xref: /freebsd-14.2/sys/dev/ae/if_ae.c (revision 5de9286b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Stanislav Sedov <[email protected]>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28  *
29  * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30  */
31 
32 #include <sys/cdefs.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rman.h>
43 #include <sys/module.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/tcp.h>
64 
65 #include <dev/mii/mii.h>
66 #include <dev/mii/miivar.h>
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 
72 #include "miibus_if.h"
73 
74 #include "if_aereg.h"
75 #include "if_aevar.h"
76 
77 /*
78  * Devices supported by this driver.
79  */
80 static struct ae_dev {
81 	uint16_t	vendorid;
82 	uint16_t	deviceid;
83 	const char	*name;
84 } ae_devs[] = {
85 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
86 		"Attansic Technology Corp, L2 FastEthernet" },
87 };
88 #define	AE_DEVS_COUNT nitems(ae_devs)
89 
90 static struct resource_spec ae_res_spec_mem[] = {
91 	{ SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
92 	{ -1,			0,		0 }
93 };
94 static struct resource_spec ae_res_spec_irq[] = {
95 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
96 	{ -1,			0,		0 }
97 };
98 static struct resource_spec ae_res_spec_msi[] = {
99 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
100 	{ -1,			0,		0 }
101 };
102 
103 static int	ae_probe(device_t dev);
104 static int	ae_attach(device_t dev);
105 static void	ae_pcie_init(ae_softc_t *sc);
106 static void	ae_phy_reset(ae_softc_t *sc);
107 static void	ae_phy_init(ae_softc_t *sc);
108 static int	ae_reset(ae_softc_t *sc);
109 static void	ae_init(void *arg);
110 static int	ae_init_locked(ae_softc_t *sc);
111 static int	ae_detach(device_t dev);
112 static int	ae_miibus_readreg(device_t dev, int phy, int reg);
113 static int	ae_miibus_writereg(device_t dev, int phy, int reg, int val);
114 static void	ae_miibus_statchg(device_t dev);
115 static void	ae_mediastatus(if_t ifp, struct ifmediareq *ifmr);
116 static int	ae_mediachange(if_t ifp);
117 static void	ae_retrieve_address(ae_softc_t *sc);
118 static void	ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
119     int error);
120 static int	ae_alloc_rings(ae_softc_t *sc);
121 static void	ae_dma_free(ae_softc_t *sc);
122 static int	ae_shutdown(device_t dev);
123 static int	ae_suspend(device_t dev);
124 static void	ae_powersave_disable(ae_softc_t *sc);
125 static void	ae_powersave_enable(ae_softc_t *sc);
126 static int	ae_resume(device_t dev);
127 static unsigned int	ae_tx_avail_size(ae_softc_t *sc);
128 static int	ae_encap(ae_softc_t *sc, struct mbuf **m_head);
129 static void	ae_start(if_t ifp);
130 static void	ae_start_locked(if_t ifp);
131 static void	ae_link_task(void *arg, int pending);
132 static void	ae_stop_rxmac(ae_softc_t *sc);
133 static void	ae_stop_txmac(ae_softc_t *sc);
134 static void	ae_mac_config(ae_softc_t *sc);
135 static int	ae_intr(void *arg);
136 static void	ae_int_task(void *arg, int pending);
137 static void	ae_tx_intr(ae_softc_t *sc);
138 static void	ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
139 static void	ae_rx_intr(ae_softc_t *sc);
140 static void	ae_watchdog(ae_softc_t *sc);
141 static void	ae_tick(void *arg);
142 static void	ae_rxfilter(ae_softc_t *sc);
143 static void	ae_rxvlan(ae_softc_t *sc);
144 static int	ae_ioctl(if_t ifp, u_long cmd, caddr_t data);
145 static void	ae_stop(ae_softc_t *sc);
146 static int	ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
147 static int	ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
148 static int	ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
149 static int	ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
150 static void	ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
151 static void	ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
152 static void	ae_init_tunables(ae_softc_t *sc);
153 
154 static device_method_t ae_methods[] = {
155 	/* Device interface. */
156 	DEVMETHOD(device_probe,		ae_probe),
157 	DEVMETHOD(device_attach,	ae_attach),
158 	DEVMETHOD(device_detach,	ae_detach),
159 	DEVMETHOD(device_shutdown,	ae_shutdown),
160 	DEVMETHOD(device_suspend,	ae_suspend),
161 	DEVMETHOD(device_resume,	ae_resume),
162 
163 	/* MII interface. */
164 	DEVMETHOD(miibus_readreg,	ae_miibus_readreg),
165 	DEVMETHOD(miibus_writereg,	ae_miibus_writereg),
166 	DEVMETHOD(miibus_statchg,	ae_miibus_statchg),
167 	{ NULL, NULL }
168 };
169 static driver_t ae_driver = {
170         "ae",
171         ae_methods,
172         sizeof(ae_softc_t)
173 };
174 
175 DRIVER_MODULE(ae, pci, ae_driver, 0, 0);
176 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
177     nitems(ae_devs));
178 DRIVER_MODULE(miibus, ae, miibus_driver, 0, 0);
179 MODULE_DEPEND(ae, pci, 1, 1, 1);
180 MODULE_DEPEND(ae, ether, 1, 1, 1);
181 MODULE_DEPEND(ae, miibus, 1, 1, 1);
182 
183 /*
184  * Tunables.
185  */
186 static int msi_disable = 0;
187 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
188 
189 #define	AE_READ_4(sc, reg) \
190 	bus_read_4((sc)->mem[0], (reg))
191 #define	AE_READ_2(sc, reg) \
192 	bus_read_2((sc)->mem[0], (reg))
193 #define	AE_READ_1(sc, reg) \
194 	bus_read_1((sc)->mem[0], (reg))
195 #define	AE_WRITE_4(sc, reg, val) \
196 	bus_write_4((sc)->mem[0], (reg), (val))
197 #define	AE_WRITE_2(sc, reg, val) \
198 	bus_write_2((sc)->mem[0], (reg), (val))
199 #define	AE_WRITE_1(sc, reg, val) \
200 	bus_write_1((sc)->mem[0], (reg), (val))
201 #define	AE_PHY_READ(sc, reg) \
202 	ae_miibus_readreg(sc->dev, 0, reg)
203 #define	AE_PHY_WRITE(sc, reg, val) \
204 	ae_miibus_writereg(sc->dev, 0, reg, val)
205 #define	AE_CHECK_EADDR_VALID(eaddr) \
206 	((eaddr[0] == 0 && eaddr[1] == 0) || \
207 	(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
208 #define	AE_RXD_VLAN(vtag) \
209 	(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
210 #define	AE_TXD_VLAN(vtag) \
211 	(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
212 
213 static int
ae_probe(device_t dev)214 ae_probe(device_t dev)
215 {
216 	uint16_t deviceid, vendorid;
217 	int i;
218 
219 	vendorid = pci_get_vendor(dev);
220 	deviceid = pci_get_device(dev);
221 
222 	/*
223 	 * Search through the list of supported devs for matching one.
224 	 */
225 	for (i = 0; i < AE_DEVS_COUNT; i++) {
226 		if (vendorid == ae_devs[i].vendorid &&
227 		    deviceid == ae_devs[i].deviceid) {
228 			device_set_desc(dev, ae_devs[i].name);
229 			return (BUS_PROBE_DEFAULT);
230 		}
231 	}
232 	return (ENXIO);
233 }
234 
235 static int
ae_attach(device_t dev)236 ae_attach(device_t dev)
237 {
238 	ae_softc_t *sc;
239 	if_t ifp;
240 	uint8_t chiprev;
241 	uint32_t pcirev;
242 	int nmsi, pmc;
243 	int error;
244 
245 	sc = device_get_softc(dev); /* Automatically allocated and zeroed
246 				       on attach. */
247 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
248 	sc->dev = dev;
249 
250 	/*
251 	 * Initialize mutexes and tasks.
252 	 */
253 	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
254 	callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
255 	TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
256 	TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
257 
258 	pci_enable_busmaster(dev);		/* Enable bus mastering. */
259 
260 	sc->spec_mem = ae_res_spec_mem;
261 
262 	/*
263 	 * Allocate memory-mapped registers.
264 	 */
265 	error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
266 	if (error != 0) {
267 		device_printf(dev, "could not allocate memory resources.\n");
268 		sc->spec_mem = NULL;
269 		goto fail;
270 	}
271 
272 	/*
273 	 * Retrieve PCI and chip revisions.
