1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/fcntl.h>
41 #include <sys/file.h>
42 #include <sys/filio.h>
43 #include <sys/pciio.h>
44 #include <sys/pctrie.h>
45 #include <sys/rman.h>
46 #include <sys/rwlock.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 #include <machine/stdarg.h>
54 
55 #include <dev/pci/pcivar.h>
56 #include <dev/pci/pci_private.h>
57 #include <dev/pci/pci_iov.h>
58 #include <dev/backlight/backlight.h>
59 
60 #include <linux/kernel.h>
61 #include <linux/kobject.h>
62 #include <linux/device.h>
63 #include <linux/slab.h>
64 #include <linux/module.h>
65 #include <linux/cdev.h>
66 #include <linux/file.h>
67 #include <linux/sysfs.h>
68 #include <linux/mm.h>
69 #include <linux/io.h>
70 #include <linux/vmalloc.h>
71 #include <linux/pci.h>
72 #include <linux/compat.h>
73 
74 #include <linux/backlight.h>
75 
76 #include "backlight_if.h"
77 #include "pcib_if.h"
78 
79 /* Undef the linux function macro defined in linux/pci.h */
80 #undef pci_get_class
81 
82 extern int linuxkpi_debug;
83 
84 SYSCTL_DECL(_compat_linuxkpi);
85 
86 static counter_u64_t lkpi_pci_nseg1_fail;
87 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
88     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
89 
90 static device_probe_t linux_pci_probe;
91 static device_attach_t linux_pci_attach;
92 static device_detach_t linux_pci_detach;
93 static device_suspend_t linux_pci_suspend;
94 static device_resume_t linux_pci_resume;
95 static device_shutdown_t linux_pci_shutdown;
96 static pci_iov_init_t linux_pci_iov_init;
97 static pci_iov_uninit_t linux_pci_iov_uninit;
98 static pci_iov_add_vf_t linux_pci_iov_add_vf;
99 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
101 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
102 static void lkpi_pcim_iomap_table_release(struct device *, void *);
103 
104 static device_method_t pci_methods[] = {
105 	DEVMETHOD(device_probe, linux_pci_probe),
106 	DEVMETHOD(device_attach, linux_pci_attach),
107 	DEVMETHOD(device_detach, linux_pci_detach),
108 	DEVMETHOD(device_suspend, linux_pci_suspend),
109 	DEVMETHOD(device_resume, linux_pci_resume),
110 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
111 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
112 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
113 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
114 
115 	/* backlight interface */
116 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
117 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
118 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
119 	DEVMETHOD_END
120 };
121 
122 const char *pci_power_names[] = {
123 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
124 };
125 
126 /* We need some meta-struct to keep track of these for devres. */
127 struct pci_devres {
128 	bool		enable_io;
129 	/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
130 	uint8_t		region_mask;
131 	struct resource	*region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
132 };
133 struct pcim_iomap_devres {
134 	void		*mmio_table[PCIR_MAX_BAR_0 + 1];
135 	struct resource	*res_table[PCIR_MAX_BAR_0 + 1];
136 };
137 
138 struct linux_dma_priv {
139 	uint64_t	dma_mask;
140 	bus_dma_tag_t	dmat;
141 	uint64_t	dma_coherent_mask;
142 	bus_dma_tag_t	dmat_coherent;
143 	struct mtx	lock;
144 	struct pctrie	ptree;
145 };
146 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
147 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
148 
149 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)150 linux_pdev_dma_uninit(struct pci_dev *pdev)
151 {
152 	struct linux_dma_priv *priv;
153 
154 	priv = pdev->dev.dma_priv;
155 	if (priv->dmat)
156 		bus_dma_tag_destroy(priv->dmat);
157 	if (priv->dmat_coherent)
158 		bus_dma_tag_destroy(priv->dmat_coherent);
159 	mtx_destroy(&priv->lock);
160 	pdev->dev.dma_priv = NULL;
161 	free(priv, M_DEVBUF);
162 	return (0);
163 }
164 
165 static int
linux_pdev_dma_init(struct pci_dev * pdev)166 linux_pdev_dma_init(struct pci_dev *pdev)
167 {
168 	struct linux_dma_priv *priv;
169 	int error;
170 
171 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
172 
173 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
174 	pctrie_init(&priv->ptree);
175 
176 	pdev->dev.dma_priv = priv;
177 
178 	/* Create a default DMA tags. */
179 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
180 	if (error != 0)
181 		goto err;
182 	/* Coherent is lower 32bit only by default in Linux. */
183 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
184 	if (error != 0)
185 		goto err;
186 
187 	return (error);
188 
189 err:
190 	linux_pdev_dma_uninit(pdev);
191 	return (error);
192 }
193 
194 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)195 linux_dma_tag_init(struct device *dev, u64 dma_mask)
196 {
197 	struct linux_dma_priv *priv;
198 	int error;
199 
200 	priv = dev->dma_priv;
201 
202 	if (priv->dmat) {
203 		if (priv->dma_mask == dma_mask)
204 			return (0);
205 
206 		bus_dma_tag_destroy(priv->dmat);
207 	}
208 
209 	priv->dma_mask = dma_mask;
210 
211 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
212 	    1, 0,			/* alignment, boundary */
213 	    dma_mask,			/* lowaddr */
214 	    BUS_SPACE_MAXADDR,		/* highaddr */
215 	    NULL, NULL,			/* filtfunc, filtfuncarg */
216 	    BUS_SPACE_MAXSIZE,		/* maxsize */
217 	    1,				/* nsegments */
218 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
219 	    0,				/* flags */
220 	    NULL, NULL,			/* lockfunc, lockfuncarg */
221 	    &priv->dmat);
222 	return (-error);
223 }
224 
225 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)226 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
227 {
228 	struct linux_dma_priv *priv;
229 	int error;
230 
231 	priv = dev->dma_priv;
232 
233 	if (priv->dmat_coherent) {
234 		if (priv->dma_coherent_mask == dma_mask)
235 			return (0);
236 
237 		bus_dma_tag_destroy(priv->dmat_coherent);
238 	}
239 
240 	priv->dma_coherent_mask = dma_mask;
241 
242 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
243 	    1, 0,			/* alignment, boundary */
244 	    dma_mask,			/* lowaddr */
245 	    BUS_SPACE_MAXADDR,		/* highaddr */
246 	    NULL, NULL,			/* filtfunc, filtfuncarg */
247 	    BUS_SPACE_MAXSIZE,		/* maxsize */
248 	    1,				/* nsegments */
249 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
250 	    0,				/* flags */
251 	    NULL, NULL,			/* lockfunc, lockfuncarg */
252 	    &priv->dmat_coherent);
253 	return (-error);
254 }
255 
256 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)257 linux_pci_find(device_t dev, const struct pci_device_id **idp)
258 {
259 	const struct pci_device_id *id;
260 	struct pci_driver *pdrv;
261 	uint16_t vendor;
262 	uint16_t device;
263 	uint16_t subvendor;
264 	uint16_t subdevice;
265 
266 	vendor = pci_get_vendor(dev);
267 	device = pci_get_device(dev);
268 	subvendor = pci_get_subvendor(dev);
269 	subdevice = pci_get_subdevice(dev);
270 
271 	spin_lock(&pci_lock);
272 	list_for_each_entry(pdrv, &pci_drivers, node) {
273 		for (id = pdrv->id_table; id->vendor != 0; id++) {
274 			if (vendor == id->vendor &&
275 			    (PCI_ANY_ID == id->device || device == id->device) &&
276 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
277 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
278 				*idp = id;
279 				spin_unlock(&pci_lock);
280 				return (pdrv);
281 			}
282 		}
283 	}
284 	spin_unlock(&pci_lock);
285 	return (NULL);
286 }
287 
288 struct pci_dev *
lkpi_pci_get_device(uint16_t vendor,uint16_t device,struct pci_dev * odev)289 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
290 {
291 	struct pci_dev *pdev;
292 
293 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
294 
295 	spin_lock(&pci_lock);
296 	list_for_each_entry(pdev, &pci_devices, links) {
297 		if (pdev->vendor == vendor && pdev->device == device)
298 			break;
299 	}
300 	spin_unlock(&pci_lock);
301 
302 	return (pdev);
303 }
304 
305 static void
lkpi_pci_dev_release(struct device * dev)306 lkpi_pci_dev_release(struct device *dev)
307 {
308 
309 	lkpi_devres_release_free_list(dev);
310 	spin_lock_destroy(&dev->devres_lock);
311 }
312 
313 static void
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)314 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
315 {
316 
317 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
318 	pdev->vendor = pci_get_vendor(dev);
319 	pdev->device = pci_get_device(dev);
320 	pdev->subsystem_vendor = pci_get_subvendor(dev);
321 	pdev->subsystem_device = pci_get_subdevice(dev);
322 	pdev->class = pci_get_class(dev);
323 	pdev->revision = pci_get_revid(dev);
324 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
325 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
326 	    pci_get_function(dev));
327 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
328 	/*
329 	 * This should be the upstream bridge; pci_upstream_bridge()
330 	 * handles that case on demand as otherwise we'll shadow the
331 	 * entire PCI hierarchy.
