1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright (c) 2024, Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the Intel Corporation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "ice_common.h"
33 #include "ice_switch.h"
34 #include "ice_flex_type.h"
35 #include "ice_flow.h"
36
37 #define ICE_ETH_DA_OFFSET 0
38 #define ICE_ETH_ETHTYPE_OFFSET 12
39 #define ICE_ETH_VLAN_TCI_OFFSET 14
40 #define ICE_MAX_VLAN_ID 0xFFF
41 #define ICE_IPV6_ETHER_ID 0x86DD
42 #define ICE_PPP_IPV6_PROTO_ID 0x0057
43 #define ICE_ETH_P_8021Q 0x8100
44
45 /* Dummy ethernet header needed in the ice_sw_rule_*
46 * struct to configure any switch filter rules.
47 * {DA (6 bytes), SA(6 bytes),
48 * Ether type (2 bytes for header without VLAN tag) OR
49 * VLAN tag (4 bytes for header with VLAN tag) }
50 *
51 * Word on Hardcoded values
52 * byte 0 = 0x2: to identify it as locally administered DA MAC
53 * byte 6 = 0x2: to identify it as locally administered SA MAC
54 * byte 12 = 0x81 & byte 13 = 0x00:
55 * In case of VLAN filter first two bytes defines ether type (0x8100)
56 * and remaining two bytes are placeholder for programming a given VLAN ID
57 * In case of Ether type filter it is treated as header without VLAN tag
58 * and byte 12 and 13 is used to program a given Ether type instead
59 */
60 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
61 0x2, 0, 0, 0, 0, 0,
62 0x81, 0, 0, 0};
63
64 static bool
65 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle);
66
67 /**
68 * ice_init_def_sw_recp - initialize the recipe book keeping tables
69 * @hw: pointer to the HW struct
70 * @recp_list: pointer to sw recipe list
71 *
72 * Allocate memory for the entire recipe table and initialize the structures/
73 * entries corresponding to basic recipes.
74 */
75 int
ice_init_def_sw_recp(struct ice_hw * hw,struct ice_sw_recipe ** recp_list)76 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
77 {
78 struct ice_sw_recipe *recps;
79 u8 i;
80
81 recps = (struct ice_sw_recipe *)
82 ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
83 if (!recps)
84 return ICE_ERR_NO_MEMORY;
85
86 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
87 recps[i].root_rid = i;
88 INIT_LIST_HEAD(&recps[i].filt_rules);
89 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
90 INIT_LIST_HEAD(&recps[i].rg_list);
91 ice_init_lock(&recps[i].filt_rule_lock);
92 }
93
94 *recp_list = recps;
95
96 return 0;
97 }
98
99 /**
100 * ice_aq_get_sw_cfg - get switch configuration
101 * @hw: pointer to the hardware structure
102 * @buf: pointer to the result buffer
103 * @buf_size: length of the buffer available for response
104 * @req_desc: pointer to requested descriptor
105 * @num_elems: pointer to number of elements
106 * @cd: pointer to command details structure or NULL
107 *
108 * Get switch configuration (0x0200) to be placed in buf.
109 * This admin command returns information such as initial VSI/port number
110 * and switch ID it belongs to.
111 *
112 * NOTE: *req_desc is both an input/output parameter.
113 * The caller of this function first calls this function with *request_desc set
114 * to 0. If the response from f/w has *req_desc set to 0, all the switch
115 * configuration information has been returned; if non-zero (meaning not all
116 * the information was returned), the caller should call this function again
117 * with *req_desc set to the previous value returned by f/w to get the
118 * next block of switch configuration information.
119 *
120 * *num_elems is output only parameter. This reflects the number of elements
121 * in response buffer. The caller of this function to use *num_elems while
122 * parsing the response buffer.
123 */
124 static int
ice_aq_get_sw_cfg(struct ice_hw * hw,struct ice_aqc_get_sw_cfg_resp_elem * buf,u16 buf_size,u16 * req_desc,u16 * num_elems,struct ice_sq_cd * cd)125 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
126 u16 buf_size, u16 *req_desc, u16 *num_elems,
127 struct ice_sq_cd *cd)
128 {
129 struct ice_aqc_get_sw_cfg *cmd;
130 struct ice_aq_desc desc;
131 int status;
132
133 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
134 cmd = &desc.params.get_sw_conf;
135 cmd->element = CPU_TO_LE16(*req_desc);
136
137 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
138 if (!status) {
139 *req_desc = LE16_TO_CPU(cmd->element);
140 *num_elems = LE16_TO_CPU(cmd->num_elems);
141 }
142
143 return status;
144 }
145
146 /**
147 * ice_alloc_rss_global_lut - allocate a RSS global LUT
148 * @hw: pointer to the HW struct
149 * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
150 * @global_lut_id: output parameter for the RSS global LUT's ID
151 */
ice_alloc_rss_global_lut(struct ice_hw * hw,bool shared_res,u16 * global_lut_id)152 int ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
153 {
154 struct ice_aqc_alloc_free_res_elem *sw_buf;
155 int status;
156 u16 buf_len;
157
158 buf_len = ice_struct_size(sw_buf, elem, 1);
159 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
160 if (!sw_buf)
161 return ICE_ERR_NO_MEMORY;
162
163 sw_buf->num_elems = CPU_TO_LE16(1);
164 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
165 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
166 ICE_AQC_RES_TYPE_FLAG_DEDICATED));
167
168 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
169 if (status) {
170 ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
171 shared_res ? "shared" : "dedicated", status);
172 goto ice_alloc_global_lut_exit;
173 }
174
175 *global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
176
177 ice_alloc_global_lut_exit:
178 ice_free(hw, sw_buf);
179 return status;
180 }
181
182 /**
183 * ice_free_rss_global_lut - free a RSS global LUT
184 * @hw: pointer to the HW struct
185 * @global_lut_id: ID of the RSS global LUT to free
186 */
ice_free_rss_global_lut(struct ice_hw * hw,u16 global_lut_id)187 int ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
188 {
189 struct ice_aqc_alloc_free_res_elem *sw_buf;
190 u16 buf_len, num_elems = 1;
191 int status;
192
193 buf_len = ice_struct_size(sw_buf, elem, num_elems);
194 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
195 if (!sw_buf)
196 return ICE_ERR_NO_MEMORY;
197
198 sw_buf->num_elems = CPU_TO_LE16(num_elems);
199 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
200 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
201
202 status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
203 if (status)
204 ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
205 global_lut_id, status);
206
207 ice_free(hw, sw_buf);
208 return status;
209 }
210
211 /**
212 * ice_alloc_sw - allocate resources specific to switch
213 * @hw: pointer to the HW struct
214 * @ena_stats: true to turn on VEB stats
215 * @shared_res: true for shared resource, false for dedicated resource
216 * @sw_id: switch ID returned
217 * @counter_id: VEB counter ID returned
218 *
219 * allocates switch resources (SWID and VEB counter) (0x0208)
220 */
221 int
ice_alloc_sw(struct ice_hw * hw,bool ena_stats,bool shared_res,u16 * sw_id,u16 * counter_id)222 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
223 u16 *counter_id)
224 {
225 struct ice_aqc_alloc_free_res_elem *sw_buf;
226 struct ice_aqc_res_elem *sw_ele;
227 u16 buf_len;
228 int status;
229
230 buf_len = ice_struct_size(sw_buf, elem, 1);
231 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
232 if (!sw_buf)
233 return ICE_ERR_NO_MEMORY;
234
235 /* Prepare buffer for switch ID.
236 * The number of resource entries in buffer is passed as 1 since only a
237 * single switch/VEB instance is allocated, and hence a single sw_id
238 * is requested.
239 */
240 sw_buf->num_elems = CPU_TO_LE16(1);
241 sw_buf->res_type =
242 CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
243 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
244 ICE_AQC_RES_TYPE_FLAG_DEDICATED));
245
246 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
247 ice_aqc_opc_alloc_res, NULL);
248
249 if (status)
250 goto ice_alloc_sw_exit;
251
252 sw_ele = &sw_buf->elem[0];
253 *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
254
255 if (ena_stats) {
256 /* Prepare buffer for VEB Counter */
257 enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
258 struct ice_aqc_alloc_free_res_elem *counter_buf;
259 struct ice_aqc_res_elem *counter_ele;
260
261 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
262 ice_malloc(hw, buf_len);
263 if (!counter_buf) {
264 status = ICE_ERR_NO_MEMORY;
265 goto ice_alloc_sw_exit;
266 }
267
268 /* The number of resource entries in buffer is passed as 1 since
269 * only a single switch/VEB instance is allocated, and hence a
270 * single VEB counter is requested.
271 */
272 counter_buf->num_elems = CPU_TO_LE16(1);
273 counter_buf->res_type =
274 CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
275 ICE_AQC_RES_TYPE_FLAG_DEDICATED);
276 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
277 opc, NULL);
278
279 if (status) {
280 ice_free(hw, counter_buf);
281 goto ice_alloc_sw_exit;
282 }
283 counter_ele = &counter_buf->elem[0];
284 *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
285 ice_free(hw, counter_buf);
286 }
287
288 ice_alloc_sw_exit:
289 ice_free(hw, sw_buf);
290 return status;
291 }
292
293 /**
294 * ice_free_sw - free resources specific to switch
295 * @hw: pointer to the HW struct
296 * @sw_id: switch ID returned
297 * @counter_id: VEB counter ID returned
298 *
299 * free switch resources (SWID and VEB counter) (0x0209)
300 *
301 * NOTE: This function frees multiple resources. It continues
302 * releasing other resources even after it encounters error.
303 * The error code returned is the last error it encountered.
304 */
ice_free_sw(struct ice_hw * hw,u16 sw_id,u16 counter_id)305 int ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
306 {
307 struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
308 int status, ret_status;
309 u16 buf_len;
310
311 buf_len = ice_struct_size(sw_buf, elem, 1);
312 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
313 if (!sw_buf)
314 return ICE_ERR_NO_MEMORY;
315
316 /* Prepare buffer to free for switch ID res.
317 * The number of resource entries in buffer is passed as 1 since only a
318 * single switch/VEB instance is freed, and hence a single sw_id
319 * is released.
320 */
321 sw_buf->num_elems = CPU_TO_LE16(1);
322 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
323 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
324
325 ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
326 ice_aqc_opc_free_res, NULL);
327
328 if (ret_status)
329 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
330
331 /* Prepare buffer to free for VEB Counter resource */
332 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
333 ice_malloc(hw, buf_len);
334 if (!counter_buf) {
335 ice_free(hw, sw_buf);
336 return ICE_ERR_NO_MEMORY;
337 }
338
339 /* The number of resource entries in buffer is passed as 1 since only a
340 * single switch/VEB instance is freed, and hence a single VEB counter
341 * is released
342 */
343 counter_buf->num_elems = CPU_TO_LE16(1);
344 counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
345 counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
346
347 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
348 ice_aqc_opc_free_res, NULL);
349 if (status) {
350 ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
351 ret_status = status;
352 }
353
354 ice_free(hw, counter_buf);
355 ice_free(hw, sw_buf);
356 return ret_status;
357 }
358
359 /**
360 * ice_aq_add_vsi
361 * @hw: pointer to the HW struct
362 * @vsi_ctx: pointer to a VSI context struct
363 * @cd: pointer to command details structure or NULL
364 *
365 * Add a VSI context to the hardware (0x0210)
366 */
367 int
ice_aq_add_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)368 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
369 struct ice_sq_cd *cd)
370 {
371 struct ice_aqc_add_update_free_vsi_resp *res;
372 struct ice_aqc_add_get_update_free_vsi *cmd;
373 struct ice_aq_desc desc;
374 int status;
375
376 cmd = &desc.params.vsi_cmd;
377 res = &desc.params.add_update_free_vsi_res;
378
379 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
380
381 if (!vsi_ctx->alloc_from_pool)
382 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
383 ICE_AQ_VSI_IS_VALID);
384 cmd->vf_id = vsi_ctx->vf_num;
385
386 cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
387
388 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
389
390 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
391 sizeof(vsi_ctx->info), cd);
392
393 if (!status) {
394 vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
395 vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
396 vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
397 }
398
399 return status;
400 }
401
402 /**
403 * ice_aq_free_vsi
404 * @hw: pointer to the HW struct
405 * @vsi_ctx: pointer to a VSI context struct
406 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
407 * @cd: pointer to command details structure or NULL
408 *
409 * Free VSI context info from hardware (0x0213)
410 */
411 int
ice_aq_free_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)412 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
413 bool keep_vsi_alloc, struct ice_sq_cd *cd)
414 {
415 struct ice_aqc_add_update_free_vsi_resp *resp;
416 struct ice_aqc_add_get_update_free_vsi *cmd;
417 struct ice_aq_desc desc;
418 int status;
419
420 cmd = &desc.params.vsi_cmd;
421 resp = &desc.params.add_update_free_vsi_res;
422
423 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
424
425 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
426 if (keep_vsi_alloc)
427 cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
428
429 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
430 if (!status) {
431 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
432 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
433 }
434
435 return status;
436 }
437
438 /**
439 * ice_aq_update_vsi
440 * @hw: pointer to the HW struct
441 * @vsi_ctx: pointer to a VSI context struct
442 * @cd: pointer to command details structure or NULL
443 *
444 * Update VSI context in the hardware (0x0211)
445 */
446 int
ice_aq_update_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)447 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
448 struct ice_sq_cd *cd)
449 {
450 struct ice_aqc_add_update_free_vsi_resp *resp;
451 struct ice_aqc_add_get_update_free_vsi *cmd;
452 struct ice_aq_desc desc;
453 int status;
454
455 cmd = &desc.params.vsi_cmd;
456 resp = &desc.params.add_update_free_vsi_res;
457
458 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
459
460 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
461
462 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
463
464 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
465 sizeof(vsi_ctx->info), cd);
466
467 if (!status) {
468 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
469 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
470 }
471
472 return status;
473 }
474
475 /**
476 * ice_is_vsi_valid - check whether the VSI is valid or not
477 * @hw: pointer to the HW struct
478 * @vsi_handle: VSI handle
479 *
480 * check whether the VSI is valid or not
481 */
ice_is_vsi_valid(struct ice_hw * hw,u16 vsi_handle)482 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
483 {
484 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
485 }
486
487 /**
488 * ice_get_hw_vsi_num - return the HW VSI number
489 * @hw: pointer to the HW struct
490 * @vsi_handle: VSI handle
491 *
492 * return the HW VSI number
493 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
494 */
ice_get_hw_vsi_num(struct ice_hw * hw,u16 vsi_handle)495 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
496 {
497 return hw->vsi_ctx[vsi_handle]->vsi_num;
498 }
499
500 /**
501 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
502 * @hw: pointer to the HW struct
503 * @vsi_handle: VSI handle
504 *
505 * return the VSI context entry for a given VSI handle
506 */
ice_get_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)507 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
508 {
509 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
510 }
511
512 /**
513 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
514 * @hw: pointer to the HW struct
515 * @vsi_handle: VSI handle
516 * @vsi: VSI context pointer
517 *
518 * save the VSI context entry for a given VSI handle
519 */
520 static void
ice_save_vsi_ctx(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi)521 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
522 {
523 hw->vsi_ctx[vsi_handle] = vsi;
524 }
525
526 /**
527 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
528 * @hw: pointer to the HW struct
529 * @vsi_handle: VSI handle
530 */
ice_clear_vsi_q_ctx(struct ice_hw * hw,u16 vsi_handle)531 void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
532 {
533 struct ice_vsi_ctx *vsi;
534 u8 i;
535
536 vsi = ice_get_vsi_ctx(hw, vsi_handle);
537 if (!vsi)
538 return;
539 ice_for_each_traffic_class(i) {
540 if (vsi->lan_q_ctx[i]) {
541 ice_free(hw, vsi->lan_q_ctx[i]);
542 vsi->lan_q_ctx[i] = NULL;
543 }
544 if (vsi->rdma_q_ctx[i]) {
545 ice_free(hw, vsi->rdma_q_ctx[i]);
546 vsi->rdma_q_ctx[i] = NULL;
547 }
548 }
549 }
550
551 /**
552 * ice_clear_vsi_ctx - clear the VSI context entry
553 * @hw: pointer to the HW struct
554 * @vsi_handle: VSI handle
555 *
556 * clear the VSI context entry
557 */
ice_clear_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)558 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
559 {
560 struct ice_vsi_ctx *vsi;
561
562 vsi = ice_get_vsi_ctx(hw, vsi_handle);
563 if (vsi) {
564 ice_clear_vsi_q_ctx(hw, vsi_handle);
565 ice_free(hw, vsi);
566 hw->vsi_ctx[vsi_handle] = NULL;
567 }
568 }
569
570 /**
571 * ice_clear_all_vsi_ctx - clear all the VSI context entries
572 * @hw: pointer to the HW struct
573 */
ice_clear_all_vsi_ctx(struct ice_hw * hw)574 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
575 {
576 u16 i;
577
578 for (i = 0; i < ICE_MAX_VSI; i++)
579 ice_clear_vsi_ctx(hw, i);
580 }
581
582 /**
583 * ice_add_vsi - add VSI context to the hardware and VSI handle list
584 * @hw: pointer to the HW struct
585 * @vsi_handle: unique VSI handle provided by drivers
586 * @vsi_ctx: pointer to a VSI context struct
587 * @cd: pointer to command details structure or NULL
588 *
589 * Add a VSI context to the hardware also add it into the VSI handle list.
590 * If this function gets called after reset for existing VSIs then update
591 * with the new HW VSI number in the corresponding VSI handle list entry.