274 	 */
275 	pcirev = pci_get_revid(dev);
276 	chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
277 	    AE_MASTER_REVNUM_MASK;
278 	if (bootverbose) {
279 		device_printf(dev, "pci device revision: %#04x\n", pcirev);
280 		device_printf(dev, "chip id: %#02x\n", chiprev);
281 	}
282 	nmsi = pci_msi_count(dev);
283 	if (bootverbose)
284 		device_printf(dev, "MSI count: %d.\n", nmsi);
285 
286 	/*
287 	 * Allocate interrupt resources.
288 	 */
289 	if (msi_disable == 0 && nmsi == 1) {
290 		error = pci_alloc_msi(dev, &nmsi);
291 		if (error == 0) {
292 			device_printf(dev, "Using MSI messages.\n");
293 			sc->spec_irq = ae_res_spec_msi;
294 			error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
295 			if (error != 0) {
296 				device_printf(dev, "MSI allocation failed.\n");
297 				sc->spec_irq = NULL;
298 				pci_release_msi(dev);
299 			} else {
300 				sc->flags |= AE_FLAG_MSI;
301 			}
302 		}
303 	}
304 	if (sc->spec_irq == NULL) {
305 		sc->spec_irq = ae_res_spec_irq;
306 		error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
307 		if (error != 0) {
308 			device_printf(dev, "could not allocate IRQ resources.\n");
309 			sc->spec_irq = NULL;
310 			goto fail;
311 		}
312 	}
313 
314 	ae_init_tunables(sc);
315 
316 	ae_phy_reset(sc);		/* Reset PHY. */
317 	error = ae_reset(sc);		/* Reset the controller itself. */
318 	if (error != 0)
319 		goto fail;
320 
321 	ae_pcie_init(sc);
322 
323 	ae_retrieve_address(sc);	/* Load MAC address. */
324 
325 	error = ae_alloc_rings(sc);	/* Allocate ring buffers. */
326 	if (error != 0)
327 		goto fail;
328 
329 	ifp = sc->ifp = if_alloc(IFT_ETHER);
330 	if_setsoftc(ifp, sc);
331 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
332 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
333 	if_setioctlfn(ifp, ae_ioctl);
334 	if_setstartfn(ifp, ae_start);
335 	if_setinitfn(ifp, ae_init);
336 	if_setcapabilities(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING);
337 	if_sethwassist(ifp, 0);
338 	if_setsendqlen(ifp, ifqmaxlen);
339 	if_setsendqready(ifp);
340 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
341 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
342 		sc->flags |= AE_FLAG_PMG;
343 	}
344 	if_setcapenable(ifp, if_getcapabilities(ifp));
345 
346 	/*
347 	 * Configure and attach MII bus.
348 	 */
349 	error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
350 	    ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
351 	    MII_OFFSET_ANY, 0);
352 	if (error != 0) {
353 		device_printf(dev, "attaching PHYs failed\n");
354 		goto fail;
355 	}
356 
357 	ether_ifattach(ifp, sc->eaddr);
358 	/* Tell the upper layer(s) we support long frames. */
359 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
360 
361 	/*
362 	 * Create and run all helper tasks.
363 	 */
364 	sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
365             taskqueue_thread_enqueue, &sc->tq);
366 	taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
367 	    device_get_nameunit(sc->dev));
368 
369 	/*
370 	 * Configure interrupt handlers.
371 	 */
372 	error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
373 	    ae_intr, NULL, sc, &sc->intrhand);
374 	if (error != 0) {
375 		device_printf(dev, "could not set up interrupt handler.\n");
376 		taskqueue_free(sc->tq);
377 		sc->tq = NULL;
378 		ether_ifdetach(ifp);
379 		goto fail;
380 	}
381 
382 fail:
383 	if (error != 0)
384 		ae_detach(dev);
385 
386 	return (error);
387 }
388 
389 #define	AE_SYSCTL(stx, parent, name, desc, ptr)	\
390 	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
391 
392 static void
ae_init_tunables(ae_softc_t * sc)393 ae_init_tunables(ae_softc_t *sc)
394 {
395 	struct sysctl_ctx_list *ctx;
396 	struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
397 	struct ae_stats *ae_stats;
398 
399 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
400 	ae_stats = &sc->stats;
401 
402 	ctx = device_get_sysctl_ctx(sc->dev);
403 	root = device_get_sysctl_tree(sc->dev);
404 	stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
405 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
406 
407 	/*
408 	 * Receiver statistcics.
409 	 */
410 	stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
411 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
412 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
413 	    "broadcast frames", &ae_stats->rx_bcast);
414 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
415 	    "multicast frames", &ae_stats->rx_mcast);
416 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
417 	    "PAUSE frames", &ae_stats->rx_pause);
418 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
419 	    "control frames", &ae_stats->rx_ctrl);
420 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
421 	    "frames with CRC errors", &ae_stats->rx_crcerr);
422 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
423 	    "frames with invalid opcode", &ae_stats->rx_codeerr);
424 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
425 	    "runt frames", &ae_stats->rx_runt);
426 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
427 	    "fragmented frames", &ae_stats->rx_frag);
428 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
429 	    "frames with alignment errors", &ae_stats->rx_align);
430 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
431 	    "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
432 
433 	/*
434 	 * Receiver statistcics.
435 	 */
436 	stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
437 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
438 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
439 	    "broadcast frames", &ae_stats->tx_bcast);
440 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
441 	    "multicast frames", &ae_stats->tx_mcast);
442 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
443 	    "PAUSE frames", &ae_stats->tx_pause);
444 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
445 	    "control frames", &ae_stats->tx_ctrl);
446 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
447 	    "deferrals occuried", &ae_stats->tx_defer);
448 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
449 	    "excessive deferrals occuried", &ae_stats->tx_excdefer);
450 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
451 	    "single collisions occuried", &ae_stats->tx_singlecol);
452 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
453 	    "multiple collisions occuried", &ae_stats->tx_multicol);
454 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
455 	    "late collisions occuried", &ae_stats->tx_latecol);
456 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
457 	    "transmit aborts due collisions", &ae_stats->tx_abortcol);
458 	AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
459 	    "Tx FIFO underruns", &ae_stats->tx_underrun);
460 }
461 
462 static void
ae_pcie_init(ae_softc_t * sc)463 ae_pcie_init(ae_softc_t *sc)
464 {
465 
466 	AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
467 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
468 }
469 
470 static void
ae_phy_reset(ae_softc_t * sc)471 ae_phy_reset(ae_softc_t *sc)
472 {
473 
474 	AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
475 	DELAY(1000);	/* XXX: pause(9) ? */
476 }
477 
478 static int
ae_reset(ae_softc_t * sc)479 ae_reset(ae_softc_t *sc)
480 {
481 	int i;
482 
483 	/*
484 	 * Issue a soft reset.
485 	 */
486 	AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
487 	bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
488 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
489 
490 	/*
491 	 * Wait for reset to complete.
492 	 */
493 	for (i = 0; i < AE_RESET_TIMEOUT; i++) {
494 		if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
495 			break;
496 		DELAY(10);
497 	}
498 	if (i == AE_RESET_TIMEOUT) {
499 		device_printf(sc->dev, "reset timeout.\n");
500 		return (ENXIO);
501 	}
502 
503 	/*
504 	 * Wait for everything to enter idle state.
505 	 */
506 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
507 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
508 			break;
509 		DELAY(100);
510 	}
511 	if (i == AE_IDLE_TIMEOUT) {
512 		device_printf(sc->dev, "could not enter idle state.\n");
513 		return (ENXIO);
514 	}
515 	return (0);
516 }
517 
518 static void
ae_init(void * arg)519 ae_init(void *arg)
520 {
521 	ae_softc_t *sc;
522 
523 	sc = (ae_softc_t *)arg;
524 	AE_LOCK(sc);
525 	ae_init_locked(sc);
526 	AE_UNLOCK(sc);
527 }
528 
529 static void
ae_phy_init(ae_softc_t * sc)530 ae_phy_init(ae_softc_t *sc)
531 {
532 
533 	/*
534 	 * Enable link status change interrupt.
535 	 * XXX magic numbers.
536 	 */
537 #ifdef notyet
538 	AE_PHY_WRITE(sc, 18, 0xc00);
539 #endif
540 }
541 
542 static int
ae_init_locked(ae_softc_t * sc)543 ae_init_locked(ae_softc_t *sc)
544 {
545 	if_t ifp;
546 	struct mii_data *mii;
547 	uint8_t eaddr[ETHER_ADDR_LEN];
548 	uint32_t val;
549 	bus_addr_t addr;
550 
551 	AE_LOCK_ASSERT(sc);
552 
553 	ifp = sc->ifp;
554 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
555 		return (0);
556 	mii = device_get_softc(sc->miibus);
557 
558 	ae_stop(sc);
559 	ae_reset(sc);
560 	ae_pcie_init(sc);		/* Initialize PCIE stuff. */
561 	ae_phy_init(sc);
562 	ae_powersave_disable(sc);
563 
564 	/*
565 	 * Clear and disable interrupts.
