1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * Copyright (c) 1994-1995 Søren Schmidt
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer
13 * in this position and unchanged.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/fcntl.h>
34 #include <sys/jail.h>
35 #include <sys/imgact.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/msgbuf.h>
39 #include <sys/mutex.h>
40 #include <sys/poll.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/procctl.h>
44 #include <sys/reboot.h>
45 #include <sys/random.h>
46 #include <sys/resourcevar.h>
47 #include <sys/rtprio.h>
48 #include <sys/sched.h>
49 #include <sys/smp.h>
50 #include <sys/stat.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 #include <sys/sysent.h>
54 #include <sys/sysproto.h>
55 #include <sys/time.h>
56 #include <sys/vmmeter.h>
57 #include <sys/vnode.h>
58
59 #include <security/audit/audit.h>
60 #include <security/mac/mac_framework.h>
61
62 #include <vm/pmap.h>
63 #include <vm/vm_map.h>
64 #include <vm/swap_pager.h>
65
66 #ifdef COMPAT_LINUX32
67 #include <machine/../linux32/linux.h>
68 #include <machine/../linux32/linux32_proto.h>
69 #else
70 #include <machine/../linux/linux.h>
71 #include <machine/../linux/linux_proto.h>
72 #endif
73
74 #include <compat/linux/linux_common.h>
75 #include <compat/linux/linux_dtrace.h>
76 #include <compat/linux/linux_file.h>
77 #include <compat/linux/linux_mib.h>
78 #include <compat/linux/linux_mmap.h>
79 #include <compat/linux/linux_signal.h>
80 #include <compat/linux/linux_time.h>
81 #include <compat/linux/linux_util.h>
82 #include <compat/linux/linux_emul.h>
83 #include <compat/linux/linux_misc.h>
84
85 int stclohz; /* Statistics clock frequency */
86
87 static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = {
88 RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
89 RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
90 RLIMIT_MEMLOCK, RLIMIT_AS
91 };
92
93 struct l_sysinfo {
94 l_long uptime; /* Seconds since boot */
95 l_ulong loads[3]; /* 1, 5, and 15 minute load averages */
96 #define LINUX_SYSINFO_LOADS_SCALE 65536
97 l_ulong totalram; /* Total usable main memory size */
98 l_ulong freeram; /* Available memory size */
99 l_ulong sharedram; /* Amount of shared memory */
100 l_ulong bufferram; /* Memory used by buffers */
101 l_ulong totalswap; /* Total swap space size */
102 l_ulong freeswap; /* swap space still available */
103 l_ushort procs; /* Number of current processes */
104 l_ushort pads;
105 l_ulong totalhigh;
106 l_ulong freehigh;
107 l_uint mem_unit;
108 char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */
109 };
110
111 struct l_pselect6arg {
112 l_uintptr_t ss;
113 l_size_t ss_len;
114 };
115
116 static int linux_utimensat_lts_to_ts(struct l_timespec *,
117 struct timespec *);
118 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
119 static int linux_utimensat_lts64_to_ts(struct l_timespec64 *,
120 struct timespec *);
121 #endif
122 static int linux_common_utimensat(struct thread *, int,
123 const char *, struct timespec *, int);
124 static int linux_common_pselect6(struct thread *, l_int,
125 l_fd_set *, l_fd_set *, l_fd_set *,
126 struct timespec *, l_uintptr_t *);
127 static int linux_common_ppoll(struct thread *, struct pollfd *,
128 uint32_t, struct timespec *, l_sigset_t *,
129 l_size_t);
130 static int linux_pollin(struct thread *, struct pollfd *,
131 struct pollfd *, u_int);
132 static int linux_pollout(struct thread *, struct pollfd *,
133 struct pollfd *, u_int);
134
135 int
linux_sysinfo(struct thread * td,struct linux_sysinfo_args * args)136 linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args)
137 {
138 struct l_sysinfo sysinfo;
139 int i, j;
140 struct timespec ts;
141
142 bzero(&sysinfo, sizeof(sysinfo));
143 getnanouptime(&ts);
144 if (ts.tv_nsec != 0)
145 ts.tv_sec++;
146 sysinfo.uptime = ts.tv_sec;
147
148 /* Use the information from the mib to get our load averages */
149 for (i = 0; i < 3; i++)
150 sysinfo.loads[i] = averunnable.ldavg[i] *
151 LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale;
152
153 sysinfo.totalram = physmem * PAGE_SIZE;
154 sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE;
155
156 /*
157 * sharedram counts pages allocated to named, swap-backed objects such
158 * as shared memory segments and tmpfs files. There is no cheap way to
159 * compute this, so just leave the field unpopulated. Linux itself only
160 * started setting this field in the 3.x timeframe.
161 */
162 sysinfo.sharedram = 0;
163 sysinfo.bufferram = 0;
164
165 swap_pager_status(&i, &j);
166 sysinfo.totalswap = i * PAGE_SIZE;
167 sysinfo.freeswap = (i - j) * PAGE_SIZE;
168
169 sysinfo.procs = nprocs;
170
171 /*
172 * Platforms supported by the emulation layer do not have a notion of
173 * high memory.
174 */
175 sysinfo.totalhigh = 0;
176 sysinfo.freehigh = 0;
177
178 sysinfo.mem_unit = 1;
179
180 return (copyout(&sysinfo, args->info, sizeof(sysinfo)));
181 }
182
183 #ifdef LINUX_LEGACY_SYSCALLS
184 int
linux_alarm(struct thread * td,struct linux_alarm_args * args)185 linux_alarm(struct thread *td, struct linux_alarm_args *args)
186 {
187 struct itimerval it, old_it;
188 u_int secs;
189 int error __diagused;
190
191 secs = args->secs;
192 /*
193 * Linux alarm() is always successful. Limit secs to INT32_MAX / 2
194 * to match kern_setitimer()'s limit to avoid error from it.
195 *
196 * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit
197 * platforms.
198 */
199 if (secs > INT32_MAX / 2)
200 secs = INT32_MAX / 2;
201
202 it.it_value.tv_sec = secs;
203 it.it_value.tv_usec = 0;
204 timevalclear(&it.it_interval);
205 error = kern_setitimer(td, ITIMER_REAL, &it, &old_it);
206 KASSERT(error == 0, ("kern_setitimer returns %d", error));
207
208 if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) ||
209 old_it.it_value.tv_usec >= 500000)
210 old_it.it_value.tv_sec++;
211 td->td_retval[0] = old_it.it_value.tv_sec;
212 return (0);
213 }
214 #endif
215
216 int
linux_brk(struct thread * td,struct linux_brk_args * args)217 linux_brk(struct thread *td, struct linux_brk_args *args)
218 {
219 struct vmspace *vm = td->td_proc->p_vmspace;
220 uintptr_t new, old;
221
222 old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize);
223 new = (uintptr_t)args->dsend;
224 if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new))
225 td->td_retval[0] = (register_t)new;
226 else
227 td->td_retval[0] = (register_t)old;
228
229 return (0);
230 }
231
232 #ifdef LINUX_LEGACY_SYSCALLS
233 int
linux_select(struct thread * td,struct linux_select_args * args)234 linux_select(struct thread *td, struct linux_select_args *args)
235 {
236 l_timeval ltv;
237 struct timeval tv0, tv1, utv, *tvp;
238 int error;
239
240 /*
241 * Store current time for computation of the amount of
242 * time left.
243 */
244 if (args->timeout) {
245 if ((error = copyin(args->timeout, <v, sizeof(ltv))))
246 goto select_out;
247 utv.tv_sec = ltv.tv_sec;
248 utv.tv_usec = ltv.tv_usec;
249
250 if (itimerfix(&utv)) {
251 /*
252 * The timeval was invalid. Convert it to something
253 * valid that will act as it does under Linux.
254 */
255 utv.tv_sec += utv.tv_usec / 1000000;
256 utv.tv_usec %= 1000000;
257 if (utv.tv_usec < 0) {
258 utv.tv_sec -= 1;
259 utv.tv_usec += 1000000;
260 }
261 if (utv.tv_sec < 0)
262 timevalclear(&utv);
263 }
264 microtime(&tv0);
265 tvp = &utv;
266 } else
267 tvp = NULL;
268
269 error = kern_select(td, args->nfds, args->readfds, args->writefds,
270 args->exceptfds, tvp, LINUX_NFDBITS);
271 if (error)
272 goto select_out;
273
274 if (args->timeout) {
275 if (td->td_retval[0]) {
276 /*
277 * Compute how much time was left of the timeout,
278 * by subtracting the current time and the time
279 * before we started the call, and subtracting
280 * that result from the user-supplied value.
281 */
282 microtime(&tv1);
283 timevalsub(&tv1, &tv0);
284 timevalsub(&utv, &tv1);
285 if (utv.tv_sec < 0)
286 timevalclear(&utv);
287 } else
288 timevalclear(&utv);
289 ltv.tv_sec = utv.tv_sec;
290 ltv.tv_usec = utv.tv_usec;
291 if ((error = copyout(<v, args->timeout, sizeof(ltv))))
292 goto select_out;
293 }
294
295 select_out:
296 return (error);
297 }
298 #endif
299
300 int
linux_mremap(struct thread * td,struct linux_mremap_args * args)301 linux_mremap(struct thread *td, struct linux_mremap_args *args)
302 {
303 uintptr_t addr;
304 size_t len;
305 int error = 0;
306
307 if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) {
308 td->td_retval[0] = 0;
309 return (EINVAL);
310 }
311
312 /*
313 * Check for the page alignment.
314 * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK.
315 */
316 if (args->addr & PAGE_MASK) {
317 td->td_retval[0] = 0;
318 return (EINVAL);
319 }
320
321 args->new_len = round_page(args->new_len);
322 args->old_len = round_page(args->old_len);
323
324 if (args->new_len > args->old_len) {
325 td->td_retval[0] = 0;
326 return (ENOMEM);
327 }
328
329 if (args->new_len < args->old_len) {
330 addr = args->addr + args->new_len;
331 len = args->old_len - args->new_len;
332 error = kern_munmap(td, addr, len);
333 }
334
335 td->td_retval[0] = error ? 0 : (uintptr_t)args->addr;
336 return (error);
337 }
338
339 #define LINUX_MS_ASYNC 0x0001
340 #define LINUX_MS_INVALIDATE 0x0002
341 #define LINUX_MS_SYNC 0x0004
342
343 int
linux_msync(struct thread * td,struct linux_msync_args * args)344 linux_msync(struct thread *td, struct linux_msync_args *args)
345 {
346
347 return (kern_msync(td, args->addr, args->len,
348 args->fl & ~LINUX_MS_SYNC));
349 }
350
351 int
linux_mprotect(struct thread * td,struct linux_mprotect_args * uap)352 linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
353 {
354
355 return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len,
356 uap->prot));
357 }
358
359 int
linux_madvise(struct thread * td,struct linux_madvise_args * uap)360 linux_madvise(struct thread *td, struct linux_madvise_args *uap)
361 {
362
363 return (linux_madvise_common(td, PTROUT(uap->addr), uap->len,
364 uap->behav));
365 }
366
367 int
linux_mmap2(struct thread * td,struct linux_mmap2_args * uap)368 linux_mmap2(struct thread *td, struct linux_mmap2_args *uap)
369 {
370 #if defined(LINUX_ARCHWANT_MMAP2PGOFF)
371 /*
372 * For architectures with sizeof (off_t) < sizeof (loff_t) mmap is
373 * implemented with mmap2 syscall and the offset is represented in
374 * multiples of page size.
375 */
376 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
377 uap->flags, uap->fd, (uint64_t)(uint32_t)uap->pgoff * PAGE_SIZE));
378 #else
379 return (linux_mmap_common(td, PTROUT(uap->addr), uap->len, uap->prot,
380 uap->flags, uap->fd, uap->pgoff));
381 #endif
382 }
383
384 #ifdef LINUX_LEGACY_SYSCALLS
385 int
linux_time(struct thread * td,struct linux_time_args * args)386 linux_time(struct thread *td, struct linux_time_args *args)
387 {
388 struct timeval tv;
389 l_time_t tm;
390 int error;
391
392 microtime(&tv);
393 tm = tv.tv_sec;
394 if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm))))
395 return (error);
396 td->td_retval[0] = tm;
397 return (0);
398 }
399 #endif
400
401 struct l_times_argv {
402 l_clock_t tms_utime;
403 l_clock_t tms_stime;
404 l_clock_t tms_cutime;
405 l_clock_t tms_cstime;
406 };
407
408 /*
409 * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value.