592 */
593 int
ice_add_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)594 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
595 struct ice_sq_cd *cd)
596 {
597 struct ice_vsi_ctx *tmp_vsi_ctx;
598 int status;
599
600 if (vsi_handle >= ICE_MAX_VSI)
601 return ICE_ERR_PARAM;
602 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
603 if (status)
604 return status;
605 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
606 if (!tmp_vsi_ctx) {
607 /* Create a new VSI context */
608 tmp_vsi_ctx = (struct ice_vsi_ctx *)
609 ice_malloc(hw, sizeof(*tmp_vsi_ctx));
610 if (!tmp_vsi_ctx) {
611 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
612 return ICE_ERR_NO_MEMORY;
613 }
614 *tmp_vsi_ctx = *vsi_ctx;
615
616 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
617 } else {
618 /* update with new HW VSI num */
619 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
620 }
621
622 return 0;
623 }
624
625 /**
626 * ice_free_vsi- free VSI context from hardware and VSI handle list
627 * @hw: pointer to the HW struct
628 * @vsi_handle: unique VSI handle
629 * @vsi_ctx: pointer to a VSI context struct
630 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
631 * @cd: pointer to command details structure or NULL
632 *
633 * Free VSI context info from hardware as well as from VSI handle list
634 */
635 int
ice_free_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)636 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
637 bool keep_vsi_alloc, struct ice_sq_cd *cd)
638 {
639 int status;
640
641 if (!ice_is_vsi_valid(hw, vsi_handle))
642 return ICE_ERR_PARAM;
643 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
644 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
645 if (!status)
646 ice_clear_vsi_ctx(hw, vsi_handle);
647 return status;
648 }
649
650 /**
651 * ice_update_vsi
652 * @hw: pointer to the HW struct
653 * @vsi_handle: unique VSI handle
654 * @vsi_ctx: pointer to a VSI context struct
655 * @cd: pointer to command details structure or NULL
656 *
657 * Update VSI context in the hardware
658 */
659 int
ice_update_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)660 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
661 struct ice_sq_cd *cd)
662 {
663 if (!ice_is_vsi_valid(hw, vsi_handle))
664 return ICE_ERR_PARAM;
665 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
666 return ice_aq_update_vsi(hw, vsi_ctx, cd);
667 }
668
669 /**
670 * ice_cfg_iwarp_fltr - enable/disable iWARP filtering on VSI
671 * @hw: pointer to HW struct
672 * @vsi_handle: VSI SW index
673 * @enable: boolean for enable/disable
674 */
675 int
ice_cfg_iwarp_fltr(struct ice_hw * hw,u16 vsi_handle,bool enable)676 ice_cfg_iwarp_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
677 {
678 struct ice_vsi_ctx *ctx, *cached_ctx;
679 int status;
680
681 cached_ctx = ice_get_vsi_ctx(hw, vsi_handle);
682 if (!cached_ctx)
683 return ICE_ERR_DOES_NOT_EXIST;
684
685 ctx = (struct ice_vsi_ctx *)ice_calloc(hw, 1, sizeof(*ctx));
686 if (!ctx)
687 return ICE_ERR_NO_MEMORY;
688
689 ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss;
690 ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc;
691 ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags;
692
693 ctx->info.valid_sections = CPU_TO_LE16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
694
695 if (enable)
696 ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
697 else
698 ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
699
700 status = ice_update_vsi(hw, vsi_handle, ctx, NULL);
701 if (!status) {
702 cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags;
703 cached_ctx->info.valid_sections |= ctx->info.valid_sections;
704 }
705
706 ice_free(hw, ctx);
707 return status;
708 }
709
710 /**
711 * ice_aq_get_vsi_params
712 * @hw: pointer to the HW struct
713 * @vsi_ctx: pointer to a VSI context struct
714 * @cd: pointer to command details structure or NULL
715 *
716 * Get VSI context info from hardware (0x0212)
717 */
718 int
ice_aq_get_vsi_params(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)719 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
720 struct ice_sq_cd *cd)
721 {
722 struct ice_aqc_add_get_update_free_vsi *cmd;
723 struct ice_aqc_get_vsi_resp *resp;
724 struct ice_aq_desc desc;
725 int status;
726
727 cmd = &desc.params.vsi_cmd;
728 resp = &desc.params.get_vsi_resp;
729
730 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
731
732 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
733
734 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
735 sizeof(vsi_ctx->info), cd);
736 if (!status) {
737 vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
738 ICE_AQ_VSI_NUM_M;
739 vsi_ctx->vf_num = resp->vf_id;
740 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
741 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
742 }
743
744 return status;
745 }
746
747 /**
748 * ice_aq_add_update_mir_rule - add/update a mirror rule
749 * @hw: pointer to the HW struct
750 * @rule_type: Rule Type
751 * @dest_vsi: VSI number to which packets will be mirrored
752 * @count: length of the list
753 * @mr_buf: buffer for list of mirrored VSI numbers
754 * @cd: pointer to command details structure or NULL
755 * @rule_id: Rule ID
756 *
757 * Add/Update Mirror Rule (0x260).
758 */
759 int
ice_aq_add_update_mir_rule(struct ice_hw * hw,u16 rule_type,u16 dest_vsi,u16 count,struct ice_mir_rule_buf * mr_buf,struct ice_sq_cd * cd,u16 * rule_id)760 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
761 u16 count, struct ice_mir_rule_buf *mr_buf,
762 struct ice_sq_cd *cd, u16 *rule_id)
763 {
764 struct ice_aqc_add_update_mir_rule *cmd;
765 struct ice_aq_desc desc;
766 __le16 *mr_list = NULL;
767 u16 buf_size = 0;
768 int status;
769
770 switch (rule_type) {
771 case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
772 case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
773 /* Make sure count and mr_buf are set for these rule_types */
774 if (!(count && mr_buf))
775 return ICE_ERR_PARAM;
776
777 buf_size = count * sizeof(__le16);
778 mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
779 if (!mr_list)
780 return ICE_ERR_NO_MEMORY;
781 break;
782 case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
783 case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
784 /* Make sure count and mr_buf are not set for these
785 * rule_types
786 */
787 if (count || mr_buf)
788 return ICE_ERR_PARAM;
789 break;
790 default:
791 ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
792 return ICE_ERR_OUT_OF_RANGE;
793 }
794
795 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
796
797 /* Pre-process 'mr_buf' items for add/update of virtual port
798 * ingress/egress mirroring (but not physical port ingress/egress
799 * mirroring)
800 */
801 if (mr_buf) {
802 int i;
803
804 for (i = 0; i < count; i++) {
805 u16 id;
806
807 id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
808
809 /* Validate specified VSI number, make sure it is less
810 * than ICE_MAX_VSI, if not return with error.
811 */
812 if (id >= ICE_MAX_VSI) {
813 ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
814 id);
815 ice_free(hw, mr_list);
816 return ICE_ERR_OUT_OF_RANGE;
817 }
818
819 /* add VSI to mirror rule */
820 if (mr_buf[i].add)
821 mr_list[i] =
822 CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
823 else /* remove VSI from mirror rule */
824 mr_list[i] = CPU_TO_LE16(id);
825 }
826
827 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
828 }
829
830 cmd = &desc.params.add_update_rule;
831 if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
832 cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
833 ICE_AQC_RULE_ID_VALID_M);
834 cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
835 cmd->num_entries = CPU_TO_LE16(count);
836 cmd->dest = CPU_TO_LE16(dest_vsi);
837
838 status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
839 if (!status)
840 *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
841
842 ice_free(hw, mr_list);
843
844 return status;
845 }
846
847 /**
848 * ice_aq_delete_mir_rule - delete a mirror rule
849 * @hw: pointer to the HW struct
850 * @rule_id: Mirror rule ID (to be deleted)
851 * @keep_allocd: if set, the VSI stays part of the PF allocated res,
852 * otherwise it is returned to the shared pool
853 * @cd: pointer to command details structure or NULL
854 *
855 * Delete Mirror Rule (0x261).
856 */
857 int
ice_aq_delete_mir_rule(struct ice_hw * hw,u16 rule_id,bool keep_allocd,struct ice_sq_cd * cd)858 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
859 struct ice_sq_cd *cd)
860 {
861 struct ice_aqc_delete_mir_rule *cmd;
862 struct ice_aq_desc desc;
863
864 /* rule_id should be in the range 0...63 */
865 if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
866 return ICE_ERR_OUT_OF_RANGE;
867
868 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
869
870 cmd = &desc.params.del_rule;
871 rule_id |= ICE_AQC_RULE_ID_VALID_M;
872 cmd->rule_id = CPU_TO_LE16(rule_id);
873
874 if (keep_allocd)
875 cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
876
877 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
878 }
879
880 /**
881 * ice_aq_alloc_free_vsi_list
882 * @hw: pointer to the HW struct
883 * @vsi_list_id: VSI list ID returned or used for lookup
884 * @lkup_type: switch rule filter lookup type
885 * @opc: switch rules population command type - pass in the command opcode
886 *
887 * allocates or free a VSI list resource
888 */
889 static int
ice_aq_alloc_free_vsi_list(struct ice_hw * hw,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type,enum ice_adminq_opc opc)890 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
891 enum ice_sw_lkup_type lkup_type,
892 enum ice_adminq_opc opc)
893 {
894 struct ice_aqc_alloc_free_res_elem *sw_buf;
895 struct ice_aqc_res_elem *vsi_ele;
896 u16 buf_len;
897 int status;
898
899 buf_len = ice_struct_size(sw_buf, elem, 1);
900 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
901 if (!sw_buf)
902 return ICE_ERR_NO_MEMORY;
903 sw_buf->num_elems = CPU_TO_LE16(1);
904
905 if (lkup_type == ICE_SW_LKUP_MAC ||
906 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
907 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
908 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
909 lkup_type == ICE_SW_LKUP_PROMISC ||
910 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
911 lkup_type == ICE_SW_LKUP_DFLT ||
912 lkup_type == ICE_SW_LKUP_LAST) {
913 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
914 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
915 sw_buf->res_type =
916 CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
917 } else {
918 status = ICE_ERR_PARAM;
919 goto ice_aq_alloc_free_vsi_list_exit;
920 }
921
922 if (opc == ice_aqc_opc_free_res)
923 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
924
925 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
926 if (status)
927 goto ice_aq_alloc_free_vsi_list_exit;
928
929 if (opc == ice_aqc_opc_alloc_res) {
930 vsi_ele = &sw_buf->elem[0];
931 *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
932 }
933
934 ice_aq_alloc_free_vsi_list_exit:
935 ice_free(hw, sw_buf);
936 return status;
937 }
938
939 /**
940 * ice_aq_set_storm_ctrl - Sets storm control configuration
941 * @hw: pointer to the HW struct
942 * @bcast_thresh: represents the upper threshold for broadcast storm control
943 * @mcast_thresh: represents the upper threshold for multicast storm control
944 * @ctl_bitmask: storm control knobs
945 *
946 * Sets the storm control configuration (0x0280)
947 */
948 int
ice_aq_set_storm_ctrl(struct ice_hw * hw,u32 bcast_thresh,u32 mcast_thresh,u32 ctl_bitmask)949 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
950 u32 ctl_bitmask)
951 {
952 struct ice_aqc_storm_cfg *cmd;
953 struct ice_aq_desc desc;
954
955 cmd = &desc.params.storm_conf;
956
957 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
958
959 cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
960 cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
961 cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
962
963 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
964 }
965
966 /**
967 * ice_aq_get_storm_ctrl - gets storm control configuration
968 * @hw: pointer to the HW struct
969 * @bcast_thresh: represents the upper threshold for broadcast storm control
970 * @mcast_thresh: represents the upper threshold for multicast storm control
971 * @ctl_bitmask: storm control knobs
972 *
973 * Gets the storm control configuration (0x0281)
974 */
975 int
ice_aq_get_storm_ctrl(struct ice_hw * hw,u32 * bcast_thresh,u32 * mcast_thresh,u32 * ctl_bitmask)976 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
977 u32 *ctl_bitmask)
978 {
979 struct ice_aq_desc desc;
980 int status;
981
982 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
983
984 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
985 if (!status) {
986 struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
987
988 if (bcast_thresh)
989 *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
990 ICE_AQ_THRESHOLD_M;
991 if (mcast_thresh)
992 *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
993 ICE_AQ_THRESHOLD_M;
994 if (ctl_bitmask)
995 *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
996 }
997
998 return status;
999 }
1000
1001 /**
1002 * ice_aq_sw_rules - add/update/remove switch rules
1003 * @hw: pointer to the HW struct
1004 * @rule_list: pointer to switch rule population list
1005 * @rule_list_sz: total size of the rule list in bytes
1006 * @num_rules: number of switch rules in the rule_list
1007 * @opc: switch rules population command type - pass in the command opcode
1008 * @cd: pointer to command details structure or NULL
1009 *
1010 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1011 */
1012 int
ice_aq_sw_rules(struct ice_hw * hw,void * rule_list,u16 rule_list_sz,u8 num_rules,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1013 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1014 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1015 {
1016 struct ice_aq_desc desc;
1017 int status;
1018
1019 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1020
1021 if (opc != ice_aqc_opc_add_sw_rules &&
1022 opc != ice_aqc_opc_update_sw_rules &&
1023 opc != ice_aqc_opc_remove_sw_rules)
1024 return ICE_ERR_PARAM;
1025
1026 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1027
1028 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1029 desc.params.sw_rules.num_rules_fltr_entry_index =
1030 CPU_TO_LE16(num_rules);
1031 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1032 if (opc != ice_aqc_opc_add_sw_rules &&
1033 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1034 status = ICE_ERR_DOES_NOT_EXIST;
1035
1036 return status;
1037 }
1038
1039 /* ice_init_port_info - Initialize port_info with switch configuration data
1040 * @pi: pointer to port_info
1041 * @vsi_port_num: VSI number or port number
1042 * @type: Type of switch element (port or VSI)
1043 * @swid: switch ID of the switch the element is attached to
1044 * @pf_vf_num: PF or VF number
1045 * @is_vf: true if the element is a VF, false otherwise
1046 */
1047 static void
ice_init_port_info(struct ice_port_info * pi,u16 vsi_port_num,u8 type,u16 swid,u16 pf_vf_num,bool is_vf)1048 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
1049 u16 swid, u16 pf_vf_num, bool is_vf)
1050 {
1051 switch (type) {
1052 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1053 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1054 pi->sw_id = swid;
1055 pi->pf_vf_num = pf_vf_num;
1056 pi->is_vf = is_vf;
1057 break;
1058 default:
1059 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
1060 break;
1061 }
1062 }
1063
1064 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1065 * @hw: pointer to the hardware structure
1066 */
ice_get_initial_sw_cfg(struct ice_hw * hw)1067 int ice_get_initial_sw_cfg(struct ice_hw *hw)
1068 {
1069 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
1070 u8 num_total_ports;
1071 u16 req_desc = 0;
1072 u16 num_elems;
1073 int status;
1074 u8 j = 0;
1075 u16 i;
1076
1077 num_total_ports = 1;
1078
1079 rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
1080 ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1081
1082 if (!rbuf)
1083 return ICE_ERR_NO_MEMORY;
1084
1085 /* Multiple calls to ice_aq_get_sw_cfg may be required
1086 * to get all the switch configuration information. The need
1087 * for additional calls is indicated by ice_aq_get_sw_cfg
1088 * writing a non-zero value in req_desc
1089 */
1090 do {
1091 struct ice_aqc_get_sw_cfg_resp_elem *ele;
1092
1093 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1094 &req_desc, &num_elems, NULL);
1095
1096 if (status)
1097 break;
1098
1099 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
1100 u16 pf_vf_num, swid, vsi_port_num;
1101 bool is_vf = false;
1102 u8 res_type;
1103
1104 vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1105 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1106
1107 pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1108 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1109
1110 swid = LE16_TO_CPU(ele->swid);
1111
1112 if (LE16_TO_CPU(ele->pf_vf_num) &
1113 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1114 is_vf = true;
1115
1116 res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
1117 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
1118
1119 switch (res_type) {
1120 case ICE_AQC_GET_SW_CONF_RESP_VSI:
1121 if (hw->fw_vsi_num != ICE_DFLT_VSI_INVAL)
1122 ice_debug(hw, ICE_DBG_SW, "fw_vsi_num %d -> %d\n",
1123 hw->fw_vsi_num, vsi_port_num);
1124 hw->fw_vsi_num = vsi_port_num;
1125 break;
1126 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1127 case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1128 if (j == num_total_ports) {
1129 ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
1130 status = ICE_ERR_CFG;
1131 goto out;
1132 }
1133 ice_init_port_info(hw->port_info,
1134 vsi_port_num, res_type, swid,
1135 pf_vf_num, is_vf);
1136 j++;
1137 break;
1138 default:
1139 break;
1140 }
1141 }
1142 } while (req_desc && !status);
1143
1144 out:
1145 ice_free(hw, rbuf);
1146 return status;
1147 }
1148
1149 /**
1150 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1151 * @hw: pointer to the hardware structure
1152 * @fi: filter info structure to fill/update
1153 *
1154 * This helper function populates the lb_en and lan_en elements of the provided
1155 * ice_fltr_info struct using the switch's type and characteristics of the
1156 * switch rule being configured.
1157 */
ice_fill_sw_info(struct ice_hw * hw,struct ice_fltr_info * fi)1158 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1159 {
1160 fi->lb_en = false;
1161 fi->lan_en = false;
1162 if ((fi->flag & ICE_FLTR_TX) &&
1163 (fi->fltr_act == ICE_FWD_TO_VSI ||
1164 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1165 fi->fltr_act == ICE_FWD_TO_Q ||
1166 fi->fltr_act == ICE_FWD_TO_QGRP)) {
1167 /* Setting LB for prune actions will result in replicated
1168 * packets to the internal switch that will be dropped.
1169 */
1170 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1171 fi->lb_en = true;
1172
1173 /* Set lan_en to TRUE if
1174 * 1. The switch is a VEB AND
1175 * 2
1176 * 2.1 The lookup is a directional lookup like ethertype,
1177 * promiscuous, ethertype-MAC, promiscuous-VLAN
1178 * and default-port OR
1179 * 2.2 The lookup is VLAN, OR
1180 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1181 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1182 *
1183 * OR
1184 *
1185 * The switch is a VEPA.
1186 *
1187 * In all other cases, the LAN enable has to be set to false.
