 DRIVER_MODULE(mskc, pci, mskc_driver, NULL, NULL);
372 DRIVER_MODULE(msk, mskc, msk_driver, NULL, NULL);
373 DRIVER_MODULE(miibus, msk, miibus_driver, NULL, NULL);
374 
375 static struct resource_spec msk_res_spec_io[] = {
376 	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
377 	{ -1,			0,		0 }
378 };
379 
380 static struct resource_spec msk_res_spec_mem[] = {
381 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
382 	{ -1,			0,		0 }
383 };
384 
385 static struct resource_spec msk_irq_spec_legacy[] = {
386 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
387 	{ -1,			0,		0 }
388 };
389 
390 static struct resource_spec msk_irq_spec_msi[] = {
391 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
392 	{ -1,			0,		0 }
393 };
394 
395 static int
msk_miibus_readreg(device_t dev,int phy,int reg)396 msk_miibus_readreg(device_t dev, int phy, int reg)
397 {
398 	struct msk_if_softc *sc_if;
399 
400 	sc_if = device_get_softc(dev);
401 
402 	return (msk_phy_readreg(sc_if, phy, reg));
403 }
404 
405 static int
msk_phy_readreg(struct msk_if_softc * sc_if,int phy,int reg)406 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
407 {
408 	struct msk_softc *sc;
409 	int i, val;
410 
411 	sc = sc_if->msk_softc;
412 
413         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
414 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
415 
416 	for (i = 0; i < MSK_TIMEOUT; i++) {
417 		DELAY(1);
418 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
419 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
420 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
421 			break;
422 		}
423 	}
424 
425 	if (i == MSK_TIMEOUT) {
426 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
427 		val = 0;
428 	}
429 
430 	return (val);
431 }
432 
433 static int
msk_miibus_writereg(device_t dev,int phy,int reg,int val)434 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
435 {
436 	struct msk_if_softc *sc_if;
437 
438 	sc_if = device_get_softc(dev);
439 
440 	return (msk_phy_writereg(sc_if, phy, reg, val));
441 }
442 
443 static int
msk_phy_writereg(struct msk_if_softc * sc_if,int phy,int reg,int val)444 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
445 {
446 	struct msk_softc *sc;
447 	int i;
448 
449 	sc = sc_if->msk_softc;
450 
451 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
452         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
453 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
454 	for (i = 0; i < MSK_TIMEOUT; i++) {
455 		DELAY(1);
456 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
457 		    GM_SMI_CT_BUSY) == 0)
458 			break;
459 	}
460 	if (i == MSK_TIMEOUT)
461 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
462 
463 	return (0);
464 }
465 
466 static void
msk_miibus_statchg(device_t dev)467 msk_miibus_statchg(device_t dev)
468 {
469 	struct msk_softc *sc;
470 	struct msk_if_softc *sc_if;
471 	struct mii_data *mii;
472 	if_t ifp;
473 	uint32_t gmac;
474 
475 	sc_if = device_get_softc(dev);
476 	sc = sc_if->msk_softc;
477 
478 	MSK_IF_LOCK_ASSERT(sc_if);
479 
480 	mii = device_get_softc(sc_if->msk_miibus);
481 	ifp = sc_if->msk_ifp;
482 	if (mii == NULL || ifp == NULL ||
483 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
484 		return;
485 
486 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
487 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
488 	    (IFM_AVALID | IFM_ACTIVE)) {
489 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
490 		case IFM_10_T:
491 		case IFM_100_TX:
492 			sc_if->msk_flags |= MSK_FLAG_LINK;
493 			break;
494 		case IFM_1000_T:
495 		case IFM_1000_SX:
496 		case IFM_1000_LX:
497 		case IFM_1000_CX:
498 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
499 				sc_if->msk_flags |= MSK_FLAG_LINK;
500 			break;
501 		default:
502 			break;
503 		}
504 	}
505 
506 	if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
507 		/* Enable Tx FIFO Underrun. */
508 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
509 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
510 		/*
511 		 * Because mii(4) notify msk(4) that it detected link status
512 		 * change, there is no need to enable automatic
513 		 * speed/flow-control/duplex updates.
514 		 */
515 		gmac = GM_GPCR_AU_ALL_DIS;
516 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
517 		case IFM_1000_SX:
518 		case IFM_1000_T:
519 			gmac |= GM_GPCR_SPEED_1000;
520 			break;
521 		case IFM_100_TX:
522 			gmac |= GM_GPCR_SPEED_100;
523 			break;
524 		case IFM_10_T:
525 			break;
526 		}
527 
528 		if ((IFM_OPTIONS(mii->mii_media_active) &
529 		    IFM_ETH_RXPAUSE) == 0)
530 			gmac |= GM_GPCR_FC_RX_DIS;
531 		if ((IFM_OPTIONS(mii->mii_media_active) &
532 		     IFM_ETH_TXPAUSE) == 0)
533 			gmac |= GM_GPCR_FC_TX_DIS;
534 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
535 			gmac |= GM_GPCR_DUP_FULL;
536 		else
537 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
538 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
539 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
540 		/* Read again to ensure writing. */
541 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
542 		gmac = GMC_PAUSE_OFF;
543 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
544 			if ((IFM_OPTIONS(mii->mii_media_active) &
545 			    IFM_ETH_RXPAUSE) != 0)
546 				gmac = GMC_PAUSE_ON;
547 		}
548 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
549 
550 		/* Enable PHY interrupt for FIFO underrun/overflow. */
551 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
552 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
553 	} else {
554 		/*
555 		 * Link state changed to down.
556 		 * Disable PHY interrupts.
557 		 */
558 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
559 		/* Disable Rx/Tx MAC. */
560 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
561 		if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
562 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
563 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
564 			/* Read again to ensure writing. */
565 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
566 		}
567 	}
568 }
569 
570 static u_int
msk_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)571 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
572 {
573 	uint32_t *mchash = arg;
574 	uint32_t crc;
575 
576 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
577 	/* Just want the 6 least significant bits. */
578 	crc &= 0x3f;
579 	/* Set the corresponding bit in the hash table. */
580 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
581 
582 	return (1);
583 }
584 
585 static void
msk_rxfilter(struct msk_if_softc * sc_if)586 msk_rxfilter(struct msk_if_softc *sc_if)
587 {
588 	struct msk_softc *sc;
589 	if_t ifp;
590 	uint32_t mchash[2];
591 	uint16_t mode;
592 
593 	sc = sc_if->msk_softc;
594 
595 	MSK_IF_LOCK_ASSERT(sc_if);
596 
597 	ifp = sc_if->msk_ifp;
598 
599 	bzero(mchash, sizeof(mchash));
600 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
601 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
602 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
603 	else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
604 		mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
605 		mchash[0] = 0xffff;
606 		mchash[1] = 0xffff;
607 	} else {
608 		mode |= GM_RXCR_UCF_ENA;
609 		if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
610 		if (mchash[0] != 0 || mchash[1] != 0)
611 			mode |= GM_RXCR_MCF_ENA;
612 	}
613 
614 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
615 	    mchash[0] & 0xffff);
616 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
617 	    (mchash[0] >> 16) & 0xffff);
618 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
619 	    mchash[1] & 0xffff);
620 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
621 	    (mchash[1] >> 16) & 0xffff);
622 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
623 }
624 
625 static void
msk_setvlan(struct msk_if_softc * sc_if,if_t ifp)626 msk_setvlan(struct msk_if_softc *sc_if, if_t ifp)
627 {
628 	struct msk_softc *sc;
629 
630 	sc = sc_if->msk_softc;
631 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
632 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
633 		    RX_VLAN_STRIP_ON);
634 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
635 		    TX_VLAN_TAG_ON);
636 	} else {
637 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
638 		    RX_VLAN_STRIP_OFF);
639 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
640 		    TX_VLAN_TAG_OFF);
641 	}
642 }
643 
644 static int
msk_rx_fill(struct msk_if_softc * sc_if,int jumbo)645 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
646 {
647 	uint16_t idx;
648 	int i;
649 
650 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
651 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
652 		/* Wait until controller executes OP_TCPSTART command. */
653 		for (i = 100; i > 0; i--) {
654 			DELAY(100);
655 			idx = CSR_READ_2(sc_if->msk_softc,
656 			    Y2_PREF_Q_ADDR(sc_if->msk_rxq,
657 			    PREF_UNIT_GET_IDX_REG));
658 			if (idx != 0)
659 				break;
660 		}
661 		if (i == 0) {
662 			device_printf(sc_if->msk_if_dev,
663 			    "prefetch unit stuck?\n");
664 			return (ETIMEDOUT);
665 		}
666 		/*
667 		 * Fill consumed LE with free buffer. This can be done
668 		 * in Rx handler but we don't want to add special code
669 		 * in fast handler.
670 		 */
671 		if (jumbo > 0) {
672 			if (msk_jumbo_newbuf(sc_if, 0) != 0)
673 				return (ENOBUFS);
674 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
675 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
676 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
677 		} else {
678 			if (msk_newbuf(sc_if, 0) != 0)
679 				return (ENOBUFS);
680 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
681 			    sc_if->msk_cdata.msk_rx_ring_map,
682 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
683 		}
684 		sc_if->msk_cdata.msk_rx_prod = 0;
685 		CSR_WRITE_2(sc_if->msk_softc,
686 		    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
687 		    sc_if->msk_cdata.msk_rx_prod);
688 	}
689 	return (0);
690 }
691 
692 static int
msk_init_rx_ring(struct msk_if_softc * sc_if)693 msk_init_rx_ring(struct msk_if_softc *sc_if)
694 {
695 	struct msk_ring_data *rd;
696 	struct msk_rxdesc *rxd;
697 	int i, nbuf, prod;
698 
699 	MSK_IF_LOCK_ASSERT(sc_if);
700 
701 	sc_if->msk_cdata.msk_rx_cons = 0;
702 	sc_if->msk_cdata.msk_rx_prod = 0;
703 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
704 
705 	rd = &sc_if->msk_rdata;
706 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
707 	for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
708 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
709 		rxd->rx_m = NULL;
710 		rxd->rx_le = &rd->msk_rx_ring[prod];
711 		MSK_INC(prod, MSK_RX_RING_CNT);
712 	}
713 	nbuf = MSK_RX_BUF_CNT;
714 	prod = 0;
715 	/* Have controller know how to compute Rx checksum. */
716 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
717 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
718 #ifdef MSK_64BIT_DMA
719 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
720 		rxd->rx_m = NULL;
721 		rxd->rx_le = &rd->msk_rx_ring[prod];
722 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
723 		    ETHER_HDR_LEN);
724 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
725 		MSK_INC(prod, MSK_RX_RING_CNT);
726 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
727 #endif
728 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
729 		rxd->rx_m = NULL;
730 		rxd->rx_le = &rd->msk_rx_ring[prod];
731 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
732 		    ETHER_HDR_LEN);
733 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
734 		MSK_INC(prod, MSK_RX_RING_CNT);
735 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
736 		nbuf--;
737 	}
738 	for (i = 0; i < nbuf; i++) {
739 		if (msk_newbuf(sc_if, prod) != 0)
740 			return (ENOBUFS);
741 		MSK_RX_INC(prod, MSK_RX_RING_CNT);
742 	}
743 
744 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
745 	    sc_if->msk_cdata.msk_rx_ring_map,
746 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
747 
748 	/* Update prefetch unit. */
749 	sc_if->msk_cdata.msk_rx_prod = prod;
750 	CSR_WRITE_2(sc_if->msk_softc,
751 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
752 	    (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
753 	    MSK_RX_RING_CNT);
754 	if (msk_rx_fill(sc_if, 0) != 0)
755 		return (ENOBUFS);
756 	return (0);
757 }
758 
759 static int
msk_init_jumbo_rx_ring(struct msk_if_softc * sc_if)760 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
761 {
762 	struct msk_ring_data *rd;
763 	struct msk_rxdesc *rxd;
764 	int i, nbuf, prod;
765 
766 	MSK_IF_LOCK_ASSERT(sc_if);
767 
768 	sc_if->msk_cdata.msk_rx_cons = 0;
769 	sc_if->msk_cdata.msk_rx_prod = 0;
770 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
771 
772 	rd = &sc_if->msk_rdata;
773 	bzero(rd->msk_jumbo_rx_ring,
774 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
775 	for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
776 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
777 		rxd->rx_m = NULL;
778 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
779 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
780 	}
781 	nbuf = MSK_RX_BUF_CNT;
782 	prod = 0;
783 	/* Have controller know how to compute Rx checksum. */
784 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
785 	    (if_getcapenable(sc_if->msk_ifp) & IFCAP_RXCSUM) != 0) {
786 #ifdef MSK_64BIT_DMA
787 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
788 		rxd->rx_m = NULL;
789 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
790 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
791 		    ETHER_HDR_LEN);
792 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
793 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
794 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
795 #endif
796 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
797 		rxd->rx_m = NULL;
798 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
799 		rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
800 		    ETHER_HDR_LEN);
801 		rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
802 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
803 		MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
804 		nbuf--;
805 	}
806 	for (i = 0; i < nbuf; i++) {
807 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
808 			return (ENOBUFS);
809 		MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
810 	}
811 
812 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
813 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
814 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 
816 	/* Update prefetch unit. */
817 	sc_if->msk_cdata.msk_rx_prod = prod;
818 	CSR_WRITE_2(sc_if->msk_softc,
819 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
820 	    (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
821 	    MSK_JUMBO_RX_RING_CNT);
822 	if (msk_rx_fill(sc_if, 1) != 0)
823 		return (ENOBUFS);
824 	return (0);
825 }
826 
827 static void
msk_init_tx_ring(struct msk_if_softc * sc_if)828 msk_init_tx_ring(struct msk_if_softc *sc_if)
829 {
830 	struct msk_ring_data *rd;
831 	struct msk_txdesc *txd;
832 	int i;
833 
834 	sc_if->msk_cdata.msk_tso_mtu = 0;
835 	sc_if->msk_cdata.msk_last_csum = 0;
836 	sc_if->msk_cdata.msk_tx_prod = 0;
837 	sc_if->msk_cdata.msk_tx_cons = 0;
838 	sc_if->msk_cdata.msk_tx_cnt = 0;
839 	sc_if->msk_cdata.msk_tx_high_addr = 0;
840 
841 	rd = &sc_if->msk_rdata;
842 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
843 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
844 		txd = &sc_if->msk_cdata.msk_txdesc[i];
845 		txd->tx_m = NULL;
846 		txd->tx_le = &rd->msk_tx_ring[i];
847 	}
848 
849 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
850 	    sc_if->msk_cdata.msk_tx_ring_map,
851 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
852 }
853 
854 static __inline void
msk_discard_rxbuf(struct msk_if_softc * sc_if,int idx)855 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
856 {
857 	struct msk_rx_desc *rx_le;
858 	struct msk_rxdesc *rxd;
859 	struct mbuf *m;
860 
861 #ifdef MSK_64BIT_DMA
862 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
863 	rx_le = rxd->rx_le;
864 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
865 	MSK_INC(idx, MSK_RX_RING_CNT);
866 #endif
867 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
868 	m = rxd->rx_m;
869 	rx_le = rxd->rx_le;
870 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
871 }
872 
873 static __inline void
msk_discard_jumbo_rxbuf(struct msk_if_softc * sc_if,int idx)874 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
875 {
876 	struct msk_rx_desc *rx_le;
877 	struct msk_rxdesc *rxd;
878 	struct mbuf *m;
879 
880 #ifdef MSK_64BIT_DMA
881 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
882 	rx_le = rxd->rx_le;
883 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
884 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
885 #endif
886 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
887 	m = rxd->rx_m;
888 	rx_le = rxd->rx_le;
889 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
890 }
891 
892 static int
msk_newbuf(struct msk_if_softc * sc_if,int idx)893 msk_newbuf(struct msk_if_softc *sc_if, int idx)
894 {
895 	struct msk_rx_desc *rx_le;
896 	struct msk_rxdesc *rxd;
897 	struct mbuf *m;
898 	bus_dma_segment_t segs[1];
899 	bus_dmamap_t map;
900 	int nsegs;
901 
902 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
903 	if (m == NULL)
904 		return (ENOBUFS);
905 
906 	m->m_len = m->m_pkthdr.len = MCLBYTES;
907 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
908 		m_adj(m, ETHER_ALIGN);
909 #ifndef __NO_STRICT_ALIGNMENT
910 	else
911 		m_adj(m, MSK_RX_BUF_ALIGN);
912 #endif
913 
914 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
915 	    sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
916 	    BUS_DMA_NOWAIT) != 0) {
917 		m_freem(m);
918 		return (ENOBUFS);
919 	}
920 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
921 
922 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
923 #ifdef MSK_64BIT_DMA
924 	rx_le = rxd->rx_le;
925 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
926 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
927 	MSK_INC(idx, MSK_RX_RING_CNT);
928 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
929 #endif
930 	if (rxd->rx_m != NULL) {
931 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
932 		    BUS_DMASYNC_POSTREAD);
933 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
934 		rxd->rx_m = NULL;
935 	}
936 	map = rxd->rx_dmamap;
937 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
938 	sc_if->msk_cdata.msk_rx_sparemap = map;
939 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
940 	    BUS_DMASYNC_PREREAD);
941 	rxd->rx_m = m;
942 	rx_le = rxd->rx_le;
943 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
944 	rx_le->msk_control =
945 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
946 
947 	return (0);
948 }
949 
950 static int
msk_jumbo_newbuf(struct msk_if_softc * sc_if,int idx)951 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
952 {
953 	struct msk_rx_desc *rx_le;
954 	struct msk_rxdesc *rxd;
955 	struct mbuf *m;
956 	bus_dma_segment_t segs[1];
957 	bus_dmamap_t map;
958 	int nsegs;
959 
960 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
961 	if (m == NULL)
962 		return (ENOBUFS);
963 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
964 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
965 		m_adj(m, ETHER_ALIGN);
966 #ifndef __NO_STRICT_ALIGNMENT
967 	else
968 		m_adj(m, MSK_RX_BUF_ALIGN);
969 #endif
970 
971 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
972 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
973 	    BUS_DMA_NOWAIT) != 0) {
974 		m_freem(m);
975 		return (ENOBUFS);
976 	}
977 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
978 
979 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
980 #ifdef MSK_64BIT_DMA
981 	rx_le = rxd->rx_le;
982 	rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
983 	rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
984 	MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
985 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
986 #endif
987 	if (rxd->rx_m != NULL) {
988 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
989 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
990 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
991 		    rxd->rx_dmamap);
992 		rxd->rx_m = NULL;
993 	}
994 	map = rxd->rx_dmamap;
995 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
996 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
997 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
998 	    BUS_DMASYNC_PREREAD);
999 	rxd->rx_m = m;
1000 	rx_le = rxd->rx_le;
1001 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1002 	rx_le->msk_control =
1003 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1004 
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Set media options.
