1 /*
2 * FreeSec: libcrypt for NetBSD
3 *
4 * Copyright (c) 1994 David Burren
5 * All rights reserved.
6 *
7 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
8 * this file should now *only* export crypt(), in order to make
9 * binaries of libcrypt exportable from the USA
10 *
11 * Adapted for FreeBSD-4.0 by Mark R V Murray
12 * this file should now *only* export crypt_des(), in order to make
13 * a module that can be optionally included in libcrypt.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. Neither the name of the author nor the names of other contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * This is an original implementation of the DES and the crypt(3) interfaces
40 * by David Burren <[email protected]>.
41 *
42 * An excellent reference on the underlying algorithm (and related
43 * algorithms) is:
44 *
45 * B. Schneier, Applied Cryptography: protocols, algorithms,
46 * and source code in C, John Wiley & Sons, 1994.
47 *
48 * Note that in that book's description of DES the lookups for the initial,
49 * pbox, and final permutations are inverted (this has been brought to the
50 * attention of the author). A list of errata for this book has been
51 * posted to the sci.crypt newsgroup by the author and is available for FTP.
52 *
53 * ARCHITECTURE ASSUMPTIONS:
54 * It is assumed that the 8-byte arrays passed by reference can be
55 * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
56 * alignment).
57 */
58
59 #include <sys/cdefs.h>
60 #include <sys/types.h>
61 #include <sys/param.h>
62 #include <arpa/inet.h>
63 #include <pwd.h>
64 #include <string.h>
65 #include "crypt.h"
66
67 /* We can't always assume gcc */
68 #if defined(__GNUC__) && !defined(lint)
69 #define INLINE inline
70 #else
71 #define INLINE
72 #endif
73
74
75 static const u_char IP[64] = {
76 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
77 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
78 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
79 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
80 };
81
82 static __thread u_char inv_key_perm[64];
83 static const u_char key_perm[56] = {
84 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
85 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
86 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
87 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
88 };
89
90 static const u_char key_shifts[16] = {
91 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
92 };
93
94 static __thread u_char inv_comp_perm[56];
95 static const u_char comp_perm[48] = {
96 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
97 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
98 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
99 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
100 };
101
102 /*
103 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
104 */
105
106 static __thread u_char u_sbox[8][64];
107 static const u_char sbox[8][64] = {
108 {
109 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
110 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
111 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
112 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
113 },
114 {
115 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
116 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
117 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
118 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
119 },
120 {
121 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
122 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
123 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
124 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
125 },
126 {
127 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
128 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
129 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
130 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
131 },
132 {
133 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
134 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
135 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
136 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
137 },
138 {
139 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
140 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
141 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
142 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
143 },
144 {
145 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
146 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
147 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
148 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
149 },
150 {
151 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
152 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
153 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
154 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
155 }
156 };
157
158 static __thread u_char un_pbox[32];
159 static const u_char pbox[32] = {
160 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
161 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
162 };
163
164 static const u_int32_t bits32[32] =
165 {
166 0x80000000, 0x40000000, 0x20000000, 0x10000000,
167 0x08000000, 0x04000000, 0x02000000, 0x01000000,
168 0x00800000, 0x00400000, 0x00200000, 0x00100000,
169 0x00080000, 0x00040000, 0x00020000, 0x00010000,
170 0x00008000, 0x00004000, 0x00002000, 0x00001000,
171 0x00000800, 0x00000400, 0x00000200, 0x00000100,
172 0x00000080, 0x00000040, 0x00000020, 0x00000010,
173 0x00000008, 0x00000004, 0x00000002, 0x00000001
174 };
175
176 static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
177
178 static __thread u_int32_t saltbits;
179 static __thread u_int32_t old_salt;
180 static __thread const u_int32_t *bits28, *bits24;
181 static __thread u_char init_perm[64], final_perm[64];
182 static __thread u_int32_t en_keysl[16], en_keysr[16];
183 static __thread u_int32_t de_keysl[16], de_keysr[16];
184 static __thread int des_initialised = 0;
185 static __thread u_char m_sbox[4][4096];
186 static __thread u_int32_t psbox[4][256];
187 static __thread u_int32_t ip_maskl[8][256], ip_maskr[8][256];
188 static __thread u_int32_t fp_maskl[8][256], fp_maskr[8][256];
189 static __thread u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
190 static __thread u_int32_t comp_maskl[8][128], comp_maskr[8][128];
191 static __thread u_int32_t old_rawkey0, old_rawkey1;
192
193 static const u_char ascii64[] =
194 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
195 /* 0000000000111111111122222222223333333333444444444455555555556666 */
196 /* 0123456789012345678901234567890123456789012345678901234567890123 */
197
198 static INLINE int
ascii_to_bin(char ch)199 ascii_to_bin(char ch)
200 {
201 if (ch > 'z')
202 return(0);
203 if (ch >= 'a')
204 return(ch - 'a' + 38);
205 if (ch > 'Z')
206 return(0);
207 if (ch >= 'A')
208 return(ch - 'A' + 12);
209 if (ch > '9')
210 return(0);
211 if (ch >= '.')