566 	 */
567 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
568 
569 	/*
570 	 * Set the MAC address.
571 	 */
572 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
573 	val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
574 	AE_WRITE_4(sc, AE_EADDR0_REG, val);
575 	val = eaddr[0] << 8 | eaddr[1];
576 	AE_WRITE_4(sc, AE_EADDR1_REG, val);
577 
578 	bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
579 	bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
580 	bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
581 	/*
582 	 * Set ring buffers base addresses.
583 	 */
584 	addr = sc->dma_rxd_busaddr;
585 	AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
586 	AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
587 	addr = sc->dma_txd_busaddr;
588 	AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
589 	addr = sc->dma_txs_busaddr;
590 	AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
591 
592 	/*
593 	 * Configure ring buffers sizes.
594 	 */
595 	AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
596 	AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
597 	AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
598 
599 	/*
600 	 * Configure interframe gap parameters.
601 	 */
602 	val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
603 	    AE_IFG_TXIPG_MASK) |
604 	    ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
605 	    AE_IFG_RXIPG_MASK) |
606 	    ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
607 	    AE_IFG_IPGR1_MASK) |
608 	    ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
609 	    AE_IFG_IPGR2_MASK);
610 	AE_WRITE_4(sc, AE_IFG_REG, val);
611 
612 	/*
613 	 * Configure half-duplex operation.
614 	 */
615 	val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
616 	    AE_HDPX_LCOL_MASK) |
617 	    ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
618 	    AE_HDPX_RETRY_MASK) |
619 	    ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
620 	    AE_HDPX_ABEBT_MASK) |
621 	    ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
622 	    AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
623 	AE_WRITE_4(sc, AE_HDPX_REG, val);
624 
625 	/*
626 	 * Configure interrupt moderate timer.
627 	 */
628 	AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
629 	val = AE_READ_4(sc, AE_MASTER_REG);
630 	val |= AE_MASTER_IMT_EN;
631 	AE_WRITE_4(sc, AE_MASTER_REG, val);
632 
633 	/*
634 	 * Configure interrupt clearing timer.
635 	 */
636 	AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
637 
638 	/*
639 	 * Configure MTU.
640 	 */
641 	val = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
642 	    ETHER_CRC_LEN;
643 	AE_WRITE_2(sc, AE_MTU_REG, val);
644 
645 	/*
646 	 * Configure cut-through threshold.
647 	 */
648 	AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
649 
650 	/*
651 	 * Configure flow control.
652 	 */
653 	AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
654 	AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
655 	    (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
656 	    (AE_RXD_COUNT_DEFAULT / 12));
657 
658 	/*
659 	 * Init mailboxes.
660 	 */
661 	sc->txd_cur = sc->rxd_cur = 0;
662 	sc->txs_ack = sc->txd_ack = 0;
663 	sc->rxd_cur = 0;
664 	AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
665 	AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
666 
667 	sc->tx_inproc = 0;	/* Number of packets the chip processes now. */
668 	sc->flags |= AE_FLAG_TXAVAIL;	/* Free Tx's available. */
669 
670 	/*
671 	 * Enable DMA.
672 	 */
673 	AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
674 	AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
675 
676 	/*
677 	 * Check if everything is OK.
678 	 */
679 	val = AE_READ_4(sc, AE_ISR_REG);
680 	if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
681 		device_printf(sc->dev, "Initialization failed.\n");
682 		return (ENXIO);
683 	}
684 
685 	/*
686 	 * Clear interrupt status.
687 	 */
688 	AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
689 	AE_WRITE_4(sc, AE_ISR_REG, 0x0);
690 
691 	/*
692 	 * Enable interrupts.
693 	 */
694 	val = AE_READ_4(sc, AE_MASTER_REG);
695 	AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
696 	AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
697 
698 	/*
699 	 * Disable WOL.
700 	 */
701 	AE_WRITE_4(sc, AE_WOL_REG, 0);
702 
703 	/*
704 	 * Configure MAC.
705 	 */
706 	val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
707 	    AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
708 	    AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
709 	    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
710 	    ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
711 	    AE_MAC_PREAMBLE_MASK);
712 	AE_WRITE_4(sc, AE_MAC_REG, val);
713 
714 	/*
715 	 * Configure Rx MAC.
716 	 */
717 	ae_rxfilter(sc);
718 	ae_rxvlan(sc);
719 
720 	/*
721 	 * Enable Tx/Rx.
722 	 */
723 	val = AE_READ_4(sc, AE_MAC_REG);
724 	AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
725 
726 	sc->flags &= ~AE_FLAG_LINK;
727 	mii_mediachg(mii);	/* Switch to the current media. */
728 
729 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
730 
731 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
732 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
733 
734 #ifdef AE_DEBUG
735 	device_printf(sc->dev, "Initialization complete.\n");
736 #endif
737 
738 	return (0);
739 }
740 
741 static int
ae_detach(device_t dev)742 ae_detach(device_t dev)
743 {
744 	struct ae_softc *sc;
745 	if_t ifp;
746 
747 	sc = device_get_softc(dev);
748 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
749 	ifp = sc->ifp;
750 	if (device_is_attached(dev)) {
751 		AE_LOCK(sc);
752 		sc->flags |= AE_FLAG_DETACH;
753 		ae_stop(sc);
754 		AE_UNLOCK(sc);
755 		callout_drain(&sc->tick_ch);
756 		taskqueue_drain(sc->tq, &sc->int_task);
757 		taskqueue_drain(taskqueue_swi, &sc->link_task);
758 		ether_ifdetach(ifp);
759 	}
760 	if (sc->tq != NULL) {
761 		taskqueue_drain(sc->tq, &sc->int_task);
762 		taskqueue_free(sc->tq);
763 		sc->tq = NULL;
764 	}
765 	if (sc->miibus != NULL) {
766 		device_delete_child(dev, sc->miibus);
767 		sc->miibus = NULL;
768 	}
769 	bus_generic_detach(sc->dev);
770 	ae_dma_free(sc);
771 	if (sc->intrhand != NULL) {
772 		bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
773 		sc->intrhand = NULL;
774 	}
775 	if (ifp != NULL) {
776 		if_free(ifp);
777 		sc->ifp = NULL;
778 	}
779 	if (sc->spec_irq != NULL)
780 		bus_release_resources(dev, sc->spec_irq, sc->irq);
781 	if (sc->spec_mem != NULL)
782 		bus_release_resources(dev, sc->spec_mem, sc->mem);
783 	if ((sc->flags & AE_FLAG_MSI) != 0)
784 		pci_release_msi(dev);
785 	mtx_destroy(&sc->mtx);
786 
787 	return (0);
788 }
789 
790 static int
ae_miibus_readreg(device_t dev,int phy,int reg)791 ae_miibus_readreg(device_t dev, int phy, int reg)
792 {
793 	ae_softc_t *sc;
794 	uint32_t val;
795 	int i;
796 
797 	sc = device_get_softc(dev);
798 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
799 
800 	/*
801 	 * Locking is done in upper layers.
802 	 */
803 
804 	val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
805 	    AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
806 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
807 	AE_WRITE_4(sc, AE_MDIO_REG, val);
808 
809 	/*
810 	 * Wait for operation to complete.
811 	 */
812 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
813 		DELAY(2);
814 		val = AE_READ_4(sc, AE_MDIO_REG);
815 		if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
816 			break;
817 	}
818 	if (i == AE_MDIO_TIMEOUT) {
819 		device_printf(sc->dev, "phy read timeout: %d.\n", reg);
820 		return (0);
821 	}
822 	return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
823 }
824 
825 static int
ae_miibus_writereg(device_t dev,int phy,int reg,int val)826 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
827 {
828 	ae_softc_t *sc;
829 	uint32_t aereg;
830 	int i;
831 
832 	sc = device_get_softc(dev);
833 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
834 
835 	/*
836 	 * Locking is done in upper layers.
837 	 */
838 
839 	aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
840 	    AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
841 	    ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
842 	    ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
843 	AE_WRITE_4(sc, AE_MDIO_REG, aereg);
844 
845 	/*
846 	 * Wait for operation to complete.