1010  */
1011 static int
msk_mediachange(if_t ifp)1012 msk_mediachange(if_t ifp)
1013 {
1014 	struct msk_if_softc *sc_if;
1015 	struct mii_data	*mii;
1016 	int error;
1017 
1018 	sc_if = if_getsoftc(ifp);
1019 
1020 	MSK_IF_LOCK(sc_if);
1021 	mii = device_get_softc(sc_if->msk_miibus);
1022 	error = mii_mediachg(mii);
1023 	MSK_IF_UNLOCK(sc_if);
1024 
1025 	return (error);
1026 }
1027 
1028 /*
1029  * Report current media status.
1030  */
1031 static void
msk_mediastatus(if_t ifp,struct ifmediareq * ifmr)1032 msk_mediastatus(if_t ifp, struct ifmediareq *ifmr)
1033 {
1034 	struct msk_if_softc *sc_if;
1035 	struct mii_data	*mii;
1036 
1037 	sc_if = if_getsoftc(ifp);
1038 	MSK_IF_LOCK(sc_if);
1039 	if ((if_getflags(ifp) & IFF_UP) == 0) {
1040 		MSK_IF_UNLOCK(sc_if);
1041 		return;
1042 	}
1043 	mii = device_get_softc(sc_if->msk_miibus);
1044 
1045 	mii_pollstat(mii);
1046 	ifmr->ifm_active = mii->mii_media_active;
1047 	ifmr->ifm_status = mii->mii_media_status;
1048 	MSK_IF_UNLOCK(sc_if);
1049 }
1050 
1051 static int
msk_ioctl(if_t ifp,u_long command,caddr_t data)1052 msk_ioctl(if_t ifp, u_long command, caddr_t data)
1053 {
1054 	struct msk_if_softc *sc_if;
1055 	struct ifreq *ifr;
1056 	struct mii_data	*mii;
1057 	int error, mask, reinit;
1058 
1059 	sc_if = if_getsoftc(ifp);
1060 	ifr = (struct ifreq *)data;
1061 	error = 0;
1062 
1063 	switch(command) {
1064 	case SIOCSIFMTU:
1065 		MSK_IF_LOCK(sc_if);
1066 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1067 			error = EINVAL;
1068 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1069 			if (ifr->ifr_mtu > ETHERMTU) {
1070 				if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1071 					error = EINVAL;
1072 					MSK_IF_UNLOCK(sc_if);
1073 					break;
1074 				}
1075 				if ((sc_if->msk_flags &
1076 				    MSK_FLAG_JUMBO_NOCSUM) != 0) {
1077 					if_sethwassistbits(ifp, 0,
1078 					    MSK_CSUM_FEATURES | CSUM_TSO);
1079 					if_setcapenablebit(ifp, 0,
1080 					    IFCAP_TSO4 | IFCAP_TXCSUM);
1081 					VLAN_CAPABILITIES(ifp);
1082 				}
1083 			}
1084 			if_setmtu(ifp, ifr->ifr_mtu);
1085 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1086 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1087 				msk_init_locked(sc_if);
1088 			}
1089 		}
1090 		MSK_IF_UNLOCK(sc_if);
1091 		break;
1092 	case SIOCSIFFLAGS:
1093 		MSK_IF_LOCK(sc_if);
1094 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1095 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1096 			    ((if_getflags(ifp) ^ sc_if->msk_if_flags) &
1097 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1098 				msk_rxfilter(sc_if);
1099 			else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1100 				msk_init_locked(sc_if);
1101 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1102 			msk_stop(sc_if);
1103 		sc_if->msk_if_flags = if_getflags(ifp);
1104 		MSK_IF_UNLOCK(sc_if);
1105 		break;
1106 	case SIOCADDMULTI:
1107 	case SIOCDELMULTI:
1108 		MSK_IF_LOCK(sc_if);
1109 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1110 			msk_rxfilter(sc_if);
1111 		MSK_IF_UNLOCK(sc_if);
1112 		break;
1113 	case SIOCGIFMEDIA:
1114 	case SIOCSIFMEDIA:
1115 		mii = device_get_softc(sc_if->msk_miibus);
1116 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1117 		break;
1118 	case SIOCSIFCAP:
1119 		reinit = 0;
1120 		MSK_IF_LOCK(sc_if);
1121 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1122 		if ((mask & IFCAP_TXCSUM) != 0 &&
1123 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
1124 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1125 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
1126 				if_sethwassistbits(ifp, MSK_CSUM_FEATURES, 0);
1127 			else
1128 				if_sethwassistbits(ifp, 0, MSK_CSUM_FEATURES);
1129 		}
1130 		if ((mask & IFCAP_RXCSUM) != 0 &&
1131 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
1132 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1133 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1134 				reinit = 1;
1135 		}
1136 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1137 		    (IFCAP_VLAN_HWCSUM & if_getcapabilities(ifp)) != 0)
1138 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1139 		if ((mask & IFCAP_TSO4) != 0 &&
1140 		    (IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
1141 			if_togglecapenable(ifp, IFCAP_TSO4);
1142 			if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
1143 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1144 			else
1145 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1146 		}
1147 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1148 		    (IFCAP_VLAN_HWTSO & if_getcapabilities(ifp)) != 0)
1149 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1150 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1151 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
1152 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1153 			if ((IFCAP_VLAN_HWTAGGING & if_getcapenable(ifp)) == 0)
1154 				if_setcapenablebit(ifp, 0,
1155 				    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1156 			msk_setvlan(sc_if, ifp);
1157 		}
1158 		if (if_getmtu(ifp) > ETHERMTU &&
1159 		    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1160 			if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
1161 			if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
1162 		}
1163 		VLAN_CAPABILITIES(ifp);
1164 		if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1165 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1166 			msk_init_locked(sc_if);
1167 		}
1168 		MSK_IF_UNLOCK(sc_if);
1169 		break;
1170 	default:
1171 		error = ether_ioctl(ifp, command, data);
1172 		break;
1173 	}
1174 
1175 	return (error);
1176 }
1177 
1178 static int
mskc_probe(device_t dev)1179 mskc_probe(device_t dev)
1180 {
1181 	const struct msk_product *mp;
1182 	uint16_t vendor, devid;
1183 	int i;
1184 
1185 	vendor = pci_get_vendor(dev);
1186 	devid = pci_get_device(dev);
1187 	mp = msk_products;
1188 	for (i = 0; i < nitems(msk_products); i++, mp++) {
1189 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1190 			device_set_desc(dev, mp->msk_name);
1191 			return (BUS_PROBE_DEFAULT);
1192 		}
1193 	}
1194 
1195 	return (ENXIO);
1196 }
1197 
1198 static int
mskc_setup_rambuffer(struct msk_softc * sc)1199 mskc_setup_rambuffer(struct msk_softc *sc)
1200 {
1201 	int next;
1202 	int i;
1203 
1204 	/* Get adapter SRAM size. */
1205 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1206 	if (bootverbose)
1207 		device_printf(sc->msk_dev,
1208 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
1209 	if (sc->msk_ramsize == 0)
1210 		return (0);
1211 
1212 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
1213 	/*
1214 	 * Give receiver 2/3 of memory and round down to the multiple
1215 	 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1216 	 * of 1024.
1217 	 */
1218 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1219 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1220 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1221 		sc->msk_rxqstart[i] = next;
1222 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1223 		next = sc->msk_rxqend[i] + 1;
1224 		sc->msk_txqstart[i] = next;
1225 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1226 		next = sc->msk_txqend[i] + 1;
1227 		if (bootverbose) {
1228 			device_printf(sc->msk_dev,
1229 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1230 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1231 			    sc->msk_rxqend[i]);
1232 			device_printf(sc->msk_dev,
1233 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1234 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1235 			    sc->msk_txqend[i]);
1236 		}
1237 	}
1238 
1239 	return (0);
1240 }
1241 
1242 static void
msk_phy_power(struct msk_softc * sc,int mode)1243 msk_phy_power(struct msk_softc *sc, int mode)
1244 {
1245 	uint32_t our, val;
1246 	int i;
1247 
1248 	switch (mode) {
1249 	case MSK_PHY_POWERUP:
1250 		/* Switch power to VCC (WA for VAUX problem). */
1251 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1252 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1253 		/* Disable Core Clock Division, set Clock Select to 0. */
1254 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1255 
1256 		val = 0;
1257 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1258 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1259 			/* Enable bits are inverted. */
1260 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1261 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1262 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1263 		}
1264 		/*
1265 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1266 		 */
1267 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1268 
1269 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1270 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1271 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1272 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1273 				/* Deassert Low Power for 1st PHY. */
1274 				our |= PCI_Y2_PHY1_COMA;
1275 				if (sc->msk_num_port > 1)
1276 					our |= PCI_Y2_PHY2_COMA;
1277 			}
1278 		}
1279 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1280 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1281 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1282 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1283 			val &= (PCI_FORCE_ASPM_REQUEST |
1284 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1285 			    PCI_ASPM_CLKRUN_REQUEST);
1286 			/* Set all bits to 0 except bits 15..12. */
1287 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1288 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1289 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1290 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1291 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1292 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1293 			/*
1294 			 * Disable status race, workaround for
1295 			 * Yukon EC Ultra & Yukon EX.
1296 			 */
1297 			val = CSR_READ_4(sc, B2_GP_IO);
1298 			val |= GLB_GPIO_STAT_RACE_DIS;
1299 			CSR_WRITE_4(sc, B2_GP_IO, val);
1300 			CSR_READ_4(sc, B2_GP_IO);
1301 		}
1302 		/* Release PHY from PowerDown/COMA mode. */
1303 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1304 
1305 		for (i = 0; i < sc->msk_num_port; i++) {
1306 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1307 			    GMLC_RST_SET);
1308 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1309 			    GMLC_RST_CLR);
1310 		}
1311 		break;
1312 	case MSK_PHY_POWERDOWN:
1313 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1314 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1315 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1316 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1317 			val &= ~PCI_Y2_PHY1_COMA;
1318 			if (sc->msk_num_port > 1)
1319 				val &= ~PCI_Y2_PHY2_COMA;
1320 		}
1321 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1322 
1323 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1324 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1325 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1326 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1327 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1328 			/* Enable bits are inverted. */
1329 			val = 0;
1330 		}
1331 		/*
1332 		 * Disable PCI & Core Clock, disable clock gating for
1333 		 * both Links.
1334 		 */
1335 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1336 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1337 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1338 		break;
1339 	default:
1340 		break;
1341 	}
1342 }
1343 
1344 static void
mskc_reset(struct msk_softc * sc)1345 mskc_reset(struct msk_softc *sc)
1346 {
1347 	bus_addr_t addr;
1348 	uint16_t status;
1349 	uint32_t val;
1350 	int i, initram;
1351 
1352 	/* Disable ASF. */
1353 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1354 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1355 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1356 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1357 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1358 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1359 			/* Clear AHB bridge & microcontroller reset. */
1360 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1361 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1362 			/* Clear ASF microcontroller state. */
1363 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1364 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1365 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1366 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1367 		} else
1368 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1369 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1370 		/*
1371 		 * Since we disabled ASF, S/W reset is required for
1372 		 * Power Management.
1373 		 */
1374 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1375 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1376 	}
1377 
1378 	/* Clear all error bits in the PCI status register. */
1379 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1380 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1381 
1382 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1383 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1384 	    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1385 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1386 
1387 	switch (sc->msk_bustype) {
1388 	case MSK_PEX_BUS:
1389 		/* Clear all PEX errors. */
1390 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1391 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1392 		if ((val & PEX_RX_OV) != 0) {
1393 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1394 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1395 		}
1396 		break;
1397 	case MSK_PCI_BUS:
1398 	case MSK_PCIX_BUS:
1399 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1400 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1401 		if (val == 0)
1402 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1403 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1404 			/* Set Cache Line Size opt. */
1405 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1406 			val |= PCI_CLS_OPT;
1407 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1408 		}
1409 		break;
1410 	}
1411 	/* Set PHY power state. */
1412 	msk_phy_power(sc, MSK_PHY_POWERUP);
1413 
1414 	/* Reset GPHY/GMAC Control */
1415 	for (i = 0; i < sc->msk_num_port; i++) {
1416 		/* GPHY Control reset. */
1417 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1418 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1419 		/* GMAC Control reset. */
1420 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1421 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1422 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1423 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1424 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1425 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1426 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1427 			    GMC_BYP_RETR_ON);
1428 	}
1429 
1430 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1431 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1432 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1433 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1434 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1435 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1436 	}
1437 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1438 
1439 	/* LED On. */
1440 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1441 
1442 	/* Clear TWSI IRQ. */
1443 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1444 
1445 	/* Turn off hardware timer. */
1446 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1447 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1448 
1449 	/* Turn off descriptor polling. */
1450 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1451 
1452 	/* Turn off time stamps. */
1453 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1454 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1455 
1456 	initram = 0;
1457 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1458 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1459 	    sc->msk_hw_id == CHIP_ID_YUKON_FE)
1460 		initram++;
1461 
1462 	/* Configure timeout values. */
1463 	for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1464 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1465 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1466 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1467 		    MSK_RI_TO_53);
1468 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1469 		    MSK_RI_TO_53);
1470 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1471 		    MSK_RI_TO_53);
1472 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1473 		    MSK_RI_TO_53);
1474 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1475 		    MSK_RI_TO_53);
1476 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1477 		    MSK_RI_TO_53);
1478 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1479 		    MSK_RI_TO_53);
1480 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1481 		    MSK_RI_TO_53);
1482 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1483 		    MSK_RI_TO_53);
1484 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1485 		    MSK_RI_TO_53);
1486 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1487 		    MSK_RI_TO_53);
1488 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1489 		    MSK_RI_TO_53);
1490 	}
1491 
1492 	/* Disable all interrupts. */
1493 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1494 	CSR_READ_4(sc, B0_HWE_IMSK);
1495 	CSR_WRITE_4(sc, B0_IMSK, 0);
1496 	CSR_READ_4(sc, B0_IMSK);
1497 
1498         /*
1499          * On dual port PCI-X card, there is an problem where status
1500          * can be received out of order due to split transactions.