212 return(ch - '.');
213 return(0);
214 }
215
216 static void
des_init(void)217 des_init(void)
218 {
219 int i, j, b, k, inbit, obit;
220 u_int32_t *p, *il, *ir, *fl, *fr;
221
222 old_rawkey0 = old_rawkey1 = 0L;
223 saltbits = 0L;
224 old_salt = 0L;
225 bits24 = (bits28 = bits32 + 4) + 4;
226
227 /*
228 * Invert the S-boxes, reordering the input bits.
229 */
230 for (i = 0; i < 8; i++)
231 for (j = 0; j < 64; j++) {
232 b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
233 u_sbox[i][j] = sbox[i][b];
234 }
235
236 /*
237 * Convert the inverted S-boxes into 4 arrays of 8 bits.
238 * Each will handle 12 bits of the S-box input.
239 */
240 for (b = 0; b < 4; b++)
241 for (i = 0; i < 64; i++)
242 for (j = 0; j < 64; j++)
243 m_sbox[b][(i << 6) | j] =
244 (u_char)((u_sbox[(b << 1)][i] << 4) |
245 u_sbox[(b << 1) + 1][j]);
246
247 /*
248 * Set up the initial & final permutations into a useful form, and
249 * initialise the inverted key permutation.
250 */
251 for (i = 0; i < 64; i++) {
252 init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
253 inv_key_perm[i] = 255;
254 }
255
256 /*
257 * Invert the key permutation and initialise the inverted key
258 * compression permutation.
259 */
260 for (i = 0; i < 56; i++) {
261 inv_key_perm[key_perm[i] - 1] = (u_char)i;
262 inv_comp_perm[i] = 255;
263 }
264
265 /*
266 * Invert the key compression permutation.
267 */
268 for (i = 0; i < 48; i++) {
269 inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
270 }
271
272 /*
273 * Set up the OR-mask arrays for the initial and final permutations,
274 * and for the key initial and compression permutations.
275 */
276 for (k = 0; k < 8; k++) {
277 for (i = 0; i < 256; i++) {
278 *(il = &ip_maskl[k][i]) = 0L;
279 *(ir = &ip_maskr[k][i]) = 0L;
280 *(fl = &fp_maskl[k][i]) = 0L;
281 *(fr = &fp_maskr[k][i]) = 0L;
282 for (j = 0; j < 8; j++) {
283 inbit = 8 * k + j;
284 if (i & bits8[j]) {
285 if ((obit = init_perm[inbit]) < 32)
286 *il |= bits32[obit];
287 else
288 *ir |= bits32[obit-32];
289 if ((obit = final_perm[inbit]) < 32)
290 *fl |= bits32[obit];
291 else
292 *fr |= bits32[obit - 32];
293 }
294 }
295 }
296 for (i = 0; i < 128; i++) {
297 *(il = &key_perm_maskl[k][i]) = 0L;
298 *(ir = &key_perm_maskr[k][i]) = 0L;
299 for (j = 0; j < 7; j++) {
300 inbit = 8 * k + j;
301 if (i & bits8[j + 1]) {
302 if ((obit = inv_key_perm[inbit]) == 255)
303 continue;
304 if (obit < 28)
305 *il |= bits28[obit];
306 else
307 *ir |= bits28[obit - 28];
308 }
309 }
310 *(il = &comp_maskl[k][i]) = 0L;
311 *(ir = &comp_maskr[k][i]) = 0L;
312 for (j = 0; j < 7; j++) {
313 inbit = 7 * k + j;
314 if (i & bits8[j + 1]) {
315 if ((obit=inv_comp_perm[inbit]) == 255)
316 continue;
317 if (obit < 24)
318 *il |= bits24[obit];
319 else
320 *ir |= bits24[obit - 24];
321 }
322 }
323 }
324 }
325
326 /*
327 * Invert the P-box permutation, and convert into OR-masks for
328 * handling the output of the S-box arrays setup above.