332 	 */
333 	pdev->bus->self = pdev;
334 	pdev->bus->number = pci_get_bus(dev);
335 	pdev->bus->domain = pci_get_domain(dev);
336 	pdev->dev.bsddev = dev;
337 	pdev->dev.parent = &linux_root_device;
338 	pdev->dev.release = lkpi_pci_dev_release;
339 	INIT_LIST_HEAD(&pdev->dev.irqents);
340 
341 	if (pci_msi_count(dev) > 0)
342 		pdev->msi_desc = malloc(pci_msi_count(dev) *
343 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
344 
345 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
346 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
347 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
348 	    kobject_name(&pdev->dev.kobj));
349 	spin_lock_init(&pdev->dev.devres_lock);
350 	INIT_LIST_HEAD(&pdev->dev.devres_head);
351 }
352 
353 static void
lkpinew_pci_dev_release(struct device * dev)354 lkpinew_pci_dev_release(struct device *dev)
355 {
356 	struct pci_dev *pdev;
357 	int i;
358 
359 	pdev = to_pci_dev(dev);
360 	if (pdev->root != NULL)
361 		pci_dev_put(pdev->root);
362 	if (pdev->bus->self != pdev)
363 		pci_dev_put(pdev->bus->self);
364 	free(pdev->bus, M_DEVBUF);
365 	if (pdev->msi_desc != NULL) {
366 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
367 			free(pdev->msi_desc[i], M_DEVBUF);
368 		free(pdev->msi_desc, M_DEVBUF);
369 	}
370 	kfree(pdev->path_name);
371 	free(pdev, M_DEVBUF);
372 }
373 
374 struct pci_dev *
lkpinew_pci_dev(device_t dev)375 lkpinew_pci_dev(device_t dev)
376 {
377 	struct pci_dev *pdev;
378 
379 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
380 	lkpifill_pci_dev(dev, pdev);
381 	pdev->dev.release = lkpinew_pci_dev_release;
382 
383 	return (pdev);
384 }
385 
386 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)387 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
388 {
389 	device_t dev;
390 	device_t devfrom = NULL;
391 	struct pci_dev *pdev;
392 
393 	if (from != NULL)
394 		devfrom = from->dev.bsddev;
395 
396 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
397 	if (dev == NULL)
398 		return (NULL);
399 
400 	pdev = lkpinew_pci_dev(dev);
401 	return (pdev);
402 }
403 
404 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)405 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
406     unsigned int devfn)
407 {
408 	device_t dev;
409 	struct pci_dev *pdev;
410 
411 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
412 	if (dev == NULL)
413 		return (NULL);
414 
415 	pdev = lkpinew_pci_dev(dev);
416 	return (pdev);
417 }
418 
419 static int
linux_pci_probe(device_t dev)420 linux_pci_probe(device_t dev)
421 {
422 	const struct pci_device_id *id;
423 	struct pci_driver *pdrv;
424 
425 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
426 		return (ENXIO);
427 	if (device_get_driver(dev) != &pdrv->bsddriver)
428 		return (ENXIO);
429 	device_set_desc(dev, pdrv->name);
430 
431 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
432 	if (pdrv->bsd_probe_return == 0)
433 		return (BUS_PROBE_DEFAULT);
434 	else
435 		return (pdrv->bsd_probe_return);
436 }
437 
438 static int
linux_pci_attach(device_t dev)439 linux_pci_attach(device_t dev)
440 {
441 	const struct pci_device_id *id;
442 	struct pci_driver *pdrv;
443 	struct pci_dev *pdev;
444 
445 	pdrv = linux_pci_find(dev, &id);
446 	pdev = device_get_softc(dev);
447 
448 	MPASS(pdrv != NULL);
449 	MPASS(pdev != NULL);
450 
451 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
452 }
453 
454 static struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)455 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
456     int type, int rid)
457 {
458 	device_t dev;
459 	struct resource *res;
460 
461 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
462 	    ("trying to reserve non-BAR type %d", type));
463 
464 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
465 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
466 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
467 	    1, 1, 0);
468 	if (res == NULL)
469 		return (NULL);
470 	return (resource_list_find(rl, type, rid));
471 }
472 
473 static struct resource_list_entry *
linux_pci_get_rle(struct pci_dev * pdev,int type,int rid,bool reserve_bar)474 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
475 {
476 	struct pci_devinfo *dinfo;
477 	struct resource_list *rl;
478 	struct resource_list_entry *rle;
479 
480 	dinfo = device_get_ivars(pdev->dev.bsddev);
481 	rl = &dinfo->resources;
482 	rle = resource_list_find(rl, type, rid);
483 	/* Reserve resources for this BAR if needed. */
484 	if (rle == NULL && reserve_bar)
485 		rle = linux_pci_reserve_bar(pdev, rl, type, rid);
486 	return (rle);
487 }
488 
489 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)490 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
491     const struct pci_device_id *id, struct pci_dev *pdev)
492 {
493 	struct resource_list_entry *rle;
494 	device_t parent;
495 	uintptr_t rid;
496 	int error;
497 	bool isdrm;
498 
499 	linux_set_current(curthread);
500 
501 	parent = device_get_parent(dev);
502 	isdrm = pdrv != NULL && pdrv->isdrm;
503 
504 	if (isdrm) {
505 		struct pci_devinfo *dinfo;
506 
507 		dinfo = device_get_ivars(parent);
508 		device_set_ivars(dev, dinfo);
509 	}
510 
511 	lkpifill_pci_dev(dev, pdev);
512 	if (isdrm)
513 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
514 	else
515 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
516 	pdev->devfn = rid;
517 	pdev->pdrv = pdrv;
518 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
519 	if (rle != NULL)
520 		pdev->dev.irq = rle->start;
521 	else