1188 */
1189
1190 if (hw->evb_veb) {
1191 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1192 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1193 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1194 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1195 fi->lkup_type == ICE_SW_LKUP_DFLT ||
1196 fi->lkup_type == ICE_SW_LKUP_VLAN ||
1197 (fi->lkup_type == ICE_SW_LKUP_MAC &&
1198 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1199 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1200 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr))) {
1201 if (!fi->fltVeb_en)
1202 fi->lan_en = true;
1203 }
1204 } else {
1205 fi->lan_en = true;
1206 }
1207 }
1208 /* To be able to receive packets coming from the VF on the same PF,
1209 * unicast filter needs to be added without LB_EN bit
1210 */
1211 if (fi->flag & ICE_FLTR_RX_LB) {
1212 fi->lb_en = false;
1213 fi->lan_en = true;
1214 }
1215 }
1216
1217 /**
1218 * ice_fill_sw_rule - Helper function to fill switch rule structure
1219 * @hw: pointer to the hardware structure
1220 * @f_info: entry containing packet forwarding information
1221 * @s_rule: switch rule structure to be filled in based on mac_entry
1222 * @opc: switch rules population command type - pass in the command opcode
1223 */
1224 static void
ice_fill_sw_rule(struct ice_hw * hw,struct ice_fltr_info * f_info,struct ice_sw_rule_lkup_rx_tx * s_rule,enum ice_adminq_opc opc)1225 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1226 struct ice_sw_rule_lkup_rx_tx *s_rule,
1227 enum ice_adminq_opc opc)
1228 {
1229 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1230 u16 vlan_tpid = ICE_ETH_P_8021Q;
1231 void *daddr = NULL;
1232 u16 eth_hdr_sz;
1233 u8 *eth_hdr;
1234 u32 act = 0;
1235 __be16 *off;
1236 u8 q_rgn;
1237
1238 if (opc == ice_aqc_opc_remove_sw_rules) {
1239 s_rule->act = 0;
1240 s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1241 s_rule->hdr_len = 0;
1242 return;
1243 }
1244
1245 eth_hdr_sz = sizeof(dummy_eth_header);
1246 eth_hdr = s_rule->hdr_data;
1247
1248 /* initialize the ether header with a dummy header */
1249 ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1250 ice_fill_sw_info(hw, f_info);
1251
1252 switch (f_info->fltr_act) {
1253 case ICE_FWD_TO_VSI:
1254 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1255 ICE_SINGLE_ACT_VSI_ID_M;
1256 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1257 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1258 ICE_SINGLE_ACT_VALID_BIT;
1259 break;
1260 case ICE_FWD_TO_VSI_LIST:
1261 act |= ICE_SINGLE_ACT_VSI_LIST;
1262 act |= (f_info->fwd_id.vsi_list_id <<
1263 ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1264 ICE_SINGLE_ACT_VSI_LIST_ID_M;
1265 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1266 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1267 ICE_SINGLE_ACT_VALID_BIT;
1268 break;
1269 case ICE_FWD_TO_Q:
1270 act |= ICE_SINGLE_ACT_TO_Q;
1271 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1272 ICE_SINGLE_ACT_Q_INDEX_M;
1273 break;
1274 case ICE_DROP_PACKET:
1275 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1276 ICE_SINGLE_ACT_VALID_BIT;
1277 break;
1278 case ICE_FWD_TO_QGRP:
1279 q_rgn = f_info->qgrp_size > 0 ?
1280 (u8)ice_ilog2(f_info->qgrp_size) : 0;
1281 act |= ICE_SINGLE_ACT_TO_Q;
1282 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1283 ICE_SINGLE_ACT_Q_INDEX_M;
1284 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1285 ICE_SINGLE_ACT_Q_REGION_M;
1286 break;
1287 default:
1288 return;
1289 }
1290
1291 if (f_info->lb_en)
1292 act |= ICE_SINGLE_ACT_LB_ENABLE;
1293 if (f_info->lan_en)
1294 act |= ICE_SINGLE_ACT_LAN_ENABLE;
1295
1296 switch (f_info->lkup_type) {
1297 case ICE_SW_LKUP_MAC:
1298 daddr = f_info->l_data.mac.mac_addr;
1299 break;
1300 case ICE_SW_LKUP_VLAN:
1301 vlan_id = f_info->l_data.vlan.vlan_id;
1302 if (f_info->l_data.vlan.tpid_valid)
1303 vlan_tpid = f_info->l_data.vlan.tpid;
1304 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1305 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1306 act |= ICE_SINGLE_ACT_PRUNE;
1307 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1308 }
1309 break;
1310 case ICE_SW_LKUP_ETHERTYPE_MAC:
1311 daddr = f_info->l_data.ethertype_mac.mac_addr;
1312 /* fall-through */
1313 case ICE_SW_LKUP_ETHERTYPE:
1314 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1315 *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1316 break;
1317 case ICE_SW_LKUP_MAC_VLAN:
1318 daddr = f_info->l_data.mac_vlan.mac_addr;
1319 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1320 break;
1321 case ICE_SW_LKUP_PROMISC_VLAN:
1322 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1323 /* fall-through */
1324 case ICE_SW_LKUP_PROMISC:
1325 daddr = f_info->l_data.mac_vlan.mac_addr;
1326 break;
1327 default:
1328 break;
1329 }
1330
1331 s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
1332 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1333 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1334
1335 /* Recipe set depending on lookup type */
1336 s_rule->recipe_id = CPU_TO_LE16(f_info->lkup_type);
1337 s_rule->src = CPU_TO_LE16(f_info->src);
1338 s_rule->act = CPU_TO_LE32(act);
1339
1340 if (daddr)
1341 ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1342 ICE_NONDMA_TO_NONDMA);
1343
1344 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1345 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1346 *off = CPU_TO_BE16(vlan_id);
1347 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1348 *off = CPU_TO_BE16(vlan_tpid);
1349 }
1350
1351 /* Create the switch rule with the final dummy Ethernet header */
1352 if (opc != ice_aqc_opc_update_sw_rules)
1353 s_rule->hdr_len = CPU_TO_LE16(eth_hdr_sz);
1354 }
1355
1356 /**
1357 * ice_add_marker_act
1358 * @hw: pointer to the hardware structure
1359 * @m_ent: the management entry for which sw marker needs to be added
1360 * @sw_marker: sw marker to tag the Rx descriptor with
1361 * @l_id: large action resource ID
1362 *
1363 * Create a large action to hold software marker and update the switch rule
1364 * entry pointed by m_ent with newly created large action
1365 */
1366 static int
ice_add_marker_act(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_ent,u16 sw_marker,u16 l_id)1367 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1368 u16 sw_marker, u16 l_id)
1369 {
1370 struct ice_sw_rule_lkup_rx_tx *rx_tx;
1371 struct ice_sw_rule_lg_act *lg_act;
1372 /* For software marker we need 3 large actions
1373 * 1. FWD action: FWD TO VSI or VSI LIST
1374 * 2. GENERIC VALUE action to hold the profile ID
1375 * 3. GENERIC VALUE action to hold the software marker ID
1376 */
1377 const u16 num_lg_acts = 3;
1378 u16 lg_act_size;
1379 u16 rules_size;
1380 int status;
1381 u32 act;
1382 u16 id;
1383
1384 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1385 return ICE_ERR_PARAM;
1386
1387 /* Create two back-to-back switch rules and submit them to the HW using
1388 * one memory buffer:
1389 * 1. Large Action
1390 * 2. Look up Tx Rx
1391 */
1392 lg_act_size = (u16)ice_struct_size(lg_act, act, num_lg_acts);
1393 rules_size = lg_act_size +
1394 ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1395 lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1396 if (!lg_act)
1397 return ICE_ERR_NO_MEMORY;
1398
1399 rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act + lg_act_size);
1400
1401 /* Fill in the first switch rule i.e. large action */
1402 lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1403 lg_act->index = CPU_TO_LE16(l_id);
1404 lg_act->size = CPU_TO_LE16(num_lg_acts);
1405
1406 /* First action VSI forwarding or VSI list forwarding depending on how
1407 * many VSIs
1408 */
1409 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1410 m_ent->fltr_info.fwd_id.hw_vsi_id;
1411
1412 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1413 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
1414 if (m_ent->vsi_count > 1)
1415 act |= ICE_LG_ACT_VSI_LIST;
1416 lg_act->act[0] = CPU_TO_LE32(act);
1417
1418 /* Second action descriptor type */
1419 act = ICE_LG_ACT_GENERIC;
1420
1421 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1422 lg_act->act[1] = CPU_TO_LE32(act);
1423
1424 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1425 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1426
1427 /* Third action Marker value */
1428 act |= ICE_LG_ACT_GENERIC;
1429 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1430 ICE_LG_ACT_GENERIC_VALUE_M;
1431
1432 lg_act->act[2] = CPU_TO_LE32(act);
1433
1434 /* call the fill switch rule to fill the lookup Tx Rx structure */
1435 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1436 ice_aqc_opc_update_sw_rules);
1437
1438 /* Update the action to point to the large action ID */
1439 rx_tx->act = CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1440 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1441 ICE_SINGLE_ACT_PTR_VAL_M));
1442
1443 /* Use the filter rule ID of the previously created rule with single
1444 * act. Once the update happens, hardware will treat this as large
1445 * action
1446 */
1447 rx_tx->index = CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1448
1449 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1450 ice_aqc_opc_update_sw_rules, NULL);
1451 if (!status) {
1452 m_ent->lg_act_idx = l_id;
1453 m_ent->sw_marker_id = sw_marker;
1454 }
1455
1456 ice_free(hw, lg_act);
1457 return status;
1458 }
1459
1460 /**
1461 * ice_add_counter_act - add/update filter rule with counter action
1462 * @hw: pointer to the hardware structure
1463 * @m_ent: the management entry for which counter needs to be added
1464 * @counter_id: VLAN counter ID returned as part of allocate resource
1465 * @l_id: large action resource ID
1466 */
1467 static int
ice_add_counter_act(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_ent,u16 counter_id,u16 l_id)1468 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1469 u16 counter_id, u16 l_id)
1470 {
1471 struct ice_sw_rule_lkup_rx_tx *rx_tx;
1472 struct ice_sw_rule_lg_act *lg_act;
1473 /* 2 actions will be added while adding a large action counter */
1474 const int num_acts = 2;
1475 u16 lg_act_size;
1476 u16 rules_size;
1477 u16 f_rule_id;
1478 u32 act;
1479 int status;
1480 u16 id;
1481
1482 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1483 return ICE_ERR_PARAM;
1484
1485 /* Create two back-to-back switch rules and submit them to the HW using
1486 * one memory buffer:
1487 * 1. Large Action
1488 * 2. Look up Tx Rx
1489 */
1490 lg_act_size = (u16)ice_struct_size(lg_act, act, num_acts);
1491 rules_size = lg_act_size +
1492 ice_struct_size(rx_tx, hdr_data, DUMMY_ETH_HDR_LEN);
1493 lg_act = (struct ice_sw_rule_lg_act *)ice_malloc(hw, rules_size);
1494 if (!lg_act)
1495 return ICE_ERR_NO_MEMORY;
1496
1497 rx_tx = (struct ice_sw_rule_lkup_rx_tx *)((u8 *)lg_act +
1498 lg_act_size);
1499
1500 /* Fill in the first switch rule i.e. large action */
1501 lg_act->hdr.type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1502 lg_act->index = CPU_TO_LE16(l_id);
1503 lg_act->size = CPU_TO_LE16(num_acts);
1504
1505 /* First action VSI forwarding or VSI list forwarding depending on how
1506 * many VSIs
1507 */
1508 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1509 m_ent->fltr_info.fwd_id.hw_vsi_id;
1510
1511 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1512 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1513 ICE_LG_ACT_VSI_LIST_ID_M;
1514 if (m_ent->vsi_count > 1)
1515 act |= ICE_LG_ACT_VSI_LIST;
1516 lg_act->act[0] = CPU_TO_LE32(act);
1517
1518 /* Second action counter ID */
1519 act = ICE_LG_ACT_STAT_COUNT;
1520 act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1521 ICE_LG_ACT_STAT_COUNT_M;
1522 lg_act->act[1] = CPU_TO_LE32(act);
1523
1524 /* call the fill switch rule to fill the lookup Tx Rx structure */
1525 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1526 ice_aqc_opc_update_sw_rules);
1527
1528 act = ICE_SINGLE_ACT_PTR;
1529 act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1530 rx_tx->act = CPU_TO_LE32(act);
1531
1532 /* Use the filter rule ID of the previously created rule with single
1533 * act. Once the update happens, hardware will treat this as large
1534 * action
1535 */
1536 f_rule_id = m_ent->fltr_info.fltr_rule_id;
1537 rx_tx->index = CPU_TO_LE16(f_rule_id);
1538
1539 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1540 ice_aqc_opc_update_sw_rules, NULL);
1541 if (!status) {
1542 m_ent->lg_act_idx = l_id;
1543 m_ent->counter_index = (u8)counter_id;
1544 }
1545
1546 ice_free(hw, lg_act);
1547 return status;
1548 }
1549
1550 /**
1551 * ice_create_vsi_list_map
1552 * @hw: pointer to the hardware structure
1553 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1554 * @num_vsi: number of VSI handles in the array
1555 * @vsi_list_id: VSI list ID generated as part of allocate resource
1556 *
1557 * Helper function to create a new entry of VSI list ID to VSI mapping
1558 * using the given VSI list ID
1559 */
1560 static struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id)1561 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1562 u16 vsi_list_id)
1563 {
1564 struct ice_switch_info *sw = hw->switch_info;
1565 struct ice_vsi_list_map_info *v_map;
1566 int i;
1567
1568 v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
1569 if (!v_map)
1570 return NULL;
1571
1572 v_map->vsi_list_id = vsi_list_id;
1573 v_map->ref_cnt = 1;
1574 for (i = 0; i < num_vsi; i++)
1575 ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1576
1577 LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1578 return v_map;
1579 }
1580
1581 /**
1582 * ice_update_vsi_list_rule
1583 * @hw: pointer to the hardware structure
1584 * @vsi_handle_arr: array of VSI handles to form a VSI list
1585 * @num_vsi: number of VSI handles in the array
1586 * @vsi_list_id: VSI list ID generated as part of allocate resource
1587 * @remove: Boolean value to indicate if this is a remove action
1588 * @opc: switch rules population command type - pass in the command opcode
1589 * @lkup_type: lookup type of the filter
1590 *
1591 * Call AQ command to add a new switch rule or update existing switch rule
1592 * using the given VSI list ID
1593 */
1594 static int
ice_update_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id,bool remove,enum ice_adminq_opc opc,enum ice_sw_lkup_type lkup_type)1595 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1596 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1597 enum ice_sw_lkup_type lkup_type)
1598 {
1599 struct ice_sw_rule_vsi_list *s_rule;
1600 u16 s_rule_size;
1601 u16 rule_type;
1602 int status;
1603 int i;
1604
1605 if (!num_vsi)
1606 return ICE_ERR_PARAM;
1607
1608 if (lkup_type == ICE_SW_LKUP_MAC ||
1609 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1610 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1611 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1612 lkup_type == ICE_SW_LKUP_PROMISC ||
1613 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1614 lkup_type == ICE_SW_LKUP_DFLT ||
1615 lkup_type == ICE_SW_LKUP_LAST)
1616 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1617 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1618 else if (lkup_type == ICE_SW_LKUP_VLAN)
1619 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1620 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1621 else
1622 return ICE_ERR_PARAM;
1623
1624 s_rule_size = (u16)ice_struct_size(s_rule, vsi, num_vsi);
1625 s_rule = (struct ice_sw_rule_vsi_list *)ice_malloc(hw, s_rule_size);
1626 if (!s_rule)
1627 return ICE_ERR_NO_MEMORY;
1628 for (i = 0; i < num_vsi; i++) {
1629 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1630 status = ICE_ERR_PARAM;
1631 goto exit;
1632 }
1633 /* AQ call requires hw_vsi_id(s) */
1634 s_rule->vsi[i] =
1635 CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1636 }
1637
1638 s_rule->hdr.type = CPU_TO_LE16(rule_type);
1639 s_rule->number_vsi = CPU_TO_LE16(num_vsi);
1640 s_rule->index = CPU_TO_LE16(vsi_list_id);
1641
1642 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1643
1644 exit:
1645 ice_free(hw, s_rule);
1646 return status;
1647 }
1648
1649 /**
1650 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1651 * @hw: pointer to the HW struct
1652 * @vsi_handle_arr: array of VSI handles to form a VSI list
1653 * @num_vsi: number of VSI handles in the array
1654 * @vsi_list_id: stores the ID of the VSI list to be created
1655 * @lkup_type: switch rule filter's lookup type
1656 */
1657 static int
ice_create_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type)1658 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1659 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1660 {
1661 int status;
1662
1663 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1664 ice_aqc_opc_alloc_res);
1665 if (status)
1666 return status;
1667
1668 /* Update the newly created VSI list to include the specified VSIs */
1669 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1670 *vsi_list_id, false,
1671 ice_aqc_opc_add_sw_rules, lkup_type);
1672 }
1673
1674 /**
1675 * ice_create_pkt_fwd_rule
1676 * @hw: pointer to the hardware structure
1677 * @recp_list: corresponding filter management list
1678 * @f_entry: entry containing packet forwarding information
1679 *
1680 * Create switch rule with given filter information and add an entry
1681 * to the corresponding filter management list to track this switch rule
1682 * and VSI mapping
1683 */
1684 static int
ice_create_pkt_fwd_rule(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)1685 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1686 struct ice_fltr_list_entry *f_entry)
1687 {
1688 struct ice_fltr_mgmt_list_entry *fm_entry;
1689 struct ice_sw_rule_lkup_rx_tx *s_rule;
1690 int status;
1691
1692 s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1693 ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1694 DUMMY_ETH_HDR_LEN));
1695 if (!s_rule)
1696 return ICE_ERR_NO_MEMORY;
1697 fm_entry = (struct ice_fltr_mgmt_list_entry *)
1698 ice_malloc(hw, sizeof(*fm_entry));
1699 if (!fm_entry) {
1700 status = ICE_ERR_NO_MEMORY;
1701 goto ice_create_pkt_fwd_rule_exit;
1702 }
1703
1704 fm_entry->fltr_info = f_entry->fltr_info;
1705
1706 /* Initialize all the fields for the management entry */
1707 fm_entry->vsi_count = 1;
1708 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1709 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1710 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1711
1712 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1713 ice_aqc_opc_add_sw_rules);
1714
1715 status = ice_aq_sw_rules(hw, s_rule,
1716 ice_struct_size(s_rule, hdr_data,
1717 DUMMY_ETH_HDR_LEN),
1718 1, ice_aqc_opc_add_sw_rules, NULL);
1719 if (status) {
1720 ice_free(hw, fm_entry);
1721 goto ice_create_pkt_fwd_rule_exit;
1722 }
1723
1724 f_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1725 fm_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->index);
1726
1727 /* The book keeping entries will get removed when base driver
1728 * calls remove filter AQ command
1729 */
1730 LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
1731
1732 ice_create_pkt_fwd_rule_exit:
1733 ice_free(hw, s_rule);
1734 return status;
1735 }
1736
1737 /**
1738 * ice_update_pkt_fwd_rule
1739 * @hw: pointer to the hardware structure
1740 * @f_info: filter information for switch rule
1741 *
1742 * Call AQ command to update a previously created switch rule with a
1743 * VSI list ID
1744 */
1745 static int
ice_update_pkt_fwd_rule(struct ice_hw * hw,struct ice_fltr_info * f_info)1746 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1747 {
1748 struct ice_sw_rule_lkup_rx_tx *s_rule;
1749 int status;
1750
1751 s_rule = (struct ice_sw_rule_lkup_rx_tx *)
1752 ice_malloc(hw, ice_struct_size(s_rule, hdr_data,
1753 DUMMY_ETH_HDR_LEN));
1754 if (!s_rule)
1755 return ICE_ERR_NO_MEMORY;
1756
1757 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
1758
1759 s_rule->index = CPU_TO_LE16(f_info->fltr_rule_id);
1760
1761 /* Update switch rule with new rule set to forward VSI list */
1762 status = ice_aq_sw_rules(hw, s_rule,
1763 ice_struct_size(s_rule, hdr_data,
1764 DUMMY_ETH_HDR_LEN),
1765 1, ice_aqc_opc_update_sw_rules, NULL);
1766
1767 ice_free(hw, s_rule);
1768 return status;
1769 }
1770
1771 /**
1772 * ice_update_sw_rule_bridge_mode
1773 * @hw: pointer to the HW struct
1774 *
1775 * Updates unicast switch filter rules based on VEB/VEPA mode
1776 */
ice_update_sw_rule_bridge_mode(struct ice_hw * hw)1777 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
1778 {
1779 struct ice_fltr_mgmt_list_entry *fm_entry;
1780 struct LIST_HEAD_TYPE *rule_head;
1781 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1782 struct ice_switch_info *sw;
1783 int status = 0;
1784
1785 sw = hw->switch_info;
1786
1787 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
1788 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
1789
1790 ice_acquire_lock(rule_lock);
1791 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
1792 list_entry) {
1793 struct ice_fltr_info *fi = &fm_entry->fltr_info;
1794 u8 *addr = fi->l_data.mac.mac_addr;
1795
1796 /* Update unicast Tx rules to reflect the selected
1797 * VEB/VEPA mode
1798 */
1799 if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
1800 (fi->fltr_act == ICE_FWD_TO_VSI ||
1801 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1802 fi->fltr_act == ICE_FWD_TO_Q ||
1803 fi->fltr_act == ICE_FWD_TO_QGRP)) {
1804 status = ice_update_pkt_fwd_rule(hw, fi);
1805 if (status)
1806 break;
1807 }
1808 }
1809
1810 ice_release_lock(rule_lock);
1811
1812 return status;
1813 }
1814
1815 /**
1816 * ice_add_update_vsi_list
1817 * @hw: pointer to the hardware structure
1818 * @m_entry: pointer to current filter management list entry
1819 * @cur_fltr: filter information from the book keeping entry
1820 * @new_fltr: filter information with the new VSI to be added
1821 *
1822 * Call AQ command to add or update previously created VSI list with new VSI.