329 */
330 for (i = 0; i < 32; i++)
331 un_pbox[pbox[i] - 1] = (u_char)i;
332
333 for (b = 0; b < 4; b++)
334 for (i = 0; i < 256; i++) {
335 *(p = &psbox[b][i]) = 0L;
336 for (j = 0; j < 8; j++) {
337 if (i & bits8[j])
338 *p |= bits32[un_pbox[8 * b + j]];
339 }
340 }
341
342 des_initialised = 1;
343 }
344
345 static void
setup_salt(u_int32_t salt)346 setup_salt(u_int32_t salt)
347 {
348 u_int32_t obit, saltbit;
349 int i;
350
351 if (salt == old_salt)
352 return;
353 old_salt = salt;
354
355 saltbits = 0L;
356 saltbit = 1;
357 obit = 0x800000;
358 for (i = 0; i < 24; i++) {
359 if (salt & saltbit)
360 saltbits |= obit;
361 saltbit <<= 1;
362 obit >>= 1;
363 }
364 }
365
366 static int
des_setkey(const char * key)367 des_setkey(const char *key)
368 {
369 u_int32_t k0, k1, rawkey0, rawkey1;
370 int shifts, round;
371
372 if (!des_initialised)
373 des_init();
374
375 rawkey0 = ntohl(*(const u_int32_t *) key);
376 rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
377
378 if ((rawkey0 | rawkey1)
379 && rawkey0 == old_rawkey0
380 && rawkey1 == old_rawkey1) {
381 /*
382 * Already setup for this key.
383 * This optimisation fails on a zero key (which is weak and
384 * has bad parity anyway) in order to simplify the starting
385 * conditions.
386 */
387 return(0);
388 }
389 old_rawkey0 = rawkey0;
390 old_rawkey1 = rawkey1;
391
392 /*
393 * Do key permutation and split into two 28-bit subkeys.
394 */
395 k0 = key_perm_maskl[0][rawkey0 >> 25]
396 | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
397 | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
398 | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
399 | key_perm_maskl[4][rawkey1 >> 25]
400 | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
401 | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
402 | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
403 k1 = key_perm_maskr[0][rawkey0 >> 25]
404 | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
405 | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
406 | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
407 | key_perm_maskr[4][rawkey1 >> 25]
408 | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
409 | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
410 | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
411 /*
412 * Rotate subkeys and do compression permutation.
413 */
414 shifts = 0;
415 for (round = 0; round < 16; round++) {
416 u_int32_t t0, t1;
417
418 shifts += key_shifts[round];
419
420 t0 = (k0 << shifts) | (k0 >> (28 - shifts));
421 t1 = (k1 << shifts) | (k1 >> (28 - shifts));
422
423 de_keysl[15 - round] =
424 en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
425 | comp_maskl[1][(t0 >> 14) & 0x7f]
426 | comp_maskl[2][(t0 >> 7) & 0x7f]
427 | comp_maskl[3][t0 & 0x7f]
428 | comp_maskl[4][(t1 >> 21) & 0x7f]
429 | comp_maskl[5][(t1 >> 14) & 0x7f]
430 | comp_maskl[6][(t1 >> 7) & 0x7f]
431 | comp_maskl[7][t1 & 0x7f];
432
433 de_keysr[15 - round] =
434 en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
435 | comp_maskr[1][(t0 >> 14) & 0x7f]
436 | comp_maskr[2][(t0 >> 7) & 0x7f]
437 | comp_maskr[3][t0 & 0x7f]
438 | comp_maskr[4][(t1 >> 21) & 0x7f]
439 | comp_maskr[5][(t1 >> 14) & 0x7f]
440 | comp_maskr[6][(t1 >> 7) & 0x7f]
441 | comp_maskr[7][t1 & 0x7f];
442 }
443 return(0);
444 }
445
446 static int
do_des(u_int32_t l_in,u_int32_t r_in,u_int32_t * l_out,u_int32_t * r_out,int count)447 do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
448 {
449 /*
450 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
451 */
452 u_int32_t l, r, *kl, *kr, *kl1, *kr1;
453 u_int32_t f, r48l, r48r;
454 int round;
455
456 if (count == 0) {
457 return(1);
458 } else if (count > 0) {
459 /*
460 * Encrypting
461 */
462 kl1 = en_keysl;
463 kr1 = en_keysr;
464 } else {
465 /*
466 * Decrypting
467 */
468 count = -count;
469 kl1 = de_keysl;
470 kr1 = de_keysr;
471 }
472
473 /*
474 * Do initial permutation (IP).
