1 /*-
2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3 * All rights reserved.
4 * Copyright (c) 2020-2022 The FreeBSD Foundation
5 *
6 * Portions of this software were developed by Björn Zeeb
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/fcntl.h>
41 #include <sys/file.h>
42 #include <sys/filio.h>
43 #include <sys/pciio.h>
44 #include <sys/pctrie.h>
45 #include <sys/rman.h>
46 #include <sys/rwlock.h>
47
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 #include <machine/stdarg.h>
54
55 #include <dev/pci/pcivar.h>
56 #include <dev/pci/pci_private.h>
57 #include <dev/pci/pci_iov.h>
58 #include <dev/backlight/backlight.h>
59
60 #include <linux/kernel.h>
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/cdev.h>
66 #include <linux/file.h>
67 #include <linux/sysfs.h>
68 #include <linux/mm.h>
69 #include <linux/io.h>
70 #include <linux/vmalloc.h>
71 #include <linux/pci.h>
72 #include <linux/compat.h>
73
74 #include <linux/backlight.h>
75
76 #include "backlight_if.h"
77 #include "pcib_if.h"
78
79 /* Undef the linux function macro defined in linux/pci.h */
80 #undef pci_get_class
81
82 extern int linuxkpi_debug;
83
84 SYSCTL_DECL(_compat_linuxkpi);
85
86 static counter_u64_t lkpi_pci_nseg1_fail;
87 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
88 &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
89
90 static device_probe_t linux_pci_probe;
91 static device_attach_t linux_pci_attach;
92 static device_detach_t linux_pci_detach;
93 static device_suspend_t linux_pci_suspend;
94 static device_resume_t linux_pci_resume;
95 static device_shutdown_t linux_pci_shutdown;
96 static pci_iov_init_t linux_pci_iov_init;
97 static pci_iov_uninit_t linux_pci_iov_uninit;
98 static pci_iov_add_vf_t linux_pci_iov_add_vf;
99 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
101 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
102 static void lkpi_pcim_iomap_table_release(struct device *, void *);
103
104 static device_method_t pci_methods[] = {
105 DEVMETHOD(device_probe, linux_pci_probe),
106 DEVMETHOD(device_attach, linux_pci_attach),
107 DEVMETHOD(device_detach, linux_pci_detach),
108 DEVMETHOD(device_suspend, linux_pci_suspend),
109 DEVMETHOD(device_resume, linux_pci_resume),
110 DEVMETHOD(device_shutdown, linux_pci_shutdown),
111 DEVMETHOD(pci_iov_init, linux_pci_iov_init),
112 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
113 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
114
115 /* backlight interface */
116 DEVMETHOD(backlight_update_status, linux_backlight_update_status),
117 DEVMETHOD(backlight_get_status, linux_backlight_get_status),
118 DEVMETHOD(backlight_get_info, linux_backlight_get_info),
119 DEVMETHOD_END
120 };
121
122 const char *pci_power_names[] = {
123 "UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
124 };
125
126 /* We need some meta-struct to keep track of these for devres. */
127 struct pci_devres {
128 bool enable_io;
129 /* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
130 uint8_t region_mask;
131 struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
132 };
133 struct pcim_iomap_devres {
134 void *mmio_table[PCIR_MAX_BAR_0 + 1];
135 struct resource *res_table[PCIR_MAX_BAR_0 + 1];
136 };
137
138 struct linux_dma_priv {
139 uint64_t dma_mask;
140 bus_dma_tag_t dmat;
141 uint64_t dma_coherent_mask;
142 bus_dma_tag_t dmat_coherent;
143 struct mtx lock;
144 struct pctrie ptree;
145 };
146 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
147 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
148
149 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)150 linux_pdev_dma_uninit(struct pci_dev *pdev)
151 {
152 struct linux_dma_priv *priv;
153
154 priv = pdev->dev.dma_priv;
155 if (priv->dmat)
156 bus_dma_tag_destroy(priv->dmat);
157 if (priv->dmat_coherent)
158 bus_dma_tag_destroy(priv->dmat_coherent);
159 mtx_destroy(&priv->lock);
160 pdev->dev.dma_priv = NULL;
161 free(priv, M_DEVBUF);
162 return (0);
163 }
164
165 static int
linux_pdev_dma_init(struct pci_dev * pdev)166 linux_pdev_dma_init(struct pci_dev *pdev)
167 {
168 struct linux_dma_priv *priv;
169 int error;
170
171 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
172
173 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
174 pctrie_init(&priv->ptree);
175
176 pdev->dev.dma_priv = priv;
177
178 /* Create a default DMA tags. */
179 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
180 if (error != 0)
181 goto err;
182 /* Coherent is lower 32bit only by default in Linux. */
183 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
184 if (error != 0)
185 goto err;
186
187 return (error);
188
189 err:
190 linux_pdev_dma_uninit(pdev);
191 return (error);
192 }
193
194 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)195 linux_dma_tag_init(struct device *dev, u64 dma_mask)
196 {
197 struct linux_dma_priv *priv;
198 int error;
199
200 priv = dev->dma_priv;
201
202 if (priv->dmat) {
203 if (priv->dma_mask == dma_mask)
204 return (0);
205
206 bus_dma_tag_destroy(priv->dmat);
207 }
208
209 priv->dma_mask = dma_mask;
210
211 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
212 1, 0, /* alignment, boundary */
213 dma_mask, /* lowaddr */
214 BUS_SPACE_MAXADDR, /* highaddr */
215 NULL, NULL, /* filtfunc, filtfuncarg */
216 BUS_SPACE_MAXSIZE, /* maxsize */
217 1, /* nsegments */
218 BUS_SPACE_MAXSIZE, /* maxsegsz */
219 0, /* flags */
220 NULL, NULL, /* lockfunc, lockfuncarg */
221 &priv->dmat);
222 return (-error);
223 }
224
225 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)226 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
227 {
228 struct linux_dma_priv *priv;
229 int error;
230
231 priv = dev->dma_priv;
232
233 if (priv->dmat_coherent) {
234 if (priv->dma_coherent_mask == dma_mask)
235 return (0);
236
237 bus_dma_tag_destroy(priv->dmat_coherent);
238 }
239
240 priv->dma_coherent_mask = dma_mask;
241
242 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
243 1, 0, /* alignment, boundary */
244 dma_mask, /* lowaddr */
245 BUS_SPACE_MAXADDR, /* highaddr */
246 NULL, NULL, /* filtfunc, filtfuncarg */
247 BUS_SPACE_MAXSIZE, /* maxsize */
248 1, /* nsegments */
249 BUS_SPACE_MAXSIZE, /* maxsegsz */
250 0, /* flags */
251 NULL, NULL, /* lockfunc, lockfuncarg */
252 &priv->dmat_coherent);
253 return (-error);
254 }
255
256 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)257 linux_pci_find(device_t dev, const struct pci_device_id **idp)
258 {
259 const struct pci_device_id *id;