410 * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK
411 * auxiliary vector entry.
412 */
413 #define CLK_TCK 100
414
415 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
416 #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz))
417
418 #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER(2,4,0) ? \
419 CONVNTCK(r) : CONVOTCK(r))
420
421 int
linux_times(struct thread * td,struct linux_times_args * args)422 linux_times(struct thread *td, struct linux_times_args *args)
423 {
424 struct timeval tv, utime, stime, cutime, cstime;
425 struct l_times_argv tms;
426 struct proc *p;
427 int error;
428
429 if (args->buf != NULL) {
430 p = td->td_proc;
431 PROC_LOCK(p);
432 PROC_STATLOCK(p);
433 calcru(p, &utime, &stime);
434 PROC_STATUNLOCK(p);
435 calccru(p, &cutime, &cstime);
436 PROC_UNLOCK(p);
437
438 tms.tms_utime = CONVTCK(utime);
439 tms.tms_stime = CONVTCK(stime);
440
441 tms.tms_cutime = CONVTCK(cutime);
442 tms.tms_cstime = CONVTCK(cstime);
443
444 if ((error = copyout(&tms, args->buf, sizeof(tms))))
445 return (error);
446 }
447
448 microuptime(&tv);
449 td->td_retval[0] = (int)CONVTCK(tv);
450 return (0);
451 }
452
453 int
linux_newuname(struct thread * td,struct linux_newuname_args * args)454 linux_newuname(struct thread *td, struct linux_newuname_args *args)
455 {
456 struct l_new_utsname utsname;
457 char osname[LINUX_MAX_UTSNAME];
458 char osrelease[LINUX_MAX_UTSNAME];
459 char *p;
460
461 linux_get_osname(td, osname);
462 linux_get_osrelease(td, osrelease);
463
464 bzero(&utsname, sizeof(utsname));
465 strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME);
466 getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME);
467 getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME);
468 strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME);
469 strlcpy(utsname.version, version, LINUX_MAX_UTSNAME);
470 for (p = utsname.version; *p != '\0'; ++p)
471 if (*p == '\n') {
472 *p = '\0';
473 break;
474 }
475 #if defined(__amd64__)
476 /*
477 * On amd64, Linux uname(2) needs to return "x86_64"
478 * for both 64-bit and 32-bit applications. On 32-bit,
479 * the string returned by getauxval(AT_PLATFORM) needs
480 * to remain "i686", though.
481 */
482 #if defined(COMPAT_LINUX32)
483 if (linux32_emulate_i386)
484 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
485 else
486 #endif
487 strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME);
488 #elif defined(__aarch64__)
489 strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME);
490 #elif defined(__i386__)
491 strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME);
492 #endif
493
494 return (copyout(&utsname, args->buf, sizeof(utsname)));
495 }
496
497 struct l_utimbuf {
498 l_time_t l_actime;
499 l_time_t l_modtime;
500 };
501
502 #ifdef LINUX_LEGACY_SYSCALLS
503 int
linux_utime(struct thread * td,struct linux_utime_args * args)504 linux_utime(struct thread *td, struct linux_utime_args *args)
505 {
506 struct timeval tv[2], *tvp;
507 struct l_utimbuf lut;
508 int error;
509
510 if (args->times) {
511 if ((error = copyin(args->times, &lut, sizeof lut)) != 0)
512 return (error);
513 tv[0].tv_sec = lut.l_actime;
514 tv[0].tv_usec = 0;
515 tv[1].tv_sec = lut.l_modtime;
516 tv[1].tv_usec = 0;
517 tvp = tv;
518 } else
519 tvp = NULL;
520
521 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
522 tvp, UIO_SYSSPACE));
523 }
524 #endif
525
526 #ifdef LINUX_LEGACY_SYSCALLS
527 int
linux_utimes(struct thread * td,struct linux_utimes_args * args)528 linux_utimes(struct thread *td, struct linux_utimes_args *args)
529 {
530 l_timeval ltv[2];
531 struct timeval tv[2], *tvp = NULL;
532 int error;
533
534 if (args->tptr != NULL) {
535 if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0)
536 return (error);
537 tv[0].tv_sec = ltv[0].tv_sec;
538 tv[0].tv_usec = ltv[0].tv_usec;
539 tv[1].tv_sec = ltv[1].tv_sec;
540 tv[1].tv_usec = ltv[1].tv_usec;
541 tvp = tv;
542 }
543
544 return (kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE,
545 tvp, UIO_SYSSPACE));
546 }
547 #endif
548
549 static int
linux_utimensat_lts_to_ts(struct l_timespec * l_times,struct timespec * times)550 linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times)
551 {
552
553 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
554 l_times->tv_nsec != LINUX_UTIME_NOW &&
555 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
556 return (EINVAL);
557
558 times->tv_sec = l_times->tv_sec;
559 switch (l_times->tv_nsec)
560 {
561 case LINUX_UTIME_OMIT:
562 times->tv_nsec = UTIME_OMIT;
563 break;
564 case LINUX_UTIME_NOW:
565 times->tv_nsec = UTIME_NOW;
566 break;
567 default:
568 times->tv_nsec = l_times->tv_nsec;
569 }
570
571 return (0);
572 }
573
574 static int
linux_common_utimensat(struct thread * td,int ldfd,const char * pathname,struct timespec * timesp,int lflags)575 linux_common_utimensat(struct thread *td, int ldfd, const char *pathname,
576 struct timespec *timesp, int lflags)
577 {
578 int dfd, flags = 0;
579
580 dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd;
581
582 if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH))
583 return (EINVAL);
584
585 if (timesp != NULL) {
586 /* This breaks POSIX, but is what the Linux kernel does
587 * _on purpose_ (documented in the man page for utimensat(2)),
588 * so we must follow that behaviour. */
589 if (timesp[0].tv_nsec == UTIME_OMIT &&
590 timesp[1].tv_nsec == UTIME_OMIT)
591 return (0);
592 }
593
594 if (lflags & LINUX_AT_SYMLINK_NOFOLLOW)
595 flags |= AT_SYMLINK_NOFOLLOW;
596 if (lflags & LINUX_AT_EMPTY_PATH)
597 flags |= AT_EMPTY_PATH;
598
599 if (pathname != NULL)
600 return (kern_utimensat(td, dfd, pathname,
601 UIO_USERSPACE, timesp, UIO_SYSSPACE, flags));
602
603 if (lflags != 0)
604 return (EINVAL);
605
606 return (kern_futimens(td, dfd, timesp, UIO_SYSSPACE));
607 }
608
609 int
linux_utimensat(struct thread * td,struct linux_utimensat_args * args)610 linux_utimensat(struct thread *td, struct linux_utimensat_args *args)
611 {
612 struct l_timespec l_times[2];
613 struct timespec times[2], *timesp;
614 int error;
615
616 if (args->times != NULL) {
617 error = copyin(args->times, l_times, sizeof(l_times));
618 if (error != 0)
619 return (error);
620
621 error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]);
622 if (error != 0)
623 return (error);
624 error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]);
625 if (error != 0)
626 return (error);
627 timesp = times;
628 } else
629 timesp = NULL;
630
631 return (linux_common_utimensat(td, args->dfd, args->pathname,
632 timesp, args->flags));
633 }
634
635 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
636 static int
linux_utimensat_lts64_to_ts(struct l_timespec64 * l_times,struct timespec * times)637 linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times)
638 {
639
640 /* Zero out the padding in compat mode. */
641 l_times->tv_nsec &= 0xFFFFFFFFUL;
642
643 if (l_times->tv_nsec != LINUX_UTIME_OMIT &&
644 l_times->tv_nsec != LINUX_UTIME_NOW &&
645 (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999))
646 return (EINVAL);
647
648 times->tv_sec = l_times->tv_sec;
649 switch (l_times->tv_nsec)
650 {
651 case LINUX_UTIME_OMIT:
652 times->tv_nsec = UTIME_OMIT;
653 break;
654 case LINUX_UTIME_NOW:
655 times->tv_nsec = UTIME_NOW;
656 break;
657 default:
658 times->tv_nsec = l_times->tv_nsec;
659 }
660
661 return (0);
662 }
663
664 int
linux_utimensat_time64(struct thread * td,struct linux_utimensat_time64_args * args)665 linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args)
666 {
667 struct l_timespec64 l_times[2];
668 struct timespec times[2], *timesp;
669 int error;
670
671 if (args->times64 != NULL) {
672 error = copyin(args->times64, l_times, sizeof(l_times));
673 if (error != 0)
674 return (error);
675
676 error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]);
677 if (error != 0)
678 return (error);
679 error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]);
680 if (error != 0)
681 return (error);
682 timesp = times;
683 } else
684 timesp = NULL;
685
686 return (linux_common_utimensat(td, args->dfd, args->pathname,
687 timesp, args->flags));
688 }
689 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
690
691 #ifdef LINUX_LEGACY_SYSCALLS
692 int
linux_futimesat(struct thread * td,struct linux_futimesat_args * args)693 linux_futimesat(struct thread *td, struct linux_futimesat_args *args)
694 {
695 l_timeval ltv[2];
696 struct timeval tv[2], *tvp = NULL;
697 int error, dfd;
698
699 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
700
701 if (args->utimes != NULL) {
702 if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0)
703 return (error);
704 tv[0].tv_sec = ltv[0].tv_sec;
705 tv[0].tv_usec = ltv[0].tv_usec;
706 tv[1].tv_sec = ltv[1].tv_sec;
707 tv[1].tv_usec = ltv[1].tv_usec;
708 tvp = tv;
709 }
710
711 return (kern_utimesat(td, dfd, args->filename, UIO_USERSPACE,
712 tvp, UIO_SYSSPACE));
713 }
714 #endif
715
716 static int
linux_common_wait(struct thread * td,idtype_t idtype,int id,int * statusp,int options,void * rup,l_siginfo_t * infop)717 linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp,
718 int options, void *rup, l_siginfo_t *infop)
719 {
720 l_siginfo_t lsi;
721 siginfo_t siginfo;
722 struct __wrusage wru;
723 int error, status, tmpstat, sig;
724
725 error = kern_wait6(td, idtype, id, &status, options,
726 rup != NULL ? &wru : NULL, &siginfo);
727
728 if (error == 0 && statusp) {
729 tmpstat = status & 0xffff;
730 if (WIFSIGNALED(tmpstat)) {
731 tmpstat = (tmpstat & 0xffffff80) |
732 bsd_to_linux_signal(WTERMSIG(tmpstat));
733 } else if (WIFSTOPPED(tmpstat)) {
734 tmpstat = (tmpstat & 0xffff00ff) |
735 (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8);
736 #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32))
737 if (WSTOPSIG(status) == SIGTRAP) {
738 tmpstat = linux_ptrace_status(td,
739 siginfo.si_pid, tmpstat);
740 }
741 #endif
742 } else if (WIFCONTINUED(tmpstat)) {
743 tmpstat = 0xffff;
744 }
745 error = copyout(&tmpstat, statusp, sizeof(int));
746 }
747 if (error == 0 && rup != NULL)
748 error = linux_copyout_rusage(&wru.wru_self, rup);
749 if (error == 0 && infop != NULL && td->td_retval[0] != 0) {
750 sig = bsd_to_linux_signal(siginfo.si_signo);
751 siginfo_to_lsiginfo(&siginfo, &lsi, sig);
752 error = copyout(&lsi, infop, sizeof(lsi));
753 }
754
755 return (error);
756 }
757
758 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
759 int
linux_waitpid(struct thread * td,struct linux_waitpid_args * args)760 linux_waitpid(struct thread *td, struct linux_waitpid_args *args)
761 {
762 struct linux_wait4_args wait4_args = {
763 .pid = args->pid,
764 .status = args->status,
765 .options = args->options,
766 .rusage = NULL,
767 };
768
769 return (linux_wait4(td, &wait4_args));
770 }
771 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
772
773 int
linux_wait4(struct thread * td,struct linux_wait4_args * args)774 linux_wait4(struct thread *td, struct linux_wait4_args *args)
775 {
776 struct proc *p;
777 int options, id, idtype;
778
779 if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG |
780 LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
781 return (EINVAL);
782
783 /* -INT_MIN is not defined. */
784 if (args->pid == INT_MIN)
785 return (ESRCH);
786
787 options = 0;
788 linux_to_bsd_waitopts(args->options, &options);
789
790 /*
791 * For backward compatibility we implicitly add flags WEXITED
792 * and WTRAPPED here.