475 */
476 l = ip_maskl[0][l_in >> 24]
477 | ip_maskl[1][(l_in >> 16) & 0xff]
478 | ip_maskl[2][(l_in >> 8) & 0xff]
479 | ip_maskl[3][l_in & 0xff]
480 | ip_maskl[4][r_in >> 24]
481 | ip_maskl[5][(r_in >> 16) & 0xff]
482 | ip_maskl[6][(r_in >> 8) & 0xff]
483 | ip_maskl[7][r_in & 0xff];
484 r = ip_maskr[0][l_in >> 24]
485 | ip_maskr[1][(l_in >> 16) & 0xff]
486 | ip_maskr[2][(l_in >> 8) & 0xff]
487 | ip_maskr[3][l_in & 0xff]
488 | ip_maskr[4][r_in >> 24]
489 | ip_maskr[5][(r_in >> 16) & 0xff]
490 | ip_maskr[6][(r_in >> 8) & 0xff]
491 | ip_maskr[7][r_in & 0xff];
492
493 while (count--) {
494 /*
495 * Do each round.
496 */
497 kl = kl1;
498 kr = kr1;
499 round = 16;
500 while (round--) {
501 /*
502 * Expand R to 48 bits (simulate the E-box).
503 */
504 r48l = ((r & 0x00000001) << 23)
505 | ((r & 0xf8000000) >> 9)
506 | ((r & 0x1f800000) >> 11)
507 | ((r & 0x01f80000) >> 13)
508 | ((r & 0x001f8000) >> 15);
509
510 r48r = ((r & 0x0001f800) << 7)
511 | ((r & 0x00001f80) << 5)
512 | ((r & 0x000001f8) << 3)
513 | ((r & 0x0000001f) << 1)
514 | ((r & 0x80000000) >> 31);
515 /*
516 * Do salting for crypt() and friends, and
517 * XOR with the permuted key.
518 */
519 f = (r48l ^ r48r) & saltbits;
520 r48l ^= f ^ *kl++;
521 r48r ^= f ^ *kr++;
522 /*
523 * Do sbox lookups (which shrink it back to 32 bits)
524 * and do the pbox permutation at the same time.
525 */
526 f = psbox[0][m_sbox[0][r48l >> 12]]
527 | psbox[1][m_sbox[1][r48l & 0xfff]]
528 | psbox[2][m_sbox[2][r48r >> 12]]
529 | psbox[3][m_sbox[3][r48r & 0xfff]];
530 /*
531 * Now that we've permuted things, complete f().
532 */
533 f ^= l;
534 l = r;
535 r = f;
536 }
537 r = l;
538 l = f;
539 }
540 /*
541 * Do final permutation (inverse of IP).