847 	 */
848 	for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
849 		DELAY(2);
850 		aereg = AE_READ_4(sc, AE_MDIO_REG);
851 		if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
852 			break;
853 	}
854 	if (i == AE_MDIO_TIMEOUT) {
855 		device_printf(sc->dev, "phy write timeout: %d.\n", reg);
856 	}
857 	return (0);
858 }
859 
860 static void
ae_miibus_statchg(device_t dev)861 ae_miibus_statchg(device_t dev)
862 {
863 	ae_softc_t *sc;
864 
865 	sc = device_get_softc(dev);
866 	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
867 }
868 
869 static void
ae_mediastatus(if_t ifp,struct ifmediareq * ifmr)870 ae_mediastatus(if_t ifp, struct ifmediareq *ifmr)
871 {
872 	ae_softc_t *sc;
873 	struct mii_data *mii;
874 
875 	sc = if_getsoftc(ifp);
876 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
877 
878 	AE_LOCK(sc);
879 	mii = device_get_softc(sc->miibus);
880 	mii_pollstat(mii);
881 	ifmr->ifm_status = mii->mii_media_status;
882 	ifmr->ifm_active = mii->mii_media_active;
883 	AE_UNLOCK(sc);
884 }
885 
886 static int
ae_mediachange(if_t ifp)887 ae_mediachange(if_t ifp)
888 {
889 	ae_softc_t *sc;
890 	struct mii_data *mii;
891 	struct mii_softc *mii_sc;
892 	int error;
893 
894 	/* XXX: check IFF_UP ?? */
895 	sc = if_getsoftc(ifp);
896 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
897 	AE_LOCK(sc);
898 	mii = device_get_softc(sc->miibus);
899 	LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
900 		PHY_RESET(mii_sc);
901 	error = mii_mediachg(mii);
902 	AE_UNLOCK(sc);
903 
904 	return (error);
905 }
906 
907 static int
ae_check_eeprom_present(ae_softc_t * sc,int * vpdc)908 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
909 {
910 	int error;
911 	uint32_t val;
912 
913 	KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
914 
915 	/*
916 	 * Not sure why, but Linux does this.
917 	 */
918 	val = AE_READ_4(sc, AE_SPICTL_REG);
919 	if ((val & AE_SPICTL_VPD_EN) != 0) {
920 		val &= ~AE_SPICTL_VPD_EN;
921 		AE_WRITE_4(sc, AE_SPICTL_REG, val);
922 	}
923 	error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
924 	return (error);
925 }
926 
927 static int
ae_vpd_read_word(ae_softc_t * sc,int reg,uint32_t * word)928 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
929 {
930 	uint32_t val;
931 	int i;
932 
933 	AE_WRITE_4(sc, AE_VPD_DATA_REG, 0);	/* Clear register value. */
934 
935 	/*
936 	 * VPD registers start at offset 0x100. Read them.
937 	 */
938 	val = 0x100 + reg * 4;
939 	AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
940 	    AE_VPD_CAP_ADDR_MASK);
941 	for (i = 0; i < AE_VPD_TIMEOUT; i++) {
942 		DELAY(2000);
943 		val = AE_READ_4(sc, AE_VPD_CAP_REG);
944 		if ((val & AE_VPD_CAP_DONE) != 0)
945 			break;
946 	}
947 	if (i == AE_VPD_TIMEOUT) {
948 		device_printf(sc->dev, "timeout reading VPD register %d.\n",
949 		    reg);
950 		return (ETIMEDOUT);
951 	}
952 	*word = AE_READ_4(sc, AE_VPD_DATA_REG);
953 	return (0);
954 }
955 
956 static int
ae_get_vpd_eaddr(ae_softc_t * sc,uint32_t * eaddr)957 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
958 {
959 	uint32_t word, reg, val;
960 	int error;
961 	int found;
962 	int vpdc;
963 	int i;
964 
965 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
966 	KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
967 
968 	/*
969 	 * Check for EEPROM.
970 	 */
971 	error = ae_check_eeprom_present(sc, &vpdc);
972 	if (error != 0)
973 		return (error);
974 
975 	/*
976 	 * Read the VPD configuration space.
977 	 * Each register is prefixed with signature,
978 	 * so we can check if it is valid.
979 	 */
980 	for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
981 		error = ae_vpd_read_word(sc, i, &word);
982 		if (error != 0)
983 			break;
984 
985 		/*
986 		 * Check signature.
987 		 */
988 		if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
989 			break;
990 		reg = word >> AE_VPD_REG_SHIFT;
991 		i++;	/* Move to the next word. */
992 
993 		if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
994 			continue;
995 
996 		error = ae_vpd_read_word(sc, i, &val);
997 		if (error != 0)
998 			break;
999 		if (reg == AE_EADDR0_REG)
1000 			eaddr[0] = val;
1001 		else
1002 			eaddr[1] = val;
1003 		found++;
1004 	}
1005 
1006 	if (found < 2)
1007 		return (ENOENT);
1008 
1009 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1010 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1011 		if (bootverbose)
1012 			device_printf(sc->dev,
1013 			    "VPD ethernet address registers are invalid.\n");
1014 		return (EINVAL);
1015 	}
1016 	return (0);
1017 }
1018 
1019 static int
ae_get_reg_eaddr(ae_softc_t * sc,uint32_t * eaddr)1020 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1021 {
1022 
1023 	/*
1024 	 * BIOS is supposed to set this.
1025 	 */
1026 	eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1027 	eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1028 	eaddr[1] &= 0xffff;	/* Only last 2 bytes are used. */
1029 
1030 	if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1031 		if (bootverbose)
1032 			device_printf(sc->dev,
1033 			    "Ethernet address registers are invalid.\n");
1034 		return (EINVAL);
1035 	}
1036 	return (0);
1037 }
1038 
1039 static void
ae_retrieve_address(ae_softc_t * sc)1040 ae_retrieve_address(ae_softc_t *sc)
1041 {
1042 	uint32_t eaddr[2] = {0, 0};
1043 	int error;
1044 
1045 	/*
1046 	 *Check for EEPROM.
1047 	 */
1048 	error = ae_get_vpd_eaddr(sc, eaddr);
1049 	if (error != 0)
1050 		error = ae_get_reg_eaddr(sc, eaddr);
1051 	if (error != 0) {
1052 		if (bootverbose)
1053 			device_printf(sc->dev,
1054 			    "Generating random ethernet address.\n");
1055 		eaddr[0] = arc4random();
1056 
1057 		/*
1058 		 * Set OUI to ASUSTek COMPUTER INC.
1059 		 */
1060 		sc->eaddr[0] = 0x02;	/* U/L bit set. */
1061 		sc->eaddr[1] = 0x1f;
1062 		sc->eaddr[2] = 0xc6;
1063 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1064 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1065 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1066 	} else {
1067 		sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1068 		sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1069 		sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1070 		sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1071 		sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1072 		sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1073 	}
1074 }
1075 
1076 static void
ae_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1077 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1078 {
1079 	bus_addr_t *addr = arg;
1080 
1081 	if (error != 0)
1082 		return;
1083 	KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1084 	    nsegs));
1085 	*addr = segs[0].ds_addr;
1086 }
1087 
1088 static int
ae_alloc_rings(ae_softc_t * sc)1089 ae_alloc_rings(ae_softc_t *sc)
1090 {
1091 	bus_addr_t busaddr;
1092 	int error;
1093 
1094 	/*
1095 	 * Create parent DMA tag.
1096 	 */
1097 	error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1098 	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1099 	    NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1100 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1101 	    &sc->dma_parent_tag);
1102 	if (error != 0) {
1103 		device_printf(sc->dev, "could not creare parent DMA tag.\n");
1104 		return (error);
1105 	}
1106 
1107 	/*
1108 	 * Create DMA tag for TxD.
1109 	 */
1110 	error = bus_dma_tag_create(sc->dma_parent_tag,
1111 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1112 	    NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1113 	    AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1114 	    &sc->dma_txd_tag);
1115 	if (error != 0) {
1116 		device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1117 		return (error);
1118 	}
1119 
1120 	/*
1121 	 * Create DMA tag for TxS.
1122 	 */
1123 	error = bus_dma_tag_create(sc->dma_parent_tag,
1124 	    8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1125 	    NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1126 	    AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1127 	    &sc->dma_txs_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1130 		return (error);
1131 	}
1132 
1133 	/*
1134 	 * Create DMA tag for RxD.