793 */
794 options |= WEXITED | WTRAPPED;
795
796 if (args->pid == WAIT_ANY) {
797 idtype = P_ALL;
798 id = 0;
799 } else if (args->pid < 0) {
800 idtype = P_PGID;
801 id = (id_t)-args->pid;
802 } else if (args->pid == 0) {
803 idtype = P_PGID;
804 p = td->td_proc;
805 PROC_LOCK(p);
806 id = p->p_pgid;
807 PROC_UNLOCK(p);
808 } else {
809 idtype = P_PID;
810 id = (id_t)args->pid;
811 }
812
813 return (linux_common_wait(td, idtype, id, args->status, options,
814 args->rusage, NULL));
815 }
816
817 int
linux_waitid(struct thread * td,struct linux_waitid_args * args)818 linux_waitid(struct thread *td, struct linux_waitid_args *args)
819 {
820 idtype_t idtype;
821 int error, options;
822 struct proc *p;
823 pid_t id;
824
825 if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED |
826 LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL))
827 return (EINVAL);
828
829 options = 0;
830 linux_to_bsd_waitopts(args->options, &options);
831
832 id = args->id;
833 switch (args->idtype) {
834 case LINUX_P_ALL:
835 idtype = P_ALL;
836 break;
837 case LINUX_P_PID:
838 if (args->id <= 0)
839 return (EINVAL);
840 idtype = P_PID;
841 break;
842 case LINUX_P_PGID:
843 if (linux_kernver(td) >= LINUX_KERNVER(5,4,0) && args->id == 0) {
844 p = td->td_proc;
845 PROC_LOCK(p);
846 id = p->p_pgid;
847 PROC_UNLOCK(p);
848 } else if (args->id <= 0)
849 return (EINVAL);
850 idtype = P_PGID;
851 break;
852 case LINUX_P_PIDFD:
853 LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype");
854 return (ENOSYS);
855 default:
856 return (EINVAL);
857 }
858
859 error = linux_common_wait(td, idtype, id, NULL, options,
860 args->rusage, args->info);
861 td->td_retval[0] = 0;
862
863 return (error);
864 }
865
866 #ifdef LINUX_LEGACY_SYSCALLS
867 int
linux_mknod(struct thread * td,struct linux_mknod_args * args)868 linux_mknod(struct thread *td, struct linux_mknod_args *args)
869 {
870 int error;
871
872 switch (args->mode & S_IFMT) {
873 case S_IFIFO:
874 case S_IFSOCK:
875 error = kern_mkfifoat(td, AT_FDCWD, args->path, UIO_USERSPACE,
876 args->mode);
877 break;
878
879 case S_IFCHR:
880 case S_IFBLK:
881 error = kern_mknodat(td, AT_FDCWD, args->path, UIO_USERSPACE,
882 args->mode, linux_decode_dev(args->dev));
883 break;
884
885 case S_IFDIR:
886 error = EPERM;
887 break;
888
889 case 0:
890 args->mode |= S_IFREG;
891 /* FALLTHROUGH */
892 case S_IFREG:
893 error = kern_openat(td, AT_FDCWD, args->path, UIO_USERSPACE,
894 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
895 if (error == 0)
896 kern_close(td, td->td_retval[0]);
897 break;
898
899 default:
900 error = EINVAL;
901 break;
902 }
903 return (error);
904 }
905 #endif
906
907 int
linux_mknodat(struct thread * td,struct linux_mknodat_args * args)908 linux_mknodat(struct thread *td, struct linux_mknodat_args *args)
909 {
910 int error, dfd;
911
912 dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd;
913
914 switch (args->mode & S_IFMT) {
915 case S_IFIFO:
916 case S_IFSOCK:
917 error = kern_mkfifoat(td, dfd, args->filename, UIO_USERSPACE,
918 args->mode);
919 break;
920
921 case S_IFCHR:
922 case S_IFBLK:
923 error = kern_mknodat(td, dfd, args->filename, UIO_USERSPACE,
924 args->mode, linux_decode_dev(args->dev));
925 break;
926
927 case S_IFDIR:
928 error = EPERM;
929 break;
930
931 case 0:
932 args->mode |= S_IFREG;
933 /* FALLTHROUGH */
934 case S_IFREG:
935 error = kern_openat(td, dfd, args->filename, UIO_USERSPACE,
936 O_WRONLY | O_CREAT | O_TRUNC, args->mode);
937 if (error == 0)
938 kern_close(td, td->td_retval[0]);
939 break;
940
941 default:
942 error = EINVAL;
943 break;
944 }
945 return (error);
946 }
947
948 /*
949 * UGH! This is just about the dumbest idea I've ever heard!!
950 */
951 int
linux_personality(struct thread * td,struct linux_personality_args * args)952 linux_personality(struct thread *td, struct linux_personality_args *args)
953 {
954 struct linux_pemuldata *pem;
955 struct proc *p = td->td_proc;
956 uint32_t old;
957
958 PROC_LOCK(p);
959 pem = pem_find(p);
960 old = pem->persona;
961 if (args->per != 0xffffffff)
962 pem->persona = args->per;
963 PROC_UNLOCK(p);
964
965 td->td_retval[0] = old;
966 return (0);
967 }
968
969 struct l_itimerval {
970 l_timeval it_interval;
971 l_timeval it_value;
972 };
973
974 #define B2L_ITIMERVAL(bip, lip) \
975 (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \
976 (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \
977 (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \
978 (bip)->it_value.tv_usec = (lip)->it_value.tv_usec;
979
980 int
linux_setitimer(struct thread * td,struct linux_setitimer_args * uap)981 linux_setitimer(struct thread *td, struct linux_setitimer_args *uap)
982 {
983 int error;
984 struct l_itimerval ls;
985 struct itimerval aitv, oitv;
986
987 if (uap->itv == NULL) {
988 uap->itv = uap->oitv;
989 return (linux_getitimer(td, (struct linux_getitimer_args *)uap));
990 }
991
992 error = copyin(uap->itv, &ls, sizeof(ls));
993 if (error != 0)
994 return (error);
995 B2L_ITIMERVAL(&aitv, &ls);
996 error = kern_setitimer(td, uap->which, &aitv, &oitv);
997 if (error != 0 || uap->oitv == NULL)
998 return (error);
999 B2L_ITIMERVAL(&ls, &oitv);
1000
1001 return (copyout(&ls, uap->oitv, sizeof(ls)));
1002 }
1003
1004 int
linux_getitimer(struct thread * td,struct linux_getitimer_args * uap)1005 linux_getitimer(struct thread *td, struct linux_getitimer_args *uap)
1006 {
1007 int error;
1008 struct l_itimerval ls;
1009 struct itimerval aitv;
1010
1011 error = kern_getitimer(td, uap->which, &aitv);
1012 if (error != 0)
1013 return (error);
1014 B2L_ITIMERVAL(&ls, &aitv);
1015 return (copyout(&ls, uap->itv, sizeof(ls)));
1016 }
1017
1018 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1019 int
linux_nice(struct thread * td,struct linux_nice_args * args)1020 linux_nice(struct thread *td, struct linux_nice_args *args)
1021 {
1022
1023 return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc));
1024 }
1025 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1026
1027 int
linux_setgroups(struct thread * td,struct linux_setgroups_args * args)1028 linux_setgroups(struct thread *td, struct linux_setgroups_args *args)
1029 {
1030 struct ucred *newcred, *oldcred;
1031 l_gid_t *linux_gidset;
1032 gid_t *bsd_gidset;
1033 int ngrp, error;
1034 struct proc *p;
1035
1036 ngrp = args->gidsetsize;
1037 if (ngrp < 0 || ngrp >= ngroups_max + 1)
1038 return (EINVAL);
1039 linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK);
1040 error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t));
1041 if (error)
1042 goto out;
1043 newcred = crget();
1044 crextend(newcred, ngrp + 1);
1045 p = td->td_proc;
1046 PROC_LOCK(p);
1047 oldcred = p->p_ucred;
1048 crcopy(newcred, oldcred);
1049
1050 /*
1051 * cr_groups[0] holds egid. Setting the whole set from
1052 * the supplied set will cause egid to be changed too.
1053 * Keep cr_groups[0] unchanged to prevent that.
1054 */
1055
1056 if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) {
1057 PROC_UNLOCK(p);
1058 crfree(newcred);
1059 goto out;
1060 }
1061
1062 if (ngrp > 0) {
1063 newcred->cr_ngroups = ngrp + 1;
1064
1065 bsd_gidset = newcred->cr_groups;
1066 ngrp--;
1067 while (ngrp >= 0) {
1068 bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
1069 ngrp--;
1070 }
1071 } else
1072 newcred->cr_ngroups = 1;
1073
1074 setsugid(p);
1075 proc_set_cred(p, newcred);
1076 PROC_UNLOCK(p);
1077 crfree(oldcred);
1078 error = 0;
1079 out:
1080 free(linux_gidset, M_LINUX);
1081 return (error);
1082 }
1083
1084 int
linux_getgroups(struct thread * td,struct linux_getgroups_args * args)1085 linux_getgroups(struct thread *td, struct linux_getgroups_args *args)
1086 {
1087 struct ucred *cred;
1088 l_gid_t *linux_gidset;
1089 gid_t *bsd_gidset;
1090 int bsd_gidsetsz, ngrp, error;
1091
1092 cred = td->td_ucred;
1093 bsd_gidset = cred->cr_groups;
1094 bsd_gidsetsz = cred->cr_ngroups - 1;
1095
1096 /*
1097 * cr_groups[0] holds egid. Returning the whole set
1098 * here will cause a duplicate. Exclude cr_groups[0]
1099 * to prevent that.