260 struct pci_driver *pdrv;
261 uint16_t vendor;
262 uint16_t device;
263 uint16_t subvendor;
264 uint16_t subdevice;
265
266 vendor = pci_get_vendor(dev);
267 device = pci_get_device(dev);
268 subvendor = pci_get_subvendor(dev);
269 subdevice = pci_get_subdevice(dev);
270
271 spin_lock(&pci_lock);
272 list_for_each_entry(pdrv, &pci_drivers, node) {
273 for (id = pdrv->id_table; id->vendor != 0; id++) {
274 if (vendor == id->vendor &&
275 (PCI_ANY_ID == id->device || device == id->device) &&
276 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
277 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
278 *idp = id;
279 spin_unlock(&pci_lock);
280 return (pdrv);
281 }
282 }
283 }
284 spin_unlock(&pci_lock);
285 return (NULL);
286 }
287
288 struct pci_dev *
lkpi_pci_get_device(uint16_t vendor,uint16_t device,struct pci_dev * odev)289 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
290 {
291 struct pci_dev *pdev;
292
293 KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
294
295 spin_lock(&pci_lock);
296 list_for_each_entry(pdev, &pci_devices, links) {
297 if (pdev->vendor == vendor && pdev->device == device)
298 break;
299 }
300 spin_unlock(&pci_lock);
301
302 return (pdev);
303 }
304
305 static void
lkpi_pci_dev_release(struct device * dev)306 lkpi_pci_dev_release(struct device *dev)
307 {
308
309 lkpi_devres_release_free_list(dev);
310 spin_lock_destroy(&dev->devres_lock);
311 }
312
313 static void
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)314 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
315 {
316
317 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
318 pdev->vendor = pci_get_vendor(dev);
319 pdev->device = pci_get_device(dev);
320 pdev->subsystem_vendor = pci_get_subvendor(dev);
321 pdev->subsystem_device = pci_get_subdevice(dev);
322 pdev->class = pci_get_class(dev);
323 pdev->revision = pci_get_revid(dev);
324 pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
325 pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
326 pci_get_function(dev));
327 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
328 /*
329 * This should be the upstream bridge; pci_upstream_bridge()
330 * handles that case on demand as otherwise we'll shadow the
331 * entire PCI hierarchy.
332 */
333 pdev->bus->self = pdev;
334 pdev->bus->number = pci_get_bus(dev);
335 pdev->bus->domain = pci_get_domain(dev);
336 pdev->dev.bsddev = dev;
337 pdev->dev.parent = &linux_root_device;
338 pdev->dev.release = lkpi_pci_dev_release;
339 INIT_LIST_HEAD(&pdev->dev.irqents);
340
341 if (pci_msi_count(dev) > 0)
342 pdev->msi_desc = malloc(pci_msi_count(dev) *
343 sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
344
345 kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
346 kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
347 kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
348 kobject_name(&pdev->dev.kobj));
349 spin_lock_init(&pdev->dev.devres_lock);
350 INIT_LIST_HEAD(&pdev->dev.devres_head);
351 }
352
353 static void
lkpinew_pci_dev_release(struct device * dev)354 lkpinew_pci_dev_release(struct device *dev)
355 {
356 struct pci_dev *pdev;
357 int i;
358
359 pdev = to_pci_dev(dev);
360 if (pdev->root != NULL)
361 pci_dev_put(pdev->root);
362 if (pdev->bus->self != pdev)
363 pci_dev_put(pdev->bus->self);
364 free(pdev->bus, M_DEVBUF);
365 if (pdev->msi_desc != NULL) {
366 for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
367 free(pdev->msi_desc[i], M_DEVBUF);
368 free(pdev->msi_desc, M_DEVBUF);
369 }
370 kfree(pdev->path_name);
371 free(pdev, M_DEVBUF);
372 }
373
374 struct pci_dev *
lkpinew_pci_dev(device_t dev)375 lkpinew_pci_dev(device_t dev)
376 {
377 struct pci_dev *pdev;
378
379 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
380 lkpifill_pci_dev(dev, pdev);
381 pdev->dev.release = lkpinew_pci_dev_release;
382
383 return (pdev);
384 }
385
386 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)387 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
388 {
389 device_t dev;
390 device_t devfrom = NULL;
391 struct pci_dev *pdev;
392
393 if (from != NULL)
394 devfrom = from->dev.bsddev;
395
396 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
397 if (dev == NULL)
398 return (NULL);
399
400 pdev = lkpinew_pci_dev(dev);
401 return (pdev);
402 }
403
404 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)405 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
406 unsigned int devfn)
407 {
408 device_t dev;
409 struct pci_dev *pdev;
410
411 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
412 if (dev == NULL)
413 return (NULL);
414
415 pdev = lkpinew_pci_dev(dev);
416 return (pdev);
417 }
418
419 static int
linux_pci_probe(device_t dev)420 linux_pci_probe(device_t dev)
421 {
422 const struct pci_device_id *id;
423 struct pci_driver *pdrv;
424
425 if ((pdrv = linux_pci_find(dev, &id)) == NULL)
426 return (ENXIO);
427 if (device_get_driver(dev) != &pdrv->bsddriver)
428 return (ENXIO);
429 device_set_desc(dev, pdrv->name);
430
431 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
432 if (pdrv->bsd_probe_return == 0)
433 return (BUS_PROBE_DEFAULT);
434 else
435 return (pdrv->bsd_probe_return);
436 }
437
438 static int
linux_pci_attach(device_t dev)439 linux_pci_attach(device_t dev)
440 {
441 const struct pci_device_id *id;
442 struct pci_driver *pdrv;
443 struct pci_dev *pdev;
444
445 pdrv = linux_pci_find(dev, &id);
446 pdev = device_get_softc(dev);
447
448 MPASS(pdrv != NULL);
449 MPASS(pdev != NULL);
450
451 return (linux_pci_attach_device(dev, pdrv, id, pdev));
452 }
453
454 static struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)455 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
456 int type, int rid)
457 {
458 device_t dev;
459 struct resource *res;
460
461 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
462 ("trying to reserve non-BAR type %d", type));
463
464 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
465 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
466 res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
467 1, 1, 0);
468 if (res == NULL)
469 return (NULL);
470 return (resource_list_find(rl, type, rid));
471 }
472
473 static struct resource_list_entry *
linux_pci_get_rle(struct pci_dev * pdev,int type,int rid,bool reserve_bar)474 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
475 {
476 struct pci_devinfo *dinfo;
477 struct resource_list *rl;
478 struct resource_list_entry *rle;
479
480 dinfo = device_get_ivars(pdev->dev.bsddev);