1501          */
1502 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1503 		uint16_t pcix_cmd;
1504 
1505 		pcix_cmd = pci_read_config(sc->msk_dev,
1506 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1507 		/* Clear Max Outstanding Split Transactions. */
1508 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1509 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1510 		pci_write_config(sc->msk_dev,
1511 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1512 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1513         }
1514 	if (sc->msk_expcap != 0) {
1515 		/* Change Max. Read Request Size to 2048 bytes. */
1516 		if (pci_get_max_read_req(sc->msk_dev) == 512)
1517 			pci_set_max_read_req(sc->msk_dev, 2048);
1518 	}
1519 
1520 	/* Clear status list. */
1521 	bzero(sc->msk_stat_ring,
1522 	    sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1523 	sc->msk_stat_cons = 0;
1524 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1525 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1526 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1527 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1528 	/* Set the status list base address. */
1529 	addr = sc->msk_stat_ring_paddr;
1530 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1531 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1532 	/* Set the status list last index. */
1533 	CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1534 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1535 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1536 		/* WA for dev. #4.3 */
1537 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1538 		/* WA for dev. #4.18 */
1539 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1540 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1541 	} else {
1542 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1543 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1544 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1545 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1546 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1547 		else
1548 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1549 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1550 	}
1551 	/*
1552 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1553 	 */
1554 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1555 
1556 	/* Enable status unit. */
1557 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1558 
1559 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1560 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1561 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1562 }
1563 
1564 static int
msk_probe(device_t dev)1565 msk_probe(device_t dev)
1566 {
1567 	struct msk_softc *sc;
1568 
1569 	sc = device_get_softc(device_get_parent(dev));
1570 	/*
1571 	 * Not much to do here. We always know there will be
1572 	 * at least one GMAC present, and if there are two,
1573 	 * mskc_attach() will create a second device instance
1574 	 * for us.
1575 	 */
1576 	device_set_descf(dev,
1577 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1578 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1579 	    sc->msk_hw_rev);
1580 
1581 	return (BUS_PROBE_DEFAULT);
1582 }
1583 
1584 static int
msk_attach(device_t dev)1585 msk_attach(device_t dev)
1586 {
1587 	struct msk_softc *sc;
1588 	struct msk_if_softc *sc_if;
1589 	if_t ifp;
1590 	struct msk_mii_data *mmd;
1591 	int i, port, error;
1592 	uint8_t eaddr[6];
1593 
1594 	if (dev == NULL)
1595 		return (EINVAL);
1596 
1597 	error = 0;
1598 	sc_if = device_get_softc(dev);
1599 	sc = device_get_softc(device_get_parent(dev));
1600 	mmd = device_get_ivars(dev);
1601 	port = mmd->port;
1602 
1603 	sc_if->msk_if_dev = dev;
1604 	sc_if->msk_port = port;
1605 	sc_if->msk_softc = sc;
1606 	sc_if->msk_flags = sc->msk_pflags;
1607 	sc->msk_if[port] = sc_if;
1608 	/* Setup Tx/Rx queue register offsets. */
1609 	if (port == MSK_PORT_A) {
1610 		sc_if->msk_txq = Q_XA1;
1611 		sc_if->msk_txsq = Q_XS1;
1612 		sc_if->msk_rxq = Q_R1;
1613 	} else {
1614 		sc_if->msk_txq = Q_XA2;
1615 		sc_if->msk_txsq = Q_XS2;
1616 		sc_if->msk_rxq = Q_R2;
1617 	}
1618 
1619 	callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1620 	msk_sysctl_node(sc_if);
1621 
1622 	if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1623 		goto fail;
1624 	msk_rx_dma_jalloc(sc_if);
1625 
1626 	ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1627 	if_setsoftc(ifp, sc_if);
1628 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1629 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1630 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_TSO4);
1631 	/*
1632 	 * Enable Rx checksum offloading if controller supports
1633 	 * new descriptor formant and controller is not Yukon XL.
1634 	 */
1635 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1636 	    sc->msk_hw_id != CHIP_ID_YUKON_XL)
1637 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1638 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1639 	    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1640 		if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
1641 	if_sethwassist(ifp, MSK_CSUM_FEATURES | CSUM_TSO);
1642 	if_setcapenable(ifp, if_getcapabilities(ifp));
1643 	if_setioctlfn(ifp, msk_ioctl);
1644 	if_setstartfn(ifp, msk_start);
1645 	if_setinitfn(ifp, msk_init);
1646 	if_setsendqlen(ifp, MSK_TX_RING_CNT - 1);
1647 	if_setsendqready(ifp);
1648 	/*
1649 	 * Get station address for this interface. Note that
1650 	 * dual port cards actually come with three station
1651 	 * addresses: one for each port, plus an extra. The
1652 	 * extra one is used by the SysKonnect driver software
1653 	 * as a 'virtual' station address for when both ports
1654 	 * are operating in failover mode. Currently we don't
1655 	 * use this extra address.
1656 	 */
1657 	MSK_IF_LOCK(sc_if);
1658 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1659 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1660 
1661 	/*
1662 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1663 	 */
1664 	MSK_IF_UNLOCK(sc_if);
1665 	ether_ifattach(ifp, eaddr);
1666 	MSK_IF_LOCK(sc_if);
1667 
1668 	/* VLAN capability setup */
1669 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1670 	if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1671 		/*
1672 		 * Due to Tx checksum offload hardware bugs, msk(4) manually
1673 		 * computes checksum for short frames. For VLAN tagged frames
1674 		 * this workaround does not work so disable checksum offload
1675 		 * for VLAN interface.
1676 		 */
1677 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO, 0);
1678 		/*
1679 		 * Enable Rx checksum offloading for VLAN tagged frames
1680 		 * if controller support new descriptor format.
1681 		 */
1682 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1683 		    (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1684 			if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
1685 	}
1686 	if_setcapenable(ifp, if_getcapabilities(ifp));
1687 	/*
1688 	 * Disable RX checksum offloading on controllers that don't use
1689 	 * new descriptor format but give chance to enable it.
1690 	 */
1691 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1692 		if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
1693 
1694 	/*
1695 	 * Tell the upper layer(s) we support long frames.
1696 	 * Must appear after the call to ether_ifattach() because
1697 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1698 	 */
1699         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1700 
1701 	/*
1702 	 * Do miibus setup.
1703 	 */
1704 	MSK_IF_UNLOCK(sc_if);
1705 	error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1706 	    msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1707 	    mmd->mii_flags);
1708 	if (error != 0) {
1709 		device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1710 		ether_ifdetach(ifp);
1711 		error = ENXIO;
1712 		goto fail;
1713 	}
1714 
1715 fail:
1716 	if (error != 0) {
1717 		/* Access should be ok even though lock has been dropped */
1718 		sc->msk_if[port] = NULL;
1719 		msk_detach(dev);
1720 	}
1721 
1722 	return (error);
1723 }
1724 
1725 /*
1726  * Attach the interface. Allocate softc structures, do ifmedia
1727  * setup and ethernet/BPF attach.
1728  */
1729 static int
mskc_attach(device_t dev)1730 mskc_attach(device_t dev)
1731 {
1732 	struct msk_softc *sc;
1733 	struct msk_mii_data *mmd;
1734 	int error, msic, msir, reg;
1735 
1736 	sc = device_get_softc(dev);
1737 	sc->msk_dev = dev;
1738 	mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1739 	    MTX_DEF);
1740 
1741 	/*
1742 	 * Map control/status registers.
1743 	 */
1744 	pci_enable_busmaster(dev);
1745 
1746 	/* Allocate I/O resource */
1747 #ifdef MSK_USEIOSPACE
1748 	sc->msk_res_spec = msk_res_spec_io;
1749 #else
1750 	sc->msk_res_spec = msk_res_spec_mem;
1751 #endif
1752 	sc->msk_irq_spec = msk_irq_spec_legacy;
1753 	error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1754 	if (error) {
1755 		if (sc->msk_res_spec == msk_res_spec_mem)
1756 			sc->msk_res_spec = msk_res_spec_io;
1757 		else
1758 			sc->msk_res_spec = msk_res_spec_mem;
1759 		error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1760 		if (error) {
1761 			device_printf(dev, "couldn't allocate %s resources\n",
1762 			    sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1763 			    "I/O");
1764 			mtx_destroy(&sc->msk_mtx);
1765 			return (ENXIO);
1766 		}
1767 	}
1768 
1769 	/* Enable all clocks before accessing any registers. */
1770 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1771 
1772 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1773 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1774 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1775 	/* Bail out if chip is not recognized. */
1776 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1777 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1778 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1779 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1780 		    sc->msk_hw_id, sc->msk_hw_rev);
1781 		mtx_destroy(&sc->msk_mtx);
1782 		return (ENXIO);
1783 	}
1784 
1785 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1786 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1787 	    OID_AUTO, "process_limit",
1788 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1789 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1790 	    "max number of Rx events to process");
1791 
1792 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1793 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1794 	    "process_limit", &sc->msk_process_limit);
1795 	if (error == 0) {
1796 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1797 		    sc->msk_process_limit > MSK_PROC_MAX) {
1798 			device_printf(dev, "process_limit value out of range; "
1799 			    "using default: %d\n", MSK_PROC_DEFAULT);
1800 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1801 		}
1802 	}
1803 
1804 	sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1805 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1806 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1807 	    "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1808 	    "Maximum number of time to delay interrupts");
1809 	resource_int_value(device_get_name(dev), device_get_unit(dev),
1810 	    "int_holdoff", &sc->msk_int_holdoff);
1811 
1812 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1813 	/* Check number of MACs. */
1814 	sc->msk_num_port = 1;
1815 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1816 	    CFG_DUAL_MAC_MSK) {
1817 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1818 			sc->msk_num_port++;
1819 	}
1820 
1821 	/* Check bus type. */
1822 	if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0) {
1823 		sc->msk_bustype = MSK_PEX_BUS;
1824 		sc->msk_expcap = reg;
1825 	} else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, &reg) == 0) {
1826 		sc->msk_bustype = MSK_PCIX_BUS;
1827 		sc->msk_pcixcap = reg;
1828 	} else
1829 		sc->msk_bustype = MSK_PCI_BUS;
1830 
1831 	switch (sc->msk_hw_id) {
1832 	case CHIP_ID_YUKON_EC:
1833 		sc->msk_clock = 125;	/* 125 MHz */
1834 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1835 		break;
1836 	case CHIP_ID_YUKON_EC_U:
1837 		sc->msk_clock = 125;	/* 125 MHz */
1838 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1839 		break;
1840 	case CHIP_ID_YUKON_EX:
1841 		sc->msk_clock = 125;	/* 125 MHz */
1842 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1843 		    MSK_FLAG_AUTOTX_CSUM;
1844 		/*
1845 		 * Yukon Extreme seems to have silicon bug for
1846 		 * automatic Tx checksum calculation capability.
1847 		 */
1848 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1849 			sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1850 		/*
1851 		 * Yukon Extreme A0 could not use store-and-forward
1852 		 * for jumbo frames, so disable Tx checksum
1853 		 * offloading for jumbo frames.
1854 		 */
1855 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1856 			sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1857 		break;
1858 	case CHIP_ID_YUKON_FE:
1859 		sc->msk_clock = 100;	/* 100 MHz */
1860 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1861 		break;
1862 	case CHIP_ID_YUKON_FE_P:
1863 		sc->msk_clock = 50;	/* 50 MHz */
1864 		sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1865 		    MSK_FLAG_AUTOTX_CSUM;
1866 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1867 			/*
1868 			 * XXX
1869 			 * FE+ A0 has status LE writeback bug so msk(4)
1870 			 * does not rely on status word of received frame
1871 			 * in msk_rxeof() which in turn disables all
1872 			 * hardware assistance bits reported by the status
1873 			 * word as well as validity of the received frame.
1874 			 * Just pass received frames to upper stack with
1875 			 * minimal test and let upper stack handle them.
1876 			 */
1877 			sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1878 			    MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1879 		}
1880 		break;
1881 	case CHIP_ID_YUKON_XL:
1882 		sc->msk_clock = 156;	/* 156 MHz */
1883 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1884 		break;
1885 	case CHIP_ID_YUKON_SUPR:
1886 		sc->msk_clock = 125;	/* 125 MHz */
1887 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1888 		    MSK_FLAG_AUTOTX_CSUM;
1889 		break;
1890 	case CHIP_ID_YUKON_UL_2:
1891 		sc->msk_clock = 125;	/* 125 MHz */
1892 		sc->msk_pflags |= MSK_FLAG_JUMBO;
1893 		break;
1894 	case CHIP_ID_YUKON_OPT:
1895 		sc->msk_clock = 125;	/* 125 MHz */
1896 		sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1897 		break;
1898 	default:
1899 		sc->msk_clock = 156;	/* 156 MHz */
1900 		break;
1901 	}
1902 
1903 	/* Allocate IRQ resources. */
1904 	msic = pci_msi_count(dev);
1905 	if (bootverbose)
1906 		device_printf(dev, "MSI count : %d\n", msic);
1907 	if (legacy_intr != 0)
1908 		msi_disable = 1;
1909 	if (msi_disable == 0 && msic > 0) {
1910 		msir = 1;
1911 		if (pci_alloc_msi(dev, &msir) == 0) {
1912 			if (msir == 1) {
1913 				sc->msk_pflags |= MSK_FLAG_MSI;
1914 				sc->msk_irq_spec = msk_irq_spec_msi;
1915 			} else
1916 				pci_release_msi(dev);
1917 		}
1918 	}
1919 
1920 	error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1921 	if (error) {
1922 		device_printf(dev, "couldn't allocate IRQ resources\n");
1923 		goto fail;
1924 	}
1925 
1926 	if ((error = msk_status_dma_alloc(sc)) != 0)
1927 		goto fail;
1928 
1929 	/* Set base interrupt mask. */
1930 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1931 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1932 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1933 
1934 	/* Reset the adapter. */
1935 	mskc_reset(sc);
1936 
1937 	if ((error = mskc_setup_rambuffer(sc)) != 0)
1938 		goto fail;
1939 
1940 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1941 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1942 		device_printf(dev, "failed to add child for PORT_A\n");
1943 		error = ENXIO;
1944 		goto fail;
1945 	}
1946 	mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1947 	mmd->port = MSK_PORT_A;
1948 	mmd->pmd = sc->msk_pmd;
1949 	mmd->mii_flags |= MIIF_DOPAUSE;
1950 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1951 		mmd->mii_flags |= MIIF_HAVEFIBER;
1952 	if (sc->msk_pmd == 'P')
1953 		mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1954 	device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1955 
1956 	if (sc->msk_num_port > 1) {
1957 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1958 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1959 			device_printf(dev, "failed to add child for PORT_B\n");
1960 			error = ENXIO;
1961 			goto fail;
1962 		}
1963 		mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1964 		    M_ZERO);
1965 		mmd->port = MSK_PORT_B;
1966 		mmd->pmd = sc->msk_pmd;
1967 		if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1968 			mmd->mii_flags |= MIIF_HAVEFIBER;
1969 		if (sc->msk_pmd == 'P')
1970 			mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1971 		device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1972 	}
1973 
1974 	error = bus_generic_attach(dev);
1975 	if (error) {
1976 		device_printf(dev, "failed to attach port(s)\n");
1977 		goto fail;
1978 	}
1979 
1980 	/* Hook interrupt last to avoid having to lock softc. */
1981 	error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1982 	    INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1983 	if (error != 0) {
1984 		device_printf(dev, "couldn't set up interrupt handler\n");
1985 		goto fail;
1986 	}
1987 fail:
1988 	if (error != 0)
1989 		mskc_detach(dev);
1990 
1991 	return (error);
1992 }
1993 
1994 /*
1995  * Shutdown hardware and free up resources. This can be called any
1996  * time after the mutex has been initialized. It is called in both
1997  * the error case in attach and the normal detach case so it needs
1998  * to be careful about only freeing resources that have actually been
1999  * allocated.
2000  */
2001 static int
msk_detach(device_t dev)2002 msk_detach(device_t dev)
2003 {
2004 	struct msk_softc *sc;
2005 	struct msk_if_softc *sc_if;
2006 	if_t ifp;
2007 
2008 	sc_if = device_get_softc(dev);
2009 	KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2010 	    ("msk mutex not initialized in msk_detach"));
2011 	MSK_IF_LOCK(sc_if);
2012 
2013 	ifp = sc_if->msk_ifp;
2014 	if (device_is_attached(dev)) {
2015 		/* XXX */
2016 		sc_if->msk_flags |= MSK_FLAG_DETACH;
2017 		msk_stop(sc_if);
2018 		/* Can't hold locks while calling detach. */
2019 		MSK_IF_UNLOCK(sc_if);
2020 		callout_drain(&sc_if->msk_tick_ch);
2021 		if (ifp)
2022 			ether_ifdetach(ifp);
2023 		MSK_IF_LOCK(sc_if);
2024 	}
2025 
2026 	/*
2027 	 * We're generally called from mskc_detach() which is using
2028 	 * device_delete_child() to get to here. It's already trashed
2029 	 * miibus for us, so don't do it here or we'll panic.