1135 	 */
1136 	error = bus_dma_tag_create(sc->dma_parent_tag,
1137 	    128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1138 	    NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1139 	    AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1140 	    &sc->dma_rxd_tag);
1141 	if (error != 0) {
1142 		device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1143 		return (error);
1144 	}
1145 
1146 	/*
1147 	 * Allocate TxD DMA memory.
1148 	 */
1149 	error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1150 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1151 	    &sc->dma_txd_map);
1152 	if (error != 0) {
1153 		device_printf(sc->dev,
1154 		    "could not allocate DMA memory for TxD ring.\n");
1155 		return (error);
1156 	}
1157 	error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1158 	    AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1159 	if (error != 0 || busaddr == 0) {
1160 		device_printf(sc->dev,
1161 		    "could not load DMA map for TxD ring.\n");
1162 		return (error);
1163 	}
1164 	sc->dma_txd_busaddr = busaddr;
1165 
1166 	/*
1167 	 * Allocate TxS DMA memory.
1168 	 */
1169 	error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1170 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1171 	    &sc->dma_txs_map);
1172 	if (error != 0) {
1173 		device_printf(sc->dev,
1174 		    "could not allocate DMA memory for TxS ring.\n");
1175 		return (error);
1176 	}
1177 	error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1178 	    AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1179 	if (error != 0 || busaddr == 0) {
1180 		device_printf(sc->dev,
1181 		    "could not load DMA map for TxS ring.\n");
1182 		return (error);
1183 	}
1184 	sc->dma_txs_busaddr = busaddr;
1185 
1186 	/*
1187 	 * Allocate RxD DMA memory.
1188 	 */
1189 	error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1190 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1191 	    &sc->dma_rxd_map);
1192 	if (error != 0) {
1193 		device_printf(sc->dev,
1194 		    "could not allocate DMA memory for RxD ring.\n");
1195 		return (error);
1196 	}
1197 	error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1198 	    sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1199 	    ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1200 	if (error != 0 || busaddr == 0) {
1201 		device_printf(sc->dev,
1202 		    "could not load DMA map for RxD ring.\n");
1203 		return (error);
1204 	}
1205 	sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1206 	sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1207 
1208 	return (0);
1209 }
1210 
1211 static void
ae_dma_free(ae_softc_t * sc)1212 ae_dma_free(ae_softc_t *sc)
1213 {
1214 
1215 	if (sc->dma_txd_tag != NULL) {
1216 		if (sc->dma_txd_busaddr != 0)
1217 			bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1218 		if (sc->txd_base != NULL)
1219 			bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1220 			    sc->dma_txd_map);
1221 		bus_dma_tag_destroy(sc->dma_txd_tag);
1222 		sc->dma_txd_tag = NULL;
1223 		sc->txd_base = NULL;
1224 		sc->dma_txd_busaddr = 0;
1225 	}
1226 	if (sc->dma_txs_tag != NULL) {
1227 		if (sc->dma_txs_busaddr != 0)
1228 			bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1229 		if (sc->txs_base != NULL)
1230 			bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1231 			    sc->dma_txs_map);
1232 		bus_dma_tag_destroy(sc->dma_txs_tag);
1233 		sc->dma_txs_tag = NULL;
1234 		sc->txs_base = NULL;
1235 		sc->dma_txs_busaddr = 0;
1236 	}
1237 	if (sc->dma_rxd_tag != NULL) {
1238 		if (sc->dma_rxd_busaddr != 0)
1239 			bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1240 		if (sc->rxd_base_dma != NULL)
1241 			bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1242 			    sc->dma_rxd_map);
1243 		bus_dma_tag_destroy(sc->dma_rxd_tag);
1244 		sc->dma_rxd_tag = NULL;
1245 		sc->rxd_base_dma = NULL;
1246 		sc->dma_rxd_busaddr = 0;
1247 	}
1248 	if (sc->dma_parent_tag != NULL) {
1249 		bus_dma_tag_destroy(sc->dma_parent_tag);
1250 		sc->dma_parent_tag = NULL;
1251 	}
1252 }
1253 
1254 static int
ae_shutdown(device_t dev)1255 ae_shutdown(device_t dev)
1256 {
1257 	ae_softc_t *sc;
1258 	int error;
1259 
1260 	sc = device_get_softc(dev);
1261 	KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1262 
1263 	error = ae_suspend(dev);
1264 	AE_LOCK(sc);
1265 	ae_powersave_enable(sc);
1266 	AE_UNLOCK(sc);
1267 	return (error);
1268 }
1269 
1270 static void
ae_powersave_disable(ae_softc_t * sc)1271 ae_powersave_disable(ae_softc_t *sc)
1272 {
1273 	uint32_t val;
1274 
1275 	AE_LOCK_ASSERT(sc);
1276 
1277 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1278 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1279 	if (val & AE_PHY_DBG_POWERSAVE) {
1280 		val &= ~AE_PHY_DBG_POWERSAVE;
1281 		AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1282 		DELAY(1000);
1283 	}
1284 }
1285 
1286 static void
ae_powersave_enable(ae_softc_t * sc)1287 ae_powersave_enable(ae_softc_t *sc)
1288 {
1289 	uint32_t val;
1290 
1291 	AE_LOCK_ASSERT(sc);
1292 
1293 	/*
1294 	 * XXX magic numbers.
1295 	 */
1296 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1297 	val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1298 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1299 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1300 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1301 	AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1302 	AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1303 }
1304 
1305 static void
ae_pm_init(ae_softc_t * sc)1306 ae_pm_init(ae_softc_t *sc)
1307 {
1308 	if_t ifp;
1309 	uint32_t val;
1310 	uint16_t pmstat;
1311 	struct mii_data *mii;
1312 	int pmc;
1313 
1314 	AE_LOCK_ASSERT(sc);
1315 
1316 	ifp = sc->ifp;
1317 	if ((sc->flags & AE_FLAG_PMG) == 0) {
1318 		/* Disable WOL entirely. */
1319 		AE_WRITE_4(sc, AE_WOL_REG, 0);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Configure WOL if enabled.
1325 	 */
1326 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1327 		mii = device_get_softc(sc->miibus);
1328 		mii_pollstat(mii);
1329 		if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1330 		    (mii->mii_media_status & IFM_ACTIVE) != 0) {
1331 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1332 			    AE_WOL_MAGIC_PME);
1333 
1334 			/*
1335 			 * Configure MAC.
1336 			 */
1337 			val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1338 			    AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1339 			    ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1340 			    AE_HALFBUF_MASK) | \
1341 			    ((AE_MAC_PREAMBLE_DEFAULT << \
1342 			    AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1343 			    AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1344 			if ((IFM_OPTIONS(mii->mii_media_active) & \
1345 			    IFM_FDX) != 0)
1346 				val |= AE_MAC_FULL_DUPLEX;
1347 			AE_WRITE_4(sc, AE_MAC_REG, val);
1348 
1349 		} else {	/* No link. */
1350 			AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1351 			    AE_WOL_LNKCHG_PME);
1352 			AE_WRITE_4(sc, AE_MAC_REG, 0);
1353 		}
1354 	} else {
1355 		ae_powersave_enable(sc);
1356 	}
1357 
1358 	/*
1359 	 * PCIE hacks. Magic numbers.
1360 	 */
1361 	val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1362 	val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1363 	AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1364 	val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1365 	val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1366 	AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1367 
1368 	/*
1369 	 * Configure PME.
1370 	 */
1371 	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1372 		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1373 		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1374 		if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1375 			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1376 		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1377 	}
1378 }
1379 
1380 static int
ae_suspend(device_t dev)1381 ae_suspend(device_t dev)
1382 {
1383 	ae_softc_t *sc;
1384 
1385 	sc = device_get_softc(dev);
1386 
1387 	AE_LOCK(sc);
1388 	ae_stop(sc);
1389 	ae_pm_init(sc);
1390 	AE_UNLOCK(sc);
1391 
1392 	return (0);
1393 }
1394 
1395 static int
ae_resume(device_t dev)1396 ae_resume(device_t dev)
1397 {
1398 	ae_softc_t *sc;
1399 
1400 	sc = device_get_softc(dev);
1401 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1402 
1403 	AE_LOCK(sc);
1404 	AE_READ_4(sc, AE_WOL_REG);	/* Clear WOL status. */
1405 	if ((if_getflags(sc->ifp) & IFF_UP) != 0)
1406 		ae_init_locked(sc);
1407 	AE_UNLOCK(sc);
1408 
1409 	return (0);
1410 }
1411 
1412 static unsigned int
ae_tx_avail_size(ae_softc_t * sc)1413 ae_tx_avail_size(ae_softc_t *sc)
1414 {
1415 	unsigned int avail;
1416 
1417 	if (sc->txd_cur >= sc->txd_ack)
1418 		avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1419 	else
1420 		avail = sc->txd_ack - sc->txd_cur;
1421 
1422 	return (avail);
1423 }
1424 
1425 static int
ae_encap(ae_softc_t * sc,struct mbuf ** m_head)1426 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1427 {
1428 	struct mbuf *m0;
1429 	ae_txd_t *hdr;
1430 	unsigned int to_end;
1431 	uint16_t len;
1432 
1433 	AE_LOCK_ASSERT(sc);
1434 
1435 	m0 = *m_head;
1436 	len = m0->m_pkthdr.len;
1437 
1438 	if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1439 	    len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1440 #ifdef AE_DEBUG
1441 		if_printf(sc->ifp, "No free Tx available.\n");
1442 #endif
1443 		return ENOBUFS;
1444 	}
1445 
1446 	hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1447 	bzero(hdr, sizeof(*hdr));
1448 	/* Skip header size. */
1449 	sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1450 	/* Space available to the end of the ring */
1451 	to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1452 	if (to_end >= len) {
1453 		m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1454 	} else {
1455 		m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1456 		    sc->txd_cur));
1457 		m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1458 	}
1459 
1460 	/*
1461 	 * Set TxD flags and parameters.