481 rl = &dinfo->resources;
482 rle = resource_list_find(rl, type, rid);
483 /* Reserve resources for this BAR if needed. */
484 if (rle == NULL && reserve_bar)
485 rle = linux_pci_reserve_bar(pdev, rl, type, rid);
486 return (rle);
487 }
488
489 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)490 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
491 const struct pci_device_id *id, struct pci_dev *pdev)
492 {
493 struct resource_list_entry *rle;
494 device_t parent;
495 uintptr_t rid;
496 int error;
497 bool isdrm;
498
499 linux_set_current(curthread);
500
501 parent = device_get_parent(dev);
502 isdrm = pdrv != NULL && pdrv->isdrm;
503
504 if (isdrm) {
505 struct pci_devinfo *dinfo;
506
507 dinfo = device_get_ivars(parent);
508 device_set_ivars(dev, dinfo);
509 }
510
511 lkpifill_pci_dev(dev, pdev);
512 if (isdrm)
513 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
514 else
515 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
516 pdev->devfn = rid;
517 pdev->pdrv = pdrv;
518 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
519 if (rle != NULL)
520 pdev->dev.irq = rle->start;
521 else
522 pdev->dev.irq = LINUX_IRQ_INVALID;
523 pdev->irq = pdev->dev.irq;
524 error = linux_pdev_dma_init(pdev);
525 if (error)
526 goto out_dma_init;
527
528 TAILQ_INIT(&pdev->mmio);
529 spin_lock_init(&pdev->pcie_cap_lock);
530
531 spin_lock(&pci_lock);
532 list_add(&pdev->links, &pci_devices);
533 spin_unlock(&pci_lock);
534
535 if (pdrv != NULL) {
536 error = pdrv->probe(pdev, id);
537 if (error)
538 goto out_probe;
539 }
540 return (0);
541
542 out_probe:
543 free(pdev->bus, M_DEVBUF);
544 spin_lock_destroy(&pdev->pcie_cap_lock);
545 linux_pdev_dma_uninit(pdev);
546 out_dma_init:
547 spin_lock(&pci_lock);
548 list_del(&pdev->links);
549 spin_unlock(&pci_lock);
550 put_device(&pdev->dev);
551 return (-error);
552 }
553
554 static int
linux_pci_detach(device_t dev)555 linux_pci_detach(device_t dev)
556 {
557 struct pci_dev *pdev;
558
559 pdev = device_get_softc(dev);
560
561 MPASS(pdev != NULL);
562
563 device_set_desc(dev, NULL);
564
565 return (linux_pci_detach_device(pdev));
566 }
567
568 int
linux_pci_detach_device(struct pci_dev * pdev)569 linux_pci_detach_device(struct pci_dev *pdev)
570 {
571
572 linux_set_current(curthread);
573
574 if (pdev->pdrv != NULL)
575 pdev->pdrv->remove(pdev);
576
577 if (pdev->root != NULL)
578 pci_dev_put(pdev->root);
579 free(pdev->bus, M_DEVBUF);
580 linux_pdev_dma_uninit(pdev);
581
582 spin_lock(&pci_lock);
583 list_del(&pdev->links);
584 spin_unlock(&pci_lock);
585 spin_lock_destroy(&pdev->pcie_cap_lock);
586 put_device(&pdev->dev);
587
588 return (0);
589 }
590
591 static int
lkpi_pci_disable_dev(struct device * dev)592 lkpi_pci_disable_dev(struct device *dev)
593 {
594
595 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
596 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
597 return (0);
598 }
599
600 static struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)601 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
602 {
603 struct pci_devres *dr;
604
605 dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
606 if (dr == NULL) {
607 dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
608 GFP_KERNEL | __GFP_ZERO);
609 if (dr != NULL)
610 lkpi_devres_add(&pdev->dev, dr);
611 }
612
613 return (dr);
614 }
615
616 static struct pci_devres *
lkpi_pci_devres_find(struct pci_dev * pdev)617 lkpi_pci_devres_find(struct pci_dev *pdev)
618 {
619 if (!pdev->managed)
620 return (NULL);
621
622 return (lkpi_pci_devres_get_alloc(pdev));
623 }
624
625 void
lkpi_pci_devres_release(struct device * dev,void * p)626 lkpi_pci_devres_release(struct device *dev, void *p)
627 {
628 struct pci_devres *dr;
629 struct pci_dev *pdev;
630 int bar;
631
632 pdev = to_pci_dev(dev);
633 dr = p;
634
635 if (pdev->msix_enabled)
636 lkpi_pci_disable_msix(pdev);
637 if (pdev->msi_enabled)
638 lkpi_pci_disable_msi(pdev);
639
640 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
641 dr->enable_io = false;
642
643 if (dr->region_mask == 0)
644 return;
645 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
646
647 if ((dr->region_mask & (1 << bar)) == 0)
648 continue;
649 pci_release_region(pdev, bar);
650 }
651 }
652
653 int
linuxkpi_pcim_enable_device(struct pci_dev * pdev)654 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
655 {
656 struct pci_devres *dr;
657 int error;
658
659 /* Here we cannot run through the pdev->managed check. */
660 dr = lkpi_pci_devres_get_alloc(pdev);
661 if (dr == NULL)
662 return (-ENOMEM);
663
664 /* If resources were enabled before do not do it again. */
665 if (dr->enable_io)
666 return (0);
667
668 error = pci_enable_device(pdev);
669 if (error == 0)
670 dr->enable_io = true;
671
672 /* This device is not managed. */
673 pdev->managed = true;
674
675 return (error);
676 }
677
678 static struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)679 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
680 {
681 struct pcim_iomap_devres *dr;
682
683 dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
684 NULL, NULL);
685 if (dr == NULL) {
686 dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
687 sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
688 if (dr != NULL)
689 lkpi_devres_add(&pdev->dev, dr);
690 }
691
692 if (dr == NULL)
693 device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
694
695 return (dr);
696 }
697
698 void __iomem **
linuxkpi_pcim_iomap_table(struct pci_dev * pdev)699 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
700 {
701 struct pcim_iomap_devres *dr;
702
703 dr = lkpi_pcim_iomap_devres_find(pdev);
704 if (dr == NULL)
705 return (NULL);
706
707 /*
708 * If the driver has manually set a flag to be able to request the
709 * resource to use bus_read/write_<n>, return the shadow table.
710 */
711 if (pdev->want_iomap_res)
712 return ((void **)dr->res_table);
713
714 /* This is the Linux default. */
715 return (dr->mmio_table);
716 }
717
718 static struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,int mmio_size __unused)719 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
720 {
721 struct pci_mmio_region *mmio, *p;
722 int type;
723
724 type = pci_resource_type(pdev, bar);
725 if (type < 0) {
726 device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
727 __func__, bar, type);
728 return (NULL);
729 }
730
731 /*
732 * Check for duplicate mappings.
733 * This can happen if a driver calls pci_request_region() first.