1100 */
1101
1102 if ((ngrp = args->gidsetsize) == 0) {
1103 td->td_retval[0] = bsd_gidsetsz;
1104 return (0);
1105 }
1106
1107 if (ngrp < bsd_gidsetsz)
1108 return (EINVAL);
1109
1110 ngrp = 0;
1111 linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset),
1112 M_LINUX, M_WAITOK);
1113 while (ngrp < bsd_gidsetsz) {
1114 linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
1115 ngrp++;
1116 }
1117
1118 error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t));
1119 free(linux_gidset, M_LINUX);
1120 if (error)
1121 return (error);
1122
1123 td->td_retval[0] = ngrp;
1124 return (0);
1125 }
1126
1127 static bool
linux_get_dummy_limit(l_uint resource,struct rlimit * rlim)1128 linux_get_dummy_limit(l_uint resource, struct rlimit *rlim)
1129 {
1130
1131 if (linux_dummy_rlimits == 0)
1132 return (false);
1133
1134 switch (resource) {
1135 case LINUX_RLIMIT_LOCKS:
1136 case LINUX_RLIMIT_SIGPENDING:
1137 case LINUX_RLIMIT_MSGQUEUE:
1138 case LINUX_RLIMIT_RTTIME:
1139 rlim->rlim_cur = LINUX_RLIM_INFINITY;
1140 rlim->rlim_max = LINUX_RLIM_INFINITY;
1141 return (true);
1142 case LINUX_RLIMIT_NICE:
1143 case LINUX_RLIMIT_RTPRIO:
1144 rlim->rlim_cur = 0;
1145 rlim->rlim_max = 0;
1146 return (true);
1147 default:
1148 return (false);
1149 }
1150 }
1151
1152 int
linux_setrlimit(struct thread * td,struct linux_setrlimit_args * args)1153 linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args)
1154 {
1155 struct rlimit bsd_rlim;
1156 struct l_rlimit rlim;
1157 u_int which;
1158 int error;
1159
1160 if (args->resource >= LINUX_RLIM_NLIMITS)
1161 return (EINVAL);
1162
1163 which = linux_to_bsd_resource[args->resource];
1164 if (which == -1)
1165 return (EINVAL);
1166
1167 error = copyin(args->rlim, &rlim, sizeof(rlim));
1168 if (error)
1169 return (error);
1170
1171 bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur;
1172 bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max;
1173 return (kern_setrlimit(td, which, &bsd_rlim));
1174 }
1175
1176 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
1177 int
linux_old_getrlimit(struct thread * td,struct linux_old_getrlimit_args * args)1178 linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args)
1179 {
1180 struct l_rlimit rlim;
1181 struct rlimit bsd_rlim;
1182 u_int which;
1183
1184 if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1185 rlim.rlim_cur = bsd_rlim.rlim_cur;
1186 rlim.rlim_max = bsd_rlim.rlim_max;
1187 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1188 }
1189
1190 if (args->resource >= LINUX_RLIM_NLIMITS)
1191 return (EINVAL);
1192
1193 which = linux_to_bsd_resource[args->resource];
1194 if (which == -1)
1195 return (EINVAL);
1196
1197 lim_rlimit(td, which, &bsd_rlim);
1198
1199 #ifdef COMPAT_LINUX32
1200 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur;
1201 if (rlim.rlim_cur == UINT_MAX)
1202 rlim.rlim_cur = INT_MAX;
1203 rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max;
1204 if (rlim.rlim_max == UINT_MAX)
1205 rlim.rlim_max = INT_MAX;
1206 #else
1207 rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur;
1208 if (rlim.rlim_cur == ULONG_MAX)
1209 rlim.rlim_cur = LONG_MAX;
1210 rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max;
1211 if (rlim.rlim_max == ULONG_MAX)
1212 rlim.rlim_max = LONG_MAX;
1213 #endif
1214 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1215 }
1216 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
1217
1218 int
linux_getrlimit(struct thread * td,struct linux_getrlimit_args * args)1219 linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args)
1220 {
1221 struct l_rlimit rlim;
1222 struct rlimit bsd_rlim;
1223 u_int which;
1224
1225 if (linux_get_dummy_limit(args->resource, &bsd_rlim)) {
1226 rlim.rlim_cur = bsd_rlim.rlim_cur;
1227 rlim.rlim_max = bsd_rlim.rlim_max;
1228 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1229 }
1230
1231 if (args->resource >= LINUX_RLIM_NLIMITS)
1232 return (EINVAL);
1233
1234 which = linux_to_bsd_resource[args->resource];
1235 if (which == -1)
1236 return (EINVAL);
1237
1238 lim_rlimit(td, which, &bsd_rlim);
1239
1240 rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur;
1241 rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max;
1242 return (copyout(&rlim, args->rlim, sizeof(rlim)));
1243 }
1244
1245 int
linux_sched_setscheduler(struct thread * td,struct linux_sched_setscheduler_args * args)1246 linux_sched_setscheduler(struct thread *td,
1247 struct linux_sched_setscheduler_args *args)
1248 {
1249 struct sched_param sched_param;
1250 struct thread *tdt;
1251 int error, policy;
1252
1253 switch (args->policy) {
1254 case LINUX_SCHED_OTHER:
1255 policy = SCHED_OTHER;
1256 break;
1257 case LINUX_SCHED_FIFO:
1258 policy = SCHED_FIFO;
1259 break;
1260 case LINUX_SCHED_RR:
1261 policy = SCHED_RR;
1262 break;
1263 default:
1264 return (EINVAL);
1265 }
1266
1267 error = copyin(args->param, &sched_param, sizeof(sched_param));
1268 if (error)
1269 return (error);
1270
1271 if (linux_map_sched_prio) {
1272 switch (policy) {
1273 case SCHED_OTHER:
1274 if (sched_param.sched_priority != 0)
1275 return (EINVAL);
1276
1277 sched_param.sched_priority =
1278 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1279 break;
1280 case SCHED_FIFO:
1281 case SCHED_RR:
1282 if (sched_param.sched_priority < 1 ||
1283 sched_param.sched_priority >= LINUX_MAX_RT_PRIO)
1284 return (EINVAL);
1285
1286 /*
1287 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1288 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1289 */
1290 sched_param.sched_priority =
1291 (sched_param.sched_priority - 1) *
1292 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1293 (LINUX_MAX_RT_PRIO - 1);
1294 break;
1295 }
1296 }
1297
1298 tdt = linux_tdfind(td, args->pid, -1);
1299 if (tdt == NULL)
1300 return (ESRCH);
1301
1302 error = kern_sched_setscheduler(td, tdt, policy, &sched_param);
1303 PROC_UNLOCK(tdt->td_proc);
1304 return (error);
1305 }
1306
1307 int
linux_sched_getscheduler(struct thread * td,struct linux_sched_getscheduler_args * args)1308 linux_sched_getscheduler(struct thread *td,
1309 struct linux_sched_getscheduler_args *args)
1310 {
1311 struct thread *tdt;
1312 int error, policy;
1313
1314 tdt = linux_tdfind(td, args->pid, -1);
1315 if (tdt == NULL)
1316 return (ESRCH);
1317
1318 error = kern_sched_getscheduler(td, tdt, &policy);
1319 PROC_UNLOCK(tdt->td_proc);
1320
1321 switch (policy) {
1322 case SCHED_OTHER:
1323 td->td_retval[0] = LINUX_SCHED_OTHER;
1324 break;
1325 case SCHED_FIFO:
1326 td->td_retval[0] = LINUX_SCHED_FIFO;
1327 break;
1328 case SCHED_RR:
1329 td->td_retval[0] = LINUX_SCHED_RR;
1330 break;
1331 }
1332 return (error);
1333 }
1334
1335 int
linux_sched_get_priority_max(struct thread * td,struct linux_sched_get_priority_max_args * args)1336 linux_sched_get_priority_max(struct thread *td,
1337 struct linux_sched_get_priority_max_args *args)
1338 {
1339 struct sched_get_priority_max_args bsd;
1340
1341 if (linux_map_sched_prio) {
1342 switch (args->policy) {
1343 case LINUX_SCHED_OTHER:
1344 td->td_retval[0] = 0;
1345 return (0);
1346 case LINUX_SCHED_FIFO:
1347 case LINUX_SCHED_RR:
1348 td->td_retval[0] = LINUX_MAX_RT_PRIO - 1;
1349 return (0);
1350 default:
1351 return (EINVAL);
1352 }
1353 }
1354
1355 switch (args->policy) {
1356 case LINUX_SCHED_OTHER:
1357 bsd.policy = SCHED_OTHER;
1358 break;
1359 case LINUX_SCHED_FIFO:
1360 bsd.policy = SCHED_FIFO;
1361 break;
1362 case LINUX_SCHED_RR:
1363 bsd.policy = SCHED_RR;
1364 break;
1365 default:
1366 return (EINVAL);
1367 }
1368 return (sys_sched_get_priority_max(td, &bsd));
1369 }
1370
1371 int
linux_sched_get_priority_min(struct thread * td,struct linux_sched_get_priority_min_args * args)1372 linux_sched_get_priority_min(struct thread *td,
1373 struct linux_sched_get_priority_min_args *args)
1374 {
1375 struct sched_get_priority_min_args bsd;
1376
1377 if (linux_map_sched_prio) {
1378 switch (args->policy) {
1379 case LINUX_SCHED_OTHER:
1380 td->td_retval[0] = 0;
1381 return (0);
1382 case LINUX_SCHED_FIFO:
1383 case LINUX_SCHED_RR:
1384 td->td_retval[0] = 1;
1385 return (0);
1386 default:
1387 return (EINVAL);
1388 }
1389 }
1390
1391 switch (args->policy) {
1392 case LINUX_SCHED_OTHER:
1393 bsd.policy = SCHED_OTHER;
1394 break;
1395 case LINUX_SCHED_FIFO:
1396 bsd.policy = SCHED_FIFO;
1397 break;
1398 case LINUX_SCHED_RR:
1399 bsd.policy = SCHED_RR;
1400 break;
1401 default:
1402 return (EINVAL);
1403 }
1404 return (sys_sched_get_priority_min(td, &bsd));
1405 }
1406
1407 #define REBOOT_CAD_ON 0x89abcdef
1408 #define REBOOT_CAD_OFF 0
1409 #define REBOOT_HALT 0xcdef0123
1410 #define REBOOT_RESTART 0x01234567
1411 #define REBOOT_RESTART2 0xA1B2C3D4
1412 #define REBOOT_POWEROFF 0x4321FEDC
1413 #define REBOOT_MAGIC1 0xfee1dead
1414 #define REBOOT_MAGIC2 0x28121969
1415 #define REBOOT_MAGIC2A 0x05121996
1416 #define REBOOT_MAGIC2B 0x16041998
1417
1418 int
linux_reboot(struct thread * td,struct linux_reboot_args * args)1419 linux_reboot(struct thread *td, struct linux_reboot_args *args)
1420 {
1421 struct reboot_args bsd_args;
1422
1423 if (args->magic1 != REBOOT_MAGIC1)
1424 return (EINVAL);
1425
1426 switch (args->magic2) {
1427 case REBOOT_MAGIC2:
1428 case REBOOT_MAGIC2A:
1429 case REBOOT_MAGIC2B:
1430 break;
1431 default:
1432 return (EINVAL);
1433 }
1434
1435 switch (args->cmd) {
1436 case REBOOT_CAD_ON:
1437 case REBOOT_CAD_OFF:
1438 return (priv_check(td, PRIV_REBOOT));
1439 case REBOOT_HALT:
1440 bsd_args.opt = RB_HALT;
1441 break;
1442 case REBOOT_RESTART:
1443 case REBOOT_RESTART2:
1444 bsd_args.opt = 0;
1445 break;
1446 case REBOOT_POWEROFF:
1447 bsd_args.opt = RB_POWEROFF;
1448 break;
1449 default:
1450 return (EINVAL);
1451 }
1452 return (sys_reboot(td, &bsd_args));
1453 }
1454
1455 int
linux_getpid(struct thread * td,struct linux_getpid_args * args)1456 linux_getpid(struct thread *td, struct linux_getpid_args *args)
1457 {
1458
1459 td->td_retval[0] = td->td_proc->p_pid;
1460
1461 return (0);
1462 }
1463
1464 int
linux_gettid(struct thread * td,struct linux_gettid_args * args)1465 linux_gettid(struct thread *td, struct linux_gettid_args *args)
1466 {
1467 struct linux_emuldata *em;
1468
1469 em = em_find(td);
1470 KASSERT(em != NULL, ("gettid: emuldata not found.\n"));
1471
1472 td->td_retval[0] = em->em_tid;
1473
1474 return (0);
1475 }
1476
1477 int
linux_getppid(struct thread * td,struct linux_getppid_args * args)1478 linux_getppid(struct thread *td, struct linux_getppid_args *args)
1479 {
1480
1481 td->td_retval[0] = kern_getppid(td);
1482 return (0);
1483 }
1484
1485 int
linux_getgid(struct thread * td,struct linux_getgid_args * args)1486 linux_getgid(struct thread *td, struct linux_getgid_args *args)
1487 {
1488
1489 td->td_retval[0] = td->td_ucred->cr_rgid;
1490 return (0);
1491 }
1492
1493 int
linux_getuid(struct thread * td,struct linux_getuid_args * args)1494 linux_getuid(struct thread *td, struct linux_getuid_args *args)
1495 {
1496
1497 td->td_retval[0] = td->td_ucred->cr_ruid;
1498 return (0);
1499 }
1500
1501 int
linux_getsid(struct thread * td,struct linux_getsid_args * args)1502 linux_getsid(struct thread *td, struct linux_getsid_args *args)
1503 {
1504
1505 return (kern_getsid(td, args->pid));
1506 }
1507
1508 int
linux_getpriority(struct thread * td,struct linux_getpriority_args * args)1509 linux_getpriority(struct thread *td, struct linux_getpriority_args *args)
1510 {
1511 int error;
1512
1513 error = kern_getpriority(td, args->which, args->who);
1514 td->td_retval[0] = 20 - td->td_retval[0];
1515 return (error);
1516 }
1517
1518 int
linux_sethostname(struct thread * td,struct linux_sethostname_args * args)1519 linux_sethostname(struct thread *td, struct linux_sethostname_args *args)
1520 {
1521 int name[2];
1522
1523 name[0] = CTL_KERN;
1524 name[1] = KERN_HOSTNAME;
1525 return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname,
1526 args->len, 0, 0));
1527 }
1528
1529 int
linux_setdomainname(struct thread * td,struct linux_setdomainname_args * args)1530 linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args)
1531 {
1532 int name[2];
1533
1534 name[0] = CTL_KERN;
1535 name[1] = KERN_NISDOMAINNAME;
1536 return (userland_sysctl(td, name, 2, 0, 0, 0, args->name,
1537 args->len, 0, 0));
1538 }
1539
1540 int
linux_exit_group(struct thread * td,struct linux_exit_group_args * args)1541 linux_exit_group(struct thread *td, struct linux_exit_group_args *args)
1542 {
1543
1544 LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid,
1545 args->error_code);
1546
1547 /*
1548 * XXX: we should send a signal to the parent if
1549 * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?)