1462 	 */
1463 	if ((m0->m_flags & M_VLANTAG) != 0) {
1464 		hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1465 		hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1466 	} else {
1467 		hdr->len = htole16(len);
1468 	}
1469 
1470 	/*
1471 	 * Set current TxD position and round up to a 4-byte boundary.
1472 	 */
1473 	sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1474 	if (sc->txd_cur == sc->txd_ack)
1475 		sc->flags &= ~AE_FLAG_TXAVAIL;
1476 #ifdef AE_DEBUG
1477 	if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1478 #endif
1479 
1480 	/*
1481 	 * Update TxS position and check if there are empty TxS available.
1482 	 */
1483 	sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1484 	sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1485 	if (sc->txs_cur == sc->txs_ack)
1486 		sc->flags &= ~AE_FLAG_TXAVAIL;
1487 
1488 	/*
1489 	 * Synchronize DMA memory.
1490 	 */
1491 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1492 	    BUS_DMASYNC_PREWRITE);
1493 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1494 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1495 
1496 	return (0);
1497 }
1498 
1499 static void
ae_start(if_t ifp)1500 ae_start(if_t ifp)
1501 {
1502 	ae_softc_t *sc;
1503 
1504 	sc = if_getsoftc(ifp);
1505 	AE_LOCK(sc);
1506 	ae_start_locked(ifp);
1507 	AE_UNLOCK(sc);
1508 }
1509 
1510 static void
ae_start_locked(if_t ifp)1511 ae_start_locked(if_t ifp)
1512 {
1513 	ae_softc_t *sc;
1514 	unsigned int count;
1515 	struct mbuf *m0;
1516 	int error;
1517 
1518 	sc = if_getsoftc(ifp);
1519 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1520 	AE_LOCK_ASSERT(sc);
1521 
1522 #ifdef AE_DEBUG
1523 	if_printf(ifp, "Start called.\n");
1524 #endif
1525 
1526 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1527 	    IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1528 		return;
1529 
1530 	count = 0;
1531 	while (!if_sendq_empty(ifp)) {
1532 		m0 = if_dequeue(ifp);
1533 		if (m0 == NULL)
1534 			break;	/* Nothing to do. */
1535 
1536 		error = ae_encap(sc, &m0);
1537 		if (error != 0) {
1538 			if (m0 != NULL) {
1539 				if_sendq_prepend(ifp, m0);
1540 				if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1541 #ifdef AE_DEBUG
1542 				if_printf(ifp, "Setting OACTIVE.\n");
1543 #endif
1544 			}
1545 			break;
1546 		}
1547 		count++;
1548 		sc->tx_inproc++;
1549 
1550 		/* Bounce a copy of the frame to BPF. */
1551 		ETHER_BPF_MTAP(ifp, m0);
1552 
1553 		m_freem(m0);
1554 	}
1555 
1556 	if (count > 0) {	/* Something was dequeued. */
1557 		AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1558 		sc->wd_timer = AE_TX_TIMEOUT;	/* Load watchdog. */
1559 #ifdef AE_DEBUG
1560 		if_printf(ifp, "%d packets dequeued.\n", count);
1561 		if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1562 #endif
1563 	}
1564 }
1565 
1566 static void
ae_link_task(void * arg,int pending)1567 ae_link_task(void *arg, int pending)
1568 {
1569 	ae_softc_t *sc;
1570 	struct mii_data *mii;
1571 	if_t ifp;
1572 	uint32_t val;
1573 
1574 	sc = (ae_softc_t *)arg;
1575 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1576 	AE_LOCK(sc);
1577 
1578 	ifp = sc->ifp;
1579 	mii = device_get_softc(sc->miibus);
1580 	if (mii == NULL || ifp == NULL ||
1581 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1582 		AE_UNLOCK(sc);	/* XXX: could happen? */
1583 		return;
1584 	}
1585 
1586 	sc->flags &= ~AE_FLAG_LINK;
1587 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1588 	    (IFM_AVALID | IFM_ACTIVE)) {
1589 		switch(IFM_SUBTYPE(mii->mii_media_active)) {
1590 		case IFM_10_T:
1591 		case IFM_100_TX:
1592 			sc->flags |= AE_FLAG_LINK;
1593 			break;
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * Stop Rx/Tx MACs.
1601 	 */
1602 	ae_stop_rxmac(sc);
1603 	ae_stop_txmac(sc);
1604 
1605 	if ((sc->flags & AE_FLAG_LINK) != 0) {
1606 		ae_mac_config(sc);
1607 
1608 		/*
1609 		 * Restart DMA engines.
1610 		 */
1611 		AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1612 		AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1613 
1614 		/*
1615 		 * Enable Rx and Tx MACs.
1616 		 */
1617 		val = AE_READ_4(sc, AE_MAC_REG);
1618 		val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1619 		AE_WRITE_4(sc, AE_MAC_REG, val);
1620 	}
1621 	AE_UNLOCK(sc);
1622 }
1623 
1624 static void
ae_stop_rxmac(ae_softc_t * sc)1625 ae_stop_rxmac(ae_softc_t *sc)
1626 {
1627 	uint32_t val;
1628 	int i;
1629 
1630 	AE_LOCK_ASSERT(sc);
1631 
1632 	/*
1633 	 * Stop Rx MAC engine.
1634 	 */
1635 	val = AE_READ_4(sc, AE_MAC_REG);
1636 	if ((val & AE_MAC_RX_EN) != 0) {
1637 		val &= ~AE_MAC_RX_EN;
1638 		AE_WRITE_4(sc, AE_MAC_REG, val);
1639 	}
1640 
1641 	/*
1642 	 * Stop Rx DMA engine.
1643 	 */
1644 	if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1645 		AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1646 
1647 	/*
1648 	 * Wait for IDLE state.
1649 	 */
1650 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1651 		val = AE_READ_4(sc, AE_IDLE_REG);
1652 		if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1653 			break;
1654 		DELAY(100);
1655 	}
1656 	if (i == AE_IDLE_TIMEOUT)
1657 		device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1658 }
1659 
1660 static void
ae_stop_txmac(ae_softc_t * sc)1661 ae_stop_txmac(ae_softc_t *sc)
1662 {
1663 	uint32_t val;
1664 	int i;
1665 
1666 	AE_LOCK_ASSERT(sc);
1667 
1668 	/*
1669 	 * Stop Tx MAC engine.
1670 	 */
1671 	val = AE_READ_4(sc, AE_MAC_REG);
1672 	if ((val & AE_MAC_TX_EN) != 0) {
1673 		val &= ~AE_MAC_TX_EN;
1674 		AE_WRITE_4(sc, AE_MAC_REG, val);
1675 	}
1676 
1677 	/*
1678 	 * Stop Tx DMA engine.
1679 	 */
1680 	if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1681 		AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1682 
1683 	/*
1684 	 * Wait for IDLE state.
