xref: /freebsd-14.2/sys/dev/age/if_age.c (revision ea86e323)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <[email protected]>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 #include <sys/taskqueue.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/pci/pcireg.h>
67 #include <dev/pci/pcivar.h>
68 
69 #include <machine/bus.h>
70 #include <machine/in_cksum.h>
71 
72 #include <dev/age/if_agereg.h>
73 #include <dev/age/if_agevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
79 
80 MODULE_DEPEND(age, pci, 1, 1, 1);
81 MODULE_DEPEND(age, ether, 1, 1, 1);
82 MODULE_DEPEND(age, miibus, 1, 1, 1);
83 
84 /* Tunables. */
85 static int msi_disable = 0;
86 static int msix_disable = 0;
87 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static struct age_dev {
94 	uint16_t	age_vendorid;
95 	uint16_t	age_deviceid;
96 	const char	*age_name;
97 } age_devs[] = {
98 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
100 };
101 
102 static int age_miibus_readreg(device_t, int, int);
103 static int age_miibus_writereg(device_t, int, int, int);
104 static void age_miibus_statchg(device_t);
105 static void age_mediastatus(if_t, struct ifmediareq *);
106 static int age_mediachange(if_t);
107 static int age_probe(device_t);
108 static void age_get_macaddr(struct age_softc *);
109 static void age_phy_reset(struct age_softc *);
110 static int age_attach(device_t);
111 static int age_detach(device_t);
112 static void age_sysctl_node(struct age_softc *);
113 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114 static int age_check_boundary(struct age_softc *);
115 static int age_dma_alloc(struct age_softc *);
116 static void age_dma_free(struct age_softc *);
117 static int age_shutdown(device_t);
118 static void age_setwol(struct age_softc *);
119 static int age_suspend(device_t);
120 static int age_resume(device_t);
121 static int age_encap(struct age_softc *, struct mbuf **);
122 static void age_start(if_t);
123 static void age_start_locked(if_t);
124 static void age_watchdog(struct age_softc *);
125 static int age_ioctl(if_t, u_long, caddr_t);
126 static void age_mac_config(struct age_softc *);
127 static void age_link_task(void *, int);
128 static void age_stats_update(struct age_softc *);
129 static int age_intr(void *);
130 static void age_int_task(void *, int);
131 static void age_txintr(struct age_softc *, int);
132 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133 static int age_rxintr(struct age_softc *, int, int);
134 static void age_tick(void *);
135 static void age_reset(struct age_softc *);
136 static void age_init(void *);
137 static void age_init_locked(struct age_softc *);
138 static void age_stop(struct age_softc *);
139 static void age_stop_txmac(struct age_softc *);
140 static void age_stop_rxmac(struct age_softc *);
141 static void age_init_tx_ring(struct age_softc *);
142 static int age_init_rx_ring(struct age_softc *);
143 static void age_init_rr_ring(struct age_softc *);
144 static void age_init_cmb_block(struct age_softc *);
145 static void age_init_smb_block(struct age_softc *);
146 #ifndef __NO_STRICT_ALIGNMENT
147 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
148 #endif
149 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150 static void age_rxvlan(struct age_softc *);
151 static void age_rxfilter(struct age_softc *);
152 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156 
157 static device_method_t age_methods[] = {
158 	/* Device interface. */
159 	DEVMETHOD(device_probe,		age_probe),
160 	DEVMETHOD(device_attach,	age_attach),
161 	DEVMETHOD(device_detach,	age_detach),
162 	DEVMETHOD(device_shutdown,	age_shutdown),
163 	DEVMETHOD(device_suspend,	age_suspend),
164 	DEVMETHOD(device_resume,	age_resume),
165 
166 	/* MII interface. */
167 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
168 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
169 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
170 	{ NULL, NULL }
171 };
172 
173 static driver_t age_driver = {
174 	"age",
175 	age_methods,
176 	sizeof(struct age_softc)
177 };
178 
179 DRIVER_MODULE(age, pci, age_driver, 0, 0);
180 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
181     nitems(age_devs));
182 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
183 
184 static struct resource_spec age_res_spec_mem[] = {
185 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
186 	{ -1,			0,		0 }
187 };
188 
189 static struct resource_spec age_irq_spec_legacy[] = {
190 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
191 	{ -1,			0,		0 }
192 };
193 
194 static struct resource_spec age_irq_spec_msi[] = {
195 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
196 	{ -1,			0,		0 }
197 };
198 
199 static struct resource_spec age_irq_spec_msix[] = {
200 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
201 	{ -1,			0,		0 }
202 };
203 
204 /*
205  *	Read a PHY register on the MII of the L1.
206  */
207 static int
age_miibus_readreg(device_t dev,int phy,int reg)208 age_miibus_readreg(device_t dev, int phy, int reg)
209 {
210 	struct age_softc *sc;
211 	uint32_t v;
212 	int i;
213 
214 	sc = device_get_softc(dev);
215 
216 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
219 		DELAY(1);
220 		v = CSR_READ_4(sc, AGE_MDIO);
221 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222 			break;
223 	}
224 
225 	if (i == 0) {
226 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
227 		return (0);
228 	}
229 
230 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
231 }
232 
233 /*
234  *	Write a PHY register on the MII of the L1.
235  */
236 static int
age_miibus_writereg(device_t dev,int phy,int reg,int val)237 age_miibus_writereg(device_t dev, int phy, int reg, int val)
238 {
239 	struct age_softc *sc;
240 	uint32_t v;
241 	int i;
242 
243 	sc = device_get_softc(dev);
244 
245 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
246 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
247 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
248 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
249 		DELAY(1);
250 		v = CSR_READ_4(sc, AGE_MDIO);
251 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
252 			break;
253 	}
254 
255 	if (i == 0)
256 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
257 
258 	return (0);
259 }
260 
261 /*
262  *	Callback from MII layer when media changes.
263  */
264 static void
age_miibus_statchg(device_t dev)265 age_miibus_statchg(device_t dev)
266 {
267 	struct age_softc *sc;
268 
269 	sc = device_get_softc(dev);
270 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
271 }
272 
273 /*
274  *	Get the current interface media status.
275  */
276 static void
age_mediastatus(if_t ifp,struct ifmediareq * ifmr)277 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
278 {
279 	struct age_softc *sc;
280 	struct mii_data *mii;
281 
282 	sc = if_getsoftc(ifp);
283 	AGE_LOCK(sc);
284 	mii = device_get_softc(sc->age_miibus);
285 
286 	mii_pollstat(mii);
287 	ifmr->ifm_status = mii->mii_media_status;
288 	ifmr->ifm_active = mii->mii_media_active;
289 	AGE_UNLOCK(sc);
290 }
291 
292 /*
293  *	Set hardware to newly-selected media.
294  */
295 static int
age_mediachange(if_t ifp)296 age_mediachange(if_t ifp)
297 {
298 	struct age_softc *sc;
299 	struct mii_data *mii;
300 	struct mii_softc *miisc;
301 	int error;
302 
303 	sc = if_getsoftc(ifp);
304 	AGE_LOCK(sc);
305 	mii = device_get_softc(sc->age_miibus);
306 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
307 		PHY_RESET(miisc);
308 	error = mii_mediachg(mii);
309 	AGE_UNLOCK(sc);
310 
311 	return (error);
312 }
313 
314 static int
age_probe(device_t dev)315 age_probe(device_t dev)
316 {
317 	struct age_dev *sp;
318 	int i;
319 	uint16_t vendor, devid;
320 
321 	vendor = pci_get_vendor(dev);
322 	devid = pci_get_device(dev);
323 	sp = age_devs;
324 	for (i = 0; i < nitems(age_devs); i++, sp++) {
325 		if (vendor == sp->age_vendorid &&
326 		    devid == sp->age_deviceid) {
327 			device_set_desc(dev, sp->age_name);
328 			return (BUS_PROBE_DEFAULT);
329 		}
330 	}
331 
332 	return (ENXIO);
333 }
334 
335 static void
age_get_macaddr(struct age_softc * sc)336 age_get_macaddr(struct age_softc *sc)
337 {
338 	uint32_t ea[2], reg;
339 	int i, vpdc;
340 
341 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
342 	if ((reg & SPI_VPD_ENB) != 0) {
343 		/* Get VPD stored in TWSI EEPROM. */
344 		reg &= ~SPI_VPD_ENB;
345 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
346 	}
347 
348 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
349 		/*
350 		 * PCI VPD capability found, let TWSI reload EEPROM.
351 		 * This will set ethernet address of controller.
352 		 */
353 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
354 		    TWSI_CTRL_SW_LD_START);
355 		for (i = 100; i > 0; i--) {
356 			DELAY(1000);
357 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
358 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
359 				break;
360 		}
361 		if (i == 0)
362 			device_printf(sc->age_dev,
363 			    "reloading EEPROM timeout!\n");
364 	} else {
365 		if (bootverbose)
366 			device_printf(sc->age_dev,
367 			    "PCI VPD capability not found!\n");
368 	}
369 
370 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
371 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
372 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
373 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
374 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
375 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
376 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
377 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
378 }
379 
380 static void
age_phy_reset(struct age_softc * sc)381 age_phy_reset(struct age_softc *sc)
382 {
383 	uint16_t reg, pn;
384 	int i, linkup;
385 
386 	/* Reset PHY. */
387 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
388 	DELAY(2000);
389 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
390 	DELAY(2000);
391 
392 #define	ATPHY_DBG_ADDR		0x1D
393 #define	ATPHY_DBG_DATA		0x1E
394 #define	ATPHY_CDTC		0x16
395 #define	PHY_CDTC_ENB		0x0001
396 #define	PHY_CDTC_POFF		8
397 #define	ATPHY_CDTS		0x1C
398 #define	PHY_CDTS_STAT_OK	0x0000
399 #define	PHY_CDTS_STAT_SHORT	0x0100
400 #define	PHY_CDTS_STAT_OPEN	0x0200
401 #define	PHY_CDTS_STAT_INVAL	0x0300
402 #define	PHY_CDTS_STAT_MASK	0x0300
403 
404 	/* Check power saving mode. Magic from Linux. */
405 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
406 	for (linkup = 0, pn = 0; pn < 4; pn++) {
407 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
408 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
409 		for (i = 200; i > 0; i--) {
410 			DELAY(1000);
411 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
412 			    ATPHY_CDTC);
413 			if ((reg & PHY_CDTC_ENB) == 0)
414 				break;
415 		}
416 		DELAY(1000);
417 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418 		    ATPHY_CDTS);
419 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
420 			linkup++;
421 			break;
422 		}
423 	}
424 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
425 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
426 	if (linkup == 0) {
427 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
428 		    ATPHY_DBG_ADDR, 0);
429 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430 		    ATPHY_DBG_DATA, 0x124E);
431 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432 		    ATPHY_DBG_ADDR, 1);
433 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
434 		    ATPHY_DBG_DATA);
435 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436 		    ATPHY_DBG_DATA, reg | 0x03);
437 		/* XXX */
438 		DELAY(1500 * 1000);
439 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440 		    ATPHY_DBG_ADDR, 0);
441 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442 		    ATPHY_DBG_DATA, 0x024E);
443     }
444 
445 #undef	ATPHY_DBG_ADDR
446 #undef	ATPHY_DBG_DATA
447 #undef	ATPHY_CDTC
448 #undef	PHY_CDTC_ENB
449 #undef	PHY_CDTC_POFF
450 #undef	ATPHY_CDTS
451 #undef	PHY_CDTS_STAT_OK
452 #undef	PHY_CDTS_STAT_SHORT
453 #undef	PHY_CDTS_STAT_OPEN
454 #undef	PHY_CDTS_STAT_INVAL
455 #undef	PHY_CDTS_STAT_MASK
456 }
457 
458 static int
age_attach(device_t dev)459 age_attach(device_t dev)
460 {
461 	struct age_softc *sc;
462 	if_t ifp;
463 	uint16_t burst;
464 	int error, i, msic, msixc, pmc;
465 
466 	error = 0;
467 	sc = device_get_softc(dev);
468 	sc->age_dev = dev;
469 
470 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
471 	    MTX_DEF);
472 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
473 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
474 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
475 
476 	/* Map the device. */
477 	pci_enable_busmaster(dev);
478 	sc->age_res_spec = age_res_spec_mem;
479 	sc->age_irq_spec = age_irq_spec_legacy;
480 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
481 	if (error != 0) {
482 		device_printf(dev, "cannot allocate memory resources.\n");
483 		goto fail;
484 	}
485 
486 	/* Set PHY address. */
487 	sc->age_phyaddr = AGE_PHY_ADDR;
488 
489 	/* Reset PHY. */
490 	age_phy_reset(sc);
491 
492 	/* Reset the ethernet controller. */
493 	age_reset(sc);
494 
495 	/* Get PCI and chip id/revision. */
496 	sc->age_rev = pci_get_revid(dev);
497 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
498 	    MASTER_CHIP_REV_SHIFT;
499 	if (bootverbose) {
500 		device_printf(dev, "PCI device revision : 0x%04x\n",
501 		    sc->age_rev);
502 		device_printf(dev, "Chip id/revision : 0x%04x\n",
503 		    sc->age_chip_rev);
504 	}
505 
506 	/*
507 	 * XXX
508 	 * Unintialized hardware returns an invalid chip id/revision
509 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
510 	 * unplugged cable results in putting hardware into automatic
511 	 * power down mode which in turn returns invalld chip revision.