1550 * as it doesnt occur often.
1551 */
1552 exit1(td, args->error_code, 0);
1553 /* NOTREACHED */
1554 }
1555
1556 #define _LINUX_CAPABILITY_VERSION_1 0x19980330
1557 #define _LINUX_CAPABILITY_VERSION_2 0x20071026
1558 #define _LINUX_CAPABILITY_VERSION_3 0x20080522
1559
1560 struct l_user_cap_header {
1561 l_int version;
1562 l_int pid;
1563 };
1564
1565 struct l_user_cap_data {
1566 l_int effective;
1567 l_int permitted;
1568 l_int inheritable;
1569 };
1570
1571 int
linux_capget(struct thread * td,struct linux_capget_args * uap)1572 linux_capget(struct thread *td, struct linux_capget_args *uap)
1573 {
1574 struct l_user_cap_header luch;
1575 struct l_user_cap_data lucd[2];
1576 int error, u32s;
1577
1578 if (uap->hdrp == NULL)
1579 return (EFAULT);
1580
1581 error = copyin(uap->hdrp, &luch, sizeof(luch));
1582 if (error != 0)
1583 return (error);
1584
1585 switch (luch.version) {
1586 case _LINUX_CAPABILITY_VERSION_1:
1587 u32s = 1;
1588 break;
1589 case _LINUX_CAPABILITY_VERSION_2:
1590 case _LINUX_CAPABILITY_VERSION_3:
1591 u32s = 2;
1592 break;
1593 default:
1594 luch.version = _LINUX_CAPABILITY_VERSION_1;
1595 error = copyout(&luch, uap->hdrp, sizeof(luch));
1596 if (error)
1597 return (error);
1598 return (EINVAL);
1599 }
1600
1601 if (luch.pid)
1602 return (EPERM);
1603
1604 if (uap->datap) {
1605 /*
1606 * The current implementation doesn't support setting
1607 * a capability (it's essentially a stub) so indicate
1608 * that no capabilities are currently set or available
1609 * to request.
1610 */
1611 memset(&lucd, 0, u32s * sizeof(lucd[0]));
1612 error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0]));
1613 }
1614
1615 return (error);
1616 }
1617
1618 int
linux_capset(struct thread * td,struct linux_capset_args * uap)1619 linux_capset(struct thread *td, struct linux_capset_args *uap)
1620 {
1621 struct l_user_cap_header luch;
1622 struct l_user_cap_data lucd[2];
1623 int error, i, u32s;
1624
1625 if (uap->hdrp == NULL || uap->datap == NULL)
1626 return (EFAULT);
1627
1628 error = copyin(uap->hdrp, &luch, sizeof(luch));
1629 if (error != 0)
1630 return (error);
1631
1632 switch (luch.version) {
1633 case _LINUX_CAPABILITY_VERSION_1:
1634 u32s = 1;
1635 break;
1636 case _LINUX_CAPABILITY_VERSION_2:
1637 case _LINUX_CAPABILITY_VERSION_3:
1638 u32s = 2;
1639 break;
1640 default:
1641 luch.version = _LINUX_CAPABILITY_VERSION_1;
1642 error = copyout(&luch, uap->hdrp, sizeof(luch));
1643 if (error)
1644 return (error);
1645 return (EINVAL);
1646 }
1647
1648 if (luch.pid)
1649 return (EPERM);
1650
1651 error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0]));
1652 if (error != 0)
1653 return (error);
1654
1655 /* We currently don't support setting any capabilities. */
1656 for (i = 0; i < u32s; i++) {
1657 if (lucd[i].effective || lucd[i].permitted ||
1658 lucd[i].inheritable) {
1659 linux_msg(td,
1660 "capset[%d] effective=0x%x, permitted=0x%x, "
1661 "inheritable=0x%x is not implemented", i,
1662 (int)lucd[i].effective, (int)lucd[i].permitted,
1663 (int)lucd[i].inheritable);
1664 return (EPERM);
1665 }
1666 }
1667
1668 return (0);
1669 }
1670
1671 int
linux_prctl(struct thread * td,struct linux_prctl_args * args)1672 linux_prctl(struct thread *td, struct linux_prctl_args *args)
1673 {
1674 int error = 0, max_size, arg;
1675 struct proc *p = td->td_proc;
1676 char comm[LINUX_MAX_COMM_LEN];
1677 int pdeath_signal, trace_state;
1678
1679 switch (args->option) {
1680 case LINUX_PR_SET_PDEATHSIG:
1681 if (!LINUX_SIG_VALID(args->arg2))
1682 return (EINVAL);
1683 pdeath_signal = linux_to_bsd_signal(args->arg2);
1684 return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL,
1685 &pdeath_signal));
1686 case LINUX_PR_GET_PDEATHSIG:
1687 error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS,
1688 &pdeath_signal);
1689 if (error != 0)
1690 return (error);
1691 pdeath_signal = bsd_to_linux_signal(pdeath_signal);
1692 return (copyout(&pdeath_signal,
1693 (void *)(register_t)args->arg2,
1694 sizeof(pdeath_signal)));
1695 /*
1696 * In Linux, this flag controls if set[gu]id processes can coredump.
1697 * There are additional semantics imposed on processes that cannot
1698 * coredump:
1699 * - Such processes can not be ptraced.
1700 * - There are some semantics around ownership of process-related files
1701 * in the /proc namespace.
1702 *
1703 * In FreeBSD, we can (and by default, do) disable setuid coredump
1704 * system-wide with 'sugid_coredump.' We control tracability on a
1705 * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag).
1706 * By happy coincidence, P2_NOTRACE also prevents coredumping. So the
1707 * procctl is roughly analogous to Linux's DUMPABLE.
1708 *
1709 * So, proxy these knobs to the corresponding PROC_TRACE setting.
1710 */
1711 case LINUX_PR_GET_DUMPABLE:
1712 error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS,
1713 &trace_state);
1714 if (error != 0)
1715 return (error);
1716 td->td_retval[0] = (trace_state != -1);
1717 return (0);
1718 case LINUX_PR_SET_DUMPABLE:
1719 /*
1720 * It is only valid for userspace to set one of these two
1721 * flags, and only one at a time.
1722 */
1723 switch (args->arg2) {
1724 case LINUX_SUID_DUMP_DISABLE:
1725 trace_state = PROC_TRACE_CTL_DISABLE_EXEC;
1726 break;
1727 case LINUX_SUID_DUMP_USER:
1728 trace_state = PROC_TRACE_CTL_ENABLE;
1729 break;
1730 default:
1731 return (EINVAL);
1732 }
1733 return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL,
1734 &trace_state));
1735 case LINUX_PR_GET_KEEPCAPS:
1736 /*
1737 * Indicate that we always clear the effective and
1738 * permitted capability sets when the user id becomes
1739 * non-zero (actually the capability sets are simply
1740 * always zero in the current implementation).
1741 */
1742 td->td_retval[0] = 0;
1743 break;
1744 case LINUX_PR_SET_KEEPCAPS:
1745 /*
1746 * Ignore requests to keep the effective and permitted
1747 * capability sets when the user id becomes non-zero.
1748 */
1749 break;
1750 case LINUX_PR_SET_NAME:
1751 /*
1752 * To be on the safe side we need to make sure to not
1753 * overflow the size a Linux program expects. We already
1754 * do this here in the copyin, so that we don't need to
1755 * check on copyout.
1756 */
1757 max_size = MIN(sizeof(comm), sizeof(p->p_comm));
1758 error = copyinstr((void *)(register_t)args->arg2, comm,
1759 max_size, NULL);
1760
1761 /* Linux silently truncates the name if it is too long. */
1762 if (error == ENAMETOOLONG) {
1763 /*
1764 * XXX: copyinstr() isn't documented to populate the
1765 * array completely, so do a copyin() to be on the
1766 * safe side. This should be changed in case
1767 * copyinstr() is changed to guarantee this.
1768 */
1769 error = copyin((void *)(register_t)args->arg2, comm,
1770 max_size - 1);
1771 comm[max_size - 1] = '\0';
1772 }
1773 if (error)
1774 return (error);
1775
1776 PROC_LOCK(p);
1777 strlcpy(p->p_comm, comm, sizeof(p->p_comm));
1778 PROC_UNLOCK(p);
1779 break;
1780 case LINUX_PR_GET_NAME:
1781 PROC_LOCK(p);
1782 strlcpy(comm, p->p_comm, sizeof(comm));
1783 PROC_UNLOCK(p);
1784 error = copyout(comm, (void *)(register_t)args->arg2,
1785 strlen(comm) + 1);
1786 break;
1787 case LINUX_PR_GET_SECCOMP:
1788 case LINUX_PR_SET_SECCOMP:
1789 /*
1790 * Same as returned by Linux without CONFIG_SECCOMP enabled.
1791 */
1792 error = EINVAL;
1793 break;
1794 case LINUX_PR_CAPBSET_READ:
1795 #if 0
1796 /*
1797 * This makes too much noise with Ubuntu Focal.
1798 */
1799 linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d",
1800 (int)args->arg2);
1801 #endif
1802 error = EINVAL;
1803 break;
1804 case LINUX_PR_SET_NO_NEW_PRIVS:
1805 arg = args->arg2 == 1 ?
1806 PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
1807 error = kern_procctl(td, P_PID, p->p_pid,
1808 PROC_NO_NEW_PRIVS_CTL, &arg);
1809 break;
1810 case LINUX_PR_SET_PTRACER:
1811 linux_msg(td, "unsupported prctl PR_SET_PTRACER");
1812 error = EINVAL;
1813 break;
1814 default:
1815 linux_msg(td, "unsupported prctl option %d", args->option);
1816 error = EINVAL;
1817 break;
1818 }
1819
1820 return (error);
1821 }
1822
1823 int
linux_sched_setparam(struct thread * td,struct linux_sched_setparam_args * uap)1824 linux_sched_setparam(struct thread *td,
1825 struct linux_sched_setparam_args *uap)
1826 {
1827 struct sched_param sched_param;
1828 struct thread *tdt;
1829 int error, policy;
1830
1831 error = copyin(uap->param, &sched_param, sizeof(sched_param));
1832 if (error)
1833 return (error);
1834
1835 tdt = linux_tdfind(td, uap->pid, -1);
1836 if (tdt == NULL)
1837 return (ESRCH);
1838
1839 if (linux_map_sched_prio) {
1840 error = kern_sched_getscheduler(td, tdt, &policy);
1841 if (error)
1842 goto out;
1843
1844 switch (policy) {
1845 case SCHED_OTHER:
1846 if (sched_param.sched_priority != 0) {
1847 error = EINVAL;
1848 goto out;
1849 }
1850 sched_param.sched_priority =
1851 PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE;
1852 break;
1853 case SCHED_FIFO:
1854 case SCHED_RR:
1855 if (sched_param.sched_priority < 1 ||
1856 sched_param.sched_priority >= LINUX_MAX_RT_PRIO) {
1857 error = EINVAL;
1858 goto out;
1859 }
1860 /*
1861 * Map [1, LINUX_MAX_RT_PRIO - 1] to
1862 * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down).