734 */
735 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
736 if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
737 return (mmio->res);
738 }
739 }
740
741 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
742 mmio->rid = PCIR_BAR(bar);
743 mmio->type = type;
744 mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
745 &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
746 if (mmio->res == NULL) {
747 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
748 "bar %d type %d rid %d\n",
749 __func__, bar, type, PCIR_BAR(bar));
750 free(mmio, M_DEVBUF);
751 return (NULL);
752 }
753 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
754
755 return (mmio->res);
756 }
757
758 void *
linuxkpi_pci_iomap_range(struct pci_dev * pdev,int mmio_bar,unsigned long mmio_off,unsigned long mmio_size)759 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int mmio_bar,
760 unsigned long mmio_off, unsigned long mmio_size)
761 {
762 struct resource *res;
763
764 res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
765 if (res == NULL)
766 return (NULL);
767 /* This is a FreeBSD extension so we can use bus_*(). */
768 if (pdev->want_iomap_res)
769 return (res);
770 MPASS(mmio_off < rman_get_size(res));
771 return ((void *)(rman_get_bushandle(res) + mmio_off));
772 }
773
774 void *
linuxkpi_pci_iomap(struct pci_dev * pdev,int mmio_bar,int mmio_size)775 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
776 {
777 return (linuxkpi_pci_iomap_range(pdev, mmio_bar, 0, mmio_size));
778 }
779
780 void
linuxkpi_pci_iounmap(struct pci_dev * pdev,void * res)781 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
782 {
783 struct pci_mmio_region *mmio, *p;
784 bus_space_handle_t bh = (bus_space_handle_t)res;
785
786 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
787 if (pdev->want_iomap_res) {
788 if (res != mmio->res)
789 continue;
790 } else {
791 if (bh < rman_get_bushandle(mmio->res) ||
792 bh >= rman_get_bushandle(mmio->res) +
793 rman_get_size(mmio->res))
794 continue;
795 }
796 bus_release_resource(pdev->dev.bsddev,
797 mmio->type, mmio->rid, mmio->res);
798 TAILQ_REMOVE(&pdev->mmio, mmio, next);
799 free(mmio, M_DEVBUF);
800 return;
801 }
802 }
803
804 int
linuxkpi_pcim_iomap_regions(struct pci_dev * pdev,uint32_t mask,const char * name)805 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
806 {
807 struct pcim_iomap_devres *dr;
808 void *res;
809 uint32_t mappings;
810 int bar;
811
812 dr = lkpi_pcim_iomap_devres_find(pdev);
813 if (dr == NULL)
814 return (-ENOMEM);
815
816 /* Now iomap all the requested (by "mask") ones. */
817 for (bar = mappings = 0; mappings != mask; bar++) {
818 if ((mask & (1 << bar)) == 0)
819 continue;
820
821 /* Request double is not allowed. */
822 if (dr->mmio_table[bar] != NULL) {
823 device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
824 __func__, bar, dr->mmio_table[bar]);
825 goto err;
826 }
827
828 res = _lkpi_pci_iomap(pdev, bar, 0);
829 if (res == NULL)
830 goto err;
831 dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
832 dr->res_table[bar] = res;
833
834 mappings |= (1 << bar);
835 }
836
837 return (0);
838 err:
839 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
840 if ((mappings & (1 << bar)) != 0) {
841 res = dr->mmio_table[bar];
842 if (res == NULL)
843 continue;
844 pci_iounmap(pdev, res);
845 }
846 }
847
848 return (-EINVAL);
849 }
850
851 static void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)852 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
853 {
854 struct pcim_iomap_devres *dr;
855 struct pci_dev *pdev;
856 int bar;
857
858 dr = p;
859 pdev = to_pci_dev(dev);
860 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
861
862 if (dr->mmio_table[bar] == NULL)
863 continue;
864
865 pci_iounmap(pdev, dr->mmio_table[bar]);
866 }
867 }
868
869 static int
linux_pci_suspend(device_t dev)870 linux_pci_suspend(device_t dev)
871 {
872 const struct dev_pm_ops *pmops;
873 struct pm_message pm = { };
874 struct pci_dev *pdev;
875 int error;
876
877 error = 0;
878 linux_set_current(curthread);
879 pdev = device_get_softc(dev);
880 pmops = pdev->pdrv->driver.pm;
881
882 if (pdev->pdrv->suspend != NULL)
883 error = -pdev->pdrv->suspend(pdev, pm);
884 else if (pmops != NULL && pmops->suspend != NULL) {
885 error = -pmops->suspend(&pdev->dev);
886 if (error == 0 && pmops->suspend_late != NULL)
887 error = -pmops->suspend_late(&pdev->dev);
888 }
889 return (error);
890 }
891
892 static int
linux_pci_resume(device_t dev)893 linux_pci_resume(device_t dev)
894 {
895 const struct dev_pm_ops *pmops;
896 struct pci_dev *pdev;
897 int error;
898
899 error = 0;
900 linux_set_current(curthread);
901 pdev = device_get_softc(dev);
902 pmops = pdev->pdrv->driver.pm;
903
904 if (pdev->pdrv->resume != NULL)
905 error = -pdev->pdrv->resume(pdev);
906 else if (pmops != NULL && pmops->resume != NULL) {
907 if (pmops->resume_early != NULL)
908 error = -pmops->resume_early(&pdev->dev);
909 if (error == 0 && pmops->resume != NULL)
910 error = -pmops->resume(&pdev->dev);
911 }
912 return (error);
913 }
914
915 static int
linux_pci_shutdown(device_t dev)916 linux_pci_shutdown(device_t dev)
917 {
918 struct pci_dev *pdev;
919
920 linux_set_current(curthread);
921 pdev = device_get_softc(dev);
922 if (pdev->pdrv->shutdown != NULL)
923 pdev->pdrv->shutdown(pdev);
924 return (0);
925 }
926
927 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)928 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
929 {
930 struct pci_dev *pdev;
931 int error;
932
933 linux_set_current(curthread);
934 pdev = device_get_softc(dev);
935 if (pdev->pdrv->bsd_iov_init != NULL)
936 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
937 else
938 error = EINVAL;
939 return (error);
940 }
941
942 static void
linux_pci_iov_uninit(device_t dev)943 linux_pci_iov_uninit(device_t dev)
944 {
945 struct pci_dev *pdev;
946
947 linux_set_current(curthread);
948 pdev = device_get_softc(dev);
949 if (pdev->pdrv->bsd_iov_uninit != NULL)
950 pdev->pdrv->bsd_iov_uninit(dev);
951 }
952
953 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)954 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
955 {
956 struct pci_dev *pdev;
957 int error;
958
959 linux_set_current(curthread);
960 pdev = device_get_softc(dev);
961 if (pdev->pdrv->bsd_iov_add_vf != NULL)
962 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
963 else
964 error = EINVAL;
965 return (error);
966 }
967
968 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)969 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
970 {
971 int error;
972