512 	 */
513 	if (sc->age_chip_rev == 0xFFFF) {
514 		device_printf(dev,"invalid chip revision : 0x%04x -- "
515 		    "not initialized?\n", sc->age_chip_rev);
516 		error = ENXIO;
517 		goto fail;
518 	}
519 
520 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
521 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
522 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
523 
524 	/* Allocate IRQ resources. */
525 	msixc = pci_msix_count(dev);
526 	msic = pci_msi_count(dev);
527 	if (bootverbose) {
528 		device_printf(dev, "MSIX count : %d\n", msixc);
529 		device_printf(dev, "MSI count : %d\n", msic);
530 	}
531 
532 	/* Prefer MSIX over MSI. */
533 	if (msix_disable == 0 || msi_disable == 0) {
534 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
535 		    pci_alloc_msix(dev, &msixc) == 0) {
536 			if (msic == AGE_MSIX_MESSAGES) {
537 				device_printf(dev, "Using %d MSIX messages.\n",
538 				    msixc);
539 				sc->age_flags |= AGE_FLAG_MSIX;
540 				sc->age_irq_spec = age_irq_spec_msix;
541 			} else
542 				pci_release_msi(dev);
543 		}
544 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
545 		    msic == AGE_MSI_MESSAGES &&
546 		    pci_alloc_msi(dev, &msic) == 0) {
547 			if (msic == AGE_MSI_MESSAGES) {
548 				device_printf(dev, "Using %d MSI messages.\n",
549 				    msic);
550 				sc->age_flags |= AGE_FLAG_MSI;
551 				sc->age_irq_spec = age_irq_spec_msi;
552 			} else
553 				pci_release_msi(dev);
554 		}
555 	}
556 
557 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
558 	if (error != 0) {
559 		device_printf(dev, "cannot allocate IRQ resources.\n");
560 		goto fail;
561 	}
562 
563 	/* Get DMA parameters from PCIe device control register. */
564 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
565 		sc->age_flags |= AGE_FLAG_PCIE;
566 		burst = pci_read_config(dev, i + 0x08, 2);
567 		/* Max read request size. */
568 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
569 		    DMA_CFG_RD_BURST_SHIFT;
570 		/* Max payload size. */
571 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
572 		    DMA_CFG_WR_BURST_SHIFT;
573 		if (bootverbose) {
574 			device_printf(dev, "Read request size : %d bytes.\n",
575 			    128 << ((burst >> 12) & 0x07));
576 			device_printf(dev, "TLP payload size : %d bytes.\n",
577 			    128 << ((burst >> 5) & 0x07));
578 		}
579 	} else {
580 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
581 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
582 	}
583 
584 	/* Create device sysctl node. */
585 	age_sysctl_node(sc);
586 
587 	if ((error = age_dma_alloc(sc)) != 0)
588 		goto fail;
589 
590 	/* Load station address. */
591 	age_get_macaddr(sc);
592 
593 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
594 	if_setsoftc(ifp, sc);
595 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
596 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
597 	if_setioctlfn(ifp, age_ioctl);
598 	if_setstartfn(ifp, age_start);
599 	if_setinitfn(ifp, age_init);
600 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
601 	if_setsendqready(ifp);
602 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
603 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
604 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
605 		sc->age_flags |= AGE_FLAG_PMCAP;
606 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
607 	}
608 	if_setcapenable(ifp, if_getcapabilities(ifp));
609 
610 	/* Set up MII bus. */
611 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
612 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
613 	    0);
614 	if (error != 0) {
615 		device_printf(dev, "attaching PHYs failed\n");
616 		goto fail;
617 	}
618 
619 	ether_ifattach(ifp, sc->age_eaddr);
620 
621 	/* VLAN capability setup. */
622 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
623 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
624 	if_setcapenable(ifp, if_getcapabilities(ifp));
625 
626 	/* Tell the upper layer(s) we support long frames. */
627 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
628 
629 	/* Create local taskq. */
630 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
631 	    taskqueue_thread_enqueue, &sc->age_tq);
632 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
633 	    device_get_nameunit(sc->age_dev));
634 
635 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
636 		msic = AGE_MSIX_MESSAGES;
637 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
638 		msic = AGE_MSI_MESSAGES;
639 	else
640 		msic = 1;
641 	for (i = 0; i < msic; i++) {
642 		error = bus_setup_intr(dev, sc->age_irq[i],
643 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
644 		    &sc->age_intrhand[i]);
645 		if (error != 0)
646 			break;
647 	}
648 	if (error != 0) {
649 		device_printf(dev, "could not set up interrupt handler.\n");
650 		taskqueue_free(sc->age_tq);
651 		sc->age_tq = NULL;
652 		ether_ifdetach(ifp);
653 		goto fail;
654 	}
655 
656 fail:
657 	if (error != 0)
658 		age_detach(dev);
659 
660 	return (error);
661 }
662 
663 static int
age_detach(device_t dev)664 age_detach(device_t dev)
665 {
666 	struct age_softc *sc;
667 	if_t ifp;
668 	int i, msic;
669 
670 	sc = device_get_softc(dev);
671 
672 	ifp = sc->age_ifp;
673 	if (device_is_attached(dev)) {
674 		AGE_LOCK(sc);
675 		sc->age_flags |= AGE_FLAG_DETACH;
676 		age_stop(sc);
677 		AGE_UNLOCK(sc);
678 		callout_drain(&sc->age_tick_ch);
679 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
680 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
681 		ether_ifdetach(ifp);
682 	}
683 
684 	if (sc->age_tq != NULL) {
685 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
686 		taskqueue_free(sc->age_tq);
687 		sc->age_tq = NULL;
688 	}
689 
690 	if (sc->age_miibus != NULL) {
691 		device_delete_child(dev, sc->age_miibus);
692 		sc->age_miibus = NULL;
693 	}
694 	bus_generic_detach(dev);
695 	age_dma_free(sc);
696 
697 	if (ifp != NULL) {
698 		if_free(ifp);
699 		sc->age_ifp = NULL;
700 	}
701 
702 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
703 		msic = AGE_MSIX_MESSAGES;
704 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
705 		msic = AGE_MSI_MESSAGES;
706 	else
707 		msic = 1;
708 	for (i = 0; i < msic; i++) {
709 		if (sc->age_intrhand[i] != NULL) {
710 			bus_teardown_intr(dev, sc->age_irq[i],
711 			    sc->age_intrhand[i]);
712 			sc->age_intrhand[i] = NULL;
713 		}
714 	}
715 
716 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
717 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
718 		pci_release_msi(dev);
719 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
720 	mtx_destroy(&sc->age_mtx);
721 
722 	return (0);
723 }
724 
725 static void
age_sysctl_node(struct age_softc * sc)726 age_sysctl_node(struct age_softc *sc)
727 {
728 	int error;
729 
730 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
731 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
732 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
733 	    sc, 0, sysctl_age_stats, "I", "Statistics");
734 
735 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
736 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
737 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
738 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
739 	    "age interrupt moderation");
740 
741 	/* Pull in device tunables. */
742 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
743 	error = resource_int_value(device_get_name(sc->age_dev),
744 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
745 	if (error == 0) {
746 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
747 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
748 			device_printf(sc->age_dev,
749 			    "int_mod value out of range; using default: %d\n",
750 			    AGE_IM_TIMER_DEFAULT);
751 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
752 		}
753 	}
754 
755 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
758 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
759 	    "max number of Rx events to process");
760 
761 	/* Pull in device tunables. */
762 	sc->age_process_limit = AGE_PROC_DEFAULT;
763 	error = resource_int_value(device_get_name(sc->age_dev),
764 	    device_get_unit(sc->age_dev), "process_limit",
765 	    &sc->age_process_limit);
766 	if (error == 0) {
767 		if (sc->age_process_limit < AGE_PROC_MIN ||
768 		    sc->age_process_limit > AGE_PROC_MAX) {
769 			device_printf(sc->age_dev,
770 			    "process_limit value out of range; "
771 			    "using default: %d\n", AGE_PROC_DEFAULT);
772 			sc->age_process_limit = AGE_PROC_DEFAULT;
773 		}
774 	}
775 }
776 
777 struct age_dmamap_arg {
778 	bus_addr_t	age_busaddr;
779 };
780 
781 static void
age_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)782 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
783 {
784 	struct age_dmamap_arg *ctx;
785 
786 	if (error != 0)
787 		return;
788 
789 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
790 
791 	ctx = (struct age_dmamap_arg *)arg;
792 	ctx->age_busaddr = segs[0].ds_addr;
793 }
794 
795 /*
796  * Attansic L1 controller have single register to specify high
797  * address part of DMA blocks. So all descriptor structures and
798  * DMA memory blocks should have the same high address of given
799  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
800  */
801 static int
age_check_boundary(struct age_softc * sc)802 age_check_boundary(struct age_softc *sc)
803 {
804 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
805 	bus_addr_t cmb_block_end, smb_block_end;
806 
807 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
808 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
809 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
810 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
811 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
812 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
813 
814 	if ((AGE_ADDR_HI(tx_ring_end) !=
815 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
816 	    (AGE_ADDR_HI(rx_ring_end) !=
817 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
818 	    (AGE_ADDR_HI(rr_ring_end) !=
819 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
820 	    (AGE_ADDR_HI(cmb_block_end) !=
821 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
822 	    (AGE_ADDR_HI(smb_block_end) !=
823 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
824 		return (EFBIG);
825 
826 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
827 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
828 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
829 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
830 		return (EFBIG);
831 
832 	return (0);
833 }
834 
835 static int
age_dma_alloc(struct age_softc * sc)836 age_dma_alloc(struct age_softc *sc)
837 {
838 	struct age_txdesc *txd;
839 	struct age_rxdesc *rxd;
840 	bus_addr_t lowaddr;
841 	struct age_dmamap_arg ctx;
842 	int error, i;
843 
844 	lowaddr = BUS_SPACE_MAXADDR;
845 
846 again:
847 	/* Create parent ring/DMA block tag. */
848 	error = bus_dma_tag_create(
849 	    bus_get_dma_tag(sc->age_dev), /* parent */
850 	    1, 0,			/* alignment, boundary */
851 	    lowaddr,			/* lowaddr */
852 	    BUS_SPACE_MAXADDR,		/* highaddr */
853 	    NULL, NULL,			/* filter, filterarg */
854 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
855 	    0,				/* nsegments */
856 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
857 	    0,				/* flags */
858 	    NULL, NULL,			/* lockfunc, lockarg */
859 	    &sc->age_cdata.age_parent_tag);
860 	if (error != 0) {
861 		device_printf(sc->age_dev,
862 		    "could not create parent DMA tag.\n");
863 		goto fail;
864 	}
865 
866 	/* Create tag for Tx ring. */
867 	error = bus_dma_tag_create(
868 	    sc->age_cdata.age_parent_tag, /* parent */
869 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
870 	    BUS_SPACE_MAXADDR,		/* lowaddr */
871 	    BUS_SPACE_MAXADDR,		/* highaddr */
872 	    NULL, NULL,			/* filter, filterarg */
873 	    AGE_TX_RING_SZ,		/* maxsize */
874 	    1,				/* nsegments */
875 	    AGE_TX_RING_SZ,		/* maxsegsize */
876 	    0,				/* flags */
877 	    NULL, NULL,			/* lockfunc, lockarg */
878 	    &sc->age_cdata.age_tx_ring_tag);
879 	if (error != 0) {
880 		device_printf(sc->age_dev,
881 		    "could not create Tx ring DMA tag.\n");
882 		goto fail;
883 	}
884 
885 	/* Create tag for Rx ring. */
886 	error = bus_dma_tag_create(
887 	    sc->age_cdata.age_parent_tag, /* parent */
888 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
889 	    BUS_SPACE_MAXADDR,		/* lowaddr */
890 	    BUS_SPACE_MAXADDR,		/* highaddr */
891 	    NULL, NULL,			/* filter, filterarg */
892 	    AGE_RX_RING_SZ,		/* maxsize */
893 	    1,				/* nsegments */
894 	    AGE_RX_RING_SZ,		/* maxsegsize */
895 	    0,				/* flags */
896 	    NULL, NULL,			/* lockfunc, lockarg */
897 	    &sc->age_cdata.age_rx_ring_tag);
898 	if (error != 0) {
899 		device_printf(sc->age_dev,
900 		    "could not create Rx ring DMA tag.\n");
901 		goto fail;
902 	}
903 
904 	/* Create tag for Rx return ring. */
905 	error = bus_dma_tag_create(
906 	    sc->age_cdata.age_parent_tag, /* parent */
907 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
908 	    BUS_SPACE_MAXADDR,		/* lowaddr */
909 	    BUS_SPACE_MAXADDR,		/* highaddr */
910 	    NULL, NULL,			/* filter, filterarg */
911 	    AGE_RR_RING_SZ,		/* maxsize */
912 	    1,				/* nsegments */
913 	    AGE_RR_RING_SZ,		/* maxsegsize */
914 	    0,				/* flags */
915 	    NULL, NULL,			/* lockfunc, lockarg */
916 	    &sc->age_cdata.age_rr_ring_tag);
917 	if (error != 0) {
918 		device_printf(sc->age_dev,
919 		    "could not create Rx return ring DMA tag.\n");
920 		goto fail;
921 	}
922 
923 	/* Create tag for coalesing message block. */
924 	error = bus_dma_tag_create(
925 	    sc->age_cdata.age_parent_tag, /* parent */
926 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
927 	    BUS_SPACE_MAXADDR,		/* lowaddr */
928 	    BUS_SPACE_MAXADDR,		/* highaddr */
929 	    NULL, NULL,			/* filter, filterarg */