1823 *
1824 * Helper function to do book keeping associated with adding filter information
1825 * The algorithm to do the book keeping is described below :
1826 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
1827 * if only one VSI has been added till now
1828 * Allocate a new VSI list and add two VSIs
1829 * to this list using switch rule command
1830 * Update the previously created switch rule with the
1831 * newly created VSI list ID
1832 * if a VSI list was previously created
1833 * Add the new VSI to the previously created VSI list set
1834 * using the update switch rule command
1835 */
1836 static int
ice_add_update_vsi_list(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_entry,struct ice_fltr_info * cur_fltr,struct ice_fltr_info * new_fltr)1837 ice_add_update_vsi_list(struct ice_hw *hw,
1838 struct ice_fltr_mgmt_list_entry *m_entry,
1839 struct ice_fltr_info *cur_fltr,
1840 struct ice_fltr_info *new_fltr)
1841 {
1842 u16 vsi_list_id = 0;
1843 int status = 0;
1844
1845 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
1846 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
1847 return ICE_ERR_NOT_IMPL;
1848
1849 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
1850 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
1851 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
1852 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
1853 return ICE_ERR_NOT_IMPL;
1854
1855 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
1856 /* Only one entry existed in the mapping and it was not already
1857 * a part of a VSI list. So, create a VSI list with the old and
1858 * new VSIs.
1859 */
1860 struct ice_fltr_info tmp_fltr;
1861 u16 vsi_handle_arr[2];
1862
1863 /* A rule already exists with the new VSI being added */
1864 if (cur_fltr->vsi_handle == new_fltr->vsi_handle)
1865 return ICE_ERR_ALREADY_EXISTS;
1866
1867 vsi_handle_arr[0] = cur_fltr->vsi_handle;
1868 vsi_handle_arr[1] = new_fltr->vsi_handle;
1869 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
1870 &vsi_list_id,
1871 new_fltr->lkup_type);
1872 if (status)
1873 return status;
1874
1875 tmp_fltr = *new_fltr;
1876 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
1877 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
1878 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
1879 /* Update the previous switch rule of "MAC forward to VSI" to
1880 * "MAC fwd to VSI list"
1881 */
1882 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
1883 if (status)
1884 return status;
1885
1886 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
1887 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
1888 m_entry->vsi_list_info =
1889 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
1890 vsi_list_id);
1891
1892 if (!m_entry->vsi_list_info)
1893 return ICE_ERR_NO_MEMORY;
1894
1895 /* If this entry was large action then the large action needs
1896 * to be updated to point to FWD to VSI list
1897 */
1898 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
1899 status =
1900 ice_add_marker_act(hw, m_entry,
1901 m_entry->sw_marker_id,
1902 m_entry->lg_act_idx);
1903 } else {
1904 u16 vsi_handle = new_fltr->vsi_handle;
1905 enum ice_adminq_opc opcode;
1906
1907 if (!m_entry->vsi_list_info)
1908 return ICE_ERR_CFG;
1909
1910 /* A rule already exists with the new VSI being added */
1911 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
1912 return ICE_ERR_ALREADY_EXISTS;
1913
1914 /* Update the previously created VSI list set with
1915 * the new VSI ID passed in
1916 */
1917 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
1918 opcode = ice_aqc_opc_update_sw_rules;
1919
1920 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
1921 vsi_list_id, false, opcode,
1922 new_fltr->lkup_type);
1923 /* update VSI list mapping info with new VSI ID */
1924 if (!status)
1925 ice_set_bit(vsi_handle,
1926 m_entry->vsi_list_info->vsi_map);
1927 }
1928 if (!status)
1929 m_entry->vsi_count++;
1930 return status;
1931 }
1932
1933 /**
1934 * ice_find_rule_entry - Search a rule entry
1935 * @list_head: head of rule list
1936 * @f_info: rule information
1937 *
1938 * Helper function to search for a given rule entry
1939 * Returns pointer to entry storing the rule if found
1940 */
1941 static struct ice_fltr_mgmt_list_entry *
ice_find_rule_entry(struct LIST_HEAD_TYPE * list_head,struct ice_fltr_info * f_info)1942 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
1943 struct ice_fltr_info *f_info)
1944 {
1945 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
1946
1947 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
1948 list_entry) {
1949 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
1950 sizeof(f_info->l_data)) &&
1951 f_info->flag == list_itr->fltr_info.flag) {
1952 ret = list_itr;
1953 break;
1954 }
1955 }
1956 return ret;
1957 }
1958
1959 /**
1960 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
1961 * @recp_list: VSI lists needs to be searched
1962 * @vsi_handle: VSI handle to be found in VSI list
1963 * @vsi_list_id: VSI list ID found containing vsi_handle
1964 *
1965 * Helper function to search a VSI list with single entry containing given VSI
1966 * handle element. This can be extended further to search VSI list with more
1967 * than 1 vsi_count. Returns pointer to VSI list entry if found.
1968 */
1969 struct ice_vsi_list_map_info *
ice_find_vsi_list_entry(struct ice_sw_recipe * recp_list,u16 vsi_handle,u16 * vsi_list_id)1970 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
1971 u16 *vsi_list_id)
1972 {
1973 struct ice_vsi_list_map_info *map_info = NULL;
1974 struct LIST_HEAD_TYPE *list_head;
1975
1976 list_head = &recp_list->filt_rules;
1977 if (recp_list->adv_rule) {
1978 struct ice_adv_fltr_mgmt_list_entry *list_itr;
1979
1980 LIST_FOR_EACH_ENTRY(list_itr, list_head,
1981 ice_adv_fltr_mgmt_list_entry,
1982 list_entry) {
1983 if (list_itr->vsi_list_info) {
1984 map_info = list_itr->vsi_list_info;
1985 if (ice_is_bit_set(map_info->vsi_map,
1986 vsi_handle)) {
1987 *vsi_list_id = map_info->vsi_list_id;
1988 return map_info;
1989 }
1990 }
1991 }
1992 } else {
1993 struct ice_fltr_mgmt_list_entry *list_itr;
1994
1995 LIST_FOR_EACH_ENTRY(list_itr, list_head,
1996 ice_fltr_mgmt_list_entry,
1997 list_entry) {
1998 if (list_itr->vsi_count == 1 &&
1999 list_itr->vsi_list_info) {
2000 map_info = list_itr->vsi_list_info;
2001 if (ice_is_bit_set(map_info->vsi_map,
2002 vsi_handle)) {
2003 *vsi_list_id = map_info->vsi_list_id;
2004 return map_info;
2005 }
2006 }
2007 }
2008 }
2009 return NULL;
2010 }
2011
2012 /**
2013 * ice_add_rule_internal - add rule for a given lookup type
2014 * @hw: pointer to the hardware structure
2015 * @recp_list: recipe list for which rule has to be added
2016 * @lport: logic port number on which function add rule
2017 * @f_entry: structure containing MAC forwarding information
2018 *
2019 * Adds or updates the rule lists for a given recipe
2020 */
2021 static int
ice_add_rule_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,u8 lport,struct ice_fltr_list_entry * f_entry)2022 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2023 u8 lport, struct ice_fltr_list_entry *f_entry)
2024 {
2025 struct ice_fltr_info *new_fltr, *cur_fltr;
2026 struct ice_fltr_mgmt_list_entry *m_entry;
2027 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2028 int status = 0;
2029
2030 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2031 return ICE_ERR_PARAM;
2032
2033 /* Load the hw_vsi_id only if the fwd action is fwd to VSI */
2034 if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2035 f_entry->fltr_info.fwd_id.hw_vsi_id =
2036 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2037
2038 rule_lock = &recp_list->filt_rule_lock;
2039
2040 ice_acquire_lock(rule_lock);
2041 new_fltr = &f_entry->fltr_info;
2042 if (new_fltr->flag & ICE_FLTR_RX)
2043 new_fltr->src = lport;
2044 else if (new_fltr->flag & (ICE_FLTR_TX | ICE_FLTR_RX_LB))
2045 new_fltr->src =
2046 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2047
2048 m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2049 if (!m_entry) {
2050 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2051 goto exit_add_rule_internal;
2052 }
2053
2054 cur_fltr = &m_entry->fltr_info;
2055 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
2056
2057 exit_add_rule_internal:
2058 ice_release_lock(rule_lock);
2059 return status;
2060 }
2061
2062 /**
2063 * ice_remove_vsi_list_rule
2064 * @hw: pointer to the hardware structure
2065 * @vsi_list_id: VSI list ID generated as part of allocate resource
2066 * @lkup_type: switch rule filter lookup type
2067 *
2068 * The VSI list should be emptied before this function is called to remove the
2069 * VSI list.
2070 */
2071 static int
ice_remove_vsi_list_rule(struct ice_hw * hw,u16 vsi_list_id,enum ice_sw_lkup_type lkup_type)2072 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
2073 enum ice_sw_lkup_type lkup_type)
2074 {
2075 /* Free the vsi_list resource that we allocated. It is assumed that the
2076 * list is empty at this point.
2077 */
2078 return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2079 ice_aqc_opc_free_res);
2080 }
2081
2082 /**
2083 * ice_rem_update_vsi_list
2084 * @hw: pointer to the hardware structure
2085 * @vsi_handle: VSI handle of the VSI to remove
2086 * @fm_list: filter management entry for which the VSI list management needs to
2087 * be done
2088 */
2089 static int
ice_rem_update_vsi_list(struct ice_hw * hw,u16 vsi_handle,struct ice_fltr_mgmt_list_entry * fm_list)2090 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2091 struct ice_fltr_mgmt_list_entry *fm_list)
2092 {
2093 enum ice_sw_lkup_type lkup_type;
2094 u16 vsi_list_id;
2095 int status = 0;
2096
2097 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2098 fm_list->vsi_count == 0)
2099 return ICE_ERR_PARAM;
2100
2101 /* A rule with the VSI being removed does not exist */
2102 if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2103 return ICE_ERR_DOES_NOT_EXIST;
2104
2105 lkup_type = fm_list->fltr_info.lkup_type;
2106 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2107 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2108 ice_aqc_opc_update_sw_rules,
2109 lkup_type);
2110 if (status)
2111 return status;
2112
2113 fm_list->vsi_count--;
2114 ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2115
2116 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2117 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2118 struct ice_vsi_list_map_info *vsi_list_info =
2119 fm_list->vsi_list_info;
2120 u16 rem_vsi_handle;
2121
2122 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2123 ICE_MAX_VSI);
2124 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2125 return ICE_ERR_OUT_OF_RANGE;
2126
2127 /* Make sure VSI list is empty before removing it below */
2128 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2129 vsi_list_id, true,
2130 ice_aqc_opc_update_sw_rules,
2131 lkup_type);
2132 if (status)
2133 return status;
2134
2135 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2136 tmp_fltr_info.fwd_id.hw_vsi_id =
2137 ice_get_hw_vsi_num(hw, rem_vsi_handle);
2138 tmp_fltr_info.vsi_handle = rem_vsi_handle;
2139 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2140 if (status) {
2141 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2142 tmp_fltr_info.fwd_id.hw_vsi_id, status);
2143 return status;
2144 }
2145
2146 fm_list->fltr_info = tmp_fltr_info;
2147 }
2148
2149 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2150 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2151 struct ice_vsi_list_map_info *vsi_list_info =
2152 fm_list->vsi_list_info;
2153
2154 /* Remove the VSI list since it is no longer used */
2155 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2156 if (status) {
2157 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
2158 vsi_list_id, status);
2159 return status;
2160 }
2161
2162 LIST_DEL(&vsi_list_info->list_entry);
2163 ice_free(hw, vsi_list_info);
2164 fm_list->vsi_list_info = NULL;
2165 }
2166
2167 return status;
2168 }
2169
2170 /**
2171 * ice_remove_rule_internal - Remove a filter rule of a given type
2172 * @hw: pointer to the hardware structure
2173 * @recp_list: recipe list for which the rule needs to removed
2174 * @f_entry: rule entry containing filter information
2175 */
2176 static int
ice_remove_rule_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)2177 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2178 struct ice_fltr_list_entry *f_entry)
2179 {
2180 struct ice_fltr_mgmt_list_entry *list_elem;
2181 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2182 bool remove_rule = false;
2183 int status = 0;
2184 u16 vsi_handle;
2185
2186 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2187 return ICE_ERR_PARAM;
2188 f_entry->fltr_info.fwd_id.hw_vsi_id =
2189 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2190
2191 rule_lock = &recp_list->filt_rule_lock;
2192 ice_acquire_lock(rule_lock);
2193
2194 list_elem = ice_find_rule_entry(&recp_list->filt_rules,
2195 &f_entry->fltr_info);
2196 if (!list_elem) {
2197 status = ICE_ERR_DOES_NOT_EXIST;
2198 goto exit;
2199 }
2200
2201 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2202 remove_rule = true;
2203 } else if (!list_elem->vsi_list_info) {
2204 status = ICE_ERR_DOES_NOT_EXIST;
2205 goto exit;
2206 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
2207 /* a ref_cnt > 1 indicates that the vsi_list is being
2208 * shared by multiple rules. Decrement the ref_cnt and
2209 * remove this rule, but do not modify the list, as it
2210 * is in-use by other rules.
2211 */
2212 list_elem->vsi_list_info->ref_cnt--;
2213 remove_rule = true;
2214 } else {
2215 /* a ref_cnt of 1 indicates the vsi_list is only used
2216 * by one rule. However, the original removal request is only
2217 * for a single VSI. Update the vsi_list first, and only
2218 * remove the rule if there are no further VSIs in this list.