2030 	 *
2031 	 * if (sc_if->msk_miibus != NULL) {
2032 	 * 	device_delete_child(dev, sc_if->msk_miibus);
2033 	 * 	sc_if->msk_miibus = NULL;
2034 	 * }
2035 	 */
2036 
2037 	msk_rx_dma_jfree(sc_if);
2038 	msk_txrx_dma_free(sc_if);
2039 	bus_generic_detach(dev);
2040 
2041 	sc = sc_if->msk_softc;
2042 	sc->msk_if[sc_if->msk_port] = NULL;
2043 	MSK_IF_UNLOCK(sc_if);
2044 	if (ifp)
2045 		if_free(ifp);
2046 
2047 	return (0);
2048 }
2049 
2050 static int
mskc_detach(device_t dev)2051 mskc_detach(device_t dev)
2052 {
2053 	struct msk_softc *sc;
2054 
2055 	sc = device_get_softc(dev);
2056 	KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2057 
2058 	if (device_is_alive(dev)) {
2059 		if (sc->msk_devs[MSK_PORT_A] != NULL) {
2060 			free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2061 			    M_DEVBUF);
2062 			device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2063 		}
2064 		if (sc->msk_devs[MSK_PORT_B] != NULL) {
2065 			free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2066 			    M_DEVBUF);
2067 			device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2068 		}
2069 		bus_generic_detach(dev);
2070 	}
2071 
2072 	/* Disable all interrupts. */
2073 	CSR_WRITE_4(sc, B0_IMSK, 0);
2074 	CSR_READ_4(sc, B0_IMSK);
2075 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2076 	CSR_READ_4(sc, B0_HWE_IMSK);
2077 
2078 	/* LED Off. */
2079 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2080 
2081 	/* Put hardware reset. */
2082 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2083 
2084 	msk_status_dma_free(sc);
2085 
2086 	if (sc->msk_intrhand) {
2087 		bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2088 		sc->msk_intrhand = NULL;
2089 	}
2090 	bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2091 	if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2092 		pci_release_msi(dev);
2093 	bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2094 	mtx_destroy(&sc->msk_mtx);
2095 
2096 	return (0);
2097 }
2098 
2099 static bus_dma_tag_t
mskc_get_dma_tag(device_t bus,device_t child __unused)2100 mskc_get_dma_tag(device_t bus, device_t child __unused)
2101 {
2102 
2103 	return (bus_get_dma_tag(bus));
2104 }
2105 
2106 struct msk_dmamap_arg {
2107 	bus_addr_t	msk_busaddr;
2108 };
2109 
2110 static void
msk_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2111 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2112 {
2113 	struct msk_dmamap_arg *ctx;
2114 
2115 	if (error != 0)
2116 		return;
2117 	ctx = arg;
2118 	ctx->msk_busaddr = segs[0].ds_addr;
2119 }
2120 
2121 /* Create status DMA region. */
2122 static int
msk_status_dma_alloc(struct msk_softc * sc)2123 msk_status_dma_alloc(struct msk_softc *sc)
2124 {
2125 	struct msk_dmamap_arg ctx;
2126 	bus_size_t stat_sz;
2127 	int count, error;
2128 
2129 	/*
2130 	 * It seems controller requires number of status LE entries
2131 	 * is power of 2 and the maximum number of status LE entries
2132 	 * is 4096.  For dual-port controllers, the number of status
2133 	 * LE entries should be large enough to hold both port's
2134 	 * status updates.
2135 	 */
2136 	count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2137 	count = imin(4096, roundup2(count, 1024));
2138 	sc->msk_stat_count = count;
2139 	stat_sz = count * sizeof(struct msk_stat_desc);
2140 	error = bus_dma_tag_create(
2141 		    bus_get_dma_tag(sc->msk_dev),	/* parent */
2142 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
2143 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2144 		    BUS_SPACE_MAXADDR,		/* highaddr */
2145 		    NULL, NULL,			/* filter, filterarg */
2146 		    stat_sz,			/* maxsize */
2147 		    1,				/* nsegments */
2148 		    stat_sz,			/* maxsegsize */
2149 		    0,				/* flags */
2150 		    NULL, NULL,			/* lockfunc, lockarg */
2151 		    &sc->msk_stat_tag);
2152 	if (error != 0) {
2153 		device_printf(sc->msk_dev,
2154 		    "failed to create status DMA tag\n");
2155 		return (error);
2156 	}
2157 
2158 	/* Allocate DMA'able memory and load the DMA map for status ring. */
2159 	error = bus_dmamem_alloc(sc->msk_stat_tag,
2160 	    (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2161 	    BUS_DMA_ZERO, &sc->msk_stat_map);
2162 	if (error != 0) {
2163 		device_printf(sc->msk_dev,
2164 		    "failed to allocate DMA'able memory for status ring\n");
2165 		return (error);
2166 	}
2167 
2168 	ctx.msk_busaddr = 0;
2169 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2170 	    sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2171 	if (error != 0) {
2172 		device_printf(sc->msk_dev,
2173 		    "failed to load DMA'able memory for status ring\n");
2174 		return (error);
2175 	}
2176 	sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2177 
2178 	return (0);
2179 }
2180 
2181 static void
msk_status_dma_free(struct msk_softc * sc)2182 msk_status_dma_free(struct msk_softc *sc)
2183 {
2184 
2185 	/* Destroy status block. */
2186 	if (sc->msk_stat_tag) {
2187 		if (sc->msk_stat_ring_paddr) {
2188 			bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2189 			sc->msk_stat_ring_paddr = 0;
2190 		}
2191 		if (sc->msk_stat_ring) {
2192 			bus_dmamem_free(sc->msk_stat_tag,
2193 			    sc->msk_stat_ring, sc->msk_stat_map);
2194 			sc->msk_stat_ring = NULL;
2195 		}
2196 		bus_dma_tag_destroy(sc->msk_stat_tag);
2197 		sc->msk_stat_tag = NULL;
2198 	}
2199 }
2200 
2201 static int
msk_txrx_dma_alloc(struct msk_if_softc * sc_if)2202 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2203 {
2204 	struct msk_dmamap_arg ctx;
2205 	struct msk_txdesc *txd;
2206 	struct msk_rxdesc *rxd;
2207 	bus_size_t rxalign;
2208 	int error, i;
2209 
2210 	/* Create parent DMA tag. */
2211 	error = bus_dma_tag_create(
2212 		    bus_get_dma_tag(sc_if->msk_if_dev),	/* parent */
2213 		    1, 0,			/* alignment, boundary */
2214 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2215 		    BUS_SPACE_MAXADDR,		/* highaddr */
2216 		    NULL, NULL,			/* filter, filterarg */
2217 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2218 		    0,				/* nsegments */
2219 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2220 		    0,				/* flags */
2221 		    NULL, NULL,			/* lockfunc, lockarg */
2222 		    &sc_if->msk_cdata.msk_parent_tag);
2223 	if (error != 0) {
2224 		device_printf(sc_if->msk_if_dev,
2225 		    "failed to create parent DMA tag\n");
2226 		goto fail;
2227 	}
2228 	/* Create tag for Tx ring. */
2229 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2230 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2231 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2232 		    BUS_SPACE_MAXADDR,		/* highaddr */
2233 		    NULL, NULL,			/* filter, filterarg */
2234 		    MSK_TX_RING_SZ,		/* maxsize */
2235 		    1,				/* nsegments */
2236 		    MSK_TX_RING_SZ,		/* maxsegsize */
2237 		    0,				/* flags */
2238 		    NULL, NULL,			/* lockfunc, lockarg */
2239 		    &sc_if->msk_cdata.msk_tx_ring_tag);
2240 	if (error != 0) {
2241 		device_printf(sc_if->msk_if_dev,
2242 		    "failed to create Tx ring DMA tag\n");
2243 		goto fail;
2244 	}
2245 
2246 	/* Create tag for Rx ring. */
2247 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2248 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2249 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2250 		    BUS_SPACE_MAXADDR,		/* highaddr */
2251 		    NULL, NULL,			/* filter, filterarg */
2252 		    MSK_RX_RING_SZ,		/* maxsize */
2253 		    1,				/* nsegments */
2254 		    MSK_RX_RING_SZ,		/* maxsegsize */
2255 		    0,				/* flags */
2256 		    NULL, NULL,			/* lockfunc, lockarg */
2257 		    &sc_if->msk_cdata.msk_rx_ring_tag);
2258 	if (error != 0) {
2259 		device_printf(sc_if->msk_if_dev,
2260 		    "failed to create Rx ring DMA tag\n");
2261 		goto fail;
2262 	}
2263 
2264 	/* Create tag for Tx buffers. */
2265 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2266 		    1, 0,			/* alignment, boundary */
2267 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2268 		    BUS_SPACE_MAXADDR,		/* highaddr */
2269 		    NULL, NULL,			/* filter, filterarg */
2270 		    MSK_TSO_MAXSIZE,		/* maxsize */
2271 		    MSK_MAXTXSEGS,		/* nsegments */
2272 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
2273 		    0,				/* flags */
2274 		    NULL, NULL,			/* lockfunc, lockarg */
2275 		    &sc_if->msk_cdata.msk_tx_tag);
2276 	if (error != 0) {
2277 		device_printf(sc_if->msk_if_dev,
2278 		    "failed to create Tx DMA tag\n");
2279 		goto fail;
2280 	}
2281 
2282 	rxalign = 1;
2283 	/*
2284 	 * Workaround hardware hang which seems to happen when Rx buffer
2285 	 * is not aligned on multiple of FIFO word(8 bytes).
2286 	 */
2287 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2288 		rxalign = MSK_RX_BUF_ALIGN;
2289 	/* Create tag for Rx buffers. */
2290 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2291 		    rxalign, 0,			/* alignment, boundary */
2292 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2293 		    BUS_SPACE_MAXADDR,		/* highaddr */
2294 		    NULL, NULL,			/* filter, filterarg */
2295 		    MCLBYTES,			/* maxsize */
2296 		    1,				/* nsegments */
2297 		    MCLBYTES,			/* maxsegsize */
2298 		    0,				/* flags */
2299 		    NULL, NULL,			/* lockfunc, lockarg */
2300 		    &sc_if->msk_cdata.msk_rx_tag);
2301 	if (error != 0) {
2302 		device_printf(sc_if->msk_if_dev,
2303 		    "failed to create Rx DMA tag\n");
2304 		goto fail;
2305 	}
2306 
2307 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
2308 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2309 	    (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2310 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2311 	if (error != 0) {
2312 		device_printf(sc_if->msk_if_dev,
2313 		    "failed to allocate DMA'able memory for Tx ring\n");
2314 		goto fail;
2315 	}
2316 
2317 	ctx.msk_busaddr = 0;
2318 	error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2319 	    sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2320 	    MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2321 	if (error != 0) {
2322 		device_printf(sc_if->msk_if_dev,
2323 		    "failed to load DMA'able memory for Tx ring\n");
2324 		goto fail;
2325 	}
2326 	sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2327 
2328 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
2329 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2330 	    (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2331 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2332 	if (error != 0) {
2333 		device_printf(sc_if->msk_if_dev,
2334 		    "failed to allocate DMA'able memory for Rx ring\n");
2335 		goto fail;
2336 	}
2337 
2338 	ctx.msk_busaddr = 0;
2339 	error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2340 	    sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2341 	    MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2342 	if (error != 0) {
2343 		device_printf(sc_if->msk_if_dev,
2344 		    "failed to load DMA'able memory for Rx ring\n");
2345 		goto fail;
2346 	}
2347 	sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2348 
2349 	/* Create DMA maps for Tx buffers. */
2350 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2351 		txd = &sc_if->msk_cdata.msk_txdesc[i];
2352 		txd->tx_m = NULL;
2353 		txd->tx_dmamap = NULL;
2354 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2355 		    &txd->tx_dmamap);
2356 		if (error != 0) {
2357 			device_printf(sc_if->msk_if_dev,
2358 			    "failed to create Tx dmamap\n");
2359 			goto fail;
2360 		}
2361 	}
2362 	/* Create DMA maps for Rx buffers. */
2363 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2364 	    &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2365 		device_printf(sc_if->msk_if_dev,
2366 		    "failed to create spare Rx dmamap\n");
2367 		goto fail;
2368 	}
2369 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2370 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2371 		rxd->rx_m = NULL;
2372 		rxd->rx_dmamap = NULL;
2373 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2374 		    &rxd->rx_dmamap);
2375 		if (error != 0) {
2376 			device_printf(sc_if->msk_if_dev,
2377 			    "failed to create Rx dmamap\n");
2378 			goto fail;
2379 		}
2380 	}
2381 
2382 fail:
2383 	return (error);
2384 }
2385 
2386 static int
msk_rx_dma_jalloc(struct msk_if_softc * sc_if)2387 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2388 {
2389 	struct msk_dmamap_arg ctx;
2390 	struct msk_rxdesc *jrxd;
2391 	bus_size_t rxalign;
2392 	int error, i;
2393 
2394 	if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2395 		sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2396 		device_printf(sc_if->msk_if_dev,
2397 		    "disabling jumbo frame support\n");
2398 		return (0);
2399 	}
2400 	/* Create tag for jumbo Rx ring. */
2401 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2402 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2403 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2404 		    BUS_SPACE_MAXADDR,		/* highaddr */
2405 		    NULL, NULL,			/* filter, filterarg */
2406 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2407 		    1,				/* nsegments */
2408 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2409 		    0,				/* flags */
2410 		    NULL, NULL,			/* lockfunc, lockarg */
2411 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2412 	if (error != 0) {
2413 		device_printf(sc_if->msk_if_dev,
2414 		    "failed to create jumbo Rx ring DMA tag\n");
2415 		goto jumbo_fail;
2416 	}
2417 
2418 	rxalign = 1;
2419 	/*
2420 	 * Workaround hardware hang which seems to happen when Rx buffer
2421 	 * is not aligned on multiple of FIFO word(8 bytes).