522 		pdev->dev.irq = LINUX_IRQ_INVALID;
523 	pdev->irq = pdev->dev.irq;
524 	error = linux_pdev_dma_init(pdev);
525 	if (error)
526 		goto out_dma_init;
527 
528 	TAILQ_INIT(&pdev->mmio);
529 	spin_lock_init(&pdev->pcie_cap_lock);
530 
531 	spin_lock(&pci_lock);
532 	list_add(&pdev->links, &pci_devices);
533 	spin_unlock(&pci_lock);
534 
535 	if (pdrv != NULL) {
536 		error = pdrv->probe(pdev, id);
537 		if (error)
538 			goto out_probe;
539 	}
540 	return (0);
541 
542 out_probe:
543 	free(pdev->bus, M_DEVBUF);
544 	spin_lock_destroy(&pdev->pcie_cap_lock);
545 	linux_pdev_dma_uninit(pdev);
546 out_dma_init:
547 	spin_lock(&pci_lock);
548 	list_del(&pdev->links);
549 	spin_unlock(&pci_lock);
550 	put_device(&pdev->dev);
551 	return (-error);
552 }
553 
554 static int
linux_pci_detach(device_t dev)555 linux_pci_detach(device_t dev)
556 {
557 	struct pci_dev *pdev;
558 
559 	pdev = device_get_softc(dev);
560 
561 	MPASS(pdev != NULL);
562 
563 	device_set_desc(dev, NULL);
564 
565 	return (linux_pci_detach_device(pdev));
566 }
567 
568 int
linux_pci_detach_device(struct pci_dev * pdev)569 linux_pci_detach_device(struct pci_dev *pdev)
570 {
571 
572 	linux_set_current(curthread);
573 
574 	if (pdev->pdrv != NULL)
575 		pdev->pdrv->remove(pdev);
576 
577 	if (pdev->root != NULL)
578 		pci_dev_put(pdev->root);
579 	free(pdev->bus, M_DEVBUF);
580 	linux_pdev_dma_uninit(pdev);
581 
582 	spin_lock(&pci_lock);
583 	list_del(&pdev->links);
584 	spin_unlock(&pci_lock);
585 	spin_lock_destroy(&pdev->pcie_cap_lock);
586 	put_device(&pdev->dev);
587 
588 	return (0);
589 }
590 
591 static int
lkpi_pci_disable_dev(struct device * dev)592 lkpi_pci_disable_dev(struct device *dev)
593 {
594 
595 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
596 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
597 	return (0);
598 }
599 
600 static struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)601 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
602 {
603 	struct pci_devres *dr;
604 
605 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
606 	if (dr == NULL) {
607 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
608 		    GFP_KERNEL | __GFP_ZERO);
609 		if (dr != NULL)
610 			lkpi_devres_add(&pdev->dev, dr);
611 	}
612 
613 	return (dr);
614 }
615 
616 static struct pci_devres *
lkpi_pci_devres_find(struct pci_dev * pdev)617 lkpi_pci_devres_find(struct pci_dev *pdev)
618 {
619 	if (!pdev->managed)
620 		return (NULL);
621 
622 	return (lkpi_pci_devres_get_alloc(pdev));
623 }
624 
625 void
lkpi_pci_devres_release(struct device * dev,void * p)626 lkpi_pci_devres_release(struct device *dev, void *p)
627 {
628 	struct pci_devres *dr;
629 	struct pci_dev *pdev;
630 	int bar;
631 
632 	pdev = to_pci_dev(dev);
633 	dr = p;
634 
635 	if (pdev->msix_enabled)
636 		lkpi_pci_disable_msix(pdev);
637         if (pdev->msi_enabled)
638 		lkpi_pci_disable_msi(pdev);
639 
640 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
641 		dr->enable_io = false;
642 
643 	if (dr->region_mask == 0)
644 		return;
645 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
646 
647 		if ((dr->region_mask & (1 << bar)) == 0)
648 			continue;
649 		pci_release_region(pdev, bar);
650 	}
651 }
652 
653 int
linuxkpi_pcim_enable_device(struct pci_dev * pdev)654 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
655 {
656 	struct pci_devres *dr;
657 	int error;
658 
659 	/* Here we cannot run through the pdev->managed check. */
660 	dr = lkpi_pci_devres_get_alloc(pdev);
661 	if (dr == NULL)
662 		return (-ENOMEM);
663 
664 	/* If resources were enabled before do not do it again. */
665 	if (dr->enable_io)
666 		return (0);
667 
668 	error = pci_enable_device(pdev);
669 	if (error == 0)
670 		dr->enable_io = true;
671 
672 	/* This device is not managed. */
673 	pdev->managed = true;
674 
675 	return (error);
676 }
677 
678 static struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)679 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
680 {
681 	struct pcim_iomap_devres *dr;
682 
683 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
684 	    NULL, NULL);
685 	if (dr == NULL) {
686 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
687 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
688 		if (dr != NULL)
689 			lkpi_devres_add(&pdev->dev, dr);
690 	}
691 
692 	if (dr == NULL)
693 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
694 
695 	return (dr);
696 }
697 
698 void __iomem **
linuxkpi_pcim_iomap_table(struct pci_dev * pdev)699 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
700 {
701 	struct pcim_iomap_devres *dr;
702 
703 	dr = lkpi_pcim_iomap_devres_find(pdev);
704 	if (dr == NULL)
705 		return (NULL);
706 
707 	/*
708 	 * If the driver has manually set a flag to be able to request the
709 	 * resource to use bus_read/write_<n>, return the shadow table.
710 	 */
711 	if (pdev->want_iomap_res)
712 		return ((void **)dr->res_table);
713 
714 	/* This is the Linux default. */
715 	return (dr->mmio_table);
716 }
717 
718 static struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,int mmio_size __unused)719 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
720 {
721 	struct pci_mmio_region *mmio, *p;
722 	int type;
723 
724 	type = pci_resource_type(pdev, bar);
725 	if (type < 0) {
726 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
727 		     __func__, bar, type);
728 		return (NULL);
729 	}
730 
731 	/*
732 	 * Check for duplicate mappings.
733 	 * This can happen if a driver calls pci_request_region() first.