930 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
931 	    1,				/* nsegments */
932 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
933 	    0,				/* flags */
934 	    NULL, NULL,			/* lockfunc, lockarg */
935 	    &sc->age_cdata.age_cmb_block_tag);
936 	if (error != 0) {
937 		device_printf(sc->age_dev,
938 		    "could not create CMB DMA tag.\n");
939 		goto fail;
940 	}
941 
942 	/* Create tag for statistics message block. */
943 	error = bus_dma_tag_create(
944 	    sc->age_cdata.age_parent_tag, /* parent */
945 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
946 	    BUS_SPACE_MAXADDR,		/* lowaddr */
947 	    BUS_SPACE_MAXADDR,		/* highaddr */
948 	    NULL, NULL,			/* filter, filterarg */
949 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
950 	    1,				/* nsegments */
951 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
952 	    0,				/* flags */
953 	    NULL, NULL,			/* lockfunc, lockarg */
954 	    &sc->age_cdata.age_smb_block_tag);
955 	if (error != 0) {
956 		device_printf(sc->age_dev,
957 		    "could not create SMB DMA tag.\n");
958 		goto fail;
959 	}
960 
961 	/* Allocate DMA'able memory and load the DMA map. */
962 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
963 	    (void **)&sc->age_rdata.age_tx_ring,
964 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
965 	    &sc->age_cdata.age_tx_ring_map);
966 	if (error != 0) {
967 		device_printf(sc->age_dev,
968 		    "could not allocate DMA'able memory for Tx ring.\n");
969 		goto fail;
970 	}
971 	ctx.age_busaddr = 0;
972 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
973 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
974 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
975 	if (error != 0 || ctx.age_busaddr == 0) {
976 		device_printf(sc->age_dev,
977 		    "could not load DMA'able memory for Tx ring.\n");
978 		goto fail;
979 	}
980 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
981 	/* Rx ring */
982 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
983 	    (void **)&sc->age_rdata.age_rx_ring,
984 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
985 	    &sc->age_cdata.age_rx_ring_map);
986 	if (error != 0) {
987 		device_printf(sc->age_dev,
988 		    "could not allocate DMA'able memory for Rx ring.\n");
989 		goto fail;
990 	}
991 	ctx.age_busaddr = 0;
992 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
993 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
994 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
995 	if (error != 0 || ctx.age_busaddr == 0) {
996 		device_printf(sc->age_dev,
997 		    "could not load DMA'able memory for Rx ring.\n");
998 		goto fail;
999 	}
1000 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1001 	/* Rx return ring */
1002 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1003 	    (void **)&sc->age_rdata.age_rr_ring,
1004 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1005 	    &sc->age_cdata.age_rr_ring_map);
1006 	if (error != 0) {
1007 		device_printf(sc->age_dev,
1008 		    "could not allocate DMA'able memory for Rx return ring.\n");
1009 		goto fail;
1010 	}
1011 	ctx.age_busaddr = 0;
1012 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1013 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1014 	    AGE_RR_RING_SZ, age_dmamap_cb,
1015 	    &ctx, 0);
1016 	if (error != 0 || ctx.age_busaddr == 0) {
1017 		device_printf(sc->age_dev,
1018 		    "could not load DMA'able memory for Rx return ring.\n");
1019 		goto fail;
1020 	}
1021 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1022 	/* CMB block */
1023 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1024 	    (void **)&sc->age_rdata.age_cmb_block,
1025 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1026 	    &sc->age_cdata.age_cmb_block_map);
1027 	if (error != 0) {
1028 		device_printf(sc->age_dev,
1029 		    "could not allocate DMA'able memory for CMB block.\n");
1030 		goto fail;
1031 	}
1032 	ctx.age_busaddr = 0;
1033 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1034 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1035 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1036 	if (error != 0 || ctx.age_busaddr == 0) {
1037 		device_printf(sc->age_dev,
1038 		    "could not load DMA'able memory for CMB block.\n");
1039 		goto fail;
1040 	}
1041 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1042 	/* SMB block */
1043 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1044 	    (void **)&sc->age_rdata.age_smb_block,
1045 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1046 	    &sc->age_cdata.age_smb_block_map);
1047 	if (error != 0) {
1048 		device_printf(sc->age_dev,
1049 		    "could not allocate DMA'able memory for SMB block.\n");
1050 		goto fail;
1051 	}
1052 	ctx.age_busaddr = 0;
1053 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1054 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1055 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1056 	if (error != 0 || ctx.age_busaddr == 0) {
1057 		device_printf(sc->age_dev,
1058 		    "could not load DMA'able memory for SMB block.\n");
1059 		goto fail;
1060 	}
1061 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1062 
1063 	/*
1064 	 * All ring buffer and DMA blocks should have the same
1065 	 * high address part of 64bit DMA address space.
1066 	 */
1067 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1068 	    (error = age_check_boundary(sc)) != 0) {
1069 		device_printf(sc->age_dev, "4GB boundary crossed, "
1070 		    "switching to 32bit DMA addressing mode.\n");
1071 		age_dma_free(sc);
1072 		/* Limit DMA address space to 32bit and try again. */
1073 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1074 		goto again;
1075 	}
1076 
1077 	/*
1078 	 * Create Tx/Rx buffer parent tag.
1079 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1080 	 * so it needs separate parent DMA tag.
1081 	 * XXX
1082 	 * It seems enabling 64bit DMA causes data corruption. Limit
1083 	 * DMA address space to 32bit.
1084 	 */
1085 	error = bus_dma_tag_create(
1086 	    bus_get_dma_tag(sc->age_dev), /* parent */
1087 	    1, 0,			/* alignment, boundary */
1088 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1089 	    BUS_SPACE_MAXADDR,		/* highaddr */
1090 	    NULL, NULL,			/* filter, filterarg */
1091 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1092 	    0,				/* nsegments */
1093 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1094 	    0,				/* flags */
1095 	    NULL, NULL,			/* lockfunc, lockarg */
1096 	    &sc->age_cdata.age_buffer_tag);
1097 	if (error != 0) {
1098 		device_printf(sc->age_dev,
1099 		    "could not create parent buffer DMA tag.\n");
1100 		goto fail;
1101 	}
1102 
1103 	/* Create tag for Tx buffers. */
1104 	error = bus_dma_tag_create(
1105 	    sc->age_cdata.age_buffer_tag, /* parent */
1106 	    1, 0,			/* alignment, boundary */
1107 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1108 	    BUS_SPACE_MAXADDR,		/* highaddr */
1109 	    NULL, NULL,			/* filter, filterarg */
1110 	    AGE_TSO_MAXSIZE,		/* maxsize */
1111 	    AGE_MAXTXSEGS,		/* nsegments */
1112 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1113 	    0,				/* flags */
1114 	    NULL, NULL,			/* lockfunc, lockarg */
1115 	    &sc->age_cdata.age_tx_tag);
1116 	if (error != 0) {
1117 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1118 		goto fail;
1119 	}
1120 
1121 	/* Create tag for Rx buffers. */
1122 	error = bus_dma_tag_create(
1123 	    sc->age_cdata.age_buffer_tag, /* parent */
1124 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1125 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126 	    BUS_SPACE_MAXADDR,		/* highaddr */
1127 	    NULL, NULL,			/* filter, filterarg */
1128 	    MCLBYTES,			/* maxsize */
1129 	    1,				/* nsegments */
1130 	    MCLBYTES,			/* maxsegsize */
1131 	    0,				/* flags */
1132 	    NULL, NULL,			/* lockfunc, lockarg */
1133 	    &sc->age_cdata.age_rx_tag);
1134 	if (error != 0) {
1135 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1136 		goto fail;
1137 	}
1138 
1139 	/* Create DMA maps for Tx buffers. */
1140 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1141 		txd = &sc->age_cdata.age_txdesc[i];
1142 		txd->tx_m = NULL;
1143 		txd->tx_dmamap = NULL;
1144 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1145 		    &txd->tx_dmamap);
1146 		if (error != 0) {
1147 			device_printf(sc->age_dev,
1148 			    "could not create Tx dmamap.\n");
1149 			goto fail;
1150 		}
1151 	}
1152 	/* Create DMA maps for Rx buffers. */
1153 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1154 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1155 		device_printf(sc->age_dev,
1156 		    "could not create spare Rx dmamap.\n");
1157 		goto fail;
1158 	}
1159 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1160 		rxd = &sc->age_cdata.age_rxdesc[i];
1161 		rxd->rx_m = NULL;
1162 		rxd->rx_dmamap = NULL;
1163 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1164 		    &rxd->rx_dmamap);
1165 		if (error != 0) {
1166 			device_printf(sc->age_dev,
1167 			    "could not create Rx dmamap.\n");
1168 			goto fail;
1169 		}
1170 	}
1171 
1172 fail:
1173 	return (error);
1174 }
1175 
1176 static void
age_dma_free(struct age_softc * sc)1177 age_dma_free(struct age_softc *sc)
1178 {
1179 	struct age_txdesc *txd;
1180 	struct age_rxdesc *rxd;
1181 	int i;
1182 
1183 	/* Tx buffers */
1184 	if (sc->age_cdata.age_tx_tag != NULL) {
1185 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1186 			txd = &sc->age_cdata.age_txdesc[i];
1187 			if (txd->tx_dmamap != NULL) {
1188 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1189 				    txd->tx_dmamap);
1190 				txd->tx_dmamap = NULL;
1191 			}
1192 		}
1193 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1194 		sc->age_cdata.age_tx_tag = NULL;
1195 	}
1196 	/* Rx buffers */
1197 	if (sc->age_cdata.age_rx_tag != NULL) {
1198 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1199 			rxd = &sc->age_cdata.age_rxdesc[i];
1200 			if (rxd->rx_dmamap != NULL) {
1201 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1202 				    rxd->rx_dmamap);
1203 				rxd->rx_dmamap = NULL;
1204 			}
1205 		}
1206 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1207 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1208 			    sc->age_cdata.age_rx_sparemap);
1209 			sc->age_cdata.age_rx_sparemap = NULL;
1210 		}
1211 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1212 		sc->age_cdata.age_rx_tag = NULL;
1213 	}
1214 	/* Tx ring. */
1215 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1216 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1217 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1218 			    sc->age_cdata.age_tx_ring_map);
1219 		if (sc->age_rdata.age_tx_ring != NULL)
1220 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1221 			    sc->age_rdata.age_tx_ring,
1222 			    sc->age_cdata.age_tx_ring_map);
1223 		sc->age_rdata.age_tx_ring_paddr = 0;
1224 		sc->age_rdata.age_tx_ring = NULL;
1225 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1226 		sc->age_cdata.age_tx_ring_tag = NULL;
1227 	}
1228 	/* Rx ring. */
1229 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1230 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1231 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1232 			    sc->age_cdata.age_rx_ring_map);
1233 		if (sc->age_rdata.age_rx_ring != NULL)
1234 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1235 			    sc->age_rdata.age_rx_ring,
1236 			    sc->age_cdata.age_rx_ring_map);
1237 		sc->age_rdata.age_rx_ring_paddr = 0;
1238 		sc->age_rdata.age_rx_ring = NULL;
1239 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1240 		sc->age_cdata.age_rx_ring_tag = NULL;
1241 	}
1242 	/* Rx return ring. */
1243 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1244 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1245 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1246 			    sc->age_cdata.age_rr_ring_map);
1247 		if (sc->age_rdata.age_rr_ring != NULL)
1248 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1249 			    sc->age_rdata.age_rr_ring,
1250 			    sc->age_cdata.age_rr_ring_map);
1251 		sc->age_rdata.age_rr_ring_paddr = 0;
1252 		sc->age_rdata.age_rr_ring = NULL;
1253 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1254 		sc->age_cdata.age_rr_ring_tag = NULL;
1255 	}
1256 	/* CMB block */
1257 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1258 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1259 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1260 			    sc->age_cdata.age_cmb_block_map);
1261 		if (sc->age_rdata.age_cmb_block != NULL)
1262 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1263 			    sc->age_rdata.age_cmb_block,
1264 			    sc->age_cdata.age_cmb_block_map);
1265 		sc->age_rdata.age_cmb_block_paddr = 0;
1266 		sc->age_rdata.age_cmb_block = NULL;
1267 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1268 		sc->age_cdata.age_cmb_block_tag = NULL;
1269 	}
1270 	/* SMB block */
1271 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1272 		if (sc->age_rdata.age_smb_block_paddr != 0)
1273 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1274 			    sc->age_cdata.age_smb_block_map);
1275 		if (sc->age_rdata.age_smb_block != NULL)
1276 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1277 			    sc->age_rdata.age_smb_block,
1278 			    sc->age_cdata.age_smb_block_map);
1279 		sc->age_rdata.age_smb_block_paddr = 0;
1280 		sc->age_rdata.age_smb_block = NULL;
1281 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1282 		sc->age_cdata.age_smb_block_tag = NULL;
1283 	}
1284 
1285 	if (sc->age_cdata.age_buffer_tag != NULL) {
1286 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1287 		sc->age_cdata.age_buffer_tag = NULL;
1288 	}
1289 	if (sc->age_cdata.age_parent_tag != NULL) {
1290 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1291 		sc->age_cdata.age_parent_tag = NULL;
1292 	}
1293 }
1294 
1295 /*
1296  *	Make sure the interface is stopped at reboot time.