1685 	 */
1686 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1687 		val = AE_READ_4(sc, AE_IDLE_REG);
1688 		if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1689 			break;
1690 		DELAY(100);
1691 	}
1692 	if (i == AE_IDLE_TIMEOUT)
1693 		device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1694 }
1695 
1696 static void
ae_mac_config(ae_softc_t * sc)1697 ae_mac_config(ae_softc_t *sc)
1698 {
1699 	struct mii_data *mii;
1700 	uint32_t val;
1701 
1702 	AE_LOCK_ASSERT(sc);
1703 
1704 	mii = device_get_softc(sc->miibus);
1705 	val = AE_READ_4(sc, AE_MAC_REG);
1706 	val &= ~AE_MAC_FULL_DUPLEX;
1707 	/* XXX disable AE_MAC_TX_FLOW_EN? */
1708 
1709 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1710 		val |= AE_MAC_FULL_DUPLEX;
1711 
1712 	AE_WRITE_4(sc, AE_MAC_REG, val);
1713 }
1714 
1715 static int
ae_intr(void * arg)1716 ae_intr(void *arg)
1717 {
1718 	ae_softc_t *sc;
1719 	uint32_t val;
1720 
1721 	sc = (ae_softc_t *)arg;
1722 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1723 
1724 	val = AE_READ_4(sc, AE_ISR_REG);
1725 	if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1726 		return (FILTER_STRAY);
1727 
1728 	/* Disable interrupts. */
1729 	AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1730 
1731 	/* Schedule interrupt processing. */
1732 	taskqueue_enqueue(sc->tq, &sc->int_task);
1733 
1734 	return (FILTER_HANDLED);
1735 }
1736 
1737 static void
ae_int_task(void * arg,int pending)1738 ae_int_task(void *arg, int pending)
1739 {
1740 	ae_softc_t *sc;
1741 	if_t ifp;
1742 	uint32_t val;
1743 
1744 	sc = (ae_softc_t *)arg;
1745 
1746 	AE_LOCK(sc);
1747 
1748 	ifp = sc->ifp;
1749 
1750 	val = AE_READ_4(sc, AE_ISR_REG);	/* Read interrupt status. */
1751 	if (val == 0) {
1752 		AE_UNLOCK(sc);
1753 		return;
1754 	}
1755 
1756 	/*
1757 	 * Clear interrupts and disable them.
1758 	 */
1759 	AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1760 
1761 #ifdef AE_DEBUG
1762 	if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1763 #endif
1764 
1765 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1766 		if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1767 		    AE_ISR_PHY_LINKDOWN)) != 0) {
1768 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1769 			ae_init_locked(sc);
1770 			AE_UNLOCK(sc);
1771 			return;
1772 		}
1773 		if ((val & AE_ISR_TX_EVENT) != 0)
1774 			ae_tx_intr(sc);
1775 		if ((val & AE_ISR_RX_EVENT) != 0)
1776 			ae_rx_intr(sc);
1777 		/*
1778 		 * Re-enable interrupts.
1779 		 */
1780 		AE_WRITE_4(sc, AE_ISR_REG, 0);
1781 
1782 		if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1783 			if (!if_sendq_empty(ifp))
1784 				ae_start_locked(ifp);
1785 		}
1786 	}
1787 
1788 	AE_UNLOCK(sc);
1789 }
1790 
1791 static void
ae_tx_intr(ae_softc_t * sc)1792 ae_tx_intr(ae_softc_t *sc)
1793 {
1794 	if_t ifp;
1795 	ae_txd_t *txd;
1796 	ae_txs_t *txs;
1797 	uint16_t flags;
1798 
1799 	AE_LOCK_ASSERT(sc);
1800 
1801 	ifp = sc->ifp;
1802 
1803 #ifdef AE_DEBUG
1804 	if_printf(ifp, "Tx interrupt occuried.\n");
1805 #endif
1806 
1807 	/*
1808 	 * Syncronize DMA buffers.
1809 	 */
1810 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1811 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1812 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1813 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1814 
1815 	for (;;) {
1816 		txs = sc->txs_base + sc->txs_ack;
1817 		flags = le16toh(txs->flags);
1818 		if ((flags & AE_TXS_UPDATE) == 0)
1819 			break;
1820 		txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1821 		/* Update stats. */
1822 		ae_update_stats_tx(flags, &sc->stats);
1823 
1824 		/*
1825 		 * Update TxS position.
1826 		 */
1827 		sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1828 		sc->flags |= AE_FLAG_TXAVAIL;
1829 
1830 		txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1831 		if (txs->len != txd->len)
1832 			device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1833 			    le16toh(txs->len), le16toh(txd->len));
1834 
1835 		/*
1836 		 * Move txd ack and align on 4-byte boundary.
1837 		 */
1838 		sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1839 		    sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1840 
1841 		if ((flags & AE_TXS_SUCCESS) != 0)
1842 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1843 		else
1844 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1845 
1846 		sc->tx_inproc--;
1847 	}
1848 
1849 	if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1850 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1851 	if (sc->tx_inproc < 0) {
1852 		if_printf(ifp, "Received stray Tx interrupt(s).\n");
1853 		sc->tx_inproc = 0;
1854 	}
1855 
1856 	if (sc->tx_inproc == 0)
1857 		sc->wd_timer = 0;	/* Unarm watchdog. */
1858 
1859 	/*
1860 	 * Syncronize DMA buffers.
1861 	 */
1862 	bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1863 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1864 	bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1865 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1866 }
1867 
1868 static void
ae_rxeof(ae_softc_t * sc,ae_rxd_t * rxd)1869 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1870 {
1871 	if_t ifp;
1872 	struct mbuf *m;
1873 	unsigned int size;
1874 	uint16_t flags;
1875 
1876 	AE_LOCK_ASSERT(sc);
1877 
1878 	ifp = sc->ifp;
1879 	flags = le16toh(rxd->flags);
1880 
1881 #ifdef AE_DEBUG
1882 	if_printf(ifp, "Rx interrupt occuried.\n");
1883 #endif
1884 	size = le16toh(rxd->len) - ETHER_CRC_LEN;
1885 	if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1886 		if_printf(ifp, "Runt frame received.");
1887 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1888 		return;
1889 	}
1890 
1891 	m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1892 	if (m == NULL) {
1893 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1894 		return;
1895 	}
1896 
1897 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1898 	    (flags & AE_RXD_HAS_VLAN) != 0) {
1899 		m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1900 		m->m_flags |= M_VLANTAG;
1901 	}
1902 
1903 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1904 	/*
1905 	 * Pass it through.
1906 	 */
1907 	AE_UNLOCK(sc);
1908 	if_input(ifp, m);
1909 	AE_LOCK(sc);
1910 }
1911 
1912 static void
ae_rx_intr(ae_softc_t * sc)1913 ae_rx_intr(ae_softc_t *sc)
1914 {
1915 	ae_rxd_t *rxd;
1916 	if_t ifp;
1917 	uint16_t flags;
1918 	int count;
1919 
1920 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1921 
1922 	AE_LOCK_ASSERT(sc);
1923 
1924 	ifp = sc->ifp;
1925 
1926 	/*
1927 	 * Syncronize DMA buffers.
1928 	 */
1929 	bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1930 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1931 
1932 	for (count = 0;; count++) {
1933 		rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1934 		flags = le16toh(rxd->flags);
1935 		if ((flags & AE_RXD_UPDATE) == 0)
1936 			break;
1937 		rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1938 		/* Update stats. */
1939 		ae_update_stats_rx(flags, &sc->stats);
1940 
1941 		/*
1942 		 * Update position index.
1943 		 */
1944 		sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1945 
1946 		if ((flags & AE_RXD_SUCCESS) != 0)
1947 			ae_rxeof(sc, rxd);
1948 		else
1949 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1950 	}
1951 
1952 	if (count > 0) {
1953 		bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1954 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1955 		/*
1956 		 * Update Rx index.