973 linux_set_current(curthread);
974 spin_lock(&pci_lock);
975 list_add(&pdrv->node, &pci_drivers);
976 spin_unlock(&pci_lock);
977 if (pdrv->bsddriver.name == NULL)
978 pdrv->bsddriver.name = pdrv->name;
979 pdrv->bsddriver.methods = pci_methods;
980 pdrv->bsddriver.size = sizeof(struct pci_dev);
981
982 bus_topo_lock();
983 error = devclass_add_driver(dc, &pdrv->bsddriver,
984 BUS_PASS_DEFAULT, &pdrv->bsdclass);
985 bus_topo_unlock();
986 return (-error);
987 }
988
989 int
linux_pci_register_driver(struct pci_driver * pdrv)990 linux_pci_register_driver(struct pci_driver *pdrv)
991 {
992 devclass_t dc;
993
994 pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
995 dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
996 if (dc == NULL)
997 return (-ENXIO);
998 return (_linux_pci_register_driver(pdrv, dc));
999 }
1000
1001 static struct resource_list_entry *
lkpi_pci_get_bar(struct pci_dev * pdev,int bar,bool reserve)1002 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1003 {
1004 int type;
1005
1006 type = pci_resource_type(pdev, bar);
1007 if (type < 0)
1008 return (NULL);
1009 bar = PCIR_BAR(bar);
1010 return (linux_pci_get_rle(pdev, type, bar, reserve));
1011 }
1012
1013 struct device *
lkpi_pci_find_irq_dev(unsigned int irq)1014 lkpi_pci_find_irq_dev(unsigned int irq)
1015 {
1016 struct pci_dev *pdev;
1017 struct device *found;
1018
1019 found = NULL;
1020 spin_lock(&pci_lock);
1021 list_for_each_entry(pdev, &pci_devices, links) {
1022 if (irq == pdev->dev.irq ||
1023 (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1024 found = &pdev->dev;
1025 break;
1026 }
1027 }
1028 spin_unlock(&pci_lock);
1029 return (found);
1030 }
1031
1032 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)1033 pci_resource_start(struct pci_dev *pdev, int bar)
1034 {
1035 struct resource_list_entry *rle;
1036 rman_res_t newstart;
1037 device_t dev;
1038 int error;
1039
1040 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1041 return (0);
1042 dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1043 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1044 error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1045 if (error != 0) {
1046 device_printf(pdev->dev.bsddev,
1047 "translate of %#jx failed: %d\n",
1048 (uintmax_t)rle->start, error);
1049 return (0);
1050 }
1051 return (newstart);
1052 }
1053
1054 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)1055 pci_resource_len(struct pci_dev *pdev, int bar)
1056 {
1057 struct resource_list_entry *rle;
1058
1059 if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1060 return (0);
1061 return (rle->count);
1062 }
1063
1064 int
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1065 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1066 {
1067 struct resource *res;
1068 struct pci_devres *dr;
1069 struct pci_mmio_region *mmio;
1070 int rid;
1071 int type;
1072
1073 type = pci_resource_type(pdev, bar);
1074 if (type < 0)
1075 return (-ENODEV);
1076 rid = PCIR_BAR(bar);
1077 res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1078 RF_ACTIVE|RF_SHAREABLE);
1079 if (res == NULL) {
1080 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1081 "bar %d type %d rid %d\n",
1082 __func__, bar, type, PCIR_BAR(bar));
1083 return (-ENODEV);
1084 }
1085
1086 /*
1087 * It seems there is an implicit devres tracking on these if the device
1088 * is managed; otherwise the resources are not automatiaclly freed on
1089 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1090 * drivers.
1091 */
1092 dr = lkpi_pci_devres_find(pdev);
1093 if (dr != NULL) {
1094 dr->region_mask |= (1 << bar);
1095 dr->region_table[bar] = res;
1096 }
1097
1098 /* Even if the device is not managed we need to track it for iomap. */
1099 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1100 mmio->rid = PCIR_BAR(bar);
1101 mmio->type = type;
1102 mmio->res = res;
1103 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1104
1105 return (0);
1106 }
1107
1108 int
linuxkpi_pci_request_regions(struct pci_dev * pdev,const char * res_name)1109 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1110 {
1111 int error;
1112 int i;
1113
1114 for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1115 error = pci_request_region(pdev, i, res_name);
1116 if (error && error != -ENODEV) {
1117 pci_release_regions(pdev);
1118 return (error);
1119 }
1120 }
1121 return (0);
1122 }
1123
1124 void
linuxkpi_pci_release_region(struct pci_dev * pdev,int bar)1125 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1126 {
1127 struct resource_list_entry *rle;
1128 struct pci_devres *dr;
1129 struct pci_mmio_region *mmio, *p;
1130
1131 if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1132 return;
1133
1134 /*
1135 * As we implicitly track the requests we also need to clear them on
1136 * release. Do clear before resource release.
1137 */
1138 dr = lkpi_pci_devres_find(pdev);
1139 if (dr != NULL) {
1140 KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1141 " region_table res %p != rel->res %p\n", __func__, pdev,
1142 bar, dr->region_table[bar], rle->res));
1143 dr->region_table[bar] = NULL;
1144 dr->region_mask &= ~(1 << bar);
1145 }
1146
1147 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1148 if (rle->res != (void *)rman_get_bushandle(mmio->res))
1149 continue;
1150 TAILQ_REMOVE(&pdev->mmio, mmio, next);
1151 free(mmio, M_DEVBUF);
1152 }
1153
1154 bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1155 }
1156
1157 void
linuxkpi_pci_release_regions(struct pci_dev * pdev)1158 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1159 {
1160 int i;
1161
1162 for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1163 pci_release_region(pdev, i);
1164 }
1165
1166 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)1167 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1168 {
1169 devclass_t dc;
1170
1171 dc = devclass_create("vgapci");
1172 if (dc == NULL)
1173 return (-ENXIO);
1174 pdrv->isdrm = true;
1175 pdrv->name = "drmn";
1176 return (_linux_pci_register_driver(pdrv, dc));
1177 }
1178
1179 void
linux_pci_unregister_driver(struct pci_driver * pdrv)1180 linux_pci_unregister_driver(struct pci_driver *pdrv)
1181 {
1182 devclass_t bus;
1183
1184 bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1185
1186 spin_lock(&pci_lock);
1187 list_del(&pdrv->node);
1188 spin_unlock(&pci_lock);
1189 bus_topo_lock();
1190 if (bus != NULL)
1191 devclass_delete_driver(bus, &pdrv->bsddriver);
1192 bus_topo_unlock();
1193 }
1194
1195 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)1196 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1197 {