1297  */
1298 static int
age_shutdown(device_t dev)1299 age_shutdown(device_t dev)
1300 {
1301 
1302 	return (age_suspend(dev));
1303 }
1304 
1305 static void
age_setwol(struct age_softc * sc)1306 age_setwol(struct age_softc *sc)
1307 {
1308 	if_t ifp;
1309 	struct mii_data *mii;
1310 	uint32_t reg, pmcs;
1311 	uint16_t pmstat;
1312 	int aneg, i, pmc;
1313 
1314 	AGE_LOCK_ASSERT(sc);
1315 
1316 	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1317 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1318 		/*
1319 		 * No PME capability, PHY power down.
1320 		 * XXX
1321 		 * Due to an unknown reason powering down PHY resulted
1322 		 * in unexpected results such as inaccessbility of
1323 		 * hardware of freshly rebooted system. Disable
1324 		 * powering down PHY until I got more information for
1325 		 * Attansic/Atheros PHY hardwares.
1326 		 */
1327 #ifdef notyet
1328 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1329 		    MII_BMCR, BMCR_PDOWN);
1330 #endif
1331 		return;
1332 	}
1333 
1334 	ifp = sc->age_ifp;
1335 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1336 		/*
1337 		 * Note, this driver resets the link speed to 10/100Mbps with
1338 		 * auto-negotiation but we don't know whether that operation
1339 		 * would succeed or not as it have no control after powering
1340 		 * off. If the renegotiation fail WOL may not work. Running
1341 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1342 		 * specified in PCI specification and that would result in
1343 		 * complete shutdowning power to ethernet controller.
1344 		 *
1345 		 * TODO
1346 		 *  Save current negotiated media speed/duplex/flow-control
1347 		 *  to softc and restore the same link again after resuming.
1348 		 *  PHY handling such as power down/resetting to 100Mbps
1349 		 *  may be better handled in suspend method in phy driver.
1350 		 */
1351 		mii = device_get_softc(sc->age_miibus);
1352 		mii_pollstat(mii);
1353 		aneg = 0;
1354 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1355 			switch IFM_SUBTYPE(mii->mii_media_active) {
1356 			case IFM_10_T:
1357 			case IFM_100_TX:
1358 				goto got_link;
1359 			case IFM_1000_T:
1360 				aneg++;
1361 			default:
1362 				break;
1363 			}
1364 		}
1365 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1366 		    MII_100T2CR, 0);
1367 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1368 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1369 		    ANAR_10 | ANAR_CSMA);
1370 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1371 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1372 		DELAY(1000);
1373 		if (aneg != 0) {
1374 			/* Poll link state until age(4) get a 10/100 link. */
1375 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1376 				mii_pollstat(mii);
1377 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1378 					switch (IFM_SUBTYPE(
1379 					    mii->mii_media_active)) {
1380 					case IFM_10_T:
1381 					case IFM_100_TX:
1382 						age_mac_config(sc);
1383 						goto got_link;
1384 					default:
1385 						break;
1386 					}
1387 				}
1388 				AGE_UNLOCK(sc);
1389 				pause("agelnk", hz);
1390 				AGE_LOCK(sc);
1391 			}
1392 			if (i == MII_ANEGTICKS_GIGE)
1393 				device_printf(sc->age_dev,
1394 				    "establishing link failed, "
1395 				    "WOL may not work!");
1396 		}
1397 		/*
1398 		 * No link, force MAC to have 100Mbps, full-duplex link.
1399 		 * This is the last resort and may/may not work.
1400 		 */
1401 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1402 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1403 		age_mac_config(sc);
1404 	}
1405 
1406 got_link:
1407 	pmcs = 0;
1408 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1409 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1410 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1411 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1412 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1413 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1414 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1415 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1416 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1417 		reg |= MAC_CFG_RX_ENB;
1418 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1419 	}
1420 
1421 	/* Request PME. */
1422 	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1423 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1424 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1425 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1426 	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1427 #ifdef notyet
1428 	/* See above for powering down PHY issues. */
1429 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1430 		/* No WOL, PHY power down. */
1431 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1432 		    MII_BMCR, BMCR_PDOWN);
1433 	}
1434 #endif
1435 }
1436 
1437 static int
age_suspend(device_t dev)1438 age_suspend(device_t dev)
1439 {
1440 	struct age_softc *sc;
1441 
1442 	sc = device_get_softc(dev);
1443 
1444 	AGE_LOCK(sc);
1445 	age_stop(sc);
1446 	age_setwol(sc);
1447 	AGE_UNLOCK(sc);
1448 
1449 	return (0);
1450 }
1451 
1452 static int
age_resume(device_t dev)1453 age_resume(device_t dev)
1454 {
1455 	struct age_softc *sc;
1456 	if_t ifp;
1457 
1458 	sc = device_get_softc(dev);
1459 
1460 	AGE_LOCK(sc);
1461 	age_phy_reset(sc);
1462 	ifp = sc->age_ifp;
1463 	if ((if_getflags(ifp) & IFF_UP) != 0)
1464 		age_init_locked(sc);
1465 
1466 	AGE_UNLOCK(sc);
1467 
1468 	return (0);
1469 }
1470 
1471 static int
age_encap(struct age_softc * sc,struct mbuf ** m_head)1472 age_encap(struct age_softc *sc, struct mbuf **m_head)
1473 {
1474 	struct age_txdesc *txd, *txd_last;
1475 	struct tx_desc *desc;
1476 	struct mbuf *m;
1477 	struct ip *ip;
1478 	struct tcphdr *tcp;
1479 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1480 	bus_dmamap_t map;
1481 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1482 	int error, i, nsegs, prod, si;
1483 
1484 	AGE_LOCK_ASSERT(sc);
1485 
1486 	M_ASSERTPKTHDR((*m_head));
1487 
1488 	m = *m_head;
1489 	ip = NULL;
1490 	tcp = NULL;
1491 	cflags = vtag = 0;
1492 	ip_off = poff = 0;
1493 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1494 		/*
1495 		 * L1 requires offset of TCP/UDP payload in its Tx
1496 		 * descriptor to perform hardware Tx checksum offload.
1497 		 * Additionally, TSO requires IP/TCP header size and
1498 		 * modification of IP/TCP header in order to make TSO
1499 		 * engine work. This kind of operation takes many CPU
1500 		 * cycles on FreeBSD so fast host CPU is needed to get
1501 		 * smooth TSO performance.
1502 		 */
1503 		struct ether_header *eh;
1504 
1505 		if (M_WRITABLE(m) == 0) {
1506 			/* Get a writable copy. */
1507 			m = m_dup(*m_head, M_NOWAIT);
1508 			/* Release original mbufs. */
1509 			m_freem(*m_head);
1510 			if (m == NULL) {
1511 				*m_head = NULL;
1512 				return (ENOBUFS);
1513 			}
1514 			*m_head = m;
1515 		}
1516 		ip_off = sizeof(struct ether_header);
1517 		m = m_pullup(m, ip_off);
1518 		if (m == NULL) {
1519 			*m_head = NULL;
1520 			return (ENOBUFS);
1521 		}
1522 		eh = mtod(m, struct ether_header *);
1523 		/*
1524 		 * Check if hardware VLAN insertion is off.
1525 		 * Additional check for LLC/SNAP frame?
1526 		 */
1527 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1528 			ip_off = sizeof(struct ether_vlan_header);
1529 			m = m_pullup(m, ip_off);
1530 			if (m == NULL) {
1531 				*m_head = NULL;
1532 				return (ENOBUFS);
1533 			}
1534 		}
1535 		m = m_pullup(m, ip_off + sizeof(struct ip));
1536 		if (m == NULL) {
1537 			*m_head = NULL;
1538 			return (ENOBUFS);
1539 		}
1540 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1541 		poff = ip_off + (ip->ip_hl << 2);
1542 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1543 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1544 			if (m == NULL) {
1545 				*m_head = NULL;
1546 				return (ENOBUFS);
1547 			}
1548 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1549 			m = m_pullup(m, poff + (tcp->th_off << 2));
1550 			if (m == NULL) {
1551 				*m_head = NULL;
1552 				return (ENOBUFS);
1553 			}
1554 			/*
1555 			 * L1 requires IP/TCP header size and offset as
1556 			 * well as TCP pseudo checksum which complicates
1557 			 * TSO configuration. I guess this comes from the
1558 			 * adherence to Microsoft NDIS Large Send
1559 			 * specification which requires insertion of
1560 			 * pseudo checksum by upper stack. The pseudo
1561 			 * checksum that NDIS refers to doesn't include
1562 			 * TCP payload length so age(4) should recompute
1563 			 * the pseudo checksum here. Hopefully this wouldn't
1564 			 * be much burden on modern CPUs.
1565 			 * Reset IP checksum and recompute TCP pseudo
1566 			 * checksum as NDIS specification said.
1567 			 */
1568 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1569 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1570 			ip->ip_sum = 0;
1571 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1572 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1573 		}
1574 		*m_head = m;
1575 	}
1576 
1577 	si = prod = sc->age_cdata.age_tx_prod;
1578 	txd = &sc->age_cdata.age_txdesc[prod];
1579 	txd_last = txd;
1580 	map = txd->tx_dmamap;
1581 
1582 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1583 	    *m_head, txsegs, &nsegs, 0);
1584 	if (error == EFBIG) {
1585 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1586 		if (m == NULL) {
1587 			m_freem(*m_head);
1588 			*m_head = NULL;
1589 			return (ENOMEM);
1590 		}
1591 		*m_head = m;
1592 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1593 		    *m_head, txsegs, &nsegs, 0);
1594 		if (error != 0) {
1595 			m_freem(*m_head);
1596 			*m_head = NULL;
1597 			return (error);
1598 		}
1599 	} else if (error != 0)
1600 		return (error);
1601 	if (nsegs == 0) {
1602 		m_freem(*m_head);
1603 		*m_head = NULL;
1604 		return (EIO);
1605 	}
1606 
1607 	/* Check descriptor overrun. */
1608 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1609 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1610 		return (ENOBUFS);
1611 	}
1612 
1613 	m = *m_head;
1614 	/* Configure VLAN hardware tag insertion. */
1615 	if ((m->m_flags & M_VLANTAG) != 0) {
1616 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1617 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1618 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1619 	}
1620 
1621 	desc = NULL;
1622 	i = 0;
1623 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1624 		/* Request TSO and set MSS. */
1625 		cflags |= AGE_TD_TSO_IPV4;
1626 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1627 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1628 		    AGE_TD_TSO_MSS_SHIFT);
1629 		/* Set IP/TCP header size. */
1630 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1631 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1632 		/*
1633 		 * L1 requires the first buffer should only hold IP/TCP
1634 		 * header data. TCP payload should be handled in other
1635 		 * descriptors.