734 	 */
735 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
736 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
737 			return (mmio->res);
738 		}
739 	}
740 
741 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
742 	mmio->rid = PCIR_BAR(bar);
743 	mmio->type = type;
744 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
745 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
746 	if (mmio->res == NULL) {
747 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
748 		    "bar %d type %d rid %d\n",
749 		    __func__, bar, type, PCIR_BAR(bar));
750 		free(mmio, M_DEVBUF);
751 		return (NULL);
752 	}
753 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
754 
755 	return (mmio->res);
756 }
757 
758 void *
linuxkpi_pci_iomap_range(struct pci_dev * pdev,int mmio_bar,unsigned long mmio_off,unsigned long mmio_size)759 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int mmio_bar,
760     unsigned long mmio_off, unsigned long mmio_size)
761 {
762 	struct resource *res;
763 
764 	res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
765 	if (res == NULL)
766 		return (NULL);
767 	/* This is a FreeBSD extension so we can use bus_*(). */
768 	if (pdev->want_iomap_res)
769 		return (res);
770 	MPASS(mmio_off < rman_get_size(res));
771 	return ((void *)(rman_get_bushandle(res) + mmio_off));
772 }
773 
774 void *
linuxkpi_pci_iomap(struct pci_dev * pdev,int mmio_bar,int mmio_size)775 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
776 {
777 	return (linuxkpi_pci_iomap_range(pdev, mmio_bar, 0, mmio_size));
778 }
779 
780 void
linuxkpi_pci_iounmap(struct pci_dev * pdev,void * res)781 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
782 {
783 	struct pci_mmio_region *mmio, *p;
784 	bus_space_handle_t bh = (bus_space_handle_t)res;
785 
786 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
787 		if (pdev->want_iomap_res) {
788 			if (res != mmio->res)
789 				continue;
790 		} else {
791 			if (bh <  rman_get_bushandle(mmio->res) ||
792 			    bh >= rman_get_bushandle(mmio->res) +
793 				  rman_get_size(mmio->res))
794 				continue;
795 		}
796 		bus_release_resource(pdev->dev.bsddev,
797 		    mmio->type, mmio->rid, mmio->res);
798 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
799 		free(mmio, M_DEVBUF);
800 		return;
801 	}
802 }
803 
804 int
linuxkpi_pcim_iomap_regions(struct pci_dev * pdev,uint32_t mask,const char * name)805 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
806 {
807 	struct pcim_iomap_devres *dr;
808 	void *res;
809 	uint32_t mappings;
810 	int bar;
811 
812 	dr = lkpi_pcim_iomap_devres_find(pdev);
813 	if (dr == NULL)
814 		return (-ENOMEM);
815 
816 	/* Now iomap all the requested (by "mask") ones. */
817 	for (bar = mappings = 0; mappings != mask; bar++) {
818 		if ((mask & (1 << bar)) == 0)
819 			continue;
820 
821 		/* Request double is not allowed. */
822 		if (dr->mmio_table[bar] != NULL) {
823 			device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
824 			    __func__, bar, dr->mmio_table[bar]);
825 			goto err;
826 		}
827 
828 		res = _lkpi_pci_iomap(pdev, bar, 0);
829 		if (res == NULL)
830 			goto err;
831 		dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
832 		dr->res_table[bar] = res;
833 
834 		mappings |= (1 << bar);
835 	}
836 
837 	return (0);
838 err:
839 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
840 		if ((mappings & (1 << bar)) != 0) {
841 			res = dr->mmio_table[bar];
842 			if (res == NULL)
843 				continue;
844 			pci_iounmap(pdev, res);
845 		}
846 	}
847 
848 	return (-EINVAL);
849 }
850 
851 static void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)852 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
853 {
854 	struct pcim_iomap_devres *dr;
855 	struct pci_dev *pdev;
856 	int bar;
857 
858 	dr = p;
859 	pdev = to_pci_dev(dev);
860 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
861 
862 		if (dr->mmio_table[bar] == NULL)
863 			continue;
864 
865 		pci_iounmap(pdev, dr->mmio_table[bar]);
866 	}
867 }
868 
869 static int
linux_pci_suspend(device_t dev)870 linux_pci_suspend(device_t dev)
871 {
872 	const struct dev_pm_ops *pmops;
873 	struct pm_message pm = { };
874 	struct pci_dev *pdev;
875 	int error;
876 
877 	error = 0;
878 	linux_set_current(curthread);
879 	pdev = device_get_softc(dev);
880 	pmops = pdev->pdrv->driver.pm;
881 
882 	if (pdev->pdrv->suspend != NULL)
883 		error = -pdev->pdrv->suspend(pdev, pm);
884 	else if (pmops != NULL && pmops->suspend != NULL) {
885 		error = -pmops->suspend(&pdev->dev);
886 		if (error == 0 && pmops->suspend_late != NULL)
887 			error = -pmops->suspend_late(&pdev->dev);
888 	}
889 	return (error);
890 }
891 
892 static int
linux_pci_resume(device_t dev)893 linux_pci_resume(device_t dev)
894 {
895 	const struct dev_pm_ops *pmops;
896 	struct pci_dev *pdev;
897 	int error;
898 
899 	error = 0;
900 	linux_set_current(curthread);
901 	pdev = device_get_softc(dev);
902 	pmops = pdev->pdrv->driver.pm;
903 
904 	if (pdev->pdrv->resume != NULL)
905 		error = -pdev->pdrv->resume(pdev);
906 	else if (pmops != NULL && pmops->resume != NULL) {
907 		if (pmops->resume_early != NULL)
908 			error = -pmops->resume_early(&pdev->dev);
909 		if (error == 0 && pmops->resume != NULL)
910 			error = -pmops->resume(&pdev->dev);
911 	}
912 	return (error);
913 }
914 
915 static int
linux_pci_shutdown(device_t dev)916 linux_pci_shutdown(device_t dev)
917 {
918 	struct pci_dev *pdev;
919 
920 	linux_set_current(curthread);
921 	pdev = device_get_softc(dev);
922 	if (pdev->pdrv->shutdown != NULL)
923 		pdev->pdrv->shutdown(pdev);
924 	return (0);
925 }
926 
927 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)928 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
929 {
930 	struct pci_dev *pdev;
931 	int error;
932 
933 	linux_set_current(curthread);
934 	pdev = device_get_softc(dev);
935 	if (pdev->pdrv->bsd_iov_init != NULL)
936 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
937 	else
938 		error = EINVAL;
939 	return (error);
940 }
941 
942 static void
linux_pci_iov_uninit(device_t dev)943 linux_pci_iov_uninit(device_t dev)
944 {
945 	struct pci_dev *pdev;
946 
947 	linux_set_current(curthread);
948 	pdev = device_get_softc(dev);
949 	if (pdev->pdrv->bsd_iov_uninit != NULL)
950 		pdev->pdrv->bsd_iov_uninit(dev);
951 }
952 
953 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)954 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
955 {
956 	struct pci_dev *pdev;
957 	int error;
958 
959 	linux_set_current(curthread);
960 	pdev = device_get_softc(dev);
961 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
962 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
963 	else
964 		error = EINVAL;
965 	return (error);
966 }
967 
968 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)969 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