1957 		 */
1958 		AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1959 	}
1960 }
1961 
1962 static void
ae_watchdog(ae_softc_t * sc)1963 ae_watchdog(ae_softc_t *sc)
1964 {
1965 	if_t ifp;
1966 
1967 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1968 	AE_LOCK_ASSERT(sc);
1969 	ifp = sc->ifp;
1970 
1971 	if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1972 		return;		/* Noting to do. */
1973 
1974 	if ((sc->flags & AE_FLAG_LINK) == 0)
1975 		if_printf(ifp, "watchdog timeout (missed link).\n");
1976 	else
1977 		if_printf(ifp, "watchdog timeout - resetting.\n");
1978 
1979 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1980 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1981 	ae_init_locked(sc);
1982 	if (!if_sendq_empty(ifp))
1983 		ae_start_locked(ifp);
1984 }
1985 
1986 static void
ae_tick(void * arg)1987 ae_tick(void *arg)
1988 {
1989 	ae_softc_t *sc;
1990 	struct mii_data *mii;
1991 
1992 	sc = (ae_softc_t *)arg;
1993 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1994 	AE_LOCK_ASSERT(sc);
1995 
1996 	mii = device_get_softc(sc->miibus);
1997 	mii_tick(mii);
1998 	ae_watchdog(sc);	/* Watchdog check. */
1999 	callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2000 }
2001 
2002 static void
ae_rxvlan(ae_softc_t * sc)2003 ae_rxvlan(ae_softc_t *sc)
2004 {
2005 	if_t ifp;
2006 	uint32_t val;
2007 
2008 	AE_LOCK_ASSERT(sc);
2009 	ifp = sc->ifp;
2010 	val = AE_READ_4(sc, AE_MAC_REG);
2011 	val &= ~AE_MAC_RMVLAN_EN;
2012 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2013 		val |= AE_MAC_RMVLAN_EN;
2014 	AE_WRITE_4(sc, AE_MAC_REG, val);
2015 }
2016 
2017 static u_int
ae_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2018 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2019 {
2020 	uint32_t crc, *mchash = arg;
2021 
2022 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2023 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2024 
2025 	return (1);
2026 }
2027 
2028 static void
ae_rxfilter(ae_softc_t * sc)2029 ae_rxfilter(ae_softc_t *sc)
2030 {
2031 	if_t ifp;
2032 	uint32_t mchash[2];
2033 	uint32_t rxcfg;
2034 
2035 	KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2036 
2037 	AE_LOCK_ASSERT(sc);
2038 
2039 	ifp = sc->ifp;
2040 
2041 	rxcfg = AE_READ_4(sc, AE_MAC_REG);
2042 	rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2043 
2044 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2045 		rxcfg |= AE_MAC_BCAST_EN;
2046 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2047 		rxcfg |= AE_MAC_PROMISC_EN;
2048 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2049 		rxcfg |= AE_MAC_MCAST_EN;
2050 
2051 	/*
2052 	 * Wipe old settings.
2053 	 */
2054 	AE_WRITE_4(sc, AE_REG_MHT0, 0);
2055 	AE_WRITE_4(sc, AE_REG_MHT1, 0);
2056 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2057 		AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2058 		AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2059 		AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2060 		return;
2061 	}
2062 
2063 	/*
2064 	 * Load multicast tables.
2065 	 */
2066 	bzero(mchash, sizeof(mchash));
2067 	if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2068 	AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2069 	AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2070 	AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2071 }
2072 
2073 static int
ae_ioctl(if_t ifp,u_long cmd,caddr_t data)2074 ae_ioctl(if_t ifp, u_long cmd, caddr_t data)
2075 {
2076 	struct ae_softc *sc;
2077 	struct ifreq *ifr;
2078 	struct mii_data *mii;
2079 	int error, mask;
2080 
2081 	sc = if_getsoftc(ifp);
2082 	ifr = (struct ifreq *)data;
2083 	error = 0;
2084 
2085 	switch (cmd) {
2086 	case SIOCSIFMTU:
2087 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2088 			error = EINVAL;
2089 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2090 			AE_LOCK(sc);
2091 			if_setmtu(ifp, ifr->ifr_mtu);
2092 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2093 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2094 				ae_init_locked(sc);
2095 			}
2096 			AE_UNLOCK(sc);
2097 		}
2098 		break;
2099 	case SIOCSIFFLAGS:
2100 		AE_LOCK(sc);
2101 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2102 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2103 				if (((if_getflags(ifp) ^ sc->if_flags)
2104 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2105 					ae_rxfilter(sc);
2106 			} else {
2107 				if ((sc->flags & AE_FLAG_DETACH) == 0)
2108 					ae_init_locked(sc);
2109 			}
2110 		} else {
2111 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2112 				ae_stop(sc);
2113 		}
2114 		sc->if_flags = if_getflags(ifp);
2115 		AE_UNLOCK(sc);
2116 		break;
2117 	case SIOCADDMULTI:
2118 	case SIOCDELMULTI:
2119 		AE_LOCK(sc);
2120 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2121 			ae_rxfilter(sc);
2122 		AE_UNLOCK(sc);
2123 		break;
2124 	case SIOCSIFMEDIA:
2125 	case SIOCGIFMEDIA:
2126 		mii = device_get_softc(sc->miibus);
2127 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2128 		break;
2129 	case SIOCSIFCAP:
2130 		AE_LOCK(sc);
2131 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2132 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2133 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2134 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2135 			ae_rxvlan(sc);
2136 		}
2137 		VLAN_CAPABILITIES(ifp);
2138 		AE_UNLOCK(sc);
2139 		break;
2140 	default:
2141 		error = ether_ioctl(ifp, cmd, data);
2142 		break;
2143 	}
2144 	return (error);
2145 }
2146 
2147 static void
ae_stop(ae_softc_t * sc)2148 ae_stop(ae_softc_t *sc)
2149 {
2150 	if_t ifp;
2151 	int i;
2152 
2153 	AE_LOCK_ASSERT(sc);
2154 
2155 	ifp = sc->ifp;
2156 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2157 	sc->flags &= ~AE_FLAG_LINK;
2158 	sc->wd_timer = 0;	/* Cancel watchdog. */
2159 	callout_stop(&sc->tick_ch);
2160 
2161 	/*
2162 	 * Clear and disable interrupts.
2163 	 */
2164 	AE_WRITE_4(sc, AE_IMR_REG, 0);
2165 	AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2166 
2167 	/*
2168 	 * Stop Rx/Tx MACs.
2169 	 */
2170 	ae_stop_txmac(sc);
2171 	ae_stop_rxmac(sc);
2172 
2173 	/*
2174 	 * Stop DMA engines.
2175 	 */
2176 	AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2177 	AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2178 
2179 	/*
2180 	 * Wait for everything to enter idle state.
2181 	 */
2182 	for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2183 		if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2184 			break;
2185 		DELAY(100);
2186 	}
2187 	if (i == AE_IDLE_TIMEOUT)
2188 		device_printf(sc->dev, "could not enter idle state in stop.\n");
2189 }
2190 
2191 static void
ae_update_stats_tx(uint16_t flags,ae_stats_t * stats)2192 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2193 {
2194 
2195 	if ((flags & AE_TXS_BCAST) != 0)
2196 		stats->tx_bcast++;
2197 	if ((flags & AE_TXS_MCAST) != 0)
2198 		stats->tx_mcast++;
2199 	if ((flags & AE_TXS_PAUSE) != 0)
2200 		stats->tx_pause++;
2201 	if ((flags & AE_TXS_CTRL) != 0)
2202 		stats->tx_ctrl++;
2203 	if ((flags & AE_TXS_DEFER) != 0)
2204 		stats->tx_defer++;
2205 	if ((flags & AE_TXS_EXCDEFER) != 0)
2206 		stats->tx_excdefer++;
2207 	if ((flags & AE_TXS_SINGLECOL) != 0)
2208 		stats->tx_singlecol++;
2209 	if ((flags & AE_TXS_MULTICOL) != 0)
2210 		stats->tx_multicol++;
2211 	if ((flags & AE_TXS_LATECOL) != 0)
2212 		stats->tx_latecol++;
2213 	if ((flags & AE_TXS_ABORTCOL) != 0)
2214 		stats->tx_abortcol++;
2215 	if ((flags & AE_TXS_UNDERRUN) != 0)
2216 		stats->tx_underrun++;
2217 }
2218 
2219 static void
ae_update_stats_rx(uint16_t flags,ae_stats_t * stats)2220 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2221 {
2222 
2223 	if ((flags & AE_RXD_BCAST) != 0)
2224 		stats->rx_bcast++;
2225 	if ((flags & AE_RXD_MCAST) != 0)
2226 		stats->rx_mcast++;
2227 	if ((flags & AE_RXD_PAUSE) != 0)
2228 		stats->rx_pause++;
2229 	if ((flags & AE_RXD_CTRL) != 0)
2230 		stats->rx_ctrl++;
2231 	if ((flags & AE_RXD_CRCERR) != 0)
2232 		stats->rx_crcerr++;
2233 	if ((flags & AE_RXD_CODEERR) != 0)
2234 		stats->rx_codeerr++;
2235 	if ((flags & AE_RXD_RUNT) != 0)
2236 		stats->rx_runt++;
2237 	if ((flags & AE_RXD_FRAG) != 0)
2238 		stats->rx_frag++;
2239 	if ((flags & AE_RXD_TRUNC) != 0)
2240 		stats->rx_trunc++;
2241 	if ((flags & AE_RXD_ALIGN) != 0)
2242 		stats->rx_align++;
2243 }
2244