1636 		 */
1637 		hdrlen = poff + (tcp->th_off << 2);
1638 		desc = &sc->age_rdata.age_tx_ring[prod];
1639 		desc->addr = htole64(txsegs[0].ds_addr);
1640 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1641 		desc->flags = htole32(cflags);
1642 		sc->age_cdata.age_tx_cnt++;
1643 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1644 		if (m->m_len - hdrlen > 0) {
1645 			/* Handle remaining payload of the 1st fragment. */
1646 			desc = &sc->age_rdata.age_tx_ring[prod];
1647 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1648 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1649 			    vtag);
1650 			desc->flags = htole32(cflags);
1651 			sc->age_cdata.age_tx_cnt++;
1652 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1653 		}
1654 		/* Handle remaining fragments. */
1655 		i = 1;
1656 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1657 		/* Configure Tx IP/TCP/UDP checksum offload. */
1658 		cflags |= AGE_TD_CSUM;
1659 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1660 			cflags |= AGE_TD_TCPCSUM;
1661 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1662 			cflags |= AGE_TD_UDPCSUM;
1663 		/* Set checksum start offset. */
1664 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1665 		/* Set checksum insertion position of TCP/UDP. */
1666 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1667 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1668 	}
1669 	for (; i < nsegs; i++) {
1670 		desc = &sc->age_rdata.age_tx_ring[prod];
1671 		desc->addr = htole64(txsegs[i].ds_addr);
1672 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1673 		desc->flags = htole32(cflags);
1674 		sc->age_cdata.age_tx_cnt++;
1675 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1676 	}
1677 	/* Update producer index. */
1678 	sc->age_cdata.age_tx_prod = prod;
1679 
1680 	/* Set EOP on the last descriptor. */
1681 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1682 	desc = &sc->age_rdata.age_tx_ring[prod];
1683 	desc->flags |= htole32(AGE_TD_EOP);
1684 
1685 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1686 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1687 		desc = &sc->age_rdata.age_tx_ring[si];
1688 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1689 	}
1690 
1691 	/* Swap dmamap of the first and the last. */
1692 	txd = &sc->age_cdata.age_txdesc[prod];
1693 	map = txd_last->tx_dmamap;
1694 	txd_last->tx_dmamap = txd->tx_dmamap;
1695 	txd->tx_dmamap = map;
1696 	txd->tx_m = m;
1697 
1698 	/* Sync descriptors. */
1699 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1700 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1701 	    sc->age_cdata.age_tx_ring_map,
1702 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1703 
1704 	return (0);
1705 }
1706 
1707 static void
age_start(if_t ifp)1708 age_start(if_t ifp)
1709 {
1710         struct age_softc *sc;
1711 
1712 	sc = if_getsoftc(ifp);
1713 	AGE_LOCK(sc);
1714 	age_start_locked(ifp);
1715 	AGE_UNLOCK(sc);
1716 }
1717 
1718 static void
age_start_locked(if_t ifp)1719 age_start_locked(if_t ifp)
1720 {
1721         struct age_softc *sc;
1722         struct mbuf *m_head;
1723 	int enq;
1724 
1725 	sc = if_getsoftc(ifp);
1726 
1727 	AGE_LOCK_ASSERT(sc);
1728 
1729 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1730 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1731 		return;
1732 
1733 	for (enq = 0; !if_sendq_empty(ifp); ) {
1734 		m_head = if_dequeue(ifp);
1735 		if (m_head == NULL)
1736 			break;
1737 		/*
1738 		 * Pack the data into the transmit ring. If we
1739 		 * don't have room, set the OACTIVE flag and wait
1740 		 * for the NIC to drain the ring.
1741 		 */
1742 		if (age_encap(sc, &m_head)) {
1743 			if (m_head == NULL)
1744 				break;
1745 			if_sendq_prepend(ifp, m_head);
1746 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1747 			break;
1748 		}
1749 
1750 		enq++;
1751 		/*
1752 		 * If there's a BPF listener, bounce a copy of this frame
1753 		 * to him.
1754 		 */
1755 		ETHER_BPF_MTAP(ifp, m_head);
1756 	}
1757 
1758 	if (enq > 0) {
1759 		/* Update mbox. */
1760 		AGE_COMMIT_MBOX(sc);
1761 		/* Set a timeout in case the chip goes out to lunch. */
1762 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1763 	}
1764 }
1765 
1766 static void
age_watchdog(struct age_softc * sc)1767 age_watchdog(struct age_softc *sc)
1768 {
1769 	if_t ifp;
1770 
1771 	AGE_LOCK_ASSERT(sc);
1772 
1773 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1774 		return;
1775 
1776 	ifp = sc->age_ifp;
1777 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1778 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1779 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1780 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1781 		age_init_locked(sc);
1782 		return;
1783 	}
1784 	if (sc->age_cdata.age_tx_cnt == 0) {
1785 		if_printf(sc->age_ifp,
1786 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1787 		if (!if_sendq_empty(ifp))
1788 			age_start_locked(ifp);
1789 		return;
1790 	}
1791 	if_printf(sc->age_ifp, "watchdog timeout\n");
1792 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1793 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1794 	age_init_locked(sc);
1795 	if (!if_sendq_empty(ifp))
1796 		age_start_locked(ifp);
1797 }
1798 
1799 static int
age_ioctl(if_t ifp,u_long cmd,caddr_t data)1800 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1801 {
1802 	struct age_softc *sc;
1803 	struct ifreq *ifr;
1804 	struct mii_data *mii;
1805 	uint32_t reg;
1806 	int error, mask;
1807 
1808 	sc = if_getsoftc(ifp);
1809 	ifr = (struct ifreq *)data;
1810 	error = 0;
1811 	switch (cmd) {
1812 	case SIOCSIFMTU:
1813 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1814 			error = EINVAL;
1815 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1816 			AGE_LOCK(sc);
1817 			if_setmtu(ifp, ifr->ifr_mtu);
1818 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1819 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1820 				age_init_locked(sc);
1821 			}
1822 			AGE_UNLOCK(sc);
1823 		}
1824 		break;
1825 	case SIOCSIFFLAGS:
1826 		AGE_LOCK(sc);
1827 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1828 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1829 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1830 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1831 					age_rxfilter(sc);
1832 			} else {
1833 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1834 					age_init_locked(sc);
1835 			}
1836 		} else {
1837 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1838 				age_stop(sc);
1839 		}
1840 		sc->age_if_flags = if_getflags(ifp);
1841 		AGE_UNLOCK(sc);
1842 		break;
1843 	case SIOCADDMULTI:
1844 	case SIOCDELMULTI:
1845 		AGE_LOCK(sc);
1846 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1847 			age_rxfilter(sc);
1848 		AGE_UNLOCK(sc);
1849 		break;
1850 	case SIOCSIFMEDIA:
1851 	case SIOCGIFMEDIA:
1852 		mii = device_get_softc(sc->age_miibus);
1853 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1854 		break;
1855 	case SIOCSIFCAP:
1856 		AGE_LOCK(sc);
1857 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1858 		if ((mask & IFCAP_TXCSUM) != 0 &&
1859 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1860 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1861 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1862 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1863 			else
1864 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1865 		}
1866 		if ((mask & IFCAP_RXCSUM) != 0 &&
1867 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1868 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1869 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1870 			reg &= ~MAC_CFG_RXCSUM_ENB;
1871 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1872 				reg |= MAC_CFG_RXCSUM_ENB;
1873 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1874 		}
1875 		if ((mask & IFCAP_TSO4) != 0 &&
1876 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1877 			if_togglecapenable(ifp, IFCAP_TSO4);
1878 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1879 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1880 			else
1881 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1882 		}
1883 
1884 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1885 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1886 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1887 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1888 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1889 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1890 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1891 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1892 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1893 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1894 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1895 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1896 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1897 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1898 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1899 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1900 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1901 			age_rxvlan(sc);
1902 		}
1903 		AGE_UNLOCK(sc);
1904 		VLAN_CAPABILITIES(ifp);
1905 		break;
1906 	default:
1907 		error = ether_ioctl(ifp, cmd, data);
1908 		break;
1909 	}
1910 
1911 	return (error);
1912 }
1913 
1914 static void
age_mac_config(struct age_softc * sc)1915 age_mac_config(struct age_softc *sc)
1916 {
1917 	struct mii_data *mii;
1918 	uint32_t reg;
1919 
1920 	AGE_LOCK_ASSERT(sc);
1921 
1922 	mii = device_get_softc(sc->age_miibus);
1923 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1924 	reg &= ~MAC_CFG_FULL_DUPLEX;
1925 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1926 	reg &= ~MAC_CFG_SPEED_MASK;
1927 	/* Reprogram MAC with resolved speed/duplex. */
1928 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1929 	case IFM_10_T:
1930 	case IFM_100_TX:
1931 		reg |= MAC_CFG_SPEED_10_100;
1932 		break;
1933 	case IFM_1000_T:
1934 		reg |= MAC_CFG_SPEED_1000;
1935 		break;
1936 	}
1937 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1938 		reg |= MAC_CFG_FULL_DUPLEX;
1939 #ifdef notyet
1940 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1941 			reg |= MAC_CFG_TX_FC;
1942 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1943 			reg |= MAC_CFG_RX_FC;
1944 #endif
1945 	}
1946 
1947 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1948 }
1949 
1950 static void
age_link_task(void * arg,int pending)1951 age_link_task(void *arg, int pending)
1952 {
1953 	struct age_softc *sc;
1954 	struct mii_data *mii;
1955 	if_t ifp;
1956 	uint32_t reg;
1957 
1958 	sc = (struct age_softc *)arg;
1959 
1960 	AGE_LOCK(sc);
1961 	mii = device_get_softc(sc->age_miibus);
1962 	ifp = sc->age_ifp;
1963 	if (mii == NULL || ifp == NULL ||
1964 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1965 		AGE_UNLOCK(sc);
1966 		return;
1967 	}
1968 
1969 	sc->age_flags &= ~AGE_FLAG_LINK;
1970 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1971 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1972 		case IFM_10_T:
1973 		case IFM_100_TX:
1974 		case IFM_1000_T:
1975 			sc->age_flags |= AGE_FLAG_LINK;
1976 			break;
1977 		default:
1978 			break;
1979 		}
1980 	}
1981 
1982 	/* Stop Rx/Tx MACs. */
1983 	age_stop_rxmac(sc);
1984 	age_stop_txmac(sc);
1985 
1986 	/* Program MACs with resolved speed/duplex/flow-control. */
1987 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1988 		age_mac_config(sc);
1989 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1990 		/* Restart DMA engine and Tx/Rx MAC. */
1991 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1992 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1993 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1994 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1995 	}
1996 
1997 	AGE_UNLOCK(sc);
1998 }
1999 
2000 static void
age_stats_update(struct age_softc * sc)2001 age_stats_update(struct age_softc *sc)
2002 {
2003 	struct age_stats *stat;
2004 	struct smb *smb;
2005 	if_t ifp;
2006 
2007 	AGE_LOCK_ASSERT(sc);
2008 
2009 	stat = &sc->age_stat;
2010 
2011 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2012 	    sc->age_cdata.age_smb_block_map,
2013 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2014 
2015 	smb = sc->age_rdata.age_smb_block;
2016 	if (smb->updated == 0)
2017 		return;
2018 
2019 	ifp = sc->age_ifp;
2020 	/* Rx stats. */
2021 	stat->rx_frames += smb->rx_frames;
2022 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2023 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2024 	stat->rx_pause_frames += smb->rx_pause_frames;
2025 	stat->rx_control_frames += smb->rx_control_frames;
2026 	stat->rx_crcerrs += smb->rx_crcerrs;
2027 	stat->rx_lenerrs += smb->rx_lenerrs;
2028 	stat->rx_bytes += smb->rx_bytes;
2029 	stat->rx_runts += smb->rx_runts;
2030 	stat->rx_fragments += smb->rx_fragments;
2031 	stat->rx_pkts_64 += smb->rx_pkts_64;
2032 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2033 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2034 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2035 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2036 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2037 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2038 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2039 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2040 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2041 	stat->rx_alignerrs += smb->rx_alignerrs;
2042 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2043 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2044 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2045 
2046 	/* Tx stats. */
2047 	stat->tx_frames += smb->tx_frames;
2048 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2049 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2050 	stat->tx_pause_frames += smb->tx_pause_frames;
2051 	stat->tx_excess_defer += smb->tx_excess_defer;
2052 	stat->tx_control_frames += smb->tx_control_frames;
2053 	stat->tx_deferred += smb->tx_deferred;
2054 	stat->tx_bytes += smb->tx_bytes;
2055 	stat->tx_pkts_64 += smb->tx_pkts_64;
2056 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2057 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2058 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2059 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2060 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2061 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2062 	stat->tx_single_colls += smb->tx_single_colls;
2063 	stat->tx_multi_colls += smb->tx_multi_colls;
2064 	stat->tx_late_colls += smb->tx_late_colls;
2065 	stat->tx_excess_colls += smb->tx_excess_colls;
2066 	stat->tx_underrun += smb->tx_underrun;
2067 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2068 	stat->tx_lenerrs += smb->tx_lenerrs;
2069 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2070 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2071 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2072 
2073 	/* Update counters in ifnet. */
2074 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2075 
2076 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2077 	    smb->tx_multi_colls + smb->tx_late_colls +
2078 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2079 
2080 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2081 	    smb->tx_late_colls + smb->tx_underrun +
2082 	    smb->tx_pkts_truncated);
2083 
2084 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2085 
2086 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2087 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2088 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2089 	    smb->rx_alignerrs);
2090 
2091 	/* Update done, clear. */
2092 	smb->updated = 0;
2093 
2094 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2095 	    sc->age_cdata.age_smb_block_map,
2096 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2097 }
2098 
2099 static int
age_intr(void * arg)2100 age_intr(void *arg)
2101 {
2102 	struct age_softc *sc;
2103 	uint32_t status;
2104 
2105 	sc = (struct age_softc *)arg;
2106 
2107 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2108 	if (status == 0 || (status & AGE_INTRS) == 0)
2109 		return (FILTER_STRAY);
2110 	/* Disable interrupts. */
2111 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2112 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2113 
2114 	return (FILTER_HANDLED);
2115 }
2116 
2117 static void
age_int_task(void * arg,int pending)2118 age_int_task(void *arg, int pending)
2119 {
2120 	struct age_softc *sc;
2121 	if_t ifp;
2122 	struct cmb *cmb;
2123 	uint32_t status;
2124 
2125 	sc = (struct age_softc *)arg;
2126 
2127 	AGE_LOCK(sc);
2128 
2129 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2130 	    sc->age_cdata.age_cmb_block_map,
2131 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2132 	cmb = sc->age_rdata.age_cmb_block;
2133 	status = le32toh(cmb->intr_status);
2134 	if (sc->age_morework != 0)
2135 		status |= INTR_CMB_RX;
2136 	if ((status & AGE_INTRS) == 0)
2137 		goto done;
2138 
2139 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2140 	    TPD_CONS_SHIFT;
2141 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2142 	    RRD_PROD_SHIFT;
2143 	/* Let hardware know CMB was served. */
2144 	cmb->intr_status = 0;
2145 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146 	    sc->age_cdata.age_cmb_block_map,
2147 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2148 
2149 	ifp = sc->age_ifp;
2150 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2151 		if ((status & INTR_CMB_RX) != 0)
2152 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2153 			    sc->age_process_limit);
2154 		if ((status & INTR_CMB_TX) != 0)
2155 			age_txintr(sc, sc->age_tpd_cons);
2156 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2157 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2158 				device_printf(sc->age_dev,
2159 				    "DMA read error! -- resetting\n");
2160 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2161 				device_printf(sc->age_dev,
2162 				    "DMA write error! -- resetting\n");
2163 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2164 			age_init_locked(sc);
2165 		}
2166 		if (!if_sendq_empty(ifp))
2167 			age_start_locked(ifp);
2168 		if ((status & INTR_SMB) != 0)
2169 			age_stats_update(sc);
2170 	}
2171 
2172 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2173 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2174 	    sc->age_cdata.age_cmb_block_map,
2175 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2176 	status = le32toh(cmb->intr_status);
2177 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2178 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2179 		AGE_UNLOCK(sc);
2180 		return;
2181 	}
2182 
2183 done:
2184 	/* Re-enable interrupts. */
2185 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2186 	AGE_UNLOCK(sc);
2187 }
2188 
2189 static void
age_txintr(struct age_softc * sc,int tpd_cons)2190 age_txintr(struct age_softc *sc, int tpd_cons)
2191 {
2192 	if_t ifp;
2193 	struct age_txdesc *txd;
2194 	int cons, prog;
2195 
2196 	AGE_LOCK_ASSERT(sc);
2197 
2198 	ifp = sc->age_ifp;
2199 
2200 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2201 	    sc->age_cdata.age_tx_ring_map,
2202 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2203 
2204 	/*
2205 	 * Go through our Tx list and free mbufs for those
2206 	 * frames which have been transmitted.