542 */
543 *l_out = fp_maskl[0][l >> 24]
544 | fp_maskl[1][(l >> 16) & 0xff]
545 | fp_maskl[2][(l >> 8) & 0xff]
546 | fp_maskl[3][l & 0xff]
547 | fp_maskl[4][r >> 24]
548 | fp_maskl[5][(r >> 16) & 0xff]
549 | fp_maskl[6][(r >> 8) & 0xff]
550 | fp_maskl[7][r & 0xff];
551 *r_out = fp_maskr[0][l >> 24]
552 | fp_maskr[1][(l >> 16) & 0xff]
553 | fp_maskr[2][(l >> 8) & 0xff]
554 | fp_maskr[3][l & 0xff]
555 | fp_maskr[4][r >> 24]
556 | fp_maskr[5][(r >> 16) & 0xff]
557 | fp_maskr[6][(r >> 8) & 0xff]
558 | fp_maskr[7][r & 0xff];
559 return(0);
560 }
561
562 static int
des_cipher(const char * in,char * out,u_long salt,int count)563 des_cipher(const char *in, char *out, u_long salt, int count)
564 {
565 u_int32_t l_out, r_out, rawl, rawr;
566 int retval;
567 union {
568 u_int32_t *ui32;
569 const char *c;
570 } trans;
571
572 if (!des_initialised)
573 des_init();
574
575 setup_salt(salt);
576
577 trans.c = in;
578 rawl = ntohl(*trans.ui32++);
579 rawr = ntohl(*trans.ui32);
580
581 retval = do_des(rawl, rawr, &l_out, &r_out, count);
582
583 trans.c = out;
584 *trans.ui32++ = htonl(l_out);
585 *trans.ui32 = htonl(r_out);
586 return(retval);
587 }
588
589 int
crypt_des(const char * key,const char * setting,char * buffer)590 crypt_des(const char *key, const char *setting, char *buffer)
591 {
592 int i;
593 u_int32_t count, salt, l, r0, r1, keybuf[2];
594 u_char *q;
595
596 if (!des_initialised)
597 des_init();
598
599 /*
600 * Copy the key, shifting each character up by one bit
601 * and padding with zeros.
602 */
603 q = (u_char *)keybuf;
604 while (q - (u_char *)keybuf - 8) {
605 *q++ = *key << 1;
606 if (*key != '\0')
607 key++;
608 }
609 if (des_setkey((char *)keybuf))
610 return (-1);
611
612 if (*setting == _PASSWORD_EFMT1) {
613 /*
614 * "new"-style:
615 * setting - underscore, 4 bytes of count, 4 bytes of salt
616 * key - unlimited characters
617 */
618 for (i = 1, count = 0L; i < 5; i++)
619 count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
620
621 for (i = 5, salt = 0L; i < 9; i++)
622 salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
623
624 while (*key) {
625 /*
626 * Encrypt the key with itself.
627 */
628 if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
629 return (-1);
630 /*
631 * And XOR with the next 8 characters of the key.
632 */
633 q = (u_char *)keybuf;
634 while (q - (u_char *)keybuf - 8 && *key)
635 *q++ ^= *key++ << 1;
636
637 if (des_setkey((char *)keybuf))
638 return (-1);
639 }
640 buffer = stpncpy(buffer, setting, 9);
641 } else {
642 /*
643 * "old"-style:
644 * setting - 2 bytes of salt
645 * key - up to 8 characters
646 */
647 count = 25;
648
649 salt = (ascii_to_bin(setting[1]) << 6)
650 | ascii_to_bin(setting[0]);
651
652 *buffer++ = setting[0];
653 /*
654 * If the encrypted password that the salt was extracted from
655 * is only 1 character long, the salt will be corrupted. We
656 * need to ensure that the output string doesn't have an extra
657 * NUL in it!
658 */
659 *buffer++ = setting[1] ? setting[1] : setting[0];
660 }
661 setup_salt(salt);
662 /*
663 * Do it.
664 */
665 if (do_des(0L, 0L, &r0, &r1, (int)count))
666 return (-1);
667 /*
668 * Now encode the result...
669 */
670 l = (r0 >> 8);
671 *buffer++ = ascii64[(l >> 18) & 0x3f];
672 *buffer++ = ascii64[(l >> 12) & 0x3f];
673 *buffer++ = ascii64[(l >> 6) & 0x3f];
674 *buffer++ = ascii64[l & 0x3f];
675
676 l = (r0 << 16) | ((r1 >> 16) & 0xffff);
677 *buffer++ = ascii64[(l >> 18) & 0x3f];
678 *buffer++ = ascii64[(l >> 12) & 0x3f];
679 *buffer++ = ascii64[(l >> 6) & 0x3f];
680 *buffer++ = ascii64[l & 0x3f];
681
682 l = r1 << 2;
683 *buffer++ = ascii64[(l >> 12) & 0x3f];
684 *buffer++ = ascii64[(l >> 6) & 0x3f];
685 *buffer++ = ascii64[l & 0x3f];
686 *buffer = '\0';
687
688 return (0);
689 }
690