2219 */
2220 vsi_handle = f_entry->fltr_info.vsi_handle;
2221 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2222 if (status)
2223 goto exit;
2224 /* if VSI count goes to zero after updating the VSI list */
2225 if (list_elem->vsi_count == 0)
2226 remove_rule = true;
2227 }
2228
2229 if (remove_rule) {
2230 /* Remove the lookup rule */
2231 struct ice_sw_rule_lkup_rx_tx *s_rule;
2232
2233 s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2234 ice_malloc(hw, ice_struct_size(s_rule, hdr_data, 0));
2235 if (!s_rule) {
2236 status = ICE_ERR_NO_MEMORY;
2237 goto exit;
2238 }
2239
2240 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2241 ice_aqc_opc_remove_sw_rules);
2242
2243 status = ice_aq_sw_rules(hw, s_rule,
2244 ice_struct_size(s_rule, hdr_data, 0),
2245 1, ice_aqc_opc_remove_sw_rules, NULL);
2246
2247 /* Remove a book keeping from the list */
2248 ice_free(hw, s_rule);
2249
2250 if (status)
2251 goto exit;
2252
2253 LIST_DEL(&list_elem->list_entry);
2254 ice_free(hw, list_elem);
2255 }
2256 exit:
2257 ice_release_lock(rule_lock);
2258 return status;
2259 }
2260
2261 /**
2262 * ice_aq_get_res_alloc - get allocated resources
2263 * @hw: pointer to the HW struct
2264 * @num_entries: pointer to u16 to store the number of resource entries returned
2265 * @buf: pointer to buffer
2266 * @buf_size: size of buf
2267 * @cd: pointer to command details structure or NULL
2268 *
2269 * The caller-supplied buffer must be large enough to store the resource
2270 * information for all resource types. Each resource type is an
2271 * ice_aqc_get_res_resp_elem structure.
2272 */
2273 int
ice_aq_get_res_alloc(struct ice_hw * hw,u16 * num_entries,struct ice_aqc_get_res_resp_elem * buf,u16 buf_size,struct ice_sq_cd * cd)2274 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
2275 struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
2276 struct ice_sq_cd *cd)
2277 {
2278 struct ice_aqc_get_res_alloc *resp;
2279 struct ice_aq_desc desc;
2280 int status;
2281
2282 if (!buf)
2283 return ICE_ERR_BAD_PTR;
2284
2285 if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2286 return ICE_ERR_INVAL_SIZE;
2287
2288 resp = &desc.params.get_res;
2289
2290 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2291 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2292
2293 if (!status && num_entries)
2294 *num_entries = LE16_TO_CPU(resp->resp_elem_num);
2295
2296 return status;
2297 }
2298
2299 /**
2300 * ice_aq_get_res_descs - get allocated resource descriptors
2301 * @hw: pointer to the hardware structure
2302 * @num_entries: number of resource entries in buffer
2303 * @buf: structure to hold response data buffer
2304 * @buf_size: size of buffer
2305 * @res_type: resource type
2306 * @res_shared: is resource shared
2307 * @desc_id: input - first desc ID to start; output - next desc ID
2308 * @cd: pointer to command details structure or NULL
2309 */
2310 int
ice_aq_get_res_descs(struct ice_hw * hw,u16 num_entries,struct ice_aqc_res_elem * buf,u16 buf_size,u16 res_type,bool res_shared,u16 * desc_id,struct ice_sq_cd * cd)2311 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2312 struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
2313 bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
2314 {
2315 struct ice_aqc_get_allocd_res_desc *cmd;
2316 struct ice_aq_desc desc;
2317 int status;
2318
2319 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2320
2321 cmd = &desc.params.get_res_desc;
2322
2323 if (!buf)
2324 return ICE_ERR_PARAM;
2325
2326 if (buf_size != (num_entries * sizeof(*buf)))
2327 return ICE_ERR_PARAM;
2328
2329 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2330
2331 cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2332 ICE_AQC_RES_TYPE_M) | (res_shared ?
2333 ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2334 cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2335
2336 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2337 if (!status)
2338 *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2339
2340 return status;
2341 }
2342
2343 /**
2344 * ice_add_mac_rule - Add a MAC address based filter rule
2345 * @hw: pointer to the hardware structure
2346 * @m_list: list of MAC addresses and forwarding information
2347 * @sw: pointer to switch info struct for which function add rule
2348 * @lport: logic port number on which function add rule
2349 *
2350 * IMPORTANT: When the umac_shared flag is set to false and m_list has
2351 * multiple unicast addresses, the function assumes that all the
2352 * addresses are unique in a given add_mac call. It doesn't
2353 * check for duplicates in this case, removing duplicates from a given
2354 * list should be taken care of in the caller of this function.
2355 */
2356 static int
ice_add_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list,struct ice_switch_info * sw,u8 lport)2357 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2358 struct ice_switch_info *sw, u8 lport)
2359 {
2360 struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
2361 struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
2362 struct ice_fltr_list_entry *m_list_itr;
2363 struct LIST_HEAD_TYPE *rule_head;
2364 u16 total_elem_left, s_rule_size;
2365 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2366 u16 num_unicast = 0;
2367 int status = 0;
2368 u8 elem_sent;
2369
2370 s_rule = NULL;
2371 rule_lock = &recp_list->filt_rule_lock;
2372 rule_head = &recp_list->filt_rules;
2373
2374 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2375 list_entry) {
2376 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2377 u16 vsi_handle;
2378 u16 hw_vsi_id;
2379
2380 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2381 vsi_handle = m_list_itr->fltr_info.vsi_handle;
2382 if (!ice_is_vsi_valid(hw, vsi_handle))
2383 return ICE_ERR_PARAM;
2384 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2385 if (m_list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2386 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2387 /* update the src in case it is VSI num */
2388 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2389 return ICE_ERR_PARAM;
2390 m_list_itr->fltr_info.src = hw_vsi_id;
2391 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2392 IS_ZERO_ETHER_ADDR(add))
2393 return ICE_ERR_PARAM;
2394 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
2395 /* Don't overwrite the unicast address */
2396 ice_acquire_lock(rule_lock);
2397 if (ice_find_rule_entry(rule_head,
2398 &m_list_itr->fltr_info)) {
2399 ice_release_lock(rule_lock);
2400 continue;
2401 }
2402 ice_release_lock(rule_lock);
2403 num_unicast++;
2404 } else if (IS_MULTICAST_ETHER_ADDR(add) ||
2405 (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) {
2406 m_list_itr->status =
2407 ice_add_rule_internal(hw, recp_list, lport,
2408 m_list_itr);
2409 if (m_list_itr->status)
2410 return m_list_itr->status;
2411 }
2412 }
2413
2414 ice_acquire_lock(rule_lock);
2415 /* Exit if no suitable entries were found for adding bulk switch rule */
2416 if (!num_unicast) {
2417 status = 0;
2418 goto ice_add_mac_exit;
2419 }
2420
2421 /* Allocate switch rule buffer for the bulk update for unicast */
2422 s_rule_size = ice_struct_size(s_rule, hdr_data, DUMMY_ETH_HDR_LEN);
2423 s_rule = (struct ice_sw_rule_lkup_rx_tx *)
2424 ice_calloc(hw, num_unicast, s_rule_size);
2425 if (!s_rule) {
2426 status = ICE_ERR_NO_MEMORY;
2427 goto ice_add_mac_exit;
2428 }
2429
2430 r_iter = s_rule;
2431 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2432 list_entry) {
2433 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2434 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2435
2436 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2437 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2438 ice_aqc_opc_add_sw_rules);
2439 r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2440 ((u8 *)r_iter + s_rule_size);
2441 }
2442 }
2443
2444 /* Call AQ bulk switch rule update for all unicast addresses */
2445 r_iter = s_rule;
2446 /* Call AQ switch rule in AQ_MAX chunk */
2447 for (total_elem_left = num_unicast; total_elem_left > 0;
2448 total_elem_left -= elem_sent) {
2449 struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
2450
2451 elem_sent = MIN_T(u8, total_elem_left,
2452 (ICE_AQ_MAX_BUF_LEN / s_rule_size));
2453 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2454 elem_sent, ice_aqc_opc_add_sw_rules,
2455 NULL);
2456 if (status)
2457 goto ice_add_mac_exit;
2458 r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2459 ((u8 *)r_iter + (elem_sent * s_rule_size));
2460 }
2461
2462 /* Fill up rule ID based on the value returned from FW */
2463 r_iter = s_rule;
2464 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2465 list_entry) {
2466 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2467 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2468 struct ice_fltr_mgmt_list_entry *fm_entry;
2469
2470 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2471 f_info->fltr_rule_id =
2472 LE16_TO_CPU(r_iter->index);
2473 f_info->fltr_act = ICE_FWD_TO_VSI;
2474 /* Create an entry to track this MAC address */
2475 fm_entry = (struct ice_fltr_mgmt_list_entry *)
2476 ice_malloc(hw, sizeof(*fm_entry));
2477 if (!fm_entry) {
2478 status = ICE_ERR_NO_MEMORY;
2479 goto ice_add_mac_exit;
2480 }
2481 fm_entry->fltr_info = *f_info;
2482 fm_entry->vsi_count = 1;
2483 /* The book keeping entries will get removed when
2484 * base driver calls remove filter AQ command
2485 */
2486
2487 LIST_ADD(&fm_entry->list_entry, rule_head);
2488 r_iter = (struct ice_sw_rule_lkup_rx_tx *)
2489 ((u8 *)r_iter + s_rule_size);
2490 }
2491 }
2492
2493 ice_add_mac_exit:
2494 ice_release_lock(rule_lock);
2495 if (s_rule)
2496 ice_free(hw, s_rule);
2497 return status;
2498 }
2499
2500 /**
2501 * ice_add_mac - Add a MAC address based filter rule
2502 * @hw: pointer to the hardware structure
2503 * @m_list: list of MAC addresses and forwarding information
2504 *
2505 * Function add MAC rule for logical port from HW struct
2506 */
ice_add_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list)2507 int ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2508 {
2509 if (!m_list || !hw)
2510 return ICE_ERR_PARAM;
2511
2512 return ice_add_mac_rule(hw, m_list, hw->switch_info,
2513 hw->port_info->lport);
2514 }
2515
2516 /**
2517 * ice_add_vlan_internal - Add one VLAN based filter rule
2518 * @hw: pointer to the hardware structure
2519 * @recp_list: recipe list for which rule has to be added
2520 * @f_entry: filter entry containing one VLAN information
2521 */
2522 static int
ice_add_vlan_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)2523 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2524 struct ice_fltr_list_entry *f_entry)
2525 {
2526 struct ice_fltr_mgmt_list_entry *v_list_itr;
2527 struct ice_fltr_info *new_fltr, *cur_fltr;
2528 enum ice_sw_lkup_type lkup_type;
2529 u16 vsi_list_id = 0, vsi_handle;
2530 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2531 int status = 0;
2532
2533 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2534 return ICE_ERR_PARAM;
2535
2536 f_entry->fltr_info.fwd_id.hw_vsi_id =
2537 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2538 new_fltr = &f_entry->fltr_info;
2539
2540 /* VLAN ID should only be 12 bits */
2541 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2542 return ICE_ERR_PARAM;
2543
2544 if (new_fltr->src_id != ICE_SRC_ID_VSI)
2545 return ICE_ERR_PARAM;
2546
2547 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2548 lkup_type = new_fltr->lkup_type;
2549 vsi_handle = new_fltr->vsi_handle;
2550 rule_lock = &recp_list->filt_rule_lock;
2551 ice_acquire_lock(rule_lock);
2552 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2553 if (!v_list_itr) {
2554 struct ice_vsi_list_map_info *map_info = NULL;
2555
2556 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2557 /* All VLAN pruning rules use a VSI list. Check if
2558 * there is already a VSI list containing VSI that we
2559 * want to add. If found, use the same vsi_list_id for
2560 * this new VLAN rule or else create a new list.
2561 */
2562 map_info = ice_find_vsi_list_entry(recp_list,
2563 vsi_handle,
2564 &vsi_list_id);
2565 if (!map_info) {
2566 status = ice_create_vsi_list_rule(hw,
2567 &vsi_handle,
2568 1,
2569 &vsi_list_id,
2570 lkup_type);
2571 if (status)
2572 goto exit;
2573 }
2574 /* Convert the action to forwarding to a VSI list. */
2575 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2576 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2577 }
2578
2579 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2580 if (!status) {
2581 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
2582 new_fltr);
2583 if (!v_list_itr) {
2584 status = ICE_ERR_DOES_NOT_EXIST;
2585 goto exit;
2586 }
2587 /* reuse VSI list for new rule and increment ref_cnt */
2588 if (map_info) {
2589 v_list_itr->vsi_list_info = map_info;
2590 map_info->ref_cnt++;
2591 } else {
2592 v_list_itr->vsi_list_info =
2593 ice_create_vsi_list_map(hw, &vsi_handle,
2594 1, vsi_list_id);
2595 }
2596 }
2597 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2598 /* Update existing VSI list to add new VSI ID only if it used
2599 * by one VLAN rule.
2600 */
2601 cur_fltr = &v_list_itr->fltr_info;
2602 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2603 new_fltr);
2604 } else {
2605 /* If VLAN rule exists and VSI list being used by this rule is
2606 * referenced by more than 1 VLAN rule. Then create a new VSI
2607 * list appending previous VSI with new VSI and update existing
2608 * VLAN rule to point to new VSI list ID
2609 */
2610 struct ice_fltr_info tmp_fltr;
2611 u16 vsi_handle_arr[2];
2612 u16 cur_handle;
2613
2614 /* Current implementation only supports reusing VSI list with
2615 * one VSI count. We should never hit below condition
2616 */
2617 if (v_list_itr->vsi_count > 1 &&
2618 v_list_itr->vsi_list_info->ref_cnt > 1) {
2619 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2620 status = ICE_ERR_CFG;
2621 goto exit;
2622 }
2623
2624 cur_handle =
2625 ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2626 ICE_MAX_VSI);
2627
2628 /* A rule already exists with the new VSI being added */
2629 if (cur_handle == vsi_handle) {
2630 status = ICE_ERR_ALREADY_EXISTS;
2631 goto exit;
2632 }
2633
2634 vsi_handle_arr[0] = cur_handle;
2635 vsi_handle_arr[1] = vsi_handle;
2636 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2637 &vsi_list_id, lkup_type);
2638 if (status)
2639 goto exit;
2640
2641 tmp_fltr = v_list_itr->fltr_info;
2642 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2643 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2644 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2645 /* Update the previous switch rule to a new VSI list which
2646 * includes current VSI that is requested
2647 */
2648 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2649 if (status)
2650 goto exit;
2651
2652 /* before overriding VSI list map info. decrement ref_cnt of
2653 * previous VSI list
2654 */
2655 v_list_itr->vsi_list_info->ref_cnt--;
2656
2657 /* now update to newly created list */
2658 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2659 v_list_itr->vsi_list_info =
2660 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2661 vsi_list_id);
2662 v_list_itr->vsi_count++;
2663 }
2664
2665 exit:
2666 ice_release_lock(rule_lock);
2667 return status;
2668 }
2669
2670 /**
2671 * ice_add_vlan_rule - Add VLAN based filter rule
2672 * @hw: pointer to the hardware structure
2673 * @v_list: list of VLAN entries and forwarding information
2674 * @sw: pointer to switch info struct for which function add rule
2675 */
2676 static int
ice_add_vlan_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list,struct ice_switch_info * sw)2677 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2678 struct ice_switch_info *sw)
2679 {
2680 struct ice_fltr_list_entry *v_list_itr;
2681 struct ice_sw_recipe *recp_list;
2682
2683 recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
2684 LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2685 list_entry) {
2686 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2687 return ICE_ERR_PARAM;
2688 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2689 v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
2690 v_list_itr);
2691 if (v_list_itr->status)
2692 return v_list_itr->status;
2693 }
2694 return 0;
2695 }
2696
2697 /**
2698 * ice_add_vlan - Add a VLAN based filter rule
2699 * @hw: pointer to the hardware structure
2700 * @v_list: list of VLAN and forwarding information
2701 *
2702 * Function add VLAN rule for logical port from HW struct
2703 */
ice_add_vlan(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list)2704 int ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2705 {
2706 if (!v_list || !hw)
2707 return ICE_ERR_PARAM;
2708
2709 return ice_add_vlan_rule(hw, v_list, hw->switch_info);
2710 }
2711
2712 /**
2713 * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
2714 * @hw: pointer to the hardware structure
2715 * @em_list: list of ether type MAC filter, MAC is optional
2716 * @sw: pointer to switch info struct for which function add rule
2717 * @lport: logic port number on which function add rule
2718 *
2719 * This function requires the caller to populate the entries in
2720 * the filter list with the necessary fields (including flags to
2721 * indicate Tx or Rx rules).
2722 */
2723 static int
ice_add_eth_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list,struct ice_switch_info * sw,u8 lport)2724 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2725 struct ice_switch_info *sw, u8 lport)
2726 {
2727 struct ice_fltr_list_entry *em_list_itr;
2728
2729 LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2730 list_entry) {
2731 struct ice_sw_recipe *recp_list;
2732 enum ice_sw_lkup_type l_type;
2733
2734 l_type = em_list_itr->fltr_info.lkup_type;
2735 recp_list = &sw->recp_list[l_type];
2736
2737 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2738 l_type != ICE_SW_LKUP_ETHERTYPE)
2739 return ICE_ERR_PARAM;
2740
2741 em_list_itr->status = ice_add_rule_internal(hw, recp_list,
2742 lport,
2743 em_list_itr);
2744 if (em_list_itr->status)
2745 return em_list_itr->status;
2746 }
2747 return 0;
2748 }
2749
2750 /**
2751 * ice_add_eth_mac - Add a ethertype based filter rule
2752 * @hw: pointer to the hardware structure
2753 * @em_list: list of ethertype and forwarding information
2754 *
2755 * Function add ethertype rule for logical port from HW struct
2756 */
2757 int
ice_add_eth_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list)2758 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2759 {
2760 if (!em_list || !hw)
2761 return ICE_ERR_PARAM;
2762
2763 return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
2764 hw->port_info->lport);
2765 }
2766
2767 /**
2768 * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
2769 * @hw: pointer to the hardware structure
2770 * @em_list: list of ethertype or ethertype MAC entries
2771 * @sw: pointer to switch info struct for which function add rule
2772 */
2773 static int
ice_remove_eth_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list,struct ice_switch_info * sw)2774 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2775 struct ice_switch_info *sw)
2776 {
2777 struct ice_fltr_list_entry *em_list_itr, *tmp;
2778
2779 LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
2780 list_entry) {
2781 struct ice_sw_recipe *recp_list;
2782 enum ice_sw_lkup_type l_type;
2783
2784 l_type = em_list_itr->fltr_info.lkup_type;
2785
2786 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2787 l_type != ICE_SW_LKUP_ETHERTYPE)
2788 return ICE_ERR_PARAM;
2789
2790 recp_list = &sw->recp_list[l_type];
2791 em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2792 em_list_itr);
2793 if (em_list_itr->status)
2794 return em_list_itr->status;
2795 }
2796 return 0;
2797 }
2798
2799 /**
2800 * ice_remove_eth_mac - remove a ethertype based filter rule
2801 * @hw: pointer to the hardware structure
2802 * @em_list: list of ethertype and forwarding information
2803 *
2804 */
2805 int
ice_remove_eth_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list)2806 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2807 {
2808 if (!em_list || !hw)
2809 return ICE_ERR_PARAM;
2810
2811 return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
2812 }
2813
2814 /**
2815 * ice_get_lg_act_aqc_res_type - get resource type for a large action
2816 * @res_type: resource type to be filled in case of function success
2817 * @num_acts: number of actions to hold with a large action entry
2818 *
2819 * Get resource type for a large action depending on the number
2820 * of single actions that it contains.