2207 	 */
2208 	cons = sc->age_cdata.age_tx_cons;
2209 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2210 		if (sc->age_cdata.age_tx_cnt <= 0)
2211 			break;
2212 		prog++;
2213 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2214 		sc->age_cdata.age_tx_cnt--;
2215 		txd = &sc->age_cdata.age_txdesc[cons];
2216 		/*
2217 		 * Clear Tx descriptors, it's not required but would
2218 		 * help debugging in case of Tx issues.
2219 		 */
2220 		txd->tx_desc->addr = 0;
2221 		txd->tx_desc->len = 0;
2222 		txd->tx_desc->flags = 0;
2223 
2224 		if (txd->tx_m == NULL)
2225 			continue;
2226 		/* Reclaim transmitted mbufs. */
2227 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2228 		    BUS_DMASYNC_POSTWRITE);
2229 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2230 		m_freem(txd->tx_m);
2231 		txd->tx_m = NULL;
2232 	}
2233 
2234 	if (prog > 0) {
2235 		sc->age_cdata.age_tx_cons = cons;
2236 
2237 		/*
2238 		 * Unarm watchdog timer only when there are no pending
2239 		 * Tx descriptors in queue.
2240 		 */
2241 		if (sc->age_cdata.age_tx_cnt == 0)
2242 			sc->age_watchdog_timer = 0;
2243 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2244 		    sc->age_cdata.age_tx_ring_map,
2245 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2246 	}
2247 }
2248 
2249 #ifndef __NO_STRICT_ALIGNMENT
2250 static struct mbuf *
age_fixup_rx(if_t ifp,struct mbuf * m)2251 age_fixup_rx(if_t ifp, struct mbuf *m)
2252 {
2253 	struct mbuf *n;
2254         int i;
2255         uint16_t *src, *dst;
2256 
2257 	src = mtod(m, uint16_t *);
2258 	dst = src - 3;
2259 
2260 	if (m->m_next == NULL) {
2261 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2262 			*dst++ = *src++;
2263 		m->m_data -= 6;
2264 		return (m);
2265 	}
2266 	/*
2267 	 * Append a new mbuf to received mbuf chain and copy ethernet
2268 	 * header from the mbuf chain. This can save lots of CPU
2269 	 * cycles for jumbo frame.
2270 	 */
2271 	MGETHDR(n, M_NOWAIT, MT_DATA);
2272 	if (n == NULL) {
2273 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2274 		m_freem(m);
2275 		return (NULL);
2276 	}
2277 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2278 	m->m_data += ETHER_HDR_LEN;
2279 	m->m_len -= ETHER_HDR_LEN;
2280 	n->m_len = ETHER_HDR_LEN;
2281 	M_MOVE_PKTHDR(n, m);
2282 	n->m_next = m;
2283 	return (n);
2284 }
2285 #endif
2286 
2287 /* Receive a frame. */
2288 static void
age_rxeof(struct age_softc * sc,struct rx_rdesc * rxrd)2289 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2290 {
2291 	struct age_rxdesc *rxd;
2292 	if_t ifp;
2293 	struct mbuf *mp, *m;
2294 	uint32_t status, index, vtag;
2295 	int count, nsegs;
2296 	int rx_cons;
2297 
2298 	AGE_LOCK_ASSERT(sc);
2299 
2300 	ifp = sc->age_ifp;
2301 	status = le32toh(rxrd->flags);
2302 	index = le32toh(rxrd->index);
2303 	rx_cons = AGE_RX_CONS(index);
2304 	nsegs = AGE_RX_NSEGS(index);
2305 
2306 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2307 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2308 		/*
2309 		 * We want to pass the following frames to upper
2310 		 * layer regardless of error status of Rx return
2311 		 * ring.
2312 		 *
2313 		 *  o IP/TCP/UDP checksum is bad.
2314 		 *  o frame length and protocol specific length
2315 		 *     does not match.
2316 		 */
2317 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2318 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2319 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2320 			return;
2321 	}
2322 
2323 	for (count = 0; count < nsegs; count++,
2324 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2325 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2326 		mp = rxd->rx_m;
2327 		/* Add a new receive buffer to the ring. */
2328 		if (age_newbuf(sc, rxd) != 0) {
2329 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2330 			/* Reuse Rx buffers. */
2331 			if (sc->age_cdata.age_rxhead != NULL)
2332 				m_freem(sc->age_cdata.age_rxhead);
2333 			break;
2334 		}
2335 
2336 		/*
2337 		 * Assume we've received a full sized frame.
2338 		 * Actual size is fixed when we encounter the end of
2339 		 * multi-segmented frame.
2340 		 */
2341 		mp->m_len = AGE_RX_BUF_SIZE;
2342 
2343 		/* Chain received mbufs. */
2344 		if (sc->age_cdata.age_rxhead == NULL) {
2345 			sc->age_cdata.age_rxhead = mp;
2346 			sc->age_cdata.age_rxtail = mp;
2347 		} else {
2348 			mp->m_flags &= ~M_PKTHDR;
2349 			sc->age_cdata.age_rxprev_tail =
2350 			    sc->age_cdata.age_rxtail;
2351 			sc->age_cdata.age_rxtail->m_next = mp;
2352 			sc->age_cdata.age_rxtail = mp;
2353 		}
2354 
2355 		if (count == nsegs - 1) {
2356 			/* Last desc. for this frame. */
2357 			m = sc->age_cdata.age_rxhead;
2358 			m->m_flags |= M_PKTHDR;
2359 			/*
2360 			 * It seems that L1 controller has no way
2361 			 * to tell hardware to strip CRC bytes.
2362 			 */
2363 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2364 			    ETHER_CRC_LEN;
2365 			if (nsegs > 1) {
2366 				/* Set last mbuf size. */
2367 				mp->m_len = sc->age_cdata.age_rxlen -
2368 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2369 				/* Remove the CRC bytes in chained mbufs. */
2370 				if (mp->m_len <= ETHER_CRC_LEN) {
2371 					sc->age_cdata.age_rxtail =
2372 					    sc->age_cdata.age_rxprev_tail;
2373 					sc->age_cdata.age_rxtail->m_len -=
2374 					    (ETHER_CRC_LEN - mp->m_len);
2375 					sc->age_cdata.age_rxtail->m_next = NULL;
2376 					m_freem(mp);
2377 				} else {
2378 					mp->m_len -= ETHER_CRC_LEN;
2379 				}
2380 			} else
2381 				m->m_len = m->m_pkthdr.len;
2382 			m->m_pkthdr.rcvif = ifp;
2383 			/*
2384 			 * Set checksum information.
2385 			 * It seems that L1 controller can compute partial
2386 			 * checksum. The partial checksum value can be used
2387 			 * to accelerate checksum computation for fragmented
2388 			 * TCP/UDP packets. Upper network stack already
2389 			 * takes advantage of the partial checksum value in
2390 			 * IP reassembly stage. But I'm not sure the
2391 			 * correctness of the partial hardware checksum
2392 			 * assistance due to lack of data sheet. If it is
2393 			 * proven to work on L1 I'll enable it.
2394 			 */
2395 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2396 			    (status & AGE_RRD_IPV4) != 0) {
2397 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2398 					m->m_pkthdr.csum_flags |=
2399 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2400 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2401 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2402 					m->m_pkthdr.csum_flags |=
2403 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2404 					m->m_pkthdr.csum_data = 0xffff;
2405 				}
2406 				/*
2407 				 * Don't mark bad checksum for TCP/UDP frames
2408 				 * as fragmented frames may always have set
2409 				 * bad checksummed bit of descriptor status.
2410 				 */
2411 			}
2412 
2413 			/* Check for VLAN tagged frames. */
2414 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2415 			    (status & AGE_RRD_VLAN) != 0) {
2416 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2417 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2418 				m->m_flags |= M_VLANTAG;
2419 			}
2420 #ifndef __NO_STRICT_ALIGNMENT
2421 			m = age_fixup_rx(ifp, m);
2422 			if (m != NULL)
2423 #endif
2424 			{
2425 			/* Pass it on. */
2426 			AGE_UNLOCK(sc);
2427 			if_input(ifp, m);
2428 			AGE_LOCK(sc);
2429 			}
2430 		}
2431 	}
2432 
2433 	/* Reset mbuf chains. */
2434 	AGE_RXCHAIN_RESET(sc);
2435 }
2436 
2437 static int
age_rxintr(struct age_softc * sc,int rr_prod,int count)2438 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2439 {
2440 	struct rx_rdesc *rxrd;
2441 	int rr_cons, nsegs, pktlen, prog;
2442 
2443 	AGE_LOCK_ASSERT(sc);
2444 
2445 	rr_cons = sc->age_cdata.age_rr_cons;
2446 	if (rr_cons == rr_prod)
2447 		return (0);
2448 
2449 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2450 	    sc->age_cdata.age_rr_ring_map,
2451 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2452 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2453 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2454 
2455 	for (prog = 0; rr_cons != rr_prod; prog++) {
2456 		if (count-- <= 0)
2457 			break;
2458 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2459 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2460 		if (nsegs == 0)
2461 			break;
2462 		/*
2463 		 * Check number of segments against received bytes.
2464 		 * Non-matching value would indicate that hardware
2465 		 * is still trying to update Rx return descriptors.
2466 		 * I'm not sure whether this check is really needed.