970 {
971 	int error;
972 
973 	linux_set_current(curthread);
974 	spin_lock(&pci_lock);
975 	list_add(&pdrv->node, &pci_drivers);
976 	spin_unlock(&pci_lock);
977 	if (pdrv->bsddriver.name == NULL)
978 		pdrv->bsddriver.name = pdrv->name;
979 	pdrv->bsddriver.methods = pci_methods;
980 	pdrv->bsddriver.size = sizeof(struct pci_dev);
981 
982 	bus_topo_lock();
983 	error = devclass_add_driver(dc, &pdrv->bsddriver,
984 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
985 	bus_topo_unlock();
986 	return (-error);
987 }
988 
989 int
linux_pci_register_driver(struct pci_driver * pdrv)990 linux_pci_register_driver(struct pci_driver *pdrv)
991 {
992 	devclass_t dc;
993 
994 	pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
995 	dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
996 	if (dc == NULL)
997 		return (-ENXIO);
998 	return (_linux_pci_register_driver(pdrv, dc));
999 }
1000 
1001 static struct resource_list_entry *
lkpi_pci_get_bar(struct pci_dev * pdev,int bar,bool reserve)1002 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1003 {
1004 	int type;
1005 
1006 	type = pci_resource_type(pdev, bar);
1007 	if (type < 0)
1008 		return (NULL);
1009 	bar = PCIR_BAR(bar);
1010 	return (linux_pci_get_rle(pdev, type, bar, reserve));
1011 }
1012 
1013 struct device *
lkpi_pci_find_irq_dev(unsigned int irq)1014 lkpi_pci_find_irq_dev(unsigned int irq)
1015 {
1016 	struct pci_dev *pdev;
1017 	struct device *found;
1018 
1019 	found = NULL;
1020 	spin_lock(&pci_lock);
1021 	list_for_each_entry(pdev, &pci_devices, links) {
1022 		if (irq == pdev->dev.irq ||
1023 		    (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1024 			found = &pdev->dev;
1025 			break;
1026 		}
1027 	}
1028 	spin_unlock(&pci_lock);
1029 	return (found);
1030 }
1031 
1032 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)1033 pci_resource_start(struct pci_dev *pdev, int bar)
1034 {
1035 	struct resource_list_entry *rle;
1036 	rman_res_t newstart;
1037 	device_t dev;
1038 	int error;
1039 
1040 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1041 		return (0);
1042 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1043 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1044 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1045 	if (error != 0) {
1046 		device_printf(pdev->dev.bsddev,
1047 		    "translate of %#jx failed: %d\n",
1048 		    (uintmax_t)rle->start, error);
1049 		return (0);
1050 	}
1051 	return (newstart);
1052 }
1053 
1054 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)1055 pci_resource_len(struct pci_dev *pdev, int bar)
1056 {
1057 	struct resource_list_entry *rle;
1058 
1059 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1060 		return (0);
1061 	return (rle->count);
1062 }
1063 
1064 int
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1065 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1066 {
1067 	struct resource *res;
1068 	struct pci_devres *dr;
1069 	struct pci_mmio_region *mmio;
1070 	int rid;
1071 	int type;
1072 
1073 	type = pci_resource_type(pdev, bar);
1074 	if (type < 0)
1075 		return (-ENODEV);
1076 	rid = PCIR_BAR(bar);
1077 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1078 	    RF_ACTIVE|RF_SHAREABLE);
1079 	if (res == NULL) {
1080 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1081 		    "bar %d type %d rid %d\n",
1082 		    __func__, bar, type, PCIR_BAR(bar));
1083 		return (-ENODEV);
1084 	}
1085 
1086 	/*
1087 	 * It seems there is an implicit devres tracking on these if the device
1088 	 * is managed; otherwise the resources are not automatiaclly freed on
1089 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1090 	 * drivers.
1091 	 */
1092 	dr = lkpi_pci_devres_find(pdev);
1093 	if (dr != NULL) {
1094 		dr->region_mask |= (1 << bar);
1095 		dr->region_table[bar] = res;
1096 	}
1097 
1098 	/* Even if the device is not managed we need to track it for iomap. */
1099 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1100 	mmio->rid = PCIR_BAR(bar);
1101 	mmio->type = type;
1102 	mmio->res = res;
1103 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1104 
1105 	return (0);
1106 }
1107 
1108 int
linuxkpi_pci_request_regions(struct pci_dev * pdev,const char * res_name)1109 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1110 {
1111 	int error;
1112 	int i;
1113 
1114 	for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1115 		error = pci_request_region(pdev, i, res_name);
1116 		if (error && error != -ENODEV) {
1117 			pci_release_regions(pdev);
1118 			return (error);
1119 		}
1120 	}
1121 	return (0);
1122 }
1123 
1124 void
linuxkpi_pci_release_region(struct pci_dev * pdev,int bar)1125 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1126 {
1127 	struct resource_list_entry *rle;
1128 	struct pci_devres *dr;
1129 	struct pci_mmio_region *mmio, *p;
1130 
1131 	if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1132 		return;
1133 
1134 	/*
1135 	 * As we implicitly track the requests we also need to clear them on
1136 	 * release.  Do clear before resource release.
1137 	 */
1138 	dr = lkpi_pci_devres_find(pdev);
1139 	if (dr != NULL) {
1140 		KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1141 		    " region_table res %p != rel->res %p\n", __func__, pdev,
1142 		    bar, dr->region_table[bar], rle->res));
1143 		dr->region_table[bar] = NULL;
1144 		dr->region_mask &= ~(1 << bar);
1145 	}
1146 
1147 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1148 		if (rle->res != (void *)rman_get_bushandle(mmio->res))
1149 			continue;
1150 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
1151 		free(mmio, M_DEVBUF);
1152 	}
1153 
1154 	bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1155 }
1156 
1157 void
linuxkpi_pci_release_regions(struct pci_dev * pdev)1158 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1159 {
1160 	int i;
1161 
1162 	for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1163 		pci_release_region(pdev, i);
1164 }
1165 
1166 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)1167 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1168 {
1169 	devclass_t dc;
1170 
1171 	dc = devclass_create("vgapci");
1172 	if (dc == NULL)
1173 		return (-ENXIO);
1174 	pdrv->isdrm = true;
1175 	pdrv->name = "drmn";
1176 	return (_linux_pci_register_driver(pdrv, dc));
1177 }
1178 
1179 void
linux_pci_unregister_driver(struct pci_driver * pdrv)1180 linux_pci_unregister_driver(struct pci_driver *pdrv)
1181 {
1182 	devclass_t bus;
1183 
1184 	bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1185 
1186 	spin_lock(&pci_lock);
1187 	list_del(&pdrv->node);
1188 	spin_unlock(&pci_lock);
1189 	bus_topo_lock();
1190 	if (bus != NULL)
1191 		devclass_delete_driver(bus, &pdrv->bsddriver);
1192 	bus_topo_unlock();
1193 }
1194 