2422 	 */
2423 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2424 		rxalign = MSK_RX_BUF_ALIGN;
2425 	/* Create tag for jumbo Rx buffers. */
2426 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2427 		    rxalign, 0,			/* alignment, boundary */
2428 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2429 		    BUS_SPACE_MAXADDR,		/* highaddr */
2430 		    NULL, NULL,			/* filter, filterarg */
2431 		    MJUM9BYTES,			/* maxsize */
2432 		    1,				/* nsegments */
2433 		    MJUM9BYTES,			/* maxsegsize */
2434 		    0,				/* flags */
2435 		    NULL, NULL,			/* lockfunc, lockarg */
2436 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2437 	if (error != 0) {
2438 		device_printf(sc_if->msk_if_dev,
2439 		    "failed to create jumbo Rx DMA tag\n");
2440 		goto jumbo_fail;
2441 	}
2442 
2443 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2444 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2445 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2446 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2447 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2448 	if (error != 0) {
2449 		device_printf(sc_if->msk_if_dev,
2450 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2451 		goto jumbo_fail;
2452 	}
2453 
2454 	ctx.msk_busaddr = 0;
2455 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2456 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2457 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2458 	    msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2459 	if (error != 0) {
2460 		device_printf(sc_if->msk_if_dev,
2461 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2462 		goto jumbo_fail;
2463 	}
2464 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2465 
2466 	/* Create DMA maps for jumbo Rx buffers. */
2467 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2468 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2469 		device_printf(sc_if->msk_if_dev,
2470 		    "failed to create spare jumbo Rx dmamap\n");
2471 		goto jumbo_fail;
2472 	}
2473 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2474 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2475 		jrxd->rx_m = NULL;
2476 		jrxd->rx_dmamap = NULL;
2477 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2478 		    &jrxd->rx_dmamap);
2479 		if (error != 0) {
2480 			device_printf(sc_if->msk_if_dev,
2481 			    "failed to create jumbo Rx dmamap\n");
2482 			goto jumbo_fail;
2483 		}
2484 	}
2485 
2486 	return (0);
2487 
2488 jumbo_fail:
2489 	msk_rx_dma_jfree(sc_if);
2490 	device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2491 	    "due to resource shortage\n");
2492 	sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2493 	return (error);
2494 }
2495 
2496 static void
msk_txrx_dma_free(struct msk_if_softc * sc_if)2497 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2498 {
2499 	struct msk_txdesc *txd;
2500 	struct msk_rxdesc *rxd;
2501 	int i;
2502 
2503 	/* Tx ring. */
2504 	if (sc_if->msk_cdata.msk_tx_ring_tag) {
2505 		if (sc_if->msk_rdata.msk_tx_ring_paddr)
2506 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2507 			    sc_if->msk_cdata.msk_tx_ring_map);
2508 		if (sc_if->msk_rdata.msk_tx_ring)
2509 			bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2510 			    sc_if->msk_rdata.msk_tx_ring,
2511 			    sc_if->msk_cdata.msk_tx_ring_map);
2512 		sc_if->msk_rdata.msk_tx_ring = NULL;
2513 		sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2514 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2515 		sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2516 	}
2517 	/* Rx ring. */
2518 	if (sc_if->msk_cdata.msk_rx_ring_tag) {
2519 		if (sc_if->msk_rdata.msk_rx_ring_paddr)
2520 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2521 			    sc_if->msk_cdata.msk_rx_ring_map);
2522 		if (sc_if->msk_rdata.msk_rx_ring)
2523 			bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2524 			    sc_if->msk_rdata.msk_rx_ring,
2525 			    sc_if->msk_cdata.msk_rx_ring_map);
2526 		sc_if->msk_rdata.msk_rx_ring = NULL;
2527 		sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2528 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2529 		sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2530 	}
2531 	/* Tx buffers. */
2532 	if (sc_if->msk_cdata.msk_tx_tag) {
2533 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2534 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2535 			if (txd->tx_dmamap) {
2536 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2537 				    txd->tx_dmamap);
2538 				txd->tx_dmamap = NULL;
2539 			}
2540 		}
2541 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2542 		sc_if->msk_cdata.msk_tx_tag = NULL;
2543 	}
2544 	/* Rx buffers. */
2545 	if (sc_if->msk_cdata.msk_rx_tag) {
2546 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2547 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2548 			if (rxd->rx_dmamap) {
2549 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2550 				    rxd->rx_dmamap);
2551 				rxd->rx_dmamap = NULL;
2552 			}
2553 		}
2554 		if (sc_if->msk_cdata.msk_rx_sparemap) {
2555 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2556 			    sc_if->msk_cdata.msk_rx_sparemap);
2557 			sc_if->msk_cdata.msk_rx_sparemap = 0;
2558 		}
2559 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2560 		sc_if->msk_cdata.msk_rx_tag = NULL;
2561 	}
2562 	if (sc_if->msk_cdata.msk_parent_tag) {
2563 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2564 		sc_if->msk_cdata.msk_parent_tag = NULL;
2565 	}
2566 }
2567 
2568 static void
msk_rx_dma_jfree(struct msk_if_softc * sc_if)2569 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2570 {
2571 	struct msk_rxdesc *jrxd;
2572 	int i;
2573 
2574 	/* Jumbo Rx ring. */
2575 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2576 		if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2577 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2578 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2579 		if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2580 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2581 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2582 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2583 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2584 		sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2585 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2586 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2587 	}
2588 	/* Jumbo Rx buffers. */
2589 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2590 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2591 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2592 			if (jrxd->rx_dmamap) {
2593 				bus_dmamap_destroy(
2594 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2595 				    jrxd->rx_dmamap);
2596 				jrxd->rx_dmamap = NULL;
2597 			}
2598 		}
2599 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2600 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2601 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2602 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2603 		}
2604 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2605 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2606 	}
2607 }
2608 
2609 static int
msk_encap(struct msk_if_softc * sc_if,struct mbuf ** m_head)2610 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2611 {
2612 	struct msk_txdesc *txd, *txd_last;
2613 	struct msk_tx_desc *tx_le;
2614 	struct mbuf *m;
2615 	bus_dmamap_t map;
2616 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2617 	uint32_t control, csum, prod, si;
2618 	uint16_t offset, tcp_offset, tso_mtu;
2619 	int error, i, nseg, tso;
2620 
2621 	MSK_IF_LOCK_ASSERT(sc_if);
2622 
2623 	tcp_offset = offset = 0;
2624 	m = *m_head;
2625 	if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2626 	    (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2627 	    ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2628 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2629 		/*
2630 		 * Since mbuf has no protocol specific structure information
2631 		 * in it we have to inspect protocol information here to
2632 		 * setup TSO and checksum offload. I don't know why Marvell
2633 		 * made a such decision in chip design because other GigE
2634 		 * hardwares normally takes care of all these chores in
2635 		 * hardware. However, TSO performance of Yukon II is very
2636 		 * good such that it's worth to implement it.
2637 		 */
2638 		struct ether_header *eh;
2639 		struct ip *ip;
2640 		struct tcphdr *tcp;
2641 
2642 		if (M_WRITABLE(m) == 0) {
2643 			/* Get a writable copy. */
2644 			m = m_dup(*m_head, M_NOWAIT);
2645 			m_freem(*m_head);
2646 			if (m == NULL) {
2647 				*m_head = NULL;
2648 				return (ENOBUFS);
2649 			}
2650 			*m_head = m;
2651 		}
2652 
2653 		offset = sizeof(struct ether_header);
2654 		m = m_pullup(m, offset);
2655 		if (m == NULL) {
2656 			*m_head = NULL;
2657 			return (ENOBUFS);
2658 		}
2659 		eh = mtod(m, struct ether_header *);
2660 		/* Check if hardware VLAN insertion is off. */
2661 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2662 			offset = sizeof(struct ether_vlan_header);
2663 			m = m_pullup(m, offset);
2664 			if (m == NULL) {
2665 				*m_head = NULL;
2666 				return (ENOBUFS);
2667 			}
2668 		}
2669 		m = m_pullup(m, offset + sizeof(struct ip));
2670 		if (m == NULL) {
2671 			*m_head = NULL;
2672 			return (ENOBUFS);
2673 		}
2674 		ip = (struct ip *)(mtod(m, char *) + offset);
2675 		offset += (ip->ip_hl << 2);
2676 		tcp_offset = offset;
2677 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2678 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2679 			if (m == NULL) {
2680 				*m_head = NULL;
2681 				return (ENOBUFS);
2682 			}
2683 			tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2684 			offset += (tcp->th_off << 2);
2685 		} else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2686 		    (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2687 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2688 			/*
2689 			 * It seems that Yukon II has Tx checksum offload bug
2690 			 * for small TCP packets that's less than 60 bytes in
2691 			 * size (e.g. TCP window probe packet, pure ACK packet).
2692 			 * Common work around like padding with zeros to make
2693 			 * the frame minimum ethernet frame size didn't work at
2694 			 * all.
2695 			 * Instead of disabling checksum offload completely we
2696 			 * resort to S/W checksum routine when we encounter
2697 			 * short TCP frames.
2698 			 * Short UDP packets appear to be handled correctly by
2699 			 * Yukon II. Also I assume this bug does not happen on
2700 			 * controllers that use newer descriptor format or
2701 			 * automatic Tx checksum calculation.
2702 			 */
2703 			m = m_pullup(m, offset + sizeof(struct tcphdr));
2704 			if (m == NULL) {
2705 				*m_head = NULL;
2706 				return (ENOBUFS);
2707 			}
2708 			*(uint16_t *)(m->m_data + offset +
2709 			    m->m_pkthdr.csum_data) = in_cksum_skip(m,
2710 			    m->m_pkthdr.len, offset);
2711 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2712 		}
2713 		*m_head = m;
2714 	}
2715 
2716 	prod = sc_if->msk_cdata.msk_tx_prod;
2717 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2718 	txd_last = txd;
2719 	map = txd->tx_dmamap;
2720 	error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2721 	    *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2722 	if (error == EFBIG) {
2723 		m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2724 		if (m == NULL) {
2725 			m_freem(*m_head);
2726 			*m_head = NULL;
2727 			return (ENOBUFS);
2728 		}
2729 		*m_head = m;
2730 		error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2731 		    map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2732 		if (error != 0) {
2733 			m_freem(*m_head);
2734 			*m_head = NULL;
2735 			return (error);
2736 		}
2737 	} else if (error != 0)
2738 		return (error);
2739 	if (nseg == 0) {
2740 		m_freem(*m_head);
2741 		*m_head = NULL;
2742 		return (EIO);
2743 	}
2744 
2745 	/* Check number of available descriptors. */
2746 	if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2747 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2748 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2749 		return (ENOBUFS);
2750 	}
2751 
2752 	control = 0;
2753 	tso = 0;
2754 	tx_le = NULL;
2755 
2756 	/* Check TSO support. */
2757 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2758 		if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2759 			tso_mtu = m->m_pkthdr.tso_segsz;
2760 		else
2761 			tso_mtu = offset + m->m_pkthdr.tso_segsz;
2762 		if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2763 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2764 			tx_le->msk_addr = htole32(tso_mtu);
2765 			if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2766 				tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2767 			else
2768 				tx_le->msk_control =
2769 				    htole32(OP_LRGLEN | HW_OWNER);
2770 			sc_if->msk_cdata.msk_tx_cnt++;
2771 			MSK_INC(prod, MSK_TX_RING_CNT);
2772 			sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2773 		}
2774 		tso++;
2775 	}
2776 	/* Check if we have a VLAN tag to insert. */
2777 	if ((m->m_flags & M_VLANTAG) != 0) {
2778 		if (tx_le == NULL) {
2779 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2780 			tx_le->msk_addr = htole32(0);
2781 			tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2782 			    htons(m->m_pkthdr.ether_vtag));
2783 			sc_if->msk_cdata.msk_tx_cnt++;
2784 			MSK_INC(prod, MSK_TX_RING_CNT);
2785 		} else {
2786 			tx_le->msk_control |= htole32(OP_VLAN |
2787 			    htons(m->m_pkthdr.ether_vtag));
2788 		}
2789 		control |= INS_VLAN;
2790 	}
2791 	/* Check if we have to handle checksum offload. */
2792 	if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2793 		if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2794 			control |= CALSUM;
2795 		else {
2796 			control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2797 			if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2798 				control |= UDPTCP;
2799 			/* Checksum write position. */
2800 			csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2801 			/* Checksum start position. */
2802 			csum |= (uint32_t)tcp_offset << 16;
2803 			if (csum != sc_if->msk_cdata.msk_last_csum) {
2804 				tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2805 				tx_le->msk_addr = htole32(csum);
2806 				tx_le->msk_control = htole32(1 << 16 |
2807 				    (OP_TCPLISW | HW_OWNER));
2808 				sc_if->msk_cdata.msk_tx_cnt++;
2809 				MSK_INC(prod, MSK_TX_RING_CNT);
2810 				sc_if->msk_cdata.msk_last_csum = csum;
2811 			}
2812 		}
2813 	}
2814 
2815 #ifdef MSK_64BIT_DMA
2816 	if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2817 	    sc_if->msk_cdata.msk_tx_high_addr) {
2818 		sc_if->msk_cdata.msk_tx_high_addr =
2819 		    MSK_ADDR_HI(txsegs[0].ds_addr);
2820 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2821 		tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2822 		tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2823 		sc_if->msk_cdata.msk_tx_cnt++;
2824 		MSK_INC(prod, MSK_TX_RING_CNT);
2825 	}
2826 #endif
2827 	si = prod;
2828 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2829 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2830 	if (tso == 0)
2831 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2832 		    OP_PACKET);
2833 	else
2834 		tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2835 		    OP_LARGESEND);
2836 	sc_if->msk_cdata.msk_tx_cnt++;
2837 	MSK_INC(prod, MSK_TX_RING_CNT);
2838 
2839 	for (i = 1; i < nseg; i++) {
2840 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2841 #ifdef MSK_64BIT_DMA
2842 		if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2843 		    sc_if->msk_cdata.msk_tx_high_addr) {
2844 			sc_if->msk_cdata.msk_tx_high_addr =
2845 			    MSK_ADDR_HI(txsegs[i].ds_addr);
2846 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2847 			tx_le->msk_addr =
2848 			    htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2849 			tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2850 			sc_if->msk_cdata.msk_tx_cnt++;
2851 			MSK_INC(prod, MSK_TX_RING_CNT);
2852 			tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2853 		}
2854 #endif
2855 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2856 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2857 		    OP_BUFFER | HW_OWNER);
2858 		sc_if->msk_cdata.msk_tx_cnt++;
2859 		MSK_INC(prod, MSK_TX_RING_CNT);
2860 	}
2861 	/* Update producer index. */
2862 	sc_if->msk_cdata.msk_tx_prod = prod;
2863 
2864 	/* Set EOP on the last descriptor. */
2865 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2866 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2867 	tx_le->msk_control |= htole32(EOP);
2868 
2869 	/* Turn the first descriptor ownership to hardware. */
2870 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2871 	tx_le->msk_control |= htole32(HW_OWNER);
2872 
2873 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2874 	map = txd_last->tx_dmamap;
2875 	txd_last->tx_dmamap = txd->tx_dmamap;
2876 	txd->tx_dmamap = map;
2877 	txd->tx_m = m;
2878 
2879 	/* Sync descriptors. */
2880 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2881 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2882 	    sc_if->msk_cdata.msk_tx_ring_map,
2883 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2884 
2885 	return (0);
2886 }
2887 
2888 static void
msk_start(if_t ifp)2889 msk_start(if_t ifp)
2890 {
2891 	struct msk_if_softc *sc_if;
2892 
2893 	sc_if = if_getsoftc(ifp);
2894 	MSK_IF_LOCK(sc_if);
2895 	msk_start_locked(ifp);
2896 	MSK_IF_UNLOCK(sc_if);
2897 }
2898 
2899 static void
msk_start_locked(if_t ifp)2900 msk_start_locked(if_t ifp)
2901 {
2902 	struct msk_if_softc *sc_if;
2903 	struct mbuf *m_head;
2904 	int enq;
2905 
2906 	sc_if = if_getsoftc(ifp);
2907 	MSK_IF_LOCK_ASSERT(sc_if);
2908 
2909 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2910 	    IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2911 		return;
2912 
2913 	for (enq = 0; !if_sendq_empty(ifp) &&
2914 	    sc_if->msk_cdata.msk_tx_cnt <
2915 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2916 		m_head = if_dequeue(ifp);
2917 		if (m_head == NULL)
2918 			break;
2919 		/*
2920 		 * Pack the data into the transmit ring. If we
2921 		 * don't have room, set the OACTIVE flag and wait
2922 		 * for the NIC to drain the ring.
2923 		 */
2924 		if (msk_encap(sc_if, &m_head) != 0) {
2925 			if (m_head == NULL)
2926 				break;
2927 			if_sendq_prepend(ifp, m_head);
2928 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2929 			break;
2930 		}
2931 
2932 		enq++;
2933 		/*
2934 		 * If there's a BPF listener, bounce a copy of this frame
2935 		 * to him.