1863 */
1864 sched_param.sched_priority =
1865 (sched_param.sched_priority - 1) *
1866 (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) /
1867 (LINUX_MAX_RT_PRIO - 1);
1868 break;
1869 }
1870 }
1871
1872 error = kern_sched_setparam(td, tdt, &sched_param);
1873 out: PROC_UNLOCK(tdt->td_proc);
1874 return (error);
1875 }
1876
1877 int
linux_sched_getparam(struct thread * td,struct linux_sched_getparam_args * uap)1878 linux_sched_getparam(struct thread *td,
1879 struct linux_sched_getparam_args *uap)
1880 {
1881 struct sched_param sched_param;
1882 struct thread *tdt;
1883 int error, policy;
1884
1885 tdt = linux_tdfind(td, uap->pid, -1);
1886 if (tdt == NULL)
1887 return (ESRCH);
1888
1889 error = kern_sched_getparam(td, tdt, &sched_param);
1890 if (error) {
1891 PROC_UNLOCK(tdt->td_proc);
1892 return (error);
1893 }
1894
1895 if (linux_map_sched_prio) {
1896 error = kern_sched_getscheduler(td, tdt, &policy);
1897 PROC_UNLOCK(tdt->td_proc);
1898 if (error)
1899 return (error);
1900
1901 switch (policy) {
1902 case SCHED_OTHER:
1903 sched_param.sched_priority = 0;
1904 break;
1905 case SCHED_FIFO:
1906 case SCHED_RR:
1907 /*
1908 * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to
1909 * [1, LINUX_MAX_RT_PRIO - 1] (rounding up).
1910 */
1911 sched_param.sched_priority =
1912 (sched_param.sched_priority *
1913 (LINUX_MAX_RT_PRIO - 1) +
1914 (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) /
1915 (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1;
1916 break;
1917 }
1918 } else
1919 PROC_UNLOCK(tdt->td_proc);
1920
1921 error = copyout(&sched_param, uap->param, sizeof(sched_param));
1922 return (error);
1923 }
1924
1925 /*
1926 * Get affinity of a process.
1927 */
1928 int
linux_sched_getaffinity(struct thread * td,struct linux_sched_getaffinity_args * args)1929 linux_sched_getaffinity(struct thread *td,
1930 struct linux_sched_getaffinity_args *args)
1931 {
1932 struct thread *tdt;
1933 cpuset_t *mask;
1934 size_t size;
1935 int error;
1936 id_t tid;
1937
1938 tdt = linux_tdfind(td, args->pid, -1);
1939 if (tdt == NULL)
1940 return (ESRCH);
1941 tid = tdt->td_tid;
1942 PROC_UNLOCK(tdt->td_proc);
1943
1944 mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO);
1945 size = min(args->len, sizeof(cpuset_t));
1946 error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1947 tid, size, mask);
1948 if (error == ERANGE)
1949 error = EINVAL;
1950 if (error == 0)
1951 error = copyout(mask, args->user_mask_ptr, size);
1952 if (error == 0)
1953 td->td_retval[0] = size;
1954 free(mask, M_LINUX);
1955 return (error);
1956 }
1957
1958 /*
1959 * Set affinity of a process.
1960 */
1961 int
linux_sched_setaffinity(struct thread * td,struct linux_sched_setaffinity_args * args)1962 linux_sched_setaffinity(struct thread *td,
1963 struct linux_sched_setaffinity_args *args)
1964 {
1965 struct thread *tdt;
1966 cpuset_t *mask;
1967 int cpu, error;
1968 size_t len;
1969 id_t tid;
1970
1971 tdt = linux_tdfind(td, args->pid, -1);
1972 if (tdt == NULL)
1973 return (ESRCH);
1974 tid = tdt->td_tid;
1975 PROC_UNLOCK(tdt->td_proc);
1976
1977 len = min(args->len, sizeof(cpuset_t));
1978 mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);;
1979 error = copyin(args->user_mask_ptr, mask, len);
1980 if (error != 0)
1981 goto out;
1982 /* Linux ignore high bits */
1983 CPU_FOREACH_ISSET(cpu, mask)
1984 if (cpu > mp_maxid)
1985 CPU_CLR(cpu, mask);
1986
1987 error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID,
1988 tid, mask);
1989 if (error == EDEADLK)
1990 error = EINVAL;
1991 out:
1992 free(mask, M_TEMP);
1993 return (error);
1994 }
1995
1996 struct linux_rlimit64 {
1997 uint64_t rlim_cur;
1998 uint64_t rlim_max;
1999 };
2000
2001 int
linux_prlimit64(struct thread * td,struct linux_prlimit64_args * args)2002 linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args)
2003 {
2004 struct rlimit rlim, nrlim;
2005 struct linux_rlimit64 lrlim;
2006 struct proc *p;
2007 u_int which;
2008 int flags;
2009 int error;
2010
2011 if (args->new == NULL && args->old != NULL) {
2012 if (linux_get_dummy_limit(args->resource, &rlim)) {
2013 lrlim.rlim_cur = rlim.rlim_cur;
2014 lrlim.rlim_max = rlim.rlim_max;
2015 return (copyout(&lrlim, args->old, sizeof(lrlim)));
2016 }
2017 }
2018
2019 if (args->resource >= LINUX_RLIM_NLIMITS)
2020 return (EINVAL);
2021
2022 which = linux_to_bsd_resource[args->resource];
2023 if (which == -1)
2024 return (EINVAL);
2025
2026 if (args->new != NULL) {
2027 /*
2028 * Note. Unlike FreeBSD where rlim is signed 64-bit Linux
2029 * rlim is unsigned 64-bit. FreeBSD treats negative limits
2030 * as INFINITY so we do not need a conversion even.
2031 */
2032 error = copyin(args->new, &nrlim, sizeof(nrlim));
2033 if (error != 0)
2034 return (error);
2035 }
2036
2037 flags = PGET_HOLD | PGET_NOTWEXIT;
2038 if (args->new != NULL)
2039 flags |= PGET_CANDEBUG;
2040 else
2041 flags |= PGET_CANSEE;
2042 if (args->pid == 0) {
2043 p = td->td_proc;
2044 PHOLD(p);
2045 } else {
2046 error = pget(args->pid, flags, &p);
2047 if (error != 0)
2048 return (error);
2049 }
2050 if (args->old != NULL) {
2051 PROC_LOCK(p);
2052 lim_rlimit_proc(p, which, &rlim);
2053 PROC_UNLOCK(p);
2054 if (rlim.rlim_cur == RLIM_INFINITY)
2055 lrlim.rlim_cur = LINUX_RLIM_INFINITY;
2056 else
2057 lrlim.rlim_cur = rlim.rlim_cur;
2058 if (rlim.rlim_max == RLIM_INFINITY)
2059 lrlim.rlim_max = LINUX_RLIM_INFINITY;
2060 else
2061 lrlim.rlim_max = rlim.rlim_max;
2062 error = copyout(&lrlim, args->old, sizeof(lrlim));
2063 if (error != 0)
2064 goto out;
2065 }
2066
2067 if (args->new != NULL)
2068 error = kern_proc_setrlimit(td, p, which, &nrlim);
2069
2070 out:
2071 PRELE(p);
2072 return (error);
2073 }
2074
2075 int
linux_pselect6(struct thread * td,struct linux_pselect6_args * args)2076 linux_pselect6(struct thread *td, struct linux_pselect6_args *args)
2077 {
2078 struct timespec ts, *tsp;
2079 int error;
2080
2081 if (args->tsp != NULL) {
2082 error = linux_get_timespec(&ts, args->tsp);
2083 if (error != 0)
2084 return (error);
2085 tsp = &ts;
2086 } else
2087 tsp = NULL;
2088
2089 error = linux_common_pselect6(td, args->nfds, args->readfds,
2090 args->writefds, args->exceptfds, tsp, args->sig);
2091
2092 if (args->tsp != NULL)
2093 linux_put_timespec(&ts, args->tsp);
2094 return (error);
2095 }
2096
2097 static int
linux_common_pselect6(struct thread * td,l_int nfds,l_fd_set * readfds,l_fd_set * writefds,l_fd_set * exceptfds,struct timespec * tsp,l_uintptr_t * sig)2098 linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds,
2099 l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp,
2100 l_uintptr_t *sig)
2101 {
2102 struct timeval utv, tv0, tv1, *tvp;
2103 struct l_pselect6arg lpse6;
2104 sigset_t *ssp;
2105 sigset_t ss;
2106 int error;
2107
2108 ssp = NULL;
2109 if (sig != NULL) {
2110 error = copyin(sig, &lpse6, sizeof(lpse6));
2111 if (error != 0)
2112 return (error);
2113 error = linux_copyin_sigset(td, PTRIN(lpse6.ss),
2114 lpse6.ss_len, &ss, &ssp);
2115 if (error != 0)
2116 return (error);
2117 } else
2118 ssp = NULL;
2119
2120 /*
2121 * Currently glibc changes nanosecond number to microsecond.
2122 * This mean losing precision but for now it is hardly seen.
2123 */
2124 if (tsp != NULL) {
2125 TIMESPEC_TO_TIMEVAL(&utv, tsp);
2126 if (itimerfix(&utv))
2127 return (EINVAL);
2128
2129 microtime(&tv0);
2130 tvp = &utv;
2131 } else
2132 tvp = NULL;
2133
2134 error = kern_pselect(td, nfds, readfds, writefds,
2135 exceptfds, tvp, ssp, LINUX_NFDBITS);
2136
2137 if (tsp != NULL) {
2138 /*
2139 * Compute how much time was left of the timeout,
2140 * by subtracting the current time and the time
2141 * before we started the call, and subtracting
2142 * that result from the user-supplied value.