1195 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)1196 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1197 {
1198 	devclass_t bus;
1199 
1200 	bus = devclass_find("vgapci");
1201 
1202 	spin_lock(&pci_lock);
1203 	list_del(&pdrv->node);
1204 	spin_unlock(&pci_lock);
1205 	bus_topo_lock();
1206 	if (bus != NULL)
1207 		devclass_delete_driver(bus, &pdrv->bsddriver);
1208 	bus_topo_unlock();
1209 }
1210 
1211 int
linuxkpi_pci_enable_msix(struct pci_dev * pdev,struct msix_entry * entries,int nreq)1212 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1213     int nreq)
1214 {
1215 	struct resource_list_entry *rle;
1216 	int error;
1217 	int avail;
1218 	int i;
1219 
1220 	avail = pci_msix_count(pdev->dev.bsddev);
1221 	if (avail < nreq) {
1222 		if (avail == 0)
1223 			return -EINVAL;
1224 		return avail;
1225 	}
1226 	avail = nreq;
1227 	if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1228 		return error;
1229 	/*
1230 	* Handle case where "pci_alloc_msix()" may allocate less
1231 	* interrupts than available and return with no error:
1232 	*/
1233 	if (avail < nreq) {
1234 		pci_release_msi(pdev->dev.bsddev);
1235 		return avail;
1236 	}
1237 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1238 	pdev->dev.irq_start = rle->start;
1239 	pdev->dev.irq_end = rle->start + avail;
1240 	for (i = 0; i < nreq; i++)
1241 		entries[i].vector = pdev->dev.irq_start + i;
1242 	pdev->msix_enabled = true;
1243 	return (0);
1244 }
1245 
1246 int
_lkpi_pci_enable_msi_range(struct pci_dev * pdev,int minvec,int maxvec)1247 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1248 {
1249 	struct resource_list_entry *rle;
1250 	int error;
1251 	int nvec;
1252 
1253 	if (maxvec < minvec)
1254 		return (-EINVAL);
1255 
1256 	nvec = pci_msi_count(pdev->dev.bsddev);
1257 	if (nvec < 1 || nvec < minvec)
1258 		return (-ENOSPC);
1259 
1260 	nvec = min(nvec, maxvec);
1261 	if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1262 		return error;
1263 
1264 	/* Native PCI might only ever ask for 32 vectors. */
1265 	if (nvec < minvec) {
1266 		pci_release_msi(pdev->dev.bsddev);
1267 		return (-ENOSPC);
1268 	}
1269 
1270 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1271 	pdev->dev.irq_start = rle->start;
1272 	pdev->dev.irq_end = rle->start + nvec;
1273 	pdev->irq = rle->start;
1274 	pdev->msi_enabled = true;
1275 	return (0);
1276 }
1277 
1278 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)1279 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1280     unsigned int flags)
1281 {
1282 	int error;
1283 
1284 	if (flags & PCI_IRQ_MSIX) {
1285 		struct msix_entry *entries;
1286 		int i;
1287 
1288 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1289 		if (entries == NULL) {
1290 			error = -ENOMEM;
1291 			goto out;
1292 		}
1293 		for (i = 0; i < maxv; ++i)
1294 			entries[i].entry = i;
1295 		error = pci_enable_msix(pdev, entries, maxv);
1296 out:
1297 		kfree(entries);
1298 		if (error == 0 && pdev->msix_enabled)
1299 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1300 	}
1301 	if (flags & PCI_IRQ_MSI) {
1302 		if (pci_msi_count(pdev->dev.bsddev) < minv)
1303 			return (-ENOSPC);
1304 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1305 		if (error == 0 && pdev->msi_enabled)
1306 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1307 	}
1308 	if (flags & PCI_IRQ_INTX) {
1309 		if (pdev->irq)
1310 			return (1);
1311 	}
1312 
1313 	return (-EINVAL);
1314 }
1315 
1316 struct msi_desc *
lkpi_pci_msi_desc_alloc(int irq)1317 lkpi_pci_msi_desc_alloc(int irq)
1318 {
1319 	struct device *dev;
1320 	struct pci_dev *pdev;
1321 	struct msi_desc *desc;
1322 	struct pci_devinfo *dinfo;
1323 	struct pcicfg_msi *msi;
1324 	int vec;
1325 
1326 	dev = lkpi_pci_find_irq_dev(irq);
1327 	if (dev == NULL)
1328 		return (NULL);
1329 
1330 	pdev = to_pci_dev(dev);
1331 
1332 	if (pdev->msi_desc == NULL)
1333 		return (NULL);
1334 
1335 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1336 		return (NULL);
1337 
1338 	vec = pdev->dev.irq_start - irq;
1339 
1340 	if (pdev->msi_desc[vec] != NULL)
1341 		return (pdev->msi_desc[vec]);
1342 
1343 	dinfo = device_get_ivars(dev->bsddev);
1344 	msi = &dinfo->cfg.msi;
1345 
1346 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1347 
1348 	desc->pci.msi_attrib.is_64 =
1349 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1350 	desc->msg.data = msi->msi_data;
1351 
1352 	pdev->msi_desc[vec] = desc;
1353 
1354 	return (desc);
1355 }
1356 
1357 bool
pci_device_is_present(struct pci_dev * pdev)1358 pci_device_is_present(struct pci_dev *pdev)
1359 {
1360 	device_t dev;
1361 
1362 	dev = pdev->dev.bsddev;
1363 
1364 	return (bus_child_present(dev));
1365 }
1366 
1367 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1368 
1369 struct linux_dma_obj {
1370 	void		*vaddr;
1371 	uint64_t	dma_addr;
1372 	bus_dmamap_t	dmamap;
1373 	bus_dma_tag_t	dmat;
1374 };
1375 
1376 static uma_zone_t linux_dma_trie_zone;
1377 static uma_zone_t linux_dma_obj_zone;
1378 
1379 static void
linux_dma_init(void * arg)1380 linux_dma_init(void *arg)
1381 {
1382 
1383 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1384 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1385 	    UMA_ALIGN_PTR, 0);
1386 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1387 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1388 	    UMA_ALIGN_PTR, 0);
1389 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1390 }
1391 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1392 
1393 static void
linux_dma_uninit(void * arg)1394 linux_dma_uninit(void *arg)
1395 {
1396 
1397 	counter_u64_free(lkpi_pci_nseg1_fail);
1398 	uma_zdestroy(linux_dma_obj_zone);
1399 	uma_zdestroy(linux_dma_trie_zone);
1400 }
1401 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1402 
1403 static void *
linux_dma_trie_alloc(struct pctrie * ptree)1404 linux_dma_trie_alloc(struct pctrie *ptree)
1405 {
1406 
1407 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1408 }
1409 
1410 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)1411 linux_dma_trie_free(struct pctrie *ptree, void *node)
1412 {
1413 
1414 	uma_zfree(linux_dma_trie_zone, node);
1415 }
1416 
1417 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1418     linux_dma_trie_free);
1419 
1420 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1421 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)1422 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1423     bus_dma_tag_t dmat)
1424 {
1425 	struct linux_dma_priv *priv;
1426 	struct linux_dma_obj *obj;
1427 	int error, nseg;
1428 	bus_dma_segment_t seg;
1429 
1430 	priv = dev->dma_priv;
1431 
1432 	/*
1433 	 * If the resultant mapping will be entirely 1:1 with the
1434 	 * physical address, short-circuit the remainder of the
1435 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1436 	 * with the additional benefit of reducing overhead.