1198 devclass_t bus;
1199
1200 bus = devclass_find("vgapci");
1201
1202 spin_lock(&pci_lock);
1203 list_del(&pdrv->node);
1204 spin_unlock(&pci_lock);
1205 bus_topo_lock();
1206 if (bus != NULL)
1207 devclass_delete_driver(bus, &pdrv->bsddriver);
1208 bus_topo_unlock();
1209 }
1210
1211 int
linuxkpi_pci_enable_msix(struct pci_dev * pdev,struct msix_entry * entries,int nreq)1212 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1213 int nreq)
1214 {
1215 struct resource_list_entry *rle;
1216 int error;
1217 int avail;
1218 int i;
1219
1220 avail = pci_msix_count(pdev->dev.bsddev);
1221 if (avail < nreq) {
1222 if (avail == 0)
1223 return -EINVAL;
1224 return avail;
1225 }
1226 avail = nreq;
1227 if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1228 return error;
1229 /*
1230 * Handle case where "pci_alloc_msix()" may allocate less
1231 * interrupts than available and return with no error:
1232 */
1233 if (avail < nreq) {
1234 pci_release_msi(pdev->dev.bsddev);
1235 return avail;
1236 }
1237 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1238 pdev->dev.irq_start = rle->start;
1239 pdev->dev.irq_end = rle->start + avail;
1240 for (i = 0; i < nreq; i++)
1241 entries[i].vector = pdev->dev.irq_start + i;
1242 pdev->msix_enabled = true;
1243 return (0);
1244 }
1245
1246 int
_lkpi_pci_enable_msi_range(struct pci_dev * pdev,int minvec,int maxvec)1247 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1248 {
1249 struct resource_list_entry *rle;
1250 int error;
1251 int nvec;
1252
1253 if (maxvec < minvec)
1254 return (-EINVAL);
1255
1256 nvec = pci_msi_count(pdev->dev.bsddev);
1257 if (nvec < 1 || nvec < minvec)
1258 return (-ENOSPC);
1259
1260 nvec = min(nvec, maxvec);
1261 if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1262 return error;
1263
1264 /* Native PCI might only ever ask for 32 vectors. */
1265 if (nvec < minvec) {
1266 pci_release_msi(pdev->dev.bsddev);
1267 return (-ENOSPC);
1268 }
1269
1270 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1271 pdev->dev.irq_start = rle->start;
1272 pdev->dev.irq_end = rle->start + nvec;
1273 pdev->irq = rle->start;
1274 pdev->msi_enabled = true;
1275 return (0);
1276 }
1277
1278 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)1279 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1280 unsigned int flags)
1281 {
1282 int error;
1283
1284 if (flags & PCI_IRQ_MSIX) {
1285 struct msix_entry *entries;
1286 int i;
1287
1288 entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1289 if (entries == NULL) {
1290 error = -ENOMEM;
1291 goto out;
1292 }
1293 for (i = 0; i < maxv; ++i)
1294 entries[i].entry = i;
1295 error = pci_enable_msix(pdev, entries, maxv);
1296 out:
1297 kfree(entries);
1298 if (error == 0 && pdev->msix_enabled)
1299 return (pdev->dev.irq_end - pdev->dev.irq_start);
1300 }
1301 if (flags & PCI_IRQ_MSI) {
1302 if (pci_msi_count(pdev->dev.bsddev) < minv)
1303 return (-ENOSPC);
1304 error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1305 if (error == 0 && pdev->msi_enabled)
1306 return (pdev->dev.irq_end - pdev->dev.irq_start);
1307 }
1308 if (flags & PCI_IRQ_INTX) {
1309 if (pdev->irq)
1310 return (1);
1311 }
1312
1313 return (-EINVAL);
1314 }
1315
1316 struct msi_desc *
lkpi_pci_msi_desc_alloc(int irq)1317 lkpi_pci_msi_desc_alloc(int irq)
1318 {
1319 struct device *dev;
1320 struct pci_dev *pdev;
1321 struct msi_desc *desc;
1322 struct pci_devinfo *dinfo;
1323 struct pcicfg_msi *msi;
1324 int vec;
1325
1326 dev = lkpi_pci_find_irq_dev(irq);
1327 if (dev == NULL)
1328 return (NULL);
1329
1330 pdev = to_pci_dev(dev);
1331
1332 if (pdev->msi_desc == NULL)
1333 return (NULL);
1334
1335 if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1336 return (NULL);
1337
1338 vec = pdev->dev.irq_start - irq;
1339
1340 if (pdev->msi_desc[vec] != NULL)
1341 return (pdev->msi_desc[vec]);
1342
1343 dinfo = device_get_ivars(dev->bsddev);
1344 msi = &dinfo->cfg.msi;
1345
1346 desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1347
1348 desc->pci.msi_attrib.is_64 =
1349 (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1350 desc->msg.data = msi->msi_data;
1351
1352 pdev->msi_desc[vec] = desc;
1353
1354 return (desc);
1355 }
1356
1357 bool
pci_device_is_present(struct pci_dev * pdev)1358 pci_device_is_present(struct pci_dev *pdev)
1359 {
1360 device_t dev;
1361
1362 dev = pdev->dev.bsddev;
1363
1364 return (bus_child_present(dev));
1365 }
1366
1367 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1368
1369 struct linux_dma_obj {
1370 void *vaddr;
1371 uint64_t dma_addr;
1372 bus_dmamap_t dmamap;
1373 bus_dma_tag_t dmat;
1374 };
1375
1376 static uma_zone_t linux_dma_trie_zone;
1377 static uma_zone_t linux_dma_obj_zone;
1378
1379 static void
linux_dma_init(void * arg)1380 linux_dma_init(void *arg)
1381 {
1382
1383 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1384 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1385 UMA_ALIGN_PTR, 0);
1386 linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1387 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1388 UMA_ALIGN_PTR, 0);
1389 lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1390 }
1391 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1392
1393 static void
linux_dma_uninit(void * arg)1394 linux_dma_uninit(void *arg)
1395 {
1396
1397 counter_u64_free(lkpi_pci_nseg1_fail);
1398 uma_zdestroy(linux_dma_obj_zone);
1399 uma_zdestroy(linux_dma_trie_zone);
1400 }
1401 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1402
1403 static void *
linux_dma_trie_alloc(struct pctrie * ptree)1404 linux_dma_trie_alloc(struct pctrie *ptree)
1405 {
1406
1407 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1408 }
1409
1410 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)1411 linux_dma_trie_free(struct pctrie *ptree, void *node)
1412 {
1413
1414 uma_zfree(linux_dma_trie_zone, node);
1415 }
1416
1417 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1418 linux_dma_trie_free);
1419
1420 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1421 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)1422 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1423 bus_dma_tag_t dmat)
1424 {
1425 struct linux_dma_priv *priv;
1426 struct linux_dma_obj *obj;
1427 int error, nseg;
1428 bus_dma_segment_t seg;
1429
1430 priv = dev->dma_priv;
1431
1432 /*
1433 * If the resultant mapping will be entirely 1:1 with the
1434 * physical address, short-circuit the remainder of the
1435 * bus_dma API. This avoids tracking collisions in the pctrie
1436 * with the additional benefit of reducing overhead.