2143 */
2144 microtime(&tv1);
2145 timevalsub(&tv1, &tv0);
2146 timevalsub(&utv, &tv1);
2147 if (utv.tv_sec < 0)
2148 timevalclear(&utv);
2149 TIMEVAL_TO_TIMESPEC(&utv, tsp);
2150 }
2151 return (error);
2152 }
2153
2154 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2155 int
linux_pselect6_time64(struct thread * td,struct linux_pselect6_time64_args * args)2156 linux_pselect6_time64(struct thread *td,
2157 struct linux_pselect6_time64_args *args)
2158 {
2159 struct timespec ts, *tsp;
2160 int error;
2161
2162 if (args->tsp != NULL) {
2163 error = linux_get_timespec64(&ts, args->tsp);
2164 if (error != 0)
2165 return (error);
2166 tsp = &ts;
2167 } else
2168 tsp = NULL;
2169
2170 error = linux_common_pselect6(td, args->nfds, args->readfds,
2171 args->writefds, args->exceptfds, tsp, args->sig);
2172
2173 if (args->tsp != NULL)
2174 linux_put_timespec64(&ts, args->tsp);
2175 return (error);
2176 }
2177 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2178
2179 int
linux_ppoll(struct thread * td,struct linux_ppoll_args * args)2180 linux_ppoll(struct thread *td, struct linux_ppoll_args *args)
2181 {
2182 struct timespec uts, *tsp;
2183 int error;
2184
2185 if (args->tsp != NULL) {
2186 error = linux_get_timespec(&uts, args->tsp);
2187 if (error != 0)
2188 return (error);
2189 tsp = &uts;
2190 } else
2191 tsp = NULL;
2192
2193 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2194 args->sset, args->ssize);
2195 if (error == 0 && args->tsp != NULL)
2196 error = linux_put_timespec(&uts, args->tsp);
2197 return (error);
2198 }
2199
2200 static int
linux_common_ppoll(struct thread * td,struct pollfd * fds,uint32_t nfds,struct timespec * tsp,l_sigset_t * sset,l_size_t ssize)2201 linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds,
2202 struct timespec *tsp, l_sigset_t *sset, l_size_t ssize)
2203 {
2204 struct timespec ts0, ts1;
2205 struct pollfd stackfds[32];
2206 struct pollfd *kfds;
2207 sigset_t *ssp;
2208 sigset_t ss;
2209 int error;
2210
2211 if (kern_poll_maxfds(nfds))
2212 return (EINVAL);
2213 if (sset != NULL) {
2214 error = linux_copyin_sigset(td, sset, ssize, &ss, &ssp);
2215 if (error != 0)
2216 return (error);
2217 } else
2218 ssp = NULL;
2219 if (tsp != NULL)
2220 nanotime(&ts0);
2221
2222 if (nfds > nitems(stackfds))
2223 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
2224 else
2225 kfds = stackfds;
2226 error = linux_pollin(td, kfds, fds, nfds);
2227 if (error != 0)
2228 goto out;
2229
2230 error = kern_poll_kfds(td, kfds, nfds, tsp, ssp);
2231 if (error == 0)
2232 error = linux_pollout(td, kfds, fds, nfds);
2233
2234 if (error == 0 && tsp != NULL) {
2235 if (td->td_retval[0]) {
2236 nanotime(&ts1);
2237 timespecsub(&ts1, &ts0, &ts1);
2238 timespecsub(tsp, &ts1, tsp);
2239 if (tsp->tv_sec < 0)
2240 timespecclear(tsp);
2241 } else
2242 timespecclear(tsp);
2243 }
2244
2245 out:
2246 if (nfds > nitems(stackfds))
2247 free(kfds, M_TEMP);
2248 return (error);
2249 }
2250
2251 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2252 int
linux_ppoll_time64(struct thread * td,struct linux_ppoll_time64_args * args)2253 linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args)
2254 {
2255 struct timespec uts, *tsp;
2256 int error;
2257
2258 if (args->tsp != NULL) {
2259 error = linux_get_timespec64(&uts, args->tsp);
2260 if (error != 0)
2261 return (error);
2262 tsp = &uts;
2263 } else
2264 tsp = NULL;
2265 error = linux_common_ppoll(td, args->fds, args->nfds, tsp,
2266 args->sset, args->ssize);
2267 if (error == 0 && args->tsp != NULL)
2268 error = linux_put_timespec64(&uts, args->tsp);
2269 return (error);
2270 }
2271 #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */
2272
2273 static int
linux_pollin(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2274 linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2275 {
2276 int error;
2277 u_int i;
2278
2279 error = copyin(ufds, fds, nfd * sizeof(*fds));
2280 if (error != 0)
2281 return (error);
2282
2283 for (i = 0; i < nfd; i++) {
2284 if (fds->events != 0)
2285 linux_to_bsd_poll_events(td, fds->fd,
2286 fds->events, &fds->events);
2287 fds++;
2288 }
2289 return (0);
2290 }
2291
2292 static int
linux_pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)2293 linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
2294 {
2295 int error = 0;
2296 u_int i, n = 0;
2297
2298 for (i = 0; i < nfd; i++) {
2299 if (fds->revents != 0) {
2300 bsd_to_linux_poll_events(fds->revents,
2301 &fds->revents);
2302 n++;
2303 }
2304 error = copyout(&fds->revents, &ufds->revents,
2305 sizeof(ufds->revents));
2306 if (error)
2307 return (error);
2308 fds++;
2309 ufds++;
2310 }
2311 td->td_retval[0] = n;
2312 return (0);
2313 }
2314
2315 static int
linux_sched_rr_get_interval_common(struct thread * td,pid_t pid,struct timespec * ts)2316 linux_sched_rr_get_interval_common(struct thread *td, pid_t pid,
2317 struct timespec *ts)
2318 {
2319 struct thread *tdt;
2320 int error;
2321
2322 /*
2323 * According to man in case the invalid pid specified
2324 * EINVAL should be returned.
2325 */
2326 if (pid < 0)
2327 return (EINVAL);
2328
2329 tdt = linux_tdfind(td, pid, -1);
2330 if (tdt == NULL)
2331 return (ESRCH);
2332
2333 error = kern_sched_rr_get_interval_td(td, tdt, ts);
2334 PROC_UNLOCK(tdt->td_proc);
2335 return (error);
2336 }
2337
2338 int
linux_sched_rr_get_interval(struct thread * td,struct linux_sched_rr_get_interval_args * uap)2339 linux_sched_rr_get_interval(struct thread *td,
2340 struct linux_sched_rr_get_interval_args *uap)
2341 {
2342 struct timespec ts;
2343 int error;
2344
2345 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2346 if (error != 0)
2347 return (error);
2348 return (linux_put_timespec(&ts, uap->interval));
2349 }
2350
2351 #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32))
2352 int
linux_sched_rr_get_interval_time64(struct thread * td,struct linux_sched_rr_get_interval_time64_args * uap)2353 linux_sched_rr_get_interval_time64(struct thread *td,
2354 struct linux_sched_rr_get_interval_time64_args *uap)
2355 {
2356 struct timespec ts;
2357 int error;
2358
2359 error = linux_sched_rr_get_interval_common(td, uap->pid, &ts);
2360 if (error != 0)
2361 return (error);
2362 return (linux_put_timespec64(&ts, uap->interval));
2363 }
2364 #endif
2365
2366 /*
2367 * In case when the Linux thread is the initial thread in
2368 * the thread group thread id is equal to the process id.
2369 * Glibc depends on this magic (assert in pthread_getattr_np.c).
2370 */
2371 struct thread *
linux_tdfind(struct thread * td,lwpid_t tid,pid_t pid)2372 linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid)
2373 {
2374 struct linux_emuldata *em;
2375 struct thread *tdt;
2376 struct proc *p;
2377
2378 tdt = NULL;
2379 if (tid == 0 || tid == td->td_tid) {
2380 if (pid != -1 && td->td_proc->p_pid != pid)
2381 return (NULL);
2382 PROC_LOCK(td->td_proc);
2383 return (td);
2384 } else if (tid > PID_MAX)
2385 return (tdfind(tid, pid));
2386
2387 /*
2388 * Initial thread where the tid equal to the pid.
2389 */
2390 p = pfind(tid);
2391 if (p != NULL) {
2392 if (SV_PROC_ABI(p) != SV_ABI_LINUX ||
2393 (pid != -1 && tid != pid)) {
2394 /*
2395 * p is not a Linuxulator process.
2396 */
2397 PROC_UNLOCK(p);
2398 return (NULL);
2399 }
2400 FOREACH_THREAD_IN_PROC(p, tdt) {
2401 em = em_find(tdt);
2402 if (tid == em->em_tid)
2403 return (tdt);
2404 }
2405 PROC_UNLOCK(p);
2406 }
2407 return (NULL);
2408 }
2409
2410 void
linux_to_bsd_waitopts(int options,int * bsdopts)2411 linux_to_bsd_waitopts(int options, int *bsdopts)
2412 {
2413
2414 if (options & LINUX_WNOHANG)
2415 *bsdopts |= WNOHANG;
2416 if (options & LINUX_WUNTRACED)
2417 *bsdopts |= WUNTRACED;
2418 if (options & LINUX_WEXITED)
2419 *bsdopts |= WEXITED;
2420 if (options & LINUX_WCONTINUED)
2421 *bsdopts |= WCONTINUED;
2422 if (options & LINUX_WNOWAIT)
2423 *bsdopts |= WNOWAIT;
2424
2425 if (options & __WCLONE)
2426 *bsdopts |= WLINUXCLONE;
2427 }
2428
2429 int
linux_getrandom(struct thread * td,struct linux_getrandom_args * args)2430 linux_getrandom(struct thread *td, struct linux_getrandom_args *args)
2431 {
2432 struct uio uio;
2433 struct iovec iov;
2434 int error;
2435
2436 if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM))
2437 return (EINVAL);
2438 if (args->count > INT_MAX)
2439 args->count = INT_MAX;
2440
2441 iov.iov_base = args->buf;
2442 iov.iov_len = args->count;
2443
2444 uio.uio_iov = &iov;
2445 uio.uio_iovcnt = 1;
2446 uio.uio_resid = iov.iov_len;
2447 uio.uio_segflg = UIO_USERSPACE;
2448 uio.uio_rw = UIO_READ;
2449 uio.uio_td = td;
2450
2451 error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK);
2452 if (error == 0)
2453 td->td_retval[0] = args->count - uio.uio_resid;
2454 return (error);
2455 }
2456
2457 int
linux_mincore(struct thread * td,struct linux_mincore_args * args)2458 linux_mincore(struct thread *td, struct linux_mincore_args *args)
2459 {
2460
2461 /* Needs to be page-aligned */
2462 if (args->start & PAGE_MASK)
2463 return (EINVAL);
2464 return (kern_mincore(td, args->start, args->len, args->vec));
2465 }
2466
2467 #define SYSLOG_TAG "<6>"
2468
2469 int
linux_syslog(struct thread * td,struct linux_syslog_args * args)2470 linux_syslog(struct thread *td, struct linux_syslog_args *args)
2471 {
2472 char buf[128], *src, *dst;
2473 u_int seq;
2474 int buflen, error;
2475
2476 if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) {
2477 linux_msg(td, "syslog unsupported type 0x%x", args->type);
2478 return (EINVAL);
2479 }
2480
2481 if (args->len < 6) {
2482 td->td_retval[0] = 0;
2483 return (0);
2484 }
2485
2486 error = priv_check(td, PRIV_MSGBUF);
2487 if (error)
2488 return (error);
2489
2490 mtx_lock(&msgbuf_lock);
2491 msgbuf_peekbytes(msgbufp, NULL, 0, &seq);
2492 mtx_unlock(&msgbuf_lock);
2493
2494 dst = args->buf;
2495 error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG));
2496 /* The -1 is to skip the trailing '\0'. */
2497 dst += sizeof(SYSLOG_TAG) - 1;
2498
2499 while (error == 0) {
2500 mtx_lock(&msgbuf_lock);
2501 buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq);
2502 mtx_unlock(&msgbuf_lock);
2503
2504 if (buflen == 0)
2505 break;
2506
2507 for (src = buf; src < buf + buflen && error == 0; src++) {
2508 if (*src == '\0')
2509 continue;
2510
2511 if (dst >= args->buf + args->len)
2512 goto out;
2513
2514 error = copyout(src, dst, 1);
2515 dst++;
2516
2517 if (*src == '\n' && *(src + 1) != '<' &&
2518 dst + sizeof(SYSLOG_TAG) < args->buf + args->len) {
2519 error = copyout(&SYSLOG_TAG,
2520 dst, sizeof(SYSLOG_TAG));
2521 dst += sizeof(SYSLOG_TAG) - 1;
2522 }
2523 }
2524 }
2525 out:
2526 td->td_retval[0] = dst - args->buf;
2527 return (error);
2528 }
2529
2530 int
linux_getcpu(struct thread * td,struct linux_getcpu_args * args)2531 linux_getcpu(struct thread *td, struct linux_getcpu_args *args)
2532 {
2533 int cpu, error, node;
2534
2535 cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */
2536 error = 0;
2537 node = cpuid_to_pcpu[cpu]->pc_domain;
2538
2539 if (args->cpu != NULL)
2540 error = copyout(&cpu, args->cpu, sizeof(l_int));
2541 if (args->node != NULL)
2542 error = copyout(&node, args->node, sizeof(l_int));
2543 return (error);
2544 }
2545
2546 #if defined(__i386__) || defined(__amd64__)
2547 int
linux_poll(struct thread * td,struct linux_poll_args * args)2548 linux_poll(struct thread *td, struct linux_poll_args *args)
2549 {
2550 struct timespec ts, *tsp;
2551
2552 if (args->timeout != INFTIM) {
2553 if (args->timeout < 0)
2554 return (EINVAL);
2555 ts.tv_sec = args->timeout / 1000;
2556 ts.tv_nsec = (args->timeout % 1000) * 1000000;
2557 tsp = &ts;
2558 } else
2559 tsp = NULL;
2560
2561 return (linux_common_ppoll(td, args->fds, args->nfds,
2562 tsp, NULL, 0));
2563 }
2564 #endif /* __i386__ || __amd64__ */
2565
2566 int
linux_seccomp(struct thread * td,struct linux_seccomp_args * args)2567 linux_seccomp(struct thread *td, struct linux_seccomp_args *args)
2568 {
2569
2570 switch (args->op) {
2571 case LINUX_SECCOMP_GET_ACTION_AVAIL:
2572 return (EOPNOTSUPP);
2573 default:
2574 /*
2575 * Ignore unknown operations, just like Linux kernel built
2576 * without CONFIG_SECCOMP.
2577 */
2578 return (EINVAL);
2579 }
2580 }
2581
2582 /*
2583 * Custom version of exec_copyin_args(), to copy out argument and environment
2584 * strings from the old process address space into the temporary string buffer.
2585 * Based on freebsd32_exec_copyin_args.