1437 	 */
1438 	if (bus_dma_id_mapped(dmat, phys, len))
1439 		return (phys);
1440 
1441 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1442 	if (obj == NULL) {
1443 		return (0);
1444 	}
1445 	obj->dmat = dmat;
1446 
1447 	DMA_PRIV_LOCK(priv);
1448 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1449 		DMA_PRIV_UNLOCK(priv);
1450 		uma_zfree(linux_dma_obj_zone, obj);
1451 		return (0);
1452 	}
1453 
1454 	nseg = -1;
1455 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1456 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1457 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1458 		DMA_PRIV_UNLOCK(priv);
1459 		uma_zfree(linux_dma_obj_zone, obj);
1460 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1461 		if (linuxkpi_debug)
1462 			dump_stack();
1463 		return (0);
1464 	}
1465 
1466 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1467 	obj->dma_addr = seg.ds_addr;
1468 
1469 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1470 	if (error != 0) {
1471 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1472 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1473 		DMA_PRIV_UNLOCK(priv);
1474 		uma_zfree(linux_dma_obj_zone, obj);
1475 		return (0);
1476 	}
1477 	DMA_PRIV_UNLOCK(priv);
1478 	return (obj->dma_addr);
1479 }
1480 #else
1481 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1482 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1483     size_t len __unused, bus_dma_tag_t dmat __unused)
1484 {
1485 	return (phys);
1486 }
1487 #endif
1488 
1489 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1490 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1491 {
1492 	struct linux_dma_priv *priv;
1493 
1494 	priv = dev->dma_priv;
1495 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1496 }
1497 
1498 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1499 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1500 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1501 {
1502 	struct linux_dma_priv *priv;
1503 	struct linux_dma_obj *obj;
1504 
1505 	priv = dev->dma_priv;
1506 
1507 	if (pctrie_is_empty(&priv->ptree))
1508 		return;
1509 
1510 	DMA_PRIV_LOCK(priv);
1511 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1512 	if (obj == NULL) {
1513 		DMA_PRIV_UNLOCK(priv);
1514 		return;
1515 	}
1516 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1517 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1518 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1519 	DMA_PRIV_UNLOCK(priv);
1520 
1521 	uma_zfree(linux_dma_obj_zone, obj);
1522 }
1523 #else
1524 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1525 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1526 {
1527 }
1528 #endif
1529 
1530 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1531 linux_dma_alloc_coherent(struct device *dev, size_t size,
1532     dma_addr_t *dma_handle, gfp_t flag)
1533 {
1534 	struct linux_dma_priv *priv;
1535 	vm_paddr_t high;
1536 	size_t align;
1537 	void *mem;
1538 
1539 	if (dev == NULL || dev->dma_priv == NULL) {
1540 		*dma_handle = 0;
1541 		return (NULL);
1542 	}
1543 	priv = dev->dma_priv;
1544 	if (priv->dma_coherent_mask)
1545 		high = priv->dma_coherent_mask;
1546 	else
1547 		/* Coherent is lower 32bit only by default in Linux. */
1548 		high = BUS_SPACE_MAXADDR_32BIT;
1549 	align = PAGE_SIZE << get_order(size);
1550 	/* Always zero the allocation. */
1551 	flag |= M_ZERO;
1552 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1553 	    align, 0, VM_MEMATTR_DEFAULT);
1554 	if (mem != NULL) {
1555 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1556 		    priv->dmat_coherent);
1557 		if (*dma_handle == 0) {
1558 			kmem_free(mem, size);
1559 			mem = NULL;
1560 		}
1561 	} else {
1562 		*dma_handle = 0;
1563 	}
1564 	return (mem);
1565 }
1566 
1567 struct lkpi_devres_dmam_coherent {
1568 	size_t size;
1569 	dma_addr_t *handle;
1570 	void *mem;
1571 };
1572 
1573 static void
lkpi_dmam_free_coherent(struct device * dev,void * p)1574 lkpi_dmam_free_coherent(struct device *dev, void *p)
1575 {
1576 	struct lkpi_devres_dmam_coherent *dr;
1577 
1578 	dr = p;
1579 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1580 }
1581 
1582 void *
linuxkpi_dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1583 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1584     gfp_t flag)
1585 {
1586 	struct lkpi_devres_dmam_coherent *dr;
1587 
1588 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1589 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1590 
1591 	if (dr == NULL)
1592 		return (NULL);
1593 
1594 	dr->size = size;
1595 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1596 	dr->handle = dma_handle;
1597 	if (dr->mem == NULL) {
1598 		lkpi_devres_free(dr);
1599 		return (NULL);
1600 	}
1601 
1602 	lkpi_devres_add(dev, dr);
1603 	return (dr->mem);
1604 }
1605 
1606 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1607 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1608     bus_dmasync_op_t op)
1609 {
1610 	struct linux_dma_priv *priv;
1611 	struct linux_dma_obj *obj;
1612 
1613 	priv = dev->dma_priv;
1614 
1615 	if (pctrie_is_empty(&priv->ptree))
1616 		return;
1617 
1618 	DMA_PRIV_LOCK(priv);
1619 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1620 	if (obj == NULL) {
1621 		DMA_PRIV_UNLOCK(priv);
1622 		return;
1623 	}
1624 
1625 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1626 	DMA_PRIV_UNLOCK(priv);
1627 }
1628 
1629 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs __unused)1630 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1631     enum dma_data_direction direction, unsigned long attrs __unused)
1632 {
1633 	struct linux_dma_priv *priv;
1634 	struct scatterlist *sg;
1635 	int i, nseg;
1636 	bus_dma_segment_t seg;
1637 
1638 	priv = dev->dma_priv;
1639 
1640 	DMA_PRIV_LOCK(priv);
1641 
1642 	/* create common DMA map in the first S/G entry */
1643 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1644 		DMA_PRIV_UNLOCK(priv);
1645 		return (0);
1646 	}
1647 
1648 	/* load all S/G list entries */
1649 	for_each_sg(sgl, sg, nents, i) {
1650 		nseg = -1;
1651 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1652 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1653 		    &seg, &nseg) != 0) {
1654 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1655 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1656 			DMA_PRIV_UNLOCK(priv);
1657 			return (0);
1658 		}
1659 		KASSERT(nseg == 0,
1660 		    ("More than one segment (nseg=%d)", nseg + 1));
1661 
1662 		sg_dma_address(sg) = seg.ds_addr;
1663 	}
1664 
1665 	switch (direction) {
1666 	case DMA_BIDIRECTIONAL:
1667 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1668 		break;
1669 	case DMA_TO_DEVICE:
1670 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1671 		break;
1672 	case DMA_FROM_DEVICE:
1673 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1674 		break;
1675 	default:
1676 		break;
1677 	}
1678 
1679 	DMA_PRIV_UNLOCK(priv);
1680 
1681 	return (nents);
1682 }
1683 
1684 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs __unused)1685 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1686     int nents __unused, enum dma_data_direction direction,
1687     unsigned long attrs __unused)
1688 {
1689 	struct linux_dma_priv *priv;
1690 
1691 	priv = dev->dma_priv;
1692 
1693 	DMA_PRIV_LOCK(priv);
1694 
1695 	switch (direction) {
1696 	case DMA_BIDIRECTIONAL:
1697 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1698 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1699 		break;
1700 	case DMA_TO_DEVICE:
1701 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1702 		break;
1703 	case DMA_FROM_DEVICE:
1704 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1705 		break;