2821 */
2822 static int
ice_get_lg_act_aqc_res_type(u16 * res_type,int num_acts)2823 ice_get_lg_act_aqc_res_type(u16 *res_type, int num_acts)
2824 {
2825 if (!res_type)
2826 return ICE_ERR_BAD_PTR;
2827
2828 /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
2829 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
2830 * If num_acts is greater than 2, then use
2831 * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
2832 * The num_acts cannot be equal to 0 or greater than 4.
2833 */
2834 switch (num_acts) {
2835 case 1:
2836 *res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_1;
2837 break;
2838 case 2:
2839 *res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_2;
2840 break;
2841 case 3:
2842 case 4:
2843 *res_type = ICE_AQC_RES_TYPE_WIDE_TABLE_4;
2844 break;
2845 default:
2846 return ICE_ERR_PARAM;
2847 }
2848
2849 return 0;
2850 }
2851
2852 /**
2853 * ice_alloc_res_lg_act - add large action resource
2854 * @hw: pointer to the hardware structure
2855 * @l_id: large action ID to fill it in
2856 * @num_acts: number of actions to hold with a large action entry
2857 */
2858 static int
ice_alloc_res_lg_act(struct ice_hw * hw,u16 * l_id,u16 num_acts)2859 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
2860 {
2861 struct ice_aqc_alloc_free_res_elem *sw_buf;
2862 u16 buf_len, res_type;
2863 int status;
2864
2865 if (!l_id)
2866 return ICE_ERR_BAD_PTR;
2867
2868 status = ice_get_lg_act_aqc_res_type(&res_type, num_acts);
2869 if (status)
2870 return status;
2871
2872 /* Allocate resource for large action */
2873 buf_len = ice_struct_size(sw_buf, elem, 1);
2874 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
2875 if (!sw_buf)
2876 return ICE_ERR_NO_MEMORY;
2877
2878 sw_buf->res_type = CPU_TO_LE16(res_type);
2879 sw_buf->num_elems = CPU_TO_LE16(1);
2880
2881 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2882 ice_aqc_opc_alloc_res, NULL);
2883 if (!status)
2884 *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
2885
2886 ice_free(hw, sw_buf);
2887
2888 return status;
2889 }
2890
2891 /**
2892 * ice_rem_sw_rule_info
2893 * @hw: pointer to the hardware structure
2894 * @rule_head: pointer to the switch list structure that we want to delete
2895 */
2896 static void
ice_rem_sw_rule_info(struct ice_hw * hw,struct LIST_HEAD_TYPE * rule_head)2897 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
2898 {
2899 if (!LIST_EMPTY(rule_head)) {
2900 struct ice_fltr_mgmt_list_entry *entry;
2901 struct ice_fltr_mgmt_list_entry *tmp;
2902
2903 LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
2904 ice_fltr_mgmt_list_entry, list_entry) {
2905 LIST_DEL(&entry->list_entry);
2906 ice_free(hw, entry);
2907 }
2908 }
2909 }
2910
2911 /**
2912 * ice_rem_all_sw_rules_info
2913 * @hw: pointer to the hardware structure
2914 */
ice_rem_all_sw_rules_info(struct ice_hw * hw)2915 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
2916 {
2917 struct ice_switch_info *sw = hw->switch_info;
2918 u8 i;
2919
2920 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
2921 struct LIST_HEAD_TYPE *rule_head;
2922
2923 rule_head = &sw->recp_list[i].filt_rules;
2924 if (!sw->recp_list[i].adv_rule)
2925 ice_rem_sw_rule_info(hw, rule_head);
2926 }
2927 }
2928
2929 /**
2930 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
2931 * @pi: pointer to the port_info structure
2932 * @vsi_handle: VSI handle to set as default
2933 * @set: true to add the above mentioned switch rule, false to remove it
2934 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
2935 *
2936 * add filter rule to set/unset given VSI as default VSI for the switch
2937 * (represented by swid)
2938 */
2939 int
ice_cfg_dflt_vsi(struct ice_port_info * pi,u16 vsi_handle,bool set,u8 direction)2940 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
2941 u8 direction)
2942 {
2943 struct ice_fltr_list_entry f_list_entry;
2944 struct ice_sw_recipe *recp_list = NULL;
2945 struct ice_fltr_info f_info;
2946 struct ice_hw *hw = pi->hw;
2947 u8 lport = pi->lport;
2948 u16 hw_vsi_id;
2949 int status;
2950
2951 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
2952
2953 if (!ice_is_vsi_valid(hw, vsi_handle))
2954 return ICE_ERR_PARAM;
2955
2956 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2957
2958 ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
2959
2960 f_info.lkup_type = ICE_SW_LKUP_DFLT;
2961 f_info.flag = direction;
2962 f_info.fltr_act = ICE_FWD_TO_VSI;
2963 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
2964 f_info.vsi_handle = vsi_handle;
2965
2966 if (f_info.flag & ICE_FLTR_RX) {
2967 f_info.src = pi->lport;
2968 f_info.src_id = ICE_SRC_ID_LPORT;
2969 } else if (f_info.flag & ICE_FLTR_TX) {
2970 f_info.src_id = ICE_SRC_ID_VSI;
2971 f_info.src = hw_vsi_id;
2972 }
2973 f_list_entry.fltr_info = f_info;
2974
2975 if (set)
2976 status = ice_add_rule_internal(hw, recp_list, lport,
2977 &f_list_entry);
2978 else
2979 status = ice_remove_rule_internal(hw, recp_list,
2980 &f_list_entry);
2981
2982 return status;
2983 }
2984
2985 /**
2986 * ice_check_if_dflt_vsi - check if VSI is default VSI
2987 * @pi: pointer to the port_info structure
2988 * @vsi_handle: vsi handle to check for in filter list
2989 * @rule_exists: indicates if there are any VSI's in the rule list
2990 *
2991 * checks if the VSI is in a default VSI list, and also indicates
2992 * if the default VSI list is empty
2993 */
ice_check_if_dflt_vsi(struct ice_port_info * pi,u16 vsi_handle,bool * rule_exists)2994 bool ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
2995 bool *rule_exists)
2996 {
2997 struct ice_fltr_mgmt_list_entry *fm_entry;
2998 struct LIST_HEAD_TYPE *rule_head;
2999 struct ice_sw_recipe *recp_list;
3000 struct ice_lock *rule_lock;
3001 bool ret = false;
3002 recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3003 rule_lock = &recp_list->filt_rule_lock;
3004 rule_head = &recp_list->filt_rules;
3005
3006 ice_acquire_lock(rule_lock);
3007
3008 if (rule_exists && !LIST_EMPTY(rule_head))
3009 *rule_exists = true;
3010
3011 LIST_FOR_EACH_ENTRY(fm_entry, rule_head,
3012 ice_fltr_mgmt_list_entry, list_entry) {
3013 if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3014 ret = true;
3015 break;
3016 }
3017 }
3018
3019 ice_release_lock(rule_lock);
3020 return ret;
3021 }
3022
3023 /**
3024 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3025 * @list_head: head of rule list
3026 * @f_info: rule information
3027 *
3028 * Helper function to search for a unicast rule entry - this is to be used
3029 * to remove unicast MAC filter that is not shared with other VSIs on the
3030 * PF switch.
3031 *
3032 * Returns pointer to entry storing the rule if found
3033 */
3034 static struct ice_fltr_mgmt_list_entry *
ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE * list_head,struct ice_fltr_info * f_info)3035 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
3036 struct ice_fltr_info *f_info)
3037 {
3038 struct ice_fltr_mgmt_list_entry *list_itr;
3039
3040 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
3041 list_entry) {
3042 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3043 sizeof(f_info->l_data)) &&
3044 f_info->fwd_id.hw_vsi_id ==
3045 list_itr->fltr_info.fwd_id.hw_vsi_id &&
3046 f_info->flag == list_itr->fltr_info.flag)
3047 return list_itr;
3048 }
3049 return NULL;
3050 }
3051
3052 /**
3053 * ice_remove_mac_rule - remove a MAC based filter rule
3054 * @hw: pointer to the hardware structure
3055 * @m_list: list of MAC addresses and forwarding information
3056 * @recp_list: list from which function remove MAC address
3057 *
3058 * This function removes either a MAC filter rule or a specific VSI from a
3059 * VSI list for a multicast MAC address.
3060 *
3061 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
3062 * ice_add_mac. Caller should be aware that this call will only work if all
3063 * the entries passed into m_list were added previously. It will not attempt to
3064 * do a partial remove of entries that were found.
3065 */
3066 static int
ice_remove_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list,struct ice_sw_recipe * recp_list)3067 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
3068 struct ice_sw_recipe *recp_list)
3069 {
3070 struct ice_fltr_list_entry *list_itr, *tmp;
3071 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3072
3073 if (!m_list)
3074 return ICE_ERR_PARAM;
3075
3076 rule_lock = &recp_list->filt_rule_lock;
3077 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
3078 list_entry) {
3079 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3080 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3081 u16 vsi_handle;
3082
3083 if (l_type != ICE_SW_LKUP_MAC)
3084 return ICE_ERR_PARAM;
3085
3086 vsi_handle = list_itr->fltr_info.vsi_handle;
3087 if (!ice_is_vsi_valid(hw, vsi_handle))
3088 return ICE_ERR_PARAM;
3089
3090 list_itr->fltr_info.fwd_id.hw_vsi_id =
3091 ice_get_hw_vsi_num(hw, vsi_handle);
3092 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
3093 /* Don't remove the unicast address that belongs to
3094 * another VSI on the switch, since it is not being
3095 * shared...
3096 */
3097 ice_acquire_lock(rule_lock);
3098 if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
3099 &list_itr->fltr_info)) {
3100 ice_release_lock(rule_lock);
3101 return ICE_ERR_DOES_NOT_EXIST;
3102 }
3103 ice_release_lock(rule_lock);
3104 }
3105 list_itr->status = ice_remove_rule_internal(hw, recp_list,
3106 list_itr);
3107 if (list_itr->status)
3108 return list_itr->status;
3109 }
3110 return 0;
3111 }
3112
3113 /**
3114 * ice_remove_mac - remove a MAC address based filter rule
3115 * @hw: pointer to the hardware structure
3116 * @m_list: list of MAC addresses and forwarding information
3117 *
3118 */
ice_remove_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list)3119 int ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
3120 {
3121 struct ice_sw_recipe *recp_list;
3122
3123 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3124 return ice_remove_mac_rule(hw, m_list, recp_list);
3125 }
3126
3127 /**
3128 * ice_remove_vlan_rule - Remove VLAN based filter rule
3129 * @hw: pointer to the hardware structure
3130 * @v_list: list of VLAN entries and forwarding information
3131 * @recp_list: list from which function remove VLAN
3132 */
3133 static int
ice_remove_vlan_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list,struct ice_sw_recipe * recp_list)3134 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
3135 struct ice_sw_recipe *recp_list)
3136 {
3137 struct ice_fltr_list_entry *v_list_itr, *tmp;
3138
3139 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3140 list_entry) {
3141 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3142
3143 if (l_type != ICE_SW_LKUP_VLAN)
3144 return ICE_ERR_PARAM;
3145 v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
3146 v_list_itr);
3147 if (v_list_itr->status)
3148 return v_list_itr->status;
3149 }
3150 return 0;
3151 }
3152
3153 /**
3154 * ice_remove_vlan - remove a VLAN address based filter rule
3155 * @hw: pointer to the hardware structure
3156 * @v_list: list of VLAN and forwarding information
3157 *
3158 */
3159 int
ice_remove_vlan(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list)3160 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3161 {
3162 struct ice_sw_recipe *recp_list;
3163
3164 if (!v_list || !hw)
3165 return ICE_ERR_PARAM;
3166
3167 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
3168 return ice_remove_vlan_rule(hw, v_list, recp_list);
3169 }
3170
3171 /**
3172 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3173 * @fm_entry: filter entry to inspect
3174 * @vsi_handle: VSI handle to compare with filter info
3175 */
3176 static bool
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry * fm_entry,u16 vsi_handle)3177 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3178 {
3179 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3180 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3181 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3182 fm_entry->vsi_list_info &&
3183 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3184 vsi_handle))));
3185 }
3186
3187 /**
3188 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3189 * @hw: pointer to the hardware structure
3190 * @vsi_handle: VSI handle to remove filters from
3191 * @vsi_list_head: pointer to the list to add entry to
3192 * @fi: pointer to fltr_info of filter entry to copy & add
3193 *
3194 * Helper function, used when creating a list of filters to remove from
3195 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3196 * original filter entry, with the exception of fltr_info.fltr_act and
3197 * fltr_info.fwd_id fields. These are set such that later logic can
3198 * extract which VSI to remove the fltr from, and pass on that information.
3199 */
3200 static int
ice_add_entry_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct LIST_HEAD_TYPE * vsi_list_head,struct ice_fltr_info * fi)3201 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3202 struct LIST_HEAD_TYPE *vsi_list_head,
3203 struct ice_fltr_info *fi)
3204 {
3205 struct ice_fltr_list_entry *tmp;
3206
3207 /* this memory is freed up in the caller function
3208 * once filters for this VSI are removed
3209 */
3210 tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3211 if (!tmp)
3212 return ICE_ERR_NO_MEMORY;
3213
3214 tmp->fltr_info = *fi;
3215
3216 /* Overwrite these fields to indicate which VSI to remove filter from,
3217 * so find and remove logic can extract the information from the
3218 * list entries. Note that original entries will still have proper
3219 * values.
3220 */
3221 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3222 tmp->fltr_info.vsi_handle = vsi_handle;
3223 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3224
3225 LIST_ADD(&tmp->list_entry, vsi_list_head);
3226
3227 return 0;
3228 }
3229
3230 /**
3231 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3232 * @hw: pointer to the hardware structure
3233 * @vsi_handle: VSI handle to remove filters from
3234 * @lkup_list_head: pointer to the list that has certain lookup type filters
3235 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3236 *
3237 * Locates all filters in lkup_list_head that are used by the given VSI,
3238 * and adds COPIES of those entries to vsi_list_head (intended to be used
3239 * to remove the listed filters).
3240 * Note that this means all entries in vsi_list_head must be explicitly
3241 * deallocated by the caller when done with list.
3242 */
3243 static int
ice_add_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct LIST_HEAD_TYPE * lkup_list_head,struct LIST_HEAD_TYPE * vsi_list_head)3244 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3245 struct LIST_HEAD_TYPE *lkup_list_head,
3246 struct LIST_HEAD_TYPE *vsi_list_head)
3247 {
3248 struct ice_fltr_mgmt_list_entry *fm_entry;
3249 int status = 0;
3250
3251 /* check to make sure VSI ID is valid and within boundary */
3252 if (!ice_is_vsi_valid(hw, vsi_handle))
3253 return ICE_ERR_PARAM;
3254
3255 LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3256 ice_fltr_mgmt_list_entry, list_entry) {
3257 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
3258 continue;
3259
3260 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3261 vsi_list_head,
3262 &fm_entry->fltr_info);
3263 if (status)
3264 return status;
3265 }
3266 return status;
3267 }
3268
3269 /**
3270 * ice_determine_promisc_mask
3271 * @fi: filter info to parse
3272 * @promisc_mask: pointer to mask to be filled in
3273 *
3274 * Helper function to determine which ICE_PROMISC_ mask corresponds
3275 * to given filter into.