2467 		 */
2468 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2469 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2470 			break;
2471 
2472 		/* Received a frame. */
2473 		age_rxeof(sc, rxrd);
2474 		/* Clear return ring. */
2475 		rxrd->index = 0;
2476 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2477 		sc->age_cdata.age_rx_cons += nsegs;
2478 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2479 	}
2480 
2481 	if (prog > 0) {
2482 		/* Update the consumer index. */
2483 		sc->age_cdata.age_rr_cons = rr_cons;
2484 
2485 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2486 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2487 		/* Sync descriptors. */
2488 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2489 		    sc->age_cdata.age_rr_ring_map,
2490 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2491 
2492 		/* Notify hardware availability of new Rx buffers. */
2493 		AGE_COMMIT_MBOX(sc);
2494 	}
2495 
2496 	return (count > 0 ? 0 : EAGAIN);
2497 }
2498 
2499 static void
age_tick(void * arg)2500 age_tick(void *arg)
2501 {
2502 	struct age_softc *sc;
2503 	struct mii_data *mii;
2504 
2505 	sc = (struct age_softc *)arg;
2506 
2507 	AGE_LOCK_ASSERT(sc);
2508 
2509 	mii = device_get_softc(sc->age_miibus);
2510 	mii_tick(mii);
2511 	age_watchdog(sc);
2512 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2513 }
2514 
2515 static void
age_reset(struct age_softc * sc)2516 age_reset(struct age_softc *sc)
2517 {
2518 	uint32_t reg;
2519 	int i;
2520 
2521 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2522 	CSR_READ_4(sc, AGE_MASTER_CFG);
2523 	DELAY(1000);
2524 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2525 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2526 			break;
2527 		DELAY(10);
2528 	}
2529 
2530 	if (i == 0)
2531 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2532 	/* Initialize PCIe module. From Linux. */
2533 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2534 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2535 }
2536 
2537 static void
age_init(void * xsc)2538 age_init(void *xsc)
2539 {
2540 	struct age_softc *sc;
2541 
2542 	sc = (struct age_softc *)xsc;
2543 	AGE_LOCK(sc);
2544 	age_init_locked(sc);
2545 	AGE_UNLOCK(sc);
2546 }
2547 
2548 static void
age_init_locked(struct age_softc * sc)2549 age_init_locked(struct age_softc *sc)
2550 {
2551 	if_t ifp;
2552 	struct mii_data *mii;
2553 	uint8_t eaddr[ETHER_ADDR_LEN];
2554 	bus_addr_t paddr;
2555 	uint32_t reg, fsize;
2556 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2557 	int error;
2558 
2559 	AGE_LOCK_ASSERT(sc);
2560 
2561 	ifp = sc->age_ifp;
2562 	mii = device_get_softc(sc->age_miibus);
2563 
2564 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2565 		return;
2566 
2567 	/*
2568 	 * Cancel any pending I/O.
2569 	 */
2570 	age_stop(sc);
2571 
2572 	/*
2573 	 * Reset the chip to a known state.
2574 	 */
2575 	age_reset(sc);
2576 
2577 	/* Initialize descriptors. */
2578 	error = age_init_rx_ring(sc);
2579         if (error != 0) {
2580                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2581                 age_stop(sc);
2582 		return;
2583         }
2584 	age_init_rr_ring(sc);
2585 	age_init_tx_ring(sc);
2586 	age_init_cmb_block(sc);
2587 	age_init_smb_block(sc);
2588 
2589 	/* Reprogram the station address. */
2590 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2591 	CSR_WRITE_4(sc, AGE_PAR0,
2592 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2593 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2594 
2595 	/* Set descriptor base addresses. */
2596 	paddr = sc->age_rdata.age_tx_ring_paddr;
2597 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2598 	paddr = sc->age_rdata.age_rx_ring_paddr;
2599 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2600 	paddr = sc->age_rdata.age_rr_ring_paddr;
2601 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2602 	paddr = sc->age_rdata.age_tx_ring_paddr;
2603 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2604 	paddr = sc->age_rdata.age_cmb_block_paddr;
2605 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2606 	paddr = sc->age_rdata.age_smb_block_paddr;
2607 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2608 	/* Set Rx/Rx return descriptor counter. */
2609 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2610 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2611 	    DESC_RRD_CNT_MASK) |
2612 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2613 	/* Set Tx descriptor counter. */
2614 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2615 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2616 
2617 	/* Tell hardware that we're ready to load descriptors. */
2618 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2619 
2620 	/*
2621 	 * Initialize mailbox register.
2622 	 * Updated producer/consumer index information is exchanged
2623 	 * through this mailbox register. However Tx producer and
2624 	 * Rx return consumer/Rx producer are all shared such that
2625 	 * it's hard to separate code path between Tx and Rx without
2626 	 * locking. If L1 hardware have a separate mail box register
2627 	 * for Tx and Rx consumer/producer management we could have
2628 	 * independent Tx/Rx handler which in turn Rx handler could have
2629 	 * been run without any locking.
2630 	 */
2631 	AGE_COMMIT_MBOX(sc);
2632 
2633 	/* Configure IPG/IFG parameters. */
2634 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2635 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2636 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2637 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2638 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2639 
2640 	/* Set parameters for half-duplex media. */
2641 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2642 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2643 	    HDPX_CFG_LCOL_MASK) |
2644 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2645 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2646 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2647 	    HDPX_CFG_ABEBT_MASK) |
2648 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2649 	    HDPX_CFG_JAMIPG_MASK));
2650 
2651 	/* Configure interrupt moderation timer. */
2652 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2653 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2654 	reg &= ~MASTER_MTIMER_ENB;
2655 	if (AGE_USECS(sc->age_int_mod) == 0)
2656 		reg &= ~MASTER_ITIMER_ENB;
2657 	else
2658 		reg |= MASTER_ITIMER_ENB;
2659 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2660 	if (bootverbose)
2661 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2662 		    sc->age_int_mod);
2663 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2664 
2665 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2666 	if (if_getmtu(ifp) < ETHERMTU)
2667 		sc->age_max_frame_size = ETHERMTU;
2668 	else
2669 		sc->age_max_frame_size = if_getmtu(ifp);
2670 	sc->age_max_frame_size += ETHER_HDR_LEN +
2671 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2672 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2673 	/* Configure jumbo frame. */
2674 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2675 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2676 	    (((fsize / sizeof(uint64_t)) <<
2677 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2678 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2679 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2680 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2681 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2682 
2683 	/* Configure flow-control parameters. From Linux. */
2684 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2685 		/*
2686 		 * Magic workaround for old-L1.
2687 		 * Don't know which hw revision requires this magic.
2688 		 */
2689 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2690 		/*
2691 		 * Another magic workaround for flow-control mode
2692 		 * change. From Linux.
2693 		 */
2694 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2695 	}
2696 	/*
2697 	 * TODO
2698 	 *  Should understand pause parameter relationships between FIFO
2699 	 *  size and number of Rx descriptors and Rx return descriptors.
2700 	 *
2701 	 *  Magic parameters came from Linux.
2702 	 */
2703 	switch (sc->age_chip_rev) {
2704 	case 0x8001:
2705 	case 0x9001:
2706 	case 0x9002:
2707 	case 0x9003:
2708 		rxf_hi = AGE_RX_RING_CNT / 16;
2709 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2710 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2711 		rrd_lo = AGE_RR_RING_CNT / 16;
2712 		break;
2713 	default:
2714 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2715 		rxf_lo = reg / 16;
2716 		if (rxf_lo < 192)
2717 			rxf_lo = 192;
2718 		rxf_hi = (reg * 7) / 8;
2719 		if (rxf_hi < rxf_lo)
2720 			rxf_hi = rxf_lo + 16;
2721 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2722 		rrd_lo = reg / 8;
2723 		rrd_hi = (reg * 7) / 8;
2724 		if (rrd_lo < 2)
2725 			rrd_lo = 2;
2726 		if (rrd_hi < rrd_lo)
2727 			rrd_hi = rrd_lo + 3;
2728 		break;
2729 	}
2730 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2731 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2732 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2733 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2734 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2735 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2736 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2737 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2738 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2739 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2740 
2741 	/* Configure RxQ. */
2742 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2743 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2744 	    RXQ_CFG_RD_BURST_MASK) |
2745 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2746 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2747 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2748 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2749 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2750 
2751 	/* Configure TxQ. */
2752 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2753 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2754 	    TXQ_CFG_TPD_BURST_MASK) |
2755 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2756 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2757 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2758 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2759 	    TXQ_CFG_ENB);
2760 
2761 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2762 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2763 	    TX_JUMBO_TPD_TH_MASK) |
2764 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2765 	    TX_JUMBO_TPD_IPG_MASK));
2766 	/* Configure DMA parameters. */
2767 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2768 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2769 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2770 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2771 
2772 	/* Configure CMB DMA write threshold. */
2773 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2774 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2775 	    CMB_WR_THRESH_RRD_MASK) |
2776 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2777 	    CMB_WR_THRESH_TPD_MASK));
2778 
2779 	/* Set CMB/SMB timer and enable them. */
2780 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2781 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2782 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2783 	/* Request SMB updates for every seconds. */
2784 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2785 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2786 
2787 	/*
2788 	 * Disable all WOL bits as WOL can interfere normal Rx
2789 	 * operation.
2790 	 */
2791 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2792 
2793 	/*
2794 	 * Configure Tx/Rx MACs.
2795 	 *  - Auto-padding for short frames.
2796 	 *  - Enable CRC generation.
2797 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2798 	 *  of MAC is followed after link establishment.
2799 	 */
2800 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2801 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2802 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2803 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2804 	    MAC_CFG_PREAMBLE_MASK));
2805 	/* Set up the receive filter. */
2806 	age_rxfilter(sc);
2807 	age_rxvlan(sc);
2808 
2809 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2810 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2811 		reg |= MAC_CFG_RXCSUM_ENB;
2812 
2813 	/* Ack all pending interrupts and clear it. */
2814 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2815 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2816 
2817 	/* Finally enable Tx/Rx MAC. */
2818 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2819 
2820 	sc->age_flags &= ~AGE_FLAG_LINK;
2821 	/* Switch to the current media. */
2822 	mii_mediachg(mii);
2823 
2824 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2825 
2826 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2827 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2828 }
2829 
2830 static void
age_stop(struct age_softc * sc)2831 age_stop(struct age_softc *sc)
2832 {
2833 	if_t ifp;
2834 	struct age_txdesc *txd;
2835 	struct age_rxdesc *rxd;
2836 	uint32_t reg;
2837 	int i;
2838 
2839 	AGE_LOCK_ASSERT(sc);
2840 	/*
2841 	 * Mark the interface down and cancel the watchdog timer.
2842 	 */
2843 	ifp = sc->age_ifp;
2844 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2845 	sc->age_flags &= ~AGE_FLAG_LINK;
2846 	callout_stop(&sc->age_tick_ch);
2847 	sc->age_watchdog_timer = 0;
2848 
2849 	/*
2850 	 * Disable interrupts.
2851 	 */
2852 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2853 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2854 	/* Stop CMB/SMB updates. */
2855 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2856 	/* Stop Rx/Tx MAC. */
2857 	age_stop_rxmac(sc);
2858 	age_stop_txmac(sc);
2859 	/* Stop DMA. */
2860 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2861 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2862 	/* Stop TxQ/RxQ. */
2863 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2864 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2865 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2866 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2867 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2868 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2869 			break;
2870 		DELAY(10);
2871 	}
2872 	if (i == 0)
2873 		device_printf(sc->age_dev,
2874 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2875 
2876 	 /* Reclaim Rx buffers that have been processed. */
2877 	if (sc->age_cdata.age_rxhead != NULL)
2878 		m_freem(sc->age_cdata.age_rxhead);
2879 	AGE_RXCHAIN_RESET(sc);
2880 	/*
2881 	 * Free RX and TX mbufs still in the queues.