1706 	default:
1707 		break;
1708 	}
1709 
1710 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1711 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1712 	DMA_PRIV_UNLOCK(priv);
1713 }
1714 
1715 struct dma_pool {
1716 	struct device  *pool_device;
1717 	uma_zone_t	pool_zone;
1718 	struct mtx	pool_lock;
1719 	bus_dma_tag_t	pool_dmat;
1720 	size_t		pool_entry_size;
1721 	struct pctrie	pool_ptree;
1722 };
1723 
1724 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1725 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1726 
1727 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1728 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1729 {
1730 	struct linux_dma_obj *obj = mem;
1731 	struct dma_pool *pool = arg;
1732 	int error, nseg;
1733 	bus_dma_segment_t seg;
1734 
1735 	nseg = -1;
1736 	DMA_POOL_LOCK(pool);
1737 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1738 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1739 	    &seg, &nseg);
1740 	DMA_POOL_UNLOCK(pool);
1741 	if (error != 0) {
1742 		return (error);
1743 	}
1744 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1745 	obj->dma_addr = seg.ds_addr;
1746 
1747 	return (0);
1748 }
1749 
1750 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1751 dma_pool_obj_dtor(void *mem, int size, void *arg)
1752 {
1753 	struct linux_dma_obj *obj = mem;
1754 	struct dma_pool *pool = arg;
1755 
1756 	DMA_POOL_LOCK(pool);
1757 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1758 	DMA_POOL_UNLOCK(pool);
1759 }
1760 
1761 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1762 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1763     int flags)
1764 {
1765 	struct dma_pool *pool = arg;
1766 	struct linux_dma_obj *obj;
1767 	int error, i;
1768 
1769 	for (i = 0; i < count; i++) {
1770 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1771 		if (obj == NULL)
1772 			break;
1773 
1774 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1775 		    BUS_DMA_NOWAIT, &obj->dmamap);
1776 		if (error!= 0) {
1777 			uma_zfree(linux_dma_obj_zone, obj);
1778 			break;
1779 		}
1780 
1781 		store[i] = obj;
1782 	}
1783 
1784 	return (i);
1785 }
1786 
1787 static void
dma_pool_obj_release(void * arg,void ** store,int count)1788 dma_pool_obj_release(void *arg, void **store, int count)
1789 {
1790 	struct dma_pool *pool = arg;
1791 	struct linux_dma_obj *obj;
1792 	int i;
1793 
1794 	for (i = 0; i < count; i++) {
1795 		obj = store[i];
1796 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1797 		uma_zfree(linux_dma_obj_zone, obj);
1798 	}
1799 }
1800 
1801 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)1802 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1803     size_t align, size_t boundary)
1804 {
1805 	struct linux_dma_priv *priv;
1806 	struct dma_pool *pool;
1807 
1808 	priv = dev->dma_priv;
1809 
1810 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1811 	pool->pool_device = dev;
1812 	pool->pool_entry_size = size;
1813 
1814 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1815 	    align, boundary,		/* alignment, boundary */
1816 	    priv->dma_mask,		/* lowaddr */
1817 	    BUS_SPACE_MAXADDR,		/* highaddr */
1818 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1819 	    size,			/* maxsize */
1820 	    1,				/* nsegments */
1821 	    size,			/* maxsegsz */
1822 	    0,				/* flags */
1823 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1824 	    &pool->pool_dmat)) {
1825 		kfree(pool);
1826 		return (NULL);
1827 	}
1828 
1829 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1830 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1831 	    dma_pool_obj_release, pool, 0);
1832 
1833 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1834 	pctrie_init(&pool->pool_ptree);
1835 
1836 	return (pool);
1837 }
1838 
1839 void
linux_dma_pool_destroy(struct dma_pool * pool)1840 linux_dma_pool_destroy(struct dma_pool *pool)
1841 {
1842 
1843 	uma_zdestroy(pool->pool_zone);
1844 	bus_dma_tag_destroy(pool->pool_dmat);
1845 	mtx_destroy(&pool->pool_lock);
1846 	kfree(pool);
1847 }
1848 
1849 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)1850 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1851 {
1852 	struct dma_pool *pool;
1853 
1854 	pool = *(struct dma_pool **)p;
1855 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1856 	linux_dma_pool_destroy(pool);
1857 }
1858 
1859 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)1860 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1861     dma_addr_t *handle)
1862 {
1863 	struct linux_dma_obj *obj;
1864 
1865 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1866 	if (obj == NULL)
1867 		return (NULL);
1868 
1869 	DMA_POOL_LOCK(pool);
1870 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1871 		DMA_POOL_UNLOCK(pool);
1872 		uma_zfree_arg(pool->pool_zone, obj, pool);
1873 		return (NULL);
1874 	}
1875 	DMA_POOL_UNLOCK(pool);
1876 
1877 	*handle = obj->dma_addr;
1878 	return (obj->vaddr);
1879 }
1880 
1881 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)1882 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1883 {
1884 	struct linux_dma_obj *obj;
1885 
1886 	DMA_POOL_LOCK(pool);
1887 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1888 	if (obj == NULL) {
1889 		DMA_POOL_UNLOCK(pool);
1890 		return;
1891 	}
1892 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1893 	DMA_POOL_UNLOCK(pool);
1894 
1895 	uma_zfree_arg(pool->pool_zone, obj, pool);
1896 }
1897 
1898 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)1899 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1900 {
1901 	struct pci_dev *pdev;
1902 
1903 	linux_set_current(curthread);
1904 	pdev = device_get_softc(dev);
1905 
1906 	props->brightness = pdev->dev.bd->props.brightness;
1907 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1908 	props->nlevels = 0;
1909 
1910 	return (0);
1911 }
1912 
1913 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)1914 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1915 {
1916 	struct pci_dev *pdev;
1917 
1918 	linux_set_current(curthread);
1919 	pdev = device_get_softc(dev);
1920 
1921 	info->type = BACKLIGHT_TYPE_PANEL;
1922 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1923 	return (0);
1924 }
1925 
1926 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)1927 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1928 {
1929 	struct pci_dev *pdev;
1930 
1931 	linux_set_current(curthread);
1932 	pdev = device_get_softc(dev);
1933 
1934 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1935 		props->brightness / 100;
1936 	pdev->dev.bd->props.power = props->brightness == 0 ?
1937 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1938 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1939 }
1940 
1941 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)1942 linux_backlight_device_register(const char *name, struct device *dev,
1943     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1944 {
1945 
1946 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1947 	dev->bd->ops = ops;
1948 	dev->bd->props.type = props->type;
1949 	dev->bd->props.max_brightness = props->max_brightness;
1950 	dev->bd->props.brightness = props->brightness;
1951 	dev->bd->props.power = props->power;
1952 	dev->bd->data = data;
1953 	dev->bd->dev = dev;
1954 	dev->bd->name = strdup(name, M_DEVBUF);
1955 
1956 	dev->backlight_dev = backlight_register(name, dev->bsddev);
1957 
1958 	return (dev->bd);
1959 }
1960 
1961 void
linux_backlight_device_unregister(struct backlight_device * bd)1962 linux_backlight_device_unregister(struct backlight_device *bd)
1963 {
1964 
1965 	backlight_destroy(bd->dev->backlight_dev);
1966 	free(bd->name, M_DEVBUF);
1967 	free(bd, M_DEVBUF);
1968 }
1969