1437 */
1438 if (bus_dma_id_mapped(dmat, phys, len))
1439 return (phys);
1440
1441 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1442 if (obj == NULL) {
1443 return (0);
1444 }
1445 obj->dmat = dmat;
1446
1447 DMA_PRIV_LOCK(priv);
1448 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1449 DMA_PRIV_UNLOCK(priv);
1450 uma_zfree(linux_dma_obj_zone, obj);
1451 return (0);
1452 }
1453
1454 nseg = -1;
1455 if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1456 BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1457 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1458 DMA_PRIV_UNLOCK(priv);
1459 uma_zfree(linux_dma_obj_zone, obj);
1460 counter_u64_add(lkpi_pci_nseg1_fail, 1);
1461 if (linuxkpi_debug)
1462 dump_stack();
1463 return (0);
1464 }
1465
1466 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1467 obj->dma_addr = seg.ds_addr;
1468
1469 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1470 if (error != 0) {
1471 bus_dmamap_unload(obj->dmat, obj->dmamap);
1472 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1473 DMA_PRIV_UNLOCK(priv);
1474 uma_zfree(linux_dma_obj_zone, obj);
1475 return (0);
1476 }
1477 DMA_PRIV_UNLOCK(priv);
1478 return (obj->dma_addr);
1479 }
1480 #else
1481 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1482 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1483 size_t len __unused, bus_dma_tag_t dmat __unused)
1484 {
1485 return (phys);
1486 }
1487 #endif
1488
1489 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1490 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1491 {
1492 struct linux_dma_priv *priv;
1493
1494 priv = dev->dma_priv;
1495 return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1496 }
1497
1498 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1499 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1500 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1501 {
1502 struct linux_dma_priv *priv;
1503 struct linux_dma_obj *obj;
1504
1505 priv = dev->dma_priv;
1506
1507 if (pctrie_is_empty(&priv->ptree))
1508 return;
1509
1510 DMA_PRIV_LOCK(priv);
1511 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1512 if (obj == NULL) {
1513 DMA_PRIV_UNLOCK(priv);
1514 return;
1515 }
1516 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1517 bus_dmamap_unload(obj->dmat, obj->dmamap);
1518 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1519 DMA_PRIV_UNLOCK(priv);
1520
1521 uma_zfree(linux_dma_obj_zone, obj);
1522 }
1523 #else
1524 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1525 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1526 {
1527 }
1528 #endif
1529
1530 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1531 linux_dma_alloc_coherent(struct device *dev, size_t size,
1532 dma_addr_t *dma_handle, gfp_t flag)
1533 {
1534 struct linux_dma_priv *priv;
1535 vm_paddr_t high;
1536 size_t align;
1537 void *mem;
1538
1539 if (dev == NULL || dev->dma_priv == NULL) {
1540 *dma_handle = 0;
1541 return (NULL);
1542 }
1543 priv = dev->dma_priv;
1544 if (priv->dma_coherent_mask)
1545 high = priv->dma_coherent_mask;
1546 else
1547 /* Coherent is lower 32bit only by default in Linux. */
1548 high = BUS_SPACE_MAXADDR_32BIT;
1549 align = PAGE_SIZE << get_order(size);
1550 /* Always zero the allocation. */
1551 flag |= M_ZERO;
1552 mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1553 align, 0, VM_MEMATTR_DEFAULT);
1554 if (mem != NULL) {
1555 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1556 priv->dmat_coherent);
1557 if (*dma_handle == 0) {
1558 kmem_free(mem, size);
1559 mem = NULL;
1560 }
1561 } else {
1562 *dma_handle = 0;
1563 }
1564 return (mem);
1565 }
1566
1567 struct lkpi_devres_dmam_coherent {
1568 size_t size;
1569 dma_addr_t *handle;
1570 void *mem;
1571 };
1572
1573 static void
lkpi_dmam_free_coherent(struct device * dev,void * p)1574 lkpi_dmam_free_coherent(struct device *dev, void *p)
1575 {
1576 struct lkpi_devres_dmam_coherent *dr;
1577
1578 dr = p;
1579 dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1580 }
1581
1582 void *
linuxkpi_dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1583 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1584 gfp_t flag)
1585 {
1586 struct lkpi_devres_dmam_coherent *dr;
1587
1588 dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1589 sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1590
1591 if (dr == NULL)
1592 return (NULL);
1593
1594 dr->size = size;
1595 dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1596 dr->handle = dma_handle;
1597 if (dr->mem == NULL) {
1598 lkpi_devres_free(dr);
1599 return (NULL);
1600 }
1601
1602 lkpi_devres_add(dev, dr);
1603 return (dr->mem);
1604 }
1605
1606 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1607 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1608 bus_dmasync_op_t op)
1609 {
1610 struct linux_dma_priv *priv;
1611 struct linux_dma_obj *obj;
1612
1613 priv = dev->dma_priv;
1614
1615 if (pctrie_is_empty(&priv->ptree))
1616 return;
1617
1618 DMA_PRIV_LOCK(priv);
1619 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1620 if (obj == NULL) {
1621 DMA_PRIV_UNLOCK(priv);
1622 return;
1623 }
1624
1625 bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1626 DMA_PRIV_UNLOCK(priv);
1627 }
1628
1629 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs __unused)1630 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1631 enum dma_data_direction direction, unsigned long attrs __unused)
1632 {
1633 struct linux_dma_priv *priv;
1634 struct scatterlist *sg;
1635 int i, nseg;
1636 bus_dma_segment_t seg;
1637
1638 priv = dev->dma_priv;
1639
1640 DMA_PRIV_LOCK(priv);
1641
1642 /* create common DMA map in the first S/G entry */
1643 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1644 DMA_PRIV_UNLOCK(priv);
1645 return (0);
1646 }
1647
1648 /* load all S/G list entries */
1649 for_each_sg(sgl, sg, nents, i) {
1650 nseg = -1;
1651 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1652 sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1653 &seg, &nseg) != 0) {
1654 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1655 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1656 DMA_PRIV_UNLOCK(priv);
1657 return (0);
1658 }
1659 KASSERT(nseg == 0,
1660 ("More than one segment (nseg=%d)", nseg + 1));
1661
1662 sg_dma_address(sg) = seg.ds_addr;
1663 }
1664
1665 switch (direction) {
1666 case DMA_BIDIRECTIONAL:
1667 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1668 break;
1669 case DMA_TO_DEVICE:
1670 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1671 break;
1672 case DMA_FROM_DEVICE:
1673 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1674 break;
1675 default:
1676 break;
1677 }
1678
1679 DMA_PRIV_UNLOCK(priv);
1680
1681 return (nents);
1682 }
1683
1684 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs __unused)1685 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1686 int nents __unused, enum dma_data_direction direction,
1687 unsigned long attrs __unused)
1688 {
1689 struct linux_dma_priv *priv;
1690
1691 priv = dev->dma_priv;
1692
1693 DMA_PRIV_LOCK(priv);
1694
1695 switch (direction) {
1696 case DMA_BIDIRECTIONAL:
1697 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1698 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1699 break;
1700 case DMA_TO_DEVICE:
1701 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1702 break;
1703 case DMA_FROM_DEVICE:
1704 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1705 break;