2936 		 */
2937 		ETHER_BPF_MTAP(ifp, m_head);
2938 	}
2939 
2940 	if (enq > 0) {
2941 		/* Transmit */
2942 		CSR_WRITE_2(sc_if->msk_softc,
2943 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2944 		    sc_if->msk_cdata.msk_tx_prod);
2945 
2946 		/* Set a timeout in case the chip goes out to lunch. */
2947 		sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2948 	}
2949 }
2950 
2951 static void
msk_watchdog(struct msk_if_softc * sc_if)2952 msk_watchdog(struct msk_if_softc *sc_if)
2953 {
2954 	if_t ifp;
2955 
2956 	MSK_IF_LOCK_ASSERT(sc_if);
2957 
2958 	if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2959 		return;
2960 	ifp = sc_if->msk_ifp;
2961 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2962 		if (bootverbose)
2963 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2964 			   "(missed link)\n");
2965 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2966 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2967 		msk_init_locked(sc_if);
2968 		return;
2969 	}
2970 
2971 	if_printf(ifp, "watchdog timeout\n");
2972 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2973 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2974 	msk_init_locked(sc_if);
2975 	if (!if_sendq_empty(ifp))
2976 		msk_start_locked(ifp);
2977 }
2978 
2979 static int
mskc_shutdown(device_t dev)2980 mskc_shutdown(device_t dev)
2981 {
2982 	struct msk_softc *sc;
2983 	int i;
2984 
2985 	sc = device_get_softc(dev);
2986 	MSK_LOCK(sc);
2987 	for (i = 0; i < sc->msk_num_port; i++) {
2988 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2989 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
2990 		    IFF_DRV_RUNNING) != 0))
2991 			msk_stop(sc->msk_if[i]);
2992 	}
2993 	MSK_UNLOCK(sc);
2994 
2995 	/* Put hardware reset. */
2996 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2997 	return (0);
2998 }
2999 
3000 static int
mskc_suspend(device_t dev)3001 mskc_suspend(device_t dev)
3002 {
3003 	struct msk_softc *sc;
3004 	int i;
3005 
3006 	sc = device_get_softc(dev);
3007 
3008 	MSK_LOCK(sc);
3009 
3010 	for (i = 0; i < sc->msk_num_port; i++) {
3011 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3012 		    ((if_getdrvflags(sc->msk_if[i]->msk_ifp) &
3013 		    IFF_DRV_RUNNING) != 0))
3014 			msk_stop(sc->msk_if[i]);
3015 	}
3016 
3017 	/* Disable all interrupts. */
3018 	CSR_WRITE_4(sc, B0_IMSK, 0);
3019 	CSR_READ_4(sc, B0_IMSK);
3020 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3021 	CSR_READ_4(sc, B0_HWE_IMSK);
3022 
3023 	msk_phy_power(sc, MSK_PHY_POWERDOWN);
3024 
3025 	/* Put hardware reset. */
3026 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3027 	sc->msk_pflags |= MSK_FLAG_SUSPEND;
3028 
3029 	MSK_UNLOCK(sc);
3030 
3031 	return (0);
3032 }
3033 
3034 static int
mskc_resume(device_t dev)3035 mskc_resume(device_t dev)
3036 {
3037 	struct msk_softc *sc;
3038 	int i;
3039 
3040 	sc = device_get_softc(dev);
3041 
3042 	MSK_LOCK(sc);
3043 
3044 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3045 	mskc_reset(sc);
3046 	for (i = 0; i < sc->msk_num_port; i++) {
3047 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3048 		    ((if_getflags(sc->msk_if[i]->msk_ifp) & IFF_UP) != 0)) {
3049 			if_setdrvflagbits(sc->msk_if[i]->msk_ifp, 0,
3050 			    IFF_DRV_RUNNING);
3051 			msk_init_locked(sc->msk_if[i]);
3052 		}
3053 	}
3054 	sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3055 
3056 	MSK_UNLOCK(sc);
3057 
3058 	return (0);
3059 }
3060 
3061 #ifndef __NO_STRICT_ALIGNMENT
3062 static __inline void
msk_fixup_rx(struct mbuf * m)3063 msk_fixup_rx(struct mbuf *m)
3064 {
3065         int i;
3066         uint16_t *src, *dst;
3067 
3068 	src = mtod(m, uint16_t *);
3069 	dst = src - 3;
3070 
3071 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3072 		*dst++ = *src++;
3073 
3074 	m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3075 }
3076 #endif
3077 
3078 static __inline void
msk_rxcsum(struct msk_if_softc * sc_if,uint32_t control,struct mbuf * m)3079 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3080 {
3081 	struct ether_header *eh;
3082 	struct ip *ip;
3083 	struct udphdr *uh;
3084 	int32_t hlen, len, pktlen, temp32;
3085 	uint16_t csum, *opts;
3086 
3087 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3088 		if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3089 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3090 			if ((control & CSS_IPV4_CSUM_OK) != 0)
3091 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3092 			if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3093 			    (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3094 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3095 				    CSUM_PSEUDO_HDR;
3096 				m->m_pkthdr.csum_data = 0xffff;
3097 			}
3098 		}
3099 		return;
3100 	}
3101 	/*
3102 	 * Marvell Yukon controllers that support OP_RXCHKS has known
3103 	 * to have various Rx checksum offloading bugs. These
3104 	 * controllers can be configured to compute simple checksum
3105 	 * at two different positions. So we can compute IP and TCP/UDP
3106 	 * checksum at the same time. We intentionally have controller
3107 	 * compute TCP/UDP checksum twice by specifying the same
3108 	 * checksum start position and compare the result. If the value
3109 	 * is different it would indicate the hardware logic was wrong.
3110 	 */
3111 	if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3112 		if (bootverbose)
3113 			device_printf(sc_if->msk_if_dev,
3114 			    "Rx checksum value mismatch!\n");
3115 		return;
3116 	}
3117 	pktlen = m->m_pkthdr.len;
3118 	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3119 		return;
3120 	eh = mtod(m, struct ether_header *);
3121 	if (eh->ether_type != htons(ETHERTYPE_IP))
3122 		return;
3123 	ip = (struct ip *)(eh + 1);
3124 	if (ip->ip_v != IPVERSION)
3125 		return;
3126 
3127 	hlen = ip->ip_hl << 2;
3128 	pktlen -= sizeof(struct ether_header);
3129 	if (hlen < sizeof(struct ip))
3130 		return;
3131 	if (ntohs(ip->ip_len) < hlen)
3132 		return;
3133 	if (ntohs(ip->ip_len) != pktlen)
3134 		return;
3135 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3136 		return;	/* can't handle fragmented packet. */
3137 
3138 	switch (ip->ip_p) {
3139 	case IPPROTO_TCP:
3140 		if (pktlen < (hlen + sizeof(struct tcphdr)))
3141 			return;
3142 		break;
3143 	case IPPROTO_UDP:
3144 		if (pktlen < (hlen + sizeof(struct udphdr)))
3145 			return;
3146 		uh = (struct udphdr *)((caddr_t)ip + hlen);
3147 		if (uh->uh_sum == 0)
3148 			return; /* no checksum */
3149 		break;
3150 	default:
3151 		return;
3152 	}
3153 	csum = bswap16(sc_if->msk_csum & 0xFFFF);
3154 	/* Checksum fixup for IP options. */
3155 	len = hlen - sizeof(struct ip);
3156 	if (len > 0) {
3157 		opts = (uint16_t *)(ip + 1);
3158 		for (; len > 0; len -= sizeof(uint16_t), opts++) {
3159 			temp32 = csum - *opts;
3160 			temp32 = (temp32 >> 16) + (temp32 & 65535);
3161 			csum = temp32 & 65535;
3162 		}
3163 	}
3164 	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3165 	m->m_pkthdr.csum_data = csum;
3166 }
3167 
3168 static void
msk_rxeof(struct msk_if_softc * sc_if,uint32_t status,uint32_t control,int len)3169 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3170     int len)
3171 {
3172 	struct mbuf *m;
3173 	if_t ifp;
3174 	struct msk_rxdesc *rxd;
3175 	int cons, rxlen;
3176 
3177 	ifp = sc_if->msk_ifp;
3178 
3179 	MSK_IF_LOCK_ASSERT(sc_if);
3180 
3181 	cons = sc_if->msk_cdata.msk_rx_cons;
3182 	do {
3183 		rxlen = status >> 16;
3184 		if ((status & GMR_FS_VLAN) != 0 &&
3185 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3186 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3187 		if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3188 			/*
3189 			 * For controllers that returns bogus status code
3190 			 * just do minimal check and let upper stack
3191 			 * handle this frame.
3192 			 */
3193 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3194 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3195 				msk_discard_rxbuf(sc_if, cons);
3196 				break;
3197 			}
3198 		} else if (len > sc_if->msk_framesize ||
3199 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3200 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3201 			/* Don't count flow-control packet as errors. */
3202 			if ((status & GMR_FS_GOOD_FC) == 0)
3203 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3204 			msk_discard_rxbuf(sc_if, cons);
3205 			break;
3206 		}
3207 #ifdef MSK_64BIT_DMA
3208 		rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3209 		    MSK_RX_RING_CNT];
3210 #else
3211 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3212 #endif
3213 		m = rxd->rx_m;
3214 		if (msk_newbuf(sc_if, cons) != 0) {
3215 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3216 			/* Reuse old buffer. */
3217 			msk_discard_rxbuf(sc_if, cons);
3218 			break;
3219 		}
3220 		m->m_pkthdr.rcvif = ifp;
3221 		m->m_pkthdr.len = m->m_len = len;
3222 #ifndef __NO_STRICT_ALIGNMENT
3223 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3224 			msk_fixup_rx(m);
3225 #endif
3226 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3227 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3228 			msk_rxcsum(sc_if, control, m);
3229 		/* Check for VLAN tagged packets. */
3230 		if ((status & GMR_FS_VLAN) != 0 &&
3231 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3232 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3233 			m->m_flags |= M_VLANTAG;
3234 		}
3235 		MSK_IF_UNLOCK(sc_if);
3236 		if_input(ifp, m);
3237 		MSK_IF_LOCK(sc_if);
3238 	} while (0);
3239 
3240 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3241 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3242 }
3243 
3244 static void
msk_jumbo_rxeof(struct msk_if_softc * sc_if,uint32_t status,uint32_t control,int len)3245 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3246     int len)
3247 {
3248 	struct mbuf *m;
3249 	if_t ifp;
3250 	struct msk_rxdesc *jrxd;
3251 	int cons, rxlen;
3252 
3253 	ifp = sc_if->msk_ifp;
3254 
3255 	MSK_IF_LOCK_ASSERT(sc_if);
3256 
3257 	cons = sc_if->msk_cdata.msk_rx_cons;
3258 	do {
3259 		rxlen = status >> 16;
3260 		if ((status & GMR_FS_VLAN) != 0 &&
3261 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3262 			rxlen -= ETHER_VLAN_ENCAP_LEN;
3263 		if (len > sc_if->msk_framesize ||
3264 		    ((status & GMR_FS_ANY_ERR) != 0) ||
3265 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3266 			/* Don't count flow-control packet as errors. */
3267 			if ((status & GMR_FS_GOOD_FC) == 0)
3268 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3269 			msk_discard_jumbo_rxbuf(sc_if, cons);
3270 			break;
3271 		}
3272 #ifdef MSK_64BIT_DMA
3273 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3274 		    MSK_JUMBO_RX_RING_CNT];
3275 #else
3276 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3277 #endif
3278 		m = jrxd->rx_m;
3279 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3280 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3281 			/* Reuse old buffer. */
3282 			msk_discard_jumbo_rxbuf(sc_if, cons);
3283 			break;
3284 		}
3285 		m->m_pkthdr.rcvif = ifp;
3286 		m->m_pkthdr.len = m->m_len = len;
3287 #ifndef __NO_STRICT_ALIGNMENT
3288 		if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3289 			msk_fixup_rx(m);
3290 #endif
3291 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3292 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3293 			msk_rxcsum(sc_if, control, m);
3294 		/* Check for VLAN tagged packets. */
3295 		if ((status & GMR_FS_VLAN) != 0 &&
3296 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3297 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3298 			m->m_flags |= M_VLANTAG;
3299 		}
3300 		MSK_IF_UNLOCK(sc_if);
3301 		if_input(ifp, m);
3302 		MSK_IF_LOCK(sc_if);
3303 	} while (0);
3304 
3305 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3306 	MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3307 }
3308 
3309 static void
msk_txeof(struct msk_if_softc * sc_if,int idx)3310 msk_txeof(struct msk_if_softc *sc_if, int idx)
3311 {
3312 	struct msk_txdesc *txd;
3313 	struct msk_tx_desc *cur_tx;
3314 	if_t ifp;
3315 	uint32_t control;
3316 	int cons, prog;
3317 
3318 	MSK_IF_LOCK_ASSERT(sc_if);
3319 
3320 	ifp = sc_if->msk_ifp;
3321 
3322 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3323 	    sc_if->msk_cdata.msk_tx_ring_map,
3324 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3325 	/*
3326 	 * Go through our tx ring and free mbufs for those
3327 	 * frames that have been sent.
3328 	 */
3329 	cons = sc_if->msk_cdata.msk_tx_cons;
3330 	prog = 0;
3331 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3332 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3333 			break;
3334 		prog++;
3335 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3336 		control = le32toh(cur_tx->msk_control);
3337 		sc_if->msk_cdata.msk_tx_cnt--;
3338 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3339 		if ((control & EOP) == 0)
3340 			continue;
3341 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
3342 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3343 		    BUS_DMASYNC_POSTWRITE);
3344 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3345 
3346 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3347 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3348 		    __func__));
3349 		m_freem(txd->tx_m);
3350 		txd->tx_m = NULL;
3351 	}
3352 
3353 	if (prog > 0) {
3354 		sc_if->msk_cdata.msk_tx_cons = cons;
3355 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
3356 			sc_if->msk_watchdog_timer = 0;
3357 		/* No need to sync LEs as we didn't update LEs. */
3358 	}
3359 }
3360 
3361 static void
msk_tick(void * xsc_if)3362 msk_tick(void *xsc_if)
3363 {
3364 	struct epoch_tracker et;
3365 	struct msk_if_softc *sc_if;
3366 	struct mii_data *mii;
3367 
3368 	sc_if = xsc_if;
3369 
3370 	MSK_IF_LOCK_ASSERT(sc_if);
3371 
3372 	mii = device_get_softc(sc_if->msk_miibus);
3373 
3374 	mii_tick(mii);
3375 	if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3376 		msk_miibus_statchg(sc_if->msk_if_dev);
3377 	NET_EPOCH_ENTER(et);
3378 	msk_handle_events(sc_if->msk_softc);
3379 	NET_EPOCH_EXIT(et);
3380 	msk_watchdog(sc_if);
3381 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3382 }
3383 
3384 static void
msk_intr_phy(struct msk_if_softc * sc_if)3385 msk_intr_phy(struct msk_if_softc *sc_if)
3386 {
3387 	uint16_t status;
3388 
3389 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3390 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3391 	/* Handle FIFO Underrun/Overflow? */
3392 	if ((status & PHY_M_IS_FIFO_ERROR))
3393 		device_printf(sc_if->msk_if_dev,
3394 		    "PHY FIFO underrun/overflow.\n");
3395 }
3396 
3397 static void
msk_intr_gmac(struct msk_if_softc * sc_if)3398 msk_intr_gmac(struct msk_if_softc *sc_if)
3399 {
3400 	struct msk_softc *sc;
3401 	uint8_t status;
3402 
3403 	sc = sc_if->msk_softc;
3404 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3405 
3406 	/* GMAC Rx FIFO overrun. */
3407 	if ((status & GM_IS_RX_FF_OR) != 0)
3408 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3409 		    GMF_CLI_RX_FO);
3410 	/* GMAC Tx FIFO underrun. */
3411 	if ((status & GM_IS_TX_FF_UR) != 0) {
3412 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3413 		    GMF_CLI_TX_FU);
3414 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3415 		/*
3416 		 * XXX
3417 		 * In case of Tx underrun, we may need to flush/reset
3418 		 * Tx MAC but that would also require resynchronization
3419 		 * with status LEs. Reinitializing status LEs would
3420 		 * affect other port in dual MAC configuration so it
3421 		 * should be avoided as possible as we can.
3422 		 * Due to lack of documentation it's all vague guess but
3423 		 * it needs more investigation.
3424 		 */
3425 	}
3426 }
3427 
3428 static void
msk_handle_hwerr(struct msk_if_softc * sc_if,uint32_t status)3429 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3430 {
3431 	struct msk_softc *sc;
3432 
3433 	sc = sc_if->msk_softc;
3434 	if ((status & Y2_IS_PAR_RD1) != 0) {
3435 		device_printf(sc_if->msk_if_dev,
3436 		    "RAM buffer read parity error\n");
3437 		/* Clear IRQ. */
3438 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3439 		    RI_CLR_RD_PERR);
3440 	}
3441 	if ((status & Y2_IS_PAR_WR1) != 0) {
3442 		device_printf(sc_if->msk_if_dev,
3443 		    "RAM buffer write parity error\n");
3444 		/* Clear IRQ. */
3445 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3446 		    RI_CLR_WR_PERR);
3447 	}
3448 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3449 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3450 		/* Clear IRQ. */
3451 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3452 		    GMF_CLI_TX_PE);
3453 	}
3454 	if ((status & Y2_IS_PAR_RX1) != 0) {
3455 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3456 		/* Clear IRQ. */
3457 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3458 	}
3459 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3460 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3461 		/* Clear IRQ. */
3462 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3463 	}
3464 }
3465 
3466 static void
msk_intr_hwerr(struct msk_softc * sc)3467 msk_intr_hwerr(struct msk_softc *sc)
3468 {
3469 	uint32_t status;
3470 	uint32_t tlphead[4];
3471 
3472 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3473 	/* Time Stamp timer overflow. */
3474 	if ((status & Y2_IS_TIST_OV) != 0)
3475 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3476 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3477 		/*
3478 		 * PCI Express Error occurred which is not described in PEX
3479 		 * spec.
3480 		 * This error is also mapped either to Master Abort(
3481 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3482 		 * can only be cleared there.
3483                  */
3484 		device_printf(sc->msk_dev,
3485 		    "PCI Express protocol violation error\n");
3486 	}
3487 
3488 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3489 		uint16_t v16;
3490 
3491 		if ((status & Y2_IS_MST_ERR) != 0)
3492 			device_printf(sc->msk_dev,
3493 			    "unexpected IRQ Status error\n");
3494 		else
3495 			device_printf(sc->msk_dev,
3496 			    "unexpected IRQ Master error\n");
3497 		/* Reset all bits in the PCI status register. */
3498 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3499 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3500 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3501 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3502 		    PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3503 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3504 	}
3505 
3506 	/* Check for PCI Express Uncorrectable Error. */
3507 	if ((status & Y2_IS_PCI_EXP) != 0) {
3508 		uint32_t v32;
3509 
3510 		/*
3511 		 * On PCI Express bus bridges are called root complexes (RC).