3276 */
ice_determine_promisc_mask(struct ice_fltr_info * fi,ice_bitmap_t * promisc_mask)3277 static void ice_determine_promisc_mask(struct ice_fltr_info *fi,
3278 ice_bitmap_t *promisc_mask)
3279 {
3280 u16 vid = fi->l_data.mac_vlan.vlan_id;
3281 u8 *macaddr = fi->l_data.mac.mac_addr;
3282 bool is_rx_lb_fltr = false;
3283 bool is_tx_fltr = false;
3284
3285 ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3286
3287 if (fi->flag == ICE_FLTR_TX)
3288 is_tx_fltr = true;
3289 if (fi->flag == ICE_FLTR_RX_LB)
3290 is_rx_lb_fltr = true;
3291
3292 if (IS_BROADCAST_ETHER_ADDR(macaddr)) {
3293 ice_set_bit(is_tx_fltr ? ICE_PROMISC_BCAST_TX
3294 : ICE_PROMISC_BCAST_RX, promisc_mask);
3295 } else if (IS_MULTICAST_ETHER_ADDR(macaddr)) {
3296 ice_set_bit(is_tx_fltr ? ICE_PROMISC_MCAST_TX
3297 : ICE_PROMISC_MCAST_RX, promisc_mask);
3298 } else if (IS_UNICAST_ETHER_ADDR(macaddr)) {
3299 if (is_tx_fltr)
3300 ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask);
3301 else if (is_rx_lb_fltr)
3302 ice_set_bit(ICE_PROMISC_UCAST_RX_LB, promisc_mask);
3303 else
3304 ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask);
3305 }
3306
3307 if (vid) {
3308 ice_set_bit(is_tx_fltr ? ICE_PROMISC_VLAN_TX
3309 : ICE_PROMISC_VLAN_RX, promisc_mask);
3310 }
3311 }
3312
3313 /**
3314 * _ice_get_vsi_promisc - get promiscuous mode of given VSI
3315 * @hw: pointer to the hardware structure
3316 * @vsi_handle: VSI handle to retrieve info from
3317 * @promisc_mask: pointer to mask to be filled in
3318 * @vid: VLAN ID of promisc VLAN VSI
3319 * @sw: pointer to switch info struct for which function add rule
3320 * @lkup: switch rule filter lookup type
3321 */
3322 static int
_ice_get_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 * vid,struct ice_switch_info * sw,enum ice_sw_lkup_type lkup)3323 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3324 ice_bitmap_t *promisc_mask, u16 *vid,
3325 struct ice_switch_info *sw, enum ice_sw_lkup_type lkup)
3326 {
3327 ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3328 struct ice_fltr_mgmt_list_entry *itr;
3329 struct LIST_HEAD_TYPE *rule_head;
3330 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3331
3332 if (!ice_is_vsi_valid(hw, vsi_handle) ||
3333 (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN))
3334 return ICE_ERR_PARAM;
3335
3336 *vid = 0;
3337 rule_head = &sw->recp_list[lkup].filt_rules;
3338 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3339
3340 ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX);
3341
3342 ice_acquire_lock(rule_lock);
3343 LIST_FOR_EACH_ENTRY(itr, rule_head,
3344 ice_fltr_mgmt_list_entry, list_entry) {
3345 /* Continue if this filter doesn't apply to this VSI or the
3346 * VSI ID is not in the VSI map for this filter
3347 */
3348 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3349 continue;
3350
3351 ice_determine_promisc_mask(&itr->fltr_info, fltr_promisc_mask);
3352 ice_or_bitmap(promisc_mask, promisc_mask, fltr_promisc_mask,
3353 ICE_PROMISC_MAX);
3354
3355 }
3356 ice_release_lock(rule_lock);
3357
3358 return 0;
3359 }
3360
3361 /**
3362 * ice_get_vsi_promisc - get promiscuous mode of given VSI
3363 * @hw: pointer to the hardware structure
3364 * @vsi_handle: VSI handle to retrieve info from
3365 * @promisc_mask: pointer to mask to be filled in
3366 * @vid: VLAN ID of promisc VLAN VSI
3367 */
3368 int
ice_get_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 * vid)3369 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3370 ice_bitmap_t *promisc_mask, u16 *vid)
3371 {
3372 if (!vid || !promisc_mask || !hw)
3373 return ICE_ERR_PARAM;
3374
3375 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3376 vid, hw->switch_info, ICE_SW_LKUP_PROMISC);
3377 }
3378
3379 /**
3380 * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3381 * @hw: pointer to the hardware structure
3382 * @vsi_handle: VSI handle to retrieve info from
3383 * @promisc_mask: pointer to mask to be filled in
3384 * @vid: VLAN ID of promisc VLAN VSI
3385 */
3386 int
ice_get_vsi_vlan_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 * vid)3387 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle,
3388 ice_bitmap_t *promisc_mask, u16 *vid)
3389 {
3390 if (!hw || !promisc_mask || !vid)
3391 return ICE_ERR_PARAM;
3392
3393 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3394 vid, hw->switch_info,
3395 ICE_SW_LKUP_PROMISC_VLAN);
3396 }
3397
3398 /**
3399 * ice_remove_promisc - Remove promisc based filter rules
3400 * @hw: pointer to the hardware structure
3401 * @recp_id: recipe ID for which the rule needs to removed
3402 * @v_list: list of promisc entries
3403 */
3404 static int
ice_remove_promisc(struct ice_hw * hw,u8 recp_id,struct LIST_HEAD_TYPE * v_list)3405 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3406 struct LIST_HEAD_TYPE *v_list)
3407 {
3408 struct ice_fltr_list_entry *v_list_itr, *tmp;
3409 struct ice_sw_recipe *recp_list;
3410
3411 recp_list = &hw->switch_info->recp_list[recp_id];
3412 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3413 list_entry) {
3414 v_list_itr->status =
3415 ice_remove_rule_internal(hw, recp_list, v_list_itr);
3416 if (v_list_itr->status)
3417 return v_list_itr->status;
3418 }
3419 return 0;
3420 }
3421
3422 /**
3423 * _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
3424 * @hw: pointer to the hardware structure
3425 * @vsi_handle: VSI handle to clear mode
3426 * @promisc_mask: pointer to mask of promiscuous config bits to clear
3427 * @vid: VLAN ID to clear VLAN promiscuous
3428 * @sw: pointer to switch info struct for which function add rule
3429 */
3430 static int
_ice_clear_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 vid,struct ice_switch_info * sw)3431 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3432 ice_bitmap_t *promisc_mask, u16 vid,
3433 struct ice_switch_info *sw)
3434 {
3435 ice_declare_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3436 ice_declare_bitmap(fltr_promisc_mask, ICE_PROMISC_MAX);
3437 struct ice_fltr_list_entry *fm_entry, *tmp;
3438 struct LIST_HEAD_TYPE remove_list_head;
3439 struct ice_fltr_mgmt_list_entry *itr;
3440 struct LIST_HEAD_TYPE *rule_head;
3441 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3442 int status = 0;
3443 u8 recipe_id;
3444
3445 if (!ice_is_vsi_valid(hw, vsi_handle))
3446 return ICE_ERR_PARAM;
3447
3448 if (ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_RX) &&
3449 ice_is_bit_set(promisc_mask, ICE_PROMISC_VLAN_TX))
3450 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3451 else
3452 recipe_id = ICE_SW_LKUP_PROMISC;
3453
3454 rule_head = &sw->recp_list[recipe_id].filt_rules;
3455 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3456
3457 INIT_LIST_HEAD(&remove_list_head);
3458
3459 ice_acquire_lock(rule_lock);
3460 LIST_FOR_EACH_ENTRY(itr, rule_head,
3461 ice_fltr_mgmt_list_entry, list_entry) {
3462 struct ice_fltr_info *fltr_info;
3463 ice_zero_bitmap(compl_promisc_mask, ICE_PROMISC_MAX);
3464
3465 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3466 continue;
3467 fltr_info = &itr->fltr_info;
3468
3469 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
3470 vid != fltr_info->l_data.mac_vlan.vlan_id)
3471 continue;
3472
3473 ice_determine_promisc_mask(fltr_info, fltr_promisc_mask);
3474 ice_andnot_bitmap(compl_promisc_mask, fltr_promisc_mask,
3475 promisc_mask, ICE_PROMISC_MAX);
3476
3477 /* Skip if filter is not completely specified by given mask */
3478 if (ice_is_any_bit_set(compl_promisc_mask, ICE_PROMISC_MAX))
3479 continue;
3480
3481 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3482 &remove_list_head,
3483 fltr_info);
3484 if (status) {
3485 ice_release_lock(rule_lock);
3486 goto free_fltr_list;
3487 }
3488 }
3489 ice_release_lock(rule_lock);
3490
3491 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3492
3493 free_fltr_list:
3494 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3495 ice_fltr_list_entry, list_entry) {
3496 LIST_DEL(&fm_entry->list_entry);
3497 ice_free(hw, fm_entry);
3498 }
3499
3500 return status;
3501 }
3502
3503 /**
3504 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3505 * @hw: pointer to the hardware structure
3506 * @vsi_handle: VSI handle to clear mode
3507 * @promisc_mask: pointer to mask of promiscuous config bits to clear
3508 * @vid: VLAN ID to clear VLAN promiscuous
3509 */
3510 int
ice_clear_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 vid)3511 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3512 ice_bitmap_t *promisc_mask, u16 vid)
3513 {
3514 if (!hw || !promisc_mask)
3515 return ICE_ERR_PARAM;
3516
3517 return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
3518 vid, hw->switch_info);
3519 }
3520
3521 /**
3522 * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3523 * @hw: pointer to the hardware structure
3524 * @vsi_handle: VSI handle to configure
3525 * @promisc_mask: pointer to mask of promiscuous config bits
3526 * @vid: VLAN ID to set VLAN promiscuous
3527 * @lport: logical port number to configure promisc mode
3528 * @sw: pointer to switch info struct for which function add rule
3529 */
3530 static int
_ice_set_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 vid,u8 lport,struct ice_switch_info * sw)3531 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3532 ice_bitmap_t *promisc_mask, u16 vid, u8 lport,
3533 struct ice_switch_info *sw)
3534 {
3535 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3536 ice_declare_bitmap(p_mask, ICE_PROMISC_MAX);
3537 struct ice_fltr_list_entry f_list_entry;
3538 bool is_tx_fltr, is_rx_lb_fltr;
3539 struct ice_fltr_info new_fltr;
3540 int status = 0;
3541 u16 hw_vsi_id;
3542 int pkt_type;
3543 u8 recipe_id;
3544
3545 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3546
3547 if (!ice_is_vsi_valid(hw, vsi_handle))
3548 return ICE_ERR_PARAM;
3549 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3550
3551 ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3552
3553 /* Do not modify original bitmap */
3554 ice_cp_bitmap(p_mask, promisc_mask, ICE_PROMISC_MAX);
3555
3556 if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX) &&
3557 ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_TX)) {
3558 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3559 new_fltr.l_data.mac_vlan.vlan_id = vid;
3560 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3561 } else {
3562 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3563 recipe_id = ICE_SW_LKUP_PROMISC;
3564 }
3565
3566 /* Separate filters must be set for each direction/packet type
3567 * combination, so we will loop over the mask value, store the
3568 * individual type, and clear it out in the input mask as it
3569 * is found.
3570 */
3571 while (ice_is_any_bit_set(p_mask, ICE_PROMISC_MAX)) {
3572 struct ice_sw_recipe *recp_list;
3573 u8 *mac_addr;
3574
3575 pkt_type = 0;
3576 is_tx_fltr = false;
3577 is_rx_lb_fltr = false;
3578
3579 if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX,
3580 p_mask)) {
3581 pkt_type = UCAST_FLTR;
3582 } else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_TX,
3583 p_mask)) {
3584 pkt_type = UCAST_FLTR;
3585 is_tx_fltr = true;
3586 } else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_RX,
3587 p_mask)) {
3588 pkt_type = MCAST_FLTR;
3589 } else if (ice_test_and_clear_bit(ICE_PROMISC_MCAST_TX,
3590 p_mask)) {
3591 pkt_type = MCAST_FLTR;
3592 is_tx_fltr = true;
3593 } else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_RX,
3594 p_mask)) {
3595 pkt_type = BCAST_FLTR;
3596 } else if (ice_test_and_clear_bit(ICE_PROMISC_BCAST_TX,
3597 p_mask)) {
3598 pkt_type = BCAST_FLTR;
3599 is_tx_fltr = true;
3600 } else if (ice_test_and_clear_bit(ICE_PROMISC_UCAST_RX_LB,
3601 p_mask)) {
3602 pkt_type = UCAST_FLTR;
3603 is_rx_lb_fltr = true;
3604 }
3605
3606 /* Check for VLAN promiscuous flag */
3607 if (ice_is_bit_set(p_mask, ICE_PROMISC_VLAN_RX)) {
3608 ice_clear_bit(ICE_PROMISC_VLAN_RX, p_mask);
3609 } else if (ice_test_and_clear_bit(ICE_PROMISC_VLAN_TX,
3610 p_mask)) {
3611 is_tx_fltr = true;
3612 }
3613 /* Set filter DA based on packet type */
3614 mac_addr = new_fltr.l_data.mac.mac_addr;
3615 if (pkt_type == BCAST_FLTR) {
3616 ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3617 } else if (pkt_type == MCAST_FLTR ||
3618 pkt_type == UCAST_FLTR) {
3619 /* Use the dummy ether header DA */
3620 ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3621 ICE_NONDMA_TO_NONDMA);
3622 if (pkt_type == MCAST_FLTR)
3623 mac_addr[0] |= 0x1; /* Set multicast bit */
3624 }
3625
3626 /* Need to reset this to zero for all iterations */
3627 new_fltr.flag = 0;
3628 if (is_tx_fltr) {
3629 new_fltr.flag |= ICE_FLTR_TX;
3630 new_fltr.src = hw_vsi_id;
3631 } else if (is_rx_lb_fltr) {
3632 new_fltr.flag |= ICE_FLTR_RX_LB;
3633 new_fltr.src = hw_vsi_id;
3634 } else {
3635 new_fltr.flag |= ICE_FLTR_RX;
3636 new_fltr.src = lport;
3637 }
3638
3639 new_fltr.fltr_act = ICE_FWD_TO_VSI;
3640 new_fltr.vsi_handle = vsi_handle;
3641 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3642 f_list_entry.fltr_info = new_fltr;
3643 recp_list = &sw->recp_list[recipe_id];
3644
3645 status = ice_add_rule_internal(hw, recp_list, lport,
3646 &f_list_entry);
3647 if (status)
3648 goto set_promisc_exit;
3649 }
3650
3651 set_promisc_exit:
3652 return status;
3653 }
3654
3655 /**
3656 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3657 * @hw: pointer to the hardware structure
3658 * @vsi_handle: VSI handle to configure
3659 * @promisc_mask: pointer to mask of promiscuous config bits
3660 * @vid: VLAN ID to set VLAN promiscuous
3661 */
3662 int
ice_set_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,u16 vid)3663 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3664 ice_bitmap_t *promisc_mask, u16 vid)
3665 {
3666 if (!hw || !promisc_mask)
3667 return ICE_ERR_PARAM;
3668
3669 return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
3670 hw->port_info->lport,
3671 hw->switch_info);
3672 }
3673
3674 /**
3675 * _ice_set_vlan_vsi_promisc
3676 * @hw: pointer to the hardware structure
3677 * @vsi_handle: VSI handle to configure
3678 * @promisc_mask: pointer to mask of promiscuous config bits
3679 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3680 * @lport: logical port number to configure promisc mode
3681 * @sw: pointer to switch info struct for which function add rule
3682 *
3683 * Configure VSI with all associated VLANs to given promiscuous mode(s)
3684 */
3685 static int
_ice_set_vlan_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,bool rm_vlan_promisc,u8 lport,struct ice_switch_info * sw)3686 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3687 ice_bitmap_t *promisc_mask, bool rm_vlan_promisc,
3688 u8 lport, struct ice_switch_info *sw)
3689 {
3690 struct ice_fltr_list_entry *list_itr, *tmp;
3691 struct LIST_HEAD_TYPE vsi_list_head;
3692 struct LIST_HEAD_TYPE *vlan_head;
3693 struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3694 int status;
3695 u16 vlan_id;
3696
3697 INIT_LIST_HEAD(&vsi_list_head);
3698 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3699 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3700 ice_acquire_lock(vlan_lock);
3701 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3702 &vsi_list_head);
3703 ice_release_lock(vlan_lock);
3704 if (status)
3705 goto free_fltr_list;
3706
3707 LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3708 list_entry) {
3709 /* Avoid enabling or disabling vlan zero twice when in double
3710 * vlan mode
3711 */
3712 if (ice_is_dvm_ena(hw) &&
3713 list_itr->fltr_info.l_data.vlan.tpid == 0)
3714 continue;
3715
3716 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3717 if (rm_vlan_promisc)
3718 status = _ice_clear_vsi_promisc(hw, vsi_handle,
3719 promisc_mask,
3720 vlan_id, sw);
3721 else
3722 status = _ice_set_vsi_promisc(hw, vsi_handle,
3723 promisc_mask, vlan_id,
3724 lport, sw);
3725 if (status && status != ICE_ERR_ALREADY_EXISTS)
3726 break;
3727 }
3728
3729 free_fltr_list:
3730 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3731 ice_fltr_list_entry, list_entry) {
3732 LIST_DEL(&list_itr->list_entry);
3733 ice_free(hw, list_itr);
3734 }
3735 return status;
3736 }
3737
3738 /**
3739 * ice_set_vlan_vsi_promisc
3740 * @hw: pointer to the hardware structure
3741 * @vsi_handle: VSI handle to configure
3742 * @promisc_mask: mask of promiscuous config bits
3743 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3744 *
3745 * Configure VSI with all associated VLANs to given promiscuous mode(s)
3746 */
3747 int
ice_set_vlan_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,ice_bitmap_t * promisc_mask,bool rm_vlan_promisc)3748 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3749 ice_bitmap_t *promisc_mask, bool rm_vlan_promisc)
3750 {
3751 if (!hw || !promisc_mask)
3752 return ICE_ERR_PARAM;
3753
3754 return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
3755 rm_vlan_promisc, hw->port_info->lport,
3756 hw->switch_info);
3757 }
3758
3759 /**
3760 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3761 * @hw: pointer to the hardware structure
3762 * @vsi_handle: VSI handle to remove filters from
3763 * @recp_list: recipe list from which function remove fltr
3764 * @lkup: switch rule filter lookup type
3765 */
3766 static void
ice_remove_vsi_lkup_fltr(struct ice_hw * hw,u16 vsi_handle,struct ice_sw_recipe * recp_list,enum ice_sw_lkup_type lkup)3767 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3768 struct ice_sw_recipe *recp_list,
3769 enum ice_sw_lkup_type lkup)
3770 {
3771 struct ice_fltr_list_entry *fm_entry;
3772 struct LIST_HEAD_TYPE remove_list_head;
3773 struct LIST_HEAD_TYPE *rule_head;
3774 struct ice_fltr_list_entry *tmp;
3775 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3776 int status;
3777
3778 INIT_LIST_HEAD(&remove_list_head);
3779 rule_lock = &recp_list[lkup].filt_rule_lock;
3780 rule_head = &recp_list[lkup].filt_rules;
3781 ice_acquire_lock(rule_lock);
3782 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3783 &remove_list_head);
3784 ice_release_lock(rule_lock);
3785 if (status)
3786 goto free_fltr_list;
3787
3788 switch (lkup) {
3789 case ICE_SW_LKUP_MAC:
3790 ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
3791 break;
3792 case ICE_SW_LKUP_VLAN:
3793 ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
3794 break;
3795 case ICE_SW_LKUP_PROMISC:
3796 case ICE_SW_LKUP_PROMISC_VLAN:
3797 ice_remove_promisc(hw, (u8)lkup, &remove_list_head);
3798 break;
3799 case ICE_SW_LKUP_MAC_VLAN:
3800 ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3801 break;
3802 case ICE_SW_LKUP_ETHERTYPE:
3803 case ICE_SW_LKUP_ETHERTYPE_MAC:
3804 ice_remove_eth_mac(hw, &remove_list_head);
3805 break;
3806 case ICE_SW_LKUP_DFLT:
3807 ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
3808 break;