1706 default:
1707 break;
1708 }
1709
1710 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1711 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1712 DMA_PRIV_UNLOCK(priv);
1713 }
1714
1715 struct dma_pool {
1716 struct device *pool_device;
1717 uma_zone_t pool_zone;
1718 struct mtx pool_lock;
1719 bus_dma_tag_t pool_dmat;
1720 size_t pool_entry_size;
1721 struct pctrie pool_ptree;
1722 };
1723
1724 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1725 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1726
1727 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1728 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1729 {
1730 struct linux_dma_obj *obj = mem;
1731 struct dma_pool *pool = arg;
1732 int error, nseg;
1733 bus_dma_segment_t seg;
1734
1735 nseg = -1;
1736 DMA_POOL_LOCK(pool);
1737 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1738 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1739 &seg, &nseg);
1740 DMA_POOL_UNLOCK(pool);
1741 if (error != 0) {
1742 return (error);
1743 }
1744 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1745 obj->dma_addr = seg.ds_addr;
1746
1747 return (0);
1748 }
1749
1750 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1751 dma_pool_obj_dtor(void *mem, int size, void *arg)
1752 {
1753 struct linux_dma_obj *obj = mem;
1754 struct dma_pool *pool = arg;
1755
1756 DMA_POOL_LOCK(pool);
1757 bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1758 DMA_POOL_UNLOCK(pool);
1759 }
1760
1761 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1762 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1763 int flags)
1764 {
1765 struct dma_pool *pool = arg;
1766 struct linux_dma_obj *obj;
1767 int error, i;
1768
1769 for (i = 0; i < count; i++) {
1770 obj = uma_zalloc(linux_dma_obj_zone, flags);
1771 if (obj == NULL)
1772 break;
1773
1774 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1775 BUS_DMA_NOWAIT, &obj->dmamap);
1776 if (error!= 0) {
1777 uma_zfree(linux_dma_obj_zone, obj);
1778 break;
1779 }
1780
1781 store[i] = obj;
1782 }
1783
1784 return (i);
1785 }
1786
1787 static void
dma_pool_obj_release(void * arg,void ** store,int count)1788 dma_pool_obj_release(void *arg, void **store, int count)
1789 {
1790 struct dma_pool *pool = arg;
1791 struct linux_dma_obj *obj;
1792 int i;
1793
1794 for (i = 0; i < count; i++) {
1795 obj = store[i];
1796 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1797 uma_zfree(linux_dma_obj_zone, obj);
1798 }
1799 }
1800
1801 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)1802 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1803 size_t align, size_t boundary)
1804 {
1805 struct linux_dma_priv *priv;
1806 struct dma_pool *pool;
1807
1808 priv = dev->dma_priv;
1809
1810 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1811 pool->pool_device = dev;
1812 pool->pool_entry_size = size;
1813
1814 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1815 align, boundary, /* alignment, boundary */
1816 priv->dma_mask, /* lowaddr */
1817 BUS_SPACE_MAXADDR, /* highaddr */
1818 NULL, NULL, /* filtfunc, filtfuncarg */
1819 size, /* maxsize */
1820 1, /* nsegments */
1821 size, /* maxsegsz */
1822 0, /* flags */
1823 NULL, NULL, /* lockfunc, lockfuncarg */
1824 &pool->pool_dmat)) {
1825 kfree(pool);
1826 return (NULL);
1827 }
1828
1829 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1830 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1831 dma_pool_obj_release, pool, 0);
1832
1833 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1834 pctrie_init(&pool->pool_ptree);
1835
1836 return (pool);
1837 }
1838
1839 void
linux_dma_pool_destroy(struct dma_pool * pool)1840 linux_dma_pool_destroy(struct dma_pool *pool)
1841 {
1842
1843 uma_zdestroy(pool->pool_zone);
1844 bus_dma_tag_destroy(pool->pool_dmat);
1845 mtx_destroy(&pool->pool_lock);
1846 kfree(pool);
1847 }
1848
1849 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)1850 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1851 {
1852 struct dma_pool *pool;
1853
1854 pool = *(struct dma_pool **)p;
1855 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1856 linux_dma_pool_destroy(pool);
1857 }
1858
1859 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)1860 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1861 dma_addr_t *handle)
1862 {
1863 struct linux_dma_obj *obj;
1864
1865 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1866 if (obj == NULL)
1867 return (NULL);
1868
1869 DMA_POOL_LOCK(pool);
1870 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1871 DMA_POOL_UNLOCK(pool);
1872 uma_zfree_arg(pool->pool_zone, obj, pool);
1873 return (NULL);
1874 }
1875 DMA_POOL_UNLOCK(pool);
1876
1877 *handle = obj->dma_addr;
1878 return (obj->vaddr);
1879 }
1880
1881 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)1882 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1883 {
1884 struct linux_dma_obj *obj;
1885
1886 DMA_POOL_LOCK(pool);
1887 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1888 if (obj == NULL) {
1889 DMA_POOL_UNLOCK(pool);
1890 return;
1891 }
1892 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1893 DMA_POOL_UNLOCK(pool);
1894
1895 uma_zfree_arg(pool->pool_zone, obj, pool);
1896 }
1897
1898 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)1899 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1900 {
1901 struct pci_dev *pdev;
1902
1903 linux_set_current(curthread);
1904 pdev = device_get_softc(dev);
1905
1906 props->brightness = pdev->dev.bd->props.brightness;
1907 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1908 props->nlevels = 0;
1909
1910 return (0);
1911 }
1912
1913 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)1914 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1915 {
1916 struct pci_dev *pdev;
1917
1918 linux_set_current(curthread);
1919 pdev = device_get_softc(dev);
1920
1921 info->type = BACKLIGHT_TYPE_PANEL;
1922 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1923 return (0);
1924 }
1925
1926 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)1927 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1928 {
1929 struct pci_dev *pdev;
1930
1931 linux_set_current(curthread);
1932 pdev = device_get_softc(dev);
1933
1934 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1935 props->brightness / 100;
1936 pdev->dev.bd->props.power = props->brightness == 0 ?
1937 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1938 return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1939 }
1940
1941 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)1942 linux_backlight_device_register(const char *name, struct device *dev,
1943 void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1944 {
1945
1946 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1947 dev->bd->ops = ops;
1948 dev->bd->props.type = props->type;
1949 dev->bd->props.max_brightness = props->max_brightness;
1950 dev->bd->props.brightness = props->brightness;
1951 dev->bd->props.power = props->power;
1952 dev->bd->data = data;
1953 dev->bd->dev = dev;
1954 dev->bd->name = strdup(name, M_DEVBUF);
1955
1956 dev->backlight_dev = backlight_register(name, dev->bsddev);
1957
1958 return (dev->bd);
1959 }
1960
1961 void
linux_backlight_device_unregister(struct backlight_device * bd)1962 linux_backlight_device_unregister(struct backlight_device *bd)
1963 {
1964
1965 backlight_destroy(bd->dev->backlight_dev);
1966 free(bd->name, M_DEVBUF);
1967 free(bd, M_DEVBUF);
1968 }
1969