2882 	 */
2883 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2884 		rxd = &sc->age_cdata.age_rxdesc[i];
2885 		if (rxd->rx_m != NULL) {
2886 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2887 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2888 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2889 			    rxd->rx_dmamap);
2890 			m_freem(rxd->rx_m);
2891 			rxd->rx_m = NULL;
2892 		}
2893         }
2894 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2895 		txd = &sc->age_cdata.age_txdesc[i];
2896 		if (txd->tx_m != NULL) {
2897 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2898 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2899 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2900 			    txd->tx_dmamap);
2901 			m_freem(txd->tx_m);
2902 			txd->tx_m = NULL;
2903 		}
2904         }
2905 }
2906 
2907 static void
age_stop_txmac(struct age_softc * sc)2908 age_stop_txmac(struct age_softc *sc)
2909 {
2910 	uint32_t reg;
2911 	int i;
2912 
2913 	AGE_LOCK_ASSERT(sc);
2914 
2915 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2916 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2917 		reg &= ~MAC_CFG_TX_ENB;
2918 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2919 	}
2920 	/* Stop Tx DMA engine. */
2921 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2922 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2923 		reg &= ~DMA_CFG_RD_ENB;
2924 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2925 	}
2926 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2927 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2928 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2929 			break;
2930 		DELAY(10);
2931 	}
2932 	if (i == 0)
2933 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2934 }
2935 
2936 static void
age_stop_rxmac(struct age_softc * sc)2937 age_stop_rxmac(struct age_softc *sc)
2938 {
2939 	uint32_t reg;
2940 	int i;
2941 
2942 	AGE_LOCK_ASSERT(sc);
2943 
2944 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2945 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2946 		reg &= ~MAC_CFG_RX_ENB;
2947 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2948 	}
2949 	/* Stop Rx DMA engine. */
2950 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2951 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2952 		reg &= ~DMA_CFG_WR_ENB;
2953 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2954 	}
2955 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2956 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2957 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2958 			break;
2959 		DELAY(10);
2960 	}
2961 	if (i == 0)
2962 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2963 }
2964 
2965 static void
age_init_tx_ring(struct age_softc * sc)2966 age_init_tx_ring(struct age_softc *sc)
2967 {
2968 	struct age_ring_data *rd;
2969 	struct age_txdesc *txd;
2970 	int i;
2971 
2972 	AGE_LOCK_ASSERT(sc);
2973 
2974 	sc->age_cdata.age_tx_prod = 0;
2975 	sc->age_cdata.age_tx_cons = 0;
2976 	sc->age_cdata.age_tx_cnt = 0;
2977 
2978 	rd = &sc->age_rdata;
2979 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2980 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2981 		txd = &sc->age_cdata.age_txdesc[i];
2982 		txd->tx_desc = &rd->age_tx_ring[i];
2983 		txd->tx_m = NULL;
2984 	}
2985 
2986 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2987 	    sc->age_cdata.age_tx_ring_map,
2988 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2989 }
2990 
2991 static int
age_init_rx_ring(struct age_softc * sc)2992 age_init_rx_ring(struct age_softc *sc)
2993 {
2994 	struct age_ring_data *rd;
2995 	struct age_rxdesc *rxd;
2996 	int i;
2997 
2998 	AGE_LOCK_ASSERT(sc);
2999 
3000 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3001 	sc->age_morework = 0;
3002 	rd = &sc->age_rdata;
3003 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3004 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3005 		rxd = &sc->age_cdata.age_rxdesc[i];
3006 		rxd->rx_m = NULL;
3007 		rxd->rx_desc = &rd->age_rx_ring[i];
3008 		if (age_newbuf(sc, rxd) != 0)
3009 			return (ENOBUFS);
3010 	}
3011 
3012 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3013 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3014 
3015 	return (0);
3016 }
3017 
3018 static void
age_init_rr_ring(struct age_softc * sc)3019 age_init_rr_ring(struct age_softc *sc)
3020 {
3021 	struct age_ring_data *rd;
3022 
3023 	AGE_LOCK_ASSERT(sc);
3024 
3025 	sc->age_cdata.age_rr_cons = 0;
3026 	AGE_RXCHAIN_RESET(sc);
3027 
3028 	rd = &sc->age_rdata;
3029 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3030 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3031 	    sc->age_cdata.age_rr_ring_map,
3032 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3033 }
3034 
3035 static void
age_init_cmb_block(struct age_softc * sc)3036 age_init_cmb_block(struct age_softc *sc)
3037 {
3038 	struct age_ring_data *rd;
3039 
3040 	AGE_LOCK_ASSERT(sc);
3041 
3042 	rd = &sc->age_rdata;
3043 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3044 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3045 	    sc->age_cdata.age_cmb_block_map,
3046 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3047 }
3048 
3049 static void
age_init_smb_block(struct age_softc * sc)3050 age_init_smb_block(struct age_softc *sc)
3051 {
3052 	struct age_ring_data *rd;
3053 
3054 	AGE_LOCK_ASSERT(sc);
3055 
3056 	rd = &sc->age_rdata;
3057 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3058 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3059 	    sc->age_cdata.age_smb_block_map,
3060 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3061 }
3062 
3063 static int
age_newbuf(struct age_softc * sc,struct age_rxdesc * rxd)3064 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3065 {
3066 	struct rx_desc *desc;
3067 	struct mbuf *m;
3068 	bus_dma_segment_t segs[1];
3069 	bus_dmamap_t map;
3070 	int nsegs;
3071 
3072 	AGE_LOCK_ASSERT(sc);
3073 
3074 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3075 	if (m == NULL)
3076 		return (ENOBUFS);
3077 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3078 #ifndef __NO_STRICT_ALIGNMENT
3079 	m_adj(m, AGE_RX_BUF_ALIGN);
3080 #endif
3081 
3082 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3083 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3084 		m_freem(m);
3085 		return (ENOBUFS);
3086 	}
3087 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3088 
3089 	if (rxd->rx_m != NULL) {
3090 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3091 		    BUS_DMASYNC_POSTREAD);
3092 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3093 	}
3094 	map = rxd->rx_dmamap;
3095 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3096 	sc->age_cdata.age_rx_sparemap = map;
3097 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3098 	    BUS_DMASYNC_PREREAD);
3099 	rxd->rx_m = m;
3100 
3101 	desc = rxd->rx_desc;
3102 	desc->addr = htole64(segs[0].ds_addr);
3103 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3104 	    AGE_RD_LEN_SHIFT);
3105 	return (0);
3106 }
3107 
3108 static void
age_rxvlan(struct age_softc * sc)3109 age_rxvlan(struct age_softc *sc)
3110 {
3111 	if_t ifp;
3112 	uint32_t reg;
3113 
3114 	AGE_LOCK_ASSERT(sc);
3115 
3116 	ifp = sc->age_ifp;
3117 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3118 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3119 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3120 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3121 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3122 }
3123 
3124 static u_int
age_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)3125 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3126 {
3127 	uint32_t *mchash = arg;
3128 	uint32_t crc;
3129 
3130 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3131 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3132 
3133 	return (1);
3134 }
3135 
3136 static void
age_rxfilter(struct age_softc * sc)3137 age_rxfilter(struct age_softc *sc)
3138 {
3139 	if_t ifp;
3140 	uint32_t mchash[2];
3141 	uint32_t rxcfg;
3142 
3143 	AGE_LOCK_ASSERT(sc);
3144 
3145 	ifp = sc->age_ifp;
3146 
3147 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3148 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3149 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3150 		rxcfg |= MAC_CFG_BCAST;
3151 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3152 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3153 			rxcfg |= MAC_CFG_PROMISC;
3154 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3155 			rxcfg |= MAC_CFG_ALLMULTI;
3156 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3157 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3158 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3159 		return;
3160 	}
3161 
3162 	/* Program new filter. */
3163 	bzero(mchash, sizeof(mchash));
3164 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3165 
3166 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3167 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3168 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3169 }
3170 
3171 static int
sysctl_age_stats(SYSCTL_HANDLER_ARGS)3172 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3173 {
3174 	struct age_softc *sc;
3175 	struct age_stats *stats;
3176 	int error, result;
3177 
3178 	result = -1;
3179 	error = sysctl_handle_int(oidp, &result, 0, req);
3180 
3181 	if (error != 0 || req->newptr == NULL)
3182 		return (error);
3183 
3184 	if (result != 1)
3185 		return (error);
3186 
3187 	sc = (struct age_softc *)arg1;
3188 	stats = &sc->age_stat;
3189 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3190 	printf("Transmit good frames : %ju\n",
3191 	    (uintmax_t)stats->tx_frames);
3192 	printf("Transmit good broadcast frames : %ju\n",
3193 	    (uintmax_t)stats->tx_bcast_frames);
3194 	printf("Transmit good multicast frames : %ju\n",
3195 	    (uintmax_t)stats->tx_mcast_frames);
3196 	printf("Transmit pause control frames : %u\n",
3197 	    stats->tx_pause_frames);
3198 	printf("Transmit control frames : %u\n",
3199 	    stats->tx_control_frames);
3200 	printf("Transmit frames with excessive deferrals : %u\n",
3201 	    stats->tx_excess_defer);
3202 	printf("Transmit deferrals : %u\n",
3203 	    stats->tx_deferred);
3204 	printf("Transmit good octets : %ju\n",
3205 	    (uintmax_t)stats->tx_bytes);
3206 	printf("Transmit good broadcast octets : %ju\n",
3207 	    (uintmax_t)stats->tx_bcast_bytes);
3208 	printf("Transmit good multicast octets : %ju\n",
3209 	    (uintmax_t)stats->tx_mcast_bytes);
3210 	printf("Transmit frames 64 bytes : %ju\n",
3211 	    (uintmax_t)stats->tx_pkts_64);
3212 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3213 	    (uintmax_t)stats->tx_pkts_65_127);
3214 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3215 	    (uintmax_t)stats->tx_pkts_128_255);
3216 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3217 	    (uintmax_t)stats->tx_pkts_256_511);
3218 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3219 	    (uintmax_t)stats->tx_pkts_512_1023);
3220 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3221 	    (uintmax_t)stats->tx_pkts_1024_1518);
3222 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3223 	    (uintmax_t)stats->tx_pkts_1519_max);
3224 	printf("Transmit single collisions : %u\n",
3225 	    stats->tx_single_colls);
3226 	printf("Transmit multiple collisions : %u\n",
3227 	    stats->tx_multi_colls);
3228 	printf("Transmit late collisions : %u\n",
3229 	    stats->tx_late_colls);
3230 	printf("Transmit abort due to excessive collisions : %u\n",
3231 	    stats->tx_excess_colls);
3232 	printf("Transmit underruns due to FIFO underruns : %u\n",
3233 	    stats->tx_underrun);
3234 	printf("Transmit descriptor write-back errors : %u\n",
3235 	    stats->tx_desc_underrun);
3236 	printf("Transmit frames with length mismatched frame size : %u\n",
3237 	    stats->tx_lenerrs);
3238 	printf("Transmit frames with truncated due to MTU size : %u\n",
3239 	    stats->tx_lenerrs);
3240 
3241 	printf("Receive good frames : %ju\n",
3242 	    (uintmax_t)stats->rx_frames);
3243 	printf("Receive good broadcast frames : %ju\n",
3244 	    (uintmax_t)stats->rx_bcast_frames);
3245 	printf("Receive good multicast frames : %ju\n",
3246 	    (uintmax_t)stats->rx_mcast_frames);
3247 	printf("Receive pause control frames : %u\n",
3248 	    stats->rx_pause_frames);
3249 	printf("Receive control frames : %u\n",
3250 	    stats->rx_control_frames);
3251 	printf("Receive CRC errors : %u\n",
3252 	    stats->rx_crcerrs);
3253 	printf("Receive frames with length errors : %u\n",
3254 	    stats->rx_lenerrs);
3255 	printf("Receive good octets : %ju\n",
3256 	    (uintmax_t)stats->rx_bytes);
3257 	printf("Receive good broadcast octets : %ju\n",
3258 	    (uintmax_t)stats->rx_bcast_bytes);
3259 	printf("Receive good multicast octets : %ju\n",
3260 	    (uintmax_t)stats->rx_mcast_bytes);
3261 	printf("Receive frames too short : %u\n",
3262 	    stats->rx_runts);
3263 	printf("Receive fragmented frames : %ju\n",
3264 	    (uintmax_t)stats->rx_fragments);
3265 	printf("Receive frames 64 bytes : %ju\n",
3266 	    (uintmax_t)stats->rx_pkts_64);
3267 	printf("Receive frames 65 to 127 bytes : %ju\n",
3268 	    (uintmax_t)stats->rx_pkts_65_127);
3269 	printf("Receive frames 128 to 255 bytes : %ju\n",
3270 	    (uintmax_t)stats->rx_pkts_128_255);
3271 	printf("Receive frames 256 to 511 bytes : %ju\n",
3272 	    (uintmax_t)stats->rx_pkts_256_511);
3273 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3274 	    (uintmax_t)stats->rx_pkts_512_1023);
3275 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3276 	    (uintmax_t)stats->rx_pkts_1024_1518);
3277 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3278 	    (uintmax_t)stats->rx_pkts_1519_max);
3279 	printf("Receive frames too long : %ju\n",
3280 	    (uint64_t)stats->rx_pkts_truncated);
3281 	printf("Receive frames with FIFO overflow : %u\n",
3282 	    stats->rx_fifo_oflows);
3283 	printf("Receive frames with return descriptor overflow : %u\n",
3284 	    stats->rx_desc_oflows);
3285 	printf("Receive frames with alignment errors : %u\n",
3286 	    stats->rx_alignerrs);
3287 	printf("Receive frames dropped due to address filtering : %ju\n",
3288 	    (uint64_t)stats->rx_pkts_filtered);
3289 
3290 	return (error);
3291 }
3292 
3293 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3294 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3295 {
3296 	int error, value;
3297 
3298 	if (arg1 == NULL)
3299 		return (EINVAL);
3300 	value = *(int *)arg1;
3301 	error = sysctl_handle_int(oidp, &value, 0, req);
3302 	if (error || req->newptr == NULL)
3303 		return (error);
3304 	if (value < low || value > high)
3305 		return (EINVAL);
3306         *(int *)arg1 = value;
3307 
3308         return (0);
3309 }
3310 
3311 static int
sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)3312 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3313 {
3314 	return (sysctl_int_range(oidp, arg1, arg2, req,
3315 	    AGE_PROC_MIN, AGE_PROC_MAX));
3316 }
3317 
3318 static int
sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)3319 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3320 {
3321 
3322 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3323 	    AGE_IM_TIMER_MAX));
3324 }
3325