3512 		 * PCI Express errors are recognized by the root complex too,
3513 		 * which requests the system to handle the problem. After
3514 		 * error occurrence it may be that no access to the adapter
3515 		 * may be performed any longer.
3516 		 */
3517 
3518 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3519 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3520 			/* Ignore unsupported request error. */
3521 			device_printf(sc->msk_dev,
3522 			    "Uncorrectable PCI Express error\n");
3523 		}
3524 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3525 			int i;
3526 
3527 			/* Get TLP header form Log Registers. */
3528 			for (i = 0; i < 4; i++)
3529 				tlphead[i] = CSR_PCI_READ_4(sc,
3530 				    PEX_HEADER_LOG + i * 4);
3531 			/* Check for vendor defined broadcast message. */
3532 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3533 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3534 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3535 				    sc->msk_intrhwemask);
3536 				CSR_READ_4(sc, B0_HWE_IMSK);
3537 			}
3538 		}
3539 		/* Clear the interrupt. */
3540 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3541 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3542 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543 	}
3544 
3545 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3546 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3547 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3548 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3549 }
3550 
3551 static __inline void
msk_rxput(struct msk_if_softc * sc_if)3552 msk_rxput(struct msk_if_softc *sc_if)
3553 {
3554 	struct msk_softc *sc;
3555 
3556 	sc = sc_if->msk_softc;
3557 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3558 		bus_dmamap_sync(
3559 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3560 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3561 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3562 	else
3563 		bus_dmamap_sync(
3564 		    sc_if->msk_cdata.msk_rx_ring_tag,
3565 		    sc_if->msk_cdata.msk_rx_ring_map,
3566 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3567 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3568 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3569 }
3570 
3571 static int
msk_handle_events(struct msk_softc * sc)3572 msk_handle_events(struct msk_softc *sc)
3573 {
3574 	struct msk_if_softc *sc_if;
3575 	int rxput[2];
3576 	struct msk_stat_desc *sd;
3577 	uint32_t control, status;
3578 	int cons, len, port, rxprog;
3579 
3580 	if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3581 		return (0);
3582 
3583 	/* Sync status LEs. */
3584 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3585 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3586 
3587 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3588 	rxprog = 0;
3589 	cons = sc->msk_stat_cons;
3590 	for (;;) {
3591 		sd = &sc->msk_stat_ring[cons];
3592 		control = le32toh(sd->msk_control);
3593 		if ((control & HW_OWNER) == 0)
3594 			break;
3595 		control &= ~HW_OWNER;
3596 		sd->msk_control = htole32(control);
3597 		status = le32toh(sd->msk_status);
3598 		len = control & STLE_LEN_MASK;
3599 		port = (control >> 16) & 0x01;
3600 		sc_if = sc->msk_if[port];
3601 		if (sc_if == NULL) {
3602 			device_printf(sc->msk_dev, "invalid port opcode "
3603 			    "0x%08x\n", control & STLE_OP_MASK);
3604 			continue;
3605 		}
3606 
3607 		switch (control & STLE_OP_MASK) {
3608 		case OP_RXVLAN:
3609 			sc_if->msk_vtag = ntohs(len);
3610 			break;
3611 		case OP_RXCHKSVLAN:
3612 			sc_if->msk_vtag = ntohs(len);
3613 			/* FALLTHROUGH */
3614 		case OP_RXCHKS:
3615 			sc_if->msk_csum = status;
3616 			break;
3617 		case OP_RXSTAT:
3618 			if (!(if_getdrvflags(sc_if->msk_ifp) & IFF_DRV_RUNNING))
3619 				break;
3620 			if (sc_if->msk_framesize >
3621 			    (MCLBYTES - MSK_RX_BUF_ALIGN))
3622 				msk_jumbo_rxeof(sc_if, status, control, len);
3623 			else
3624 				msk_rxeof(sc_if, status, control, len);
3625 			rxprog++;
3626 			/*
3627 			 * Because there is no way to sync single Rx LE
3628 			 * put the DMA sync operation off until the end of
3629 			 * event processing.
3630 			 */
3631 			rxput[port]++;
3632 			/* Update prefetch unit if we've passed water mark. */
3633 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3634 				msk_rxput(sc_if);
3635 				rxput[port] = 0;
3636 			}
3637 			break;
3638 		case OP_TXINDEXLE:
3639 			if (sc->msk_if[MSK_PORT_A] != NULL)
3640 				msk_txeof(sc->msk_if[MSK_PORT_A],
3641 				    status & STLE_TXA1_MSKL);
3642 			if (sc->msk_if[MSK_PORT_B] != NULL)
3643 				msk_txeof(sc->msk_if[MSK_PORT_B],
3644 				    ((status & STLE_TXA2_MSKL) >>
3645 				    STLE_TXA2_SHIFTL) |
3646 				    ((len & STLE_TXA2_MSKH) <<
3647 				    STLE_TXA2_SHIFTH));
3648 			break;
3649 		default:
3650 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3651 			    control & STLE_OP_MASK);
3652 			break;
3653 		}
3654 		MSK_INC(cons, sc->msk_stat_count);
3655 		if (rxprog > sc->msk_process_limit)
3656 			break;
3657 	}
3658 
3659 	sc->msk_stat_cons = cons;
3660 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3661 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3662 
3663 	if (rxput[MSK_PORT_A] > 0)
3664 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3665 	if (rxput[MSK_PORT_B] > 0)
3666 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3667 
3668 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3669 }
3670 
3671 static void
msk_intr(void * xsc)3672 msk_intr(void *xsc)
3673 {
3674 	struct msk_softc *sc;
3675 	struct msk_if_softc *sc_if0, *sc_if1;
3676 	if_t ifp0, ifp1;
3677 	uint32_t status;
3678 	int domore;
3679 
3680 	sc = xsc;
3681 	MSK_LOCK(sc);
3682 
3683 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3684 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3685 	if (status == 0 || status == 0xffffffff ||
3686 	    (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3687 	    (status & sc->msk_intrmask) == 0) {
3688 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3689 		MSK_UNLOCK(sc);
3690 		return;
3691 	}
3692 
3693 	sc_if0 = sc->msk_if[MSK_PORT_A];
3694 	sc_if1 = sc->msk_if[MSK_PORT_B];
3695 	ifp0 = ifp1 = NULL;
3696 	if (sc_if0 != NULL)
3697 		ifp0 = sc_if0->msk_ifp;
3698 	if (sc_if1 != NULL)
3699 		ifp1 = sc_if1->msk_ifp;
3700 
3701 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3702 		msk_intr_phy(sc_if0);
3703 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3704 		msk_intr_phy(sc_if1);
3705 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3706 		msk_intr_gmac(sc_if0);
3707 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3708 		msk_intr_gmac(sc_if1);
3709 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3710 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3711 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3712 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3713 		CSR_READ_4(sc, B0_IMSK);
3714 	}
3715         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3716 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3717 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3718 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3719 		CSR_READ_4(sc, B0_IMSK);
3720 	}
3721 	if ((status & Y2_IS_HW_ERR) != 0)
3722 		msk_intr_hwerr(sc);
3723 
3724 	domore = msk_handle_events(sc);
3725 	if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3726 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3727 
3728 	/* Reenable interrupts. */
3729 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3730 
3731 	if (ifp0 != NULL && (if_getdrvflags(ifp0) & IFF_DRV_RUNNING) != 0 &&
3732 	    !if_sendq_empty(ifp0))
3733 		msk_start_locked(ifp0);
3734 	if (ifp1 != NULL && (if_getdrvflags(ifp1) & IFF_DRV_RUNNING) != 0 &&
3735 	    !if_sendq_empty(ifp1))
3736 		msk_start_locked(ifp1);
3737 
3738 	MSK_UNLOCK(sc);
3739 }
3740 
3741 static void
msk_set_tx_stfwd(struct msk_if_softc * sc_if)3742 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3743 {
3744 	struct msk_softc *sc;
3745 	if_t ifp;
3746 
3747 	ifp = sc_if->msk_ifp;
3748 	sc = sc_if->msk_softc;
3749 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3750 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3751 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3752 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3753 		    TX_STFW_ENA);
3754 	} else {
3755 		if (if_getmtu(ifp) > ETHERMTU) {
3756 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3757 			CSR_WRITE_4(sc,
3758 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3759 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3760 			/* Disable Store & Forward mode for Tx. */
3761 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3762 			    TX_STFW_DIS);
3763 		} else {
3764 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3765 			    TX_STFW_ENA);
3766 		}
3767 	}
3768 }
3769 
3770 static void
msk_init(void * xsc)3771 msk_init(void *xsc)
3772 {
3773 	struct msk_if_softc *sc_if = xsc;
3774 
3775 	MSK_IF_LOCK(sc_if);
3776 	msk_init_locked(sc_if);
3777 	MSK_IF_UNLOCK(sc_if);
3778 }
3779 
3780 static void
msk_init_locked(struct msk_if_softc * sc_if)3781 msk_init_locked(struct msk_if_softc *sc_if)
3782 {
3783 	struct msk_softc *sc;
3784 	if_t ifp;
3785 	struct mii_data	 *mii;
3786 	uint8_t *eaddr;
3787 	uint16_t gmac;
3788 	uint32_t reg;
3789 	int error;
3790 
3791 	MSK_IF_LOCK_ASSERT(sc_if);
3792 
3793 	ifp = sc_if->msk_ifp;
3794 	sc = sc_if->msk_softc;
3795 	mii = device_get_softc(sc_if->msk_miibus);
3796 
3797 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3798 		return;
3799 
3800 	error = 0;
3801 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3802 	msk_stop(sc_if);
3803 
3804 	if (if_getmtu(ifp) < ETHERMTU)
3805 		sc_if->msk_framesize = ETHERMTU;
3806 	else
3807 		sc_if->msk_framesize = if_getmtu(ifp);
3808 	sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3809 	if (if_getmtu(ifp) > ETHERMTU &&
3810 	    (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3811 		if_sethwassistbits(ifp, 0, (MSK_CSUM_FEATURES | CSUM_TSO));
3812 		if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_TXCSUM));
3813 	}
3814 
3815 	/* GMAC Control reset. */
3816 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3817 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3818 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3819 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3820 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3821 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3822 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3823 		    GMC_BYP_RETR_ON);
3824 
3825 	/*
3826 	 * Initialize GMAC first such that speed/duplex/flow-control
3827 	 * parameters are renegotiated when interface is brought up.
3828 	 */
3829 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3830 
3831 	/* Dummy read the Interrupt Source Register. */
3832 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3833 
3834 	/* Clear MIB stats. */
3835 	msk_stats_clear(sc_if);
3836 
3837 	/* Disable FCS. */
3838 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3839 
3840 	/* Setup Transmit Control Register. */
3841 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3842 
3843 	/* Setup Transmit Flow Control Register. */
3844 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3845 
3846 	/* Setup Transmit Parameter Register. */
3847 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3848 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3849 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3850 
3851 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3852 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3853 
3854 	if (if_getmtu(ifp) > ETHERMTU)
3855 		gmac |= GM_SMOD_JUMBO_ENA;
3856 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3857 
3858 	/* Set station address. */
3859 	eaddr = if_getlladdr(ifp);
3860 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3861 	    eaddr[0] | (eaddr[1] << 8));
3862 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3863 	    eaddr[2] | (eaddr[3] << 8));
3864 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3865 	    eaddr[4] | (eaddr[5] << 8));
3866 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3867 	    eaddr[0] | (eaddr[1] << 8));
3868 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3869 	    eaddr[2] | (eaddr[3] << 8));
3870 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3871 	    eaddr[4] | (eaddr[5] << 8));
3872 
3873 	/* Disable interrupts for counter overflows. */
3874 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3875 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3876 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3877 
3878 	/* Configure Rx MAC FIFO. */
3879 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3880 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3881 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3882 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3883 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3884 		reg |= GMF_RX_OVER_ON;
3885 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3886 
3887 	/* Set receive filter. */
3888 	msk_rxfilter(sc_if);
3889 
3890 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3891 		/* Clear flush mask - HW bug. */
3892 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3893 	} else {
3894 		/* Flush Rx MAC FIFO on any flow control or error. */
3895 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3896 		    GMR_FS_ANY_ERR);
3897 	}
3898 
3899 	/*
3900 	 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3901 	 * due to hardware hang on receipt of pause frames.
3902 	 */
3903 	reg = RX_GMF_FL_THR_DEF + 1;
3904 	/* Another magic for Yukon FE+ - From Linux. */
3905 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3906 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3907 		reg = 0x178;
3908 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3909 
3910 	/* Configure Tx MAC FIFO. */
3911 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3912 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3913 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3914 
3915 	/* Configure hardware VLAN tag insertion/stripping. */
3916 	msk_setvlan(sc_if, ifp);
3917 
3918 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3919 		/* Set Rx Pause threshold. */
3920 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3921 		    MSK_ECU_LLPP);
3922 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3923 		    MSK_ECU_ULPP);
3924 		/* Configure store-and-forward for Tx. */
3925 		msk_set_tx_stfwd(sc_if);
3926 	}
3927 
3928 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3929 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3930 		/* Disable dynamic watermark - from Linux. */
3931 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3932 		reg &= ~0x03;
3933 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3934 	}
3935 
3936 	/*
3937 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3938 	 * arbiter as we don't use Sync Tx queue.
3939 	 */
3940 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3941 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3942 	/* Enable the RAM Interface Arbiter. */
3943 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3944 
3945 	/* Setup RAM buffer. */
3946 	msk_set_rambuffer(sc_if);
3947 
3948 	/* Disable Tx sync Queue. */
3949 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3950 
3951 	/* Setup Tx Queue Bus Memory Interface. */
3952 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3953 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3954 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3955 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3956 	switch (sc->msk_hw_id) {
3957 	case CHIP_ID_YUKON_EC_U:
3958 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3959 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3960 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3961 			    MSK_ECU_TXFF_LEV);
3962 		}
3963 		break;
3964 	case CHIP_ID_YUKON_EX:
3965 		/*
3966 		 * Yukon Extreme seems to have silicon bug for
3967 		 * automatic Tx checksum calculation capability.