2586 */
2587 static int
linux_exec_copyin_args(struct image_args * args,const char * fname,enum uio_seg segflg,l_uintptr_t * argv,l_uintptr_t * envv)2588 linux_exec_copyin_args(struct image_args *args, const char *fname,
2589 enum uio_seg segflg, l_uintptr_t *argv, l_uintptr_t *envv)
2590 {
2591 char *argp, *envp;
2592 l_uintptr_t *ptr, arg;
2593 int error;
2594
2595 bzero(args, sizeof(*args));
2596 if (argv == NULL)
2597 return (EFAULT);
2598
2599 /*
2600 * Allocate demand-paged memory for the file name, argument, and
2601 * environment strings.
2602 */
2603 error = exec_alloc_args(args);
2604 if (error != 0)
2605 return (error);
2606
2607 /*
2608 * Copy the file name.
2609 */
2610 error = exec_args_add_fname(args, fname, segflg);
2611 if (error != 0)
2612 goto err_exit;
2613
2614 /*
2615 * extract arguments first
2616 */
2617 ptr = argv;
2618 for (;;) {
2619 error = copyin(ptr++, &arg, sizeof(arg));
2620 if (error)
2621 goto err_exit;
2622 if (arg == 0)
2623 break;
2624 argp = PTRIN(arg);
2625 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
2626 if (error != 0)
2627 goto err_exit;
2628 }
2629
2630 /*
2631 * This comment is from Linux do_execveat_common:
2632 * When argv is empty, add an empty string ("") as argv[0] to
2633 * ensure confused userspace programs that start processing
2634 * from argv[1] won't end up walking envp.
2635 */
2636 if (args->argc == 0 &&
2637 (error = exec_args_add_arg(args, "", UIO_SYSSPACE) != 0))
2638 goto err_exit;
2639
2640 /*
2641 * extract environment strings
2642 */
2643 if (envv) {
2644 ptr = envv;
2645 for (;;) {
2646 error = copyin(ptr++, &arg, sizeof(arg));
2647 if (error)
2648 goto err_exit;
2649 if (arg == 0)
2650 break;
2651 envp = PTRIN(arg);
2652 error = exec_args_add_env(args, envp, UIO_USERSPACE);
2653 if (error != 0)
2654 goto err_exit;
2655 }
2656 }
2657
2658 return (0);
2659
2660 err_exit:
2661 exec_free_args(args);
2662 return (error);
2663 }
2664
2665 int
linux_execve(struct thread * td,struct linux_execve_args * args)2666 linux_execve(struct thread *td, struct linux_execve_args *args)
2667 {
2668 struct image_args eargs;
2669 int error;
2670
2671 LINUX_CTR(execve);
2672
2673 error = linux_exec_copyin_args(&eargs, args->path, UIO_USERSPACE,
2674 args->argp, args->envp);
2675 if (error == 0)
2676 error = linux_common_execve(td, &eargs);
2677 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
2678 return (error);
2679 }
2680
2681 static void
linux_up_rtprio_if(struct thread * td1,struct rtprio * rtp)2682 linux_up_rtprio_if(struct thread *td1, struct rtprio *rtp)
2683 {
2684 struct rtprio rtp2;
2685
2686 pri_to_rtp(td1, &rtp2);
2687 if (rtp2.type < rtp->type ||
2688 (rtp2.type == rtp->type &&
2689 rtp2.prio < rtp->prio)) {
2690 rtp->type = rtp2.type;
2691 rtp->prio = rtp2.prio;
2692 }
2693 }
2694
2695 #define LINUX_PRIO_DIVIDER RTP_PRIO_MAX / LINUX_IOPRIO_MAX
2696
2697 static int
linux_rtprio2ioprio(struct rtprio * rtp)2698 linux_rtprio2ioprio(struct rtprio *rtp)
2699 {
2700 int ioprio, prio;
2701
2702 switch (rtp->type) {
2703 case RTP_PRIO_IDLE:
2704 prio = RTP_PRIO_MIN;
2705 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_IDLE, prio);
2706 break;
2707 case RTP_PRIO_NORMAL:
2708 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2709 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_BE, prio);
2710 break;
2711 case RTP_PRIO_REALTIME:
2712 prio = rtp->prio / LINUX_PRIO_DIVIDER;
2713 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_RT, prio);
2714 break;
2715 default:
2716 prio = RTP_PRIO_MIN;
2717 ioprio = LINUX_IOPRIO_PRIO(LINUX_IOPRIO_CLASS_NONE, prio);
2718 break;
2719 }
2720 return (ioprio);
2721 }
2722
2723 static int
linux_ioprio2rtprio(int ioprio,struct rtprio * rtp)2724 linux_ioprio2rtprio(int ioprio, struct rtprio *rtp)
2725 {
2726
2727 switch (LINUX_IOPRIO_PRIO_CLASS(ioprio)) {
2728 case LINUX_IOPRIO_CLASS_IDLE:
2729 rtp->prio = RTP_PRIO_MIN;
2730 rtp->type = RTP_PRIO_IDLE;
2731 break;
2732 case LINUX_IOPRIO_CLASS_BE:
2733 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2734 rtp->type = RTP_PRIO_NORMAL;
2735 break;
2736 case LINUX_IOPRIO_CLASS_RT:
2737 rtp->prio = LINUX_IOPRIO_PRIO_DATA(ioprio) * LINUX_PRIO_DIVIDER;
2738 rtp->type = RTP_PRIO_REALTIME;
2739 break;
2740 default:
2741 return (EINVAL);
2742 }
2743 return (0);
2744 }
2745 #undef LINUX_PRIO_DIVIDER
2746
2747 int
linux_ioprio_get(struct thread * td,struct linux_ioprio_get_args * args)2748 linux_ioprio_get(struct thread *td, struct linux_ioprio_get_args *args)
2749 {
2750 struct thread *td1;
2751 struct rtprio rtp;
2752 struct pgrp *pg;
2753 struct proc *p;
2754 int error, found;
2755
2756 p = NULL;
2757 td1 = NULL;
2758 error = 0;
2759 found = 0;
2760 rtp.type = RTP_PRIO_IDLE;
2761 rtp.prio = RTP_PRIO_MAX;
2762 switch (args->which) {
2763 case LINUX_IOPRIO_WHO_PROCESS:
2764 if (args->who == 0) {
2765 td1 = td;
2766 p = td1->td_proc;
2767 PROC_LOCK(p);
2768 } else if (args->who > PID_MAX) {
2769 td1 = linux_tdfind(td, args->who, -1);
2770 if (td1 != NULL)
2771 p = td1->td_proc;
2772 } else
2773 p = pfind(args->who);
2774 if (p == NULL)
2775 return (ESRCH);
2776 if ((error = p_cansee(td, p))) {
2777 PROC_UNLOCK(p);
2778 break;
2779 }
2780 if (td1 != NULL) {
2781 pri_to_rtp(td1, &rtp);
2782 } else {
2783 FOREACH_THREAD_IN_PROC(p, td1) {
2784 linux_up_rtprio_if(td1, &rtp);
2785 }
2786 }
2787 found++;
2788 PROC_UNLOCK(p);
2789 break;
2790 case LINUX_IOPRIO_WHO_PGRP:
2791 sx_slock(&proctree_lock);
2792 if (args->who == 0) {
2793 pg = td->td_proc->p_pgrp;
2794 PGRP_LOCK(pg);
2795 } else {
2796 pg = pgfind(args->who);
2797 if (pg == NULL) {
2798 sx_sunlock(&proctree_lock);
2799 error = ESRCH;
2800 break;
2801 }
2802 }
2803 sx_sunlock(&proctree_lock);
2804 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2805 PROC_LOCK(p);
2806 if (p->p_state == PRS_NORMAL &&
2807 p_cansee(td, p) == 0) {
2808 FOREACH_THREAD_IN_PROC(p, td1) {
2809 linux_up_rtprio_if(td1, &rtp);
2810 found++;
2811 }
2812 }
2813 PROC_UNLOCK(p);
2814 }
2815 PGRP_UNLOCK(pg);
2816 break;
2817 case LINUX_IOPRIO_WHO_USER:
2818 if (args->who == 0)
2819 args->who = td->td_ucred->cr_uid;
2820 sx_slock(&allproc_lock);
2821 FOREACH_PROC_IN_SYSTEM(p) {
2822 PROC_LOCK(p);
2823 if (p->p_state == PRS_NORMAL &&
2824 p->p_ucred->cr_uid == args->who &&
2825 p_cansee(td, p) == 0) {
2826 FOREACH_THREAD_IN_PROC(p, td1) {
2827 linux_up_rtprio_if(td1, &rtp);
2828 found++;
2829 }
2830 }
2831 PROC_UNLOCK(p);
2832 }
2833 sx_sunlock(&allproc_lock);
2834 break;
2835 default:
2836 error = EINVAL;
2837 break;
2838 }
2839 if (error == 0) {
2840 if (found != 0)
2841 td->td_retval[0] = linux_rtprio2ioprio(&rtp);
2842 else
2843 error = ESRCH;
2844 }
2845 return (error);
2846 }
2847
2848 int
linux_ioprio_set(struct thread * td,struct linux_ioprio_set_args * args)2849 linux_ioprio_set(struct thread *td, struct linux_ioprio_set_args *args)
2850 {
2851 struct thread *td1;
2852 struct rtprio rtp;
2853 struct pgrp *pg;
2854 struct proc *p;
2855 int error;
2856
2857 if ((error = linux_ioprio2rtprio(args->ioprio, &rtp)) != 0)
2858 return (error);
2859 /* Attempts to set high priorities (REALTIME) require su privileges. */
2860 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
2861 (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
2862 return (error);
2863
2864 p = NULL;
2865 td1 = NULL;
2866 switch (args->which) {
2867 case LINUX_IOPRIO_WHO_PROCESS:
2868 if (args->who == 0) {
2869 td1 = td;
2870 p = td1->td_proc;
2871 PROC_LOCK(p);
2872 } else if (args->who > PID_MAX) {
2873 td1 = linux_tdfind(td, args->who, -1);
2874 if (td1 != NULL)
2875 p = td1->td_proc;
2876 } else
2877 p = pfind(args->who);
2878 if (p == NULL)
2879 return (ESRCH);
2880 if ((error = p_cansched(td, p))) {
2881 PROC_UNLOCK(p);
2882 break;
2883 }
2884 if (td1 != NULL) {
2885 error = rtp_to_pri(&rtp, td1);
2886 } else {
2887 FOREACH_THREAD_IN_PROC(p, td1) {
2888 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2889 break;
2890 }
2891 }
2892 PROC_UNLOCK(p);
2893 break;
2894 case LINUX_IOPRIO_WHO_PGRP:
2895 sx_slock(&proctree_lock);
2896 if (args->who == 0) {
2897 pg = td->td_proc->p_pgrp;
2898 PGRP_LOCK(pg);
2899 } else {
2900 pg = pgfind(args->who);
2901 if (pg == NULL) {
2902 sx_sunlock(&proctree_lock);
2903 error = ESRCH;
2904 break;
2905 }
2906 }
2907 sx_sunlock(&proctree_lock);
2908 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2909 PROC_LOCK(p);
2910 if (p->p_state == PRS_NORMAL &&
2911 p_cansched(td, p) == 0) {
2912 FOREACH_THREAD_IN_PROC(p, td1) {
2913 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2914 break;
2915 }
2916 }
2917 PROC_UNLOCK(p);
2918 if (error != 0)
2919 break;
2920 }
2921 PGRP_UNLOCK(pg);
2922 break;
2923 case LINUX_IOPRIO_WHO_USER:
2924 if (args->who == 0)
2925 args->who = td->td_ucred->cr_uid;
2926 sx_slock(&allproc_lock);
2927 FOREACH_PROC_IN_SYSTEM(p) {
2928 PROC_LOCK(p);
2929 if (p->p_state == PRS_NORMAL &&
2930 p->p_ucred->cr_uid == args->who &&
2931 p_cansched(td, p) == 0) {
2932 FOREACH_THREAD_IN_PROC(p, td1) {
2933 if ((error = rtp_to_pri(&rtp, td1)) != 0)
2934 break;
2935 }
2936 }
2937 PROC_UNLOCK(p);
2938 if (error != 0)
2939 break;
2940 }
2941 sx_sunlock(&allproc_lock);
2942 break;
2943 default:
2944 error = EINVAL;
2945 break;
2946 }
2947 return (error);
2948 }
2949