3809 case ICE_SW_LKUP_LAST:
3810 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3811 break;
3812 }
3813
3814 free_fltr_list:
3815 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3816 ice_fltr_list_entry, list_entry) {
3817 LIST_DEL(&fm_entry->list_entry);
3818 ice_free(hw, fm_entry);
3819 }
3820 }
3821
3822 /**
3823 * ice_remove_vsi_fltr_rule - Remove all filters for a VSI
3824 * @hw: pointer to the hardware structure
3825 * @vsi_handle: VSI handle to remove filters from
3826 * @sw: pointer to switch info struct
3827 */
3828 static void
ice_remove_vsi_fltr_rule(struct ice_hw * hw,u16 vsi_handle,struct ice_switch_info * sw)3829 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
3830 struct ice_switch_info *sw)
3831 {
3832 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3833
3834 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3835 sw->recp_list, ICE_SW_LKUP_MAC);
3836 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3837 sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
3838 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3839 sw->recp_list, ICE_SW_LKUP_PROMISC);
3840 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3841 sw->recp_list, ICE_SW_LKUP_VLAN);
3842 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3843 sw->recp_list, ICE_SW_LKUP_DFLT);
3844 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3845 sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
3846 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3847 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
3848 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3849 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
3850 }
3851
3852 /**
3853 * ice_remove_vsi_fltr - Remove all filters for a VSI
3854 * @hw: pointer to the hardware structure
3855 * @vsi_handle: VSI handle to remove filters from
3856 */
ice_remove_vsi_fltr(struct ice_hw * hw,u16 vsi_handle)3857 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3858 {
3859 ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
3860 }
3861
3862 /**
3863 * ice_alloc_res_cntr - allocating resource counter
3864 * @hw: pointer to the hardware structure
3865 * @type: type of resource
3866 * @alloc_shared: if set it is shared else dedicated
3867 * @num_items: number of entries requested for FD resource type
3868 * @counter_id: counter index returned by AQ call
3869 */
3870 static int
ice_alloc_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 * counter_id)3871 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3872 u16 *counter_id)
3873 {
3874 struct ice_aqc_alloc_free_res_elem *buf;
3875 u16 buf_len;
3876 int status;
3877
3878 /* Allocate resource */
3879 buf_len = ice_struct_size(buf, elem, 1);
3880 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3881 if (!buf)
3882 return ICE_ERR_NO_MEMORY;
3883
3884 buf->num_elems = CPU_TO_LE16(num_items);
3885 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3886 ICE_AQC_RES_TYPE_M) | alloc_shared);
3887
3888 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3889 ice_aqc_opc_alloc_res, NULL);
3890 if (status)
3891 goto exit;
3892
3893 *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3894
3895 exit:
3896 ice_free(hw, buf);
3897 return status;
3898 }
3899
3900 /**
3901 * ice_free_res_cntr - free resource counter
3902 * @hw: pointer to the hardware structure
3903 * @type: type of resource
3904 * @alloc_shared: if set it is shared else dedicated
3905 * @num_items: number of entries to be freed for FD resource type
3906 * @counter_id: counter ID resource which needs to be freed
3907 */
3908 static int
ice_free_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 counter_id)3909 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3910 u16 counter_id)
3911 {
3912 struct ice_aqc_alloc_free_res_elem *buf;
3913 u16 buf_len;
3914 int status;
3915
3916 /* Free resource */
3917 buf_len = ice_struct_size(buf, elem, 1);
3918 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3919 if (!buf)
3920 return ICE_ERR_NO_MEMORY;
3921
3922 buf->num_elems = CPU_TO_LE16(num_items);
3923 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3924 ICE_AQC_RES_TYPE_M) | alloc_shared);
3925 buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3926
3927 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3928 ice_aqc_opc_free_res, NULL);
3929 if (status)
3930 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
3931
3932 ice_free(hw, buf);
3933 return status;
3934 }
3935
3936 /**
3937 * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3938 * @hw: pointer to the hardware structure
3939 * @counter_id: returns counter index
3940 */
ice_alloc_vlan_res_counter(struct ice_hw * hw,u16 * counter_id)3941 int ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3942 {
3943 return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3944 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3945 counter_id);
3946 }
3947
3948 /**
3949 * ice_free_vlan_res_counter - Free counter resource for VLAN type
3950 * @hw: pointer to the hardware structure
3951 * @counter_id: counter index to be freed
3952 */
ice_free_vlan_res_counter(struct ice_hw * hw,u16 counter_id)3953 int ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3954 {
3955 return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3956 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3957 counter_id);
3958 }
3959
3960 /**
3961 * ice_add_mac_with_sw_marker - add filter with sw marker
3962 * @hw: pointer to the hardware structure
3963 * @f_info: filter info structure containing the MAC filter information
3964 * @sw_marker: sw marker to tag the Rx descriptor with
3965 */
3966 int
ice_add_mac_with_sw_marker(struct ice_hw * hw,struct ice_fltr_info * f_info,u16 sw_marker)3967 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3968 u16 sw_marker)
3969 {
3970 struct ice_fltr_mgmt_list_entry *m_entry;
3971 struct ice_fltr_list_entry fl_info;
3972 struct ice_sw_recipe *recp_list;
3973 struct LIST_HEAD_TYPE l_head;
3974 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3975 bool entry_exists;
3976 u16 lg_act_id;
3977 int ret;
3978
3979 if (f_info->fltr_act != ICE_FWD_TO_VSI)
3980 return ICE_ERR_PARAM;
3981
3982 if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3983 return ICE_ERR_PARAM;
3984
3985 if (sw_marker == ICE_INVAL_SW_MARKER_ID)
3986 return ICE_ERR_PARAM;
3987
3988 if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3989 return ICE_ERR_PARAM;
3990 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3991
3992 /* Add filter if it doesn't exist so then the adding of large
3993 * action always results in update
3994 */
3995
3996 INIT_LIST_HEAD(&l_head);
3997 fl_info.fltr_info = *f_info;
3998 LIST_ADD(&fl_info.list_entry, &l_head);
3999
4000 entry_exists = false;
4001 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
4002 hw->port_info->lport);
4003 if (ret == ICE_ERR_ALREADY_EXISTS)
4004 entry_exists = true;
4005 else if (ret)
4006 return ret;
4007
4008 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
4009 rule_lock = &recp_list->filt_rule_lock;
4010 ice_acquire_lock(rule_lock);
4011 /* Get the book keeping entry for the filter */
4012 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
4013 if (!m_entry)
4014 goto exit_error;
4015
4016 /* If counter action was enabled for this rule then don't enable
4017 * sw marker large action
4018 */
4019 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4020 ret = ICE_ERR_PARAM;
4021 goto exit_error;
4022 }
4023
4024 /* if same marker was added before */
4025 if (m_entry->sw_marker_id == sw_marker) {
4026 ret = ICE_ERR_ALREADY_EXISTS;
4027 goto exit_error;
4028 }
4029
4030 /* Allocate a hardware table entry to hold large act. Three actions
4031 * for marker based large action
4032 */
4033 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
4034 if (ret)
4035 goto exit_error;
4036
4037 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4038 goto exit_error;
4039
4040 /* Update the switch rule to add the marker action */
4041 ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
4042 if (!ret) {
4043 ice_release_lock(rule_lock);
4044 return ret;
4045 }
4046
4047 exit_error:
4048 ice_release_lock(rule_lock);
4049 /* only remove entry if it did not exist previously */
4050 if (!entry_exists)
4051 ret = ice_remove_mac(hw, &l_head);
4052
4053 return ret;
4054 }
4055
4056 /**
4057 * ice_add_mac_with_counter - add filter with counter enabled
4058 * @hw: pointer to the hardware structure
4059 * @f_info: pointer to filter info structure containing the MAC filter
4060 * information
4061 */
4062 int
ice_add_mac_with_counter(struct ice_hw * hw,struct ice_fltr_info * f_info)4063 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
4064 {
4065 struct ice_fltr_mgmt_list_entry *m_entry;
4066 struct ice_fltr_list_entry fl_info;
4067 struct ice_sw_recipe *recp_list;
4068 struct LIST_HEAD_TYPE l_head;
4069 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
4070 bool entry_exist;
4071 u16 counter_id;
4072 u16 lg_act_id;
4073 int ret;
4074
4075 if (f_info->fltr_act != ICE_FWD_TO_VSI)
4076 return ICE_ERR_PARAM;
4077
4078 if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4079 return ICE_ERR_PARAM;
4080
4081 if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4082 return ICE_ERR_PARAM;
4083 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4084 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
4085
4086 entry_exist = false;
4087
4088 rule_lock = &recp_list->filt_rule_lock;
4089
4090 /* Add filter if it doesn't exist so then the adding of large
4091 * action always results in update
4092 */
4093 INIT_LIST_HEAD(&l_head);
4094
4095 fl_info.fltr_info = *f_info;
4096 LIST_ADD(&fl_info.list_entry, &l_head);
4097
4098 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
4099 hw->port_info->lport);
4100 if (ret == ICE_ERR_ALREADY_EXISTS)
4101 entry_exist = true;
4102 else if (ret)
4103 return ret;
4104
4105 ice_acquire_lock(rule_lock);
4106 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
4107 if (!m_entry) {
4108 ret = ICE_ERR_BAD_PTR;
4109 goto exit_error;
4110 }
4111
4112 /* Don't enable counter for a filter for which sw marker was enabled */
4113 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
4114 ret = ICE_ERR_PARAM;
4115 goto exit_error;
4116 }
4117
4118 /* If a counter was already enabled then don't need to add again */
4119 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4120 ret = ICE_ERR_ALREADY_EXISTS;
4121 goto exit_error;
4122 }
4123
4124 /* Allocate a hardware table entry to VLAN counter */
4125 ret = ice_alloc_vlan_res_counter(hw, &counter_id);
4126 if (ret)
4127 goto exit_error;
4128
4129 /* Allocate a hardware table entry to hold large act. Two actions for
4130 * counter based large action
4131 */
4132 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4133 if (ret)
4134 goto exit_error;
4135
4136 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4137 goto exit_error;
4138
4139 /* Update the switch rule to add the counter action */
4140 ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4141 if (!ret) {
4142 ice_release_lock(rule_lock);
4143 return ret;
4144 }
4145
4146 exit_error:
4147 ice_release_lock(rule_lock);
4148 /* only remove entry if it did not exist previously */
4149 if (!entry_exist)
4150 ret = ice_remove_mac(hw, &l_head);
4151
4152 return ret;
4153 }
4154
4155 /**
4156 * ice_replay_fltr - Replay all the filters stored by a specific list head
4157 * @hw: pointer to the hardware structure
4158 * @list_head: list for which filters needs to be replayed
4159 * @recp_id: Recipe ID for which rules need to be replayed
4160 */
4161 static int
ice_replay_fltr(struct ice_hw * hw,u8 recp_id,struct LIST_HEAD_TYPE * list_head)4162 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
4163 {
4164 struct ice_fltr_mgmt_list_entry *itr;
4165 struct ice_sw_recipe *recp_list;
4166 u8 lport = hw->port_info->lport;
4167 struct LIST_HEAD_TYPE l_head;
4168 int status = 0;
4169
4170 if (LIST_EMPTY(list_head))
4171 return status;
4172
4173 recp_list = &hw->switch_info->recp_list[recp_id];
4174 /* Move entries from the given list_head to a temporary l_head so that
4175 * they can be replayed. Otherwise when trying to re-add the same
4176 * filter, the function will return already exists
4177 */
4178 LIST_REPLACE_INIT(list_head, &l_head);
4179
4180 /* Mark the given list_head empty by reinitializing it so filters
4181 * could be added again by *handler
4182 */
4183 LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
4184 list_entry) {
4185 struct ice_fltr_list_entry f_entry;
4186 u16 vsi_handle;
4187
4188 f_entry.fltr_info = itr->fltr_info;
4189 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
4190 status = ice_add_rule_internal(hw, recp_list, lport,
4191 &f_entry);
4192 if (status)
4193 goto end;
4194 continue;
4195 }
4196
4197 /* Add a filter per VSI separately */
4198 ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
4199 ICE_MAX_VSI) {
4200 if (!ice_is_vsi_valid(hw, vsi_handle))
4201 break;
4202
4203 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4204 f_entry.fltr_info.vsi_handle = vsi_handle;
4205 f_entry.fltr_info.fwd_id.hw_vsi_id =
4206 ice_get_hw_vsi_num(hw, vsi_handle);
4207 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4208 if (recp_id == ICE_SW_LKUP_VLAN)
4209 status = ice_add_vlan_internal(hw, recp_list,
4210 &f_entry);
4211 else
4212 status = ice_add_rule_internal(hw, recp_list,
4213 lport,
4214 &f_entry);
4215 if (status)
4216 goto end;
4217 }
4218 }
4219 end:
4220 /* Clear the filter management list */
4221 ice_rem_sw_rule_info(hw, &l_head);
4222 return status;
4223 }
4224
4225 /**
4226 * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
4227 * @hw: pointer to the hardware structure
4228 *
4229 * NOTE: This function does not clean up partially added filters on error.
4230 * It is up to caller of the function to issue a reset or fail early.
4231 */
ice_replay_all_fltr(struct ice_hw * hw)4232 int ice_replay_all_fltr(struct ice_hw *hw)
4233 {
4234 struct ice_switch_info *sw = hw->switch_info;
4235 int status = ICE_SUCCESS;
4236 u8 i;
4237
4238 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4239 struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
4240
4241 status = ice_replay_fltr(hw, i, head);
4242 if (status != ICE_SUCCESS)
4243 return status;
4244 }
4245 return status;
4246 }
4247
4248 /**
4249 * ice_replay_vsi_fltr - Replay filters for requested VSI
4250 * @hw: pointer to the hardware structure
4251 * @pi: pointer to port information structure
4252 * @sw: pointer to switch info struct for which function replays filters
4253 * @vsi_handle: driver VSI handle
4254 * @recp_id: Recipe ID for which rules need to be replayed
4255 * @list_head: list for which filters need to be replayed
4256 *
4257 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
4258 * It is required to pass valid VSI handle.
4259 */
4260 static int
ice_replay_vsi_fltr(struct ice_hw * hw,struct ice_port_info * pi,struct ice_switch_info * sw,u16 vsi_handle,u8 recp_id,struct LIST_HEAD_TYPE * list_head)4261 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4262 struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
4263 struct LIST_HEAD_TYPE *list_head)
4264 {
4265 struct ice_fltr_mgmt_list_entry *itr;
4266 struct ice_sw_recipe *recp_list;
4267 int status = 0;
4268 u16 hw_vsi_id;
4269
4270 if (LIST_EMPTY(list_head))
4271 return status;
4272 recp_list = &sw->recp_list[recp_id];
4273 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4274
4275 LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
4276 list_entry) {
4277 struct ice_fltr_list_entry f_entry;
4278
4279 f_entry.fltr_info = itr->fltr_info;
4280 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
4281 itr->fltr_info.vsi_handle == vsi_handle) {
4282 /* update the src in case it is VSI num */
4283 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4284 f_entry.fltr_info.src = hw_vsi_id;
4285 status = ice_add_rule_internal(hw, recp_list,
4286 pi->lport,
4287 &f_entry);
4288 if (status)
4289 goto end;
4290 continue;
4291 }
4292 if (!itr->vsi_list_info ||
4293 !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
4294 continue;
4295 f_entry.fltr_info.vsi_handle = vsi_handle;
4296 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4297 /* update the src in case it is VSI num */
4298 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4299 f_entry.fltr_info.src = hw_vsi_id;
4300 if (recp_id == ICE_SW_LKUP_VLAN)
4301 status = ice_add_vlan_internal(hw, recp_list, &f_entry);
4302 else
4303 status = ice_add_rule_internal(hw, recp_list,
4304 pi->lport,
4305 &f_entry);
4306 if (status)
4307 goto end;
4308 }
4309 end:
4310 return status;
4311 }
4312
4313 /**
4314 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
4315 * @hw: pointer to the hardware structure
4316 * @pi: pointer to port information structure
4317 * @vsi_handle: driver VSI handle
4318 *
4319 * Replays filters for requested VSI via vsi_handle.
4320 */
4321 int
ice_replay_vsi_all_fltr(struct ice_hw * hw,struct ice_port_info * pi,u16 vsi_handle)4322 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4323 u16 vsi_handle)
4324 {
4325 struct ice_switch_info *sw = NULL;
4326 int status = 0;
4327 u8 i;
4328
4329 sw = hw->switch_info;
4330
4331 /* Update the recipes that were created */
4332 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4333 struct LIST_HEAD_TYPE *head;
4334
4335 head = &sw->recp_list[i].filt_replay_rules;
4336 if (!sw->recp_list[i].adv_rule)
4337 status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
4338 head);
4339 if (status)
4340 return status;
4341 }
4342
4343 return 0;
4344 }
4345
4346 /**
4347 * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules
4348 * @hw: pointer to the HW struct
4349 * @sw: pointer to switch info struct for which function removes filters
4350 *
4351 * Deletes the filter replay rules for given switch
4352 */
ice_rm_sw_replay_rule_info(struct ice_hw * hw,struct ice_switch_info * sw)4353 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
4354 {
4355 u8 i;
4356
4357 if (!sw)
4358 return;
4359
4360 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4361 if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
4362 struct LIST_HEAD_TYPE *l_head;
4363
4364 l_head = &sw->recp_list[i].filt_replay_rules;
4365 if (!sw->recp_list[i].adv_rule)
4366 ice_rem_sw_rule_info(hw, l_head);
4367 }
4368 }
4369 }
4370
4371 /**
4372 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
4373 * @hw: pointer to the HW struct
4374 *
4375 * Deletes the filter replay rules.
4376 */
ice_rm_all_sw_replay_rule_info(struct ice_hw * hw)4377 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
4378 {
4379 ice_rm_sw_replay_rule_info(hw, hw->switch_info);
4380 }
4381
4382