3968 		 */
3969 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3970 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3971 			    F_TX_CHK_AUTO_OFF);
3972 		break;
3973 	}
3974 
3975 	/* Setup Rx Queue Bus Memory Interface. */
3976 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3977 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3978 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3979 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3980         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3981 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3982 		/* MAC Rx RAM Read is controlled by hardware. */
3983                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3984 	}
3985 
3986 	msk_set_prefetch(sc, sc_if->msk_txq,
3987 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3988 	msk_init_tx_ring(sc_if);
3989 
3990 	/* Disable Rx checksum offload and RSS hash. */
3991 	reg = BMU_DIS_RX_RSS_HASH;
3992 	if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
3993 	    (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3994 		reg |= BMU_ENA_RX_CHKSUM;
3995 	else
3996 		reg |= BMU_DIS_RX_CHKSUM;
3997 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
3998 	if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
3999 		msk_set_prefetch(sc, sc_if->msk_rxq,
4000 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4001 		    MSK_JUMBO_RX_RING_CNT - 1);
4002 		error = msk_init_jumbo_rx_ring(sc_if);
4003 	 } else {
4004 		msk_set_prefetch(sc, sc_if->msk_rxq,
4005 		    sc_if->msk_rdata.msk_rx_ring_paddr,
4006 		    MSK_RX_RING_CNT - 1);
4007 		error = msk_init_rx_ring(sc_if);
4008 	}
4009 	if (error != 0) {
4010 		device_printf(sc_if->msk_if_dev,
4011 		    "initialization failed: no memory for Rx buffers\n");
4012 		msk_stop(sc_if);
4013 		return;
4014 	}
4015 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4016 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4017 		/* Disable flushing of non-ASF packets. */
4018 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4019 		    GMF_RX_MACSEC_FLUSH_OFF);
4020 	}
4021 
4022 	/* Configure interrupt handling. */
4023 	if (sc_if->msk_port == MSK_PORT_A) {
4024 		sc->msk_intrmask |= Y2_IS_PORT_A;
4025 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4026 	} else {
4027 		sc->msk_intrmask |= Y2_IS_PORT_B;
4028 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4029 	}
4030 	/* Configure IRQ moderation mask. */
4031 	CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4032 	if (sc->msk_int_holdoff > 0) {
4033 		/* Configure initial IRQ moderation timer value. */
4034 		CSR_WRITE_4(sc, B2_IRQM_INI,
4035 		    MSK_USECS(sc, sc->msk_int_holdoff));
4036 		CSR_WRITE_4(sc, B2_IRQM_VAL,
4037 		    MSK_USECS(sc, sc->msk_int_holdoff));
4038 		/* Start IRQ moderation. */
4039 		CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4040 	}
4041 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4042 	CSR_READ_4(sc, B0_HWE_IMSK);
4043 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4044 	CSR_READ_4(sc, B0_IMSK);
4045 
4046 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
4047 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4048 
4049 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4050 	mii_mediachg(mii);
4051 
4052 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4053 }
4054 
4055 static void
msk_set_rambuffer(struct msk_if_softc * sc_if)4056 msk_set_rambuffer(struct msk_if_softc *sc_if)
4057 {
4058 	struct msk_softc *sc;
4059 	int ltpp, utpp;
4060 
4061 	sc = sc_if->msk_softc;
4062 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4063 		return;
4064 
4065 	/* Setup Rx Queue. */
4066 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4067 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4068 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4069 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4070 	    sc->msk_rxqend[sc_if->msk_port] / 8);
4071 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4072 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4073 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4074 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
4075 
4076 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4077 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4078 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4079 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4080 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4081 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4082 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4083 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4084 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4085 
4086 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4087 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4088 
4089 	/* Setup Tx Queue. */
4090 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4091 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4092 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4093 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4094 	    sc->msk_txqend[sc_if->msk_port] / 8);
4095 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4096 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4097 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4098 	    sc->msk_txqstart[sc_if->msk_port] / 8);
4099 	/* Enable Store & Forward for Tx side. */
4100 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4101 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4102 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4103 }
4104 
4105 static void
msk_set_prefetch(struct msk_softc * sc,int qaddr,bus_addr_t addr,uint32_t count)4106 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4107     uint32_t count)
4108 {
4109 
4110 	/* Reset the prefetch unit. */
4111 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4112 	    PREF_UNIT_RST_SET);
4113 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4114 	    PREF_UNIT_RST_CLR);
4115 	/* Set LE base address. */
4116 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4117 	    MSK_ADDR_LO(addr));
4118 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4119 	    MSK_ADDR_HI(addr));
4120 	/* Set the list last index. */
4121 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4122 	    count);
4123 	/* Turn on prefetch unit. */
4124 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4125 	    PREF_UNIT_OP_ON);
4126 	/* Dummy read to ensure write. */
4127 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4128 }
4129 
4130 static void
msk_stop(struct msk_if_softc * sc_if)4131 msk_stop(struct msk_if_softc *sc_if)
4132 {
4133 	struct msk_softc *sc;
4134 	struct msk_txdesc *txd;
4135 	struct msk_rxdesc *rxd;
4136 	struct msk_rxdesc *jrxd;
4137 	if_t ifp;
4138 	uint32_t val;
4139 	int i;
4140 
4141 	MSK_IF_LOCK_ASSERT(sc_if);
4142 	sc = sc_if->msk_softc;
4143 	ifp = sc_if->msk_ifp;
4144 
4145 	callout_stop(&sc_if->msk_tick_ch);
4146 	sc_if->msk_watchdog_timer = 0;
4147 
4148 	/* Disable interrupts. */
4149 	if (sc_if->msk_port == MSK_PORT_A) {
4150 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
4151 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4152 	} else {
4153 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
4154 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4155 	}
4156 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4157 	CSR_READ_4(sc, B0_HWE_IMSK);
4158 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4159 	CSR_READ_4(sc, B0_IMSK);
4160 
4161 	/* Disable Tx/Rx MAC. */
4162 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4163 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4164 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4165 	/* Read again to ensure writing. */
4166 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4167 	/* Update stats and clear counters. */
4168 	msk_stats_update(sc_if);
4169 
4170 	/* Stop Tx BMU. */
4171 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4172 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4173 	for (i = 0; i < MSK_TIMEOUT; i++) {
4174 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4175 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4176 			    BMU_STOP);
4177 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4178 		} else
4179 			break;
4180 		DELAY(1);
4181 	}
4182 	if (i == MSK_TIMEOUT)
4183 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4184 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4185 	    RB_RST_SET | RB_DIS_OP_MD);
4186 
4187 	/* Disable all GMAC interrupt. */
4188 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4189 	/* Disable PHY interrupt. */
4190 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4191 
4192 	/* Disable the RAM Interface Arbiter. */
4193 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4194 
4195 	/* Reset the PCI FIFO of the async Tx queue */
4196 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4197 	    BMU_RST_SET | BMU_FIFO_RST);
4198 
4199 	/* Reset the Tx prefetch units. */
4200 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4201 	    PREF_UNIT_RST_SET);
4202 
4203 	/* Reset the RAM Buffer async Tx queue. */
4204 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4205 
4206 	/* Reset Tx MAC FIFO. */
4207 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4208 	/* Set Pause Off. */
4209 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4210 
4211 	/*
4212 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4213 	 * reach the end of packet and since we can't make sure that we have
4214 	 * incoming data, we must reset the BMU while it is not during a DMA
4215 	 * transfer. Since it is possible that the Rx path is still active,
4216 	 * the Rx RAM buffer will be stopped first, so any possible incoming
4217 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
4218 	 * BMU is polled until any DMA in progress is ended and only then it
4219 	 * will be reset.
4220 	 */
4221 
4222 	/* Disable the RAM Buffer receive queue. */
4223 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4224 	for (i = 0; i < MSK_TIMEOUT; i++) {
4225 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4226 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4227 			break;
4228 		DELAY(1);
4229 	}
4230 	if (i == MSK_TIMEOUT)
4231 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4232 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4233 	    BMU_RST_SET | BMU_FIFO_RST);
4234 	/* Reset the Rx prefetch unit. */
4235 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4236 	    PREF_UNIT_RST_SET);
4237 	/* Reset the RAM Buffer receive queue. */
4238 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4239 	/* Reset Rx MAC FIFO. */
4240 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4241 
4242 	/* Free Rx and Tx mbufs still in the queues. */
4243 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
4244 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4245 		if (rxd->rx_m != NULL) {
4246 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4247 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4248 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4249 			    rxd->rx_dmamap);
4250 			m_freem(rxd->rx_m);
4251 			rxd->rx_m = NULL;
4252 		}
4253 	}
4254 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4255 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4256 		if (jrxd->rx_m != NULL) {
4257 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4258 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4259 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4260 			    jrxd->rx_dmamap);
4261 			m_freem(jrxd->rx_m);
4262 			jrxd->rx_m = NULL;
4263 		}
4264 	}
4265 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
4266 		txd = &sc_if->msk_cdata.msk_txdesc[i];
4267 		if (txd->tx_m != NULL) {
4268 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4269 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4270 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4271 			    txd->tx_dmamap);
4272 			m_freem(txd->tx_m);
4273 			txd->tx_m = NULL;
4274 		}
4275 	}
4276 
4277 	/*
4278 	 * Mark the interface down.
4279 	 */
4280 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4281 	sc_if->msk_flags &= ~MSK_FLAG_LINK;
4282 }
4283 
4284 /*
4285  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4286  * counter clears high 16 bits of the counter such that accessing
4287  * lower 16 bits should be the last operation.
4288  */
4289 #define	MSK_READ_MIB32(x, y)					\
4290 	((((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) +	\
4291 	(uint32_t)GMAC_READ_2(sc, x, y))
4292 #define	MSK_READ_MIB64(x, y)					\
4293 	((((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) +	\
4294 	(uint64_t)MSK_READ_MIB32(x, y))
4295 
4296 static void
msk_stats_clear(struct msk_if_softc * sc_if)4297 msk_stats_clear(struct msk_if_softc *sc_if)
4298 {
4299 	struct msk_softc *sc;
4300 	uint16_t gmac;
4301 	int i;
4302 
4303 	MSK_IF_LOCK_ASSERT(sc_if);
4304 
4305 	sc = sc_if->msk_softc;
4306 	/* Set MIB Clear Counter Mode. */
4307 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4308 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4309 	/* Read all MIB Counters with Clear Mode set. */
4310 	for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4311 		(void)MSK_READ_MIB32(sc_if->msk_port, i);
4312 	/* Clear MIB Clear Counter Mode. */
4313 	gmac &= ~GM_PAR_MIB_CLR;
4314 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4315 }
4316 
4317 static void
msk_stats_update(struct msk_if_softc * sc_if)4318 msk_stats_update(struct msk_if_softc *sc_if)
4319 {
4320 	struct msk_softc *sc;
4321 	if_t ifp;
4322 	struct msk_hw_stats *stats;
4323 	uint16_t gmac;
4324 
4325 	MSK_IF_LOCK_ASSERT(sc_if);
4326 
4327 	ifp = sc_if->msk_ifp;
4328 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
4329 		return;
4330 	sc = sc_if->msk_softc;
4331 	stats = &sc_if->msk_stats;
4332 	/* Set MIB Clear Counter Mode. */
4333 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4334 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4335 
4336 	/* Rx stats. */
4337 	stats->rx_ucast_frames +=
4338 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4339 	stats->rx_bcast_frames +=
4340 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4341 	stats->rx_pause_frames +=
4342 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4343 	stats->rx_mcast_frames +=
4344 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4345 	stats->rx_crc_errs +=
4346 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4347 	stats->rx_good_octets +=
4348 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4349 	stats->rx_bad_octets +=
4350 	    MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4351 	stats->rx_runts +=
4352 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4353 	stats->rx_runt_errs +=
4354 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4355 	stats->rx_pkts_64 +=
4356 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4357 	stats->rx_pkts_65_127 +=
4358 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4359 	stats->rx_pkts_128_255 +=
4360 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4361 	stats->rx_pkts_256_511 +=
4362 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4363 	stats->rx_pkts_512_1023 +=
4364 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4365 	stats->rx_pkts_1024_1518 +=
4366 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4367 	stats->rx_pkts_1519_max +=
4368 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4369 	stats->rx_pkts_too_long +=
4370 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4371 	stats->rx_pkts_jabbers +=
4372 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4373 	stats->rx_fifo_oflows +=
4374 	    MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4375 
4376 	/* Tx stats. */
4377 	stats->tx_ucast_frames +=
4378 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4379 	stats->tx_bcast_frames +=
4380 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4381 	stats->tx_pause_frames +=
4382 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4383 	stats->tx_mcast_frames +=
4384 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4385 	stats->tx_octets +=
4386 	    MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4387 	stats->tx_pkts_64 +=
4388 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4389 	stats->tx_pkts_65_127 +=
4390 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4391 	stats->tx_pkts_128_255 +=
4392 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4393 	stats->tx_pkts_256_511 +=
4394 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4395 	stats->tx_pkts_512_1023 +=
4396 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4397 	stats->tx_pkts_1024_1518 +=
4398 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4399 	stats->tx_pkts_1519_max +=
4400 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4401 	stats->tx_colls +=
4402 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4403 	stats->tx_late_colls +=
4404 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4405 	stats->tx_excess_colls +=
4406 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4407 	stats->tx_multi_colls +=
4408 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4409 	stats->tx_single_colls +=
4410 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4411 	stats->tx_underflows +=
4412 	    MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4413 	/* Clear MIB Clear Counter Mode. */
4414 	gmac &= ~GM_PAR_MIB_CLR;
4415 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4416 }
4417 
4418 static int
msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)4419 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4420 {
4421 	struct msk_softc *sc;
4422 	struct msk_if_softc *sc_if;
4423 	uint32_t result, *stat;
4424 	int off;
4425 
4426 	sc_if = (struct msk_if_softc *)arg1;
4427 	sc = sc_if->msk_softc;
4428 	off = arg2;
4429 	stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4430 
4431 	MSK_IF_LOCK(sc_if);
4432 	result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4433 	result += *stat;
4434 	MSK_IF_UNLOCK(sc_if);
4435 
4436 	return (sysctl_handle_int(oidp, &result, 0, req));
4437 }
4438 
4439 static int
msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)4440 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4441 {
4442 	struct msk_softc *sc;
4443 	struct msk_if_softc *sc_if;
4444 	uint64_t result, *stat;
4445 	int off;
4446 
4447 	sc_if = (struct msk_if_softc *)arg1;
4448 	sc = sc_if->msk_softc;
4449 	off = arg2;
4450 	stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4451 
4452 	MSK_IF_LOCK(sc_if);
4453 	result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4454 	result += *stat;
4455 	MSK_IF_UNLOCK(sc_if);
4456 
4457 	return (sysctl_handle_64(oidp, &result, 0, req));
4458 }
4459 
4460 #undef MSK_READ_MIB32
4461 #undef MSK_READ_MIB64
4462 
4463 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) 				\
4464 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4465 	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4466 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32,	\
4467 	    "IU", d)
4468 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) 				\
4469 	SYSCTL_ADD_PROC(c, p, OID_AUTO, o,				\
4470 	    CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,	 	\
4471 	    sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64,	\
4472 	    "QU", d)
4473 
4474 static void
msk_sysctl_node(struct msk_if_softc * sc_if)4475 msk_sysctl_node(struct msk_if_softc *sc_if)
4476 {
4477 	struct sysctl_ctx_list *ctx;
4478 	struct sysctl_oid_list *child, *schild;
4479 	struct sysctl_oid *tree;
4480 
4481 	ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4482 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4483 
4484 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
4485 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK Statistics");
4486 	schild = SYSCTL_CHILDREN(tree);
4487 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
4488 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK RX Statistics");
4489 	child = SYSCTL_CHILDREN(tree);
4490 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4491 	    child, rx_ucast_frames, "Good unicast frames");
4492 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4493 	    child, rx_bcast_frames, "Good broadcast frames");
4494 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4495 	    child, rx_pause_frames, "Pause frames");
4496 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4497 	    child, rx_mcast_frames, "Multicast frames");
4498 	MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4499 	    child, rx_crc_errs, "CRC errors");
4500 	MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4501 	    child, rx_good_octets, "Good octets");
4502 	MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4503 	    child, rx_bad_octets, "Bad octets");
4504 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4505 	    child, rx_pkts_64, "64 bytes frames");
4506 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4507 	    child, rx_pkts_65_127, "65 to 127 bytes frames");
4508 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4509 	    child, rx_pkts_128_255, "128 to 255 bytes frames");
4510 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4511 	    child, rx_pkts_256_511, "256 to 511 bytes frames");
4512 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4513 	    child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4514 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4515 	    child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4516 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4517 	    child, rx_pkts_1519_max, "1519 to max frames");
4518 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4519 	    child, rx_pkts_too_long, "frames too long");
4520 	MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4521 	    child, rx_pkts_jabbers, "Jabber errors");
4522 	MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4523 	    child, rx_fifo_oflows, "FIFO overflows");
4524 
4525 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
4526 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK TX Statistics");
4527 	child = SYSCTL_CHILDREN(tree);
4528 	MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4529 	    child, tx_ucast_frames, "Unicast frames");
4530 	MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4531 	    child, tx_bcast_frames, "Broadcast frames");
4532 	MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4533 	    child, tx_pause_frames, "Pause frames");
4534 	MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4535 	    child, tx_mcast_frames, "Multicast frames");
4536 	MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4537 	    child, tx_octets, "Octets");
4538 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4539 	    child, tx_pkts_64, "64 bytes frames");
4540 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4541 	    child, tx_pkts_65_127, "65 to 127 bytes frames");
4542 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4543 	    child, tx_pkts_128_255, "128 to 255 bytes frames");
4544 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4545 	    child, tx_pkts_256_511, "256 to 511 bytes frames");
4546 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4547 	    child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4548 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4549 	    child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4550 	MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4551 	    child, tx_pkts_1519_max, "1519 to max frames");
4552 	MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4553 	    child, tx_colls, "Collisions");
4554 	MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4555 	    child, tx_late_colls, "Late collisions");
4556 	MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4557 	    child, tx_excess_colls, "Excessive collisions");
4558 	MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4559 	    child, tx_multi_colls, "Multiple collisions");
4560 	MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4561 	    child, tx_single_colls, "Single collisions");
4562 	MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4563 	    child, tx_underflows, "FIFO underflows");
4564 }
4565 
4566 #undef MSK_SYSCTL_STAT32
4567 #undef MSK_SYSCTL_STAT64
4568 
4569 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)4570 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4571 {
4572 	int error, value;
4573 
4574 	if (!arg1)
4575 		return (EINVAL);
4576 	value = *(int *)arg1;
4577 	error = sysctl_handle_int(oidp, &value, 0, req);
4578 	if (error || !req->newptr)
4579 		return (error);
4580 	if (value < low || value > high)
4581 		return (EINVAL);
4582 	*(int *)arg1 = value;
4583 
4584 	return (0);
4585 }
4586 
4587 static int
sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)4588 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4589 {
4590 
4591 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4592 	    MSK_PROC_MAX));
4593 }
4594